-

Arquiteturas Paralelas I

Prof. Vinod Rebello (DCC-UFF)
Sala 302, 32 andar do Bloco E
vinod@ic.uff.br

O Que, Por Que e Onde do Paralelismo

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Meu Definicao de uma Palestra 2

One Definition of a Lecture

“A lecture should not be where the notes of the
professor become the notes of the student without

passing through the mind of either one.”

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Outline 3

Outline for Tépico 1

e The Objectives and Syllabus of the Course.

e What is Parallel Computing all about?
Why Study it?

e An Introduction to Parallelism
and the Big Picture.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Objectives 4

The Aims of the Courses

e To explain the need for Parallel Machines;

e To outline the principles of machine design (Parallel
Architectures), and the relationships to software
1ssues;

e To explore the design space of architectural classes
and concepts, and design aspects and choices;

e To provide you with an ability to objectively
evaluate current and future parallel architectures;
and finally,

e To provide a basic background (and hopefully
generate interest :-) for further study and research

in Parallel Systems.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Objetivos 5

Objetivos dos Cursos

e Expor a necessidade de Mdquinas Paralelas;

e Apresentar os principios do projeto da arquitetura
(Arquiteturas Paralelas) e sua relacao com aspectos
relevantes em software;

e Explorar as alternativas de projeto de classes de
arquiteturas, seus conceitos, e aspectos dos projetos;

e Formar o estudante tal que ele seja capaz de
analisar com objetividade arquiteturas paralelas
atuais e futuras; e finalmente,

e Prover uma fundacao béasica (e um provavel
interesse) para estudos e pesquisa futura em

Sistemas Paralelos.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Livros para Arquiteturas Paralelas I e II 6

The Syllabus is based on

Sima, Fountain and Kacsuk, Advanced Computer Architectures: A
Design Space Approach, Addison-Wesley, 1997.

e Principles of parallel processing (Chapter 3).

e Parallel processors systems and structures (Chapters 4, and 6 to 18).

Kai Hwang, Advanced Computer Architectures: Parallelism,
Scalability, Programmability, McGraw-Hill, 1993.

e Principles of parallel processing (Chapters 1, 2 and parts of 3).

e Parallel processors systems and structures (Chapters 7, 8 and 9).

Hennessey and Patterson, Computer Architecture: A Quantitive
Approach, 2nd edition, Morgan Kauffman, 1996.

e Advanced pipelining techniques (Chapter 4).

e Parallel processors systems (Chapters 7 and 8).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

What is Parallel Computing about? 7

What is Parallel Computing about?

Speed:

e Solving problems (e.g. numerical computing,

transaction processing, logical reasoning) faster;
Scalability:

e Solving a larger version of a problem in the same

amount of time; or

e Solving (perhaps small versions of) problems not

previously attemptable.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

What is Parallel Computing about? 8

What is Parallel Computing about?(

cont)

Money:

Rather bluntly, a company will only stay in business if
e its machine is “revolutionary”, or (and)

e the machine is cost-effective.

The bottom line: Price versus Performance.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Why Study Parallel Systems? 9

So why is studying Parallel (and
Distributed) Systems important?

e There is a hard limit to the performance of
sequential machines.
e The use of these systems in both academia and

industry is on the increase.

e Replicating simple hardware (to make a parallel
machine) is ultimately more cost-effective than
constructing exotic ASICs, so parallelism is still

likely to become successtul.

[Comment: However, don't expect a dramatic switch

away from “sequentialism”]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Why Parallelism? 10

Why Parallelism? — The Argument
Against

Fact — Sequential machines have gotten faster and

cheaper at a tremendous rate.

Fact — Not all problems can be solved (“efficiently”) in

parallel, there exist inherently sequential problems.

Question: Why spend a lot of time and effort to make

parallelism work?

A quick answer: We are seeking revolutionary rather

than evolutionary increases in performance.

Also....

