
A logical approach
to theverification
of concurrent systems

(joint work with many colleagues)

by

Narciso Martí-Oliet (UCM)

August 2017



Introduction 2/106

Introduction



Goals
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1. To introduce Maude as a framework for modeling
concurrent systems andmodel checking their properties.

2. To present a simple method of defining quotient
abstractions by means of equations collapsing the set of
states.

3. To illustrate this method with several detailed examples.
4. To comment recent developments introducing new

features like narrowing and SMT constraints.



Abstraction…what for?
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Abstraction reduces the problem of whether an infinite
state system satisfies a temporal logic property to model
checking that property on a finite state abstract version.
Some common abstractions are quotients of the original
system.
We present a simple method of defining quotient
abstractions by means of equations collapsing the set of
states.
Our method yields the minimal quotient system together
with a set of proof obligations that guarantee its
executability and can be discharged with tools such as
those in the Maude Formal Environment.
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Ingredients of rewriting logic
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Types (and subtypes).
Typed operators providing syntax: signatureΣ.
Syntax allows the construction of both static data and
states: term algebra TΣ.

Equations E define functions over static data as well as
properties of states.
Rewrite rules R define transitions between states.
Deduction in the logic corresponds to computation with
those functions and transitions.

The Maude language is an implementation of (equational
and) rewriting logic, allowing the execution of
specifications satisfying some admissibility, or
executability, requirements.



So…who isMaude?
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Maude follows a long tradition of declarative algebraic
specification languages in the OBJ family, including
OBJ3, CafeOBJ, and Elan.
Computation = Deduction in the appropriate logic.
Functional modules = Admissible specifications in
(membership) equational logic.
Systemmodules = Admissible specifications in rewriting
logic.
Operational semantics is based onmatching and
rewriting.

http://maude.cs.uiuc.edu



Example: crossing the river
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A shepherd needs to transport to the other side of a river
a wild dog,
a lamb, and
a cabbage.

He has only a boat with room for the shepherd himself
and another item.
The problem is that in the absence of the shepherd

the wild dog would eat the lamb, and
the lamb would eat the cabbage.



Example: crossing the river
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Example: crossing the river
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The shepherd and his belongings are represented as
objects with only an attribute indicating the side of the
river in which each is located.
The group is put together by means of an associative and
commutative juxtaposition.
Constants left and right represent the two sides of
the river.
Operation ch(ange) is used to modify the corresponding
attributes.
Rules represent the ways of crossing the river that are
allowed by the capacity of the boat.



Example: crossing the river
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mod RIVER-CROSSING is
sorts Side Group .

ops left right : -> Side [ctor] .
op ch : Side -> Side .
eq ch(left) = right .
eq ch(right) = left .

ops s w l c : Side -> Group [ctor] .
op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(ch(S)) .
rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .

endm



Example: mutual exclusion
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mod MUTEX is
sorts Name Mode Proc Token Conf .
subsorts Token Proc < Conf .
op none : -> Conf [ctor] .
op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .
ops wait critical : -> Mode [ctor] .
op [_,_] : Name Mode -> Proc [ctor] .
ops * $ : -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .
rl [b-enter] : * [b, wait] => [b, critical] .
rl [a-exit] : [a, critical] => [a, wait] * .
rl [b-exit] : [b, critical] => [b, wait] $ .

endm



Example: readers andwriters
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mod READERS-WRITERS is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
--- natural numbers in Peano notation

sort State .
op <_,_> : Nat Nat -> State [ctor] .

--- readers/writers

vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .

endm



Equational simplification
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A term t rewrites to a term t′ (denoted t →E t′) by an
equation l = r in E if:
1. there is a subterm t|p of t at a given position p of t

s. t. lmatches t|p via a substitution σ, i.e., σ(l) ≡ t|p
2. t′ is obtained from t by replacing the subterm t|p ≡ σ(l)

with the term σ(r).

That is,

t = C[t|p] = C[σ(l)] →E C[σ(r)] = t′

Wewrite t →∗
E t′ to mean that either t = t′ (0 steps) or

t →E t1 →E t2 →E · · · →E tn →E t′ with n ≥ 0 (n+ 1
steps).



Confluence and termination
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A set of equations E is confluent (or Church-Rosser) when
any two rewritings of a term can always be joined by
further rewriting: if t →∗

E t1 and t →∗
E t2, then there exists

a term t′ such that t1 →∗
E t′ and t2 →∗

E t′.
t
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A set of equations E is terminating when there is no
infinite sequence of rewriting steps t0 →E t1 →E t2 →E . . .



Maude functionalmodules
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If E is both confluent and terminating, a term t can be
reduced to a unique normal or canonical form t↓E, that is,
to a term that can no longer be rewritten.
Checking semantic equality of two terms, t = t′, amounts
to checking that their respective canonical forms are
equal, t↓E = t′ ↓E.
Functional modules in Maude are assumed to be
confluent and terminating, and their operational
semantics is equational simplification, that is, rewriting
of terms until a canonical form is obtained.



Equational attributes
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Equational attributes are a means of declaring certain
axioms in a way that allows Maude to use them efficiently
in a built-in way: assoc, comm, id.
Given an equational theory A, a pattern term t and a
subject term u, we say that tmatches umodulo A if there
is a substitution σ such that σ(t) =A u, that is, σ(t) and u
are equal modulo the equational theory A.
Given an equational theory A = ∪iAfi corresponding to all
the attributes declared in different binary operators,
Maude synthesizes a combinedmatching algorithm for
the theory A, and does equational simplification modulo
the axioms A.



