

9° Trabalho - Segmentação do corpo caloso

Disciplina de Morfologia Matemática – 1° semestre de 2015 – Prof. Aura Conci

Alunos: Carolina Carvalho, Érick Oliveira, Breno Carvalho e Francisco Benavides

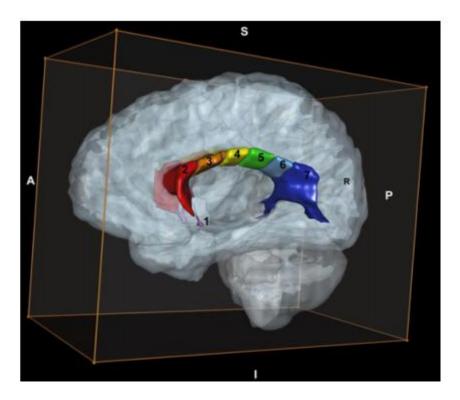


Fig. 2.
Three-dimensional MRI of the corpus callosum subdivisions. Key: 1 = Rostrum, 2 = Genu, 3 = Anterior body, 4 = Midbody, 5 = Posterior body, 6 = Isthmus, 7 = Splenium

Foram utilizadas três técnicas distintas aplicadas sobre cortes sagitais de RM do corte mediano em direção às extremidades:

- Segmentação em binário:
 - <u>Técnica 1</u>: Limiarização com threshold manual + algoritmo de Suzuki para separar regiões conectadas sendo selecionada a região que contém um ponto do corpo caloso fornecido
 - <u>Técnica 2</u>: Limiarização com threshold manual + reconstrução a partir de um ponto do corpo caloso fornecido

Foram utilizadas três técnicas distintas:

- Segmentação **em tons de cinza**:
 - <u>Técnica 3</u>: Top-hat por reconstrução + reconstrução a partir de um ponto central do corpo caloso fornecido

imagem2= ero(imagem_original,EEQuadrado 3x3,
iteracoes=10)

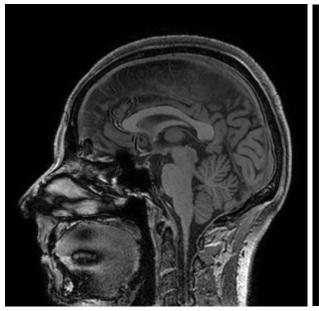
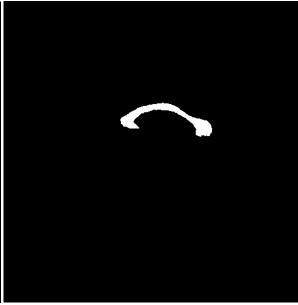
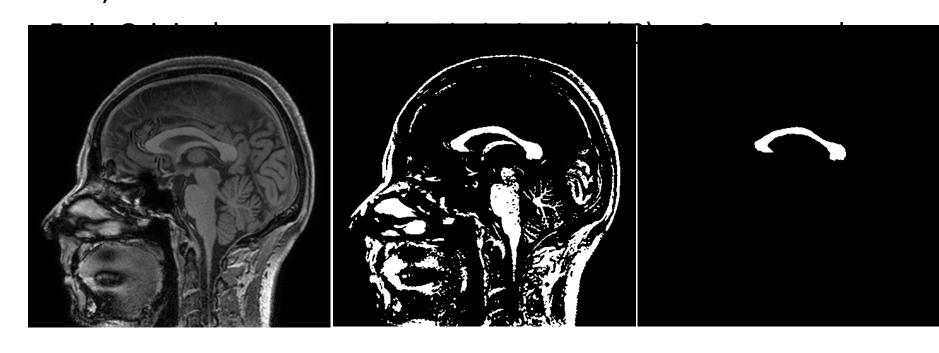
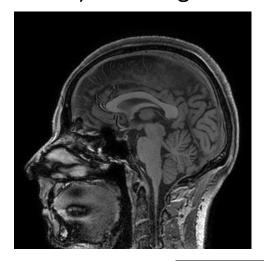

imagem $3=\rho_{imagem_original}$ (imagem2)