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Why Parallelism? 11

Sequentialism — The Argument Against

Fact — The von Neumann Bottleneck.
A “conventional” processor, fetching and executing
instructions and data from a single memory, will

have its execution rate bounded by the memory
bandwidth.

A communication or data limit.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Why Parallelism? 12

Sequentialism — The Argument

Against (cont)
Fact — The Flynn (or speed of light) limit.
In every “conventional” scalar processor there is a
path through which instructions will flow at a rate

of < 1 instruction per clock cycle.

Since the maximum clock cycle time is bounded by
speed of light constraints, this establishes an upper

bound on processor performance.

A computation or control limit.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Why Parallelism? 13

Why Parallelism? — The Argument For

In theory, parallelism bypasses both of these limits

(through multiple memories and multiple processors),

Question: How well does it work?

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Why Parallelism? 14

Drawing the Big Picture

The big picture must capture atleast these three basic

1ssues:

1. How is parallelism expressed (by programmers in

algorithms) for the target machine?

|Software (SW)]

2. How can machine components be configured (via
the architecture) to exploit the parallelism available,

both, among these components and the software?
|Hardware (HW))

3. How do the resultant systems behave and perform?
[Interaction of SW and HW)|

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Types and Levels of Parallelism 15

Parallelism - What is it?
The notion of Parallelism is used in two different

contexts:

1. the available parallelism in programs:

e Functional parallelism arises from the logic of the
problem solution - this form is generally irreqular

and small (loop parallelism excepted); and

e Data parallelism comes from using data
structures that allow parallel operations on their

elements - this form is regular and often massive.

2. the utilised parallelism occurring during

execution.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Types and Levels of Parallelism 16

Parallelism - Where is it?

Programs embody functional parallelism at different

levels or sizes of granularity:

e Parallelism at the instruction-level (fine-grained

parallelism);

e Parallelism at the loop-level (fine/medium-grained

parallelism);

e Parallelism at the procedure-level (medium-grained

parallelism); and

e Parallelism at the program-level (course-grained

parallelism).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Types and Levels of Parallelism 17

Utilising Functional Parallelism

Available L evels Utilised Levels
A
User (program) level user level
Sy 2
Procedure level Process |level
SR R |
Loop level Thread level 1
I
Instruction level Instruction level

1: Exploited by architectures.
2: Exploited by means of the operating system.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Types and Levels of Parallelism 18

Utilising Data Parallelism

1. Directly by dedicated architectures that permit
parallel or pipelined operations on data elements,

called data-parallel architectures (DP-architectures).

2. Convert data parallelism into functional parallelism
by expressing parallel executable operations on data
elements in a sequential manner through the use of

loop constructs.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Algorithms 19

Parallelism in Algorithms (or Programs)

The expression of an algorithm in a programming
language defines how actions can be carried out in
parallel. (This depends on the control and data

structures available.)

|deally, of course, we would like to be able to express the
algorithm in any correct fashion and have the parallelism
exposed and exploited automatically.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Algorithms 20

Data-Level Parallelism

This is the execution of the same function on a number

of data items simultaneously.

The degree of parallelism is determined by the quantity
of data rather than the algorithm. Although language
constructs are needed to specify parallel operations on

“parallel data structures”,

e e.g. vectors, arrays and graphs.

[Comment: Obviously, when mapping an algorithm onto an
architecture, the number of processors in the machine will

limit the degree of parallelism.]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Algorithms 21

Process-level Parallelism

This is the execution of a number of independent

instruction streams (processes) in parallel.

The process may or may not be part of the same overall
program (actually, not quite so simple: different groups
of different processes may work on different tasks at

different times), e.g. in distributed systems or operating

systems.

[Comment: A program may contain parallelism of various
forms, but the architectural techniques for exploiting them
are very different!]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 22

Processes and Threads

In operating system terminology, the notion of a process
is used in connection with the execution of a program.
Processes are the tasks required to be carried out by a
program or application. Threads are smaller chunks of
code (and are also called lightweight processes). Multiple

threads may be generated for each process.

