
tttplots-compare: A perl program to compare

time-to-target plots or general runtime

distributions of randomized algorithms

Celso C. Ribeiro1 and Isabel Rosseti1

Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil.

Abstract. Run time distributions or time-to-target plots display on
the ordinate axis the probability that an algorithm will find a solu-
tion at least as good as a given target value within a given running
time, shown on the abscissa axis. Given a pair of different randomized
algorithms A1 and A2, we describe a numerical method that gives the
probability that A1 finds a solution at least as good as a given tar-
get value in a smaller computation time than A2, for the case where
the runtimes of each of the two algorithms follow any runtime distri-
bution. An illustrative example of a numerical application is also re-
ported. We describe the perl program tttplots-compare, developed to
compare time-to-target plots or general runtime distribution for mea-
sured CPU times of any two randomized heuristics. A listing of the
perl program is given, and the program can also be downloaded from
http://www.ic.uff.br/∼celso/compare-tttplots.

1 Motivation

Runtime distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given
target value within a given running time, shown on the abscissa axis. Time-to-
target plots were first used by Feo et al. [8]. Runtime distributions have been
advocated also by Hoos and Stützle [9, 10] as a way to characterize the running
times of stochastic algorithms for combinatorial optimization.

Aiex et al. [2] described a perl program to create time-to-target plots for mea-
sured times that are assumed to fit a shifted exponential distribution, following
closely [1]. Such plots are very useful in the comparison of different algorithms
or strategies for solving a given problem and have been widely used as a tool for
algorithm design and comparison.

In this work, we explore runtime distributions and we describe a new tool
to compare any pair of different randomized algorithms A1 and A2 for the same
problem. In Section 2, we describe a numerical method originally presented by
Ribeiro et al. [17, 18] that gives the probability that algorithm A1 finds a solution
at least as good as a given target value in a smaller computation time than A2, for
the case where the runtimes of the two algorithms follow any general runtime dis-
tribution. A detailed numerical application is reported in Section 3, illustrating
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the comparison of two different sequential algorithms. This is followed in Sec-
tion 4 by the description of the perl program tttplots-compare, whose source
code may be downloaded from http://www.ic.uff.br/∼celso/compare-tttplots. A
listing is given in the Appendix. Concluding remarks are made in the last section.

2 General run time distributions

We assume the existence of two randomized algorithms A1 and A2 for the ap-
proximate solution of some optimization problem. Both algorithms are applied
to the same problem instance and are made to stop as soon as a solution as good
as a given target value is found. Since there is randomness within both search
algorithms, we represent the running time of algorithm A1 (resp. A2) by a con-
tinuous random variableX1 (resp.X2). Let FX1

(τ) and fX1
(τ) (resp. FX2

(τ) and
fX2

(τ)) be the cumulative probability distribution and the probability density
function of X1 (resp. X2), respectively. Then,

Pr(X1 ≤ X2) =

∫ ∞

−∞

Pr(X1 ≤ τ)fX2
(τ)dτ =

∫ ∞

0

Pr(X1 ≤ τ)fX2
(τ)dτ,

since fX1
(τ) = fX2

(τ) = 0 for any τ < 0. For an arbitrary small real number ε,
the above expression can be rewritten as

Pr(X1 ≤ X2) =

∞∑
i=0

∫ (i+1)ε

iε

Pr(X1 ≤ τ)fX2
(τ)dτ. (1)

Since Pr(X1 ≤ iε) ≤ Pr(X1 ≤ τ) ≤ Pr(X1 ≤ (i + 1)ε) for iε ≤ τ ≤ (i + 1)ε,
replacing Pr(X1 ≤ τ) by Pr(X1 ≤ iε) and by Pr(X1 ≤ (i+ 1)ε) in (1) leads to

∞∑
i=0

FX1
(iε)

∫ (i+1)ε

iε

fX2
(τ)dτ ≤ Pr(X1 ≤ X2) ≤

∞∑
i=0

FX1
((i+1)ε)

∫ (i+1)ε

iε

fX2
(τ)dτ.