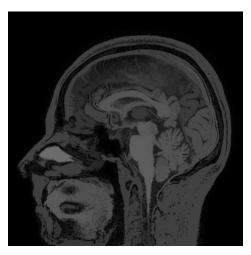
imagem4= imagem_original - imagem3


Imagem_segmentada= $\rho_{imagem4}$ (marcador) //marcador ponto fornecido com tom igual ao tom da imagem 4 neste ponto

<u>Técnica 1</u>: Limiarizacao+Suzuki (Ilustração da segmentação da fatia central 0170 passo a passo, RM da Aura-2009)

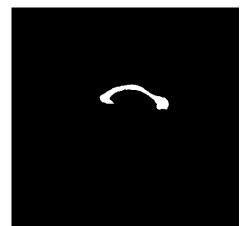

Fatia Original: Após a Limiarização (90): Segmentada:


<u>Técnica 2</u>: Limiarizacao+Reconstrução (Ilustração da segmentação da fatia central 0170 passo a passo, RM da Aura-2009)


<u>Técnica 3</u>: Top-hat por reconstrução+Reconstrução (Ilustração da segmentação da fatia central 0170 passo a passo, RM da Aura-2009)Fatia Original:

Após a Erosão:

Após a reconstrução1:



Subtração:

Reconstrução+ limiarização final:

<u>Fatias extraídas</u> pelas técnicas nos exames da Aura/Yandre (cortes sagitais ponderados em T1):

Técnicas	Aura 2009 T=90	Aura 2012 T=90	Yandre 2008 (com contraste) T=161	Yandre 2010 (com contraste) T=150
Técnica 1: Limiarização+Suzuki	0145-0195	0068-0093	IM9-IM12	IM9-IM12
Técnica 2: Limiarização + reconstrução	0145-0195	0068-0093	IM9-IM12	IM9-IM12
Técnica 3: Top-hat por reconstrução + reconstrução	0145-0195	0068-0093	IM9-IM12	IM9-IM12

<u>Distância de Hausdorff</u> para as imagens segmentadas em comum pelas 3 técnicas para os exames de Aura/Yandre:

Distância de Hausdorff	Aura 2009 (fatias 0145- 0195)	Aura 2012 (fatias 0068- 0090)	Yandre 2008 (fatias IM9- IM12)	Yandre 2010 (fatias IM9- IM12)
DH (Técnica 1, Técnica 2)	12	7	21	5
DH (Técnica 1, Técnica 3)	184	152	102	197
DH (Técnica 2, Técnica 3)	184	152	102	197

A técnica 3 não conseguiu segmentar as fatias 91-93 que foram excluídas do cálculo da DH.

<u>Diferença simétrica</u> para as imagens segmentadas em comum pelas 3 técnicas para os exames de Aura/Yandre:

Diferença Simétrica	Aura 2009 (fatias 0154- 0186)	Aura 2012 (fatias 0068- 0093)	Yandre 2008 (fatias IM9- IM12)	Yandre 2010 (fatias IM9- IM12)
DS (Técnica 1, Técnica 2)	57419	8465	4942	1398
DS (Técnica 1, Técnica 3)	307094	74094	28446	34187
DS (Técnica 2, Técnica 3)	249789	71443	23556	32927

<u>Diferença simétrica normalizada</u> para as imagens segmentadas em comum pelas 3 técnicas para os exames de Aura/Yandre

DSnormalizada=(DS/(n° de fatias x resolução H x resolução V)):

Diferença Simétrica	Aura 2009 (51 fatias 480x480)	Aura 2012 (26 fatias 256 x 256)	Yandre 2008 (4 fatias 512 x 512)	Yandre 2010 (4 fatias 512 x 512)
DS (Técnica 1, Técnica 2)	0.489 %	0.497 %	0.471 %	0.133 %
DS (Técnica 1, Técnica 3)	2.61 %	4.35 %	2.71 %	3.26 %
DS (Técnica 2, Técnica 3)	2.13 %	4.19 %	2.25 %	3.14 %

