
Modular Rewriting Semantics
in Practice

Christiano Braga José Meseguer

cbraga@ic.uff.br meseguer@cs.uiuc.edu

Universidade Federal Fluminense University of Illinois at Urbana-Champaign

Modular Rewriting Semantics in Practice – p.1/27

Context

Rewriting logic (RWL) is a widely used
semantic framework with many formal
analysis tools developed based on the
rewriting semantics of programming
languages.

Modularity is an important property of a
language specification , meaning that
does not have to be redefined when the
language is extended.

Modular Rewriting Semantics in Practice – p.2/27

Context

Modular structural operational semantics
(MSOS) is an extension to structural
operational semantics (SOS), proposed by
Peter Mosses, which solves the modularity
problem of SOS specifications.

Modular rewriting semantics (MRS) is the result
from the application and extension of lessons
learned from previous work, on the mapping
from MSOS to RWL, to the development of
rewriting semantics of programming
languages.

Modular Rewriting Semantics in Practice – p.3/27

Objectives of this Talk

1. To present three techniques to help the
development of modular specifications of
programming languages’ semantics in
rewriting logic. (Or the modular rewriting
semantics of programming languages.)

2. To illustrate the practical usefulness of our
approach by means of examples taken from
the MRS of Milner’s CCS, one of the case
studies presented in the paper.

Modular Rewriting Semantics in Practice – p.4/27

Strategy for this Talk

1. Modularity requirements

2. Modular rewriting semantics specifications
(a) Configurations
(b) Techniques
(c) Small-step specifications

3. CCS

4. Weak transition semantics of CCS

5. (Comment on) GNU bc

6. Final remarks
Modular Rewriting Semantics in Practice – p.5/27

Modularity Requirements

MRS is defined in the context of incremental
specifications: Syntax and corresponding
semantic axioms are introduced for groups of
related features.

Incremental presentation of the syntax of a
language :

�
�

�
��� �, with

�

a poset with a top
element , such that (i) if

� � 	

then �
 ,
and (ii) � � .

Incremental rewriting semantics for is an
indexed family of rewrite theories

�

��
�

��� �

with
�� defining the semantics of �.
Modular Rewriting Semantics in Practice – p.6/27

Modularity Requirements

Monotonicity: if

� 	

then, there is a theory
inclusion
�
�

� .

Extensibility: rewrite rules should be defined
in the most abstract and general way
possible, that is, the semantics of each
language feature is defined once and for all.

Modular Rewriting Semantics in Practice – p.7/27

MRS Specifications/Configurations

A configuration is a state of a particular program
execution. Configurations in MRS specifications
are organized as pairs of program syntax and a
record of semantic entities, such as the memory
store or the declarations environment.

Modular Rewriting Semantics in Practice – p.8/27

MRS Specifications/Techniques

The first technique to achieve modularity,
shared with MSOS, is record inheritance: it
means that one can always consider a record
with more fields as a special case of one with
fewer fields.

Features added later to a language may
necessitate adding new semantic
components to the record; but the axioms of
older features can be given once and for all in
full generality: they will apply just the same
with new components to the record.

Modular Rewriting Semantics in Practice – p.9/27

MRS Specifications/Techniques

fmod RECORD is

...

op _,_ : PreRecord PreRecord -> PreRecord

[ctor assoc comm id: null] .

op _:_ : [Index] [Component] -> [Field] [ctor] .

op {_} : [PreRecord] -> [Record] [ctor] .

op duplicated : [PreRecord] -> [Truth] .

...

eq duplicated((I : C),(I : C’), PR) = tt .

cmb {PR} : Record if duplicated(PR) =/= tt .

endfm

Modular Rewriting Semantics in Practice – p.10/27

MRS Specifications/Techniques

Record inheritance is accomplished through
pattern matching modulo associativity,
commutativity, and identity.

For example, a record with an environment
component indexed by env and a store
component indexed by st can be viewed as a
special case of a record with just the
environment component. A function get-env
extracting the environment could be defined
by eq get-env(

�

env : E, PR

�

) = E .

Modular Rewriting Semantics in Practice – p.11/27

MRS Specifications/Techniques

The second technique is the systematic use
of abstract datatypes to represent syntactic
and semantic entities.

In a language specification no concrete
syntactic or semantic sorts are ever identified
with abstract sorts: they are always either
specified as subsorts of corresponding
abstract sorts, or mapped to abstract sorts by
coercion. Axioms are given only at the level of
concrete sorts.

Modular Rewriting Semantics in Practice – p.12/27

MRS Specifications/Techniques

The third technique regards the form of the rules.
The only new rewrite rules in the

� � �
rewrite

theory
�� are semantic rules of the form

� ��� ��� 	 	 	 �
�

�

� �

�

� � �
� � �
��

where is a new language feature, e.g.,
if-then-else, introduced in �, � and � � are
record expressions and � contains a variable PR
of sort PreRecord which allows record
inheritance.

Modular Rewriting Semantics in Practice – p.13/27

MRS Specifications/Techniques

The following information hiding discipline
should also be followed in �, � �

and in any
record expression appearing in : besides
basic record syntax only abstract functions
symbols are allowed.

This allows for extensible change of internal
representations of semantic entities, used, for
instance, in the weak transition semantics of
CCS.

