A logical approach to the verification of concurrent systems

(joint work with many colleagues)

by

Narciso Martí-Oliet (UCM)
Introduction
1. To introduce Maude as a framework for modeling concurrent systems and model checking their properties.

2. To present a simple method of defining quotient abstractions by means of equations collapsing the set of states.

3. To illustrate this method with several detailed examples.

4. To comment recent developments introducing new features like narrowing and SMT constraints.
Abstraction ... what for?

- Abstraction reduces the problem of whether an infinite state system satisfies a temporal logic property to model checking that property on a finite state abstract version.
- Some common abstractions are quotients of the original system.
- We present a simple method of defining quotient abstractions by means of equations collapsing the set of states.
- Our method yields the minimal quotient system together with a set of proof obligations that guarantee its executability and can be discharged with tools such as those in the Maude Formal Environment.
Maude in a nutshell
Ingredients of rewriting logic

- Types (and subtypes).
- Typed operators providing syntax: signature Σ.
- Syntax allows the construction of both static data and states: term algebra T_Σ.
- Equations E define functions over static data as well as properties of states.
- Rewrite rules R define transitions between states.
- Deduction in the logic corresponds to computation with those functions and transitions.

The Maude language is an implementation of (equational and) rewriting logic, allowing the execution of specifications satisfying some admissibility, or executability, requirements.
So ... who is Maude?

- Maude follows a long tradition of declarative algebraic specification languages in the OBJ family, including OBJ3, CafeOBJ, and Elan.
- Computation = **Deduction** in the appropriate logic.
- Functional modules = Admissible specifications in (membership) equational logic.
- System modules = Admissible specifications in rewriting logic.
- Operational semantics is based on matching and rewriting.

http://maude.cs.uiuc.edu
Example: crossing the river

- A shepherd needs to transport to the other side of a river:
 - a wild dog,
 - a lamb, and
 - a cabbage.
- He has only a boat with room for the shepherd himself and another item.
- The problem is that in the absence of the shepherd:
 - the wild dog would eat the lamb, and
 - the lamb would eat the cabbage.
Example: crossing the river
Example: crossing the river

- The shepherd and his belongings are represented as objects with only an attribute indicating the side of the river in which each is located.
- The group is put together by means of an associative and commutative juxtaposition.
- Constants left and right represent the two sides of the river.
- Operation ch(ange) is used to modify the corresponding attributes.
- Rules represent the ways of crossing the river that are allowed by the capacity of the boat.
Example: crossing the river

mod RIVER-CROSSING is
 sorts Side Group .

 ops left right : -> Side [ctor] .
 op ch : Side -> Side .
 eq ch(left) = right .
 eq ch(right) = left .

 ops s w l c : Side -> Group [ctor] .
 op __ : Group Group -> Group [ctor assoc comm] .

 var S : Side .

 rl [shepherd] : s(S) => s(ch(S)) .
 rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
 rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
 rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .
endm
Example: mutual exclusion

mod MUTEX is
 sorts Name Mode Proc Token Conf .
 subsorts Token Proc < Conf .
 op none : -> Conf [ctor] .

 ops a b : -> Name [ctor] .
 op [_,_] : Name Mode -> Proc [ctor] .
 ops * $: -> Token [ctor] .

 rl [a-enter] : $ [a, wait] => [a, critical] .
 rl [b-enter] : * [b, wait] => [b, critical] .
 rl [a-exit] : [a, critical] => [a, wait] * .
 rl [b-exit] : [b, critical] => [b, wait] $.
endm
Example: readers and writers

mod READERS–WRITERS is
 sort Nat .
 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor] .
 --- natural numbers in Peano notation

 sort State .
 --- readers/writers

 vars R W : Nat .
 rl < 0, 0 > => < 0, s(0) > .
 rl < R, s(W) > => < R, W > .
 rl < R, 0 > => < s(R), 0 > .
 rl < s(R), W > => < R, W > .
endm
Equational simplification

A term \(t \) rewrites to a term \(t' \) (denoted \(t \rightarrow_E t' \)) by an equation \(l = r \) in \(E \) if:

1. there is a subterm \(t|_p \) of \(t \) at a given position \(p \) of \(t \)
 s. t. \(l \) matches \(t|_p \) via a substitution \(\sigma \), i.e., \(\sigma(l) \equiv t|_p \)
2. \(t' \) is obtained from \(t \) by replacing the subterm \(t|_p \equiv \sigma(l) \) with the term \(\sigma(r) \).

That is,

\[
t = C[t|_p] = C[\sigma(l)] \rightarrow_E C[\sigma(r)] = t'
\]

We write \(t \rightarrow_E^* t' \) to mean that either \(t = t' \) (0 steps) or \(t \rightarrow_E t_1 \rightarrow_E t_2 \rightarrow_E \cdots \rightarrow_E t_n \rightarrow_E t' \) with \(n \geq 0 \) (\(n + 1 \) steps).
A set of equations E is **confluent** (or Church-Rosser) when any two rewritings of a term can always be joined by further rewriting: if $t \rightarrow^*_E t_1$ and $t \rightarrow^*_E t_2$, then there exists a term t' such that $t_1 \rightarrow^*_E t'$ and $t_2 \rightarrow^*_E t'$.

A set of equations E is **terminating** when there is no infinite sequence of rewriting steps $t_0 \rightarrow^*_E t_1 \rightarrow^*_E t_2 \rightarrow^*_E \ldots$
If E is both confluent and terminating, a term t can be reduced to a unique normal or \textit{canonical form} $t \Downarrow_E$, that is, to a term that can no longer be rewritten.

Checking \textit{semantic equality} of two terms, $t = t'$, amounts to checking that their respective canonical forms are equal, $t \Downarrow_E = t' \Downarrow_E$.

Functional modules in Maude are assumed to be \textit{confluent} and \textit{terminating}, and their operational semantics is \textit{equational simplification}, that is, rewriting of terms until a canonical form is obtained.
Equational attributes are a means of declaring certain axioms in a way that allows Maude to use them efficiently in a built-in way: \texttt{assoc, comm, id}.

