
2 General Recursive Functions

In the preceding chapter, we saw an overview of several possible formalizations of the
concept of effective calculability. In this chapter, we focus on one of those: primitive
recursiveness and search, which give us the class of general recursive partial functions.
In particular, we develop tools for showing that certain functions are in this class.
These tools will be used in Chapter 3, where we study computability by register-
machine programs.

2.1 Primitive Recursive Functions

The primitive recursive functions have been defined in the preceding chapter as the
functions on N that can be built up from zero functions

f (x1, . . . , xk) = 0,

the successor function

S(x) = x + 1,

and the projection functions

Ik
n(x1, . . . , xk) = xn

by using (zero or more times) composition

h(Ex) = f (g1(Ex), . . . , gn(Ex))

and primitive recursion

h(Ex, 0) = f (Ex)
h(Ex, y + 1) = g(h(Ex, y), Ex, y),

where Ex can be empty:

h(0) = m

h(y + 1) = g(h(y), y).

Example: Suppose we are given the number m = 1 and the function g(w, y) = w ·
(y + 1). Then the function h obtained by primitive recursion from g by using m is the

Computability Theory. DOI: 10.1016/B978-0-12-384958-8.00002-8
Copyright c� 2011 Elsevier Inc. All rights reserved.

30 Computability Theory

function given by the pair of equations

h(0) = m = 1

h(y + 1) = g(h(y), y) = h(y) · (y + 1).

Using this pair of equations, we can proceed to calculate the values of the function h:

h(0) = m = 1

h(1) = g(h(0), 0) = g(1, 0) = 1

h(2) = g(h(1), 1) = g(1, 1) = 2

h(3) = g(h(2), 2) = g(2, 2) = 6

h(4) = g(h(3), 3) = g(6, 3) = 24

And so forth. In order to calculate h(4), we first need to know h(3), and to find that
we need h(2), and so on. The function h in this example is, of course, better known as
the factorial function, h(x) = x!.

It should be pretty clear that given any number m and any two-place function g,
there exists a unique function h obtained by primitive recursion from g by using m.
It is the function h that we calculate as in the preceding example. Similarly, given a
k-place function f and a (k + 2)-place function g, there exists a unique (k + 1)-place
function h that is obtained by primitive recursion from f and g. That is, h is the function
given by the pair of equations

h(Ex, 0) = f (Ex)
h(Ex, y + 1) = g(h(Ex, y), Ex, y).

Moreover, if f and g are total functions, then h will also be total.

Example: Consider the addition function h(x, y) = x + y. For any fixed x, its value at
y + 1 (i.e., x + y + 1) is obtainable from its value at y (i.e., x + y) by the simple step
of adding one:

x + 0 = x

x + (y + 1) = (x + y) + 1.

This pair of equations shows that addition is obtained by primitive recursion from
the functions f (x) = x and g(w, x, y) = w + 1. These functions f and g are prim-
itive recursive; f is the projection function I1

1 , and g is obtained by composition
from successor and I3

1 . Putting these observations together, we can form a tree show-
ing how addition is built up from the initial functions by composition and primitive
recursion:

General Recursive Functions 31

h(x, y) = x + y
rec

I1
1(x) = x

�
��

g(w, x, y) = w + 1
comp

Q
Q

QQ

S(x) = x + 1
�

�
�

I3
1(w, x, y) = w

@
@

@

More generally, for any primitive recursive function h, we can use a labeled tree
(“construction tree”) to illustrate exactly how h is built up, as in the example of addi-
tion. At the top (root) vertex, we put h. At each minimal vertex (a leaf), we have an
initial function: the successor function, a zero function, or a projection function. At
each other vertex, we display either an application of composition or an application of
primitive recursion.

An application of composition

h(Ex) = f (g1(Ex), . . . , gn(Ex))

can be illustrated in the tree by a vertex with (n + 1)-ary branching:

h
comp

f

������

g1

�
�

�

· · · gn

Q
Q

Q
QQ

Here f must be an n-place function, and g1, . . . , gn must all have the same number
of places as h.

An application of primitive recursion to obtain a (k + 1)-place function h

(
h(Ex, 0) = f (Ex)
h(Ex, y + 1) = g(h(Ex, y), Ex, y)

can be illustrated by a vertex with binary branching:

h
rec

f

�
�

�

g

@
@

@

32 Computability Theory

Note that g must have two more places than f , and one more place than h (e.g., if h
is a two-place function, then g must be a three-place function and f must be a one-place
function).

The k = 0 case, where a one-place function h is obtained by primitive recursion
from a two-place function g by using the number m

(
h(0) = m
h(x + 1) = g(h(x), x),

can be illustrated by a vertex with unary branching:

h
rec(m)

g

In both forms of primitive recursion (k > 0 and k = 0), the key feature is that the
value of the function at a number t + 1 is somehow obtainable from its value at t. The
role of g is to explain how.

