
Universidade Federal Fluminense

BERNARDO BULGARELLI LABRONICI

E�
ient High Resolution Volumetri
 ParallelRendering of Unstru
tured Data on a Cluster ofMulti
ores

NITERÓI2010



BERNARDO BULGARELLI LABRONICI

E�
ient High Resolution Volumetri
 ParallelRendering of Unstru
tured Data on a Cluster ofMulti
ores
Advisor:Lú
ia Maria de Assumpção DrummondCo-advisor:Cristiana Bentes

Universidade Federal Fluminense

NITERÓI2010



E�
ient High Resolution Volumetri
 Parallel Rendering of Unstru
turedData on a Cluster of Multi
oresBernardo Bulgarelli Labroni
i
Master dissertation submitted to the Pro-grama de Pós-graduação em Computaçào ofthe Universidade Federal Fluminense in par-tial ful�llment of the requirements for the de-gree of Master in S
ien
e.Approved by:

D.S
. Lú
ia Maria de Assumpção Drummond /IC-UFF(Advisor)D.S
. Cristiana Bentes / UERJ(Co-Advisor)PhD. Ri
ardo Farias / COPPE-UFRJD.S
. Esteban Walter Gonzalez Clua / IC-UFFPhD. Dorgival Olavo Guedes Neto / UFMG
Niterói,5 of July of 2010.



Experien
e is not what happens to a man.It is what a man does with what happens to him.Aldous Huxle



A
knowledgments
I �rst thanks my Master advisor and Co-advisor, Professors Lú
ia Drummond andCristiana Bentes, for supporting and en
ouraging me before and during these past twoyears. Their patien
e, guidan
e and in
entive make me want to give my best.I want to thanks Professor Ri
ardo Farias, although he was not o�
ially one of myadvisors, he truly a
t as if he was. Thanks for all the help given. I have a great debit withhim, and I intent to pay with some more Jambalaya with Turbo Dog one of this days.Thanks to my family that have supported my de
isions spe
ially my mom, Vera,my step mom, Ana, and step father, Miguel. My grandma, Lú
ia, for always 
are andremember me. My brother to always be "ready for the fun" when I need it, also wish goodlu
k to him, sin
e he is enduring the same journey as I had to earn his Master degree.My grandfather Domingos, although he is no longer alive, I am sure that some how he isstill looking over me.I thanks my dad, José Eduardo, for all my life he help me with what ever I needed toget until here. These few lines are not enough to show the gratitude that I have for him.I hope to make him very proud and honor every thing he has already sa
ri�
ed for me.He was and still is the model that I follow.The most spe
ial thank to my wife, Eliana, without your support I would be no werenear the end of this dissertation. She supported and stayed of my side ea
h 
an
eled tripand ea
h weekend spent at home. I love you very mu
h.Thanks to CNPQ, CAPES, IEEE and UFF for all the �nan
ial support. Withoutthis kind of support almost no one would be able to make good a
ademi
 publi
ation. Ihope that those institutions keep these ex
ellent work for years to 
ome, and many otherfollow their example.Thank for the RTM petrobrás group, espe
ially to professor Cristina Boeres. Hasbeen a major pleasure working with all you, even though for su
h a short time. Proje
tslike this one put in perspe
tive the importan
e of our a
ademi
 work.



A
knowledgments ivLast but not least I want to thanks ea
h and every person who have en
ourage orsupport me during this time. I would be impossible to 
ite them all here, but I want tolet them know that I haven't forgotten any of them.



Resumo
Visualização em tempo real de grandes massas de dados não estruturadas ne
essitamde grande poder 
omputa
ional e banda de memória. Muitas soluções de algoritmosparalelos foram propostas para lidar 
om a 
omplexidade 
omputa
ional dos 
ál
ulos deinter
essão 
elula-raio. Entretanto, a maioria não é 
apaz de prover taxas de renderizaçãopróprias para a interatividade, devido ao overhead gerado pela solução paralela. Estetrabalho estuda a fundo os 
omponentes do overhead de um algoritmo de renderizaçãoparalela, identi�
ando os gargalos e sugerindo modi�
ações no algoritmo a �m de seobter e�
iên
ia e es
alabilidade, até mesmo quando imagens de grande resolução sãoutilizadas. Nosso algoritmo é baseado no algoritmo de ray
ast 
om paralelização dosdados. Utilizamos uma de
omposição adaptativa da tela em porções 
hamadas tiles eestrategia de distribuição dos mesmos, um método paralelo para se en
ontrar o ponto deentrada dos raios na massa de dados e 
odi�
ação da imagem para a gravação/envio dassub-imagens. O algoritmo al
ançou ganhos signi�
ativos em termos de balan
eamentode 
arga e signi�
ativa redução nos overheads da paralelização de imagens de granderesolução. Os resultados de speedup 
on�rmam o poten
ial do algoritmo para renderizare�
ientemente grandes massas de dado.



Abstra
t
Real-time visualization of large and unstru
tured volume datasets demands high 
om-putational power and memory bandwidth. Many parallel solutions have been proposed todeal with the 
omputational 
omplexity of the ray-
ell interse
tion requirements. How-ever, most of them are not 
apable of providing intera
tive frame rates for large datasetsdue to the overheads generated on the parallel solution. This work disse
ts the over-head 
omponents of a parallel rendering algorithm, identifying bottlene
ks and suggest-ing modi�
ations to the algorithm in order to a
hieve e�
ien
y and s
alability even whenthe images have high resolution. Our algorithm is built on the ray
asting method witha data-parallel approa
h, it employs an adaptive de
omposition of the s
reen into por-tions 
alled tile and distribution strategy for those tiles, a parallel method for �ndingthe rays entry points and an en
oding method for subimages saving/transmitting. Theresulting algorithm a
hieved signi�
ant gains in terms of load balan
ing, and signi�
antredu
tions in the overheads of parallel rendering for big image resolution. The speedupresults 
on�rm the potential of the algorithm to e�
iently rendering large-s
ale datasets.



Key-Words
1. Ray
ast2. Parallel3. Load Balan
e4. Overheads5. Irregular dataset6. Irregular tile division7. Volumetri
 rendering



Contents
List of Figures xList of Tables xii1 Introdu
tion 132 Related Work 163 Ray
asting Algorithm Overview 193.1 Data Struture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.2 Prepro
essing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3 Pre-render . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.3.1 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.3.2 Fa
e proje
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Parallel Algorithm 244.1 Tile De
omposition and Distribution . . . . . . . . . . . . . . . . . . . . . 254.1.1 De
omposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.1.2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.2 Prerendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.2.1 Fa
es-per-tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.2.2 Fa
es-per-quadtree . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.3 Parallel Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Contents ix4.4 Subimages Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.5 Image Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Experimental Results 425.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425.2 Parallel Rendering Overheads . . . . . . . . . . . . . . . . . . . . . . . . . 445.3 Tile De
omposition and Distribution . . . . . . . . . . . . . . . . . . . . . 465.4 Pre-render . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.4.1 Data Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.4.2 Fa
e Proje
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.5 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525.6 Subimages Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535.6.1 Message Ex
hanging . . . . . . . . . . . . . . . . . . . . . . . . . . 545.6.2 Load Imbalan
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.7 Image Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.8 Speedup Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 Con
luding Remarks 63Referen
es 65



List of Figures
3.1 Example of the renderization pro
ess . . . . . . . . . . . . . . . . . . . . . 203.2 Example of the angles made between the viewing dire
tion and the normalof a visible and invisible fa
es . . . . . . . . . . . . . . . . . . . . . . . . . 224.1 An example of our parallel algorithm. . . . . . . . . . . . . . . . . . . . . . 254.2 Example of a regular Division of tiles . . . . . . . . . . . . . . . . . . . . . 264.3 Example of a irregular division of tiles . . . . . . . . . . . . . . . . . . . . 274.4 Example of a quadtree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.5 Every new level of tiles divide the minimum area of the tile by a fa
tor offour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.6 Example of the ∆g 
al
ulation. . . . . . . . . . . . . . . . . . . . . . . . . 314.7 Example of the 
riti
al value adjustment. . . . . . . . . . . . . . . . . . . . 334.8 Example of Makespan heuristi
 with 7 tiles and two elements in the R list. 364.9 Example of the distribution of sub-quadtree . . . . . . . . . . . . . . . . . 384.10 Example of image en
ondig . . . . . . . . . . . . . . . . . . . . . . . . . . 405.1 SPX dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.2 Post dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.3 Fighter dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.4 Delta dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.5 Torso dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445.6 Timing breakdown of our parallel algorithm. . . . . . . . . . . . . . . . . . 455.7 Variation of p parameter for SPX dataset. . . . . . . . . . . . . . . . . . . 465.8 A

ura
y of load estimation for SPX with a stride of 2o. . . . . . . . . . . 47



List of Figures xi5.9 A

ura
y of load estimation for SPX with a stride of 10o. . . . . . . . . . . 485.10 A

ura
y of load estimation for SPX with a stride of 40o. . . . . . . . . . . 485.11 Example of tile de
omposition for the Delta dataset. . . . . . . . . . . . . 495.12 Overhead of PRay and traditional ray
ast for SPX dataset. . . . . . . . . . 565.13 Overhead of PRay and traditional ray
ast for Delta dataset. . . . . . . . . 575.14 Overhead of PRay and traditional ray
ast for Fighter dataset. . . . . . . . 575.15 Overhead of PRay and traditional ray
ast for Post dataset. . . . . . . . . . 585.16 Overhead of PRay and traditional ray
ast for Torso dataset. . . . . . . . . 585.17 Speedup of PRay and traditional ray
ast for SPX dataset. . . . . . . . . . 605.18 Speedup of PRay and traditional ray
ast for Delta dataset. . . . . . . . . . 605.19 Speedup of PRay and traditional ray
ast for Fighter dataset. . . . . . . . . 615.20 Speedup of PRay and traditional ray
ast for Post dataset. . . . . . . . . . 615.21 Speedup of PRay and traditional ray
ast for Torso dataset. . . . . . . . . . 62



List of Tables
5.1 Cluster Netuno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425.2 Dataset sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.3 Total appli
ation time for 4G pixel resolution. . . . . . . . . . . . . . . . . 445.4 Standard deviation 
omparison with the �xed division. . . . . . . . . . . . 495.5 Overheads in
urred by tile de
omposition and distribution strategies. . . . 505.6 Rotation timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.7 Fa
e proje
tion timing for 4G pixel resolution. . . . . . . . . . . . . . . . . 525.8 Fa
e proje
tion timing for 8G pixel resolution. . . . . . . . . . . . . . . . . 525.9 Fa
e proje
tion timing for 1G pixel resolution. . . . . . . . . . . . . . . . . 525.10 The 
ontribution of ea
h part of the rendering in the rendering time. . . . 535.11 Ca
he miss rate of rendering for the parallel and sequential algorithm. . . . 535.12 Message ex
hanging per
entual time. . . . . . . . . . . . . . . . . . . . . . 545.13 Load imbalan
e of our algorithm, a

ording to equation (4.10). . . . . . . . 555.14 Gains in load imbalan
e of our algorithm, when 
ompared to a plain parallelrendering algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.15 Overhead of image merging . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Chapter 1
Introdu
tion

S
ienti�
 visualization is the pro
ess of graphi
ally displaying real or simulated s
ien-ti�
 data. It is useful to turn masses of numbers into pi
tures on the s
reen, and, therefore,is vital to many appli
ation areas su
h as biology, 
hemistry, 
omputer s
ien
e, geology,engineering, or medi
ine. For three dimensional data, there are various te
hniques, 
ol-le
tively known as volume rendering, for the dire
t visualization of the volumetri
 data.Volume Rendering 
omprises very powerful 3D visualization methods that 
onvey theinternal information of the 3D volume, providing semitransparent views of the spatialrelationships of the stru
tures. In 
ontrast, other visualization te
hniques show only thesurfa
e of the volume, like raytra
ing, or a low de�nition 
omposition of the isosurfa
esfrom the data.During the past de
ades, there has been remarkable advan
es in volumetri
 dataa
quisition. The evolution in s
anners te
hnology and numeri
al simulations enabled theprodu
tion of large volumetri
 datasets in a broad range of domains. The visualization ofsu
h datasets is 
riti
al to analyze and 
omprehend the information 
ontained inside thedata and verify and validate the results of the simulations. Depending on the stru
tureand type of data, di�erent rendering methods 
an be applied to perform the visualizations.The stru
ture and type of data rely upon the sour
e where volumetri
 data 
omes from.Equipment su
h as Computed Tomography s
anners and Magneti
 Resonan
e Imagingdevi
es usually produ
e data with regularity in positions, generating a re
tilinear or aregular grid. Numeri
al simulations, on the other hand, often produ
e data in arbitrarypositions, generating a 
urvilinear or even a unstru
tured grid. Fully unstru
tured volumedata is often 
onverted into a grid of tetrahedra. Tetrahedral grids 
an model 
omplexgeometries and are powerful in de�ning arbitrarily-shaped elements. However, renderingthis type of grid is parti
ularly 
hallenging for dire
ting volume rendering algorithms sin
e