Let L(ε) and R(ε) be the value of the left and right hand sides of the above
expression, respectively, with ∆(ε) = R(ε) − L(ε) being the difference between
the upper and lower bounds of Pr(X1 ≤ X2). Then,

∆(ε) =

∞∑
i=0

[FX1
((i+ 1)ε)− FX1

(iε)]

∫ (i+1)ε

iε

fX2
(τ)dτ. (2)

Let δ = maxτ≥0{fX1
(τ)}. Since |FX1

((i+1)ε)−FX1
(iε)| ≤ δε for i ≥ 0, expres-

sion (2) turns out to be

∆(ε) ≤
∞∑
i=0

δε

∫ (i+1)ε

iε

fX2
(τ)dτ = δε

∫ ∞

0

fX2
(τ)dτ = δε.

Consequently,
∆(ε) ≤ δε, (3)
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i.e., the difference ∆(ε) between the upper and lower bounds of Pr(X1 ≤ X2) (or
the absolute error in the integration) is smaller than or equal to δε. Therefore,
this difference can be made as small as desired by choosing a sufficiently small
value for ε.

In order to numerically evaluate a good approximation to Pr(X1 ≤ X2),
we select the appropriate value of ε such that the resulting approximation er-
ror ∆(ε) is sufficiently small. Next, we compute L(ε) and R(ε) to obtain the
approximation

Pr(X1 ≤ X2) ≈
L(ε) +R(ε)

2
. (4)

In practice, the probability distributions are unknown. Instead of them, all
information available is a sufficiently large number N1 (resp. N2) of observations
of the random variable X1 (resp. X2). Since the value of δ = maxτ≥0{fX1

(τ)} is
also unknown beforehand, the appropriate value of ε cannot be estimated. Then,
we proceed iteratively as follows.

Let t1(j) (resp. t2(j)) be the value of the j-th smallest observation of the
random variable X1 (resp. X2), for j = 1, . . . , N1 (resp. N2). We set the bounds
a = min{t1(1), t2(1)} and b = max{t1(N1), t2(N2)} and choose an arbitrary
number h of integration intervals to compute an initial value ε = (b − a)/h for
each integration interval. For sufficiently small values of the integration interval
ε, the probability density function fX1

(τ) in the interval [iε, (i + 1)ε] can be

approximated by f̂X1
(τ) = (F̂X1

((i+ 1)ε)− F̂X1
(iε))/ε, where

F̂X1
(iε) = |{t1(j), j = 1, . . . , N1 : t1(j) ≤ iε}|. (5)

The same approximations hold for random variable X2.
Finally, the value of Pr(X1 ≤ X2) can be computed as in expression (4),

using the estimates f̂X1
(τ) and f̂X2

(τ) in the computation of L(ε) and R(ε).
If the approximation error ∆(ε) = R(ε) − L(ε) is sufficiently small, then the
procedure stops. Otherwise, the value of ε is halved and the above steps are
repeated until convergence.

3 Illustrative example

We illustrate the application of the tool described in the previous section with
the comparison of two randomized algorithms (running on the same instance)
for the routing and wavelength assignment problem. The first is a multistart
procedure, while the second is a tabu search heuristic.

A point-to-point connection between two endnodes of an optical network is
called a lightpath. Two lightpaths may use the same wavelength, provided they
do not share any common link. The routing and wavelength assignment problem
is that of routing a set of lightpaths and assigning a wavelength to each of them,
minimizing the number of wavelengths needed. Noronha and Ribeiro [14] pro-
posed a decomposition heuristic for solving this problem. First, a set of possible
routes is precomputed for each lightpath. Next, one of the precomputed routes
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and a wavelength are assigned to each lightpath by a tabu search heuristic solving
an instance of the partition coloring problem.

We compare this decomposition strategy based on the tabu search heuristic
with the multistart greedy heuristic of Manohar et al. [13]. Two networks are
used for benchmarking. The first has 27 nodes representing the capital cities in
Brazil, with 70 links connecting them. There are 702 lightpaths to be routed.
Instance [11] Finland is formed by 31 nodes and 51 links, with 930 lightpaths to
be routed.