Every primitive recursive function is total. We can see this by “structural induc-
tion.” For the basis, all of the initial functions (the zero functions, the successor func-
tion, and the projections functions) are total. For the two inductive steps, we observe
that composition of total functions yields a total function, and primitive recursion
applied to total functions yields a total function. So for any primitive recursive func-
tion, we can work our way up its construction tree. At the leaves of the tree, we have
total functions. And each time we move to a higher vertex, we still have a total func-
tion. Eventually, we come to the root at the top, and conclude that the function being
constructed is total.

Next we want to build up a catalog of basic primitive recursive functions. These
items in the catalog can then be used as “off the shelf” parts for later building up of
other primitive recursive functions.

1. Addition hx, yi 7! x + y has already been shown to be primitive recursive.

The symbol “7!” is read “maps to.” The symbol gives us a very convenient way
to name functions. For example, the squaring function can be named by the lengthy
phrase “the function that given a number, squares it,” which uses the pronoun “it” for
the number. It is mathematically convenient to use a letter (such as x or t) in place
of this pronoun. This leads us to the names “the function whose value at x is x2” or
“the function whose value at t is t2.” More compactly, these names can be written in
symbols as “x 7! x2” or “t 7! t2.” The letter x or t is a dummy variable; we can use
any letter here.

2. Any constant function Ex 7! k can be obtained by applying composition k times to
the successor function and the zero function Ex 7! 0. For example, the three-place
function that constantly takes the value 2 can be constructed by the following tree:

General Recursive Functions 33

h(x, y, z) = 2
comp

S(u) = u + 1

�
��

g(x, y, z) = 1
comp

Q
Q

QQ

S(u) = u + 1
�

�
�

f (x, y, z) = 0
@

@
@

3. For multiplication hx, yi 7! x ⇥ y, we first observe that

x ⇥ 0 = 0
x ⇥ (y + 1) = (x ⇥ y) + x.

This shows that multiplication is obtained by primitive recursion from the functions
x 7! 0 and hw, x, yi 7! w + x. The latter function is obtained by composition
applied to addition and projection functions.

We can now conclude that any polynomial function with positive coefficients is
primitive recursive. For example, we can see that the function p(x, y) = x2y + 5xy +
3y3 is primitive recursive by repeatedly applying 1, 2, and 3.

4. Exponentiation hx, yi 7! xy is similar:

x0 = 1
xy+1 = xy ⇥ x.

5. Exponentiation hx, yi 7! yx is obtained from the preceding function by composi-
tion with projection functions. (The functions in items 4 and 5 are different func-
tions; they assign different values to h2, 3i. The fact that they coincide at h2, 4i is
an accident.)

We should generalize this observation. For example, if f is primitive recursive, and
g is defined by the equation

g(x, y, z) = f (y, 3, x, x)

then g is also primitive recursive, being obtained by composition from f and projec-
tion and constant functions. We will say in this situation that g is obtained from f by
explicit transformation. Explicit transformation permits scrambling variables, repeat-
ing variables, omitting variables, and substituting constants.

6. The factorial function x! satisfies the pair of recursion equations

0! = 1
(x + 1)! = x! ⇥(x + 1).

From this pair of equations, it follows that the factorial function is obtained by
primitive recursion (by using 1) from the function g(w, x) = w · (x + 1). (See the
example at the beginning of this chapter.)

34 Computability Theory

7. The predecessor function pred(x) = x � 1 (except that pred(0) = 0) is obtained by
primitive recursion from I2

2 :

pred (0) = 0

pred (x + 1) = x.

This pair of equations leads to the tree:

pred
rec(0)

I2
2(w, x) = x

8. Define the proper subtraction function x�· y by the equation x�· y = max(x�y, 0).
This function is primitive recursive:

x �· 0 = x

x �· (y + 1) = pred(x �· y)

This pair of recursion equations yields the following construction tree:

h(x, y) = x �· y
rec

I1
1(x) = x

�
��

g(w, x, y) = pred(w)
comp

Q
Q

QQ

pred(w)
rec(0)

�
��

I2
2(w, x) = x

I3
1(w, x, y) = w
@

@
@

By the way, the symbol �· is sometimes read as “monus.”
9. Assume that f is primitive recursive, and define the functions s and p by the equa-

tions

s(Ex, y) =
X

t<y

f (Ex, t) and p(Ex, y) =
Y

t<y

f (Ex, t)

(subject to the standard conventions for the empty sum
P

t<0 f (Ex, t) = 0 and the
empty product

Q
t<0 f (Ex, t) = 1). Then both s and p are primitive recursive. For p,

we have the pair of equations:

p(Ex, 0) = 1

p(Ex, y + 1) = p(Ex, y) · f (Ex, y)

General Recursive Functions 35

10. Define the function z by the equation

z(x) =
(

1 if x = 0
0 if x > 0.