1 Introdu
tion 14the irregular topology di�
ults the traversal of the data.Dire
t volume rendering algorithms 
aptures the overall data domain, 
onsideringthe volume as medium in whi
h light 
an be absorbed, s
attered or emitted as it passesthrough the volume. It produ
es high quality images without losing the details inside thedata, but the 
ost of all the 
omputations needed to determine what happens to light asit passes through the volume turns dire
t volume rendering a 
omputationally intensiveproblem. Furthermore, if the volume data is represented as an unstru
tured or tetrahedralgrid, an additional di�
ulty is in
luded: the 
omputation of where the light interse
tsea
h tetrahedron.The parallel pro
essing approa
h has been used to speed up the rendering task formany years, in di�erent ways. The �rst parallel volume rendering algorithms were pro-posed for expensive parallel ma
hines like SGI Power Challenge, IBM SP2, or SGI Origin2000 [25, 26℄. More re
ently, parallel algorithms are being designed to run on highlyparallel 
omputing devi
es su
h as graphi
s pro
essing units (GPUs) [11, 29, 31, 37℄ oron massively parallel ar
hite
tures su
h as 
luster of 
omputers [32, 38, 43, 46, 47℄. Re-gardless of the parallel ar
hite
ture in use, one 
ommon way to exploit parallelism involume rendering is to use a data-parallel approa
h, 
alled image de
omposition. In thisapproa
h, the s
reen spa
e is divided into non overlapping regions, 
alled tiles, whi
h areassigned, in groups, to the pro
essing elements. Sin
e the tiles do not overlap, they 
anbe 
omputed in parallel. Tile-based rendering, however, is usually sus
eptible to highload imbalan
e during exe
ution, due to the irregular nature of the datasets. Even if anequal number of tiles is assigned to ea
h pro
essing element, it is very likely that sometiles have di�erent amount of work, and 
an take longer to be pro
essed. When the tiledistribution is stati
, it is very hard to a
hieve an optimal load distribution for any givenframe. When the distribution is dynami
, it in
reases the algorithm 
omplexity and mayrequire 
ommuni
ation among the pro
essing elements. So, the load imbalan
e problemhas great impa
t on the overall performan
e and is still a 
hallenge to the implementationof a parallel rendering system.The main goals of our work are analyze the overheads in
urred by a spe
i�
 parallelvolumetri
 render algorithm with unstru
tured grid datasets mostly. Propose some te
h-niques that would in
rease the performan
e of this algorithm in terms of speedup andload balan
e, even when high resolution images needs to be rendered.The high 
omputational requirements of dire
t volume rendering for unstru
turedgrids has been ta
kled in di�erent ways in the literature: (i) redu
ing the 
omputational



1 Introdu
tion 15
omplexity of the rendering algorithm (e.g. [54, 10℄); (ii) generating approximate resultsby stati
ally simplifying the grid (e.g. [16, 7℄); (iii) redu
ing the memory requirementsof the rendering algorithm (e.g. [42, 41℄); (iv) parallelizing the rendering algorithm (e.g.[39, 5℄). We fo
us our attention on the latter approa
h.Past resear
h in parallelizing dire
t volume rendering algorithms has 
on
entratedon algorithm redesign to better explore the highly parallel ar
hite
ture su
h as graphi
spro
essing units (GPUs) [12, 29, 31, 37℄, or solving the spe
i�
 inherent problem of theparallel solutions that is the partitioning problem, with the goals of maximizing load bal-an
e and minimizing 
ommuni
ation [1, 34, 46, 47℄. In this work, we 
ontribute to paralleldire
t volume rendering by disse
ting all the overhead 
omponents of the parallel algo-rithm, identifying bottlene
ks in the rendering pro
ess and suggesting modi�
ations to thealgorithm in order to a
hieve e�
ien
y and s
alability. We perform a detailed evaluationof all the steps of the rendering pro
ess, in
luding the partitioning/load bala
ing problem,the 
ommuni
ation overhead, data lo
ality and the use of memory hierar
hy, and "fa
eproje
tion", and propose a novel parallel rendering algorithm based on this study. Ouralgorithm is built on the ray
asting method, uses a data-parallel approa
h, 
alled imagede
omposition, and employs a hybrid programming model that explores message passingand multithreading on a 
luster of multi
ore pro
essors.Although the solutions we propose here to minimize the parallel overheads are spe
i�
to the algorithm and ar
hite
ture, the lessons learned 
an possibly be extensively appliedto other parallel dire
t volume rendering approa
hes, in
luding others ar
hite
tures.The experimental results showed that the strategies in
urred negligible overhead inthe rendering 
omputation and 
an provide signi�
ant performan
e gains when 
omparedto a traditional data-parallel ray
asting algorithm. It was a
hieved less than 11% of loadimbalan
e and up to 45% of in
rease in the rendering performan
e. The remainder of thework is organized as the following. The Se
tion 2 reviews the previous work in parallelrendering. Se
tion 3 presents the ray
asting paradigm and data stru
tures used in thiswork. Se
tion 4 des
ribes the parallel rendering algorithm, the parallel stru
ture and theparallel strategies used and proposed for ea
h step of the rendering pipeline. Se
tion 5reports the experimental results and overheads analysis. Finally, Se
tion 6 presents the
on
lusions and future resear
h plans.



Chapter 2
Related Work

Several parallel dire
t volume rendering algorithms have been proposed throughoutthe years. They were 
lassi�ed by Molnar et al. [33℄, a

ording to the division of the ren-dering task among the various rendering threads, as: sort-�rst, sort-middle and sort-last.In sort-�rst parallel renderering, the s
reen spa
e is divided into tiles and ea
h pro
essoris assigned a set of tiles. This approa
h usually has smaller 
ommuni
ation requirements,but they are very sus
eptible to load imbalan
e. Therefore, a number of works fo
used onthe spe
i�
 overhead 
aused by the load imbalan
e in sort-�rst approa
hes for unstru
-tured grids.Some works uses the work stealing paradigm for load balan
e. In work stealingparadigm a 
omputational node without pixels to render, requests (or steals) pixels fromits neighbors therefore this paradigm dynami
ally balan
e the load within a frame. Ourwork uses di�erent paradigm for balan
ing the load. It uses a �xed tile distribution withina frame. Whitman [55℄ introdu
ed work stealing in parallel rendering for shared-memoryar
hite
ture, and Nieh and Levoy [39℄ for distributed-shared memory ar
hite
tures. Thework by Coelho et al. [8℄ and Farias et al. [13℄ proposed some work stealing algorithmsfor a distributed environment as a 
luster of PCs. Balan
ing the load among the threadsdynami
ally, however, requires either global information about the load of the renderingthreads or in
urs in 
ommuni
ation overhead. Another path to in
rease load balan
ing,also used in this work, is to provide a good distribution of the rendering task before thea
tual 
omputation begins. Muller [35, 36℄ des
ribes di�erent algorithms to re
ursivelydivide the s
reen a

ording to estimated workloads. The work by Abraham et al. [1℄resizes the tiles in order to promote the same amount of work for all tiles, Our worktries a similar approa
h of tile division. Kutlu
a et al. [20℄ presented a 
omparison oftwelve adaptive IS de
omposition algorithms. In a preliminary work [21℄ we proposed



2 Related Work 17another s
reen partition algorithm that is adaptive and based on a quadtree division, thisalgorithm will be explained and deeply analyzed throughout this work.In sort-last parallel rendering ea
h rendering thread is responsible for rendering partof the s
ene. It has been widely used in di�erent works. The works [27, 37, 56℄ fo
usedon the load balan
ing overhead by dividing the volume into bri
ks, and reassigning bri
ksto less overloaded nodes. Aykanat et al. [4℄ proposed a graph partition s
heme to thede
omposition problem. Another important issue in sort-last algorithms is the �nal image
ompositing stage. This stage 
an potentially be
ome a bottlene
k, sin
e it demands alarge amount of message ex
hange. The works by Yu et al. [57℄ and Lee et al. [23℄ fo
usedon redu
ing this overhead. Yu et al. introdu
ed a new image 
ompositing algorithm, 
alled2-3 swap. Lee et al. introdu
ed a parallel pipeline method whi
h avoids link 
ontention.Childs et al. [6℄ fo
used on the s
alability of the parallel solution and proposed a hybridapproa
h that parallelizes over both elements of the input data and over the pixels of theoutput image.Another 
ommon way of speeding up volume rendering is by taking advantage ofmodern ar
hite
tures, su
h as GPUs or Cell pro
essor. In [52℄ Weiler et al. implementeda GPU-based ray
asting algorithm that was further extended by Espinha and Celes [12℄.Bernardon et al. [5℄ also proposed a GPU-based algorithm based on ray
asting that rendersnon-
onvex irregular grids. Ruijters et al. [45℄ pointed out some of the bottlene
ks of GPU-a

elerated ray
asting, but their work fo
uses on regular grids. Some attempts have beenmade to deal with the problem of the memory limitation of the GPU. Weiler et al. [53℄and Fout and Ma [15℄ used data 
ompression. Maximo et al. [31℄ implemented a news
heme for storing fa
e data. Lately, there are some works on GPU 
lusters[18, 3, 28, 37℄.The power of the Cell pro
essor has been explored in [9℄ for ray
asting of unstru
teredgrids and in [19℄ for regular grids. The work by Smelyanskiy et al. [49℄ proposed athread- and data-parallel implementation of ray-
asting that explores the ar
hite
turaltrends of multi-
ore and GPUs, and an up
oming many-
ore pro
essor. They ta
kledthe 
ommuni
ation overheads using 
ompression and analyzed the 
a
he behavior of theirappro
hes; They used, however, a sort-last approa
h for regular grids. The work byMar
hesin et al. [28℄ also proposed a sort-last approa
h for regular grids, but that runs onmultiple GPUs. They also analyzed the time breakup of their approa
h in order to identifythe bottlene
ks.The sort-middle s
heme redistributes the middle result of the renderingpipeline. It is seldom implemented in software parallel renders, sin
e its s
alability islimited by the 
ommuni
ation overhead generated. Our approa
h here is to fo
us onall overheads of a sort-�rst parallel ray
asting algorithm for unstru
tured grids entirely



2 Related Work 18implemented on software.



Chapter 3
Ray
asting Algorithm Overview

Our parallel rendering algorithm is based on the ray
asting paradigm proposed byRoth [44℄. In the ray
asting paradigm, a ray is 
ast from the viewpoint through ea
hpixel of the image. As the ray moves forward in the data volume, it interse
ts a numberof spatial stru
tures 
alled voxels in it. Every pair of interse
tions is used to 
ompute thevoxels 
ontribution for the pixel 
olor and opa
ity and this 
ontribution is proportional tothe path that a ray travels within a voxel. The ray stops when it rea
hes full opa
ity orwhen it leaves the volume. Figure 3.1 shows a 2D example of a single ray. As 
an be seen,in a) the ray enters the dataset through a visible external fa
e. As the ray moves throughthe dataset, as seen in b), the 
olor and opa
ity is 
al
ulated a

ording to the path theray travels inside the voxel. The next voxels are fet
hed and the pro
ess 
ontinues. Forthis example, the pro
ess ends as seen in 
), when the rays leaves the dataset.This work is based on the sequential ray
asting algorithm ME-Ray proposed in [41℄.The data stru
tures and the rendering pipeline are presented next.3.1 Data StrutureThe volumetri
 data is 
omposed of a 
loud of points, ea
h point with an s
alar value
α asso
iated to it. The α value is result of simulation or measured by sensors and 
anrepresent any s
alar �eld, for instan
e density inside a volume. This 
loud of pointsare organized in stru
ture 
alled voxels. The algorithm assumes an unstru
tured volumedataset in the form of 
onne
ted tetrahedral voxels. The fa
es of the tetrahedra are eithershared between two adja
ent neighbor tetrahedra (inner fa
es) or they belong to theboundary of the tetrahedral grid (external fa
es). For the algorithm to 
ompute the raytraversal from one tetrahedron to the next, the following four data stru
ture are employed:



3.2 Prepro
essing 20

Figure 3.1: Example of the renderization pro
essarray of points, array of voxels, array of external fa
es and array of visible fa
es. Ea
helement in the array of points holds the X, Y and Z 
oordinates of the vertex, the s
alarvalue α and an array with the index of the voxels that the vertex belongs to. The arrayof voxels stores the tetrahedra. The voxel stru
ture 
ontains the indi
es of the neighborvoxels and the indi
es of its verti
es in the array of points. The array of external fa
esstores the indi
es of the voxels and its fa
es that are in boundary of the dataset. Thearray of visible fa
es is a sub group of the array of external fa
es. The array of visiblefa
es has the indi
es of the voxels and its fa
es that are in the boundary of the datasetand are visible for a given point of view. With these stru
tures, the algorithm 
an easilyknow the next fa
e the ray will interse
t, and 
onsequently, what the voxels in the raypath are.3.2 Prepro
essingIn a prepro
essing phase, the tetrahedral grid is read, and the array of points and thearray of voxels are allo
ated in memory. After that, the array of external fa
es is also
al
ulated. The prepro
essing step is exe
uted only on
e for ea
h dataset, independentlyof the visualization angle 
hosen.