Given an equational theory A, a pattern term t and a subject term u, we say that t matches u modulo A if there is a substitution σ such that $\sigma(t) =_A u$, that is, $\sigma(t)$ and u are equal modulo the equational theory A.

Given an equational theory $A = \bigcup_i A_i$ corresponding to all the attributes declared in different binary operators, Maude synthesizes a combined matching algorithm for the theory A, and does equational simplification modulo the axioms A.
Rewriting logic was introduced by J. Meseguer in 1990 as a unifying framework for concurrency.

We arrive at the main idea behind rewriting logic by dropping symmetry and the equational interpretation of rules.

We interpret a rule $t \rightarrow t'$ computationally as a local concurrent transition of a system, and logically as an inference step from formulas of type t to formulas of type t'.

Rewriting logic is a logic of becoming or change, that allows us to specify the dynamic aspects of systems.
The static part is specified as an equational theory.

The dynamics is specified by means of possibly conditional rules that rewrite terms, representing parts of the system, into others.

The rules need only specify the part of the system that actually changes: the frame problem is avoided.
System modules in Maude correspond to rewrite theories in rewriting logic.

A rewrite theory has both rules and equations, so that rewriting is performed modulo such equations.

The equations are divided into:

- a set A of structural axioms (associativity, commutativity, identity), for which matching algorithms exist in Maude, and
- a set E of equations that are Church-Rosser and terminating modulo A;

that is, the equational part must be equivalent to a functional module.
Coherence

- Rules R in the module must be coherent wrt. equations E modulo A, allowing us to intermix rewriting with rules and rewriting with equations without losing computations.

- A simple strategy available when coherence holds is to always reduce to canonical form using E before applying any rule in R.
Tools around Maude

- Sufficient completeness
- Sort decreasingness
- Confluence
- Execution
- Model checking
- Reachability analysis
- SCC
- Termination
- MTT
- Coherence
- ChC
- Theorem proving
- ITP
Maude Formal Environment

- **Maude Termination Tool (MTT)** to prove termination of system modules by connecting to external termination tools.
- **Church-Rosser Checker (CRC)** to check the Church-Rosser property of functional modules.
- **Sufficient Completeness Checker (SCC)** to check that defined functions have been fully defined in terms of constructors.
- **Coherence Checker (ChC)** to check the coherence of system modules.
- **Inductive Theorem Prover (ITP)** to verify inductive properties of functional modules.
Model checking
Model checking

- Two levels of specification:
 - a system specification level, provided by the rewrite theory specified by that system module, and
 - a property specification level, given by some properties that we want to state and prove about our module.

- Temporal logic allows specification of properties such as safety properties (ensuring that something bad never happens) and liveness properties (ensuring that something good eventually happens), related to the infinite behavior of a system.

- Maude 2 includes a model checker to prove properties expressed in linear temporal logic (LTL).
Main connectives:

- **True:** \top
- **Atomic propositions:** $p \in AP$
- **Next:** $\bigcirc \varphi$
- **Until:** $\varphi \mathcal{U} \psi$
- **Negation and disjunction:** $\neg \varphi, \varphi \lor \psi$
Derived connectives:

- **False:** \(\bot = \neg \top \)
- **Conjunction:** \(\varphi \land \psi = \neg (\neg \varphi \lor \neg \psi) \)
- **Implication:** \(\varphi \rightarrow \psi = (\neg \varphi) \lor \psi \)
- **Eventually:** \(\Diamond \varphi = \top U \varphi \)
- **Henceforth:** \(\Box \varphi = \neg \Diamond \neg \varphi \)
Linear temporal logic: intuition

- \(\top \) is a formula that always holds at the current state.
- \(\bigcirc \varphi \) holds at the current state if \(\varphi \) holds at the state that follows.
- \(\varphi U \psi \) holds at the current state if \(\psi \) is eventually satisfied at a future state and, until that moment, \(\varphi \) holds at all intermediate states.
- \(\Box \varphi \) holds if \(\varphi \) holds at every state from now on.
- \(\Diamond \varphi \) holds if \(\varphi \) holds at some state in the future.
A Kripke structure is a triple $\mathcal{A} = (A, \rightarrow_\mathcal{A}, L)$ such that

- A is a set, called the set of states,
- $\rightarrow_\mathcal{A}$ is a total binary relation on A, called the transition relation, and
- $L : A \rightarrow \mathcal{P}(AP)$ is a labeling function, associating to each state $a \in A$ the set $L(a)$ of those atomic propositions in AP that hold in a.

A path in a Kripke structure \mathcal{A} is a function $\pi : \mathbb{N} \rightarrow A$ with $\pi(i) \rightarrow_\mathcal{A} \pi(i + 1)$ for every i.

π^i is the suffix of π starting at $\pi(i)$.
Satisfaction relation between a Kripke structure \mathcal{A}, a state $a \in A$, and an LTL formula $\varphi \in LTL(AP)$:

$$\mathcal{A}, a \models \varphi \iff \mathcal{A}, \pi \models \varphi \quad \text{for all paths } \pi \text{ with } \pi(0) = a.$$

Satisfaction relation for paths $\mathcal{A}, \pi \models \varphi$ defined by structural induction on φ:

- $\mathcal{A}, \pi \models p \iff p \in L(\pi(0))$
- $\mathcal{A}, \pi \models \top \iff \text{true}$
- $\mathcal{A}, \pi \models \varphi \lor \psi \iff \mathcal{A}, \pi \models \varphi \text{ or } \mathcal{A}, \pi \models \psi$
- $\mathcal{A}, \pi \models \neg \varphi \iff \mathcal{A}, \pi \not\models \varphi$
- $\mathcal{A}, \pi \models \Box \varphi \iff \mathcal{A}, \pi^1 \models \varphi$
- $\mathcal{A}, \pi \models \varphi \mathcal{U} \psi \iff \text{there exists } n \in \mathbb{N} \text{ such that } \mathcal{A}, \pi^n \models \psi \text{ and, for all } m < n, \mathcal{A}, \pi^m \models \varphi$
Kripke structs for rewrite theories

