
SBMF 2005

Language-Oriented Formal Analysis: a Case
Study on Protocols and Distributed Systems

Carlos Bazilio 1

Departamento de Informática
PUC-Rio

Rio de Janeiro, Brazil

Edward Hermann Haeusler 2

Departamento de Informática
PUC-Rio

Rio de Janeiro, Brazil

Markus Endler 3

Departamento de Informática
PUC-Rio

Rio de Janeiro, Brazil

Abstract

The main motivation of this paper is to describe an architecture that intends to ease
the verification of distributed algorithms and protocols (possibly mobile) through
model checking. The core of the architecture is the protocol specification language
(LEP), which has constructions, called pronouns, that allows for high-level spec-
ification. This means a much less verbose specification, when compared with the
general-purpose specification language of the model checker used in our experiments.
Through a two-step process, LEP specifications are translated into the language of
a model checker and the result is translated back to LEP. A formal communication
model is used in the translation process in order to allow the use of different model
checkers. Currently the prototype of the architecture uses the model checkers Spin
and SMV.

Key words: Protocol Specification, Formal Verification, Model
Checking.

1 Email: bazilio@inf.puc-rio.br
2 Email: hermann@inf.puc-rio.br
3 Email: endler@inf.puc-rio.br

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bazilio, Haeusler, Endler

1 Introduction

Nowadays the task of validating a system is getting harder due to the huge
complexity, which is inherent to most of the current systems. These difficul-
ties are even bigger when the systems are distributed or have mobile elements.
For those systems, techniques and automated tools that support validation,
like simulation, equivalence checking, theorem proving and model checking are
even more crucial. The application of above mentioned tools and techniques
in the development and validation of systems is called Formal Analysis of the
systems. This article focuses on the Formal Analysis of distributed algorithms
and protocols. In the sequel we discuss, on a epistemological basis, the es-
sential use of Formal Methods (mainly Model Checking MC) as the main
extension of software testing.

Language oriented software development (LOSD) is a formal technique for
the development of software systems based on the application of tools built
from the (formal) semantics of a language designed to be strong enough to
describe the specific domain associated with it. Successful and representative
examples of LOSD cases are Database systems and Compiler Construction .
The former is based on Relational Calculus and SQL variants while the latter
is based on formal semantics like SOS, Action Semantics and Denotational
Semantics, besides Grammars for the parsers construction. By providing an
adequate language and its formal semantics one can automatically develop a
debugger or even a visual environment for a programming language. During
the 70’s and 80’s compiler compilers and DBML’s were strongly developed.

One of the main advantages advocated by the formal methods community
is the correctness of the software developed in this way. The general argument
is that from a (correct) specification one derives (automatically) correct run-
ning code. We will not follow this line of argumentation. Instead, we argue
that the main advantage of using formal methods is that, in general, they are
based on a language or languages with precise semantics and most of the times
this semantics is well-suited to the specific domain.

We adopt the analogy between the development of scientific theories and
software systems which is nicely approached by Haeberer and Maibaum (the
reader can read [12] as an example of a quite useful view for software engi-
neers). According the main thoughts in Epistemology and Theory of Science,
the validation of a scientific theory is unfeasible. Following Popper [17], Sci-
ence evolves by means of the conjectures and refutations cycle. This cycle’s
necessary existence follows from the falsifiability principle that is inherent to
Scientific Theories. Concerning its structure, a scientific theory is formed by
theoretical and empirical terms, built from, respectively, theoretical and em-
pirical languages that forms the linguistic apparatus of the theory. Carnap [4]
has a linguistic analysis of Scientific Theories that is extremely useful when
taking the analogy between Scientific Theory development and Software Sys-
tems development. Roughly speaking, his analysis concludes that while the

2

Bazilio, Haeusler, Endler

Theoretical Laws of a theory, stated in terms of the theoretical language, are
essentially universals, the Observable Experiments are essentially existentials.
So to say, the testing of a Theoretical Law by means of experimentation cannot
”entails that the hypothesis is true on the basis of the Laws of the Theory”.
The honest statement is ”the experiment did not refute the hypothesis made
on the basis of the Laws of the Theory”. Formally speaking, Carnap advo-
cates that the analysis of a Scientific Theory is performed in a context with
the Laws of the Theory, expressed by the Theoretical Language, a Hypothesis
which is formulated with the help of the Empirical (Observable) Language of
the Theory, and, with a background theory, that supports the evaluation of
the Hypothesis. Carnap’s analysis, together with Popper’s view of Science,
supports the dictum that is feasible to perform the analysis of a theory, aiming
its utility, not its truth.

From the above discussed and already established analogy between Theory
of Science and Software Development, we advocate that the process of soft-
ware development should be based on Carnap’s linguistic framework aiming to
reach the utility of the systems. The correctness of a software is unreachable,
according the above analysis. From a naive point of view, unless a formal
specification is evidently truth regarding the background theory of the world,
there is no way to, ontologically, support the truth of universals (the laws
of a particular software) on an existential basis (the possible experiments).
The task of formally theorem proving cannot be argue as a way of escaping
from this situation, since, the very statements to be proved about the systems
are not the whole systems set of properties, that, according Leibniz principle
identifies it.

