
Reinforcement Learning and
Utility-Based Decisions

Michael L. Littman
Rutgers University

Department of Computer Science

Rutgers Laboratory for Real-Life Reinforcement Learning

Outline

• One view of utility-based data mining

• Parallels with PAC reinforcement learning

• Survey of PAC RL results

• Lame attempt to relate UBDM and RL

88

What is Utility as it relates toWhat is Utility as it relates to

Data Mining?Data Mining?

!! In the context of data mining, utility refers to totalIn the context of data mining, utility refers to total
utility derived from the entire data mining utility derived from the entire data mining processprocess

–– It factors in utilities from 3 stages of data mining:It factors in utilities from 3 stages of data mining:

1.1. Costs of acquiring the dataCosts of acquiring the data (U1 or C1)(U1 or C1)

2.2. Costs of mining the dataCosts of mining the data (U2 or C2)(U2 or C2)

3.3. Benefits of using the mined knowledgeBenefits of using the mined knowledge (U3 or B)(U3 or B)

UtilityUtilityDMDM = U1+U2+U3 = U1+U2+U3 (U1, U2 (U1, U2 !! 0; U3 0; U3 "" 0 0))

 = B = B –– (C1 + C2) (C1 + C2)

Note the definition of data mining refers only to U3, “potentially useful patterns”

copied from Gary Weiss

Two Problems

• UBDM: Act so as to maximize the total benefit
of using the mined knowledge minus the costs
of acquiring and mining the data.

• Reinforcement learning: Act to maximize the
utility of behavior, while minimizing
experience and computational costs.

k-Armed Bandits

• Perhaps the simplest possible RL problem.

• k bandits.

• each step t, agent chooses an arm/action at

• receives payoff rt

• expected value of rt is R(at)

• optimal behavior is at = argmax a R(a)

• R(a) unknown; some experimentation needed

R R R

Relaxations of the Utility Problem

• UBDM: Act so as to maximize the total benefit
of using the mined knowledge minus the costs of
acquiring and mining the data.

• Reinforcement learning: Act to maximize the
utility of behavior, while minimizing experience
and computational costs.

• Joint minimality intractable. Instead, satisficing:

– near-optimal utility

– polynomial-bounded experience

– polynomial-bounded computation

PAC Version* of Bandit

• Given ">0, !>0, k arms.

• We say a strategy makes a mistake each
timestep t it selects an action in which
R(at) < max a R(a)"".

• Let m be a bound on the number of mistakes
that holds with probability 1"!.

• We want m to be polynomial in k, 1/", 1/!.

• Each decision should be similarly bounded.

* There are many equivalent definitions!

utility of behavior

experience

computational

A PAC Algorithm

• Naïve (Round Robin!)

– Select each arm c times.

– Average resulting rewards to estimate R(a).

– Choose max a r(a) (where r(a) is the estimate).

• Analysis

– Hoeffding bound shows how to set c so r(a)s
accurate with sufficient prob. (! k ln(1/!)/"2).

• All explore, all exploit.

More Elegant PAC Algorithm

• Interval estimation (IE, Kaelbling 93)

– Estimate mean and confidence interval of arms.

– Choose max a (r(a) + interval(a))
(where r(a) is the mean and interval(a) is the CI).

• Analysis (Fong 95)

– Chooses an arm if known good or unknown.

– No worse than Naïve .

• Blends explore/exploit.

• Strategy: “Best of all possible worlds”

Markov Decision Processes

• Brings sequentiality to bandits (Bellman 57).

• n states, k actions

• step t, agent informed state is st, chooses at

• receives payoff rt; expected value is R(st, at)

• probability that next state is s’ is T(st, at, s’)

Q(s,a) = R(s,a) + ##s’ T(s,a,s’) max a’ Q(s’,a’)

• Optimal behavior is at = argmax a Q(st,a)

• R, T unknown; some experimentation needed

R R R

T
state = 12

Find the Ball: MDP Example

• Actions: rotate left/right

• States: orientation

• Reward: +1 for facing ball,
$ 0 otherwise

Find The Ball

Learn:

• which way to turn

• to minimize time

• to see goal (ball)

• from camera input

• given experience.

Flavors of RL Algorithms

Model-based

• Estimate T, R; solve approximate MDP.

• Prioritized sweeping, Dyna

Value-function-based

• Use observed transitions to modify Q itself.

• Q-learning, SARSA

Policy search

• Try out different policies to find the best.