- Given a system module M specifying a rewrite theory $\mathcal{R} = (\Sigma, E, R)$, we
 - choose a type k in M as our type of states;
 - define in a module, say $M\text{-PREDs}$, protecting M, some state predicates Π and their semantics by means of the basic satisfaction operation
 \[
 \text{op } _\models : \text{State Prop} \rightarrow \text{Bool}.
 \]

- Then we get a Kripke structure (more details later)
 \[
 \mathcal{K}(\mathcal{R}, k)_\Pi = (T_{\Sigma/E,k}, (\rightarrow^1_{\mathcal{R}})^*, L_\Pi).
 \]

- Under some assumptions on M and $M\text{-PREDs}$, including that the set of states reachable from t is finite, the relation $\mathcal{K}(\mathcal{R}, k)_\Pi, t \models \varphi$ can be model checked.
Model-checking modules

- **MUTEX-CHECK**
- **MUTEX-PREDS**
- **MODEL-CHECKER**
- **LTL-SIMPLIFIER**
- **SATISFACTION**
- **LTL**
- **QID**
- **BOOL**
- **MUTEX**
Mutual exclusion: processes

mod MUTEX is
 sorts Name Mode Proc Token Conf .
 subsorts Token Proc < Conf .
 op none : -> Conf [ctor] .

 ops a b : -> Name [ctor] .
 op [_,_] : Name Mode -> Proc [ctor] .
 ops * $: -> Token [ctor] .

 rl [a-enter] : $ [a, wait] => [a, critical] .
 rl [b-enter] : * [b, wait] => [b, critical] .
 rl [a-exit] : [a, critical] => [a, wait] * .
 rl [b-exit] : [b, critical] => [b, wait] $.
endm
Mutual exclusion: properties

mod MUTEX-PREDs is
 protecting MUTEX .
 including SATISFACTION .

subsort Conf < State .

ops crit wait : Name -> Prop [ctor] .

var N : Name . var C : Conf . var P : Prop .

eq [N, critical] C |= crit(N) = true .
eq [N, wait] C |= wait(N) = true .
eq C |= P = false [owise] .

endm
mod MUTEX-CHECK is
 protecting MUTEX-PREDs.
 including MODEL-CHECKER.
 including LTL-SIMPLIFIER.
ops initial1 initial2 : -> Conf.
eq initial1 = $ [a, wait] [b, wait].
eq initial2 = * [a, wait] [b, wait].
endm

Maude> red modelCheck(initial1, [] ~(crit(a) \ crit(b))).
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true

Maude> red modelCheck(initial2, [] ~(crit(a) \ crit(b))).
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true
If we check whether, beginning in the state initial1, process b will always be waiting, we get a counterexample:

Maude> red modelCheck(initial1, [] wait(b)) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.

result ModelCheckResult:
 counterexample({$ [a, wait] [b, wait], 'a-enter}
 {[a, critical] [b, wait], 'a-exit}
 {*} [a, wait] [b, wait], 'b-enter} ,
 {[a, wait] [b, critical], 'b-exit}
 {$ [a, wait] [b, wait], 'a-enter}
 {[a, critical] [b, wait], 'a-exit}
 {*} [a, wait] [b, wait], 'b-enter})
mod RIVER-CROSSING is
 sorts Side Group .

ops left right : -> Side [ctor] .
op ch : Side -> Side .
eq ch(left) = right .
eq ch(right) = left .

ops s w l c : Side -> Group [ctor] .
op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

 rl [shepherd] : s(S) => s(ch(S)) .
 rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
 rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
 rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .
endm
Crossing the river: properties

mod RIVER-CROSSING-PROP is
 protecting RIVER-CROSSING . including MODEL-CHECKER .
subsort Group < State .
 op initial : -> Group .
 eq initial = s(left) w(left) l(left) c(left) .
 ops disaster success : -> Prop [ctor] .

vars S S' S'' : Side .
 ceq (w(S) l(S) s(S') c(S'') |= disaster) = true if S =/= S'
 ceq (w(S'') l(S) s(S') c(S) |= disaster) = true if S =/= S'
 eq (s(right) w(right) l(right) c(right) |= success) = true .
 eq G:Group |= P:Prop = false [owise] .
endm

- **success** characterizes the (good) state in which the shepherd and his belongings are all in the other side,
- **disaster** characterizes the (bad) states in which some eating can take place.
The model checker only returns either true or paths that are counterexamples of properties.

To find a safe path we need a formula that expresses the negation of the property we like: a counterexample will then witness a safe path for the shepherd.

If no safe path exists, then it is true that whenever success is reached a disastrous state has been traversed before:

$$<> \text{success} \rightarrow (<> \text{disaster} \lor (\neg \text{success}) \cup \text{disaster})$$

A counterexample to this formula is a safe path, completed so as to have a cycle.
Maude> red modelCheck(initial,
 <> success -> (<> disaster \ ((~ success) U disaster))) .

result ModelCheckResult: counterexample(
 {s(left) w(left) l(left) c(left),'lamb}
 {s(right) w(left) l(right) c(left),'shepherd}
 {s(left) w(left) l(right) c(left),'wdog}
 {s(right) w(right) l(right) c(left),'lamb}
 {s(left) w(right) l(left) c(left),'cabbage}
 {s(right) w(right) l(left) c(right),'shepherd}
 {s(left) w(right) l(right) c(right),'lamb}
 {s(right) w(right) l(left) c(right),'lamb}
 {s(left) w(right) l(left) c(right),'shepherd}
 {s(right) w(right) l(left) c(right),'wdog}
 {s(left) w(left) l(left) c(right),'lamb}
 {s(right) w(right) l(right) c(right),'lamb}
 {s(right) w(left) l(right) c(left),'lamb}
 {s(left) w(right) l(left) c(left),'lamb})
Equational abstractions
mod READERS-WRITERS is
 sort Nat .
 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor] .

 sort State .
 --- readers/writers

 vars R W : Nat .
 rl < 0, 0 > => < 0, s(0) > .
 rl < R, s(W) > => < R, W > .
 rl < R, 0 > => < s(R), 0 > . --- infinite system
 rl < s(R), W > => < R, W > .
 endm
Given a concurrent system, we want to check whether certain properties hold in it or not.