[Comment: There are a number of concurrent and parallel
languages that enable parallelism to be expressed at the
language level by providing constructs to specify the
creation of processes and threads.]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 23

Concurrent and Parallel Execution

Concurrent Execution is the temporal behaviour of
the N-client 1-server model where one client is served at
any given moment. This model has a dual nature — it is
sequential in a small time scale, but simultaneous in a

large scale.

A scheduling policy determines how clients should be
chosen for service and covers two aspects — whether a
client can be interrupted or not (the pre-emption rule)
and how one of the competing client is chosen (the

selection rule).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 24

Concurrent and Parallel Execution(cont)
Parallel Execution is associated with the N-client
N-server model where having more than one server
allows the servicing of more than one client at the same
time. Two schemes of execution exist — lock-step or
synchronous (where each server starts service at the
same time) and asynchronous (where the servers do not

work in concert).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Programming Languages 25

Concurrent and Parallel Programming

Languages

Classifying languages according to constructs:

o Sequential (traditional) languages do not contain
any constructs to support the N-client model (e.g.
C, Pascal, Fortran).

e (Concurrent languages employ constructs to
implement the N-client 1-server model by specifying
concurrent threads and processes but lack
constructs to describe the N-server model (e.g. Ada,

Concurrent Pascal, Modula-2).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Programming Languages 26

Concurrent and Parallel Languages(cont)

e Data-parallel languages introduce special data
structures that are processed in parallel, element by
element. Also, special mapping directives help the
compiler in the optimal distribution of the

structures among processors (e.g. High Performance
Fortran, DAP Prolog).

e Parallel languages extend the specification of the
N-client model of concurrent languages with

processor allocation constructs (e.g. Occam-2,
Parallel C, Strand-88).

[Comment: Although parallel languages have more
constructs, it does not mean they are superior!]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 27

Computer Architecture Evolution

Legends:
|
I/E: Instruction Fetch and Execute.
SIMD: Single Instruction stream and
Multiple Data streams.
Sequential MIMD: Multiple Instruction streams
and Multiple Data streams.

(Parsiale
Vo
$IMD (MM)

D) () (o) (oo

Massively parallel
processors (MPP)

Tree showing architectural evolution from sequential scalar computers
to vector processors and parallel computers.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 28

A Classification of Parallel Architectures

Flynn’s Tazonomy (1972), though not perfect, has
become the standard and is based on instruction and

data streams:

SISD — Single Instruction stream Single Data stream

(Sequential machines)

SIMD - Single Instruction Multiple Data (Vector
machines, DAP, MasPar)

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 29

Flynn’s Classification of Parallel

Architectures (cont)

MISD — Multiple Instruction streams Single Data

stream (Systolic arrays)

MIMD - Multiple Instruction streams Multiple Data
streams (NCube, Intel Paragon, Meiko Computing

Surface)

There are some newer designs that are hard to classity
e.g. mixed SIMD/MIMD (CM-5)

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 30

A Parallelism-based Classification

Parallef architectures
PAs
Data-parallel Function-parallel
architectures architectures

N

Instruction-level Thread-level Process-leval
PAs PAs PAs

R

ILPs MIMDs

Vector Associative SIMDs Systolic Pipelined vLtws Superscalar Distributed Shared

architectures and neural architectures processors processors memary memary
architecturas MIMD MIMC
(multl- {multi-

computer} processors)

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 31

Basic Structures of Parallel

Architectures

There are just 2 fundamental structures (replication and
pipelining) derived as a result of partitioning the tasks
either spatially or temporally.

Spatial Parallelism —> space —> array-like structures

e “Arrays” partition the “data” and/or “control” —
SIMD, MIMD.
Temporal Parallelism —> time —> pipelined structures

e Pipelines partition the “function” — Vector

processors, systolic arrays, MISD, possibly MIMD.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Parallelism in Architectures 32

Basic Structures(cont)

Examples of replication:

e Functional units in processors;

e Datapaths in superscalar and VLIW processors;
e Processors in SIMD and MIMD machines;

e Memory banks in interleaved memory systems.