Aiming to provide a platform to perform the (Formal) Analysis of Soft-
ware Systems that is able to develop useful software, we propose, following the
Carnapian linguistic view of science, the Language Oriented Software Devel-
opment. In fact this approach cannot be stated as a novelty by its own, since
it has been applied, before us, in many well-established domains. The main
purpose of this article is to show a case study, a language based architecture
for distributed algorithms and protocols Specification and Formal Analysis.
Our main contribution is a clear statement of this issue and the application
of a uniform language to provide semantics for the theoretical as well the em-
pirical terms of the specification. Uniformness is assured by providing smaller
semantical gaps between the empirical and the theoretical (sub) languages.
This task is particularly interesting with regard to our case study, since the
linguistic concept of pronoun will be mapped to universals, from the distrib-
uted algorithm/protocol point of view, as well to existential, from a particular
network-topology point of view. Other universals, as the time evolving, will be
described theoretically as properties (Universals) and empirically as counter-
examples. This last case is not different from the formal methods community;
however, our architecture will provide an uniform correspondence between
specifications universals concepts and the very counter-examples supporting

3

Bazilio, Haeusler, Endler

theirs falsifiability. A mapping from traces (counter-examples), provided by a
model-checker or some other formal tool, to the very universal linguistic con-
cept representing the time evolving in the property that produced the trace,
induced by the rest of the specification, is provided by the architecture. There
is plethora of formal techniques and languages that help SEs to perform (For-
mal) Analysis. Among the mentioned Formal Analysis techniques, MC is
an automatic formal method that validates models by exhaustively explor-
ing their computational trees. Those models are finite transition systems and
are strongly related to Kripke models. Thus, the properties to be validated
are usually expressed using temporal logics. A model checker then typically
verifies whether or not a given set of properties holds over a model of the sys-
tem. It has a complementary role when compared to Theorem Proving. The
later aims to establish that a certain property is a logical consequence of the
specification of the system/protocol/distributed algorithm. Of course, when
such property is not a logical/deductive consequence of the specification the
Theorem Prover is of no help at all. We advocate that MC is a better tool for
Formal Analysis than Theorem Provers, being the later excellent tools for pro-
viding certificates of functionality, usually produced after the Formal Analysis
phase. Of course one can use TPs in order to carry out Formal Analysis,
however, the task of refinement of the specification provided by error-finding
is harder by means of TPs.

Our language based architecture intends to ease the specification and verifi-
cation of distributed algorithms and protocols, possibly mobile, through model
checking. The core of the architecture is the protocol specification language
(LEP), which has constructions, called pronouns, that allows for high-level
specification. This means a much less verbose specification, when compared
with the general-purpose specification language of the model checker used in
our experiments. Through a two-step process, LEP specifications are trans-
lated into the language of a model checker and the result is translated back to
LEP. An intermediate specification, at the level of the communication model,
is used in the translation process in order to allow the use of different model
checkers. Currently, the prototype of the architecture, in development, has the
model checkers Spin [10] and SMV [6] as alternative back-ends. The commu-
nication model, formally specified in operational semantics, aims to be general
enough to be able to represent any protocol, mobile or not. It is based on a
(dynamically) configurable connection graph that represents the relative lo-
calization of each functional element of the protocol regarded to the whole
net. Each element has an internal behaviour, regulated by a transition sys-
tem, and, queues to manage any form of communication among the network’s
elements. This will be better explained in the respective section of the article.

Among the experiments performed with the prototype, DSR (Dynamic
Source Routing - a protocol for ad-hoc networks) [11] is presented here. Some
aspects such as the size and complexity of the specifications found in the
manual specification of this protocol, motivated us to propose the architecture.

4

Bazilio, Haeusler, Endler

The analysis of the experiments performed with the architecture shows, in
an evident way, that the use of pronouns as a bridge between the universals
of the theoretical language, in the Carnapian sense, and the existentials of
the empirical language is a strong linguistic component in achieving a useful
platform for distributed algorithms and protocols analysis. It is worth men-
tioning that the use of Net-Grammar [7] together with filtrations of modal
temporal-logic to improve the search-space exploration, in terms of time, pro-
ceeding the analysis of the (temporal) properties in a theoretically suitable
way. So to say, the verification of a property of a large class of instances of
a network-topology is performed in a sound and complete way on a finite set
of instances. For reasons of lack of space, this is not detailed in this article,
however, it is mentioned with the purpose of pointing out an uniformity issue
concerning the case study.

The architecture does not intend to solve the so-called “state explosion”
problem of verification of systems by means of the model checking technique.
The problem is a hard one. Apart from the fact that the decidability problem
for the usual temporal propositional logics used in MC, namely CTL, LTL
and µ-Calculus, are known to be hard, from PSPACE-complete to EXPTime-
Complete, the existence of exponential-size specifications (compared to the
size of the valid properties) is strongly connected with the CoNP complexity
class, by means of a mapping from classical propositional proofs into temporal
properties over transition systems, as well as strongly related to Sat solvers
(NP complexity class). Thus, feasibility of general schemas for compositional
validation of systems seems to be as hard as to solve the main conjectures
about the classes NP, CoNP and PSPace. Of course, it seems that, from the
intractability of the temporal logics one could conclude that it is probably an
unfeasible task, since the class EXPTime is independent of the main conjec-
tures already mentioned. Thus, our architecture aims a better using of MC
technique in a broader way, by allowing several tools at the backend, which is
of course a feasible task.

2 Proposed Architecture

This architecture can be seen as an additional layer on the top of the usual
model checking process. It is supposed to simplify the verification process
since its domain-specific language becomes transparent to the user the details
of the chosen model checker’s specification language.

2.1 General description

Figure 1 depicts the proposed architecture. The top layer consists of LEP
(protocol description plus properties to be checked) and the model checker’s
results at the level of the original LEP specification of the protocol. The
bottom layer contains the traditional model checking process. The input of

5

Bazilio, Haeusler, Endler

this layer is the output of the intermediate layer, where code translations are
made in order to transform the specification provided in LEP into the spec-
ification accepted by the model checker. These translations to the language
of the model checker are made by the modules that are specific to the chosen
model checker (CI2SMV and CI2Spin in figure 1). The intermediate layer
also translates the model checker’s result back to the level of LEP. This inter-
mediate layer is important since different model checking tools may be used
interchangeably. In out prototype all translator modules were implemented
using the TXL transformation language [8], whose description is not on the
scope of this text. However, the formal semantic of the translations presented
in sections 2.4 and 2.5 defines how it works.