If the number of (reachable) states is finite, use model checking.

If the number of (reachable) states is infinite (or too large) this does not work. Then

- we can employ deductive methods, or
- we can calculate an abstract version of the system with a finite number of states to which model checking can be applied.
A simple method of defining quotient abstractions is by means of **equations collapsing the set of states**:

The concurrent system is specified by a rewrite theory \(\mathcal{R} = (\Sigma, E, R) \).

Then the quotient is obtained by **adding more equations** to \(\mathcal{R} \), thus getting \(\mathcal{R}' = (\Sigma, E \cup E', R) \).

Such a quotient will be useful for model-checking purposes if
- the resulting theory is **executable**, and
- the state predicates are **preserved** by the equations.

These proof obligations can be discharged using the tools in the Maude Formal Environment.
The system specification level

- In general, a **concurrent system** is specified by a **rewrite theory** $\mathcal{R} = (\Sigma, E, R)$ with:
 - (Σ, E) an equational theory describing the states;
 - R a set of **rewrite rules** defining the system transitions.

- This determines, for each type k, a transition system
 \[(T_{\Sigma/E,k}, (\rightarrow^1_{\mathcal{R}})^\bullet) \]
 where
 - $T_{\Sigma/E,k}$ is the set of equivalence classes $[t]$ of terms of type k, modulo the equations E;
 - $(\rightarrow^1_{\mathcal{R}})^\bullet$ extends the one-step rewrite relation $\rightarrow^1_{\mathcal{R}}$ with an identity pair $([t], [t])$ for each **deadlock** state $[t]$.

Equational abstractions
LTL properties of rewrite theories

- LTL properties are associated to \(\mathcal{R} \) and a type \(k \) by specifying the basic state predicates \(\Pi \) in an equational theory \((\Sigma', E \cup D) \) extending \((\Sigma, E) \) conservatively.
- State predicates, possibly parameterized, are constructed with operators \(p : s_1 \ldots s_n \rightarrow Prop \).
- The semantics is defined by means of equations \(D \) using the basic “satisfaction operator” \(_\models k Prop \rightarrow Bool \).
- A state predicate \(p(u_1, \ldots, u_n) \) holds in a state \([t]\) iff

\[
E \cup D \vdash t \models p(u_1, \ldots, u_n) = true
\]
The Kripke structure associated to \mathcal{R}, k, and Π is

$$\mathcal{K}(\mathcal{R}, k)_\Pi = (T_{\Sigma/E,k}, (\rightarrow_1^{\mathcal{R}})^\bullet, L_\Pi)$$

where

$$AP_\Pi = \{p(u_1, \ldots, u_n) \text{ ground} \mid p \in \Pi\}$$

$$L_\Pi([t]) = \{p(u_1, \ldots, u_n) \mid p(u_1, \ldots, u_n) \text{ holds in } [t]\}$$

Assuming that the equations $E \cup D$ are Church-Rosser and terminating, and that the rewrite theory $\mathcal{R} = (\Sigma, E, R)$ is executable, the resulting Kripke structure is computable.
Equational abstractions

- We can define an abstraction for $\mathcal{K}(\mathcal{R}, k)_\Pi$ by specifying an equational theory extension

$$(\Sigma, E) \subseteq (\Sigma, E \cup E')$$

- This gives rise to an equivalence relation $\equiv_{E'}$ on $T_{\Sigma/E}$

$$[t]_E \equiv_{E'} [t']_E \iff E \cup E' \vdash t = t' \iff [t]_{E \cup E'} = [t']_{E \cup E'}$$

and then a quotient abstraction $\mathcal{K}(\mathcal{R}, k)_{\Pi}/\equiv_{E'}$.

- In what follows, we assume that \mathcal{R} is k-deadlock free and k-topmost. In particular, $(\to^1_{\mathcal{R}})^\bullet = \to^1_{\mathcal{R}}$.
Let us take a closer look at the quotient:

\[K(\mathcal{R}, k)_\Pi/\equiv_{E'} = (T_{\Sigma/E,k/\equiv_{E'}}, (\to^1_{\mathcal{R}})^*/\equiv_{E'}, L_{\Pi/\equiv_{E'}}). \]

\[T_{\Sigma/E/\equiv_{E'}} \cong T_{\Sigma,E\cup E'}. \]

Under the above assumptions, \(\mathcal{R}' = (\Sigma, E \cup E', R) \) is also \(k \)-deadlock free and

\((\to^1_{\mathcal{R}/E'})^* = \to^1_{\mathcal{R}/E'} = (\to^1_{\mathcal{R}})^*/\equiv_{E'} \)

Executability requires that:

- The equations \(E \cup E' \) are (ground) Church-Rosser and terminating.
- The rules \(R \) are (ground) coherent relative to \(E \cup E' \).
What about state predicates? By definition:

$$L_{\Pi/\equiv_{E'}}^{[t]_{E\cup E'}} = \bigcap_{[x]_E \subseteq [t]_{E\cup E'}} L_{\Pi}([x]_E).$$

Coming up with equations D' defining $L_{\Pi/\equiv_{E'}}$ may not be easy at all.

It becomes much easier if the predicates are preserved by E':

$$[x]_{E\cup E'} = [y]_{E\cup E'} \implies L_{\Pi}([x]_E) = L_{\Pi}([y]_E)$$

In this case we do not need to change the equations D and therefore we have:

$$\mathcal{K}(\mathcal{R}, k)_{\Pi/\equiv_{E'}} \cong \mathcal{K}(\mathcal{R}', k)_{\Pi}.$$
When E, E' and R satisfy all the executability requirements described above,

by construction, the quotient simulation

$$\mathcal{K}(R, k)_\Pi \longrightarrow \mathcal{K}(R, E)_\Pi/\equiv_{E'} \cong \mathcal{K}(R', k)_\Pi$$

is strict and so it reflects satisfaction of arbitrary LTL formulas.

