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Ezperience is not what happens to a man.

It is what a man does with what happens to him.
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Resumo

Visualizagao em tempo real de grandes massas de dados nao estruturadas necessitam
de grande poder computacional e banda de memoria. Muitas solucoes de algoritmos
paralelos foram propostas para lidar com a complexidade computacional dos calculos de
intercessao celula-raio. Entretanto, a maioria nao é capaz de prover taxas de renderizacao
proprias para a interatividade, devido ao overhead gerado pela solugao paralela. Este
trabalho estuda a fundo os componentes do overhead de um algoritmo de renderizagao
paralela, identificando os gargalos e sugerindo modificacoes no algoritmo a fim de se
obter eficiéncia e escalabilidade, até mesmo quando imagens de grande resolucao sao
utilizadas. Nosso algoritmo é baseado no algoritmo de raycast com paralelizacao dos
dados. Utilizamos uma decomposicao adaptativa da tela em porcoes chamadas tiles e
estrategia de distribuicao dos mesmos, um método paralelo para se encontrar o ponto de
entrada dos raios na massa de dados e codificagdo da imagem para a gravagao/envio das
sub-imagens. O algoritmo alcangou ganhos significativos em termos de balanceamento
de carga e significativa reducao nos overheads da paralelizagao de imagens de grande
resolucao. Os resultados de speedup confirmam o potencial do algoritmo para renderizar
eficientemente grandes massas de dado.



Abstract

Real-time visualization of large and unstructured volume datasets demands high com-
putational power and memory bandwidth. Many parallel solutions have been proposed to
deal with the computational complexity of the ray-cell intersection requirements. How-
ever, most of them are not capable of providing interactive frame rates for large datasets
due to the overheads generated on the parallel solution. This work dissects the over-
head components of a parallel rendering algorithm, identifying bottlenecks and suggest-
ing modifications to the algorithm in order to achieve efficiency and scalability even when
the images have high resolution. Our algorithm is built on the raycasting method with
a data-parallel approach, it employs an adaptive decomposition of the screen into por-
tions called tile and distribution strategy for those tiles, a parallel method for finding
the rays entry points and an encoding method for subimages saving/transmitting. The
resulting algorithm achieved significant gains in terms of load balancing, and significant
reductions in the overheads of parallel rendering for big image resolution. The speedup
results confirm the potential of the algorithm to efficiently rendering large-scale datasets.
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Chapter 1

Introduction

Scientific visualization is the process of graphically displaying real or simulated scien-
tific data. It is useful to turn masses of numbers into pictures on the screen, and, therefore,
is vital to many application areas such as biology, chemistry, computer science, geology,
engineering, or medicine. For three dimensional data, there are various techniques, col-
lectively known as volume rendering, for the direct visualization of the volumetric data.
Volume Rendering comprises very powerful 3D visualization methods that convey the
internal information of the 3D volume, providing semitransparent views of the spatial
relationships of the structures. In contrast, other visualization techniques show only the
surface of the volume, like raytracing, or a low definition composition of the isosurfaces

from the data.

During the past decades, there has been remarkable advances in volumetric data
acquisition. The evolution in scanners technology and numerical simulations enabled the
production of large volumetric datasets in a broad range of domains. The visualization of
such datasets is critical to analyze and comprehend the information contained inside the
data and verify and validate the results of the simulations. Depending on the structure

and type of data, different rendering methods can be applied to perform the visualizations.

The structure and type of data rely upon the source where volumetric data comes from.
Equipment such as Computed Tomography scanners and Magnetic Resonance Imaging
devices usually produce data with regularity in positions, generating a rectilinear or a
regular grid. Numerical simulations, on the other hand, often produce data in arbitrary
positions, generating a curvilinear or even a unstructured grid. Fully unstructured volume
data is often converted into a grid of tetrahedra. Tetrahedral grids can model complex
geometries and are powerful in defining arbitrarily-shaped elements. However, rendering

this type of grid is particularly challenging for directing volume rendering algorithms since
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the irregular topology difficults the traversal of the data.

Direct volume rendering algorithms captures the overall data domain, considering
the volume as medium in which light can be absorbed, scattered or emitted as it passes
through the volume. It produces high quality images without losing the details inside the
data, but the cost of all the computations needed to determine what happens to light as
it passes through the volume turns direct volume rendering a computationally intensive
problem. Furthermore, if the volume data is represented as an unstructured or tetrahedral
grid, an additional difficulty is included: the computation of where the light intersects

each tetrahedron.

The parallel processing approach has been used to speed up the rendering task for
many years, in different ways. The first parallel volume rendering algorithms were pro-
posed for expensive parallel machines like SGI Power Challenge, IBM SP2, or SGI Origin
2000 [25, 26]. More recently, parallel algorithms are being designed to run on highly
parallel computing devices such as graphics processing units (GPUs) [11, 29, 31, 37| or
on massively parallel architectures such as cluster of computers [32, 38, 43, 46, 47|. Re-
gardless of the parallel architecture in use, one common way to exploit parallelism in
volume rendering is to use a data-parallel approach, called image decomposition. In this
approach, the screen space is divided into non overlapping regions, called tiles, which are
assigned, in groups, to the processing elements. Since the tiles do not overlap, they can
be computed in parallel. Tile-based rendering, however, is usually susceptible to high
load imbalance during execution, due to the irregular nature of the datasets. Even if an
equal number of tiles is assigned to each processing element, it is very likely that some
tiles have different amount of work, and can take longer to be processed. When the tile
distribution is static, it is very hard to achieve an optimal load distribution for any given
frame. When the distribution is dynamic, it increases the algorithm complexity and may
require communication among the processing elements. So, the load imbalance problem
has great impact on the overall performance and is still a challenge to the implementation

of a parallel rendering system.

The main goals of our work are analyze the overheads incurred by a specific parallel
volumetric render algorithm with unstructured grid datasets mostly. Propose some tech-
niques that would increase the performance of this algorithm in terms of speedup and

load balance, even when high resolution images needs to be rendered.

The high computational requirements of direct volume rendering for unstructured

grids has been tackled in different ways in the literature: (i) reducing the computational
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complexity of the rendering algorithm (e.g. [54, 10]); (ii) generating approximate results
by statically simplifying the grid (e.g. [16, 7]); (iii) reducing the memory requirements
of the rendering algorithm (e.g. [42, 41]); (iv) parallelizing the rendering algorithm (e.g.
[39, 5]). We focus our attention on the latter approach.

Past research in parallelizing direct volume rendering algorithms has concentrated
on algorithm redesign to better explore the highly parallel architecture such as graphics
processing units (GPUs) [12, 29, 31, 37|, or solving the specific inherent problem of the
parallel solutions that is the partitioning problem, with the goals of maximizing load bal-
ance and minimizing communication |1, 34, 46, 47|. In this work, we contribute to parallel
direct volume rendering by dissecting all the overhead components of the parallel algo-
rithm, identifying bottlenecks in the rendering process and suggesting modifications to the
algorithm in order to achieve efficiency and scalability. We perform a detailed evaluation
of all the steps of the rendering process, including the partitioning/load balacing problem,
the communication overhead, data locality and the use of memory hierarchy, and "face
projection", and propose a novel parallel rendering algorithm based on this study. Our
algorithm is built on the raycasting method, uses a data-parallel approach, called image
decomposition, and employs a hybrid programming model that explores message passing

and multithreading on a cluster of multicore processors.

Although the solutions we propose here to minimize the parallel overheads are specific
to the algorithm and architecture, the lessons learned can possibly be extensively applied

to other parallel direct volume rendering approaches, including others architectures.

The experimental results showed that the strategies incurred negligible overhead in
the rendering computation and can provide significant performance gains when compared
to a traditional data-parallel raycasting algorithm. It was achieved less than 11% of load
imbalance and up to 45% of increase in the rendering performance. The remainder of the
work is organized as the following. The Section 2 reviews the previous work in parallel
rendering. Section 3 presents the raycasting paradigm and data structures used in this
work. Section 4 describes the parallel rendering algorithm, the parallel structure and the
parallel strategies used and proposed for each step of the rendering pipeline. Section 5
reports the experimental results and overheads analysis. Finally, Section 6 presents the

conclusions and future research plans.
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Related Work

Several parallel direct volume rendering algorithms have been proposed throughout
the years. They were classified by Molnar et al. [33], according to the division of the ren-
dering task among the various rendering threads, as: sort-first, sort-middle and sort-last.
In sort-first parallel renderering, the screen space is divided into tiles and each processor
is assigned a set of tiles. This approach usually has smaller communication requirements,
but they are very susceptible to load imbalance. Therefore, a number of works focused on
the specific overhead caused by the load imbalance in sort-first approaches for unstruc-

tured grids.