3.3 Pre-render 213.3 Pre-renderThe pre-render phase is the �rst phase of the rendering pipeline, and has to be exe
utedfor ea
h new visualization angle. It is divided into two distin
t steps: rotation and fa
eproje
tion.3.3.1 RotationThe rendering from a 
ertain point of view starts by exe
uting the operations to rotatethe data in the axis x, y, and z, by an angle degree of β, γ and δ respe
tively, a

ordingto the angle of visualization. Ea
h vertex P is multiplied by the rotating matrix Rx, Ryand Rz given by (3.1), (3.2) and (3.3), respe
tively. The new 
oordinates of the point
Pnew is given by the equation (3.4). The amount of work performed in the rotation stepis independent of the resolution of the rendered image.

Rx(θ) =









1 0 0

0 cos θ − sin θ

0 sin θ cos θ









(3.1)
Ry(θ) =









cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









(3.2)
Rz(θ) =









cos θ − sin θ 0

sin θ cos θ 0

0 0 1









(3.3)
Pnew = P · Rx(β) · Ry(γ) · Rz(δ) (3.4)3.3.2 Fa
e proje
tionAfter the data is rotated, the array of external fa
es is traversed to determine the fa
esthat are visible in the 
hosen point of view. The visible fa
es are the external fa
es whosenormals make angles greater than 90o with the viewing dire
tion. Figure 3.2 shows anexample of a tetrahedron where one visible fa
e and one invisible fa
e are shown. The fa
ewith Normal 1 is visible, be
ause the normal makes an angle with the viewing dire
tion



3.4 Rendering 22
viewing direction

Normal 1
Normal 2

Figure 3.2: Example of the angles made between the viewing dire
tion and the normal ofa visible and invisible fa
esgreater than 90o degrees. The Fa
e with Normal 2 is invisible, be
ause the normal makesan angle with the viewing dire
tion smaller than 90o.The visible fa
es are stored in the array of visible fa
es. Having 
omputed all thevisible fa
es, the algorithm proje
ts them on the s
reen. To proje
t the visible fa
es, thearray of visible fa
es is ordered in su
h a way that the fa
es 
loser to the viewer are the�rst fa
es in the array, and the fa
es distant from the viewer are the last in the orderedarray of visible fa
es. For ea
h pixel, all the visible fa
es are 
he
ked for interse
tions,if the pixel falls into a 
ertain visible fa
e, this fa
e is stored in a list of interse
tionsbelonging to this pixel. This list of interse
tions is used as the entry point for the rays.3.4 RenderingFor ea
h ray r that 
orresponds to a pixel s, the algorithm has to 
ompute the nextinterse
tion of the ray by inspe
ting all other fa
es of the 
urrent voxel, or by inspe
tingthe neighboring voxels. As the ray interse
ts the voxels, its entry point (ein) and exitpoint (enext) in ea
h voxel are determined using a ray-plane interse
tion 
omputation.Every time a new fa
e is traversed, its 
oe�
ients are saved in a fa
e bu�er, and thelighting integral from ein to enext is 
omputed, using an opti
al model. This 
omputation
al
ulates the 
ontribution of the voxel in the 
olor and opa
ity of pixel s.When the exit fa
e of a voxel is an external fa
e, the ray leaves the dataset. If no moreexternal fa
es are in the ray path, the 
olor of the pixel has been 
omputed. Otherwise,the ray re-enters the dataset in another voxel, and the pro
ess 
ontinues until the rayleaves the volume. On
e the ray left the dataset it 
an re-enter the dataset if the datasetis not 
onvex or has holes inside it. The pro
ess of traveling through the array of voxels
al
ulating the 
olor and opa
ity of the pixels is 
alled rendering pro
ess.



3.4 Rendering 23It must be 
lear in the above explanation that the algorithm uses the orthographi
proje
tion view for the rendered image. The perspe
tive proje
tion 
an be a
hieved with-out signi�
ant 
hanges in the algorithm. Instead of 
asting rays in a in
lined dire
tion,from the point of view through out ea
h pixel of the image, the points 
an be trans-formed in su
h a way that the orthogonal proje
tion will produ
e the same �nal image inperspe
tive.the physi
al illumination model we used is the one des
ribed in Max [30℄ where thesemi-transparent substan
e in the volume absorbs and irradiates energy as the ray passesthrough.



Chapter 4
Parallel Algorithm

Parallelizing ray
asting is relatively simple. Every 
ast ray 
an be tra
ed through thevolume independently from every other ray. Our parallel algorithm adopts the sort-�rstapproa
h to divide the work among the pro
essing elements. The algorithm divides thes
reen into tiles that are assigned to the parallel pro
essing elements. A tile 
onsists of aunique set of pixels that form a 
losed area with in the s
reen, ea
h pixel of this tile will betraversed by a ray. The tile subdivision is not only useful to the assignment problem, butit is also important for improving 
a
he performan
e, sin
e nearby rays usually traversea similar group of voxels of the volume.Our parallel algorithm was designed to take advantage of re
ent heterogeneous ar
hi-te
tures of multi
ore 
lusters, 
omposed of shared memory 
omputer nodes, 
onne
ted bya messaging network. An example of the logi
al 
ommuni
ation s
heme of the algorithmfor three 
omputer nodes is illustrated in Figure 4.1. Ea
h pro
essor/
ore is 
alled arendering thread, and is responsible for rendering a set of tiles of the image an store thosetiles in a lo
al bu�er. Ea
h shared memory 
omputer node is 
alled a team of threads,and has a spe
ial rendering thread, 
alled leader thread, that is responsible for 
reatingthe shared data stru
tures for the team like the image bu�er, dataset and list of visiblefa
es. The whole system has one master rendering thread, that is responsible for workdistribution and the �nal image 
onstru
tion. Remark that the leader thread is a ren-dering thread that also exe
utes two additional tasks: stru
ture allo
ation and messageex
hange. The master is a leader thread that exe
utes also the tile distribution aiming ata good load balan
e among the rendering threads. For the sake of simpli
ity Figure 4.1does not shown for the master thread a image bu�er, but the master thread do have aimage bu�er, sin
e it 
an also a
t as a rendering thread.



4.1 Tile De
omposition and Distribution 25

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Decomposition
Tile

Subimages
Reception

Pre−render

Rendering

Pre−render

Image

master thread

Rendering

Pre−render

RenderingRendering

Pre−render

Rendering

Pre−render

Merge

rendering thread

Subimage

Transmission
Encoding/

leader thread

rendering thread

Subimage
Encoding/

Transmission

leader thread

image buffer

point/cell arrays

shared area

external faces list 

image buffer

point/cell arrays

shared area

external faces list Figure 4.1: An example of our parallel algorithm.The algorithm starts in a prepro
essing step when all the leader threads read the entiredataset, and 
reate the array of points, the array of voxels and the array of external fa
esin the shared memory.The rendering of ea
h point of view follows �ve steps: tile de
omposition and dis-tribution, pre-rendering, rendering, subimages sending and image merging. The masterde
omposes the s
reen into tiles and assigns the tiles to the rendering threads. Afterthat, the master sends ea
h leader thread the set of tiles to be 
omputed by its team. Inea
h team, ea
h thread is responsible for the pre-rendering and rendering phases. Afterea
h team �nishes the rendering of its tiles, the leader sends to the master the generatedsubimages. The master re
eives the subimages and merge them to form the �nal image.4.1 Tile De
omposition and DistributionThe �rst step is to de
ompose the s
reen in tiles in order to divide the rendering workand, after that, the tiles have to be distributed among the rendering threads.4.1.1 De
ompositionFor a sort-�rst ray
asting algorithm the tile division 
an be done by the master in twopossible ways. The traditional one is a regular division where all tiles are squares with



4.1 Tile De
omposition and Distribution 26

Figure 4.2: Example of a regular Division of tilesthe same size. This tile division is straightforward. The s
reen just has to be divided intothe same amount of rows and 
olumns, and the total number of tiles will be the produ
tof the numbers of rows and 
olumns. Figure 4.2 shows an example of a rendered datasetwith this tile division. The image generated is divided into 16 
olumns and 16 rows witha total of 256 tiles.The problem with this naive division is that it 
ould generate tiles with very di�erent
omputational 
osts. There are tiles that are more 
ostly to render than others. As 
anbe seen in Figure 4.2 the tiles at the 
orners of the image have lower 
omputational 
ostthan the ones at the 
enter of the image.Another option of division is an irregular tile division. An example of this division
an be seen in Figure 4.3. The areas that require greater 
omputing time to be rendered
an be more divided, while areas that require less 
omputing time 
an be less divided,generating tiles with nearly the same 
omputing time requirements. By 
omparing Fig-ures 4.3 and 4.2, it 
an be observed that the 
orners of Figure 4.3 has mu
h less divisions,sin
e there is no data to be rendered in those areas.One problem is that, in traditional ray
ast algorithms, the 
omputational 
ost of apixel is not known until the pixels are a
tually rendered. Therefore the total 
ost of thetile is not known until the tiles are 
ompletely rendered.In order to implement su
h te
hnique, it is required to estimate the 
omputational
ost of the areas of the s
reen and to divide the tiles a

ording to those estimated 
osts.The tile de
omposition s
heme employed by the parallel algorithm is based on ourwork [21℄ that uses irregular tile division. The idea is to estimate the rendering 
ost of



4.1 Tile De
omposition and Distribution 27

Figure 4.3: Example of a irregular division of tilesea
h pixel and use this estimation to adaptively divide the s
reen into tiles. The pixel 
ostestimation exploits frame-to-frame 
oheren
e and use the total length of the path thatthe ray travels inside the volume (that re�e
ts the �nal 
ost of the illumination integral),in the last frame generation, to estimate the 
ost of the pixel in the 
urrent frame. Withthe estimated 
ost of ea
h pixel on the s
reen, the s
reen is adaptively divided until aneven subdivision of tiles based on rendering loads is a
hieved. In other words, our goal isto have tiles with low standard deviation of 
osts among them.This de
omposition s
heme uses a dynami
 tile division that is 
alled Adaptive tilede
omposition. The main idea of the adaptive tile de
omposition is to store all the tiles ina hierar
hi
al stru
ture of a quadtree that 
an be rearranged several times through thequadtree rearrangement algorithm until a 
riti
al value is found, guaranteeing that a gooddivision has been a
hieved.A quadtree is a stru
ture that was initially proposed by Finkel [14℄ and has beenbroadly used in image pro
essing, en
oding and 
ompression. Ea
h leaf, that is a nodewithout 
hildren nodes, in the quadtree 
orresponds to one tile in the s
reen. Ea
h internalnode has four 
hildren nodes. Ea
h node stores the estimated 
omputing 
ost of the tileit represents, in the 
ase of a leaf node, or the total 
ost of its sub-quadtrees in the other
ases. Figure 4.4 shows an example of the representation of a quadtree and the equivalentdivision of the s
reen. As shown in Figure 4.4, the tiles in the s
reen in a 
ounter
lo
kwiseway, starting at the lower left 
orner 
orrespond to the tiles stored in the quadtree fromleft to right.For the �rst quadtree no 
ost 
an be estimated, sin
e no frame has been rendered yet.Thus, the �rst quadtree is 
onstru
ted initially as a full quadtree of a 
ertain length. The



4.1 Tile De
omposition and Distribution 28
5

5

2

3

100

8

8 2

1003

7

7

45

20

Quadtree Screen

Leaf node (Tile)

Inner nodeFigure 4.4: Example of a quadtree.quadtree is guaranteed to always have at least one tile per rendering pro
essor. This isdone by evaluating if the number of leaf nodes in the quadtree is at least equal to thenumber of rendering pro
essors. If there is not at least one tile per rendering thread, allleaves of the quadtree are split in four new nodes until there is at least a single tile forea
h pro
essor. This �rst quadtree has a tile division similar to a traditional one. Thetiles, for this �rst quadtree, are also distributed in a traditional way, as it is not possibleto estimate the 
ost of the tiles. After that, for the rendering of the next frames, thequadtree of the past rendered frames is used and a rearrangement algorithm is employedto provide an adaptive division.The quadtree rearrangement algorithm is a re
ursive algorithm that only ends whenthe Rule 1, de�ned next, is satis�ed.Rule 1 Given a limit 
ost W , no internal node of the quadtree has a total 
ost lower than
W and no leaf node has 
ost greater than W .The quadtree rearrangement algorithm performs two operations named split and joinin the quadtree in order to guarantee that Rule 1 is satis�ed. For a given limit 
ost W ,for every node ni of the quadtree with asso
iated 
ost Ci the following two a
tions maybe performed:



4.1 Tile De
omposition and Distribution 291. If ni is a leaf node and Ci > W , then a split operation is applied. In the splitoperation the leaf node is split in four new tiles ea
h with 
ost equal to Ci