Examples of pipelining:
e Processors pipeline instruction execution;

e Vector processors execute the same operation on

pairs or tuple of elements;
e Systolic and wavefront arrays;

e Wormbhole router of message passing computers.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Exposing Parallelism 33

Exposing Parallelism

1) Compiler generated or “implicit” parallelism:

sequential code converted to parallel object code by

parallelising compiler;
loop parallelisation;
vector operations on multiple processors;

other “small” (limited utility) extractions of

independent operations from code.

difficult (using sequential languages even with

parallel extensions) and benefit is limited.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Exposing Parallelism 34

Exposing Parallelism(cont)

2) Hand generated or “explicit” parallelism:
e needs lots of work by the programmer;

e reduces burden on the compiler to detect parallelism

(instead it has to preserve parallelism);
e high software development and maintenance costs.

e Research area (since a compiler can only do so

much).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Exposing Parallelism 35

Programming Languages and Parallel

Architectures

Programming languages and parallel architectures are
NOT independent layers of a computer system!
Architectures have an influence on the language
constructs applied to exploit parallelism.

e ILP and dataflow architectures:
— are not supported by special constructs;
— rely on intelligent optimising compilers;

e Vector processors:
— do not often impose special language constructs;
— rely on compiler support to exploit loop

parallelism;

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Exposing Parallelism 36

Languages and Architectures(
e SIMD machines:

— the only data-parallel architecture sensitive to

cont)

language;

— parallel data structures handled as single
objects;

— SIMD machines have only one control unit and
therefore require a construct to mask operations

OIl ProcCessors;

— constructs to specify the allocation of the

parallel data structure elements to processors.

— One of the reasons why SIMD isn’t that popular.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Exposing Parallelism 37

Languages and Architectures(cont)

e Single Procedure Multiple Data execution model:

— A generalisation of SIMD execution model;

— A thread can split into N threads that work on
different invocations of the same loop;

— All processors execute the same instructions in
SIMD model, in the SPMD the same code can
be executed at different speeds;

— SIMD model applies instruction-by instruction
synchronisation, whereas in SPMD it is sufficient
to synchronise at the end of the loop. This is
called barrier synchronisation and requires

hardware support for efficent implementation.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Exposing Parallelism 38

Languages and Architectures(

cont)

e MIMD (and multithreaded) architectures:

Beyond creation and termination of processes,
languages provide “tools” for communication
and synchronisation;

mutual exclusion is the main synchronisation
problem in shared memory MIMD machines;
test and set operations (implemented in
hardware) are used to support semaphores;
Distributed memory machines use
message-passing operations;

PVM and MPI are recent parallel interfaces that realise

communication constructs to simplify programming.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

Exposing Parallelism 39

Exposing Parallelism - A Summary

Parallelism exists in sequential programs.
Difficult to detect and exploit it automatically.

In terms of parallelism, sequential programming
language syntax and semantics often impose
unnecessary causality constraints between

statements resulting in highly restrictive behaviour.

Conclusion: Conventional languages are NOT good

vehicles for exploiting parallelism.

However, a significant investment exists in SW
written in “old” languages (e.g. Fortran) and much

effort (commercially) is placed in this area.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

The Big Picture 40

The Parallel System Big Picture

Applications A
Programming Environment | Machine
¢ L anguages Supported Independent
Machine Communication Model ¢
Dependent Addressing Space
{ Hardware Architecture

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

An Introduction to Parallelism — A Summary 41

A Summary

The why, what and where of parallelism.

Various types (or levels) of parallelism: the program

or algorithm view and the architecture view.

Architectural techniques for exploitation depend on

the type of parallelism.

Parallelism has to be found implicitly or explicitly
In programs.

Have to match the available parallelism to the

utilisable parallelism.

The big picture and the interactions between the

system levels.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 1