Some works uses the work stealing paradigm for load balance. In work stealing
paradigm a computational node without pixels to render, requests (or steals) pixels from
its neighbors therefore this paradigm dynamically balance the load within a frame. Our
work uses different paradigm for balancing the load. It uses a fixed tile distribution within
a frame. Whitman [55| introduced work stealing in parallel rendering for shared-memory
architecture, and Nieh and Levoy [39] for distributed-shared memory architectures. The
work by Coelho et al. [8] and Farias et al. [13] proposed some work stealing algorithms
for a distributed environment as a cluster of PCs. Balancing the load among the threads
dynamically, however, requires either global information about the load of the rendering
threads or incurs in communication overhead. Another path to increase load balancing,
also used in this work, is to provide a good distribution of the rendering task before the
actual computation begins. Muller [35, 36| describes different algorithms to recursively
divide the screen according to estimated workloads. The work by Abraham et al. [1]
resizes the tiles in order to promote the same amount of work for all tiles, Our work
tries a similar approach of tile division. Kutluca et al. [20] presented a comparison of

twelve adaptive IS decomposition algorithms. In a preliminary work [21| we proposed
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another screen partition algorithm that is adaptive and based on a quadtree division, this

algorithm will be explained and deeply analyzed throughout this work.

In sort-last parallel rendering each rendering thread is responsible for rendering part
of the scene. It has been widely used in different works. The works [27, 37, 56] focused
on the load balancing overhead by dividing the volume into bricks, and reassigning bricks
to less overloaded nodes. Aykanat et al. [4] proposed a graph partition scheme to the
decomposition problem. Another important issue in sort-last algorithms is the final image
compositing stage. This stage can potentially become a bottleneck, since it demands a
large amount of message exchange. The works by Yu et al. [57] and Lee et al. [23] focused
on reducing this overhead. Yu et al. introduced a new image compositing algorithm, called
2-3 swap. Lee et al. introduced a parallel pipeline method which avoids link contention.
Childs et al. [6] focused on the scalability of the parallel solution and proposed a hybrid
approach that parallelizes over both elements of the input data and over the pixels of the

output image.

Another common way of speeding up volume rendering is by taking advantage of
modern architectures, such as GPUs or Cell processor. In [52| Weiler et al. implemented
a GPU-based raycasting algorithm that was further extended by Espinha and Celes [12].
Bernardon et al. [5] also proposed a GPU-based algorithm based on raycasting that renders
non-convex irregular grids. Ruijters et al. [45] pointed out some of the bottlenecks of GPU-
accelerated raycasting, but their work focuses on regular grids. Some attempts have been
made to deal with the problem of the memory limitation of the GPU. Weiler et al. [53]
and Fout and Ma [15] used data compression. Maximo et al. [31] implemented a new
scheme for storing face data. Lately, there are some works on GPU clusters|18, 3, 28, 37|.
The power of the Cell processor has been explored in [9] for raycasting of unstructered
grids and in [19] for regular grids. The work by Smelyanskiy et al. [49] proposed a
thread- and data-parallel implementation of ray-casting that explores the architectural
trends of multi-core and GPUs, and an upcoming many-core processor. They tackled
the communication overheads using compression and analyzed the cache behavior of their
approches; They used, however, a sort-last approach for regular grids. The work by
Marchesin et al. [28| also proposed a sort-last approach for regular grids, but that runs on
multiple GPUs. They also analyzed the time breakup of their approach in order to identify
the bottlenecks. The sort-middle scheme redistributes the middle result of the rendering
pipeline. It is seldom implemented in software parallel renders, since its scalability is
limited by the communication overhead generated. Our approach here is to focus on

all overheads of a sort-first parallel raycasting algorithm for unstructured grids entirely
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implemented on software.



Chapter 3

Raycasting Algorithm Overview

Our parallel rendering algorithm is based on the raycasting paradigm proposed by
Roth [44]. In the raycasting paradigm, a ray is cast from the viewpoint through each
pixel of the image. As the ray moves forward in the data volume, it intersects a number
of spatial structures called voxels in it. Every pair of intersections is used to compute the
voxels contribution for the pixel color and opacity and this contribution is proportional to
the path that a ray travels within a voxel. The ray stops when it reaches full opacity or
when it leaves the volume. Figure 3.1 shows a 2D example of a single ray. As can be seen,
in a) the ray enters the dataset through a visible external face. As the ray moves through
the dataset, as seen in b), the color and opacity is calculated according to the path the
ray travels inside the voxel. The next voxels are fetched and the process continues. For

this example, the process ends as seen in c¢), when the rays leaves the dataset.

This work is based on the sequential raycasting algorithm ME-Ray proposed in [41].

The data structures and the rendering pipeline are presented next.

3.1 Data Struture

The volumetric data is composed of a cloud of points, each point with an scalar value
« associated to it. The « value is result of simulation or measured by sensors and can
represent any scalar field, for instance density inside a volume. This cloud of points
are organized in structure called voxels. The algorithm assumes an unstructured volume
dataset in the form of connected tetrahedral voxels. The faces of the tetrahedra are either
shared between two adjacent neighbor tetrahedra (inner faces) or they belong to the
boundary of the tetrahedral grid (external faces). For the algorithm to compute the ray

traversal from one tetrahedron to the next, the following four data structure are employed:
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Screen -
Visible external face

cast ray

a) Pixels — g

dataset

Next Voxel

path inside voxel Ray exit the dataset

Figure 3.1: Example of the renderization process

array of points, array of voxels, array of external faces and array of visible faces. Each
element in the array of points holds the X, Y and Z coordinates of the vertex, the scalar
value o and an array with the index of the voxels that the vertex belongs to. The array
of vozels stores the tetrahedra. The voxel structure contains the indices of the neighbor
voxels and the indices of its vertices in the array of points. The array of external faces
stores the indices of the voxels and its faces that are in boundary of the dataset. The
array of wvisible faces is a sub group of the array of external faces. The array of visible
faces has the indices of the voxels and its faces that are in the boundary of the dataset
and are visible for a given point of view. With these structures, the algorithm can easily
know the next face the ray will intersect, and consequently, what the voxels in the ray

path are.

3.2 Preprocessing

In a preprocessing phase, the tetrahedral grid is read, and the array of points and the
array of vorels are allocated in memory. After that, the array of external faces is also
calculated. The preprocessing step is executed only once for each dataset, independently

of the visualization angle chosen.
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3.3 Pre-render

The pre-render phase is the first phase of the rendering pipeline, and has to be executed
for each new visualization angle. It is divided into two distinct steps: rotation and face

projection.

3.3.1 Rotation

The rendering from a certain point of view starts by executing the operations to rotate
the data in the axis x, y, and z, by an angle degree of (3, v and J respectively, according
to the angle of visualization. Each vertex P is multiplied by the rotating matrix R,, R,
and R, given by (3.1), (3.2) and (3.3), respectively. The new coordinates of the point
P is given by the equation (3.4). The amount of work performed in the rotation step

is independent of the resolution of the rendered image.

1 0 0
R.(0)=1] 0 cosf —sinf (3.1)

0 sin@ cos@

cosf) 0 sinf
R,(0) = 0 1 0 (3.2)

—sinf 0 cosf

cos) —sinf 0

R.(0) =] sind cosf 0 (3.3)
0 0 1
Poew =P - Ri(ﬁ) ’ Ry(ﬁ)/) ’ RZ((S) (34)

3.3.2 Face projection

After the data is rotated, the array of external faces is traversed to determine the faces
that are visible in the chosen point of view. The visible faces are the external faces whose
normals make angles greater than 90° with the viewing direction. Figure 3.2 shows an
example of a tetrahedron where one visible face and one invisible face are shown. The face

with Normal 1 is visible, because the normal makes an angle with the viewing direction
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Normal 2
Normal 1

>

viewing direction

Figure 3.2: Example of the angles made between the viewing direction and the normal of
a visible and invisible faces

greater than 90° degrees. The Face with Normal 2 is invisible, because the normal makes

an angle with the viewing direction smaller than 90°.

The visible faces are stored in the array of wvisible faces. Having computed all the
visible faces, the algorithm projects them on the screen. To project the visible faces, the
array of visible faces is ordered in such a way that the faces closer to the viewer are the
first faces in the array, and the faces distant from the viewer are the last in the ordered
array of wvisible faces. For each pixel, all the visible faces are checked for intersections,
if the pixel falls into a certain visible face, this face is stored in a list of intersections

belonging to this pixel. This list of intersections is used as the entry point for the rays.