Moreover, since R' is executable, for an initial state $[t]$ having a finite set of reachable states we can use the Maude model checker to check if a property holds.
Readers and writers
mod READERS–WRITERS is
 sort Nat .
 op 0 : -> Nat [ctor] .
 op s : Nat -> Nat [ctor] .

 sort State .
 --- readers/writers
 vars R W : Nat .
 rl < 0, 0 > => < 0, s(0) > .
 rl < R, s(W) > => < R, W > .
 rl < R, 0 > => < s(R), 0 > . --- infinite system
 rl < s(R), W > => < R, W > .
endm
mod READERS-WRITERS-PREDS is
protecting READERS-WRITERS .
including SATISFACTION .
ops mutex one-writer : -> Prop [ctor] .
eq < s(N: Nat), s(M: Nat) > |= mutex = false .
eq < 0, N: Nat > |= mutex = true .
eq < N: Nat, 0 > |= mutex = true .
eq < N: Nat, s(s(M: Nat)) > |= one-writer = false .
eq < N: Nat, 0 > |= one-writer = true .
eq < N: Nat, s(0) > |= one-writer = true .
endm

➤ **mutual exclusion**: readers and writers never access the resource simultaneously: only readers or only writers can do so at any given time.

➤ **one writer**: at most one writer will be able to access the resource at any given time.
mod READERS-WRITERS-ABS is
 including READERS-WRITERS-PREDS .
 including READERS-WRITERS .
 eq < s(s(N:Nat)), 0 > = < s(0), 0 > .
endm

- The exact number of readers is unimportant.
- We are only interested in whether there is at least a reader or not.
For the executability and the property-preservation properties of this abstraction, we need to check:

1. that the equations in both READERS–WRITERS–PREDs and READERS–WRITERS–ABS are (ground) Church-Rosser and terminating;

2. that the equations in both READERS–WRITERS–PREDs and READERS–WRITERS–ABS are sufficiently complete (this is equivalent to requiring that properties are preserved); and

3. that the rules in both READERS–WRITERS–PREDs and READERS–WRITERS–ABS are ground coherent with respect to their equations.
Maude> (ccr READERS-WRITERS-PREDs .)
Church-Rosser check for READERS-WRITERS-PREDs
 All critical pairs have been joined.
 The specification is locally-confluent.
 The module is sort-decreasing.

Maude> (ccr READERS-WRITERS-ABS .)
Church-Rosser check for READERS-WRITERS-ABS
 All critical pairs have been joined.
 The specification is locally-confluent.
 The module is sort-decreasing.
Maude> (scc READERS-WRITERS-PREDs .)
Sufficient completeness check for READERS-WRITERS-PREDs ...
Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved

Maude> (scc READERS-WRITERS-ABS .)
Sufficient completeness check for READERS-WRITERS-ABS ...
Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved
Readers and writers: coherence

Maude> (cch READERS-WRITERS-PRED\$.)
Coherence checking of READERS-WRITERS-PRED\$
Coherence checking solution:
All critical pairs have been rewritten and all equations are non-constructor.
The specification is coherent.

Maude> (check coherence READERS-WRITERS-ABS .)
Coherence checking of READERS-WRITERS-ABS
Coherence checking solution:
The following critical pairs cannot be rewritten:
cp < s(0), 0 > => < s(N:Nat), 0 > .

A simple argument by cases shows that this critical pair can be joined for each instantiation of N by considering the two cases for natural numbers N = 0 and N = s(M), thus proving ground coherence.
Readers and writers: finally

mod READERS-WRITERS-ABS-CHECK is
 protecting READERS-WRITERS-ABS .
 including MODEL-CHECKER .
endm

Maude> reduce in READERS-WRITERS-ABS-CHECK :
 modelCheck(< 0,0 >, []mutex) .
rewrites: 15 in 0ms cpu (0ms real) (28790 rewrites/second)
result Bool: true

Maude> reduce in READERS-WRITERS-ABS-CHECK :
 modelCheck(< 0,0 >, []one-writer) .
rewrites: 15 in 0ms cpu (0ms real) (76142 rewrites/second)
result Bool: true
Maude> search in READERS-WRITERS-ABS :
 < 0, 0 > =>* C:State
 such that C:State |= mutex = false .

No solution.
states: 3
rewrites: 9 in 0ms cpu (0ms real) (80357 rewrites/second)

Maude> search in READERS-WRITERS-ABS :
 < 0, 0 > =>* C:State
 such that C:State |= one-writer = false .

No solution.
states: 3
rewrites: 9 in 0ms cpu (0ms real) (94736 rewrites/second)
Bakery protocol
A bakery protocol example

- It is an **infinite-state** protocol that achieves mutual exclusion between processes by the usual method in bakeries and deli shops: there is a number dispenser and customers are served according to the number they hold.

