
A Shading Model for Image-Based Object Rendering

ESTEBAN WALTER GONZALEZ CLUA1

MARCELO DREUX2

BRUNO FEIJÓ1

1 ICAD, Department of Computer Science, PUC – Rio

{esteban, bruno}@inf.puc-rio.br

2 ICAD, Department of Mechanical Engineering, PUC – Rio

dreux@mec.puc-rio.br

Abstract. In order to obtain models of complex virtual environments, there are many solutions that make
use of image-based rendering techniques. When using a set of images to represent an element in space as a
billboard, there are some problems related with the shading calculations, once these elements are just planes in
space. This article presents a new approach for shading objects represented by images, which divides the
problem into two parts: the shading maps generation for an object with specific set of lights in the environment
and real-time shading simulation for a specific observer point of view and object location.

Keywords: Virtual Environments, Textures, Image Based Rendering.

1 Introduction
Virtual environments have many applications, such as
games, virtual chat rooms and simulators. A realistic
virtual environment typically contains many complex
objects and several light sources, which can move
independently of each other.

Realistic rendering of each object, with shading,
shadows and reflections, is usually too slow for real-time
applications. A compromise solution is image-based ren-
dering [Watt et al (2001)]: several reference views of each
object are pre-computed, and the proper one is selected, at
run-time, based on the relative position of object and
camera.

In most of these techniques the scene description is
given by a series of reference representations of the scene
from arbitrary viewpoints at run-time. In the simplest case
of image-based applications there are only information
about luminosity and nothing is known about the image
depth. Image-based rendering has mostly been studied for
systems where the viewer moves through a static
environment. However, applications for dynamic scenes
have been developed elsewhere [Matusik et al. (2000)].

This article proposes a new illumination model to
deal with objects that are represented by images applied to
planes. The method is able to handle multiple light
sources with surface details approximately shaded.

2 Scene modeling

The image-based modeling of a complete scene can be
divided into two parts: the construction of the scene
background and the definition of the elements that will be
inside the virtual environment.

While the scene background is usually represented
by panoramas [Szeliski et al (1997), Matos (1998)],
sprites are the best approach to model an object inside the
scene. In this work, a sprite is a billboard, which is the
simplest and most common image-based rendering
technique. This is the technique where a texture map in a
plane E is considered as a three-dimensional object that
can be rotated until it is normal to the view direction
towards the camera in the point O. The rotation is applied
by an operator R(E,O) whenever the camera or the object
moves. This is a property called apparent invariance of
rotation. The 2D nature of the plane E is less apparent
when the camera is close to the ground and the viewing
direction vector is parallel to the ground plane. In this
case, the operator R is only applied around the axis
perpendicular to the ground plane.

The billboard may have an arbitrary contour. This
can be achieved with many techniques. The alpha channel
is a very common one and is defined as a byte associated
for each pixel that contains the transparency of that part of
the image. By making the alpha channel value equivalent

to transparent for the pixels of the image that must disap-
pear, its contour may have a shape other than rectangular.

The representation of an object by a plane, how-ever,
may produce undesired effects when the camera or the
object moves and the image of the sprite remains
unchanged. In this case the two-dimensional nature of the
object becomes apparent and the 3D illusion deteriorates.
Furthermore, the image shading would not be appropriate
to the scene lighting.

To solve the above-mentioned problem, the simplest
solution is to produce a set of images of the same object,
synthesized or photographed from different view angles.
According to the camera position in relation to the object,
the mapped image has to be appropriately modified. In
order to avoid an excessive number of images, the objects
and camera are restricted to move parallel to the ground.

This technique is efficient when combined with
algorithms that interpolate two object images viewed from
different angles. Some authors [Chen et al. (1993)],
[Horry et al. (1997)], [Szeliski et al (1997)], [Kanade et al
(1997)] propose different approaches to obtain such
interpolations. The present paper describes an extension of
image morphing, called view morphing [Seitz et al (1996),
Seitz (1997)] in order to implement interpolations.