That is, the function z looks to see if its input is zero, and returns Yes (i.e., 1) if
it is zero; otherwise, it returns No (i.e., 0). The function z is primitive recursive.
We can see this from the equation z(x) = 0x. More directly, we can see it from the
equation z(x) = 1 �· x. And even more directly, we can see it from the recursion
equations

z(0) = 1

z(x + 1) = 0

showing that z is obtained by primitive recursion (by using 1) from the function
g(w, x) = 0.

z
rec(1)

g(w, x) = 0

11. In a similar vein, the function h that checks its two inputs x and y to see whether
or not x y

h(x, y) =
(

1 if x y
0 if otherwise

is primitive recursive because h(x, y) = z(x �· y).

Items 10 and 11 can be reformulated in terms of relations (instead of functions).
Suppose that R is a k-ary relation on the natural numbers, that is, R is some set of
k-tuples of natural numbers: R ✓ Nk. We define R to be a primitive recursive relation
if its characteristic function

CR(x1, . . . , xk) =
(

1 if hx1, . . . , xki 2 R
0 if otherwise

is a primitive recursive function. For example, item 11 states that the ordering relation
{hx, yi | x y} is a primitive recursive binary relation. And item 10 states that {0} is a
primitive recursive unary relation.

From composition, we derive the substitution rule: If Q is an n-ary primitive recur-
sive relation, and g1, . . . , gn are k-place primitive recursive functions, then the k-ary
relation

{Ex | hg1(Ex), . . . , gn(Ex)i 2 Q}

is primitive recursive because its characteristic function is obtained from CQ and
g1, . . . , gn by composition.

36 Computability Theory

From a relation Q, we can form its complement Q:

Q = {Ex | Ex is not in Q}

From two k-ary relations Q and R (for the same k), we can form their intersection,

Q \ R = {Ex | both Ex 2 Q and Ex 2 R}

and their union

Q [R = {Ex | either Ex 2 Q or Ex 2 R or both}.

We can streamline the notation slightly by writing, instead of Ex 2 Q, simply Q(Ex).
In this notation,

Q = {Ex | not Q(Ex)},
Q \ R = {Ex | both Q(Ex) and R(Ex)},
Q [R = {Ex | either Q(Ex) or R(Ex) or both}.

The following theorem assures us that these constructions preserve primitive recur-
siveness. That is, when applied to primitive recursive relations, they produce primitive
recursive relations. This theorem will be useful in extending our supply of primitive
recursive relations and functions.

Theorem: Assume that Q and R are k-ary primitive recursive relations. Then the fol-
lowing relations are also primitive recursive:

(a) The complement Q of Q:

Q = {Ex | not Q(Ex)}

(b) The intersection Q \ R of Q and R:

Q \ R = {Ex | both Q(Ex) and R(Ex)}

(c) The union Q [R of Q and R:

Q [R = {Ex | either Q(Ex) or R(Ex) or both}

Proof.

(a)
CQ(Ex) = z(CQ(Ex))

where z is the function from 10. That is, CQ is obtained by composition from functions
known to be primitive recursive. The other parts are proved similarly; we need to make the
characteristic function from primitive recursive parts.

General Recursive Functions 37

(b)

CQ\R(Ex) = CQ(Ex) · CR(Ex)

(c)

CQ[R(Ex) = pos[CQ(Ex) + CR(Ex)]

where pos is the function from Exercise 5.
a

For example, we can apply this theorem to conclude that > and = are primitive
recursive relations:

12. The relation {hx, yi | x > y} is primitive recursive because it is the complement
of the relation from item 11.

13. The relation {hx, yi | x = y} is primitive recursive because it is the intersection of
the and the � relations, and � is obtained from by explicit transformation.

It follows from item 13 and the substitution rule that for any primitive recursive
function f , its graph

{hEx, yi | f (Ex) = y}

is a primitive recursive relation.

Definition by cases: Assume that Q is a primitive recursive k-ary relation, and that
f and g are primitive recursive k-place functions. Then the function h defined by the
equation

h(Ex) =
(

f (Ex) if Q(Ex)
g(Ex) if not Q(Ex)

is also primitive recursive.

Proof. h(Ex) = f (Ex) · CQ(Ex) + g(Ex) · CQ(Ex). a

This result can be extended to more than two cases; see Exercise 12. For example,
we might want to handle an equation of the form

h(Ex) =

8
>>>><

>>>>:

f1(Ex) if Q(Ex) and R(Ex)
f2(Ex) if Q(Ex) and not R(Ex)
f3(Ex) if R(Ex) and not Q(Ex)
f4(Ex) if neither Q(Ex) nor R(Ex)

38 Computability Theory

or one of the form

h(Ex) =

8
>>>>><

>>>>>:

f1(Ex) if Q1(Ex)
f2(Ex) if Q2(Ex)
· · · · · ·
f9(Ex) if Q9(Ex)
f10(Ex) if none of the above

in a situation in which it is known that no two of Q1, . . . , Q9 can hold simultaneously.
Moreover, from a k-ary relation Q, we can form

{hx1, . . . , xk�1, yi | for every t < y, hx1, . . . , xk�1, ti 2 Q},

which can be written in better notation as

{hEx, yi | (8t < y) Q(Ex, t)},

where the symbol 8 is read “for all.” In the same spirit, we can form

{hx1, . . . , xk�1, yi | for some t < y, hx1, . . . , xk�1, ti 2 Q},

which is better written as

{hEx, yi | (9t < y) Q(Ex, t)},

where the symbol 9 is read as “there exists . . . such that.”
Again, these constructions preserve primitive recursiveness:

Theorem: Assume that Q is a (k + 1)-ary primitive recursive relation. Then the fol-
lowing relations are also primitive recursive:

(a)

{hEx, yi | (8t < y) Q(Ex, t)}

(b)

{hEx, yi | (9t < y) Q(Ex, t)}

Proof.