4
.2. If ni is an internal node and Ci < W , then a join operation is applied to thisnode. In the join operation, all the sub-quadtrees of this node are deallo
ated andthe internal node be
omes a leaf node.If Ci is equal to W , no operation is exe
uted in this node. The split and join operationsare re
ursively applied to the quadtree until the Rule 1 is satis�ed. At this point oneexe
ution of quadtree rearrangement algorithm �nishes.The quadtree rearrangement algorithm is exe
uted several times, for di�erent valuesof W . For ea
h exe
ution j, there is a limit 
ost Wj asso
iated with it. Su
h 
ost Wjis de
remented at ea
h exe
ution until a value Wcritical is found, meaning that a goodtile division was a
hieved. This limit 
ost adjustment is performed by the 
riti
al valueadjustment algorithm proposed by Aguilar [2℄, and it is also responsible for 
al
ulatingthe �rst W parameter (W0).The 
riti
al value adjustment uses the 
on
ept of information entropy or Shannonentropy [48℄ that was �rst used in data mining �eld by [51℄ and generalized by [2℄ todivide areas of equal load or weight in su
h a way that the standard deviation betweenall the areas were as small as possible and keeping the 
ompromise of having as few areasas possible. This algorithm mathemati
ally ensures that the division obtained is the bestpossible in terms of load balan
e and, at the same time, generates a small number of tiles,whi
h will result in a low overhead due to the tile management.Some parameters need to be a
quired from the quadtree in order to 
al
ulate the
riti
al value adjustment. From Rule 1, it is 
lear that the given limit 
ost W at the jthexe
ution, 
alled Wj , represents a measure of work. Considering that the initial quadtreehas L leaves, ea
h one with a 
ost asso
iated to it Cn, by Aguilar [2℄ a value suitable for

W0 (Initial value) is the average 
ost of all leaf nodes given by equation (4.1).For the �rstquadtree of the algorithm, the full quadtree at the �rst frame, all the Cn 
an have thesame random value. The value used for the �rst frame in this work is ∀n, Cn = 1

W0 =

L
∑

n=1

Cn

L
(4.1)On
e the �rst W parameter (W0) has been 
al
ulated, the quadtree rearrangement



4.1 Tile De
omposition and Distribution 30

A

4
A 16

A

Figure 4.5: Every new level of tiles divide the minimum area of the tile by a fa
tor offour.algorithm 
an be applied, joining and splitting nodes when it is ne
essary. By Rule 1, notile will have estimated 
ost greater than Wj , at the end of the jth iteration. Here it isne
essary to de�ne the maximum density of work Dmax, whi
h represents the maximumwork 
ost per area of tile that 
an exist in the given quadtree. The maximum density ofwork Dmax 
an be given by equation (4.2), where Amin is the minimum area among allthe tiles.
Dmax =

Wj

Amin

(4.2)Knowing that the total area of the image is given by Aimage, every time that one levelis added to the quadtree the smallest possible tile area is divided by a fa
tor of four asseen in Figure 4.5.Thus, the minimum possible area of a tile is given by equation (4.3) where h is theheight of the quadtree. Combining equations (4.2) and (4.3), the equation (4.4) is obtainedas the maximum density of work.
Amin =

Aimage

4h
(4.3)

Dmax =
Wj4

h

Aimage

(4.4)The 
loser to the root a tile is in a quadtree, the greater is its area. On the other hand,



4.1 Tile De
omposition and Distribution 31

{g=2

g    =1

g    =3

First

Last Figure 4.6: Example of the ∆g 
al
ulation.the deeper this tile is, the smaller is its area. Knowing that the leaf with smaller depth ina quadtree given by gF irst and the leaf with greater depth is given by gLast, it is assuredthat all other leaf nodes have their depths between gF irst and gLast. Be
ause the depth ofthe leaves are dis
rete by de�nition, all possible depths are given by equation (4.5) andthis also represents all possible values for area of the tiles, sin
e the area of a given tileis dire
tly proportional to its depth within the quadtree. In Aguilar [2℄, the ∆g value is
alled generational di�eren
e, sin
e it represents the di�eren
e of the �rst generation, orless divided regions of the dataset, and the last generation or most divided regions of thedataset. One example of the 
al
ulation of ∆g for a quadtree 
an be seen in Figure 4.6.For this example the leaves with smaller depth are at level 1 and leaves with greater depthare at level 3. Consequently, the ∆g value is 2.
∆g = gLast − gF irst

Number of possible areas = ∆g + 1 (4.5)Ea
h tile i within a quadtree 
an have 
ost W that varies from 0 (empty tile) to Wjwhi
h is the greatest possible value for the jth iteration of the quadtree rearrangementalgorithm. The amount of possible 
osts values for the quadtree is given by (4.6).
∆W = Wmax − Wmin

∆W = Wj − 0

Number of possible cost values = [0, Wj] = Wj + 1 (4.6)Considering that ea
h tile 
an have ∆g + 1 possible sizes for its area and ea
h tile



4.1 Tile De
omposition and Distribution 32
an have one of the ∆W + 1 possible 
osts asso
iated with it, the interval given by
(∆g + 1)(Wj + 1) represents the amount of possibilities for tile density. In an iteration
j the density of work of a tile is inside the interval given by [0, Dmax]. The width ofthose intervals are 
alled dis
rete density of work displa
ement and is given by ∆D.Thus, to obtain ∆D, one must divide the maximum possible value of work density Dmaxby all possible intervals of density given by (∆g + 1)(Wj + 1). The result is given byequation (4.7).

∆D =
Dmax

(∆g + 1)(Wj + 1)

∆D =
Wj4

h

(∆g + 1)(Wj + 1)Aimage

(4.7)Must be point out that ∆D is an statisti
al entity de�ned by [2℄ and has no dire
trelation to the width of the 
artesian produ
t of the ∆g and Wj real values. The followexample will illustrate this di�eren
e. Lets have a ∆g equals 1 and Wj equals 2. Letsname G the set of all possible areas for the tile and C the set of all possible 
osts for thetile. Equation (4.8) shows those two sets, and the 
artesian produ
t between them. Aswe 
an see, we end up with only 4 possible values for the tile density with di�erent widthsbetween them.
G = {1, 2}

C = {0, 1, 2}

C × G = {{0, 1}, {0, 2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}}

C × G = {0, 1, 2, 4} = 4 (4.8)This value is not the one we are looking for. The value de�ned by [2℄ would be simply
(∆g + 1)(Wj + 1) = 6, and the distan
e between ea
h of those values is 
onsidered to bethe same.Figure 4.7 graphi
ally shows the displa
ement values within the interval of density ofwork 
ost for a given quadtree. In this example, the total area of the image is given by
Aimage. This quadtree has 2 levels of tiles whi
h leads to a ∆g = 1. The 
ost Wj is equalto 6, so ∆W is also equal to 6 by equation (4.6). This situation will lead to 14 possibilitiesfor tile density that are represented by the line below the quadtree. The displa
ementbetween those possibilities of tile density is the dis
rete density of work displa
ement that



4.1 Tile De
omposition and Distribution 33
{g=1

w=6

6

5

5

0

0

1

3
{h=2 {(   g + 1)(   w + 1) = 14

{
D =  W  4    =   6*4    =    6.85 

14A image

  
14A image     A image

2h

jFigure 4.7: Example of the 
riti
al value adjustment.is pointed out as been ∆D = 6.85
Aimage

.Aguilar has mathemati
ally shown in [2℄ that when the value of dis
rete density ofwork displa
ement 
hanges its order of magnitude from one iteration j − 1 to the next jthe 
riti
al value Wj is a
hieved and the algorithms terminate.In this work, the 
hange in the order of magnitude of the dis
rete density of workdispla
ement ∆Dj is found when the value of ∆Dj−1 in the j − 1 iteration, is p timesgreater than ∆Dj in the 
urrent iteration j. The 
riti
al value is found if the inequalitygiven by (4.9) holds true in a given iteration of the 
riti
al value adjustment algorithm.As 
an be seen in the inequality 4.9 the 
omparison between the ∆Dj−1 and ∆Dj isindependent of total area of the image Aimage sin
e this term is 
an
eled in both sides ofthe inequality. It is not ne
essary to measure, by any means, the value of the total areaof the image in order to apply the 
riti
al value adjustment algorithm.
∆Dj ≥ p∆Dj−1

Wj4
hj

(∆gj + 1)(Wj + 1)Aimage

≥ p
Wj−14

hj−1

(∆gj−1 + 1)(Wj−1 + 1)Aimage

Wj4
hj

(∆gj + 1)(Wj + 1)
≥ p

Wj−14
hj−1

(∆gj−1 + 1)(Wj−1 + 1)
(4.9)The value p is 
hosen in a prepro
essing step. A study of the determination of p willbe dis
ussed in Chapter 5 Se
tion 5.3.



4.1 Tile De
omposition and Distribution 34In summary, the idea of the 
riti
al value adjustment algorithm to �nd the best tiledivision is:
j = 0 //First iteration
Wj = Avg(leaves) //Equation (4.1)Repeat until 
riti
al value found //equation (4.9)quadtree rearrangement algorithm(Wj); //rearrange quadtreeif 
riti
al value for Wj is found breakelse

Wj = Wj − 1;
j = j + 1;end repeatThe list below summarizes the parameters that need to be a
quired from the quadtreein order to apply the 
riti
al value adjustment algorithm.

• Dmax - Maximum density work.
• ∆g - Range for all possible tile depths in the quadtree.
• ∆W - Range for all possible 
osts in the quadtree.
• ∆D - Width of the dis
rete density of work displa
ement.4.1.2 DistributionAfter the s
reen has been adaptively divided into tiles, the tile assignment is doneby using a 2-optimal algorithm, 
alled Makespan Redu
tion heuristi
, proposed by R.L.Graham in [17℄ for pro
essor s
heduling. In this heuristi
, at �rst a list of tiles L is 
reatedin de
reasing order of their 
osts, and one tile in the list is assigned to ea
h renderingthread within a list R. After that, the list R of rendering threads are ordered by their



4.1 Tile De
omposition and Distribution 35loads in an in
reasing order. Then, ea
h tile in L is assigned to the rendering threadwith the lowest load, the rendering threads are 
ontinually reordered by their in
reasingloads, and the assignments go on, until there are no more tiles in the list L. The lowerthe standard deviation of the tile 
osts is, the 
loser the heuristi
 gets to the optimumsolution.The algorithm for this rearrangement is:
Create L and RSort de
reasing L //L sorted in a de
easing order of loadFor ea
h rendering thread in R doTake out the �st tile in L and assign to a thread in RRepeat until L is emptySort in
reasing R //R sorted in an in
reasing order of total load.Give the �rst tile in L to the �rst rendering thread in the list Rend repeatDespite the fa
t that a 2-optimal heuristi
 
an give good results, the overall resultmay still be poor if the tile division is not a good one. The granularity of the tiles will havegreat in�uen
e in the overall e�
ien
y of the algorithm. Course grain tiles will produ
ehigh load unbalan
e; On the other hand �ner grain division will lead to high overhead tomanage and distribute all those tiles. Figure 4.8 shows an example of Makespan redu
tionheuristi
s working upon a divided image. The numbers in the tiles represent the estimated
ost of ea
h tile. In step 1, the list L is 
reated. The tiles in the list L are ordered inde
reasing order of its 
ost. In step 2, the list R is 
reated. There are two elements inthe list R named R1 and R2. For ea
h phase of step 2, the list R is ordered a

ordingto its total tile load and one tile from L is assigned to the �rst element in R. In step 3all the tiles in L have been assigned to a rendering thread in R. As it is seen, Makespanredu
tion heuristi
 gives the distributions of total 
osts 17 for R1 and 13 for R2.



4.1 Tile De
omposition and Distribution 36

0

5 6

7 6

51

0155667L

R2

R1

1 Step

2 Step

7

66

55

01

17

13

Total Load

R2

R1 7 R2

R1 7

6 R2

R1 7

6 6

R2

R1 7

6 6

5

3 Step

Figure 4.8: Example of Makespan heuristi
 with 7 tiles and two elements in the R list.



4.2 Prerendering 374.2 PrerenderingOn
e the rendering work is distributed to all threads of the system, the prerenderingpro
ess takes pla
e. At �rst, the data is rotated a

ording to the point of view. This isa

omplished by performing the rotation of the dataset, as explained in Se
tion 3.3, inea
h shared memory 
omputer node. In this 
ase, the verti
es to be rotated are evenlydivided among the rendering threads, so that ea
h thread applies the rotation matrix inits subset of verti
es.After that, the threads 
ompute the list of visible fa
es, and start the visible fa
eproje
tion pro
ess. Parallel ray
asting algorithms do not parallelize this pro
ess, sin
ethe amount of time spent in fa
e proje
ting is usually mu
h smaller than the amount oftime spent in the rendering pro
ess. However, as the image resolution in
reases, the fa
eproje
tion phase 
annot be underestimate, otherwise it will limit the speedup in
rease.So, here we propose two s
hemes for parallelizing this phase 
alled Fa
es-per-tile andFa
es-per-quadtree.4.2.1 Fa
es-per-tileIn this te
hnique it is assumed that the master thread sends ea
h rendering thread alist of tiles 
omputed in the tile distribution step. In this parallel fa
e proje
tion s
heme,ea
h rendering thread proje
ts only the visible fa
es that are within the tiles that wereassigned to it. The thread traverses the list of visible fa
es, and 
he
ks for ea
h fa
e if itbelongs to one of its assigned tiles. The fa
es that do not belong to the tiles are ignored.For the fa
es that belong to a tile, the thread proje
ts only the pixels inside the tile. Thisis done to avoid double proje
tion of pixels when the fa
e is within more than one tile.This s
heme 
an generate load imbalan
e, sin
e the tile division takes the 
ost ofrendering the pixels into a

ount, but not the number of pixels inside ea
h tile. So, somethreads 
an be assigned with more pixels than others, generating a high fa
e proje
tion
ost. Another important issue in using this parallel s
heme is that, for images with smallresolutions, and 
onsequently a small number of pixels, the overhead of 
he
king if thevisible fa
es are within the tiles 
an outpa
e the parallelization gains.Consider that the number of tiles is n, and the number of external visible fa
es is
m. For ea
h fa
e to be proje
ted, all the tiles in the list of tiles have to be tested forinterse
tions, this will lead to a 
omplexity for this sear
h of O(mn) asymptoti
ally. This
omplexity will be used as a 
omparison parameter with the next te
hnique.