3 A shading model for objects represented by
images

When generating an object based on a set of images one
of the problems is related to its lighting: the original
image shading will rarely correspond to the scene lighting.
Even if the shading is adequate to a specific lighting it
will not remain as such after an object spatial transfor-
mation or viewer change of position.

On the other hand, if there is no shading the scene
will be unrealistic, even if textures are applied. Thus, to
achieve the shading of an object that matches the existing
lighting it is necessary to apply an illumination model to
the objects. Nevertheless, the usual lighting models are
not adequate to the current situation, where the objects are
simple planes with images applied to it. These illumina-
tion models would generate a uniform shading over the
entire object. Consider, for instance, a column that is
being modeled by an image mapped onto a plane, where
there is only one light source within the scene. If a
conventional illumination model is used the entire column
will have uniform shading, although one side of the
column is in shadow and the other is being illuminated.

This article proposes a new illumination model to
deal with objects that are represented by images applied to
planes. The method is able to handle multiple light
sources, but surface details are not properly shaded as the
surface geometry is not known. To find the right shading
it would be necessary to have, in addition to the mapping

image, information about the normal vector to each point
of the surface. The following algorithm produces real time
shading and when combined with the view morphing
method it can be a good choice for the modeling of
elements inside interactive virtual environments.

3.1 Basic Definitions

The cylindrical shading support, Sc, is defined as a
cylinder that completely surrounds a scene sprite, which is
simply a plane with an image mapped onto it. The
cylinder is invariant to rotation around a vertical axis: if a
sprite turns around its center, or the textured image
changes, the cylinder will remain static. Thus, if the sprite
experiences a translation the cylinder has to be
appropriately re-evaluated, once this element will be
directly associated with the relative position of the scene
lights to its space coordinates.

The borders of the cylinder bases are discretized and
divided into equidistant points, which are called compo-
nents. These components are stored in two lists: Lu e Ll,
one for the upper basis and the other for the lower basis,
respectively. Each node of these lists is associated to a
border component, as shown in figure 1. These lists are
defined as sprites shading maps. The origin component is
defined as one of the components that touches one side of
the sprite plane.

Figure 1 – Cylinder borders are divided into equidistant
components. Each one of the upper border components
has a node in the list Lu and each one of the lower border
components has a node in the list Ll.

Each component Pk = [Xk Yk Zk] from the cylinder
border defines two sub-spaces Sk1 and Sk2. These sub-
spaces are separate by the plane Tk, that is parallel to Ns,
normal vector to the cylinder upper basis, perpendicular to
Nk,, cylinder vector normal at the point Pk, and passes
through the center of the cylinder (figure 2). It is possible
to determine where a point Q is located by performing a

dot product between the normalized vector Pk - Q and the
plane normal Nk.. If the dot product is positive Q lies on
the same sub-space of Pk..

Each node of the Lu and Ll lists is a pointer to a sub-
list which contains the illumination vectors of the Pk

component associated with the node. The sub-list contains
L elements, one for each light source that is present within
the same sub-space of the current component.

Illumination vectors are obtained by Pk - Ii, where Ii

is the position of the i-th light source. The vector modulus
should be equal to the light source intensity.

Figure 2 – Each component from the cylinder border
defines two sub-spaces Sk1 e Sk2, separate by the plane Tk.

The length of the lists Lu and Ll defines the sprite
shading map resolution. The resolution should not be too
small to avoid alias problems. A reasonable resolution is
given by 2Sresx, where Sresx is the horizontal resolution of
the texture being mapped. In the case where this shading
model is being used combined with the view morphing
technique the resolution may not be constant, since the
mapping image is being regularly modified. In this
situation the shading map resolution could be set to the
highest horizontal resolution among all the images being
used by the view morphing algorithm.