- Consider a simple Maude specification for the case of **two processes**, where a state is represented by a tuple

 \[
 \text{op } <_1, _2, _3, _4> : \text{Mode Nat Mode Nat } \rightarrow \text{State .}
 \]
mod BAKERY is
 protecting NAT .
 sorts Mode State .
op sleep wait crit : -> Mode [ctor] .
op initial : -> State .
vars P Q : Mode . vars X Y : Nat .
eq initial = < sleep, 0, sleep, 0 > .
rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .
rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .
crl [p1_wait] : < wait, X, Q, Y > => < crit, X, Q, Y >
 if not (Y < X) .
rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .
rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .
 if Y < X .
rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .
endm
Bakery protocol: properties

- **mutual exclusion**: the two processes are never simultaneously in their critical section.

 $$\neg (1\text{crit} \lor 2\text{crit})$$

- **liveness**: whenever a process enters the waiting mode, it will eventually enter its critical section.

 $$(1\text{wait} \rightarrow 1\text{crit}) \lor (2\text{wait} \rightarrow 2\text{crit})$$
mod BAKERY-PREDS is
 protecting BAKERY .
 including SATISFACTION .
ops 1wait 2wait 1crit 2crit : -> Prop [ctor] .
vars P Q : Mode .
vars X Y : Nat .
eq < wait, X, Q, Y > |= 1wait = true .
eq < sleep, X, Q, Y > |= 1wait = false .
eq < crit, X, Q, Y > |= 1wait = false .
eq < P, X, wait, Y > |= 2wait = true .
eq < P, X, sleep, Y > |= 2wait = false .
eq < P, X, crit, Y > |= 2wait = false .
eq < crit, X, Q, Y > |= 1crit = true .
eq < sleep, X, Q, Y > |= 1crit = false .
eq < wait, X, Q, Y > |= 1crit = false .
eq < P, X, crit, Y > |= 2crit = true .
eq < P, X, sleep, Y > |= 2crit = false .
eq < P, X, wait, Y > |= 2crit = false .
endm
We can define an abstraction by:

$$\text{abs}(\langle P, X, Q, Y \rangle) = \langle P, Q, X == 0, Y == 0, Y < X \rangle$$

Equivalently:

$$\langle P, N, Q, M \rangle \equiv \langle P', N', Q', M' \rangle$$

iff

- $P = P'$ and $Q = Q'$,
- $N = 0$ iff $N' = 0$,
- $M = 0$ iff $M' = 0$,
- $M < N$ iff $M' < N'$.
mod ABSTRACT-BAKERY is
 including BAKERY .
vars P Q : Mode .
vars X Y : Nat .

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .
eq < P, s s X, Q, 0 > = < P, s 0, Q, 0 > .
eq < P, s s s X, Q, s s s Y > = < P, s s X, Q, s s Y > .
eq < P, s s s X, Q, s s 0 > = < P, s s 0, Q, s 0 > .
eq < P, s s s X, Q, s 0 > = < P, s s 0, Q, s 0 > .
eq < P, s s 0, Q, s s Y > = < P, s 0, Q, s 0 > .
eq < P, s s 0, Q, s s Y > = < P, s 0, Q, s 0 > .
endm
The set of abstract states is finite.

The equations in both ABSTRACT–BAKERY and BAKERY–PREDs are (ground) Church-Rosser and terminating.

The equations in both ABSTRACT–BAKERY and BAKERY–PREDs are sufficiently complete (this guarantees that NAT and BOOL are really protected).

The rules (coming from BAKERY) and the equations in ABSTRACT–BAKERY are ground coherent.
mod ABSTRACT-BAKERY-PREDs is protecting ABSTRACT-BAKERY .
 including BAKERY-PREDs .
endm

- The equations in ABSTRACT-BAKERY-PREDs are (ground) Church-Rosser and terminating.
- The equations in ABSTRACT-BAKERY-PREDs are sufficiently complete.
- This guarantees the required preservation of properties.
\begin{itemize}
\item The equations for the enabled predicate are sufficiently complete (although the current version of the SCC tool does not help in proving this).
\item This implies that the system is \textit{deadlock-free}.
\end{itemize}
mod ABSTRACT-BAKERY-CHECK is
 protecting ABSTRACT-BAKERY-PREDs .
 including MODEL-CHECKER .
endm

Maude> reduce in ABSTRACT-BAKERY-CHECK :
 modelCheck(initial, []~ (1crit \ 2crit)) .
result Bool: true

Maude> reduce in ABSTRACT-BAKERY-CHECK :
 modelCheck(initial, (1wait |-> 1crit)
 \ (2wait |-> 2crit)) .
result Bool: true
Unordered communication channel
Consider a communication channel in which messages can get out of order.

There is a sender and a receiver. The sender is sending a sequence of data items, for example numbers.
In-order communication

- The receiver is supposed to get the sequence in the exact same order in which items were in the sender’s sequence.
- To achieve this in-order communication in spite of the unordered nature of the channel, the sender sends each data item in a message together with a sequence number.
- The receiver sends back an ack indicating that has received the item.
The contents of the unordered channel are modeled as a \textit{multiset} of messages of sort $\text{Conf}(\text{igation})$.

The entire system state is a 5-tuple of sort State, where the components are:

- a buffer with the items to be sent,
- a counter for the acknowledged items,
- the contents of the unordered channel,
- a buffer with the items received, and
- a counter for the items received.

\begin{verbatim}
op \{_,_\|_\|_,_\} : List Nats Conf List Nats \rightarrow State [ctor] .
\end{verbatim}
Unordered channel infrastructure

fmod UNORDERED-CHANNEL-EQ is
 sorts Nats List Msg Conf State .
 op 0 : -> Nats [ctor] .
 op s : Nats -> Nats [ctor] .
 op nil : -> List [ctor] .
 op _;_ : Nats List -> List [ctor] . *** list cons
 op _@_ : List List -> List . *** list append

 op [_,_] : Nats Nats -> Msg [ctor] .
 op ack : Nats -> Msg [ctor] .
 subsort Msg < Conf .
 op null : -> Conf [ctor] .

 vars N : Nats . vars L P : List .
 eq nil @ L = L .
 eq (N ; L) @ P = N ; (L @ P) .
endfm
Unordered communication channel

mod UNORDERED-CHANNEL is
 including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: {N ; L, M | C | P, J}
 => {N ; L, M | [N, M] C | P, J} .

rl [rec]: {L, M | [N, J] C | P, J}
 => {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M}
 => {L, s(J) | C | P, M} .

endm
Maude> (ccr UNORDERED-CHANNEL .)
Church-Rosser check for UNORDERED-CHANNEL
 All critical pairs have been joined.
 The specification is locally-confluent.
 The module is sort-decreasing.