4.2 Prerendering 38

2

Quadtree

Tile

2
Tile

Sub-Quadtree

R1

R2

Figure 4.9: Example of the distribution of sub-quadtree4.2.2 Fa
es-per-quadtreeIn this te
hnique, it is assumed that the master thread sends ea
h rendering thread asub-quadtree with the tiles 
al
ulated in the tile distribution step. The Fa
es-per-quadtreeproje
tion s
hemes, addresses the overhead of 
he
king whi
h visible fa
es fall under theassigned tiles. The idea is to redu
e the number of 
he
ks by taking advantage of thequadtree stru
ture 
reated by the tile de
omposition phase. Ea
h internal node in thequadtree represents a quadrant of the s
reen. When we 
he
k if a 
ertain visible fa
e fallsunder an internal node of the quadtree, we are 
he
king whether its pixels fall under thequadrant represented by that nodes.To a

omplish this s
heme, the master thread no longer sends the list of tiles to therendering threads, but the sub-quadtree that holds all the rendering threads tiles. Sin
ethe quadtree is usually small, this transfer 
an be negligible in the overall fa
e proje
tionoverhead. Figure 4.9 shows the master sending the sub-quadtree to two di�erent renderingthreads. The dashed leaves of the sub-quadtree are tiles that were assigned to otherrendering threads. Remark that all the leaves of original quadtree have to be assignedto one, and only one rendering thread. In the example the tile 2 of the master threadquadtree was assigned to the rendering thread R1.So, ea
h rendering thread stores lo
ally only the portion of the quadtree that repre-



4.3 Parallel Rendering 39sented the tiles that were assigned to it. For ea
h visible fa
e, the rendering thread 
he
kswhether the fa
e falls under the root node of its lo
al quadtree. If it does, the same test isdone with its 
hildren nodes, and so on, until a leaf node is rea
hed; In this 
ase the fa
eis proje
ted in the same way as fa
e-per-tile, in whi
h only the pixels inside the leaf nodeis proje
ted. If the fa
e does not fall under a quadtree node, no further 
he
ks are madeto the des
endants of that node. In this way, not all the visible fa
es are 
ompared to alltiles assigned to this rendering thread. A great number of visible fa
es are 
ompared onlywith the lo
al quadtree root node, and soon dis
arded.Considering that the number of tiles is n, and the number of external visible fa
es is
m. This hierar
hi
al stru
ture in
reases performan
e be
ause one element of the quadtree
an be �nd on O(log4(n)) as shown by Finkel [14℄. Therefore the sear
h for all externalvisible fa
es 
an be done in O(mlog4(n)) asymptoti
ally, whi
h is lower than the O(mn)
omplexity of the fa
e-per-quadtree s
heme. It is expe
ted that fa
e-per-quadtree mightlead to a better result in 
ases of higher resolution than fa
e-per-tile.This te
hnique still has the same load imbalan
e problems due to fa
e distribution thatfa
e-per-tile has. This work does not address any te
hnique to avoid or redu
e this loadimbalan
e, sin
e this is not the most expensive 
omputation in the whole visualizationpro
ess.4.3 Parallel RenderingAfter ea
h rendering thread has the list of pixels to be 
omputed and the entry pointfor ea
h pixel 
omputed in the fa
e proje
tion phase, the ray
asting algorithm starts. Thealgorithm used is exa
tly the same as the algorithm des
ribed in Se
tion 3.4, where forea
h ray, the interse
tions are found and the illumination integral 
omputed.4.4 Subimages TransmissionAfter rendered, ea
h pixel has its �nal 
olor stored in a three byte stru
ture 
alled
CRGB. The three bytes of CRGB stores the Red, Green and Blue values of the pixels, alsoknown as the RGB 
olor of the pixels. The CRGB of all rendered pixels are stored in anone dimensional array 
alled raster. The raster is a stru
ture that 
an be easily mappedonto a two dimensional s
reen. Initially all the RGB values of all CRGB are set to zeroindi
ating a non rendered pixel.



4.4 Subimages Transmission 40
Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5raster

0         1         2         3         4          5        6          7          8        9        10       11       12       13 

Pixel 1 Pixel 2 Pixel 3    1     3     9      2 Pixel 4 Pixel 5Coded Image Figure 4.10: Example of image en
ondigEa
h rendering thread has its own raster array, that has the same size as the �nalimage. At the end of the rendering step ea
h rendering thread has a unique set of renderedpixels in its own raster array, those rendered pixels are within the tile areas that wereoriginally assigned to this rendering thread at the tile distribution phase. The renderingthread has to send its subimage ba
k to master thread, but sending the whole raster arraywould be 
ostly.So, in order to redu
e the size of the sending stru
ture, we proposed an image en-
oding s
heme. All the subimages generated by a rendering thread are sent in a singlemessage, that is 
omposed by an array of pixels stru
ture. This array 
ontains a num-ber of 
ontinuous pixels stru
ture, 
alled Cp. Ea
h Cp is a variable stru
ture that hastwo 
ontrol integers followed by a number of CRGB. The �rst 
ontrol integer points to aposition in raster array where there is a 
ontinuous number of pixels that are not bla
k.The se
ond 
ontrol integer 
ontains the number of CRGB, and ea
h CRGB represents aRGB 
olor of a rendered pixel. When the subimage has one or more bla
k pixels, a new
Cp is added to the array. Sin
e it is more likely to have groups of 
olored pixels togetherthan many interleaved 
olored and bla
k pixels, it is expe
ted that the array of Cp isalmost the same size as an array of pixels. Figure 4.10 shows an example of a raster arraymapped to a message with two Cps. Remark that the en
oded image is smaller than theoriginal raster array, and there are only four 
ontrol integers of overhead more than thea single list of CRGB would have.Although the subimages send phase 
omprises only the transmission of theraster arrayfrom ea
h rendering thread to the master. This phase timing is highly sus
eptible to theload imbalan
e intrinsi
 to the work division. Here we use a formula proposed by [25℄ asthe measure for load imbalan
e.



4.5 Image Merging 41
LoadImbalance = 1 −

Avg

Max
(4.10)Where Avg is the average timing among all rendering threads and Max is the maxi-mum timing of all rendering threads.4.5 Image MergingAs soon as the Master re
eives a message from a team of thread it de
odes the subim-ages re
eived and save them in the �nal Raster. The assembly of the �nal image isa straightforward phase, sin
e it involves only the transfer of ea
h Cp in
luded in themessage to the 
orre
t position in the image.After that, if there are more frames to be rendered, all the steps of the renderingpipeline, with ex
eption of the preprossesing phase, are repeated, otherwise the algorithm�nishes.



Chapter 5
Experimental Results
5.1 MethodologyOur experimental environment 
onsists of a 
luster with SMP nodes 
alled Netuno.The 
luster is lo
ated on the Rio de Janeiro Federal university. This 
luster was top 138in June of 2008 in the top 500 [50℄. Ea
h node of this 
luster is 
omposed of IBM bladeboards. where ea
h node 
onsists of 2 Intel Xeon 2.66 GHz quad-
ore pro
essors that sharea 16GB RAM. The nodes are 
onne
ted via Gigabit Ethernet network. All the 2048 
oresrun Linux CentOS 4.2.3. The parallel algorithm was developed in C, using MPI for the
ommuni
ation between the leaders and the master, and pthreads for the parallelizationand 
ommuni
ation of the rendering nodes inside a team. Table 5.1 summarizes some ofthe 
hara
teristi
s of this 
luster.Operational System CentOSKernel Version 2.6.18-53-el5CPU Intel Xeon E5430 (Duo-Quad 
ore) 2.66GHzCa
he Size 6144KBMemory RAM 16GBMPI Version Intel 3.2.0.011C++ Compiler Intel 11.0.074Table 5.1: Cluster NetunoWe used �ve well-known representative tetrahedral datasets: in Figure 5.1 we 
an seeSPX from Lawren
e Livermore National Lab, Liquid Oxygen Post shown in Figure 5.2,in Figure 5.4 and Figure 5.3 we see Delta Wing and Fighter from NASA respe
tively,and �nally in Figure 5.5 we see Torso from University of Utah. SPX is a very irregulardataset that 
ontains a hole in the grid, bringing extra di�
ulties to the renderer. Fighter



5.1 Methodology 43is based on an air
raft plane that has thin and thi
k regions. Delta Wing, Liquid OxygenPost, and Torso are tetrahedralized versions of regular datasets. Liquid Oxygen Post,in parti
ular, is a thin 
ylinder that presents di�erent rendering 
omplexity a

ording toviewing dire
tion. Table 5.2 shows the number of verti
es, tetrahedra voxels and externalfa
es for ea
h dataset.Dataset # Verti
es # Tetrahedra voxels # Number of External Fa
esSPX 149 K 827 K 44160Post 109 K 513 K 27676Delta 211 K 1.0 M 41468Fighter 256 K 1.4 M 83504Torso 168 K 1.0 M 6118Table 5.2: Dataset sizes.

Figure 5.1: SPX dataset.

Figure 5.2: Post dataset.

Figure 5.3: Fighter dataset.

Figure 5.4: Delta dataset.The resolution 
hosen to render the data set is also an important fa
tor to be takeninto 
onsideration. The resolution measured in this work is always in terms of pixels thatthe image has. We 
an imagine the image as a matrix of pixels. Even though the numberof 
olumns and rows in this matrix 
an be di�erent in size, in this work they are alwaysthe same size. For the sake of simpli
ity an image that has 1024 
olumns and 1024 rowsin the pixel matrix is 
alled an image with a 1G pixel resolution. An image with 2048



5.2 Parallel Rendering Overheads 44

Figure 5.5: Torso dataset.
olumns and 2048 rows is an image with 2G pixel resolution and so on. We used a 4Gpixel resolution image and ea
h dataset was rendered from di�erent points of view. Forall these datasets, an animation path was de�ned. We 
onsidered that the point of viewstarts at 0o, and was 
onstantly rotated using a �xed stride of 2 degree angle.The parallel ray
asting algorithm proposed is 
alled PRay. This algorithm uses thete
hniques tile de
omposition and distribution for load balan
ing and the fa
e-per-quadtreefor fa
e proje
tion. This version is 
ompared with the traditional parallel ray
ast. Thetraditional parallel ray
ast divides the s
reen equally into 32 × 32 tiles and distributesthe tiles randomly a
ross the rendering threads. This tile division was determined in aprevious experiment where di�erent tile divisions were evaluated to �nd the best one forall datasets.5.2 Parallel Rendering OverheadsBefore start our analyzes of the overhead, we present in Table 5.3 the total appli
ationtime of the sequential algorithm and the PRay algorithm. Those data were a
quired with4G pixels images and 64 
ores for the parallel algorithm PRay, the total time is presentsin millise
onds. Datasets Sequential(ms) PRay(ms)SPX 176235.03 4211.99Delta 196235.08 4524.09Fighter 153251.76 4412.00Post 328853.07 6381.46Torso 188054.98 4489.75Table 5.3: Total appli
ation time for 4G pixel resolution.As we 
an see, great improvement has been a
hieved. Next we will present the and



5.2 Parallel Rendering Overheads 45analyzes the the reason for su
h improvement starting with the overhear.In Figure 5.6 we show the timing breakdown of our parallel algorithm, PRay, for ea
hdataset, when running on 64 rendering threads. The breakdown was divided into fourphases: Tile De
omposition and Distribution, Pre-render, Subimages transmission, andImage Merging. This overhead was measured ex
lusively in the master thread were all theload balan
e poli
ies are applied and the �nal image is merged. Time measuring fun
tionswere started before the exe
ution of ea
h part of the overhead breakdown and stopped atthe end of those parts instrumenting this way the whole exe
ution of the master thread.

 0

 20

 40

 60

 80

 100

delta fighter post spx torso

(%
) 

O
ve

rh
ea

d

Overhead Breakdown

Tile Decomposition and Distribution
Pre−render

Network
Image Merge

Figure 5.6: Timing breakdown of our parallel algorithm.As we 
an observe in Figure 5.6, the Pre-render and Subimages Send 
omponentsdominate the total overhead. The total overhead remains around 40% of the total exe
u-tion time. The smallest dataset, Post, was the one that generated the smallest overhead,and as the dataset size in
reases, the total overhead also in
reases, mainly due to thein
rease in the Pre-render 
omponent of the overhead. This 
omponent is related tothe number of external fa
es of a dataset, and this 
omponent is higher in the �ghterdataset, whi
h is the one with most external fa
es. For experiments with larger imageresolutions, we obtained in
reasing in the total overhead. Following, we will analyze ea
hof the overhead 
omponents and the rendering behavior in detail.