As the total number of the cylinder border
components is 2Sresx, the upper and lower borders are
divided in sectors with an angle α given by:

resxS

π
α =

(1)

3.2 Shading map evaluation

For each light Ii the method traverses all Pk components of
the upper and lower borders of Sc, by computing the
corresponding lighting map, and adds it to the total
lighting map of that sprite in order to build the complete
shading map.

The coordinates of each component
iuP and

il
P are

calculated by the following equations:

uuu VMScP
ii α+=

T
hul ScPP

ii
]010[−+=

(2)

where Scu and Scl are the centers of the upper and lower

cylinder bases respectively,
i

Mα is the rotation matrix

for an angle αi, Vu is the vector uSc -
0uP , and hSc is

the cylinder height.

Equation 2 applies only if the cylinder basis is
parallel to the plane where the camera moves.

Figure 3 – The cylinder basis are divided in sectors with

angle α (αi = α = constant).
0uP is the coordinate of any

point belonging to the upper border and the coordinates of
all other components will be obtained from it.

3.3 Sprite shading evaluation

To make use of the proposed method, the original images
must be modified before being mapped onto the sprite
plane, in order to take advantage of graphics board
acceleration facilities. As these facilities do not allow
image alteration during the rendering process, it is
necessary to make a pre-processing of the sprite image, in
order to add shading effects.

There must be a buffer to each object that is being
modeled by images. The buffer will store the appropri-
ately modified texture to be applied onto the sprite plane
(figure 4). It is important to store the original images in
separate files in order to keep the original textures.

Figure 4 – Schematic representation of the sprite genera-
tion pipeline.

Each rendered frame will have a single image
projected onto a specific sprite plane. That image is the
result of the view morphing of two other images and the
application of the proposed shading model. The available
buffer should store that image.

The texture shading evaluation process could be
divided in three phases:

1) Evaluation of the sprite total rotation angle β ;

2) Association of each image pixel column with a
node of the shading map;

3) Evaluation to each sprite pixel an illumination
vector and application of the proposed shading algorithm
to that pixel.

The sprite total rotation angle β is the summation of
all rotations applied by R, from the initial sprite position
until the current position. To obtain the angle β it is
assumed that the observer and the cylinder center have the
same vertical coordinate. Thus, the normal to the sprite
plane is parallel to the vector C = O – SCg , where O is the
observer position and SCg the cylinder center. This first
phase consists in evaluating the angle between vector C
and the sprite plane normal, prior to any transformation.
The normal should be also stored together with the
cylinder data.

The second phase of the shading evaluation is the
determination, for each image pixel column, the pair of
correspondent nodes into the shading map, one from the
upper border and one from the lower border. The pair of
nodes is obtained by:

- Determination, for each image pixel, its projection
onto the upper and lower cylinder border;

- Determination of the shading map indices, related to
the border points.

That evaluation may be performed to an entire pixel
column, rather than for individual pixels, since all pixels
of a specific column will be projected to the same border
points (figure 5). The following algorithm projects each

column of a sprite image to a cylinder border, where Pk is
the k-th image column coordinate of the border:

For k = 1 to CresX resolution of the sprite image do

In this algorithm, Scr is the cylinder radius, CresX is
the sprite image x resolution, and Mβ is a transformation
matrix that will rotate the evaluated point [x y z] of an
angle equivalent to the total rotation of the sprite plane
applied by the operator R. The cylinder center is supposed
to coincide with the center of the global coordinate
system.

In the above algorithm, the lower border coordinate
is obtained by setting y coordinate to zero The upper
border coordinate is obtained by setting the y value to the
cylinder height. However, the upper border coordinate is
unnecessary, because the correspondent points in the
lower and upper border will have the same index in the
shading map, as will be shown later.

Figure 5 – This image shows the cylinder and sprites from
above. The sprite pixels are projected in the direction of
the plane normal. The Pk points related to each pixel are
the intersection points between the line segment that
leaves the pixel in the direction of the normal vector, and
points to the observer, with the cylinder border.