• policy gradient, genetic approaches

Achieving PAC Bounds

E3: explicit explore exploit (Kearns & Singh 02)

• Model-based, distinguishes “known/
unknown” transitions/rewards (seen c times)

• Plans in approximate model: value of
staying in known states, time to “escape”

RMAX (Brafman & Tennenholtz 02)

• Same idea, only simpler

• Unknown transitions assumed to yield
maximum reward (RMAX)

Model-based Interval Estimation

MBIE (Strehl & Littman, 05, 06)

• RMAX like Naïve algorithm for bandits: must
try action c times (in each state) to estimate.

• MBIE like IE: transition has confidence
interval; assume best of all possible worlds.

• Polynomially solvable, though expensive.

Exploration Speeds Learning

Task: Exit room using bird’s-eye state representation.

$ Details: Discretized 15x15 grid x 18 orientation (4050 states);
$ 6 actions. Rewards via RMAX (Brafman & Tennenholtz 02).

steps

drive for exploration

no drive

 for exploration

Model-Free PAC?

• E3, RMAX, MBIE all PAC, all model based

• States/actions, sample complexity: O(n2 k).

• Seems necessary: T(s,a,s’) size n2 k.

• Can a model-free approach be PAC?

• Is O(n k) possible?

• Is Q-learning PAC?

• Set out to prove no...

Delayed Q-learning

Sketch:

• Q values initialized high.

• Q-learning updates in batches of c.

• Only if update significantly decreases value.

• Greedy action selection.

• Details to make the proof go through.

O(nk) sample, space, O(lg k) computation
(Strehl, Li, Wiewiora, Langford, Littman 06).

Appears impractical...

• Brings generalization to bandits (Kaelbling 93).

• inputs X, k actions; hypothesis class H

• step t, agent informed input is xt, chooses at

• payoff rt; expected value is Ri(at); i = hat(xt)

• xt selected iid from a fixed distribution

• Best choice is at = argmax a Ri(a); i = ha(xt)

• hat, R unknown; some experimentation needed

h3h2

Associative Bandits

R R R

input = 1010010
h1

Main Idea: Reductions

• Associative Bandit

– which arm to pull?

• Associative Prediction

– estimate each arm, take best (Naïve)

• Cost-sensitive Classification

– treat prediction as classification with mistake cost

– right cost gets right classifier, then R is easy

• Classification

– many classification algs; modifiable for costs

– few provably PAC, though

Visualization
• Single arm, what’s the

payoff at “?” ?

• X: rectangle, H:
vertical dividers

• Each hypothesis leads
to estimated payoffs.

• Right one is that with
minimum cost
(maximum contrast).

• So, ? = 0.76.

1 0

0

0 0

0

0

0

0

0

0

0

0

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1 1

0.75 0.550.76 0.44

?

• Inputs: n-bit patterns (n = 2 to 10).

• Hypothesis class: conjunctions of literal pairs

• k = 2 arms; h1 = h2 = x1 and not(xn).

• R1(1) = .5,
R0(1) = .8,
R1(2) = .9,
R0(2) = .6

• m=3000 trials

generaliz
no

Implemented Example

Robotic Example (Leffler, Littmam, Strehl, Walsh 05)

• Input: 18 different locations along a track

• Two underlying classes (flat, up)

• Hypothesis class: all subsets

• Clusters locations based on action outcomes

• Theoretical/experimental advantage over
non-generalizing approach

Movie

• Learns to hold consistent speed.

Aside: Closing The Loop

Cost-sensitive classification

• Query an attribute: Cost to learn its value.

• Choose class: Cost for wrong choice.

– Ends game.

Cost-sensitive fault remediation

• Query an attribute: Cost to learn its value.

• Choose class: Cost to learn its outcome.

– Ends game if correct, otherwise games continues!

Subtle distinction; opens door for autonomous learning.

CSFR Example

Network repair example (Littman, Ravi, Fenson, Howard 04).

• Recover from corrupted network interface config.

• Minimize time to repair.

• Info. gathering actions: PluggedIn, PingIP,
PingLhost, PingGateway, DNSLookup, …

• Repair actions: RenewLease, UseCachedIP, FixIP.

Additional information helps to make the right choice.

Never know why things failed, just that it’s working.

26

Learning Network Troubleshooting

Recovery from corrupted
network interface
configuration.

Java/Windows XP:
Minimize time to repair.

After 95 failure episodes

Conclusion

• Including data collection and computation
with the utility of the outcome of learning is
admirable.

• Likely to be intractable without relaxing.

• Idea: Instead of jointly minimizing, keep
quantities within bounds.

• Practical algorithms, apply idea to UBDM?