Maude> (submit .)
The termination goal for the functional part of
 UNORDERED-CHANNEL has been submitted to MTT.
The functional part of module UNORDERED-CHANNEL has been
 checked terminating.
Success: The module is therefore Church-Rosser.
Success: The module UNORDERED-CHANNEL is Church-Rosser.
Maude> (scc UNORDERED-CHANNEL .)
Sufficient completeness check for UNORDERED-CHANNEL
Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved

Maude> (submit .)
The sort-decreasingness goal for UNORDERED-CHANNEL has been submitted to CRC.
The termination goal for the functional part of UNORDERED-CHANNEL has been submitted to MTT.
Church-Rosser check for UNORDERED-CHANNEL
The module is sort-decreasing.
Success: The functional module UNORDERED-CHANNEL is sufficiently complete and has free constructors.
Unordered channel: coherence

Maude> (cch UNORDERED-CHANNEL .)
Coherence checking of UNORDERED-CHANNEL
 All critical pairs have been rewritten and no rewrite with
 rules can happen at non-overlapping positions of equations
 left-hand sides. [...]

Maude> (submit .)
The Church-Rosser goal for UNORDERED-CHANNEL has been
 submitted to CRC.
The Sufficient-Completeness goal for UNORDERED-CHANNEL
 has been submitted to SCC.
The termination goal for the functional part of
 UNORDERED-CHANNEL has been submitted to MTT.
Sufficient completeness check for UNORDERED-CHANNEL [...]
Church-Rosser check for UNORDERED-CHANNEL [...]
The functional part of module UNORDERED-CHANNEL has been
 checked terminating.
The module UNORDERED-CHANNEL has been checked Church-Rosser.
Success: The module UNORDERED-CHANNEL is coherent.
mod UNORDERED-CHANNEL is
 including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: \{N \; L, M \mid C \; P, J\}
 => \{N \; L, M \mid [N, M] C \; P, J\} .

rl [rec]: \{L, M \mid [N, J] C \; P, J\}
 => \{L, M \mid ack(J) C \; P \od (N \; \text{nil}), s(J)\} .

rl [rec-ack]: \{N \; L, J \mid \text{ack}(J) C \; P, M\}
 => \{L, s(J) \mid C \; P, M\} .

endm
The channel should not contain repeated copies of sent messages:

```plaintext
mod UNORDERED-CHANNEL-ABSTRACTION is
  including UNORDERED-CHANNEL.
  vars M N P K : Nats.
  vars L L' : List.
  var C : Conf.
endm
```
Maude> (cch UNORDERED-CHANNEL-ABSTRACTION .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION
The following critical pairs cannot be rewritten:
 cp UNORDERED-CHANNEL-ABSTRACTION2 for A1 and rec
 =>{L:List,M:Nats | #3:Conf ack(J:Nats)[N:Nats,J:Nats]| P:List @ N:Nats ; nil,s(J:Nats)}.
The sufficient-completeness, termination and Church-Rosser
properties must still be checked.
In this example, the critical pair indicates that a rule is missing.

mod UNORDERED-CHANNEL-ABSTRACTION-2 is including UNORDERED-CHANNEL-ABSTRACTION.

vars M N K : Nats.
vars L L' : List.
var C : Conf.

rl [snd2]: \{L, M | [N, K] C | L', K\}
=> \{L, M | [N, K] ack(K) C | L' @ N ; nil, s(K)\}.
endm
Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-2 .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION-2
 All critical pairs have been rewritten and no rewrite
 with rules can happen at non-overlapping positions of
 equations left-hand sides.
 The sufficient-completeness, termination and Church-Rosser
 properties must still be checked.

Maude> (submit .)
[...]
Success: The module UNORDERED-CHANNEL-ABSTRACTION-2
 is coherent.
We assume that all initial states are of the form:

\[\{n_1 ; \ldots ; n_k ; \text{nil} , 0 \mid \text{null} \mid \text{nil} , 0\} \]

The sender’s buffer contains a list of numbers

\[n_1 ; \ldots ; n_k ; \text{nil} \]

and has the counter set to 0.

The communication channel initially is empty.

The receiver’s buffer is also empty and the receiver’s counter is initially set to 0.

One essential property is that it achieves in-order communication in spite of the unordered channel.
Unordered channel: properties

mod UNORDERED-CHANNEL-PREDs is
 protecting BOOLEAN . protecting UNORDERED-CHANNEL .
 sort Prop .
 op ¬ : Nats Nats -> Bool . *** equality predicate
 op |= : State Prop -> Bool [frozen] . *** satisfaction

vars M N K P : Nats .
vars L L' L'' : List .
var C : Conf .
eq 0 ~ 0 = true .
eq 0 ~ s(N) = false .
eq s(N) ~ 0 = false .
eq s(N) ~ s(M) = N ~ M .

op prefix : List -> Prop [ctor] .

eq [I1]: {L', N | C | K ; L'', P} |= prefix(M ; L)
 = (M ~ K) and {L', N | C | L'', P} |= prefix(L) .
eq [I3]: {L', N | C | nil, K} |= prefix(L) = true .
eq [I4]: {L', N | C | M ; L'', K} |= prefix(nil) = false .
endm
mod UNORDERED-CHANNEL-ABSTRACTION-CHECK is
 extending UNORDERED-CHANNEL-ABSTRACTION-2 .
 including UNORDERED-CHANNEL-PREDS .
 op init : -> State .
 eq init = {0 ; s(0) ; s(s(0)) ; nil , 0 | null | nil , 0} .
endm

- The set of abstract states is finite.
- The equations in both UNORDERED-CHANNEL-PREDS and UNORDERED-CHANNEL-ABSTRACTION-CHECK are Church-Rosser and terminating.
- The equations in both UNORDERED-CHANNEL-PREDS and UNORDERED-CHANNEL-ABSTRACTION-CHECK are sufficiently complete.
- UNORDERED-CHANNEL is deadlock free.
Maude> (ct UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION-CHECK is sufficiently complete and has free constructors. [...]