. . .

Properties
 Protocol

Model

Checker

Result

H
igh-Level

Low
er-Level

Intermediate

Code (CI)

CI2Spin
CI2SMV

LEP2CI
 CI2LEP

Intermediate

Code (CI)

MC2CI

Fig. 1. Architecture’s Description

2.2 LEP

LEP is a process-based language such as CCS [14] for the specification of
mobile protocols and distributed algorithms. It combines the concepts of
guarded commands from CCS, overload of names from Pi-calculus [15] and
pronouns (adapted from OO concerns [9]). Pronouns can be seen as a general
means of referencing a set of elements, making the specification shorter, more
legible and precise. For example, in a ordinary specification language, if we
want to send a message to several processes, we have to iterate through the

set of elements. Using LEP, we simply write: everyone!msg

Pronoun everyone also works with partially connected networks, and
where broadcast communication happens through the flooding 4 of messages.
If this pronoun is used for receiving a message (everyone?x), it behaves like
a synchronization point that will receive the message x from every element

4 A message is sent through flooding when the hosts who receive it, pass to their neigh-
bourhood in order to reach the whole network.

6

Bazilio, Haeusler, Endler

of the network. Since we may have disconnections, processes that execute
this command may wait indefinitely. In order to alleviate it we can use the
pronoun any(k) in the receive clause that waits for messages from k hops.

In LEP, pronouns may appear in any place where an element’s identifier
can appear. We consider the following pronouns: this: a reference to the
same module instance where it occurs; when used as right-side value, regards
an internal (not visible to the user) value that identifies this element; sender:
in an action clause of a receive command, this pronoun regards the element
who sent the message; this is useful in a request-reply communication style;
any(t, k): this is a parametric and generic pronoun that refers to any k
elements of the system of type t (excluding the element where it occurs); this
pronoun adds non-determinism to the specification; anyother(t, x, k): this
is a parametric and generic pronoun that returns any k elements of type t
in a network that differ from the given argument x ; everyone(t): in the
sending, it regards to every element of type t that can be reached from the
element where it occurs; it can be used in broadcast and the corresponding
reply messages. In the receiving of a message, it waits for messages of every
element in the network; neighbours(t, k): refers to the set of elements of
type t that are reachable in k steps (paths from this node to the target have a
maximum of k nodes); parent: regards the creator of the element where the
pronoun occurs; children: regards all of the elements created by the element
where the pronoun occurs. The parameter k when omitted has a default value
equals to 1. The parameter t is also optional and define the types of elements
(module’s identifiers) regarded by the pronoun. When omitted, t has the type
of the current module.

Regarding the topology, we extend the concept of graph grammars [7] by
adding attributes that are used to define pronouns. The grammar defines the
topology adopted by a specification and the strings generated by the grammar
are instances of the topology in the initial state of the validation. Pronouns are
initialised through synthesized and inherited attributes, which are calculated
during the generation of a network i.e., the application of the production rules
of an attribute graph grammar. Inserting new attributes into an attribute
graph grammar is a way of creating user-defined pronouns.

In table 1 we show a way of specifying a ring topology using attribute
graph grammars. Here we define the pronoun neighbours through the use of
the attributes s-neigh and h-neigh for synthesized and inherited attributes,
respectively. At the end of the process the pronoun neighbours is given by the
attribute s-neigh for each generated node. At this specification: S and S’ are
non-terminals; t is a terminal; ⇒ connects a non-terminal with its right-side;
in and out determines input and output nodes of a graph grammar in a rule;
assignments between { and } regards attributes while elements and oriented
arrows (←,→,↔) outside regards the graph grammar.
In the architecture we provide pre-defined grammars for rings, stars, trees,
sequences, arbitraries and complete graphs (networks). Moreover, we can
specify the initial network explicitly. In order to exemplify a specification in

7

Bazilio, Haeusler, Endler

S ⇒ t { t.s-neigh ← S’.s-neigh } ↔ S’ { S’.h-neigh ← t }
S’1 { S’1.s-neigh ← t } ⇒ in(t) { t.s-neigh ← S’2.s-neigh } →

out(S’2) { S’2.h-neigh ← S’1.h-neigh }
S’ { S’.s-neigh ← t } ⇒ in(out(t)) { t.s-neigh ← S’.h-neigh }

Table 1
Production rules for a ring using attribute graph grammars

LEP, figure 2 shows how a Leader Election algorithm could be specified in an
arbitrary topology. In bold we have the reserved words of LEP and in italic we
have the pronouns. A specification unit of LEP has a topology declaration that
defines the initial structure of the network, and the declaration of the modules.
The topology can be a pre-defined one or can be given by the user. In the
figure 2, node labelled 1 has the neighbourhood (nodes directly connected) 2
and 3, node 2 has 1, 3 and 4, and so on. About the topology’s parameters, we
can have: (un)reliable, (un)directed, (un)secure, static or dynamic. A topology
is reliable when links and nodes do not fail i.e., messages are not lost in the
system. Secure means that messages are not corrupted. Directed means that
links in the network are bi-directional. When a topology is dynamic, the
movements of hosts are made automatically and transparent to the user. It
is useful when modelling ad hoc networks, since normally mobile hosts move
without notice. Reliable, directed, secure and static are the default values of
the topology’s parameters.

topology is
{1 - {2,3}, 2 - {1,3,4}, 3 - {1,2,4}, 4 - {2,3}} reliable;

module
candidate

vars
my, p, count : int;

init
->
count = 0; my =
this
;
neighbours
!msg(my, count);

this
?win ->
stop
;

this
?msg(p, count) ->

if
((p > my)
or
((p == my)
and
(count < topology.size)))
then

my = p; count = count + 1;

neighbours
!msg(my, count);

else

if
((p == this)
and
(count > topology.size))
then

everyone
!win;
stop
;

endif

endif

endmodule

Fig. 2. Leader Election in a arbitrary network specified in LEP

The module candidate defines the state-machine of the nodes. init and stop
marks are the commands that will be executed in the initial and the final states
of the module, respectively. Operator ”->” defines a transition with the pre-
condition before the operator and the action after it. Except init transition,
which is executed once, in the beginning, the execution of a process is a looping
on the module’s transitions. The word true can also be a pre-condition, which
says that its action can be executed whenever possible (non-deterministically).