If the image resolution remains constant throughout a
walkthrough inside the virtual ambient where the object
is, only the β angle varies. Hence, it is possible to
optimize the algorithm by storing in a table the [x, y, z]

T
k

r

resX

r

zyxMP

xScz

y

C

Sck
x

][

0

..2

22

β=

−=

=

=

coordinates of each k. By doing that, it is only necessary
to perform a search and a rotation operation to each sprite
pixel.

If the image resolution remains constant throughout
a walkthrough inside the virtual ambient where the object
is, only the β angle varies. Hence, it is possible to
optimize the algorithm by storing in a table the [x, y, z]
coordinates of each k. By doing that, it is only necessary
to perform a search and a rotation operation to each sprite
pixel.

Once the coordinates of each Pk, that belongs to the
cylinder border, are evaluated is time to find out which
node of the shading map corresponds to it. As the cylinder
has its base parallel to the XZ plane the indices to the
upper and lower lists are the same. Thus, to determine the
nodes correspondent to the point Pk it is sufficient to
choose either the upper or lower base point. This work
makes use of the lower border. It is necessary to find the
angle θ between the vector SCl – Pk and the local axis Vy
that belongs to the plane where the sprite is being
texturized and is perpendicular to its normal. The angle ∆,
between the source component and the border point Pk

(figure 6), is obtained by the sum of θ and β. That angle is
used to index the shading map, in order to find out the
light vectors related to the point Pk.

Figure 6 – The angle ∆, obtained by the sum of the angles
β and θ, is used to determine the node index of the lists Lu

e Ll , related to the cylinder border point Pk The cylinder
and the sprite are seen from above.

∆ = β + Arccos (||Vy || . || SCl – Pk ||)

(3)

For the evaluation in equation 3, both vectors Vy and Scl –
Pk must be normalized.

The index of the shading map related to the point Pk

is given by the integer part of j in equation 4:

π2
.2 resXC

j
∆=

(4)

The shading maps store illumination vectors related
to the cylinder borders. Once the map index is determined,
to a specific pixel column, the algorithm evaluates an
approximate illumination vector to each pixel of that
column (third phase). A possible approximation is a linear
interpolation between the illumination vector from the
upper cylinder and the illumination vector of the lower
cylinder borders, and considering the distance that the
current pixel is from both borders.

Once the shading index k is determined, Lu(i) [k] and
Ll(i) [k] are the illumination vectors of the cylinder
extremities for the i-th light source. The illumination
vector used to evaluate the shading of the sprite pixel [x,
y] is obtained by the following linear interpolation:

][)1(][)()()())(,(kL
C

y
kL

C
y

l id
resY

iu
resY

iyx −+=

(5)

Where y is the height of the point measured from the
cylinder base, in pixels, and CresY is the sprite vertical
resolution.

Figure 7 – Each image column has a different CresY value,
evaluated as Y2 – Y1.

However, to achieve a better shading approximation,
CresY should be the number of valid image pixels (pixels
with transparency index different from zero), rather than
the image vertical resolution. Thus, the y index starts

counting from the first line where the pixel is not
transparent and ends the counting when it reaches a
transparent pixel. To optimize this process, it is
recommended to store, within the image data structure, the
CresY value of each column and also the position, in pixels,
where the y counting should start and finish.

An empiric value to the normal is used when evalu-
ating the illumination to each sprite pixel. It could be
obtained as a function of three vectors, as shown in figure
8: the vector Ns, as previously mentioned, is the normal to
the upper cylinder basis, –Ns is a vector with its opposite
orientation and the vector Nc, normal to the cylinder
lateral surface at the point of interest. Thus, the normal
vector to each point to be projected is given by N obtained
by the following equation and should be normalized
afterwards:

ssc sNNsNN −−+=)1(

 And

resYC

y
s

−
=

1

(6)

To obtain a better approximation of the normal
vector, some contextual image information should be
taken into account. If the sprite images are synthesized,
the normal to each point should be stored in addition to its
RGB value.