(a) The value of the characteristic function at hEx, yi is

Y

t<y

CQ(Ex, t).

Apply item 9.

General Recursive Functions 39

(b) The value of the characteristic function at hEx, yi is

pos

2

4
X

t<y

CQ(Ex, t)

3

5

where pos is the function from Exercise 5. This is primitive recursive by item 9 and
Exercise 5. a

For example, we can apply these results to show that the relation

{hx, yi | (9q < y + 1)[x · q = y]}

is primitive recursive. We do this by looking at the way the above line is written, and
then filling in the details. First of all, the ternary relation

R1(x, y, q) () x · q = y

is obtained from the equality relation by substituting the functions hx, y, qi 7! x · q
and I3

2 . Secondly, an application of the preceding theorem then shows that the ternary
relation

R2(x, y, z) () (9q < z)[x · q = y]

is primitive recursive. Finally, we apply substitution:

(9q < y + 1)[x · q = y] () R2(x, y, y + 1).

In short, we can show that this relation is primitive recursive by examining the syntac-
tical form of its definition and verifying that it has been built up by using only pieces
that are known to be primitive recursive.

14. The divisibility relation x | y, that is, the relation

{hx, yi | x divides y with 0 remainder},

is primitive recursive. (Here we adopt the convention that 0 divides itself, but it
does not divide any positive integer.) This is because

x | y () for some quotient q, we have x · q = y

() (9q y)[x · q = y]

() (9q < y + 1)[x · q = y].

That is, the relation we examined in the foregoing example is nothing but the
divisibility relation!

40 Computability Theory

In effect, we are building up a certain language such that any function or relation
definable in the language is guaranteed to be primitive recursive. (For divisibility,
the crucial fact was that the expression “(9q < y + 1)[x · q = y]” belonged to this
language.) This language includes the following:

l Variables: The projection functions are primitive recursive.
l Constants (numerals): The constant functions are primitive recursive.
l Function symbols: We can use symbols for any primitive recursive function in the list we

are building up (+, ⇥, �· , . . . , with more to come).
l Combinations:

P
x<y,

Q
x<y, with more to come.

l Relation symbols: We can use symbols for any primitive recursive relation in the list we are
building up (, =, |, . . . , with more to come).

l More combinations: “not,” “and,” “or” can be applied to relations.
l Bounded “quantifiers”: 8x < y and 9x < y. (The upper bound y is needed here.)

We have theorems assuring us that functions or relations expressible in this language
are certain to be primitive recursive.

For example, we next add the set of primes (as a unary relation) to our list:

15. The set {2, 3, 5, . . .} of prime natural numbers (as a unary relation on N) is prim-
itive recursive. To see this, observe that

x is prime () 1 < x and (8u < x)(8v < x)[uv 6= x],

and the right-hand side is written within the language available to us.

2.1.1 Bounded Search

The search operator (often called minimalization or the µ-operator) provides a useful
way of defining a function in terms of a “search” for the first time a given condition is
satisfied.

Definition: For a (k + 1)-ary relation P, the number (µt < y)P(Ex, t) is defined by the
equation:

(µt < y)P(Ex, t) =
(

the least t such that t < y and P(Ex, t), if any
y if there is no such t

For example, if we let

f (x, y) = µt < y[t is prime and x < t]

then f (6, 4) = 4 and f (6, 8) = f (6, 800) = 7.

Theorem: If P is a primitive recursive relation, then the function

f (Ex, y) = (µt < y)P(Ex, t)

is a primitive recursive function.

General Recursive Functions 41

Proof. We will apply primitive recursion. Trivially f (Ex, 0) = 0, so there is no problem
here. The problem to see how f (Ex, y+1) (call this b) depends on f (Ex, y) (call this a):

l If a < y, then b = a. (The search below y succeeded.)
l If a = y and P(Ex, y), then b = y.
l Otherwise, b = y + 1.

Thus, if we define

g(a, Ex, y) =

8
><

>:

a if a < y
y if a 6< y and P(Ex, y)
y + 1 if a 6< y and not P(Ex, y),

then f is obtained by primitive recursion from the functions Ex 7! 0 and g. Because P
is a primitive recursive relation, it follows that g is primitive recursive (by definition-
by-cases), and hence f is primitive recursive. a

There is another proof of this theorem, which relies on the following remarkable
equation:

(µt < y)P(Ex, t) =
X

u<y

Y

tu

CP(Ex, t)

A related search operator is bounded maximalization. Define the µ-operator as
follows:

(µt y)P(Ex, t) =
(

the largest number t such that t y and P(Ex, t), if any
0 if there is no such t

Theorem: If P is a primitive recursive relation, then the function

f (Ex, y) = (µt y)P(Ex, t)

is a primitive recursive function.