8

Bazilio, Haeusler, Endler

Synchronization of processes are done through the operators send ”!” and
receive ”?”. If we replace the explicit definition of the topology in the figure 2
by ”topology is ring(<6) direct reliable”, the specification still works. It allows
the reuse of specifications for distinct topologies, which shows a interesting
feature of LEP.

We also use pronouns in the specification of model’s properties. More-
over, when a identifier that occurs in a formulae is not a pre-defined pronoun,
it unifies over the occurrences of the variables. In addition, send and re-
ceive commands can also be used as the subformulae: [](p!alive(everyone)→
<>p?ack(any(k))). However, the interpretation of pronouns can change a lit-
tle while used in a property. The property above expressed in LTL (Linear
Time Logic) asks whether always exists a state where a process p sends a
message alive to every other process and eventually receives at least k mes-
sages ack. We consider the following pronouns for specifying properties seen
as commands of sending or receiving messages: everyone: specifies whether
there is some state where a process sends or receives a message from every
other process in the network; in the sending, everyone means every reachable
process; in the receiving, it means every process of the network; none: spec-
ifies that there are no states where a process that sends or receives a given
message; p!msg(none) is semantically equivalent to not p!msg ; any(k): the
meaning is the same as everyone to a k -size subset of the processes.

2.3 Communication Model of LEP

In this section we present a formal description of a computation model for
distributed algorithms, that is the basis of LEP’s execution. In fact, in this
part we describe the formal semantics of LEP by means of a translation from
LEP into its communication model. For the sake of a brief and meaningful
description, we focus on a essential fragment of LEP.

In order to specify the computation model of LEP in SOS [16] we use a
structure that we call environment (figure 3). Its structure is a graph where
nodes vi represent processes and edges aij defines the available connections
among processes. Each node is associated to a logical element that contains
two buffers bin and bout for input and output exchange of messages, respec-
tively. Channels interconnect these elements in pairs.

v
1

v
3
v
2
 a
23

a
 12

 a
13

env
����e
1

b
in
b
out

Fig. 3. Environment of the Computation Model of LEP

When sending a message, the sender process puts the message in its output
buffer in order to be passed to the input buffer of the receiver process. Buffers’

9

Bazilio, Haeusler, Endler

size and the way of storing messages indicate how the system behaves. Buffer’s
size equals to zero implies rendezvous communication. Messages are stored in
the buffers, which may behave as a queue, stack or even a simple set.

Besides external communication among processes, each process has inter-
nal transitions that may change its state. The state of a process is composed
by a set of local variables and two buffers for storing input and output mes-
sages. These states are important in the specification of properties about
the system. We consider the following syntactic categories: e ∈ Elem =
{Id × Buf × Buf × Loc × Trans}, v ∈ V rt = Set of vertexes, a ∈ Edge =
{V rt × V rt}, gr ∈ Grf = V rt ∪ Edge, ch ∈ Chan = Set of channels, env ∈
Env = Environment.

The abstract syntax of the computation model of LEP is the following:

v : V rt

v : Grf

v1 : V rt v2 : V rt a : Edge

v1
a→ v2 : Grf

gr1 : Grf gr2 : Grf

gr1 gr2 : Grf

gr : Grf f : V rt(gr) → Elem g : Chan → Edge

< gr, f, g >: Env

The semantic rules of the computation model of LEP may be described as
following:

(1)
< ida, bin, bout, α, t >→< ida′, bin′, bout′, α′, t′ >

< gr, f, g >→< gr, f ′, g >

(2) < id, bin, bout, α, ch!m(val)|t >→< id, bin, bout.ch!m(val), α, t >

< id, ch?m(val)|bin, bout, α, t[x] >→< id, bin, bout, α, t[m(val)/x] >

(3)

< ida, bin, ch!m(val)|bout, α1, t >→< ida′, bin, bout, α1, t >

< idb, ch?x|bin2 , bout2 , α2, t2 >→< idb′, ch?m(val)|bin2 , bout2 , α2, t2 >

< gr, f, g >→< gr, f ′, g >

(4)
< id, bin, bout, α, insert(a, v2)|t >→< id, bin, bout, α, t >

< gr, f, g >→< gr′, f, g >

(5)
< id, bin, bout, α, remove(a)|t >→< id, bin, bout, α, t >

< gr, f, g >→< gr′, f, g >

(6)
< id, bin, bout, α, insert(v1)|t >→< id, bin, bout, α, t >

< gr, f, g >→< gr′, f ′, g >

(7)
< id, bin, bout, α, remove(v1)|t >→< id, bin, bout, α, t >

< gr, f, g >→< gr′, f ′, g >

The rules and the respective conditions and contexts are: (1) Evolution of
the system f(v) = A, f ′(v) = A′, {∀v1, v1 6= v, f(v1) = f ′(v1)}; (2) Internal
transitions v1, v2 ∈ gr, f(v1) = A, f(v2) = B, v1

a→ v2 ∈ gr, a ∈ g(ch);
(3) Synchronization rule {v1, v2} ⊂ gr, f(v1) =< id, bin, bout, α, insert(a)|t >
, v1

a→ v2 6∈ gr, gr′ = gr ∪ {v1
a→ v2}; (4) Arrow insertion {v1, v2} ⊂

gr, f(v1) =< id, bin, bout, α, remove(a)|t >, v1
a→ v2 ∈ gr, gr′ = gr − {v1

a→
v2}; (5) Arrow removal f(v) =< id, bin, bout, α, insert(v1)|t >, v ∈ gr, 6

10

Bazilio, Haeusler, Endler

∃e, f(v1) = e, v1 6∈ gr, f ′(v1) = e, e ∈ Elem, gr′ = gr ∪ {v1}; (6) Vertex
insertion {v, v1} ⊂ gr, v

a→ v1 ∈ gr, f(v) =< id, bin, bout, α, remove(v1)|t >
, f ′(v1) = φ, gr′ = gr − {v a→ v1}; (7) Vertex removal;

