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1. Binary relations and some of their operations



Binary relations

Let U be a set.

Elements of U are usually denoted by u, v ,w , . . .

A binary relation on U is a subset of U × U.

2RelU is the set of all binary relations on U.

Elements of 2RelU are usually denoted by R, S ,T , . . .



Operations on binary relations

Let R,S ∈ 2RelU.

Booleans

The union of R and S is:

R ∪ S = {(u, v) ∈ U : (u, v) ∈ R or (u, v) ∈ S}

The intersection of R and S is:

R ∪ S = {(u, v) ∈ U : (u, v) ∈ R and (u, v) ∈ S}



Operations on binary relations

Let R,S ∈ 2RelU.

Peirceans

The composition of R and S is:

R ◦ S = {(u, v) ∈ U : ∃w ∈ U[(u,w) ∈ R and (w , v) ∈ S ]}

The reversion of R is:

R−1 = {(u, v) ∈ U : (v , u) ∈ R}



Operations on binary relations

Let R,S ∈ 2RelU.

Between Booleans and Peirceans

The left residuation of R and S is:

R\S = {(u, v) ∈ U : ∀w ∈ U[ if (w , u) ∈ R, then (w , v) ∈ S ]}

The right residuation of R and S is:

R/S = {(u, v) ∈ U : ∀w ∈ U[ if (v ,w) ∈ S , then (u,w) ∈ R]}



Motivations for residuals

– Algebra: M. Ward and R.P. Dilworth. Residuated lattices.
Trans. Amer. Math. Soc. 45: 335–54 (1939)

– Computer Science: C.A.R Hoare and H. Jifeng. The weakest
prespecification. Fund. Inform. 9: Part I 51–84, Part II
217–252 (1986)

– Linguistics: J. Lambek. The mathematics of sentence
structure. Amer. Math. Monthly 65: 154–170 (1958)

– Logic: N. Galatos, P. Jipsen, T. Kowalski, and H. Ono .
Residuated Lattices. An Algebraic Glimpse at Substructural
Logics. Elsevier (2007)



2. Residuated algebras of binary relations



Residuated algebras of relations

Let U be a set.

Let A ⊆ 2RelU be closed under all the operations ∪, ∩, ◦, −1, \
and /.

The residuated algebra of binary relations on U based on A is the
algebra:

A = 〈A,∪,∩, ◦,−1, \, /〉

A2Rel is the class of all residuated algebra of binary relations.

Elements of A2Rel are usually denoted by A,B,C, . . .



Residuated algebras of relations

Aka lattice-ordered involuted residuated semigroups:

1. Lattice: R ∪ S is a supremum and R ∩ S is a infimum.

2. Ordered: R ≤ S (iff R ∪ S = S iff R ∩ S = R) is a parcial
ordering.

3. Semigroup: R ◦ S is a not necessarily commutative
multiplication.

4. Involuted: (R−1)−1 = R and (R ◦ S)−1 = S−1 ◦ R−1.

5. Residuated: \ is the left-inverse of ◦ and / is the right inverse
of ◦.



3. Algebraic and quasi-algebraic theories of
residuated algebras of binary relations



Terms and inclusions

The terms, typically denoted by R, S , T , . . ., are generated by:

R ::= X | R ∪ R | R ∩ S | R ◦ R | R\R | R/R | R−1

where X ∈ Var, a set of variables fixed in advance.

A quasi-equality is an expression of the form

R ⊆ S

where R and S ate terms.



Horn quasi-equalities

A Horn quasi-equality is an expression of the form

R1 ⊆ S1, . . . ,Rn ⊆ Sn ⇒ R ⊆ S

where R1,S2, . . . ,Rn, Sn,R,S are terms.



Valuations and values

Let A ∈ A2Rel.

A valuation on A is a function v : Var→ A.

Let R be a term, A ∈ A2Rel, and v be a valuation on A.
The value of R in A according to v , denoted by RA

v is defined by:

XA
v = vX

(R ∪ S)Av = RA
v ∪ SA

v

(R ∩ S)Av = RA
v ∩ SA

v

(R ◦ S)Av = RA
v ◦ SA

v

(R\S)Av = RA
v \SA

v

(R−1)Av = (RA
v )−1



Truth and validity

Let R ⊆ S be a quasi-equality, A ∈ A2Rel, and v be a valuation
on A.