Each algorithm was run 200 times with different seeds. The target was set at
24 (the best known solution value is 24) for instance Brazil and at 50 (the best
known solution value is 47) for instance Finland. Algorithm A1 is the multistart
heuristic, while A2 is the tabu search decomposition scheme.

The empirical run time distributions of the decomposition and multistart
strategies are superimposed in Figure 1. The direct comparison of the two ap-
proaches shows that decomposition clearly outperformed the multistart strategy
for instance Brazil, since Pr(X1 ≤ X2) = 0.13 in this case (with L(ε) = 0.129650,
R(ε) = 0.130350, ∆(ε) = 0.000700, and ε = 0.008163). However, the situation
changes for instance Finland. Although both algorithms have similar perfor-
mances, multistart is slightly better with respect to the measure proposed in this
work, since Pr(X1 ≤ X2) = 0.536787 (with L(ε) = 0.536525, R(ε) = 0.537050,
∆(ε) = 0.000525, and ε = 0.008804).

We have investigated the convergence of the proposed measure with the sam-
ple size (i.e., with the number of independent runs of each algorithm). Conver-
gence with the sample size is illustrated next for the Finland instance of the
routing and wavelength assignment problem, with the target set at 49. Once
again, algorithm A1 is the multistart heuristic and algorithm A2 is the tabu
search decomposition scheme. The estimation of Pr(X1 ≤ X2) is computed for
N = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, and
5000 independent runs of each algorithm. Figure 2 displays the results obtained.
We notice that the estimation of Pr(X1 ≤ X2) stabilizes as the sample size N
increases. We used a different target in this example to illustrate the fact that
the relative performance of two algorithms may change if different targets are
considered. In fact, although Pr(X1 ≤ X2) = 0.536787 in Figure 1 for instance
Finland with target 50, this value drops to Pr(X1 ≤ X2) = 0.013090 for the
same instance when a slightly tighter target equal to 49 is used.

We used the tool that is made available in this paper to further illustrate the
fact that the relative behavior of two algorithms may change as the target gets
harder or easier, as noticed in the previous paragraph. This behavior is illustrated
next with numerical results for an instance of the 2-path network design problem
with 80 nodes and 800 origin-destination pairs [15, 16]. Algorithm A1 is a GRASP
with bidirectional path-relinking heuristic, while algorithm A2 is a pure GRASP
heuristic. Figure 3 displays the estimation of Pr(X1 ≤ X2) as the target ranges
from 577 to 735. N = 1, 000 independent runs have been performed for each
target value. Both algorithms behave similarly for easy (i.e., large) targets. The
GRASP with bidirectional path-relinking heuristic performs progressively better
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(a) Brazil instance with target 24
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(b) Finland instance with target 50

Fig. 1. Superimposed run time distributions of multistart and tabu search: (a)
Pr(X1 ≤ X2) = 0.13, and (b) Pr(X1 ≤ X2) = 0.536787.
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Fig. 2. Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the
Finland instance of the routing and wavelength assignment problem.

for hard (i.e., small) targets, with Pr(X1 ≤ X2) → 1 when the target decreases
and approaches the optimal value. Pr(X1 ≤ X2) attains a minimum when the
target is equal to 615, showing that its behavior is not monotonic as one could
possibly expect.

4 The perl program: tttplots-compare

The perl program tttplots-compare takes two input files with N lines each,
where N denotes the number of runs of each algorithm A1 and A2. Each line
contains a running time entry. The program calculates the probability that the
first algorithm A1 finds a solution at least as good as an originally given target
value in a smaller computation time than A2.

A listing of the perl source code of program tttplots.compare is given in
the appendix. To run this program, simply type: perl ttttplots-compare.pl

-f input-filename1 input-filename2, where input-filename1.dat and
input-filename2.dat are the input data files with N running time data points
in each of them.

5 Concluding remarks

Run time distributions are very useful tools to characterize the running times of
stochastic algorithms for optimization. In this work, we extended a previous tool
developed for plotting and evaluating run time distributions [1], providing a perl
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Fig. 3. Variation of Pr(X1 ≤ X2) with the target hardness.

program that establishes pairwise comparisons of stochastic local heuristics for
optimization problems by computing the probability that one heuristic is faster
than the other.