On these rules, operator ’|’ separates the first and the rest of the messages
in a buffer, ’.’ concatenates a message with a buffer, a t[m(val)/x] is a λ-
abstraction that will evolve the state of the element taking into account that
a message m(val) was received.

2.4 Translation from LEP into its Computation Model

In this section we present a formal description in SOS [16] of how LEP speci-
fications are translated through rewriting rules to the specification of its com-
putation model. In the translation, we map the pronouns to their respective
elements based on the topology and context (place where the pronoun ap-
pears) given. Exchange of messages are described only in the intermediate
code since it is simpler to specify a one to one communication than a one to
many that can be done by the pronouns. Due to the lack of space, we present
part of the formal description of LEP. The rest may be described in a similar
way. Considering the syntactic categories of the previous section, we can add
the following: mid ∈ MId, t ∈ Trans = CExp × Cmd, ce ∈ CExp, m ∈ Msg,
cm ∈ Cmd, ch ∈ Chan, top ∈ Top, bool ∈ Bool, connec ∈ MId → { MId }.

In the semantic model, top is the topology of the network, st is the state
of the translation, which contains the current module’s identifier plus the
topology. Functions f:Pron x MId x Top→{Chan} and g:Chan→ MId x MId
provides information about the topology of the network. Messages in LEP
are translated to messages with two additional arguments that can be seen
as messages’ labels: the sender’s identifier and a boolean value that indicates
whether the message must be forwarded like in pronoun everyone. The se-
mantics rules are the following:

11

Bazilio, Haeusler, Endler

<topology is connections params; mod prop> ¤

Jmod, JprocessTopology(connections,params,mod)KK
<module mid t endmodule> ¤

< bin, bout, assoc, Jt, st(mid, top)K >,

onde : |bin| = |bout| = 0, {∀v assoc(v) = 0}
< tlep1 tlep2 , st(mid, top) > ¤

Jtlep1 , st(mid, top)KJtlep2 , st(mid, top)K
< celep → cmlep, st(mid, top) > ¤

Jcelep, st(mid, top)K ->

JgenerateConditionEveryone(celep, mid, top)K
Jcmlep, st(mid, top)K

< cmlep1 ; cmlep2 , st(mid, top) > ¤

Jcmlep1 , st(mid, top)K ; Jcmlep2 , st(mid, top)K
< if ce then cm endif, st(mid, top) > ¤

if Jce, st(mid, top)K { Jcm, st(mid, top)K }
< neighbours!m, st(mid, top) > ¤

local1 = 0;

while (local1 <= k) {
ch[local1]!m(mid, false);

local1 + +; }
, onde : processPronoun(neighbours, mid, top) = {ch[1], ..., ch[k]},
g(ch[1]) = mid1, g(ch[k]) = midk, {mid1, midk} ∪MId,

k = |processPronoun(neighbours, mid, top)|

The conditions on the translation rules are respectively: (1) |bin| = |bout| =
0, {∀v assoc(v) = 0}; (2)none; (3) none; (4) If the network is unreliable i.e.,
nodes may discard message (5) g(ch) = (m,mid),∀m ∈ MId (7) f(neighbours,mid, top) =
{ch1, ..., chk}, g(ch1) = (mid, id1), g(chk) = (mid, idk)id1..k ∈ MId, 1 ≤ k ≤
|f(neighbours, mid, top)|. Function processTopology generates topology in-
formation in order to be used in the translation, and function generateCon-
ditionEveryone generates commands that tests whether the arrived message
must be forwarded or it was already received, and forwards according to these
conditions.

2.5 Translation from the Computation Model into Promela

In this section we show how the intermediate code of the architecture is
mapped into the constructions of Promela (Spin’s input language)[10]. The
translation is almost straightforward since pronouns were already treated in
the translation from LEP to the intermediate code. Again the description is
not complete due to the lack of space. Considering the syntactic categories of
the previous sections, we have the following rewriting rules:

12

Bazilio, Haeusler, Endler

<< mid, bin, bout, assoc, t > e2, top, prop > ¤

Jdeclare-channel-msgs(mid, t)K Jdeclare-vars(prop)K Jdeclare-runs(mid, top)K
J< mid, bin, bout, assoc, t >, top, propK
Je2, top, propK

<< mid, bin, bout, assoc, t >, top, prop > ¤

proctype mid {
Jdeclare-locals(assoc)K
Jdeclare-init(t)K
do Jt, top, propK od }

< ce → cm, top, prop > ¤

:: JceK→ Jupdate-vars(ce, prop)KJcm, top, propK
< if ce{cm}, top, prop > ¤

if :: JceK→ Jupdate-vars(ce, prop)KJcm, top, propK
:: else fi

In these rules, function declare-channel-msgs defines the channel of mes-
sages and the messages’ type exchanged by the given process, which are nec-
essary in the communication of processes in Promela; function declare-locals
declares the local variables of the process; declare-init inserts into the specifi-
cation the commands that must be executed in beginning of the process and
function increment-count-variables increments the global variables that will
be used by the properties in Spin.