3.4 Rendering

For each ray r that corresponds to a pixel s, the algorithm has to compute the next
intersection of the ray by inspecting all other faces of the current voxel, or by inspecting
the neighboring voxels. As the ray intersects the voxels, its entry point (e;,) and exit
point (e,er) in each voxel are determined using a ray-plane intersection computation.
Every time a new face is traversed, its coefficients are saved in a face buffer, and the
lighting integral from e;, to €, is computed, using an optical model. This computation

calculates the contribution of the voxel in the color and opacity of pixel s.

When the exit face of a voxel is an external face, the ray leaves the dataset. If no more
external faces are in the ray path, the color of the pixel has been computed. Otherwise,
the ray re-enters the dataset in another voxel, and the process continues until the ray
leaves the volume. Once the ray left the dataset it can re-enter the dataset if the dataset
is not convex or has holes inside it. The process of traveling through the array of vozels

calculating the color and opacity of the pixels is called rendering process.
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It must be clear in the above explanation that the algorithm uses the orthographic
projection view for the rendered image. The perspective projection can be achieved with-
out significant changes in the algorithm. Instead of casting rays in a inclined direction,
from the point of view through out each pixel of the image, the points can be trans-
formed in such a way that the orthogonal projection will produce the same final image in

perspective.

the physical illumination model we used is the one described in Max [30] where the
semi-transparent substance in the volume absorbs and irradiates energy as the ray passes

through.
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Parallel Algorithm

Parallelizing raycasting is relatively simple. Every cast ray can be traced through the
volume independently from every other ray. Our parallel algorithm adopts the sort-first
approach to divide the work among the processing elements. The algorithm divides the
screen into tiles that are assigned to the parallel processing elements. A tile consists of a
unique set of pixels that form a closed area with in the screen, each pixel of this tile will be
traversed by a ray. The tile subdivision is not only useful to the assignment problem, but
it is also important for improving cache performance, since nearby rays usually traverse

a similar group of voxels of the volume.

Our parallel algorithm was designed to take advantage of recent heterogeneous archi-
tectures of multicore clusters, composed of shared memory computer nodes, connected by
a messaging network. An example of the logical communication scheme of the algorithm
for three computer nodes is illustrated in Figure 4.1. Each processor/core is called a
rendering thread, and is responsible for rendering a set of tiles of the image an store those
tiles in a local buffer. Each shared memory computer node is called a team of threads,
and has a special rendering thread, called leader thread, that is responsible for creating
the shared data structures for the team like the image buffer, dataset and list of visible
faces. The whole system has one master rendering thread, that is responsible for work
distribution and the final image construction. Remark that the leader thread is a ren-
dering thread that also executes two additional tasks: structure allocation and message
exchange. The master is a leader thread that executes also the tile distribution aiming at
a good load balance among the rendering threads. For the sake of simplicity Figure 4.1
does not shown for the master thread a image buffer, but the master thread do have a

image buffer, since it can also act as a rendering thread.
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Figure 4.1: An example of our parallel algorithm.

The algorithm starts in a preprocessing step when all the leader threads read the entire
dataset, and create the array of points, the array of vozxels and the array of external faces

in the shared memory.

The rendering of each point of view follows five steps: tile decomposition and dis-
tribution, pre-rendering, rendering, subimages sending and image merging. The master
decomposes the screen into tiles and assigns the tiles to the rendering threads. After
that, the master sends each leader thread the set of tiles to be computed by its team. In
each team, each thread is responsible for the pre-rendering and rendering phases. After
each team finishes the rendering of its tiles, the leader sends to the master the generated

subimages. The master receives the subimages and merge them to form the final image.

4.1 Tile Decomposition and Distribution

The first step is to decompose the screen in tiles in order to divide the rendering work

and, after that, the tiles have to be distributed among the rendering threads.

4.1.1 Decomposition

For a sort-first raycasting algorithm the tile division can be done by the master in two

possible ways. The traditional one is a regular division where all tiles are squares with
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Figure 4.2: Example of a regular Division of tiles

the same size. This tile division is straightforward. The screen just has to be divided into
the same amount of rows and columns, and the total number of tiles will be the product
of the numbers of rows and columns. Figure 4.2 shows an example of a rendered dataset
with this tile division. The image generated is divided into 16 columns and 16 rows with

a total of 256 tiles.

The problem with this naive division is that it could generate tiles with very different
computational costs. There are tiles that are more costly to render than others. As can
be seen in Figure 4.2 the tiles at the corners of the image have lower computational cost

than the ones at the center of the image.

Another option of division is an irregular tile division. An example of this division
can be seen in Figure 4.3. The areas that require greater computing time to be rendered
can be more divided, while areas that require less computing time can be less divided,
generating tiles with nearly the same computing time requirements. By comparing Fig-
ures 4.3 and 4.2, it can be observed that the corners of Figure 4.3 has much less divisions,

since there is no data to be rendered in those areas.

One problem is that, in traditional raycast algorithms, the computational cost of a
pixel is not known until the pixels are actually rendered. Therefore the total cost of the

tile is not known until the tiles are completely rendered.

In order to implement such technique, it is required to estimate the computational

cost of the areas of the screen and to divide the tiles according to those estimated costs.

The tile decomposition scheme employed by the parallel algorithm is based on our

work [21] that uses irregular tile division. The idea is to estimate the rendering cost of
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Figure 4.3: Example of a irregular division of tiles

each pixel and use this estimation to adaptively divide the screen into tiles. The pixel cost
estimation exploits frame-to-frame coherence and use the total length of the path that
the ray travels inside the volume (that reflects the final cost of the illumination integral),
in the last frame generation, to estimate the cost of the pixel in the current frame. With
the estimated cost of each pixel on the screen, the screen is adaptively divided until an
even subdivision of tiles based on rendering loads is achieved. In other words, our goal is

to have tiles with low standard deviation of costs among them.

This decomposition scheme uses a dynamic tile division that is called Adaptive tile
decomposition. The main idea of the adaptive tile decomposition is to store all the tiles in
a hierarchical structure of a quadtree that can be rearranged several times through the
quadtree rearrangement algorithm until a critical value is found, guaranteeing that a good

division has been achieved.

A quadtree is a structure that was initially proposed by Finkel [14] and has been
broadly used in image processing, encoding and compression. Each leaf, that is a node
without children nodes, in the quadtree corresponds to one tile in the screen. Each internal
node has four children nodes. Each node stores the estimated computing cost of the tile
it represents, in the case of a leaf node, or the total cost of its sub-quadtrees in the other
cases. Figure 4.4 shows an example of the representation of a quadtree and the equivalent
division of the screen. As shown in Figure 4.4, the tiles in the screen in a counterclockwise
way, starting at the lower left corner correspond to the tiles stored in the quadtree from

left to right.

For the first quadtree no cost can be estimated, since no frame has been rendered yet.

Thus, the first quadtree is constructed initially as a full quadtree of a certain length. The
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Figure 4.4: Example of a quadtree.

quadtree is guaranteed to always have at least one tile per rendering processor. This is
done by evaluating if the number of leaf nodes in the quadtree is at least equal to the
number of rendering processors. If there is not at least one tile per rendering thread, all
leaves of the quadtree are split in four new nodes until there is at least a single tile for
each processor. This first quadtree has a tile division similar to a traditional one. The
tiles, for this first quadtree, are also distributed in a traditional way, as it is not possible
to estimate the cost of the tiles. After that, for the rendering of the next frames, the
quadtree of the past rendered frames is used and a rearrangement algorithm is employed

to provide an adaptive division.

The quadtree rearrangement algorithm is a recursive algorithm that only ends when

the Rule 1, defined next, is satisfied.

Rule 1 Given a limit cost W, no internal node of the quadtree has a total cost lower than

W and no leaf node has cost greater than W.

The quadtree rearrangement algorithm performs two operations named split and join
in the quadtree in order to guarantee that Rule 1 is satisfied. For a given limit cost W,
for every node n; of the quadtree with associated cost C; the following two actions may

be performed:
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1. If n; is a leaf node and C; > W, then a split operation is applied. In the split

operation the leaf node is split in four new tiles each with cost equal to %

2. If n; is an internal node and C; < W, then a join operation is applied to this
node. In the join operation, all the sub-quadtrees of this node are deallocated and

the internal node becomes a leaf node.

If C; is equal to W, no operation is executed in this node. The split and join operations
are recursively applied to the quadtree until the Rule 1 is satisfied. At this point one

execution of quadtree rearrangement algorithm finishes.