5.3 Tile De
omposition and Distribution 465.3 Tile De
omposition and DistributionOur study, at this point, has to investigate how well our tile de
omposition strategy isin dividing the s
reen into tiles. Before we analyze the tile de
omposition results, we havedone some experiments in order to de�ne the best value for the p parameter of the adaptivetile de
omposition. This value de�nes when ∆D 
hanges by an order of magnitude. Wevaried p from 1.1 to 4.0 and obtained similar results for all datasets. Figure 5.7 showsan example of these results for SPX. In
reasing the value of p, shown in the x axis, 
anprodu
e a signi�
ant redu
tion in the total exe
ution time presented in the y axis, untilp rea
hes a value near 3.0. After that, further in
reases in p would have great impa
tin the exe
ution time. So, we de
ided to set p = 2.9 for the next experiments. Thisexperiment uses 64 rendering threads, but the usage of more or less threads should makeno di�eren
e in the �nal result (�nding the best value of p), sin
e this results dependsonly in the dataset geometry.

 6000

 8000

 10000

 12000

 14000

 1  1.5  2  2.5  3  3.5

E
xe

cu
tio

n 
T

im
e 

(m
s)

p

Spx

Figure 5.7: Variation of p parameter for SPX dataset.Having 
alibrated the p parameter, our se
ond study investigates the a

ura
y ofour load estimation strategy. After the rendering of ea
h point of view, we 
ompute thedi�eren
e between the estimated 
ost of ea
h pixel and its a
tual 
ost. We used SPX as anexample for this analysis, sin
e SPX is more irregular than the other datasets. Figures 5.8



5.3 Tile De
omposition and Distribution 47

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350

E
rr

or
 (

%
)

Point of View

SPX − Stride 2

Figure 5.8: A

ura
y of load estimation for SPX with a stride of 2o.to 5.10 show the average per
entage di�eren
e between estimated and a
tual 
ost for allpixels in the s
reen for SPX, when the point of view varies from 0o to 360o. Figure 5.8shows this di�eren
e when the point of view varies by 2o. Figure 5.9 shows for a 10ovariation and Figure 5.10 for a 40o variation. As we 
an observe in these �gures, for asmall stride, our estimated 
ost is very 
lose to the a
tual 
ost, the di�eren
e betweenthe estimated and a
tual 
ost stays near 5% and remains almost 
onstant for all points ofview. For a 10o of stride, the di�eren
e stays near 10%. For a 40o of stride, the estimateis in the average 50% di�erent than the a
tual 
ost. Big angle strides, however, are notthe usual requests of the users. Usually, the user does not desire an abrupt 
hange in theangle of view of the data. Based on these results, on the other experiments, we rotatedthe data for 20 di�erent point of views, using the stride of 2o.In order to evaluate the s
reen division generated by our tile de
omposition strategy,we measured the standard deviation of 
ost of the tiles, and 
ompared to the standarddeviation generated by a �xed 32 × 32 tile subdivision. We normalized the standarddeviation of the two strategies in order to 
ompare them. Table 5.4 shows the 
omparisonof the standard deviation of our strategy with the �xed division. The numbers showthe per
entage of the standard deviation generated by our strategy, 
onsidering that thestandard deviation of the �xed division is 100%. As we 
an observe in this table, ourde
omposition provides a standard deviation always smaller than the �xed division. Forsmaller strides, our de
omposition generates tiles with a standard deviation that is less



5.3 Tile De
omposition and Distribution 48

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350

E
rr

or
 (

%
)

Point of View

SPX − Stride 20

Figure 5.9: A

ura
y of load estimation for SPX with a stride of 10o.

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350

E
rr

or
 (

%
)

Point of View

SPX − Stride 40

Figure 5.10: A

ura
y of load estimation for SPX with a stride of 40o.



5.3 Tile De
omposition and Distribution 49

Figure 5.11: Example of tile de
omposition for the Delta dataset.than 21% of the standard deviation of the �xed division. The in
reasing in the per
entageshown for 18o is due to the in
reasing in the error of the tile load estimation measure. Anin
reasing in su
h measure degrade the de
omposition e�e
tiveness.Datasets Angle stride2 6 10 14 18SPX 16.7% 18.3% 20.3% 24.4% 41.2%Post 12.6% 18.0% 24.3% 38.0% 65.8%Delta 16.5% 17.4% 18.6% 20.6% 33.1%Fighter 20.1% 21.1% 25.1% 27.2% 40.0%Torso 18.1% 19.9% 21.5% 25.3% 53.7%Table 5.4: Standard deviation 
omparison with the �xed division.Figure 5.11 illustrates an example of the tile de
omposition for the Delta dataset. It
an be seen that our adaptive strategy performs more subdivision in the middle of thes
reen where there is more data to be 
omputed.Table 5.5 depi
ts, for ea
h dataset, the per
entage of time that the parallel algorithmspent in the 
omputation of tile de
omposition and distribution step. This time mea-surement is done in the same way as the overhead breakdown. As we 
an observe, theoverhead for this step is very small, under 3.6% of the total rendering time, for most ofthe datasets, ex
ept for Fighter, that obtained 6.6% of tile de
omposition and distribution



5.4 Pre-render 50overhead. Fighter is the dataset that has the smallest number of empty tiles, and thebiggest number of the rendered tiles, as its image uses up all the spa
e in the s
reen. Inaddition, for Fighter the tiles 
osts are more homegeneous than for the other datasets,and, in this 
ase, the tree rearrangement algorithm takes more time to �nd the 
riti
alvalue. For the other datasets, the overhead slightly in
reases with the in
rease in thedataset. It is important to noti
e that, in terms of memory 
onsumption, the quadtreeused only around 25 Kbytes for the biggest dataset, whi
h is less than 0.1% of the memoryneeded for the rendering. Dataset OverheadPost 1.7%SPX 2.5%Delta 3.6%Torso 2.8%Fighter 6.6%Table 5.5: Overheads in
urred by tile de
omposition and distribution strategies.To analyze the tile distribution, we 
ompared the load imbalan
e generated by theuse of Makespan 
ompared to the load imbalan
e generated when the tiles are randomlyassigned to the rendering threads in a round-robin fashion. The load imbalan
e was
omputed using equation (4.10) and the Makespan heuristi
 provided improvements from35% to 75% in the load imbalan
e, when 
ompared to the Random tile distribution s
heme.5.4 Pre-renderAs 
an be observed in Figure 5.6, the overhead of the pre-render step is signi�
ant,about 15% of the total rendering time. Following, we analyze ea
h of the 
omponents ofthis overhead, data rotation and fa
e proje
tion, in detail.5.4.1 Data RotationThe data rotation phase represents only a small part of the pre-render 
omputation.It is independent of the image resolution and the geometry of the data, it depends only onthe number of verti
es of the data. In Table 5.6, we show the time spent in data rotationand the per
entage that this time represents on the overall exe
ution time. As we 
anobserve, this phase imposes only a negligible overhead in the parallel rendering.



5.4 Pre-render 515.4.2 Fa
e Proje
tionThe fa
e proje
tion phase, on the other hand, a

ounts for most of the overheadof the pre-render step. This is a ne
essary phase in any ray
asting algorithm, whoseperforman
e impli
ations are often negle
ted by parallel rendering systems, mainly whenthe image generated has high resolution. Tables 5.8, 5.7 and 5.9 show the time taken forproje
ting the visible fa
es in the s
reen, when the image generated has the resolutionof 8G pixels, 4G Pixels and 1G pixels, respe
tively. The tables show the fa
e proje
tiontime and the per
entage of this time in the overall exe
ution time for the parallel s
hemesproposed here, fa
es-per-tile and fa
es-per-quadtree, and for a traditional s
heme, whereall the visible fa
es are proje
ted. This traditional s
heme is simpler and avoids the needof sear
hing for the visible fa
es that proje
t inside the tiles assigned to ea
h thread.However, the results show that, when the image has high resolution, the unne
essaryproje
tions turn the proje
tion from 20 to 70 times slower for a 4G pixel resolution, andfrom 50 to 800 times slower for a 8G pixel resolution. The gains get smaller for lowresolution images as seem in Table 5.9. That is why many of the parallel renders whi
hhandles low resolution images never parallelize this step of the pipeline. The fa
e-per-tilete
hnique has even had worse proje
tion time when 
ompared to the traditional parallelalgorithm in a 1G pixel resolution, but the fa
es-per-quadtree has always had the lowerproje
tion time when 
ompared to the other two approa
hes even for su
h small imageresolution.When we 
ompare the two parallel approa
hes, fa
es-per-tile and fa
es-per-quadtree,we observe that the fa
es-per-quadtree is faster than the fa
es-per-tile s
heme for alldatasets, ex
ept Torso. For a 4G pixel resolution, the fa
e-per-quadtree is about 26%faster for Fighter dataset. However, when the number of pixels quadrupli
ates, we observehuge gains for the fa
es-per-quadtree s
heme. It is about 46% faster for Fighter datasetthan fa
es-per-tile. Figther is the dataset where fa
e-per-quadtree presents the greatestgains, sin
e this dataset is the one that has the least number of non-rendered pixels inthe s
reen. Torso, on the other hand, has the greatest number of non-rendered pixels andDatasets Rotation time(ms) % Total TimePost 5.79 0.09%SPX 9.15 0.22%Delta 13.33 0.29%Torso 10.71 0.24%Fighter 16.11 0.37%Table 5.6: Rotation timing.



5.5 Rendering 52the least number of visible fa
es to be proje
ted.Datasets Fa
es-per-quadtree Fa
es-per-tile Traditional% Total Time time(ms) % Total Time time(ms) % Total Time time(ms)SPX 15.67% 660.02 18.49% 807.98 55.59% 13287.95Delta 14.65% 662.78 14.98% 682.59 53.86% 24492.57Fighter 16.07% 709.01 33.63% 1881.24 48.24% 49629.69Post 10.36% 661.12 11.17% 720.18 66.5% 40311.76Torso 14.44% 648.32 14.26% 640.5 50.98% 19804.27Table 5.7: Fa
e proje
tion timing for 4G pixel resolution.Datasets Fa
es-per-quadtree Fa
es-per-tile Traditional% Total Time time(ms) % Total Time time(ms) % Total Time time(ms)SPX 7.63% 1439.93 13.06% 2619.23 46.84% 84782.84Delta 13.24% 2551.59 13.68% 2639.26 47.4% 1676786.92Fighter 16.73% 3066.68 41.72% 10863.52 49.14% 2460465.88Post 5.14% 1333.73 9.7% 2643.3 43.84% 82034.43Torso 14.32% 2945.72 12.78% 2583.58 38.23% 167853.85Table 5.8: Fa
e proje
tion timing for 8G pixel resolution.Datasets Fa
es-per-quadtree Fa
es-per-tile Traditional% Total Time time(ms) % Total Time time(ms) % Total Time time(ms)SPX 4.23% 57.53 35.12% 302 16.58% 98.75Delta 13.26% 60.64 14.6% 68.71 18.15% 112.85Fighter 13.86% 98.44 42.17% 396.41 30.91% 259.71Post 7.79% 50.39 11.09% 92.01 15.87% 134.29Torso 6.89% 46.15 7.38% 49.47 11.66% 88.56Table 5.9: Fa
e proje
tion timing for 1G pixel resolution.5.5 RenderingThe rendering pro
ess in ea
h rendering thread follows the same 
omputation asproposed in [41℄. In the rendering algorithm, as a ray traverses the dataset, three 
om-putations take pla
e: Find Next Fa
e, Compute α, and Update Light. Find Next Fa
e,dis
overs whi
h the next fa
e to be interse
ted is, and the interse
tion point of the rayin this next fa
e. It generates the z 
oordinate of this point. Compute α 
al
ulates thes
alar value of the interse
tion point. The s
alar value, α, is 
omputed by the interpola-tion of the s
alar values of the next fa
e verti
es. Update Light 
omputes the illuminationintegral from the 
urrent position to the next interse
tion, using the values of z and α
omputed previously. Table 5.10 shows the proportion of these three 
omputations inthe overall rendering time. Find Next Fa
e is the most expensive part of the rendering