Proof.

(µt y)P(Ex, t) = y �· (µs < y)P(Ex, y �· s).

This equation captures the idea of searching down from y. a

Euclid observed that the set of prime numbers is unbounded. Hence the function

h(x) = the smallest prime number larger than x

is total. It is also primitive recursive because

h(x) = µt < (x! +2)[t is prime and x < t].

The upper bound x! +2 suffices because for any prime factor p of x! +1, we have
x < p x! +1. So any search for a prime larger than x need go no further than x! +1.

42 Computability Theory

Digression: There is an interesting result in number theory here. “Bertrand’s postulate”
states that for any x > 3, there will always be a prime number p with x < p < 2x � 2.
(Bertrand’s postulate implies that in the previous paragraph, it suffices to use simply
h(x) = µt < (2x+3)[t is prime and x < t].) In 1845, the French mathematician Joseph
Bertrand, using prime number tables, verified this statement for x below three million.
Then in 1850, the Russian P. L. Chebyshev (Tchebychef) proved the result in general.
In 1932, the Hungarian Paul Erdős gave a better proof, which can now be found in
undergraduate number theory textbooks. The origin of

Chebyshev said it
So I’ll say it again

There’s always a prime
Between N and 2N

is unknown, which may be just as well.

Define px to be the (x + 1)st prime number, so that

p0 = 2, p1 = 3, p2 = 5, p3 = 7, p4 = 11,

and so forth. In other words, px is the xth odd prime, except that p0 = 2. (The prime
number theorem tells us that px grows at a rate something like x ln x, but that is beside
the point.)

16. The function x 7! px is primitive recursive because we have the recursion
equations

p0 = 2

px+1 = h(px),

where h is the above function that finds the next prime.
It is easy to see that we always have x+1 < px; a formal proof can use induction.

We will need methods for encoding a string of numbers by a single number. One
method that is conceptually simple uses powers of primes. We define the “bracket
notation” as follows.

[] = 1

[x] = 2x+1

[x, y] = 2x+13y+1

[x, y, z] = 2x+13y+15z+1

· · ·
[x0, x1, . . . , xk] = 2x0+13x1+1 · · · pxk+1

k

For example, [2, 1] = 72 and [2, 1, 0] = 360. Clearly, for any one value of k, the
function

hx0, x1, . . . , xki 7! [x0, x1, . . . , xk]

General Recursive Functions 43

is a primitive recursive (k + 1)-place function. But encoding is useless, unless we
can decode. (The “fundamental theorem of arithmetic” is the statement that every
positive integer has a factorization into primes, unique up to order. For decoding, we
are implicitly exploiting the uniqueness of prime factorization.) Item 17 will give a
primitive recursive decoding function.

Digression: Using powers of primes is by no means the only way to encode a string
of numbers. It is a very convenient method for our present purposes, but there are a
number of other methods. Here is a very different approach:

hx0, x1, . . . , xki 7! 1 00 · · · 0| {z }
x0

1 00 · · · 0| {z }
x1

1 · · · · · · 1 00 · · · 0| {z }
xk two

That is, a sequence of length n can be coded by the number whose binary representa-
tion has n 1’s. The number of 0’s that follow the ith 1 in the representation corresponds
to the ith component in the sequence.

Here are some examples:

h0, 3, 2i 7! 11000100two = 188

h2, 1, 0i 7! 100101two = 37

h i 7! 0two = 0

h7i 7! 10000000two = 128

h0, 0, 0, 0i 7! 1111two = 31

These values can be compared with the values yielded by the bracket notation:
[0, 3, 2] = 21 ·34 ·53 = 20, 250, [2, 1, 0] = 23 ·32 ·51 = 360, [] = 1, [7] = 28 = 256,
[0, 0, 0, 0] = 2 · 3 · 5 · 7 = 210.

In particular, suppose we want to encode a sequence of two numbers. This method
yields

hm, ni 7! 1 00 · · · 0| {z }
m

1 00 · · · 0| {z }
n two

= 2m+n+1 + 2n = 2n(2m+1 + 1).

The bracket notation yields simply [m, n] = 2m+1 · 3n+1. Both of these “pairing func-
tions” have the feature that they grow exponentially as m and n increase.

Interestingly, there are polynomial pairing functions, and here is one:

J(m, n) = 1
2
((m + n)2 + 3m + n).

The function J is one-to-one, so the pair hm, ni is recoverable from the value J(m, n).
In fact the function J maps N ⇥ N one-to-one onto N.

And where does J come from? Here is a clue. Calculate J(m, n) for all small values
of m and n, say m + n 4. Then make a chart in the plane, by placing the number
J(m, n) at the point in the plane with coordinates hm, ni. Check if a pattern is emerging.