2.6 Translation from the Communication Model into SMV

Similarly to the section 2.5, we present here the translation of the Commu-
nication Model to SMV [6]. The translation is not so straightforward as the
translation to Promela, since SMV does not have primitives for communication
via channels in its basic implementation.

13

Bazilio, Haeusler, Endler

< e1 e2, top, prop > ¤

MODULE main

V AR Jdeclare-globals(e1, e2, top)K
ASSIGN Jassign-globals(e1, e2, top)K
Je1, topKJe2, topK

<< mid, bin, bout, assoc, t >, top > ¤

MODULE mod mid(mid, processes, matrix)

V AR Jdeclare-locals(assoc)KJdeclare-states(t)K
ASSIGN Jassign-initial-states(t)KJt, topK
FAIRNESS running

<< ce → id = expr >, cm, top, pos > ¤

next(id) :=

case order = pos & Jgenerate-pre-conds(ce, id, top)K : JexprK;
esac;

Jce → cm, top, inc(pos)K
<< ce1 → if(ce2){cm1} >, cm2, top, pos > ¤

JJce1K & Jce2K→ cm1, top, posK
Jce1 → cm2, top, inc(pos)K

In the translation rules, function declare-main declares the instances of
the network and passes modules id’s as parameters among the instances in
order to perform the communication; function declare-locals declares the lo-
cal variables like partner that stores the identifier of a partner in a message
exchange; function declare-states declares a variable that stores one of the
possible states of the instances based on the ingoing and outgoing arcs of
the related node in the intermediate code; assign-initial-states assigns the ini-
tial state of the variables; and finally function extract-state-transitions maps
commands of synchronization and assignment to states and state transitions.

3 Example of Use

In this section we describe informally the behaviour of the protocol DSR. In
addition we describe how we model this protocol, the assumptions and how it
was specified in LEP. For a not valid property over this model, we show the
counter-example returned by Spin and how it is converted to another one at
the abstract level of LEP.

3.1 Specification of DSR

Dynamic Source Routing [11] is a simple and efficient routing protocol for
MANETs (Mobile Ad hoc NETworks). Each package sent across the network
carries its route by adding node’s identifiers to its header while it visits them.
Each node keeps a cache of routes, which are learnt by the packages sent via
this node. DSR is composed of two sub-protocols: one for finding out routes
and another for maintaining routes.

14

Bazilio, Haeusler, Endler

When a node wishes to send a package to another node, it searches for a
route to this destiny in its local cache. If this search succeeds, the package is
sent to the first node of the route. This is repeated at every node until the
package reaches its destination. If the search fails, the sub-protocol for finding
routes is activated. In the cases when a routing error occurs, a route error
packet is sent and the nodes which receive it update their cache. This is only
the basic version of DSR, and many other optimizations have been proposed
[11].

3.2 Modelling DSR

We specify the protocol DSR based on the following assumptions: (i) We
assume that all nodes wishing to communicate are willing to participate fully in
the protocol; (ii) Nodes do not suffer from interference (e.g. a host receives two
distinct messages at the same time, which could cause the loss of the messages);
(iii) Nodes within the ad hoc network may move at any time without notice;
(iv) Nodes are distinguishable.

In the figure 4 we can see part of a manual DSR specification in LEP. Due
to lack of space, we do not present the specification of the whole protocol. For
instance, we do not include the cache of routes. Instead each mobile host has
to recalculate a route whenever he needs to send a message.

1 topology is Arbitrary(7) undirected dynamic;

2 module hop

3
 (seq:hop)#int packet;

4
 int order=0;

5
 true ->
 packet#1.clean; packet#1.first = this; packet#1.last = anyother(this);

6
 order = { order, order+1 }; packet#2 = order;

7
 neighbours!rr(packet);

8
 this?rr (packet) ->

9
 if this == packet#1.last then

10
 packet#1.add(this);

11
 packet#1.previous!unicast(packet);

12
 else

13
 if not(packet#1.contains(this)) then

14
 packet#1.add(this);

15
 neighbours!rr(packet);

16
 endif

17
 endif

18
 this?unicast (packet) ->

19
 if this == packet#1.first then

20
 packet#1.next!comm(packet);

21
 else

22
 packet#1.previous!unicast(packet);

23
 endif

24
 this?comm (packet) ->

25
 if this <> packet#1.last then

26
 if neighbours.contains(packet#1.next) then

27
 packet#1.next!comm(packet);

28
 else

29
 sender!packet_error(packet);

30
 packet.remove(packet.range(this,packet#1.last));

31
 endif

32
 endif

33
 this?packet_error (packet) ->

34 endmodule

Fig. 4. Excerpt of DSR specification in LEP

15

Bazilio, Haeusler, Endler

Here we describe some syntactic details of LEP used in the excerpt of the
DSR specification (figure 4) which were not discussed previously. The seman-
tics of this specification is discussed in the next paragraph. Since parameter
dynamic is used in the definition of the topology, the movements of hosts are
implicitly and automatically generated. The symbol ’#’ used in the local dec-
laration (line 3) is a type constructor of LEP, which aggregate other types to
create a composed one. Beyond the basic types int and bool, a type can be a
sequence of values (seq) or a set of values set. For each of those collections we
have a set of ordinary functions to treat them. A complete list is presented
at [1]. In lines 5-6 a mobile host chooses a partner for communicating non-
deterministically. In the specification the symbol ’#’ works as a selector for a
composed type. In line 6 the symbols ({ }) define a non-deterministic choice.
Finally, in line 33 the treatment of the receiving of a packet-error message is
left unspecified. The other commands work as previously described (section
2.2).