The quadtree rearrangement algorithm is executed several times, for different values
of W. For each execution j, there is a limit cost W; associated with it. Such cost W;
is decremented at each execution until a value W, cq is found, meaning that a good
tile division was achieved. This limit cost adjustment is performed by the critical value
adjustment algorithm proposed by Aguilar [2], and it is also responsible for calculating

the first W parameter (Wj).

The critical value adjustment uses the concept of information entropy or Shannon
entropy [48| that was first used in data mining field by [51] and generalized by [2] to
divide areas of equal load or weight in such a way that the standard deviation between
all the areas were as small as possible and keeping the compromise of having as few areas
as possible. This algorithm mathematically ensures that the division obtained is the best
possible in terms of load balance and, at the same time, generates a small number of tiles,

which will result in a low overhead due to the tile management.

Some parameters need to be acquired from the quadtree in order to calculate the
critical value adjustment. From Rule 1, it is clear that the given limit cost W at the j%
execution, called W;, represents a measure of work. Considering that the initial quadtree
has L leaves, each one with a cost associated to it C,,, by Aguilar 2| a value suitable for
Wy (Initial value) is the average cost of all leaf nodes given by equation (4.1).For the first
quadtree of the algorithm, the full quadtree at the first frame, all the C, can have the

same random value. The value used for the first frame in this work is Vn,C,, =1

W = "= (4.1)

Once the first W parameter (W) has been calculated, the quadtree rearrangement
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Figure 4.5: Every new level of tiles divide the minimum area of the tile by a factor of
four.

algorithm can be applied, joining and splitting nodes when it is necessary. By Rule 1, no
tile will have estimated cost greater than W;, at the end of the j iteration. Here it is
necessary to define the maximum density of work D,,,,, which represents the maximum
work cost per area of tile that can exist in the given quadtree. The maximum density of
work D, can be given by equation (4.2), where A,,;, is the minimum area among all

the tiles.

W
Amin

Doz = (4.2)

Knowing that the total area of the image is given by A;,q4, every time that one level
is added to the quadtree the smallest possible tile area is divided by a factor of four as

seen in Figure 4.5.

Thus, the minimum possible area of a tile is given by equation (4.3) where h is the
height of the quadtree. Combining equations (4.2) and (4.3), the equation (4.4) is obtained

as the maximum density of work.

Aima e

Anin = 528 (4.3)
W4h

Doz = ——2 (4.4)
Aimage

The closer to the root a tile is in a quadtree, the greater is its area. On the other hand,
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Figure 4.6: Example of the Ag calculation.

the deeper this tile is, the smaller is its area. Knowing that the leaf with smaller depth in
a quadtree given by gpi.s; and the leaf with greater depth is given by gr.s, it is assured
that all other leaf nodes have their depths between gp;.¢; and grqs. Because the depth of
the leaves are discrete by definition, all possible depths are given by equation (4.5) and
this also represents all possible values for area of the tiles, since the area of a given tile
is directly proportional to its depth within the quadtree. In Aguilar [2|, the Ag value is
called generational difference, since it represents the difference of the first generation, or
less divided regions of the dataset, and the last generation or most divided regions of the
dataset. One example of the calculation of Ag for a quadtree can be seen in Figure 4.6.
For this example the leaves with smaller depth are at level 1 and leaves with greater depth

are at level 3. Consequently, the Ag value is 2.

Ag = JLast — YFirst
Number of possible areas = Ag + 1 (4.5)
Each tile ¢ within a quadtree can have cost W that varies from 0 (empty tile) to W;

which is the greatest possible value for the j¥ iteration of the quadtree rearrangement

algorithm. The amount of possible costs values for the quadtree is given by (4.6).

AW = Wmaa: - Wmm
AW =W, — 0

Number of possible cost values = [0,W;] = W; +1 (4.6)

Considering that each tile can have Ag + 1 possible sizes for its area and each tile
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can have one of the AW 4 1 possible costs associated with it, the interval given by
(Ag + 1)(W; + 1) represents the amount of possibilities for tile density. In an iteration
j the density of work of a tile is inside the interval given by [0, Dynes]. The width of
those intervals are called discrete density of work displacement and is given by AD.
Thus, to obtain AD, one must divide the maximum possible value of work density D,, ..
by all possible intervals of density given by (Ag + 1)(WW; 4+ 1). The result is given by
equation (4.7).

D
AD — max
(Ag+ 1)(W; +1)
A
AD = Wi (4.7)

(Ag + 1)(VVJ + 1)Aimage

Must be point out that AD is an statistical entity defined by [2] and has no direct
relation to the width of the cartesian product of the Ag and W, real values. The follow
example will illustrate this difference. Lets have a Ag equals 1 and W equals 2. Lets
name G the set of all possible areas for the tile and C' the set of all possible costs for the
tile. Equation (4.8) shows those two sets, and the cartesian product between them. As
we can see, we end up with only 4 possible values for the tile density with different widths

between them.

G ={1,2}
C=1{0,1,2}
O x G = {{0,1},{0,2}, {1, 1}, {1,2}, {2, 1}, {2, 2}}
CxG=1{0,1,2,4} =4 (4.8)

This value is not the one we are looking for. The value defined by |2]| would be simply
(Ag+1)(W; + 1) =6, and the distance between each of those values is considered to be

the same.

Figure 4.7 graphically shows the displacement values within the interval of density of
work cost for a given quadtree. In this example, the total area of the image is given by
Aimage- This quadtree has 2 levels of tiles which leads to a Ag = 1. The cost W} is equal
to 6, so AWV is also equal to 6 by equation (4.6). This situation will lead to 14 possibilities
for tile density that are represented by the line below the quadtree. The displacement

between those possibilities of tile density is the discrete density of work displacement that
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Figure 4.7: Example of the critical value adjustment.

6.85
Aimage :

is pointed out as been AD =

Aguilar has mathematically shown in [2| that when the value of discrete density of
work displacement changes its order of magnitude from one iteration 7 — 1 to the next j

the critical value W; is achieved and the algorithms terminate.

In this work, the change in the order of magnitude of the discrete density of work
displacement AD; is found when the value of AD;_; in the j — 1 iteration, is p times
greater than AD; in the current iteration j. The critical value is found if the inequality
given by (4.9) holds true in a given iteration of the critical value adjustment algorithm.
As can be seen in the inequality 4.9 the comparison between the AD;_; and ADj; is
independent of total area of the image A;y,q4e since this term is canceled in both sides of
the inequality. It is not necessary to measure, by any means, the value of the total area

of the image in order to apply the critical value adjustment algorithm.

ADJ' Z pADj_l
W;4hs W,_14hi—
>p
(Agj + D)W + 1) Ainage — * (Agj—1 + 1)(Wj1 + 1) Aimage
V[/j4hj V[/j_14hj,1

(4.9)

(Ag; + 1)(W; +1) = Pag+ D)W, +1)

The value p is chosen in a preprocessing step. A study of the determination of p will

be discussed in Chapter 5 Section 5.3.
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In summary, the idea of the critical value adjustment algorithm to find the best tile

division is:

j =0 //First iteration
W; = Avg(leaves) //Equation (4.1)

Repeat until critical value found //equation (4.9)

quadtree rearrangement algorithm(W;); //rearrange quadtree
if critical value for W; is found break
else

W, =W, -1;

J=J+1

end repeat

The list below summarizes the parameters that need to be acquired from the quadtree

in order to apply the critical value adjustment algorithm.

e D, - Maximum density work.

Ag - Range for all possible tile depths in the quadtree.
e AW - Range for all possible costs in the quadtree.

e AD - Width of the discrete density of work displacement.

4.1.2 Distribution

After the screen has been adaptively divided into tiles, the tile assignment is done
by using a 2-optimal algorithm, called Makespan Reduction heuristic, proposed by R.L.
Graham in [17] for processor scheduling. In this heuristic, at first a list of tiles L is created
in decreasing order of their costs, and one tile in the list is assigned to each rendering

thread within a list R. After that, the list R of rendering threads are ordered by their
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loads in an increasing order. Then, each tile in L is assigned to the rendering thread
with the lowest load, the rendering threads are continually reordered by their increasing
loads, and the assignments go on, until there are no more tiles in the list L. The lower
the standard deviation of the tile costs is, the closer the heuristic gets to the optimum

solution.

The algorithm for this rearrangement is:

Create L and IR
Sort decreasing L //L sorted in a deceasing order of load

For each rendering thread in R do

Take out the fist tile in L and assign to a thread in R

Repeat until L is empty

Sort increasing R //R sorted in an increasing order of total load.