5.6 Subimages Transmission 53pro
ess, a

ounting for 66.4% of the rendering time. This is due to the update 
oe�
ient
omputation that 
al
ulates the 
oe�
ient of the plane de�ned by the three verti
es of atriangular fa
e. Update Light a

ounts for 29% of the rendering, due to the illuminationintegral 
omputation and Compute α a

ounts for only the other 4.6%.Computation % of Rendering TimeFind Next Fa
e 66.4%Compute α 4.6%Update Light 29%Table 5.10: The 
ontribution of ea
h part of the rendering in the rendering time.In the parallel algorithm, however, the tile division 
an a�e
t the 
a
he behavior ofthe rendering pro
ess. So, we 
ompared the 
a
he utilization of the parallel algorithmwith the 
a
he utilization of the sequential algorithm. The 
a
he utilization was measuredusing PAPI [40℄ and Perf
tr library to a

ess the hardware 
ounters.Table 5.11 shows L1 
a
he miss rate of ea
h of the three 
omputations performedduring the rendering step, for the parallel and the sequential algorithm. Ea
h 
ore of the
luster has 32K of L1 
a
he. As we 
an observe in this table, the adaptive tile de
omposi-tion strategy enhan
es the 
a
he utilization. This o

urs be
ause our tile de
ompositionstrategy divides the 
omputation evenly among the tiles and nearby rays that lie insidethe tiles tend to interse
t the same fa
es, so that the fa
es data 
an be reused in the
a
he. When we 
ompare the three main fun
tions of the rendering, we observe thatUpdate Light is the one that generated the highest 
a
he miss rate. This is due to theneed of reading a 
olor table, in order to insert in the integral the range of the 
olor valuesfor the α 
omputed. The Find Next Fa
e and Compute α fun
tion, on the other hand,had bene�ted from the reuse of fa
e data.Computation Ca
he Miss RateParallel Algorithm Sequential AlgorithmFind Next Fa
e 0.24% 1.15%Compute α 0.14% 1.33%Update Light 1.16% 1.21%Table 5.11: Ca
he miss rate of rendering for the parallel and sequential algorithm.5.6 Subimages TransmissionThe subimages send overhead is the time the master spent in waiting for the subimagesto arrive before merging them into the �nal image. The master has to wait for the



5.6 Subimages Transmission 54rendering threads to �nish their work, and for the messages to arrive. So, this overhead isdue not only to the network message ex
hanging, but also to the load imbalan
ing e�e
t.Following we dis
uss both overheads in detail.5.6.1 Message Ex
hangingTable 5.12 shows the time spent with message ex
hanging and the per
entage oftime that the message ex
hanging represents in the subimages send overhead. As we
an observe in this table, the time spent in message ex
hanging is negligible in the to-tal subimages transmission overhead. For Torso, the message ex
hange overhead is thesmallest, even being bigger than Post and SPX. This is primarily due to the fa
t thatTorso is a regular dataset. As our algorithm 
an also deal with hexahedral voxels, we
onsidered ea
h 
ubi
 voxel of Torso as an hexahedral voxel. Due to the regular natureof Torso, some voxels have no 
ontribution for the �nal 
olor of the pixels. Nevertheless,the image generated by Torso uses up the smallest s
reen spa
e, 
ompared to the otherdatasets. Fighter has the greater network overhead, this fa
t is due to the nature ofFighter dataset. Fighter has the greater number of external fa
e, and the fa
es o

upyalmost all the image. Dataset % of Message ex
hange OverheadSPX 9.75%Post 13.03%Delta 8.07%Fighter 7.73%Torso 6.62%Table 5.12: Message ex
hanging per
entual time.We also 
ompared the message ex
hanging measured time with the theoreti
al prop-agation time, when there is no delay in the network. The theoreti
al propagation timeis 
al
ulated using the message size and the network bandwidth. In this experiment,we observed that the di�eren
e between the measured and the theoreti
al is very small,under 4%. This result 
on�rms that the network is not imposing delays in the messageex
hange, and the 
ommuni
ation with the master does not generate bottlene
ks.5.6.2 Load Imbalan
ingTable 5.13 shows the per
entage of load imbalan
e generated by our algorithm usingequation (4.10). As we 
an observe in this table, for most of the datasets, our algorithm



5.6 Subimages Transmission 55generated less than 10% of load imbalan
e. For Fighter, the load imbalan
e is 7.81%. Allthese results, for su
h a big image resolution (4G pixels), are very good, sin
e a

ordingto Mueller[35℄, a load imbalan
e is reasonable if it is below 33%.Dataset Load Imbalan
eSPX 8.00%Post 3.09%Delta 5.28%Fighter 4.21%Torso 7.90%Table 5.13: Load imbalan
e of our algorithm, a

ording to equation (4.10).In order to put our load imbalan
e results in perspe
tive, we 
ompared our parallelalgorithm results with a plain parallel version. This plain parallel version divides thes
reen equally into 32 × 32 tiles and distributes the tiles randomly a
ross the renderingthreads. Table 5.14 shows the per
entage of gains in the load imbalan
e obtained byour algorithm. As we 
an observe in these tables, our algorithm obtained signi�
antredu
tions in the load imbalan
e, when 
ompared to the plain tile division and distributionThese results 
on�rm that the load imbalan
e problem has great impa
t on the overallperforman
e of a parallel rendering algorithm.Dataset % of GainsSPX 83.37%Post 85.92%Delta 84.97%Fighter 81.86%Torso 85.61%Table 5.14: Gains in load imbalan
e of our algorithm, when 
ompared to a plain parallelrendering algorithm.Another important result observed in our parallel algorithm is that the load imbalan
edoes not in
rease signi�
antly with the in
rease in the number of 
ores, while the oppositeo

urs for the plain parallel version. In our algorithm, the adaptive tile de
ompositionensures a good number of tiles to be distributed to the 
ores. For the plain algorithm, onthe other hand, the tile de
omposition is �xed. So, as the number of 
ores in
reases, lesstiles are given to ea
h 
ore, in
reasing the 
han
es of having unbalan
ed load. Figures 5.12to 5.16 show the 
omparison of the loadimbalan
e for all the datasets for PRay andtraditional parallel ray
ast. Even though the Fighter dataset, shown in Figure 5.14, hadthe best load balan
e performan
e for traditional parallel ray
ast, this result is not evennear the worst load balan
e performan
e of PRay algorithm shown in Figure 5.12 for SPX



5.7 Image Merge 56

 0

 10

 20

 30

 40

 50

 60

8 16 24 32 40 48 56 64

Lo
ad

Im
ba

la
nc

e 
%

Number of cores

SPX

 PRay
 Traditional

Figure 5.12: Overhead of PRay and traditional ray
ast for SPX dataset.dataset.5.7 Image MergeThe image merge overhead in
ludes the time spent for the rendering threads to en
odetheir subimages and for the Master to de
ode the subimages re
eived and save them inthe �nal Raster. Table 5.15 depi
ts, for ea
h dataset, the per
entage of time that theparallel algorithm spent in the 
omputation of en
oding and de
oding the subimages. Aswe 
an observe in this table, the time spent due to image merging is always lower than1.15% of the total exe
ution time for all datasets. This is the smallest overhead of theparallel 
omputation. Datasets OverheadPost 0.83%SPX 1.12%Delta 1.15%Torso 1.04%Fighter 1.3%Table 5.15: Overhead of image merging



5.7 Image Merge 57

 0

 10

 20

 30

 40

 50

 60

8 16 24 32 40 48 56 64

Lo
ad

Im
ba

la
nc

e 
%

Number of cores

Delta

 PRay
 Traditional

Figure 5.13: Overhead of PRay and traditional ray
ast for Delta dataset.

 0

 10

 20

 30

 40

 50

8 16 24 32 40 48 56 64

Lo
ad

Im
ba

la
nc

e 
%

Number of cores

Fighter

 PRay
 Traditional

Figure 5.14: Overhead of PRay and traditional ray
ast for Fighter dataset.



5.7 Image Merge 58

 0

 10

 20

 30

 40

 50

 60

8 16 24 32 40 48 56 64

Lo
ad

Im
ba

la
nc

e 
%

Number of cores

Post

 PRay
 Traditional

Figure 5.15: Overhead of PRay and traditional ray
ast for Post dataset.

 0

 10

 20

 30

 40

 50

 60

8 16 24 32 40 48 56 64

Lo
ad

Im
ba

la
nc

e 
%

Number of cores

Torso

 PRay
 Traditional

Figure 5.16: Overhead of PRay and traditional ray
ast for Torso dataset.



5.8 Speedup Results 595.8 Speedup ResultsThe speedup is a metri
 used to measure the algorithm is de�ned by Equation (5.1)where S is the speedup, TParallel is the time of the parallel algorithm, T1 is the time spentby the sequential algorithm. The time T1 was 
al
ulated using the sequential algorithmME-Ray. The PRay was 
ompared with the traditional parallel ray
ast in the same waythat was done in se
tion 5.6.2.
S = 1 −

T1

TParallel

(5.1)Equation (5.2) shown the metri
 used to measure the e�
ien
y of the parallel algo-rithm. F is the e�
ien
y. S is the speedup and C is the number of 
ores used to obtainthe speedup S.
F =

100 ∗ S

C
(5.2)Figs. 5.17 to 5.21 show the speedup obtained by PRay and traditional parallel ray
astfor ea
h dataset as the number of rendering threads in
reases. We 
an observe in these�gures that the speedups obtained by PRay are quite high, and always greater than thespeedups obtained by PRay. The dataset whi
h a
hieved the best result was the Postdataset with a speed up of almost 51, whi
h results in a e�
ien
y of 79% for the parallelalgorithm. For the same dataset, traditional parallel ray
ast only a
hieved an e�
ien
yof 42%. Fighter dataset a
hieved the worse speedup among all the datasets, a speedupof 34.5 for PRay and 24.5 for the traditional parallel ray
ast. This performan
e 
an beeasily explained by the pre-render and subimage sending overheads already dis
ussed.



5.8 Speedup Results 60

 0

 10

 20

 30

 40

 50

8 16 24 32 40 48 56 64

S
pe

ed
up

Number of cores

SPX

 PRay
 Traditional

Figure 5.17: Speedup of PRay and traditional ray
ast for SPX dataset.

 0

 10

 20

 30

 40

 50

8 16 24 32 40 48 56 64

S
pe

ed
up

Number of cores

Delta

 PRay
 Traditional

Figure 5.18: Speedup of PRay and traditional ray
ast for Delta dataset.



5.8 Speedup Results 61

 0

 5

 10

 15

 20

 25

 30

 35

8 16 24 32 40 48 56 64

S
pe

ed
up

Number of cores

Fighter

 PRay
 Traditional

Figure 5.19: Speedup of PRay and traditional ray
ast for Fighter dataset.

 0

 10

 20

 30

 40

 50

8 16 24 32 40 48 56 64

S
pe

ed
up

Number of cores

Post

 PRay
 Traditional

Figure 5.20: Speedup of PRay and traditional ray
ast for Post dataset.



5.8 Speedup Results 62

 0

 10

 20

 30

 40

 50

8 16 24 32 40 48 56 64

S
pe

ed
up

Number of cores

Torso

 PRay
 Traditional

Figure 5.21: Speedup of PRay and traditional ray
ast for Torso dataset.



Chapter 6
Con
luding Remarks

In this work, we propose a new parallel ray
asting for unstru
tured grids that isbased on sort-�rst division of the rendering task and was designed to explore the re
entar
hite
ture of 
lusters of multi
ores. We disse
ted all the overhead 
omponents of theparallel rendering algorithm, identifying bottlene
ks and suggesting modi�
ations in orderto handle images with high-resolutions. Our evaluation in
luded all the parallel aspe
tsof the rendering pro
ess, in
luding de
omposition/load balan
ing, fa
e proje
tion, datalo
ality during the dataset traversal, and 
ommuni
ation overhead.We divided the parallel 
omputation into �ve steps: tile de
omposition and distribu-tion, pre-render, rendering, subimages send, and image merge. For ea
h of these steps,we applied di�erent te
hniques to improve performan
e. In the tile de
omposition anddistribution step, we applied an adaptive tile de
omposition strategy that hierar
hi
allysubdivides the s
reen using a quadtree stru
ture and uses the the 
on
ept of entropy asthe stopping 
riteria. The tile distribution is done using the Makespan heuristi
. For thepre-render step, where the data is rotated and the entry point of the rays are found byvisible fa
es proje
tions, we applied a parallel fa
e proje
tion s
heme that took advantageof the quadtree stru
ture built in the tile de
omposition step. For the rendering step, weused a memory-e�
ient sequential algorithm that bene�ted from an even tile division andprovided better 
a
he behavior. For the subimages transmission and image merge steps,we applied an image en
oding s
heme in order to redu
e message sizes.Our parallel rendering algorithm obtained signi�
ant performan
e gains when 
om-pared to a plain parallel ray
asting algorithm for a 4G pixel resolution image. Tile de-
omposition and distribution s
hemes in
luded negligible overhead and improved the loadbalan
ing in at most 86%. The parallel fa
e proje
tion s
heme proved to be indispensable



6 Con
luding Remarks 64for high-resolution image rendering, sin
e it provides gains of up to 26% and up to 46%for 8G pixel resolution. The sequential rendering in ea
h thread improved the 
a
he hit inabout 89%, due to the tile division. Considering the whole rendering pro
ess, we obtainedspeedup gains of up to 51%.One important aspe
t of our study is that, although the solutions proposed to redu
eparallel overheads are employed in our spe
i�
 algorithm, the lessons learned 
an bepossibly extensively applied to other parallel dire
t volume rendering approa
hes, su
h asGPGPU versions of ray
ast.