Figure 8 – A proposed solution to obtain the normal is a
linear combination of the vectors Ns, -Ns e Nc.

Finally, the shading to be applied to the sprite pixel
x,y, with L light sources corresponds to:

∑
=

=
L

i
iyxiyx yxspritetheofColorPixelNllyxColorPixel

0
))(,())(,(],[).(],[

(7)

4 Results and Conclusions

The proposed method has the advantage that it does not
consider the object geometry during the shading
evaluation. Figure 9 shows a sprite shading without the
use of the proposed algorithm. Figures 10 and 11
correspond to sprites shaded with the proposed algorithm.

It can be noticed, as the objects are being represented
by images, that the shading is approximate and, depending
on the geometry of the objects, the proposed linear
interpolation method could be too inaccurate, as it can be
shown in Figure 11. Thus, it is convenient to develop and
test other interpolation methods and perhaps even to
consider pattern recognition in order to obtain some image
characteristics.

It should be also allowed to apply spatial
transformations to the sprite. As the illumination vectors
depend upon the spatial position of the components that
are on the cylinder border, it would be necessary to update
the vectors every time the cylinder is transformed. This
evaluation, however, can be heavily simplified by storing,
for each component, its spatial coordinate. In this case
when a translation matrix is applied to the sprite and to its
cylinder, the transformation would also be applied to each
sprite component. Once modified, the illumination vectors
should be re-evaluated, which is not an expensive process.
For each component only a vector operation to each light
source is needed.

5 Acknowledgments

This work was developed in ICAD/PUC-Rio and was
partially funded by CNPq.

6 References

[Chen et al. (1993)] Chen, S. E. and Williams, L. View
interpolation for image synthesis. Proc. SIGGRAPH 93.
In Computer Graphics (1993), pp. 279-288.

[Horry et al (1997)] Horry Y., Anjyo K., and Arai K. Tour
into the picture: Using a spidery mesh interface to make
animation from a single image. In Proc. SIGGRAPH 97,
pages 225–232, 1997.

[Kanade et al (1997)] Kanade, T., Rander P., and P. J.
Narayanan. Virtualized reality: Constructing virtual
worlds from real scenes. IEEE Multimedia, 4(1):34–46,
1997.

[Matos (1998)] Matos, A. M. Visualização de Panoramas
Virtuais. Master Thesis. Pontifícia Universidade Católica
do Rio de Janeiro, 1998.

 [Matusik et al. (2000)] Matusik, W., Buebler, C., Raskar,
R., Gortler, S. J. and McMillan, L. Image-based visual
hulls. In Proc. SIGGRAPH 2000, pages 369-374, 2000.

[Szeliski et al (1997)] Szeliski, R. and Heung-Yeung
Shum. Creating full view panoramic image mosaics and
environment maps. In Proc. SIGGRAPH 97, pages 251–
258, 1997.

[Seitz et al. (1996)] Seitz, S. M. and Dyer, C. R. View
Morphing. Proc. SIGGRAPH 96. Computer Graphics
(1996), pp. 21-30.

[Seitz (1997)] Seitz, S. M. Image-Based Transformation
of Viewpoint and scene appearance. PhD Thesis,
University of Wisconsin – Madison, 1997.

[Watt et al (2001)] Watt, Allan and Policarpo, Fabio. 3D
games, Real-time Rendering and Software Technology.
ACM Press, 2001.

Figure 9 – The image sequence shows a sprite illuminated by a light source located at three different positions. It would
be impossible to know where the light source is without the indication of the light source direction, since there is a
homogeneous shading.

Figure 10 – This figure illustrates the same sprite of figure 9 but with the application of the proposed shading technique.
It shows a shading variation which depends on the light source position.

Figure 11 – This sequence shows that the proposed method produces only a shading approximation, since it does not
take into account the object geometry.