R ⊆ S is true on A under v if RA
v ⊆ SA

v .

R ⊆ S is identically true on A, or A is a model of R ⊆ S , if
R ⊆ S is true on A under v , for every valuation v .

R ⊆ S is valid if every residuated algebra of relations A is a model
of R ⊆ S .



Validity and consequence

Let
R1 ⊆ S1, . . . ,Rn ⊆ Sn ⇒ R ⊆ S (1)

be a Horn quasi-equality, A ∈ A2Rels, and v be a valuation on A.

(1) is valid, or R ⊆ S is a consequence of R1 ⊆ S1, . . . , Rn ⊆ Sn,
if every model of all R1 ⊆ S1, . . . , Rn ⊆ Sn is a model of R ⊆ S .



From quasi-equalities to equalities and back

An equality is an expression of the form

R = S

where R and S ate terms.

A Horn equality is an expression of the form

R1 = S1, . . . ,Rn = Sn ⇒ R = S

where R1,S2, . . . ,Rn, Sn,R,S are terms.



From quasi-equalities to equalities and back

True, identically true, and valid equalities are defined as usual.



From quasi-equalities to equalities and back

Since

R ⊆ S is valid iff R ∩ S ⊆ S and S ⊆ R ∩ S are both valid,

we can consider to build the algebraic and the quasi-algebraic
theories of the residuated algebras of relations on the top of the
logic of equality.

But, taking equational logic as the subjacent logic, we have the
following . . .



Negative results

The set of all valid equalities (quasi-equalities) is not finitely
axiomatizable (Mikulás, IGPL, 2010).

The set of all valid Horn equalities (Horn quasi-equalities) is not
finitely axiomatizable (Andréka and Mikulás, JoLLI, 1994).



Negative results

One proper question is:

are there interesting alternatives for equational reasoning on
residuated algebras of binary relations?



4. Calculational reasoning



Quasi-posets

Let P be a set and R be a binary relation on P.

〈P,R〉 is a quasi-poset if R is reflexive and transitive (but not
necessarily antisymmetric) on P.



Galois connections

Let P1 = 〈P1,≤1〉, P2 = 〈P2,≤2〉 be quasi-posets, and
f : P1 → P2, g : P2 → P1 be functions.

〈P1,P2, f , g〉 is a Galois connection if, for all x ∈ P1 and y ∈ P2:

fx ≤2 y ⇐⇒ x ≤1 gy



Calculational rules

Quasi-poset rules

>
x ≤ x

Ref

x ≤ y
...

y ≤ z

x ≤ z
Tra

GC rules

fx ≤ y

x ≤ gy
GC

x ≤ gy

fx ≤ y
GC

These rules aloud us to perform both direct and indirect
calculational reasoning (without negation).



Direct calculational proofs

A direct calculational proof of t1 ≤ t2 is a sequence

〈t1 ≤ t2, t3 ≤ t4, . . . , tn−1 ≤ tn〉

such that, for each i , 3 ≤ i ≤ n, ti ≤ ti+1, at least one oh the
following conditions hold:

1. ti ≤ ti+1 is an axiom.

2. ti ≤ ti+1 is obtained from previou(s) quasi-equation(s) in the
sequence by one application of some calculational rule.

3. tn−1 ≤ tn is an axiom.

Start with t1 ≤ t2 and applying axioms and calculational rules
arrive in an axiom.



Direct calculational proofs from hypothesis

Let Γ be a set of quasi-equations.

A direct calculational proof of t1 ≤ t2 from Γ is a sequence

〈t1 ≤ t2, t3 ≤ t4, . . . , tn−1 ≤ tn〉

such that, for each ti ≤ ti+1, where 3 ≤ i ≤ n, at least one of the
following conditions hold:

1. ti ≤ ti+1 is an axiom

2. ti ≤ ti+1 ∈ Γ

3. ti ≤ ti+1 is obtained from previou(s) quasi-equation(s) in the
sequence by one application of some Calculational Rule.

4. tn−1 ≤ tn is an axiom or belongs to Γ.

Start with t1 ≤ t2 and applying axioms, hyphotesis, and
calculational rules arrive in an axiom or hyphotesis.