Give the first tile in L to the first rendering thread in the list R

end repeat

Despite the fact that a 2-optimal heuristic can give good results, the overall result
may still be poor if the tile division is not a good one. The granularity of the tiles will have
great influence in the overall efficiency of the algorithm. Course grain tiles will produce
high load unbalance; On the other hand finer grain division will lead to high overhead to
manage and distribute all those tiles. Figure 4.8 shows an example of Makespan reduction
heuristics working upon a divided image. The numbers in the tiles represent the estimated
cost of each tile. In step 1, the list L is created. The tiles in the list L are ordered in
decreasing order of its cost. In step 2, the list R is created. There are two elements in
the list R named R1 and R2. For each phase of step 2, the list R is ordered according
to its total tile load and one tile from L is assigned to the first element in R. In step 3
all the tiles in L have been assigned to a rendering thread in R. As it is seen, Makespan

reduction heuristic gives the distributions of total costs 17 for R1 and 13 for R2.
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Figure 4.8: Example of Makespan heuristic with 7 tiles and two elements in the R list.
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4.2 Prerendering

Once the rendering work is distributed to all threads of the system, the prerendering
process takes place. At first, the data is rotated according to the point of view. This is
accomplished by performing the rotation of the dataset, as explained in Section 3.3, in
each shared memory computer node. In this case, the vertices to be rotated are evenly
divided among the rendering threads, so that each thread applies the rotation matrix in

its subset of vertices.

After that, the threads compute the list of visible faces, and start the visible face
projection process. Parallel raycasting algorithms do not parallelize this process, since
the amount of time spent in face projecting is usually much smaller than the amount of
time spent in the rendering process. However, as the image resolution increases, the face
projection phase cannot be underestimate, otherwise it will limit the speedup increase.
So, here we propose two schemes for parallelizing this phase called Fuaces-per-tile and

Faces-per-quadtree.

4.2.1 Faces-per-tile

In this technique it is assumed that the master thread sends each rendering thread a
list of tiles computed in the tile distribution step. In this parallel face projection scheme,
each rendering thread projects only the visible faces that are within the tiles that were
assigned to it. The thread traverses the list of visible faces, and checks for each face if it
belongs to one of its assigned tiles. The faces that do not belong to the tiles are ignored.
For the faces that belong to a tile, the thread projects only the pixels inside the tile. This

is done to avoid double projection of pixels when the face is within more than one tile.

This scheme can generate load imbalance, since the tile division takes the cost of
rendering the pixels into account, but not the number of pixels inside each tile. So, some
threads can be assigned with more pixels than others, generating a high face projection
cost. Another important issue in using this parallel scheme is that, for images with small
resolutions, and consequently a small number of pixels, the overhead of checking if the

visible faces are within the tiles can outpace the parallelization gains.

Consider that the number of tiles is n, and the number of external visible faces is
m. For each face to be projected, all the tiles in the list of tiles have to be tested for
intersections, this will lead to a complexity for this search of O(mn) asymptotically. This

complexity will be used as a comparison parameter with the next technique.
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Figure 4.9: Example of the distribution of sub-quadtree
4.2.2 Faces-per-quadtree

In this technique, it is assumed that the master thread sends each rendering thread a
sub-quadtree with the tiles calculated in the tile distribution step. The Faces-per-quadtree
projection schemes, addresses the overhead of checking which visible faces fall under the
assigned tiles. The idea is to reduce the number of checks by taking advantage of the
quadtree structure created by the tile decomposition phase. Each internal node in the
quadtree represents a quadrant of the screen. When we check if a certain visible face falls
under an internal node of the quadtree, we are checking whether its pixels fall under the

quadrant represented by that nodes.

To accomplish this scheme, the master thread no longer sends the list of tiles to the
rendering threads, but the sub-quadtree that holds all the rendering threads tiles. Since
the quadtree is usually small, this transfer can be negligible in the overall face projection
overhead. Figure 4.9 shows the master sending the sub-quadtree to two different rendering
threads. The dashed leaves of the sub-quadtree are tiles that were assigned to other
rendering threads. Remark that all the leaves of original quadtree have to be assigned
to one, and only one rendering thread. In the example the tile 2 of the master thread

quadtree was assigned to the rendering thread R1.

So, each rendering thread stores locally only the portion of the quadtree that repre-
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sented the tiles that were assigned to it. For each visible face, the rendering thread checks
whether the face falls under the root node of its local quadtree. If it does, the same test is
done with its children nodes, and so on, until a leaf node is reached; In this case the face
is projected in the same way as face-per-tile, in which only the pixels inside the leaf node
is projected. If the face does not fall under a quadtree node, no further checks are made
to the descendants of that node. In this way, not all the visible faces are compared to all
tiles assigned to this rendering thread. A great number of visible faces are compared only

with the local quadtree root node, and soon discarded.

Considering that the number of tiles is n, and the number of external visible faces is
m. This hierarchical structure increases performance because one element of the quadtree
can be find on O(logs(n)) as shown by Finkel [14]. Therefore the search for all external
visible faces can be done in O(mlogs(n)) asymptotically, which is lower than the O(mn)
complexity of the face-per-quadtree scheme. It is expected that face-per-quadtree might

lead to a better result in cases of higher resolution than face-per-tile.

This technique still has the same load imbalance problems due to face distribution that
face-per-tile has. This work does not address any technique to avoid or reduce this load
imbalance, since this is not the most expensive computation in the whole visualization

process.

4.3 Parallel Rendering

After each rendering thread has the list of pixels to be computed and the entry point
for each pixel computed in the face projection phase, the raycasting algorithm starts. The
algorithm used is exactly the same as the algorithm described in Section 3.4, where for

each ray, the intersections are found and the illumination integral computed.

4.4 Subimages Transmission

After rendered, each pixel has its final color stored in a three byte structure called
Crap. The three bytes of Crap stores the Red, Green and Blue values of the pixels, also
known as the RGB color of the pixels. The Crgp of all rendered pixels are stored in an
one dimensional array called raster. The raster is a structure that can be easily mapped
onto a two dimensional screen. Initially all the RGB values of all Crgp are set to zero

indicating a non rendered pixel.
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Figure 4.10: Example of image encondig

Each rendering thread has its own raster array, that has the same size as the final
image. At the end of the rendering step each rendering thread has a unique set of rendered
pixels in its own raster array, those rendered pixels are within the tile areas that were
originally assigned to this rendering thread at the tile distribution phase. The rendering
thread has to send its subimage back to master thread, but sending the whole raster array

would be costly.

So, in order to reduce the size of the sending structure, we proposed an image en-
coding scheme. All the subimages generated by a rendering thread are sent in a single
message, that is composed by an array of pixels structure. This array contains a num-
ber of continuous pixels structure, called C'p. Each Cp is a variable structure that has
two control integers followed by a number of Crgp. The first control integer points to a
position in raster array where there is a continuous number of pixels that are not black.
The second control integer contains the number of Crgp, and each Crgp represents a
RGB color of a rendered pixel. When the subimage has one or more black pixels, a new
Cp is added to the array. Since it is more likely to have groups of colored pixels together
than many interleaved colored and black pixels, it is expected that the array of Cp is
almost the same size as an array of pixels. Figure 4.10 shows an example of a raster array
mapped to a message with two Cps. Remark that the encoded image is smaller than the
original raster array, and there are only four control integers of overhead more than the

a single list of C'rgp would have.

Although the subimages send phase comprises only the transmission of theraster array
from each rendering thread to the master. This phase timing is highly susceptible to the
load imbalance intrinsic to the work division. Here we use a formula proposed by [25] as

the measure for load imbalance.
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Avg
Max

LoadImbalance =1 —

(4.10)

Where Avg is the average timing among all rendering threads and Max is the maxi-

mum timing of all rendering threads.

4.5 Image Merging

As soon as the Master receives a message from a team of thread it decodes the subim-
ages received and save them in the final Raster. The assembly of the final image is
a straightforward phase, since it involves only the transfer of each Cp included in the

message to the correct position in the image.

After that, if there are more frames to be rendered, all the steps of the rendering
pipeline, with exception of the preprossesing phase, are repeated, otherwise the algorithm

finishes.