44 Computability Theory

17. There is a primitive recursive two-place “decoding” function, whose value at
hx, yi is written (x)y, with the property that whenever y k,

([x0, x1, . . . , xk])y = xy.

That is,

(code for a sequence)y = the (y + 1)st term of the sequence.

For example, (72)0 = 2 and (72)1 = 1 because 72 = [2, 1].
First, observe that the exponent of a prime q in the factorization of a positive

integer x is

µe
⇣

qe+1 - x
⌘
,

the smallest e for which e + 1 would be too much. We can bound the search at x
because if qe | x, then e < qe x. That is, the exponent of q in the factorization of x is

(µe < x)
⇣

qe+1 - x
⌘
.

Now suppose that prime q is py. We define

(x)⇤y = (µe < x)
⇣

pe+1
y - x

⌘

so that (x)⇤y is the exponent of py in the prime factorization of x.
Secondly, for our decoding function, we need one less than the exponent of the

prime py in the factorization of the sequence code. Accordingly, we define

(x)y = (x)⇤y �· 1 = (µe < x)
⇣

pe+1
y - x

⌘
�· 1.

The right-hand side of this equation is written in our language, so the function is
primitive recursive. The function tests powers of py until it finds the largest one in the
factorization of x, and then it backs down by 1. If py does not divide x, then (x)y = 0,
harmlessly enough. Also (0)y = 0, but for a different reason.

18. Say that y is a sequence number if either y = [] or y = [x0, x1, . . . , xk] for some
k and some x0, x1, . . . , xk. For example, 1 is a sequence number but 50 is not.
The set of sequence numbers is primitive recursive; see Exercise 14. The set of
sequence numbers starts off as {1, 2, 4, 6, 8, 12, . . .}.

19. There is a primitive recursive function lh such that

lh[x0, x1, . . . , xk] = k + 1.

For example, lh(360) = 3. Here “lh” stands for “length.” We define

lh(x) = (µk < x)
�
pk - x

�
.

Thus, for example, lh(50) = 1.

General Recursive Functions 45

It is apparent from its definition that this function is primitive recursive. The upper
bound on the µ search is adequate because if pk�1 | x, then (k � 1) + 1 < pk�1 x.

If s is a sequence number of positive length, then

(s)lh(s)�· 1

will be the last component of the sequence.

20. There is a two-place primitive recursive function whose value at hx, yi is called
the restriction of x to y, written x � y, with the property that whenever y k + 1
then

[x0, x1, . . . , xk] � y = [x0, x1, . . . , xy�1].

That is, the restriction of x to y gives us the first y components of the sequence.
We define

x � y =
Y

i<y

p(x)⇤i
i .

For example, if s is a sequence number, then s � (lh(s) �· 1) will encode the
result of deleting the last item in the sequence, if any.

21. There is a two-place primitive recursive function whose value at hx, yi is called
the concatenation of x and y, written x ⇤ y, with the property that whenever x and
y are sequence numbers, then x ⇤ y is the sequence number of length lh(x) + lh(y)
whose components are first the components of x and then the components of y.
We define

x ⇤ y = x ·
Y

i<lh(y)

p(y)⇤i
i+lh(x).

For example, 72⇤72 = [2, 1, 2, 1] = 441, 000. If s is a sequence number, then
s ⇤ [x] will encode the result of adjoining x to the end of the sequence.

22. We can also define a “capital asterisk” operation. Let

⇤t<yat = a0 ⇤ a1 ⇤ · · · ⇤ ay�1

(grouped to the left). If f is a primitive recursive (k + 1)-place function, then so
is the function whose value at hEx, yi is ⇤t<yf (Ex, t), as can be seen from the pair of
recursion equations:

⇤t<0 f (Ex, t) = 1

⇤t<y+1 f (Ex, t) = ⇤t<y f (Ex, t) ⇤ f (Ex, y)

For any (k + 1)-place function f , we define f by the equation

f (Ex, y) = [f (Ex, 0), f (Ex, 1), . . . , f (Ex, y � 1)]

so that the number f (Ex, y) encodes y values of f , namely the values f (Ex, t) for
all t < y. For example, f (Ex, 0) = [] = 1, encoding 0 values. And f (Ex, 2) =
[f (Ex, 0), f (Ex, 1)]. Clearly f (Ex, y) is always a sequence number of length y.

46 Computability Theory

23. If f is primitive recursive, then so is f because

f (Ex, y) =
Y

i<y

p f (Ex,i)+1
i .

Now suppose we have a (k + 2)-place function g. Then there exists a unique
function (k + 1)-place f satisfying the equation

f (Ex, y) = g(f (Ex, y), Ex, y)

for all Ex and y. For example,

f (Ex, 0) = g([], Ex, 0) = g(1, Ex, 0)

f (Ex, 1) = g([f (Ex, 0)], Ex, 1)

f (Ex, 2) = g([f (Ex, 0), f (Ex, 1)], Ex, 2)

and so forth. The function f is determined recursively; we can find f (Ex, y) after
we know f (Ex, t) for all t < y.