∪ defines a Galois connection

Let 〈A,⊆〉 ∈ A2Rel and take 〈A× A,⊆ × ⊆〉 ∈ A2Rel.

For all X ,Y ∈ A, we define f : A× A→ A by:

f (X ,Y ) = X ∪ Y

and g : A→ A× A by:

g(X ) = (X ,X )

With these notations, for all R,S ,T ∈ A:

R ∪ S ⊆ T ⇐⇒ R ⊆ T and S ⊆ T

is the same as

f (R,S) ⊆ T ⇔ (R,S) ⊆ g(T )



\ defines a family of Galois connections

Let 〈A,⊆〉 ∈ A2Rel.

For every R ∈ A, we define:

fR(X ) = R ◦ X

and
gR(X ) = R\X

With these notations, we have that

R ◦ S ⊆ T ⇔ S ⊆ R\T

is the same as
fR(S) ⊆ T ⇔ S ⊆ gR(T )



∩, −1 and / define Galois connections

Sorry, no time to enter in details!



Basic arithmetical results

T1) S ⊆ R\(R ◦ S)

S ⊆ R\(R ◦ S)
m GC

R ◦ S ⊆ R ◦ S
m Ref

>



Basic arithmetical results

T2) R ◦ (R\S) ⊆ S

R ◦ (R\S) ⊆ S
m GC

R\S ⊆ R\S
m Ref

>



Basic arithmetical results

T3) R\(S ∩ T ) ⊆ (R\S) ∩ (R\T )

R\(S ∩ T )] ⊆ (R\S) ∩ (R\T )
m GC

R\(S ∩ T )] ⊆ R\S ∧ R\(S ∩ T ) ⊆ S\T
m GC

R ◦ [R\(S ∩ T )] ⊆ S ∧ R ◦ [R\(S ∩ T )] ⊆ T
m GC

R ◦ [R\(S ∩ T )] ⊆ S ∩ T
m GC

R\(S ∩ T ) ⊆ R ◦ (S ∩ T )
m Ref

>



Basic arithmetical results

T4) S ⊆ T =⇒ R\S ⊆ R\T

S ⊆ T
m T2

R ◦ (R\S) ⊆ T
m GC

R\S ⊆ R\T

By T2, R ◦ (R\S) ⊆ S .



Basic arithmetical results

T5) T1,T2,T3 =⇒ GC for \

R ◦ S ⊆ T
⇓ Mon, Ide

R ◦ S ⊆ (R ◦ S) ∩ T
⇓ T4

R\(R ◦ S) ⊆ R\[(R ◦ S) ∩ T ]
⇓ T1

S ⊆ R\[(R ◦ S) ∩ T ]
⇓ T3

S ⊆ R\T

By T1, S ⊆ R\(R ◦ S).
By T3, R\[(R ◦ S) ∩ T ] ⊆ R\T .



Basic arithmetical results

T5) T1,T2,T3 =⇒ GC for \

S ⊆ R\T
⇓ Mon

R ◦ S ⊆ R ◦ (R\T )
⇓ T2

R ◦ S ⊆ T

By T2, R ◦ (R\S) ⊆ S



Indirect calculational proofs

An indirect calculational proof of t1 ≤ tn is a sequence

〈x ≤ t1, t2 ≤ t3, . . . , x ≤ tn〉

such that ti ≤ ti+1 —for each i , 2 ≤ i ≤ n − 1— and x ≤ tn are
obtained from previou(s) quasi-equation(s) in the sequence by one
application of some calculational rule.

Suppose x ≤ t1 and prove x ≤ t2 by applying the calculational
rules.



Indirect calculational proofs from hyphotesis

Let Γ be a set of quasi-equations.

A direct calculational proof of t1 ≤ tn from Γ is a sequence

〈x ≤ t1, t2 ≤ t3, . . . , x ≤ tn〉

such that, for each ti ≤ ti+1, where 2 ≤ i ≤ n − 1, at least one of
the following conditions hold:

1. ti ≤ ti+1 is an axiom

2. ti ≤ ti+1 ∈ Γ

3. ti ≤ ti+1 is obtained from previou(s) quasi-equation(s) in the
sequence by one application of some calculational rule.

4. x ≤ tn is an axiom or belongs to Γ.