About the semantics, the reason for using the parameter dynamic in the
description of the topology is that mobile hosts can move at any time and
at any speed without notice. I.e., these movements are independent of the
specification. So, we decide not to do it explicitly. The initial behaviour of a
mobile host is non-deterministic since in the DSR protocol a host can send a
message whenever he wants. The variable order is used to identify the request
of routes in order to avoid the duplication of responses because of flooding.
Since LEP still does not deal with real-time issues, we model the retransmis-
sions of DSR, which are caused by the timeout of a delayed response to a
request, through a non-deterministic choice of the value of the variable order
(line 6). If we increment this variable, it means a new request. Otherwise,
it means a retransmission. The sending commands at lines 7 and 15 mean
that a request route message is sent through flooding to the entire network of
reachable nodes. In the line 26 a mobile host, after receiving a packet to be
transmitted, verifies whether it still is connected with the next mobile host in
the packet. If it is not connected, an error message (packet error) is sent to
the sender of this packet. The other transitions work as expected.

About DSR we may have the following properties:

Property Result

<>p!rr(q) and [](q!unicast(none) and q!rr(none)) true

[](p!rr)→<> (p!comm) true

[](none!packet error) false

[](none!unicast(p) U p!comm) false

In the translation to Promela made by the architecture, the dynamic move-
ment of nodes is simulated through non-deterministic changes to a matrix of
connections among nodes. This is possible since movements reflect changes
in reachability rather than physical position. Because of these changes, the

16

Bazilio, Haeusler, Endler

property [](none!packet error) is false. The property ([](none!unicast(p) U
p!comm)) is clearly a mistake in the order of formulae.

Properties about a model in Spin regard global variables in the specifica-
tion. Then, many variables have to be generated at the translation phase in
order to specify and verify the properties listed above. It highlights a disadvan-
tage of manually using specification languages less abstract as Promela. About
counter-examples, the counter-example of the property [](none!unicast(p) U
p!comm) returned by Spin as a result of verifying the LEP specification trans-
lated to Promela is presented in the figure 5.

Fig. 5. Counter-example of the property [](none!unicast(p) U p!comm) in XSpin

The counter-example that we aim to obtain at the abstract level of LEP
for the property [](none!unicast(p) U p!comm) is the following:

some1!unicast(p) ⇒ p!comm

A counter-example returned by the architecture is a sequence of actions
a1 ⇒ a2 ⇒ ... ⇒ ak, where each aj is a send/receive command, whose
sender/receiver (actors) must occurs in the property to be verified, a1 is the
starting action of the counter-example, meaning that no relevant action was
taken before it, and ak is the ending action, meaning that no action could
be taken after it. Any identifier other than the reserved words of the proper-
ties (none, everyone, any(k)) is a variable in the counter example. Moreover,
like in the properties, variables with the same name regard the same actor or
message. For instance, in the counter-example some1 (some1 is a generated
variable that regards an actor that not occurs in the property) sends a message
unicast to actor p and, after some steps, it sends a message comm, which is a
contradiction to the formula []none!unicast(p)Up!comm.

Although the counter-example presented in figure 5 is not so hard to un-

17

Bazilio, Haeusler, Endler

derstand, since it only contains 3 actors and 7 messages exchanged, if we add
2 more actors for instance, the number of exchanged messages grows up to 37.
Regardless of the different initial configurations, the counter-example returned
by the architecture is the same in both cases. Then, comparing with counter-
examples in MSC (Message Sequence Chart), the counter-example in the level
of LEP can be seen as a simplification that contains just those elements that
directly regard the property analysed.

In order to provide information for translating the chosen model checker’s
counter-example into a new one at the abstract level of LEP, we insert into
the intermediate code a control variable called codePositionLEP that works
as a marker. This variable is updated at key points of a LEP specification:
at the beginning of each module; at the beginning of a set of transitions; and
at the beginning of a transition’s action, i.e. after a satisfied pre-condition.
Then, when a counter-example is returned at Promela’s level, we can check
the value of the variable and detect which part of the LEP specification is
probably causing the error.

The counter-example returned by the architecture is produced through de
following steps: (1) Generate the negation φ̄Promela of the property φPromela

to be verified; (2) Search in the counter-example for the state where φ̄Promela

is satisfied. At this point we have the simulated command and the marker
(related to LEP); (3) Given the marker and the command at Promela, we
look in the original specification for the related LEP command; (4) If the
execution of the related command depends upon a pre-condition in LEP, the
agent of the pre-condition must also occurs in the counter-example; (5) We
repeat the process until we do not find any new pre-condition. Then, the
counter-example is the sequence built.

4 Related Work

IF toolbox [3] is a validation platform for timed asynchronous systems. It is
built upon an intermediate representation language based on extended timed
automata. The toolbox contains dedicated tools on the intermediate language,
like compilers, static analysers and model-checkers, as well as front-ends to
various specification languages and validation tools. Aside the timed features,
our approach differs from the IF toolbox in the input language, since we just
accepts LEP specifications for now and IF has various front-ends, the focus of
the architecture and the attribute network grammar that adds the capability
of validating the specification with many different topologies.

SAL [2] is a framework that combines different tools for abstraction, pro-
gram analysis, theorem proving, and model checking toward calculating prop-
erties of concurrent systems. The core of SAL is its intermediate language
for specifying concurrent systems in a compositional way. SAL specification
language is closer to a general-purpose model checker’s input language. Com-
paring the input languages, abstraction caused by the use of pronouns in LEP

18

Bazilio, Haeusler, Endler

is the main difference. It also suggests an implementation that replaces our
intermediate language by SAL’s intermediate language.

In [5] is presented an extension of the framework ASM-WB (Abstract State
Machines Workbench) for SMV and MDG. ASM-SL is the specification lan-
guage and ASM-IL the intermediate one that enables the use of different
verification tools. This work is similar to our approach. In both cases there is
an input language where models are specified. ASM-SL is based on domains
and functions and is more suitable to transition systems, while in LEP process
calculus take place. As an advantage, LEP provides pronouns for simplify-
ing the specification. The authors argue that the model checker’s result can
be parsed in order to generate a higher-level result. However, it is still not
implemented.