Segmentação do corpo caloso: Cálculo do Volume

- Para o cálculo do volume <u>foram escolhidas as técnicas 1 e 2</u>, por apresentarem resultados mais próximos.
- Para o cálculo volumétrico do CC, foi especificada uma espessura do corpo caloso máxima de 25 mm. Tal espessura foi fixada olhando-se o corte mediano coronal a partir do qual pode-se estimar a espessura do corpo caloso para as regiões de 3-6 (ver [2], figura 1). A partir desta espessura, a massa branca mistura-se com o corpo caloso de tal forma a impossibilitar a distinção do mesmo a partir dos cortes sagitais)
- Com isso, parte das regiões 1 e 7, que extrapolam tal espessura não puderam ser segmentadas, de forma que o volume está subestimado.
- Em todas as técnicas, foi fornecido um ponto da região 7, por esta permanecer melhor distinguida por um número maior de fatias.

Segmentação do corpo caloso: Cálculo do Volume

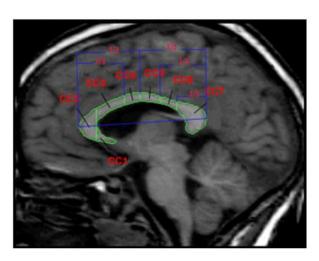
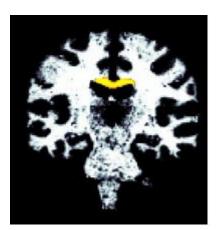



Fig. 1.

Mid-sagittal MRI of the corpus callosum subdivisions based on callosal subdivisions by Witelson (*in blue*). Key: CC1 = Rostrum, CC2 = Genu, CC3 = Anterior body, CC4 = Midbody, CC5 = Posterior body, CC6 = Isthmus, CC7 = Splenium

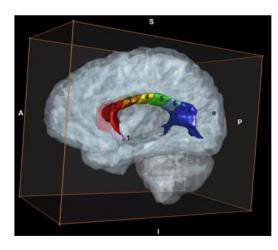
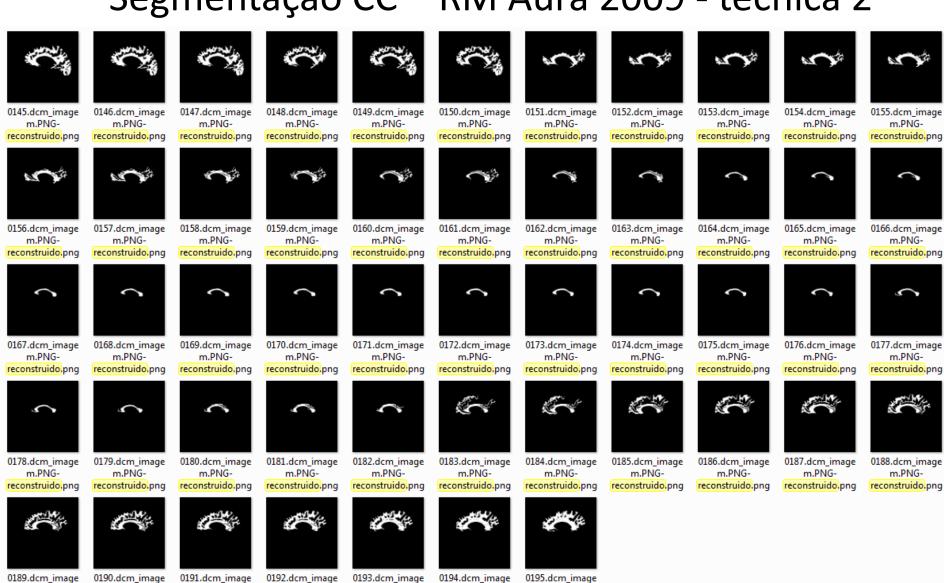



Fig. 2.
Three-dimensional MRI of the corpus callosum subdivisions. Key: 1 = Rostrum, 2 = Genu, 3 = Anterior body, 4 = Midbody, 5 = Posterior body, 6 = Isthmus, 7 = Splenium