Suppose x ≤ t1 and prove x ≤ t2 by applying axioms, hyphotesis,
and calculational rules.



Basic arithmetical results

T6) (R\S) ∩ (R\T ) ⊆ R\(S ∩ T )

X ⊆ (R\S) ∩ (R\T )
m GC

X ⊆ R\S ∧ X ⊆ R\T
m GC

R ◦ X ⊆ S ∧ R ◦ X ⊆ T
m GC

R ◦ X ⊆ S ∩ T
m GC

X ⊆ R\(S ∩ T )

Hence, (R\S) ∩ (R\T ) ⊆ R\(S ∩ T ) and
R\(S ∩ T ) ⊆ (R\S) ∩ (R\T ) (this is a bonus!).



Some questions

To determine the strengths of:

(1) direct calculational proofs,

(2) direct calculational proofs from hypothesis,

(3) indirect calculational proofs, and

(4) indirect calculational proofs from hyphotesis.



5. Diagrammatic reasoning



Digraphs

A directed labelled multi graph is a structure 〈N,A〉, where:

1. N is a set of nodes

2. A ⊆ N × Terms× N is a set of arcs labeled by terms

Nodes are usually denoted by u, v ,w , . . .

Digraphs are usualy denoted by G,H, I, . . .



Homomorphisms

Let G1 = 〈N1,A1〉 and G2 = 〈N2,A2〉 be digraphs.

A homomorphism from G1 to G2 is a mapping h : N1 → N2

such that:

(hu, t, hv) ∈ A2 whenever (u, t, v) ∈ A1

A mapping that preserves labels.



2-pointed graphs

A 2-pointed digraph is a structure

〈N,A, s, t〉,

where:

1. 〈N,A〉 is the subjacent digraph

2. s, t ∈ N, where s is the source and t is the target

2-pointed digraphs are usually denoted by 〈G, s, t〉.



2-pointed Homomorphisms

Let G1 = 〈N1,A1, s1, t1〉 and G2 = 〈N2,A2, s2, t2〉 be 2-pointed
digraphs.

A 2-pointed homomorphism from G1 to G2 is a homomorphism
h : N1 → N2 such that:

hs1 = s2 and ht1 = t2

A homomorphism that preserves source and target.



Operations on diagrams

Split digraphs

• R∪S // • = • R // • | • S // •

Paralelize arcs

◦ R∩S // ◦ = ◦
R

**

S

44 ◦



Operations on diagrams

Sequentialize arcs

◦ R◦S // ◦ = ◦ R // ◦ S // ◦

Revert arcs

◦ R−1
// ◦ = ◦ ◦Roo



Operations on diagrams

Close digraphs

• R // •
R\S // • ⊆ • R //

S

<<•
R\S // •

Add residuals

• S // • ⊆ • S //

R\(R◦S)

== •



Operations on diagrams

Hyphotesis rule

R ⊆ S ∧ • R // • ⊆ •
R

%%

S

99 •

Hybrid rule

S ⊆ T ∧ •
R\S // • ⊆ •

R\T // •



Basic arithmetical results

Suppose R ◦ S ⊆ T .

We shall prove S ⊆ R\T by means of diagrams.



Basic arithmetical results

Start with the graph of the left hand side:

− S // +



Basic arithmetical results

Apply add residuals:

− S //

R\(R◦S)

88 +



Basic arithmetical results

Apply hybrid rule, together with the hyphotesis R ◦ S ⊆ T :

− S //

R\T

88 +



Basic arithmetical results

Apply homomorphism, erasing superfluous arcs:

−
R\T

88 +



Basic arithmetical results

Suppose S ⊆ R\T .

We shall prove R ◦ S ⊆ T by means of diagrams.



Basic arithmetical results

Start with the graph of the left hand side:

− R◦S // +



Basic arithmetical results

Apply sequencialize arcs:

− R // • S // +



Basic arithmetical results

Apply the hyphotesis R ⊆ R\T :

− R // • S //

R\T

88 +



Basic arithmetical results

Apply close diagram:

− R //

T

BB• S //

R\T

88 +



Basic arithmetical results

Apply homomorphism, arasing superfluous arcs:

−

T

CC+



Some questions

(1) To determine the strengths of the proofs with graphs.

(2) To compare equational reasoning with calculational reasoning
with diagrammatic reasoning.
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