24. Assume that g is a primitive recursive (k + 2)-place function, and let f be the
unique (k + 1)-place function for which

f (Ex, y) = g(f (Ex, y), Ex, y)

for all Ex and y. Then f is also primitive recursive.
To see that f is primitive recursive, we first examine f . We have the pair of

recursion equations

f (Ex, 0) = 1

f (Ex, y + 1) = f (Ex, y) ⇤ [g(f (Ex, y), Ex, y)]

from which we see that f is primitive recursive. Secondly, the primitive recursive-
ness of f itself follows from the equation

f (Ex, y) = g(f (Ex, y), Ex, y)

once we know that f is primitive recursive.

The definition of primitive recursion involved defining the value of a function in
terms of its immediately preceding value. Item 24 shows that we get an added bonus:
the value of a function can be defined in terms of all its preceding values.

At this point, we have seen that many of the everyday functions on the natural
numbers are primitive recursive. But the class of primitive recursive functions does
not include all of the functions on N that one would regard as effectively calculable.
W. Ackermann showed how to construct an effectively calculable function that grows
faster than any primitive recursive function. Also, we can “diagonalize out” of the
primitive recursive functions. In rough outline, here is how that would go: Any primi-
tive recursive function is determined by tree, showing how it is built up from initial

General Recursive Functions 47

functions by the use of composition and primitive recursion. We can, with some effort,
code such trees by natural numbers. The “universal” function

9(x, y) =
⇢

f (x) if y codes a tree for a one-place primitive recursive function f
0 otherwise

is effectively calculable (and total). But 9(x, x)+1 and 1�· 9(x, x) are total effectively
calculable functions that cannot be primitive recursive. (See also page 19.)

2.2 Search Operation

We obtain the class of general recursive partial functions by allowing functions to be
built up by use of search (in addition to composition and primitive recursion). Search
(also called minimalization) corresponds to an unbounded µ-operator. For a (k + 1)-
place partial function g, we define

µy[g(Ex, y) = 0] =

8
>>><

>>>:

the least number y such that both g(Ex, y) = 0 and
for all t less than y, the value g(Ex, t) is defined
and is nonzero, if there is any such y

undefined, if there is no such y.

This quantity may be undefined for some (or all) values of Ex, even if g happens to be
a total function.

Example: Assume that we know the following pieces of information about the func-
tion g:

g(0, 0) = 7 g(0, 1) = 0

g(1, 0) " g(1, 1) = 0

Then µy[g(0, y) = 0] is 1, and µy[g(1, y) = 0] is undefined.

A k-place partial function h is said to be obtained from g by search if the equation

h(Ex) = µy[g(Ex, y) = 0]

holds for all Ex, with the usual understanding that for an equation to hold, either both
sides are undefined, or both sides are defined and are equal.

Then we say that a partial function is general recursive if it can be built up from the
zero, successor, and projection functions, where we are allowed to use composition,
primitive recursion, and search.

The collection of general recursive partial functions includes all of the primitive
recursive functions (which are all total), and more. As an extreme example, the one-
place empty function (i.e., the function with empty domain) is a general recursive
partial function; it is obtained by search from the constant function g(x, y) = 3.

48 Computability Theory

9A. If f is a general recursive partial function, then so are the functions s and p:

s(Ex, y) =
X

t<y

f (Ex, t) and p(Ex, y) =
Y

t<y

f (Ex, t)

For any particular Ex, these functions are defined either for all y, or for a finite
initial segment of the natural numbers.

We define a relation R to be a general recursive relation if its characteristic function
CR (which by definition is always total) is a general recursive function. As a special
case of search, whenever R is a (k + 1)-ary general recursive relation, then the k-place
function h defined by the equation

h(Ex) = µy R(Ex, y)

is a general recursive partial function.
We again have a substitution rule: Whenever Q is an n-ary general recursive

relation, and g1, . . . , gn are k-place total general recursive functions, then the k-ary
relation

{Ex | hg1(Ex), . . . , gn(Ex)i 2 Q}

is general recursive because its characteristic function is obtained from CQ and
g1, . . . , gn by composition. But this does not necessarily hold if the gi functions are
nontotal. In that case, composition does not give us the full CQ, but a nontotal sub-
function of it.

For example, for any total general recursive function f , its graph

{hEx, yi | f (Ex) = y}

is a general recursive relation. (Similarly, the graph of any primitive recursive function
will be a primitive recursive relation.) We will see later that this can fail in the case of
a nontotal function.

Theorem:
(d) If Q and R are k-ary general recursive relations, then so are Q, Q \ R, and Q [R.
(e) If Q is a (k + 1)-ary general recursive relation, then so are the relations

{hEx, yi | (8t < y) Q(Ex, t)} and {hEx, yi | (9t < y) Q(Ex, t)}.

The proof is unchanged.
Definition-by-cases continues to hold, but we need to be more careful with its proof.

Suppose that g is a k-place general recursive partial function, and that Q is a k-ary
general recursive relation. Define gQ by the equation

gQ(Ex) =
⇢

g(Ex) if Q(Ex)
0 if not Q(Ex).