Segmentação CC – RM Aura 2009 - técnica 2

m.PNG-

reconstruido png

m.PNG-

reconstruido.png

m.PNG-

reconstruido png

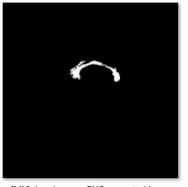
m.PNG-

reconstruido png

m.PNG-

reconstruido png

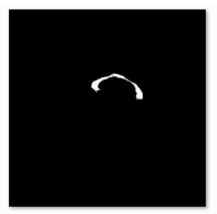
m.PNG-


reconstruido pna

m.PNG-

reconstruido pna

Segmentação CC – RM Yandre-2008- técnica 2


IM9.dcm_imagem.PNG-reconstruido.png IM10.dcm_imagem.PNG-reconstruido.png

IM11.dcm_imagem.PNG-reconstruido.png

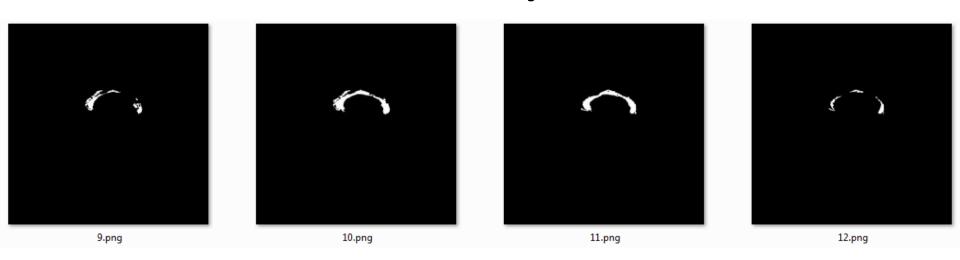
Segmentação CC – RM Yandre-2010- técnica 2

IM9.dcm_imagem.PNG-reconstruido.png

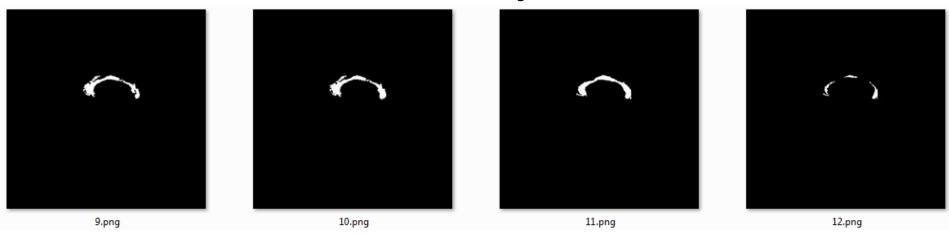
IM10.dcm_imagem.PNG-reconstruido.png

IM11.dcm_imagem.PNG-reconstruido.png

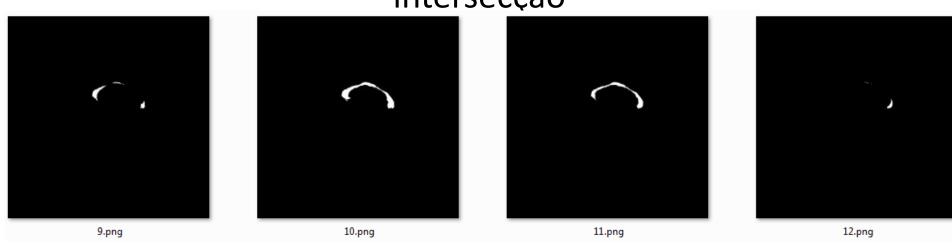
IM12.dcm_imagem.PNG-reconstruido.png


Cálculo volumétrico CC

- De uma forma geral, constatou-se também que, mesmo dentro da espessura de 25 mm, fatias afastadas das centrais acabavam segmentando, além do CC, parte da substância branca pertencente a outras estruturas cerebrais.
- O cálculo volumétrico foi então adaptado para, do meio para as pontas, testar se a próxima fatia excede em 10% o número de pixels da fatia anterior, fazendo a interseção com a fatia anterior, caso esta condição ocorra.