In [13], the author uses an abstract language called TAP and its compu-
tation model in order to talk about assumptions taken in the verification of
network protocols. The execution model can be used in translating an abstract
protocol specification from this language into C program as a way of turning
the specification executable. In our case the generated model checker’s models
provide the executability of our architecture. In spite of being an abstract lan-
guage, elements in the network are referred explicitly through their identifiers.
In many scenarios in this work we could see how valuable would be the use
of pronouns. The idea of translating between specifications is similar to ours.
However, we do it in two steps in order to ease the use of different verification
tools.

5 Conclusion

From this work we can conclude that domain specific languages can improve
greatly the task of mobile protocol specification when comparing with lan-
guages designed to general-purpose. In addition, LEP’s pronouns can really
simplify the specification of intricating mobile protocols behaviours as broad-
cast, multicast or agreement algorithms. Implementation concerns as the repli-
cation of messages that arises when flooding in the translation of the pronoun
everyone are treated implicitly through the translations to the intermediate
representation.

About pronouns, everyone interpretation is a little bit tricky since one can
imagine that it regards to the whole set of nodes that are reachable from a
specific node. However, as this set changes accordingly to the dynamic be-
haviour of the network, probably a node would wait indefinitely for everyone’s
response. Furthermore, when using this pronoun in the model’s properties for
verification, it regards a state of the system where every process has received
a specific message rather than a state of a process, which received messages
from every process in the system. Another point is that some pronouns are
not suitable to every situation. For example, it does not make sense to use a
sender pronoun in a receive command, since its value is only assigned in the

19

Bazilio, Haeusler, Endler

action associated to a receive command. Despite these details, the advantage
of using pronouns seems to be clear.

From the related work, we see that the integration of the proposed archi-
tecture with projects that aim the translation among different model checker’s
input language like SAL [2] is a promising step. We would join the power of
translation of those projects with the expressiveness of LEP.

Considering the manual specifications of the mobile protocols in Spin, the
whole specification of DSR is about five times greater than the specification
in LEP. The specification in SMV is even bigger due to limitations in its input
language. It affects readability, maintainability and mainly trustfulness in the
specification and in the counter-examples obtained. Nevertheless, since our
architecture still do not optimize the generated code, our approach does not
attack the state explosion problem.

Another extension will be to allow the input of the specifications in the
MSC (Message Sequence Chart) format. It is quite desirable since the ma-
jority of protocol designers are used to this format. Probably we will face
some difficulties like to turn the specification of these charts more precise.
In addition, we will have to propose a graphical representation for the LEP
pronouns.

About DSR and other protocols analysed, due to smart state exploration
of most model checking techniques, it was possible to verify properties without
having to instantiate so many objects as found in real life. The specification
raised the question about how we can find a minimal model (regarding the
number of instances) that is enough to represent the system in the context of
the properties to be verified. It would become useless the number of instances
given in the topology declaration of the specification in LEP. This is beyond
the scope of this paper and will be part of our future work.

References

[1] Bazilio, C. and E. H. Haeusler, An architecture for the verification of protocolos
and distributed algorithms (2005), www.inf.puc-rio.br/b̃azilio/research.html,
PUC-RJ.

[2] Bensalem, S. and et al, An overview of sal, in: C. M. Holloway, editor, LFM
2000, 2000.
URL citeseer.ist.psu.edu/article/bensalem00overview.html

[3] Bozga, M., S. Graf and L. Mounier, IF-2.0: A validation environment for
component-based real-time systems, in: CAV’02, Copenhagen, number 2404 in
LNCS (2002).

[4] Carnap, R., “An Introduction to the Philosophy of Science,” Ed.Martin
Gardner, Dover Publications, Inc, 1995.

[5] Castillo, G. D. and K. Winter, Model checking support for the asm high-level
language, in: Tools and Algorithms for Construction and Analysis of Systems,

20

Bazilio, Haeusler, Endler

2000.
URL citeseer.ist.psu.edu/delcastillo00model.html

[6] Cimatti, A., E. M. Clarke, F. Giunchiglia and M. Roveri, NUSMV: A new
symbolic model checker, Int. Journal on Software Tools for Technology Transfer
2 (2000).

[7] Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” The MIT
Press, 2000.

[8] Cordy, J., Txl - a language for programming language tools and applications,
in: Proc. LDTA 2004, 2004.

[9] Cruz, S. O., C. J. P. Lucena and J. L. M. Rangel, Identifying objects through
pronouns (2001), monographs in Computer Science; 39/01, PUC-RJ, 2001.

[10] Holzmann, G. J., The model checker SPIN, Software Engineering 23 (1997),
pp. 279–295.

[11] Johnson, D. B., D. A. Maltz and Y.-C. Hu, The dynamic source routing protocol
for mobile ad hoc networks (dsr) (2003), iETF MANET Working Group.

[12] Maibaum, T. S. E. and A. M. Haeberer, Scientific rigour, an answer to a
pragmatic question: A linguistic framework for software engineering, in: ICSE
2001, 2001.

[13] McGuire, T. M., Correct implementation of network protocols (2004), ph.D.
thesis, The University of Texas at Austin.

[14] Milner, R., “Communication and Concurrency,” Int. Series in Computer
Science. Prentice Hall, 1989.

[15] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, parts i
and ii, Information and Computation 100(1) (1992), pp. 1–77.

[16] Plotkin, G. D., A Structural Approach to Operational Semantics, Technical
Report DAIMI FN-19, University of Aarhus (1981).
URL citeseer.ist.psu.edu/plotkin81structural.html

[17] Popper, K., “Conjectures and Refutations,” Routledge and Kegan. Paul
Limited, 1963.

21