Chapter 5

Experimental Results

5.1 Methodology

Our experimental environment consists of a cluster with SMP nodes called Netuno.
The cluster is located on the Rio de Janeiro Federal university. This cluster was top 138
in June of 2008 in the top 500 [50]. Each node of this cluster is composed of IBM blade
boards. where each node consists of 2 Intel Xeon 2.66 GHz quad-core processors that share
a 16GB RAM. The nodes are connected via Gigabit Ethernet network. All the 2048 cores
run Linux CentOS 4.2.3. The parallel algorithm was developed in C, using MPI for the
communication between the leaders and the master, and pthreads for the parallelization
and communication of the rendering nodes inside a team. Table 5.1 summarizes some of

the characteristics of this cluster.

Operational System | CentOS

Kernel Version 2.6.18-53-el5

CPU Intel Xeon E5430 (Duo-Quad core) 2.66GHz
Cache Size 6144KB

Memory RAM 16GB

MPT Version Intel 3.2.0.011

C-++ Compiler Intel 11.0.074

Table 5.1: Cluster Netuno

We used five well-known representative tetrahedral datasets: in Figure 5.1 we can see
SPX from Lawrence Livermore National Lab, Liquid Oxygen Post shown in Figure 5.2,
in Figure 5.4 and Figure 5.3 we see Delta Wing and Fighter from NASA respectively,
and finally in Figure 5.5 we see Torso from University of Utah. SPX is a very irregular

dataset that contains a hole in the grid, bringing extra difficulties to the renderer. Fighter
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is based on an aircraft plane that has thin and thick regions. Delta Wing, Liquid Oxygen
Post, and Torso are tetrahedralized versions of regular datasets. Liquid Oxygen Post,
in particular, is a thin cylinder that presents different rendering complexity according to
viewing direction. Table 5.2 shows the number of vertices, tetrahedra voxels and external

faces for each dataset.

| Dataset || # Vertices | # Tetrahedra voxels | # Number of External Faces |

SPX 149 K 827 K 44160
Post 109 K 013 K 27676
Delta 211 K 1.0 M 41468
Fighter 256 K 1.4 M 83504
Torso 168 K 1.0 M 6118

Table 5.2: Dataset sizes.

Figure 5.1: SPX dataset.

Figure 5.3: Fighter dataset.

Figure 5.2: Post dataset. Figure 5.4: Delta dataset.

The resolution chosen to render the data set is also an important factor to be taken
into consideration. The resolution measured in this work is always in terms of pixels that
the image has. We can imagine the image as a matrix of pixels. Even though the number
of columns and rows in this matrix can be different in size, in this work they are always
the same size. For the sake of simplicity an image that has 1024 columns and 1024 rows

in the pixel matrix is called an image with a 1G pixel resolution. An image with 2048
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Figure 5.5: Torso dataset.

columns and 2048 rows is an image with 2G pixel resolution and so on. We used a 4G
pixel resolution image and each dataset was rendered from different points of view. For
all these datasets, an animation path was defined. We considered that the point of view

starts at 0°, and was constantly rotated using a fixed stride of 2 degree angle.

The parallel raycasting algorithm proposed is called PRay. This algorithm uses the
techniques tile decomposition and distribution for load balancing and the face-per-quadtree
for face projection. This version is compared with the traditional parallel raycast. The
traditional parallel raycast divides the screen equally into 32 x 32 tiles and distributes
the tiles randomly across the rendering threads. This tile division was determined in a
previous experiment where different tile divisions were evaluated to find the best one for

all datasets.

5.2 Parallel Rendering Overheads

Before start our analyzes of the overhead, we present in Table 5.3 the total application
time of the sequential algorithm and the PRay algorithm. Those data were acquired with
4G pixels images and 64 cores for the parallel algorithm PRay, the total time is presents

in milliseconds.

Datasets | Sequential(ms) | PRay(ms)
SPX 176235.03 4211.99
Delta 196235.08 4524.09

Fighter 153251.76 4412.00
Post 328853.07 6381.46
Torso 188054.98 4489.75

Table 5.3: Total application time for 4G pixel resolution.

As we can see, great improvement has been achieved. Next we will present the and
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analyzes the the reason for such improvement starting with the overhear.

In Figure 5.6 we show the timing breakdown of our parallel algorithm, PRay, for each
dataset, when running on 64 rendering threads. The breakdown was divided into four
phases: Tile Decomposition and Distribution, Pre-render, Subimages transmission, and
Image Merging. This overhead was measured exclusively in the master thread were all the
load balance policies are applied and the final image is merged. Time measuring functions
were started before the execution of each part of the overhead breakdown and stopped at

the end of those parts instrumenting this way the whole execution of the master thread.

Overhead Breakdown

100

Image Merge =

Network =

Pre-render
80 r Tile Decomposition and Distribution = -
60 - ]

(%) Overhead

delta fighter post SpXx torso

Figure 5.6: Timing breakdown of our parallel algorithm.

As we can observe in Figure 5.6, the Pre-render and Subimages Send components
dominate the total overhead. The total overhead remains around 40% of the total execu-
tion time. The smallest dataset, Post, was the one that generated the smallest overhead,
and as the dataset size increases, the total overhead also increases, mainly due to the
increase in the Pre-render component of the overhead. This component is related to
the number of external faces of a dataset, and this component is higher in the fighter
dataset, which is the one with most external faces. For experiments with larger image
resolutions, we obtained increasing in the total overhead. Following, we will analyze each

of the overhead components and the rendering behavior in detail.
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5.3 Tile Decomposition and Distribution

Our study, at this point, has to investigate how well our tile decomposition strategy is
in dividing the screen into tiles. Before we analyze the tile decomposition results, we have
done some experiments in order to define the best value for the p parameter of the adaptive
tile decomposition. This value defines when AD changes by an order of magnitude. We
varied p from 1.1 to 4.0 and obtained similar results for all datasets. Figure 5.7 shows
an example of these results for SPX. Increasing the value of p, shown in the x axis, can
produce a significant reduction in the total execution time presented in the y axis, until
p reaches a value near 3.0. After that, further increases in p would have great impact
in the execution time. So, we decided to set p = 2.9 for the next experiments. This
experiment uses 64 rendering threads, but the usage of more or less threads should make
no difference in the final result (finding the best value of p), since this results depends

only in the dataset geometry.
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Figure 5.7: Variation of p parameter for SPX dataset.

Having calibrated the p parameter, our second study investigates the accuracy of
our load estimation strategy. After the rendering of each point of view, we compute the
difference between the estimated cost of each pixel and its actual cost. We used SPX as an

example for this analysis, since SPX is more irregular than the other datasets. Figures 5.8
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Figure 5.8: Accuracy of load estimation for SPX with a stride of 2°.

to 5.10 show the average percentage difference between estimated and actual cost for all
pixels in the screen for SPX, when the point of view varies from 0° to 360°. Figure 5.8
shows this difference when the point of view varies by 2°. Figure 5.9 shows for a 10°
variation and Figure 5.10 for a 40° variation. As we can observe in these figures, for a
small stride, our estimated cost is very close to the actual cost, the difference between
the estimated and actual cost stays near 5% and remains almost constant for all points of
view. For a 10° of stride, the difference stays near 10%. For a 40° of stride, the estimate
is in the average 50% different than the actual cost. Big angle strides, however, are not
the usual requests of the users. Usually, the user does not desire an abrupt change in the
angle of view of the data. Based on these results, on the other experiments, we rotated

the data for 20 different point of views, using the stride of 2°.

In order to evaluate the screen division generated by our tile decomposition strategy,
we measured the standard deviation of cost of the tiles, and compared to the standard
deviation generated by a fixed 32 x 32 tile subdivision. We normalized the standard
deviation of the two strategies in order to compare them. Table 5.4 shows the comparison
of the standard deviation of our strategy with the fixed division. The numbers show
the percentage of the standard deviation generated by our strategy, considering that the
standard deviation of the fixed division is 100%. As we can observe in this table, our
decomposition provides a standard deviation always smaller than the fixed division. For

smaller strides, our decomposition generates tiles with a standard deviation that is less
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Figure 5.9: Accuracy of load estimation for SPX with a stride of 10°.
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Figure 5.10: Accuracy of load estimation for SPX with a stride of 40°.
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Figure 5.11: Example of tile decomposition for the Delta dataset.

than 21% of the standard deviation of the fixed division. The increasing in the percentage
shown for 18° is due to the increasing in the error of the tile load estimation measure. An

increasing in such measure degrade the decomposition effectiveness.

Angle stride
2 6 10 14 18
SPX 16.7% | 18.3% | 20.3% | 24.4% | 41.2%
Post 12.6% | 18.0% | 24.3% | 38.0% | 65.8%
Delta 16.5% | 17.4% | 18.6% | 20.6% | 33.1%
Fighter | 20.1% | 21.1% | 25.1% | 27.2% | 40.0%
Torso 18.1% | 19.9% | 21.5% | 25.3% | 53.7%

Datasets

Table 5.4: Standard deviation comparison with the fixed division.