Referen
es
[1℄ Abraham, F.Celes, W.Cerqueira, R.Campos. J. A load-balan
ing strategy forsort-�rst distributed rendering. In 17th Brazilian Symposiumon Computer Graphi
sand Image Pro
essing (2004), p. 292�299.[2℄ Aguilar, E. Automatos 
elulares generalizados 
omo modelo de in�uên
ia paraagrupamento de dados e interações so
iáis. PhD thesis, COPPE Universidade federaldo Rio de Janeiro, Brazil, Rio de Janeiro, 2008.[3℄ Allard, J.Raffin. B. A shader-based parallel rendering framework. In Pro
eedingsof IEEE Visualization 
onferen
e (2005), p. 127�134.[4℄ Aykanat, C. Cambazoglu, B.B. Findik, F. Kur
, T. Adaptive de
ompositionand remapping algorithms for obje
t-spa
e-parallel dire
t volume rendering unstru
-tured grids. Journal of Parallel Distributed Computing 67, 1 (2007), 77�99.[5℄ Bernardon, F.F. Pagot, C.A. Luiz Dihl Comba, J. Silva, C.T. Gpu-basedtiled ray 
asting using depth peeling. Journal of Graphi
 tools 11, 3 (2006), 23�29.[6℄ Childs, H.Du
haineau, M. Ma, K.L. A s
alable, hybrid s
heme for volumerendering massive data sets. In Pro
eeding of Eurographi
s Symposium on ParallelGraphi
s and Visualization (2006), p. 153�162.[7℄ Chopra, P.Meyer, J. Tetfusion: an algorithm for rapid tetrahedral mesh sim-pli�
ation. In VIS '02: Pro
eedings of the 
onferen
e on Visualization '02 (2002),p. 133�140.[8℄ Coelho, A. Lopes, A. Bentes, C. Castro, M. Farias, R. Distributed loadbalan
ing algorithms for parallel volume rendering on 
luster of p
s. In XXXIIConferen
ia Latinoameri
ana de Informti
a CLEI 2006 (2006), p. 51�58.[9℄ Cox, G. Maximo, A. Bentes, C. Farias, R. Irregular grid ray-
asting implemen-tation on 
ell broadband engine. In Pro
eedings of the 2009 21st International Sympo-sium on Computer Ar
hite
ture and high performan
e Computing (2009), p. 93�100.[10℄ Danskin, J. Fast algorithm for volume ray tra
ing. In VVS '92: Pro
eedings of the1992 workshop on Volume visualization (1992), p. 91�98.[11℄ Espinha, R.Celes, W. High-quality hardware-based ray-
asting volume renderingusing partial pre-integration. In SIBGRAPI '05: Pro
eedings of the XVIII BrazilianSymposium on Computer Graphi
s and Image Pro
essing (2005), p. 273�281.[12℄ Espinha, R.Celes, W. High-quality hardware-based ray-
asting volume renderingusing partial pre-integration. In SIBGRAPI '05: Pro
eedings of the XVIII BrazilianSymposium on Computer Graphi
s and Image Pro
essing (2005), p. 273�281.



Referen
es 66[13℄ Farias, R.Bentes, C.Coelho, A.Guedes, S.Gon
alves, L. Work distributionfor parallel zsweep algorithm. In XI Brazilian Symp. on Computer Graphi
s andImage Pro
essing (O
tober 2003), p. 107�114.[14℄ Finkel, R.A.Bentley, J.L. Quad trees a data stru
ture for retrieval on 
ompositekeys. A
ta Informati
a 4, 1 (mar
h 1974), 1�9.[15℄ Fout, N. Ma, K.L. Transform 
oding for hardware-a

elerated volume rendering.IEEE Transa
tions on Visualization and Computer Graphi
s 13, 6 (November 2007).[16℄ Garland, M. Zhou, Y. Quadri
-based simpli�
ation in any dimension. ACMTrans. Graph. 24, 2 (2005), 209�239.[17℄ Graham, R. L. Bounds on multipro
essing anomalies and related pa
king algo-rithms. In AFIPS '72 (Spring): Pro
eedings of the May 16-18, 1972, spring joint
omputer 
onferen
e (New York, NY, USA, 1972), ACM, p. 205�217.[18℄ Humphreys, G. Houston, M. Ng, R. Frank, R. Ahern, S. Kir
hner, P.Klosowski, J.T. Chromium: A stream pro
essing framework for intera
tive ren-dering 
luster. In SIGGRAPH 2002: Computer Graphi
s Pro
eedings (2002).[19℄ Kim, J. Jaja, J. Streaming model based volume ray 
asting implementation for 
ellbroadband engine. S
ienti�
 Programming 17, 1�2 (2009), 173�184.[20℄ Kutlu
a, H. Kurç, T. Aykanat, C. Image-spa
e de
omposition algorithms forshort-�rst parallel volume rendering of unstru
tured grids. Journal of Super
omputing15, 1 (2000), 51�93.[21℄ Labroni
i, B. B. Bentes, C. Drummond, L. Farias, R. . Dynami
 s
reendivision for load balan
ing the ray
asting of irregular data. In Cluster Computing andWorkshops, 2009. CLUSTER '09. IEEE International Conferen
e on (New Orleans,LA, August 2009), no. 978-1-4244-5011-4 in 1552-5244, IEEE, p. 1�10.[22℄ Labroni
i, B. B. Bentes C. Farias R. . Paralelização do algortimo de ray
ast,university of rio de janeiro state - uerj. Monograph required to obtain the tile ofEle
tri
al Engineer, De
ember 2006.[23℄ Lee J.K. Newman, T.S. A

eleration of opa
ity 
orre
tion me
hanisms for over-sample volume ray-
asting. In EGPGV '08: Symposium on Parallel Graphi
s andVisualization (2008), p. 22�30.[24℄ Ma, K. Parallel volume ray-
asting for unstru
tured-grid data on distributed-memory ar
hite
tures. In IEEE Parallel Rendering Symposium (1995), p. 23�30.[25℄ Ma, K. L. Parallel volume ray-
asting for unstru
tured-grid data on distributed-memory ar
hite
tures. In IEEE Parallel Rendering Symposium (O
tober 1995),p. 23�30.[26℄ Ma, K.L. Cro
kett, T. . A s
alable parallel 
ell-proje
tion volume rendering al-gorithm for three-dimensional unstru
tured data. In IEEE Parallel Rendering Sym-posium (November 1997), p. 95�104.



Referen
es 67[27℄ Mar
hesin, S.Mongenet, C.Dis
hler, J. M. Dynami
 load balan
ing for par-allel volume rendering. In Eurographi
s Symposium on Parallel Graphi
s and Visu-alization (Braga, Portugal, 2006).[28℄ Mar
hesin, S.Mongenet, C.Dis
hler, J. M. Multi-gpu short-last volume visu-alization. In EGPGV '08: Symposium on Parallel Graphi
s and Visualization (2008),p. 1�8.[29℄ Marroquim, R. Maximo, A. Farias, R. Esperança, C. . Volume and isosur-fa
e rendering with gpu-a

elerated 
ell proje
tion. In Computer Graphi
s Forum(2008), vol. 27, p. 24�35.[30℄ Max, N. Opti
al models for dire
t volume rendering. IEEE Transa
tions on Visu-alization and Computer Graphi
s 1, 2 (1995), 99�108.[31℄ Maximo, A. Ribeiro, S. Bentes, C. Oliveira, A. Farias, R. . Memory e�
ientgpu-based ray 
asting for unstru
tured volume rendering. In IEEE/EG Int. Symp.Volume and Point-Based Graph (2008), p. 55�62.[32℄ Meiÿner, M. Hüttner, T. Blo
hinger, W. Weber, A. . Parallel dire
t vol-ume rendering on p
 networks. In Pro
. of the Intl. Conf. on Parallel and DistributedPro
essing Te
hniques and Appli
ations (July 1998).[33℄ Molnar, S. Image-
omposition ar
hite
tures for real-time image generation. PhDthesis, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1992.[34℄ Moloney, B.Weiskopf, D.Moller, T.Strengert, M. S
alable sort-�rst paral-lel dire
t volume rendering with dynami
 load balan
ing. In Eurographi
s Symposiumon Parallel Graphi
s and Visualization (Lugano, Switzerland, 2007), p. 45�52.[35℄ Mueller, C. he sort-�rst rendering ar
hite
ture for high-performan
e graphi
s. InSI3D '95: Pro
eedings of the 1995 symposium on Intera
tive 3D graphi
s (1995),p. 75�84.[36℄ Mueller, C. Hierar
hi
al graphi
s databases in sort-�rst. In PRS '97: Pro
eedingsof the IEEE symposium on Parallel rendering (1997), p. 49�57.[37℄ Muller, C.Strengert, M.Erl, T. Optimized volume ray
asting for graphi
s-hardware-based 
luster systems. In Eurographi
s Symposium on Parallel Graphi
sand Visualization (Braga, Portugal, 2006), p. 59�66.[38℄ Muraki, S. Lum, E. Ma, K.L. Ogata, M. Liu, X. . A p
 
luster system forsimultaneous intera
tive volumetri
 modeling and visualization. In Pro
. of the IEEESymposium on Parallel and Large-Data Visualization and Graphi
s (O
tober 2003).[39℄ Nieh, J. Levoy, M. Volume rendering on s
alable shared-memory mimd ar
hi-te
tures. In Pro
. of the 1992 Workshop on Volume Visualization (O
tober 1992),p. 17�24.[40℄ Papi. http://i
l.
s.utk.edu/papi/, 2009.



Referen
es 68[41℄ Pina, A. Bentes, C. Farias, R. Memory e�
ient and robust software implemen-tation of the ray
ast algorithm. In WSCG'07: The 15th Int.Conf. in Central Europeon Computer Graphi
s, Visualization and Computer Vision (2007).[42℄ Ribeiro, S. Maximo, A. Bentes, C. Oliveira, A. Farias, R. . Memory-aware and e�
ient ray-
asting algorithm. In SIGGRAPH '07: Pro
eedings of the XXBrazilian Symposium on Computer Graphi
s and Image Pro
essing (2007), p. 147�154.[43℄ Roth, M. Rieb, P. Reiners, D. Load balan
ing on 
luster-based multiproje
tordisplay systems. In 14th International Conferen
e in Central Europe on ComputerGraphi
s Visualization and Computer Vision (2006), p. 55�62.[44℄ Roth, S.D. . Ray 
asting for modeling solids. Computer Graphi
s and ImagePro
essing 18 (February 1982), 109�144.[45℄ Ruijters, D. Vilanova, A. . Optimizing gpu volume rendering. In WSCG '06:The 15th International 
onferen
e in Central Europe on Computer Graphi
s, Visu-alization and Computer Vision (2006).[46℄ Samanta, R. Funkhouser, T. Li, K. Singh, J.P. Hybrid sort-�rst and sort-lastparallel rendering with a 
luster of p
s. In Pro
. of the SIGGRAPH/Eurographi
sWorkshop on Graphi
s Hardware (2000).[47℄ Samanta, R. Zheng, J. Funkhouser, T. Li, K. Singh, J.P. . Load balan
ingfor multi-proje
tor rendering systems. In Pro
. of the SIGGRAPH/Eurographi
sWorkshop on Graphi
s Hardware (August 1999), p. 107�116.[48℄ Shannon, C. A mathemati
al theory of 
ommuni
ation. Bell System Te
hni
alJournal 27 (O
tober 1948), 379�423.[49℄ Smelyanskiy, M. Holmes, D. Chhugani, J. Larson, A. Carmean, D.M.Hanson, D. Dubey, P. Augustine, K. Kim, D. Kyker, A. Lee, V.W.Nguyen, A.D. Seiler, L. Robb, R. . Mapping high-�delity volume renderingfor medi
al imaging to 
pu, gpu and many-
ore ar
hite
tures. IEEE transa
tion onVisualization and Computer Graphi
s 15, 6 (2009), 1563�1570.[50℄ Top-500. http://top500.org, June 2008.[51℄ Wang, W. Yang, J. Muntz, R. Sting: A statisti
al information grid approa
h tospatial data mining. In Pro
eedings of 23rd International Conferen
e on Very LargeData Bases (1997), p. 186�195.[52℄ Weiler, M. Kraus, M. Merz, M. Ertl, T. Hardware-based ray 
asting oftetrahedral meshs. In Pro
eedings of the 14th IEEE 
onferen
e on Visualization(2003), p. 333�340.[53℄ Weiler, M. Mallon, P.N. Kraus, M. Ertl, T. Texture-en
oded tetrahedralstrips. In VV '04: Pro
eedings of the 2004 IEEE Symposium on Volume Visualizationand Graphi
s (2004), p. 71�78.



Referen
es 69[54℄ Westover, L. Footprint evaluationfor volume rendering. In SIGGRAPH '90: Pro-
eedings of the 17th annual 
onferen
e on Computer graphi
s and intera
tive te
h-niques (1990), p. 367�376.[55℄ Whitman, S. Dynami
 load balan
ing for parallel polygon rendering. IEEE Com-puter Graph. and Appl. 14, 4 (July 1994), 41�48.[56℄ Wylie, B.Pavlakos, C.Lewis, V.Moreland, K. S
alable rendering on p
 
lus-ters,. IEEE Computing 21, 4 (2001), 62�70.[57℄ Yu, H. Wang, C. Ma, K.L. Parallel volume rendering using 2-3 swap image
ompositing for an arbitrary number of pro
essors. In Pro
eedings of IEEE/ACMSuper
omputing 
onferen
e 2008.