Modular Rewriting Semantics in Practice – p.14/27

MRS Specifications/Small-step

When representing SOS specifications in
RWL it is necessary to control the number of
rewrites in the conditions due to the fact that
rewrites are reflexive and transitive in RWL.

Therefore, in order to specify explicitly one (or
more) rewrite(s) in the conditions of
conditional rules the configuration theory
should be extended as follows.

Modular Rewriting Semantics in Practice – p.15/27

MRS Specifications/Small-step

mod RCONF is

inc RECORD .

sorts Program Conf .

op <_,_> : Program Record -> Conf [ctor] .

op {_,_} : [Program] [Record] -> [Conf] [ctor] .

op [_,_] : [Program] [Record] -> [Conf] [ctor] .

vars p p’ : Program . vars r r’ : Record .

crl [step] : < p , r > => < p’ , r’ >

if { p , r } => [p’ , r’] .

endm

Modular Rewriting Semantics in Practice – p.16/27

MRS Specifications/Small-step

Any application of the step rule mimics a
one-step rewrite, given that semantic rules
have the form

��� � � � � � �� 	 � � 	
� �

��
� � �� � � � �
 	� � � 	�
 ��� � � � ��
�� � �� � � � �
 	� � � 	�
 � ��

Therefore the proofs of rewrites are the
finitary computations.

Modular Rewriting Semantics in Practice – p.17/27

CCS

We illustrate the MRS of CCS with the semantic

rules for processes composition and process def-

inition.

Modular Rewriting Semantics in Practice – p.18/27

CCS

*** Composition

crl {p | q, {(tr : t), pr}} =>

[p’ | q, {(tr : t ; a), pr}]

if {p, {(tr : nil), pr}} =>

[p’, {(tr : nil ; a), pr}] .

crl {p | q, {(tr : t), pr}} =>

[p’ | q’,{(tr : t ; tau), pr}]

if {p,{(tr : nil), pr}} =>

[p’,{(tr : nil ; l), pr}] /\

{q,{(tr : nil), pr}} =>

[q’,{(tr : nil ; (˜ l)), pr}] .

Modular Rewriting Semantics in Practice – p.19/27

CCS

*** Definition

crl {x,{(tr : t), (env : e), pr}} =>

[p,{(tr : t ; a), (env : e), pr’}]

if p := def(x, e) /\

{p, {tr : nil), (env : e), pr}} =>

[p’, {(tr : nil ; a), (env : e), pr’}]

Modular Rewriting Semantics in Practice – p.20/27

CCS

1. Record inheritance is used to define the two
record indices: the action trace field, indexed
by tr, and the environment of processes
names, indexed by env.

2. Traces and the environment are defined as
abstract datatypes, with action composition
(;) and process definition (def) defined as
abstract functions.

Modular Rewriting Semantics in Practice – p.21/27

CCS

3. The information hiding discipline is applied in
the conditions of the rules in order to make
the specification extensible. No concrete
functions are applied to traces and for
processes definition.

Modular Rewriting Semantics in Practice – p.22/27

CCS Weak Transition Semantics

In the weak transition semantics � steps
become unobservable.

The extension is quite simple: a new
constructor from list of actions (ActList) to a
trace (Trace) is defined where � steps are
ignored.

Modular Rewriting Semantics in Practice – p.23/27

CCS Weak Transition Semantics

mod WEAK-CCS-SEMANTICS is

extending CCS-SEMANTICS .

op <_> : ActList -> Trace [ctor] .

*** concrete sort coercion

vars al al’ : ActList .

var a : Act .

eq < al tau al’ > = < al al’ > .

eq < al > ; a = < al a > .

endm

Modular Rewriting Semantics in Practice – p.24/27

GNU bc

GNU bc is an arbitrary precision calculator
imperative language, with syntax that
resembles the C language.

We have given an MRS semantics for bc, both
in rule- and equational-based. In the former
transitions in the conditions are represented
by “matching equations”, that is, equations
defined using the match (:=) operator.

Modular Rewriting Semantics in Practice – p.25/27

GNU bc

A prototype tool that checks compatibility of
the physical units of variables was defined as
an extension to the MRS of bc. This
extension follows the idea of the weak
transition semantics of CCS.

Modular Rewriting Semantics in Practice – p.26/27

Final Remarks

We have proposed a general method for
developing modular semantic definitions of
programming languages in rewriting logic.

Two case studies were developed, for Milner’s
CCS and GNU bc.

Current work is on the experimentation of
these techniques on more case studies
involving bigger languages; the application of
formal verification techniques; and the
extension to a truly concurrent semantics.

Modular Rewriting Semantics in Practice – p.27/27

	Context
	Context
	Objectives of this Talk
	Strategy for this Talk
	Modularity Requirements
	Modularity Requirements
	MRS Specifications/Configurations
	MRS Specifications/Techniques
	MRS Specifications/Techniques
	MRS Specifications/Techniques
	MRS Specifications/Techniques
	MRS Specifications/Techniques
	MRS Specifications/Techniques
	MRS Specifications/Small-step
	MRS Specifications/Small-step
	MRS Specifications/Small-step
	{CCS}
	{CCS}
	{CCS}
	{CCS}
	{CCS}
	{CCS} Weak Transition Semantics
	{CCS} Weak Transition Semantics
	GNU bc
	GNU bc
	Final Remarks