Then gQ is also a general recursive partial function. But we cannot write simply
gQ(Ex) = g(Ex) · CQ(Ex) because there may be some Ex that are not in the domain of

General Recursive Functions 49

g (so the right-hand side will be undefined) and not in Q (so the left-hand side will
be 0). Instead, we can first use primitive recursion to construct the function

G(Ex, 0) = 0

G(Ex, y + 1) = g(Ex),

which is like g except that it has a “on–off switch.” Then we have the equation

gQ(Ex) = G(Ex, CQ(Ex)).

showing that gQ is a general recursive partial function.
Now if we also have another k-place general recursive partial function f , and we

define

h(Ex) =
⇢

f (Ex) if Q(Ex)
g(Ex) if not Q(Ex)

then h is a general recursive partial function because h(Ex) = f Q(Ex) + gQ(Ex).

24A. Assume that g is a general recursive partial (k + 2)-place function, and let f be
the unique (k + 1)-place function for which

f (Ex, y) = g(f (Ex, y), Ex, y)

for all Ex and y. (If g is nontotal, then it is possible that for some values of Ex,
the quantity f (Ex, y) will be defined only for finitely many y’s.) Then f is also a
general recursive partial function.

The proof is as before.

It was argued earlier that the collection of primitive recursive functions cannot
contain all of the effectively calculable total functions. But Church’s thesis implies that
the collection of general recursive partial functions does contain all of them, as well
as the effectively calculable nontotal functions. As indicated informally on page 20,
it is not possible to “diagonalize out” of the collection of general recursive partial
functions.

Exercises

0. Do you understand primitive recursion? Are you positive? If you are positive, go
to Exercise 1.

1. Subtract 1. Go to Exercise 0.
2. Give an example of a nontotal function g such that the function h obtained from

g by search

h(x) = µy[g(x, y) = 0]

is total.

50 Computability Theory

3. Give a construction tree in full for multiplication (item 3).
4. Show that the squaring function f (x) = x2 is primitive recursive by giving a con-

struction tree showing in detail how it can be built up from initial functions by
the use of composition and primitive recursion. (At the leaves of the tree, you
must have only initial functions; e.g., if you want to use addition, you must con-
struct it.)

5. Show that the function

pos(x) =
(

1 if x > 0
0 if x = 0

is primitive recursive by giving a construction tree.
6. Show that the parity function

Codd(x) =
(

1 if x is odd
0 if x is even

is primitive recursive by giving a construction tree.
7. Show that the function hx, yi 7! |x � y| is primitive recursive.
8. Show that the function hx, yi 7! max(x, y) is primitive recursive.
9. Show that the function hx, yi 7! min(x, y) is primitive recursive.

10. Show that there is a primitive recursive function div such that whenever y > 0,
then

div(x, y) = bx/yc.

(Here bzc is the largest natural number that is z, i.e., the result of rounding z
down to a natural number.)

11. Show that there is a primitive recursive function rm such that whenever y > 0,
then

rm(x, y) = the remainder when x is divided by y.

12. Extend definition by cases (pages 37 and 48) to definition by many (mutually
exclusive) cases.

13. Use Bertrand’s postulate to show (by induction) that px 2x+1, and that equality
holds only for x = 0.

14. Prove item 18: The set of sequence numbers is primitive recursive.
15. Show that (x)y = (µe x) pe+1

y | x.
16. Show that lh(x) = (µt x) pt�· 1 | x, for a sequence number x.
17. Assume that R is a finite k-ary relation on N (i.e., R is a finite subset of Nk). Show

that R is primitive recursive.
18. Assume that f is an eventually constant one-place function (i.e., there is some m

such that f (x + 1) = f (x) for all x m). Show that f is primitive recursive.
19. Show that the function g(x) = d

p
x e is primitive recursive. (Here dze is the result

of rounding z up to a natural number.)

General Recursive Functions 51

20. (a) Assume that f is a primitive recursive one-place function that is strictly
increasing (i.e., f (x+1) > f (x) for all x). Show that the range of f is a primitive
recursive set.

(b) Assume that g is a primitive recursive one-place function that is nondecreasing
(i.e., g(x + 1) � g(x) for all x) and unbounded. Show that the range of g is a
general recursive set.

21. Assume that h is a finite k-place function (i.e., the domain of h consists of only
finitely many k-tuples). Show that h is a general recursive partial function.

22. Is 3 a sequence number? What is lh(3)? Find (1 ⇤ 3) ⇤ 6 and 1 ⇤ (3 ⇤ 6).
23. Show that ⇤ is associative on sequence numbers. That is, show that if r, s, and t

are sequence numbers, then (r ⇤ s) ⇤ t = r ⇤ (s ⇤ t).
24. Establish the following facts.

(a) x + 1 < px.
(b) (y)k y, and equality holds iff y = 0.
(c) lh x x, and equality holds iff x = 0.
(d) x � i x if x > 0.
(e) lh(x � i) is the smaller of i and lh x.