Figure 5.11 illustrates an example of the tile decomposition for the Delta dataset. It
can be seen that our adaptive strategy performs more subdivision in the middle of the

screen where there is more data to be computed.

Table 5.5 depicts, for each dataset, the percentage of time that the parallel algorithm
spent in the computation of tile decomposition and distribution step. This time mea-
surement is done in the same way as the overhead breakdown. As we can observe, the
overhead for this step is very small, under 3.6% of the total rendering time, for most of

the datasets, except for Fighter, that obtained 6.6% of tile decomposition and distribution
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overhead. Fighter is the dataset that has the smallest number of empty tiles, and the
biggest number of the rendered tiles, as its image uses up all the space in the screen. In
addition, for Fighter the tiles costs are more homegeneous than for the other datasets,
and, in this case, the tree rearrangement algorithm takes more time to find the critical
value. For the other datasets, the overhead slightly increases with the increase in the
dataset. It is important to notice that, in terms of memory consumption, the quadtree
used only around 25 Kbytes for the biggest dataset, which is less than 0.1% of the memory

needed for the rendering.

Dataset | Overhead

Post 1.7%
SPX 2.5%
Delta 3.6%

Torso 2.8%
Fighter 6.6%

Table 5.5: Overheads incurred by tile decomposition and distribution strategies.

To analyze the tile distribution, we compared the load imbalance generated by the
use of Makespan compared to the load imbalance generated when the tiles are randomly
assigned to the rendering threads in a round-robin fashion. The load imbalance was
computed using equation (4.10) and the Makespan heuristic provided improvements from

35% to 75% in the load imbalance, when compared to the Random tile distribution scheme.

5.4 Pre-render

As can be observed in Figure 5.6, the overhead of the pre-render step is significant,
about 15% of the total rendering time. Following, we analyze each of the components of

this overhead, data rotation and face projection, in detail.

5.4.1 Data Rotation

The data rotation phase represents only a small part of the pre-render computation.
It is independent of the image resolution and the geometry of the data, it depends only on
the number of vertices of the data. In Table 5.6, we show the time spent in data rotation
and the percentage that this time represents on the overall execution time. As we can

observe, this phase imposes only a negligible overhead in the parallel rendering.
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5.4.2 Face Projection

The face projection phase, on the other hand, accounts for most of the overhead
of the pre-render step. This is a necessary phase in any raycasting algorithm, whose
performance implications are often neglected by parallel rendering systems, mainly when
the image generated has high resolution. Tables 5.8, 5.7 and 5.9 show the time taken for
projecting the visible faces in the screen, when the image generated has the resolution
of 8G pixels, 4G Pixels and 1G pixels, respectively. The tables show the face projection
time and the percentage of this time in the overall execution time for the parallel schemes
proposed here, faces-per-tile and faces-per-quadtree, and for a traditional scheme, where
all the visible faces are projected. This traditional scheme is simpler and avoids the need
of searching for the visible faces that project inside the tiles assigned to each thread.
However, the results show that, when the image has high resolution, the unnecessary
projections turn the projection from 20 to 70 times slower for a 4G pixel resolution, and
from 50 to 800 times slower for a 8G pixel resolution. The gains get smaller for low
resolution images as seem in Table 5.9. That is why many of the parallel renders which
handles low resolution images never parallelize this step of the pipeline. The face-per-tile
technique has even had worse projection time when compared to the traditional parallel
algorithm in a 1G pixel resolution, but the faces-per-quadtree has always had the lower
projection time when compared to the other two approaches even for such small image

resolution.

When we compare the two parallel approaches, faces-per-tile and faces-per-quadtree,
we observe that the faces-per-quadtree is faster than the faces-per-tile scheme for all
datasets, except Torso. For a 4G pixel resolution, the face-per-quadtree is about 26%
faster for Fighter dataset. However, when the number of pixels quadruplicates, we observe
huge gains for the faces-per-quadtree scheme. It is about 46% faster for Fighter dataset
than faces-per-tile. Figther is the dataset where face-per-quadtree presents the greatest
gains, since this dataset is the one that has the least number of non-rendered pixels in

the screen. Torso, on the other hand, has the greatest number of non-rendered pixels and

Datasets | Rotation time(ms) | % Total Time
Post 2.79 0.09%
SPX 9.15 0.22%
Delta 13.33 0.29%
Torso 10.71 0.24%

Fighter 16.11 0.37%

Table 5.6: Rotation timing.
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the least number of visible faces to be projected.

Datasets Faces-per-quadtree Faces-per-tile Traditional
% Total Time | time(ms) | % Total Time | time(ms) | % Total Time | time(ms)
SPX 15.67% 660.02 18.49% 807.98 55.59% 13287.95
Delta 14.65% 662.78 14.98% 682.59 53.86% 24492.57
Fighter 16.07% 709.01 33.63% 1881.24 48.24% 49629.69
Post 10.36% 661.12 11.17% 720.18 66.5% 40311.76
Torso 14.44% 648.32 14.26% 640.5 50.98% 19804.27
Table 5.7: Face projection timing for 4G pixel resolution.
Datasets Faces-per-quadtree Faces-per-tile Traditional
% Total Time | time(ms) | % Total Time | time(ms) | % Total Time | time(ms)
SPX 7.63% 1439.93 13.06% 2619.23 46.84% 84782.84
Delta 13.24% 2551.59 13.68% 2639.26 47.4% 1676786.92
Fighter 16.73% 3066.68 41.72% 10863.52 49.14% 2460465.88
Post 5.14% 1333.73 9.7% 2643.3 43.84% 82034.43
Torso 14.32% 2945.72 12.78% 2583.58 38.23% 167853.85
Table 5.8: Face projection timing for 8G pixel resolution.
Datasets Faces-per-quadtree Faces-per-tile Traditional
% Total Time | time(ms) | % Total Time | time(ms) | % Total Time | time(ms)
SPX 4.23% 97.53 35.12% 302 16.58% 98.75
Delta 13.26% 60.64 14.6% 68.71 18.15% 112.85
Fighter 13.86% 98.44 42.17% 396.41 30.91% 259.71
Post 7.79% 50.39 11.09% 92.01 15.87% 134.29
Torso 6.89% 46.15 7.38% 49.47 11.66% 88.56

Table 5.9: Face projection timing for 1G pixel resolution.

5.5 Rendering

The rendering process in each rendering thread follows the same computation as

proposed in [41]. In the rendering algorithm, as a ray traverses the dataset, three com-

putations take place: Find Next Face, Compute «, and Update Light. Find Next Face,

discovers which the next face to be intersected is, and the intersection point of the ray

in this next face. It generates the z coordinate of this point. Compute « calculates the

scalar value of the intersection point. The scalar value, «, is computed by the interpola-

tion of the scalar values of the next face vertices. Update Light computes the illumination

integral from the current position to the next intersection, using the values of z and «

computed previously. Table 5.10 shows the proportion of these three computations in

the overall rendering time. Find Next Face is the most expensive part of the rendering
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process, accounting for 66.4% of the rendering time. This is due to the update coefficient
computation that calculates the coefficient of the plane defined by the three vertices of a
triangular face. Update Light accounts for 29% of the rendering, due to the illumination

integral computation and Compute « accounts for only the other 4.6%.

Computation | % of Rendering Time
Find Next Face 66.4%
Compute a 4.6%
Update Light 29%

Table 5.10: The contribution of each part of the rendering in the rendering time.

In the parallel algorithm, however, the tile division can affect the cache behavior of
the rendering process. So, we compared the cache utilization of the parallel algorithm
with the cache utilization of the sequential algorithm. The cache utilization was measured

using PAPI [40] and Perfctr library to access the hardware counters.

Table 5.11 shows L1 cache miss rate of each of the three computations performed
during the rendering step, for the parallel and the sequential algorithm. Each core of the
cluster has 32K of L1 cache. As we can observe in this table, the adaptive tile decomposi-
tion strategy enhances the cache utilization. This occurs because our tile decomposition
strategy divides the computation evenly among the tiles and nearby rays that lie inside
the tiles tend to intersect the same faces, so that the faces data can be reused in the
cache. When we compare the three main functions of the rendering, we observe that
Update Light is the one that generated the highest cache miss rate. This is due to the
need of reading a color table, in order to insert in the integral the range of the color values
for the o computed. The Find Next Face and Compute « function, on the other hand,

had benefited from the reuse of face data.

