Basic Lisp Overview

605.723 Artificial Intelligence
Fall 1994, Marty Hall

Basic Lisp Overview

® Numeric Functions

* +,-,/ - returns product, sum, difference, or quotient
(*234)=24
(+22)(-31)=2

sqrt - square root of number

(sqrt9) = 3

Lxponent

expt - (expt Base Exponent) = Base
(expt 10 3) = 1000

min, max - minimum or maximum of numbers
(min-12-34-56)= -5

abs, mod, round - absolute value, mod, nearest int
(round (abs -4.2)) = 4

sin, cos, tan - trig functions. Arguments in radians, not degrees.
(sin (/ pi 2)) = 1.0 ; Pl is built-in variable

® List Access Functions

first - returns first element of a list. Use instead of CAR.
(first’(ABCD)) = A

second, third, ..., tenth - analogous to “first”: (third’(AB CD)) = C

nth - (nth N List) = Nth entry of List. Note that N starts at 0, not 1.
(nth2’(ABCD))=C

rest - returns all but 1st element of a list. Use instead of CDR.
(rest ’(ABCD)) = (BCD)

last - returns 11 st of last element of a list
(last (A B C D)) = (D)

length - returns the number of top-level entries in list
(length’(A (B C) (DE))) = 3

® List Construction Functions

cons - (cons Entry (List)) = (Entry List)
(cons’A’(BCD)) = (ABCD)
(cons (first (A B C)) (rest '(AB C))) = (ABC)

append - (append (Listl) (List2)) = (List1 List2)

(append (L1) (L2) (L3)...(LN)) = (L1 L2 L3 ... LN)

(append (A B)’(CD)) = (ABCD)
For CONS and APPEND, if the second arg is not a list, you will get an
odd result that looks like a list but has a dot before the last element.

list - (list Entryl E2 ... EN) = (Entryl E2 ... EN)
(list’A°(B C) (+23)) = (A (B C) 5)

Lisp rule of evaluating all the args before applying function to the re-
sults.

setq (or setf) - assigns a value to a variable
(setq Foo ’Bar)=—>BAR (list Foo ’Foo)=>(BAR FOO)

"7 (or quote) - returns argument literally
+23)=>(+23) +23)=5

defun - defines a function.
(defun Function-Name (Arguments) Body) The value the function re-
turns is the value of the last form in the Body.

(defun Square (Num) (* Num Num))

(Square 7) = 49

if - the most basic conditional operator.

113

@if Forml usually read as (if Condition
Form2 Then-Result
Form3) Else-Result)

Means to evaluate Forml. If its value is “true” (non-NIL), then evaluate
and return Form2, otherwise evaluate and return Form3 (or NIL if
Form3 is missing).

(if (=7 (+2 4)) ’yes 'no) = NO

cond - multiple if-then-else conditional operator.
(cond (Testl Resultl)
(Test2 Result2)

(TestN ResultN))
This evaluates each of TestI through 7estN in order. The first one it finds
that is “true” (non-NIL), it evaluates and returns the associated Result.
No further 7ests or Results are evaluated. If you have multiple results
associated with a single test, each is evaluated and the value of the last
one is returned.

(setq Test 7)

(cond ((not (numberp Test)) "Not a number!")
((oddp Test) (+ Test 1))
(t Test))

=1

progn - Group multiple commands into a single block, returning the
value of the final one. Some constructs do this implicitly.

lOOp - The infamous all-in-one iteration construct. See handout.

" Miscellaneous
load - loads the indicated file, evaluating all Lisp forms in file.

compile-file - takes the indicated source file (xxx.lisp) and produces a

® Predicates

Type-checking Predicates: listp, numberp, integerp, Stringp, atom
test if arg is a list, number, integer, string or atom, respectively.

(numberp 5.78) =t (integerp 5.78) = NIL

Numeric Predicates: evenp, oddp, =, <, >, <=, >=
(oddp7) =t >76)=t
These will all give errors for non-numbers.

General Predicates: null, equal, e_ql - test if arg is NIL or if two argu-
ments have the same value. EQL does not work on lists or strings.
(null (rest *(A)) =t
(equal (A B) (cons "A’(B))) =t
(eql’A’A) =t
(eql (A B) (cons A ’(B))) = NIL

Logical Predicates: and, or, not
(not (and (=7 (+ 2 5)) (evenp 8))) = NIL

® Special Forms
Special forms are used for side effects, and don’t follow the normal

compiled file (xxx.wfasl). Does not load this compiled file.

print, format - prints output. See separate handout on FORMAT.
(print "Hello")
"Hello"
— "Hello"

On-line help:
apropos - finds functions/variables containing substring
(apropos ’concat "user) gives all functions containing "concat"
in the default ("user") package, including "concatenate"
documentation - prints the doc-string for a function. E.g.
(documentation ’concatenate ’function)

; prints on screen, is NOT return value
; return value (rarely used)

Debugger options: :A - Abort out of debugger
:B - Backtrace (list previous calls)
:N - Next (earlier) entry on stack
:P - Previous (later) entry on stack
:?7 - more debugger options

bye - quits Harlequin lisp (Harlequin specific).