Cálculo Volumétrico CC – RM Aura, técnica 2, com intersecção

Cálculo Volumétrico CC – RM Yandre-2008, <u>técnica 2</u>, com intersecção


Cálculo Volumétrico CC – RM Yandre-2008, <u>técnica 1</u>, com intersecção

Cálculo Volumétrico CC – RM Yandre-2010, <u>técnica 2</u>, com intersecção

Cálculo Volumétrico CC – RM Yandre-2010, <u>técnica 1</u>, com intersecção

Segmentação do corpo caloso: cálculo do volume

Volumes segmentando as fatias e usando o artifício da interseção (10%):

Técnica	Grandeza	Aura 2009	Aura 2012	Delta-V Aura	Yandre 2008	Yandre 2010	Delta-V Yandre
Limiar. + Suzuki	Volume c.c.(mm3)	10038.25	9259.5	-7.75 %	7905.90	4613.48	-41.64 %
	Tempo de execução /fatia	0.144 s	0.0768 s	-	0.125 s	0.129 s	-
Limiar. + Reconst.	Volume c.c.(mm3)	9974.94	8991	-9.86 %	7234.45	4579.64	-36.7 %
	Tempo de execução/ fatia	0.06 s	0.02	-	0.067 s	0.067 s	-

Segmentação do corpo caloso: cálculo do volume

Volumes segmentando as fatias e usando o artifício da interseção (1%):

Técnica	Grandeza	Aura 2009	Aura 2012	Delta-V Aura	Yandre 2008	Yandre 2010	Delta-V Yandre
Limiar. + Suzuki	Volume c.c.(mm3)	9722.44	9259.5	-4.76 %	7905.90	4613.48	-41.64 %
	Tempo de execução /fatia	0.144 s	0.0768 s	-	0.124 s	0.132 s	-
Limiar. + Reconst.	Volume c.c.(mm3)	9661.69	8991	-6.94 %	7234.45	4579.64	-36.7 %
	Tempo de execução/ fatia	0.061 s	0.019 s	-	0.068 s	0.069 s	-

Segmentação do corpo caloso: cálculo do volume - CONCLUSÕES

- A intersecção melhorou a segmentação do CC mas restringiu-a de tal forma que qualquer modificação abrupta de fatia para fatia fica de fora (fatias mais externas terão sempre menos pixels que fatias mais internas), o que também contribui para submestimar o volume.
- Até mesmo o paciente de controle (Aura) apresentou alguma redução no volume, e esta redução varia com o percentual considerado na interseção. É preciso investigar melhor o motivo desta redução, se existe algum problema a sanar na segmentação/cálculo volumétrico.
- As técnicas 1 e 2 são muito sensíveis ao limite de limiarização T e ao ponto escolhido.

Segmentação do corpo caloso: cálculo do volume - CONCLUSÕES

As técnicas de segmentação 1 e 2
 apresentaram resultados semelhantes no
 cálculo volumétrico, porém a técnica 2 se
 mostrou mais eficiente em termos de tempo
 computacional de execução*.

*A máquina utilizada nas simulações tem as seguintes configurações:

- SO: windows 7 de 64 bits
- Processador: Intel® Core™ i5-3470 CPU @ 3.2 GYHz 3.60 GHz
- Memória RAM: 4 GB

Segmentação do corpo caloso: cálculo do volume – TRABALHOS FUTUROS

- Como ponto de melhoria, deve ser implementada uma forma de especificar o ponto e T automaticamente.
- Outro ponto de melhoria consiste em pegar os metadados dos exames que influenciam no cálculo do volume como o lado do pixel e a espessura da fatia automaticamente do xml gerado na extração das imagens DICOM.
- A técnica 2 (mais eficiente) deverá ser aplicada a exames de RM de mais pacientes, incluindo pacientes com redução do CC conhecida a priori e pacientes do grupo de controle em um estudo longitudinal para validar o cálculo volumétrico no acompanhamento da redução do CC ao longo do tempo.

Referências

[1]LOPEZ-LARSON, Melissa et al. Age-related changes in the corpus callosum in early-onset bipolar disorder assessed using volumetric and cross-sectional measurements. **Brain imaging and behavior**, v. 4, n. 3-4, p. 220-231, 2010.Disponível em http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711475/>. Acesso em 23 de junho de 2015

[2] MCLAUGHLIN, Nicole CR et al. Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan. **International journal of developmental neuroscience**, v. 25, n. 4, p. 215-221, 2007. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69 .6216&rep=rep1&type=pdf. Acesso em 23 de junho de 2015.