Computation Cache Miss Rate
Parallel Algorithm | Sequential Algorithm
Find Next Face 0.24% 1.15%
Compute o 0.14% 1.33%
Update Light 1.16% 1.21%

Table 5.11: Cache miss rate of rendering for the parallel and sequential algorithm.

5.6 Subimages Transmission

The subimages send overhead is the time the master spent in waiting for the subimages

to arrive before merging them into the final image. The master has to wait for the
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rendering threads to finish their work, and for the messages to arrive. So, this overhead is
due not only to the network message exchanging, but also to the load imbalancing effect.

Following we discuss both overheads in detail.

5.6.1 Message Exchanging

Table 5.12 shows the time spent with message exchanging and the percentage of
time that the message exchanging represents in the subimages send overhead. As we
can observe in this table, the time spent in message exchanging is negligible in the to-
tal subimages transmission overhead. For Torso, the message exchange overhead is the
smallest, even being bigger than Post and SPX. This is primarily due to the fact that
Torso is a regular dataset. As our algorithm can also deal with hexahedral voxels, we
considered each cubic voxel of Torso as an hexahedral voxel. Due to the regular nature
of Torso, some voxels have no contribution for the final color of the pixels. Nevertheless,
the image generated by Torso uses up the smallest screen space, compared to the other
datasets. Fighter has the greater network overhead, this fact is due to the nature of
Fighter dataset. Fighter has the greater number of external face, and the faces occupy

almost all the image.

Dataset | % of Message exchange Overhead
SPX 9.75%
Post 13.03%
Delta 8.07%
Fighter 7.73%
Torso 6.62%

Table 5.12: Message exchanging percentual time.

We also compared the message exchanging measured time with the theoretical prop-
agation time, when there is no delay in the network. The theoretical propagation time
is calculated using the message size and the network bandwidth. In this experiment,
we observed that the difference between the measured and the theoretical is very small,
under 4%. This result confirms that the network is not imposing delays in the message

exchange, and the communication with the master does not generate bottlenecks.

5.6.2 Load Imbalancing

Table 5.13 shows the percentage of load imbalance generated by our algorithm using

equation (4.10). As we can observe in this table, for most of the datasets, our algorithm
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generated less than 10% of load imbalance. For Fighter, the load imbalance is 7.81%. All
these results, for such a big image resolution (4G pixels), are very good, since according

to Mueller|35], a load imbalance is reasonable if it is below 33%.

Dataset | Load Imbalance
SPX 8.00%
Post 3.09%
Delta 5.28%
Fighter 4.21%
Torso 7.90%

Table 5.13: Load imbalance of our algorithm, according to equation (4.10).

In order to put our load imbalance results in perspective, we compared our parallel
algorithm results with a plain parallel version. This plain parallel version divides the
screen equally into 32 x 32 tiles and distributes the tiles randomly across the rendering
threads. Table 5.14 shows the percentage of gains in the load imbalance obtained by
our algorithm. As we can observe in these tables, our algorithm obtained significant
reductions in the load imbalance, when compared to the plain tile division and distribution
These results confirm that the load imbalance problem has great impact on the overall

performance of a parallel rendering algorithm.

Dataset | % of Gains
SPX 83.37%
Post 85.92%
Delta 84.97%

Fighter | 81.86%
Torso 85.61%

Table 5.14: Gains in load imbalance of our algorithm, when compared to a plain parallel
rendering algorithm.

Another important result observed in our parallel algorithm is that the load imbalance
does not increase significantly with the increase in the number of cores, while the opposite
occurs for the plain parallel version. In our algorithm, the adaptive tile decomposition
ensures a good number of tiles to be distributed to the cores. For the plain algorithm, on
the other hand, the tile decomposition is fixed. So, as the number of cores increases, less
tiles are given to each core, increasing the chances of having unbalanced load. Figures 5.12
to 5.16 show the comparison of the loadimbalance for all the datasets for PRay and
traditional parallel raycast. Even though the Fighter dataset, shown in Figure 5.14, had
the best load balance performance for traditional parallel raycast, this result is not even

near the worst load balance performance of PRay algorithm shown in Figure 5.12 for SPX
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Figure 5.12: Overhead of PRay and traditional raycast for SPX dataset.

dataset.

5.7 Image Merge

The image merge overhead includes the time spent for the rendering threads to encode
their subimages and for the Master to decode the subimages received and save them in
the final Raster. Table 5.15 depicts, for each dataset, the percentage of time that the
parallel algorithm spent in the computation of encoding and decoding the subimages. As
we can observe in this table, the time spent due to image merging is always lower than
1.15% of the total execution time for all datasets. This is the smallest overhead of the

parallel computation.

‘ Datasets ‘ Overhead ‘

Post 0.83%
SPX 1.12%
Delta 1.15%
Torso 1.04%
Fighter 1.3%

Table 5.15: Overhead of image merging
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5.8 Speedup Results

The speedup is a metric used to measure the algorithm is defined by Equation (5.1)
where S is the speedup, Tparane 1s the time of the parallel algorithm, T} is the time spent
by the sequential algorithm. The time 7} was calculated using the sequential algorithm
ME-Ray. The PRay was compared with the traditional parallel raycast in the same way

that was done in section 5.6.2.

T

S=1-
TParallel

(5.1)

Equation (5.2) shown the metric used to measure the efficiency of the parallel algo-
rithm. F'is the efficiency. S is the speedup and C'is the number of cores used to obtain

the speedup S.

B 100 % S

F
C

(5.2)

Figs. 5.17 to 5.21 show the speedup obtained by PRay and traditional parallel raycast
for each dataset as the number of rendering threads increases. We can observe in these
figures that the speedups obtained by PRay are quite high, and always greater than the
speedups obtained by PRay. The dataset which achieved the best result was the Post
dataset with a speed up of almost 51, which results in a efficiency of 79% for the parallel
algorithm. For the same dataset, traditional parallel raycast only achieved an efficiency
of 42%. Fighter dataset achieved the worse speedup among all the datasets, a speedup
of 34.5 for PRay and 24.5 for the traditional parallel raycast. This performance can be

easily explained by the pre-render and subimage sending overheads already discussed.
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Figure 5.17: Speedup of PRay and traditional raycast for SPX dataset.
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Figure 5.19: Speedup of PRay and traditional raycast for Fighter dataset.
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Figure 5.20: Speedup of PRay and traditional raycast for Post dataset.
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Figure 5.21: Speedup of PRay and traditional raycast for Torso dataset.



Chapter 6

Concluding Remarks

In this work, we propose a new parallel raycasting for unstructured grids that is
based on sort-first division of the rendering task and was designed to explore the recent
architecture of clusters of multicores. We dissected all the overhead components of the
parallel rendering algorithm, identifying bottlenecks and suggesting modifications in order
to handle images with high-resolutions. Our evaluation included all the parallel aspects
of the rendering process, including decomposition/load balancing, face projection, data

locality during the dataset traversal, and communication overhead.

We divided the parallel computation into five steps: tile decomposition and distribu-
tion, pre-render, rendering, subimages send, and image merge. For each of these steps,
we applied different techniques to improve performance. In the tile decomposition and
distribution step, we applied an adaptive tile decomposition strategy that hierarchically
subdivides the screen using a quadtree structure and uses the the concept of entropy as
the stopping criteria. The tile distribution is done using the Makespan heuristic. For the
pre-render step, where the data is rotated and the entry point of the rays are found by
visible faces projections, we applied a parallel face projection scheme that took advantage
of the quadtree structure built in the tile decomposition step. For the rendering step, we
used a memory-efficient sequential algorithm that benefited from an even tile division and
provided better cache behavior. For the subimages transmission and image merge steps,

we applied an image encoding scheme in order to reduce message sizes.

Our parallel rendering algorithm obtained significant performance gains when com-
pared to a plain parallel raycasting algorithm for a 4G pixel resolution image. Tile de-
composition and distribution schemes included negligible overhead and improved the load

balancing in at most 86%. The parallel face projection scheme proved to be indispensable
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for high-resolution image rendering, since it provides gains of up to 26% and up to 46%
for 8G pixel resolution. The sequential rendering in each thread improved the cache hit in
about 89%, due to the tile division. Considering the whole rendering process, we obtained

speedup gains of up to 51%.

One important aspect of our study is that, although the solutions proposed to reduce
parallel overheads are employed in our specific algorithm, the lessons learned can be
possibly extensively applied to other parallel direct volume rendering approaches, such as

GPGPU versions of raycast.
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