This new tool and the resulting probability index revealed themselves as very
useful and promising, providing a new, additional measure for comparing the per-
formance of randomized algorithms or different versions of the same algorithm.
They can also be used for setting the best parameters of a given algorithm, by
providing an strategy for comparing the resulting implementations.

In addition to the first applications reported in [17, 18], the perl program
described and made available in this paper has already been used in the compar-
ison of evolutionary and genetic algorithms to the k-interconnected multi-depot
multi-traveling salesmen problem, to the winner determination problem in com-
binatorial auctions, to the general-cost set covering problem, to the Steiner triple
covering problem, to the general-cost set k-covering problem, to the unit-cost
k-covering by pairs problem, see e.g. [3, 4, 12]. It was also used in compar-
isons of randomized algorithms to the 2-path network design problem [6], to
the antibandwidth problem [7], and to the problem of routing and wavelength
assignment in optical networks [5].

Acknowledgments. This paper provides the perl program whose fundamentals
and numerical computations have been originally proposed in the paper titled
“On the use of run time distributions to evaluate and compare sequential and
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parallel stochastic local search algorithms” [17], which received the “Best Paper
Presentation Award” among all papers presented at the conference “Engineering
Stochastic Local Search Algorithms” held in Brussels from September 3 to 4,
2009.
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[9] H.H. Hoos and T. Stützle. Evaluation of Las Vegas algorithms - Pitfalls and
remedies. In Proceedings of the 14th Conference on Uncertainty in Artificial In-

telligence, pages 238–245, 1998.
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APPENDIX: Program listing

#!/usr/bin/perl

## ---------------------------------------------------------------

##

## tttplots-compare: A perl program to compare time-to-target plots

## or general runtime distributions

##

## usage: perl tttplots-compare -f <input-file1> <input-file2>

##

## where <input-file>.dat is the input file of time to

## target values (one per line).

##

## authors: Celso C. Ribeiro and Isabel Rosseti.

##

## ---------------------------------------------------------------

## ----------------------------------------------------------------

## Input network and spec file names.

## ----------------------------------------------------------------

$datafilethere=0;

while ($ARGV[0]) {

if ($ARGV[0] eq "-f") {

shift(@ARGV);

$filename = $ARGV[0];

$datafilename1 = $filename . ".dat";

shift(@ARGV);

$filename = $ARGV[0];

$datafilename2 = $filename . ".dat";

$datafilethere=2;

shift;

}

}

if ($datafilethere == 0) {

die "Error, data file missing. \n

Usage: perl tttplots-compare.pl -f <input-file1> <input-file2> \n";

}
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## ----------------------------------------------------------------

# Open data file1, read data and close it.

## ----------------------------------------------------------------

open (DATFILE,$datafilename1) || die "Cannot open file: $datafilename1 \n";

$n1=0;

while ($line = <DATFILE>){

chomp($line);

@field = split(/\s+/,$line);

$nfields=0;

foreach $fld (@field){

$nfields++;

}

if ($nfields != 1){

die "Number of fields in data file must be 1 \n";

}

$time_value1[$n1] = $field[0];

$n1++;

}

close (DATFILE);

## ----------------------------------------------------------------

# Open data file2, read data and close it.

## ----------------------------------------------------------------

open (DATFILE,$datafilename2) || die "Cannot open file: $datafilename2 \n";

$n2=0;

while ($line = <DATFILE>){

chomp($line);

@field = split(/\s+/,$line);

$nfields=0;

foreach $fld (@field){

$nfields++;

}

if ($nfields != 1){

die "Number of fields in data file must be 1 \n";

}

$time_value2[$n2] = $field[0];

$n2++;

}
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close (DATFILE);

## ----------------------------------------------------------------

# Sort times.

## ----------------------------------------------------------------

@sorted_time_value1 = sort { $a <=> $b } @time_value1;