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is coherent.
mod UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK is
 including UNORDERED-CHANNEL-ABSTRACTION-CHECK .
 including LTL-SIMPLIFIER . *** optional
 including MODEL-CHECKER .
endm

Maude> reduce in UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK : modelCheck(init, []prefix(0 ; s(0) ; s(s(0)) ; nil)) . rewrites: 361 in 41ms cpu (42ms real) (8780 rewrites/second) result Bool: true
More features
Given terms t and u, we say that t and u are **unifiable** if there is a substitution σ such that $\sigma(t) \equiv \sigma(u)$.

Given an equational theory A and terms t and u, we say that t and u are **unifiable modulo A** if there is a substitution σ such that $\sigma(t) \equiv_A \sigma(u)$.

Maude supports **order-sorted equational unification modulo** many combinations of equational attributes such as `assoc`, `comm id` (as well as variant-based equational unification).
Narrowing

Narrowing generalizes term rewriting by allowing **free variables** in terms (as in logic programming) and by performing **unification instead of matching** in order to (non-deterministically) reduce a term.

A term \(t \) narrows to a term \(t' \) using a rule \(l \Rightarrow r \) in \(R \) and a substitution \(\sigma \) if

1. there is a subterm \(t|_p \) of \(t \) at a nonvariable position \(p \) of \(t \) such that \(l \) and \(t|_p \) are **unifiable** via \(\sigma \), and
2. \(t' = \sigma(t[r]_p) \) is obtained from \(\sigma(t) \) by replacing the subterm \(\sigma(t|_p) \equiv \sigma(l) \) with the term \(\sigma(r) \).
Narrowing can also be defined modulo an equational theory.

Narrowing with R modulo E requires E-unification at each narrowing step.

Maude supports a version of narrowing modulo with simplification, where each narrowing step with a rule is followed by simplification with the equations.

There are some restrictions on the allowed rules; for example, they cannot be conditional.
Narrowing can be used as a general deductive procedure for solving reachability problems of the form

\[(\exists \vec{x}) \ t_1(\vec{x}) \rightarrow t'_1(\vec{x}) \land \cdots \land t_n(\vec{x}) \rightarrow t'_n(\vec{x})\]

in a given rewrite theory.

- The terms \(t_i \) and \(t'_i \) denote sets of states.
- For what subset of states denoted by \(t_i \) are the states denoted by \(t'_i \) reachable?
- No finiteness assumptions about the state space.
- Sound and complete for topmost rewrite theories.

Narrowing can be also used for logical model checking.
Maude-NPA

Maude-NPA (NRL Protocol Analyzer) is a tool to find or prove the absence of attacks using backwards search in possibly infinite state systems.

Uses rewriting logic as general theoretical framework:
- protocols and intruder rules are specified as rewrite rules,
- crypto properties as oriented equational properties and axioms.

Uses narrowing modulo equational theories in two ways:
- as a symbolic reachability analysis method,
- as an extensible equational unification method.

Combines with state reduction techniques of NRL Protocol Analyzer: grammars, optimizations, etc.
Maude-NPA supports as equations the **algebraic properties** of the cryptographic functions:

- explicit encryption and decryption,
- exclusive or,
- modular exponentiation,
- homomorphism.

Reasoning modulo such algebraic properties is very important.

Some protocols that can be proved **secure** when cryptographic functions are treated as a “black box” can actually be **broken** by an attacker making clever use of the algebraic properties of cryptographic functions.
Rewriting modulo SMT

- SMT rewrite rules are conditional rewrite rules of the form

\[t(\vec{x}) \rightarrow t'(\vec{x}, \vec{y}) \text{ if } \phi \]

where

- \(\vec{y} \) are SMT variables, and
- \(\phi \) is an SMT constraint.

- Rewriting is extended to SMT rewriting between constrained terms

\[u \mid \varphi \rightsquigarrow v \mid \psi \]

- Applying a rule requires satisfaction of its condition by SMT solving.
Maude has been interconnected to *SMT solvers*, such as Z3, CVC4, Yices2.

Rewriting modulo SMT has been used to develop executable semantics for NASA’s *PLEXIL language for distributed programming* of robot tasks, used in several projects.

Also to analyze the *CASH scheduling algorithm*, which attempts to maximize system performance while guaranteeing that critical tasks are executed in a timely manner.

This algorithm uses an *unbounded queue* of unused execution budgets, and thus it cannot be analyzed by means of timed-automata formalisms.
Conclusion
The equational abstraction technique is simple and takes advantage of the expressiveness of rewriting logic and the tools available in the Maude formal environment.

Other examples, such as the bakery protocol for an arbitrary number of processes and the bounded retransmission protocol, are available in the references.

These ideas can be generalized to an arbitrary theory interpretation $H : (\Sigma, E) \rightarrow (\Sigma', E'')$, and to (stuttering) simulations between different sets AP and AP' of state predicates.
Many colleagues are working on the combination of
- SMT solving,
- rewriting- and narrowing-based analysis, and
- (automata-based) model checking;
- and new formal tools for applying these symbolic techniques all together.
- Much work remains to be done.
References

All About Maude – A High-Performance Logical Framework

This monograph gives a comprehensive account of Maude, a language and system based on rewriting logic. Maude and its formal tool environment can be used in three mutually reinforcing ways: as a declarative programming language, as an executable formal specification language, and as a formal verification system. Maude is used in many institutions around the world for teaching, research, and formal modeling and analysis of concurrent and distributed systems.

Many examples are used throughout the book to illustrate the main ideas, features, and uses of Maude. The book comes with a CD-ROM containing the complete Maude 2.3 software distribution (including source code), a pdf version of this monograph, and the executable Maude code for all the examples in the book.

In parallel to the printed book, each new volume is published electronically in LNCS Online.

Detailed information on LNCS can be found at www.springer.com/lncs

Proposals for publication should be sent to LNCS Editorial, Tiergartenstr. 17, 69121 Heidelberg, Germany

E-mail: lncs@springer.com

ISSN 0302-9743
ISBN 978-3-540-71940-3

Conclusion
References

References