@sorted_time_value2 = sort { $a <=> $b } @time_value2;

print "\@--------------------------------------------------------@\n";

print " Input data set > \n\n";

print " data file : $datafilename1 \n";

print " data points : $n1 \n\n";

print " data file : $datafilename2 \n";

print " data points : $n2 \n";

## ----------------------------------------------------------------------

# Compute probability

## ----------------------------------------------------------------------

print "\@--------------------------------------------------------@\n";

print " Computing probability >\n";

## ----------------------------------------------------------------------

# Definition of the program constants

## ----------------------------------------------------------------------

use constant INITIAL_VALUE_H => 1;

use constant ERROR => 0.001;

use constant NUMBER_ITERATIONS => 20;

## ----------------------------------------------------------------------

# Definition of the upper bound T

## ----------------------------------------------------------------------

if($sorted_time_value1[$n1 - 1] >= $sorted_time_value2[$n2 - 1]){

$T = $sorted_time_value1[$n1 - 1];

}

else {

$T = $sorted_time_value2[$n2 - 1];

}

## ----------------------------------------------------------------------

# Definition of the lower bound t

## ----------------------------------------------------------------------

if($sorted_time_value1[0] <= $sorted_time_value2[0]){

$t = $sorted_time_value1[0];

}

else {
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$t = $sorted_time_value2[0];

}

## ----------------------------------------------------------------------

# Definition of the initial values of h, iter, and flag

## ----------------------------------------------------------------------

$h = INITIAL_VALUE_H;

$iter = 0;

$flag = 0;

while($flag == 0){

## ----------------------------------------------------------------------

# Update iter, delta, L, and R

## ----------------------------------------------------------------------

$iter++;

$delta = ($T - $t) / $h;

$L = 0.0;

$R = 0.0;

## ----------------------------------------------------------------------

# Compute FX1_(i*delta) and FX1_((i+1)*delta)

## ----------------------------------------------------------------------

$m_dif = 0;

for($i = 0; $i < $h; $i++){

$F1_idelta = 0;

$F1_i1delta = 0;

for($j = 0; $j < $n1; $j++){

if($sorted_time_value1[$j] <= ($t + ($i * $delta))){

$F1_idelta++;

}

if($sorted_time_value1[$j] <= ($t + (($i + 1) * $delta))){

$F1_i1delta++;

}

}

if($m_dif < ($F1_i1delta - $F1_idelta)){

$m_dif = $F1_i1delta - $F1_idelta;

}

## ----------------------------------------------------------------------

# Compute fX2_(i*delta) and fX2_((i+1)*delta)

## ----------------------------------------------------------------------

$f2_idelta = 0;
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$f2_i1delta = 0;

for($j = 0; $j < $n2; $j++){

if($sorted_time_value2[$j] <= ($t + ($i * $delta))){

$f2_idelta++;

}

if($sorted_time_value2[$j] <= ($t + (($i + 1) * $delta))){

$f2_i1delta++;

}

}

$f2_div_n = ($f2_i1delta - $f2_idelta) / ($n2 * 1.0);

## ----------------------------------------------------------------------

# Compute L and R

## ----------------------------------------------------------------------

$L = $L + (($f2_div_n * $F1_idelta) / ($n1 * 1.0));

$R = $R + (($f2_div_n * $F1_i1delta) / ($n1 * 1.0));

}

## ----------------------------------------------------------------------

# Compute error, error_(i*delta), and prob

## ----------------------------------------------------------------------

$error_RL = $R - $L;

$error_idelta = (1.0 * $m_dif) / (1.0 * $n1);

$prob = ($L + $R) / 2.0;

## ----------------------------------------------------------------------

# Test of the stopping criterion

## ----------------------------------------------------------------------

if(($error_RL <= ERROR) || ($iter > NUMBER_ITERATIONS)){

$flag = 1;

}

else{

$h = $h * 2;

}

}

## ----------------------------------------------------------------------

# Print of the results

## ----------------------------------------------------------------------

print "\@--------------------------------------------------------@\n";

print " Result > \n\n";

print " P(x1 <= x2) = $prob \n";
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print "\n DONE \n";

print "\@--------------------------------------------------------@\n";

print "\n";