Rewriting logic
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Rewriting logic was introduced by J. Meseguer in 1990 as
a unifying framework for concurrency.
We arrive at the main idea behind rewriting logic by
dropping symmetry and the equational interpretation of
rules.
We interpret a rule t → t′ computationally as a local
concurrent transition of a system, and logically as an
inference step from formulas of type t to formulas of type
t′.
Rewriting logic is a logic of becoming or change, that
allows us to specify the dynamic aspects of systems.



Modeling systems in rewriting logic
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The static part is specified as an equational theory.
The dynamics is specified by means of possibly
conditional rules that rewrite terms, representing parts of
the system, into others.
The rules need only specify the part of the system that
actually changes: the frame problem is avoided.



Maude systemmodules
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Systemmodules in Maude correspond to rewrite theories
in rewriting logic.
A rewrite theory has both rules and equations, so that
rewriting is performedmodulo such equations.
The equations are divided into

a set A of structural axioms (associativity, commutativity,
identity), for which matching algorithms exist in Maude,
and
a set E of equations that are Church-Rosser and
terminating modulo A;

that is, the equational part must be equivalent to a
functional module.



Coherence
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Rules R in the module must be coherent wrt. equations E
modulo A, allowing us to intermix rewriting with rules
and rewriting with equations without losing
computations.

t
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A simple strategy available when coherence holds is to
always reduce to canonical form using E before applying
any rule in R.



Tools aroundMaude
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Maude Formal Environment
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Maude Termination Tool (MTT) to prove termination of
systemmodules by connecting to external termination
tools.
Church-Rosser Checker (CRC) to check the Church-Rosser
property of functional modules.
Sufficient Completeness Checker (SCC) to check that
defined functions have been fully defined in terms of
constructors.
Coherence Checker (ChC) to check the coherence of
systemmodules.
Inductive Theorem Prover (ITP) to verify inductive
properties of functional modules.
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Model checking



Model checking
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Two levels of specification:
a system specification level, provided by the rewrite
theory specified by that systemmodule, and
a property specification level, given by some properties
that we want to state and prove about our module.

Temporal logic allows specification of properties such as
safety properties (ensuring that something bad never
happens) and liveness properties (ensuring that
something good eventually happens), related to the
infinite behavior of a system.
Maude 2 includes a model checker to prove properties
expressed in linear temporal logic (LTL).



Linear temporal logic: syntax
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Main connectives:
True: ⊤

Atomic propositions: p ∈ AP

Next: ⃝φ

Until: φ U ψ

Negation and disjunction: ¬φ,φ ∨ ψ



Linear temporal logic: syntax
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Derived connectives:
False: ⊥ = ¬⊤

Conjunction: φ ∧ ψ = ¬((¬φ) ∨ (¬ψ))

Implication: φ→ ψ = (¬φ) ∨ ψ

Eventually: ♢φ = ⊤ U φ

Henceforth: □φ = ¬♢¬φ



Linear temporal logic: intuition
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⊤ is a formula that always holds at the current state.
⃝φ holds at the current state if φ holds at the state that
follows.
φ U ψ holds at the current state if ψ is eventually
satisfied at a future state and, until that moment, φ holds
at all intermediate states.
□φ holds if φ holds at every state from now on.
♢φ holds if φ holds at some state in the future.



Kripke structures
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A Kripke structure is a tripleA = (A,→A, L) such that
A is a set, called the set of states,
→A is a total binary relation on A, called the transition
relation, and
L : A −→ P(AP) is a labeling function, associating to each
state a ∈ A the set L(a) of those atomic propositions in AP
that hold in a.

A path in a Kripke structureA is a function π : IN −→ A
with π(i) →A π(i+ 1) for every i.
πi is the suffix of π starting at π(i).



Linear temporal logic: semantics
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Satisfaction relation between a Kripke structureA, a
state a ∈ A, and an LTL formula φ ∈ LTL(AP):

A, a |= φ ⇐⇒ A, π |= φ for all paths π with π(0) = a.

Satisfaction relation for pathsA, π |= φ defined by
structural induction on φ:

A, π |= p ⇐⇒ p ∈ L(π(0))
A, π |= ⊤ ⇐⇒ true
A, π |= φ ∨ ψ ⇐⇒ A, π |= φ orA, π |= ψ
A, π |= ¬φ ⇐⇒ A, π ̸|= φ
A, π |=⃝φ ⇐⇒ A, π1 |= φ
A, π |= φ U ψ ⇐⇒ there exists n ∈ IN such that

A, πn |= ψ and,
for allm < n,A, πm |= φ



Kripke structs for rewrite theories
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Given a systemmodule M specifying a rewrite theory
R = (Σ, E,R), we

choose a type k in M as our type of states;
define in a module, say M-PREDS, protecting M, some
state predicatesΠ and their semantics by means of the
basic satisfaction operation
op _|=_ : State Prop -> Bool .

Then we get a Kripke structure (more details later)

K(R, k)Π = (TΣ/E,k, (→1
R)

•, LΠ).

Under some assumptions on M and M-PREDS, including
that the set of states reachable from t is finite, the
relationK(R, k)Π, t |= φ can bemodel checked.



Model-checkingmodules
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MUTEX-CHECK

MUTEX-PREDSMODEL-CHECKERLTL-SIMPLIFIER

MUTEXSATISFACTIONLTL QID

BOOL



Mutual exclusion: processes
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mod MUTEX is
sorts Name Mode Proc Token Conf .
subsorts Token Proc < Conf .
op none : -> Conf [ctor] .
op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .
ops wait critical : -> Mode [ctor] .
op [_,_] : Name Mode -> Proc [ctor] .
ops * $ : -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .
rl [b-enter] : * [b, wait] => [b, critical] .
rl [a-exit] : [a, critical] => [a, wait] * .
rl [b-exit] : [b, critical] => [b, wait] $ .

endm



Mutual exclusion: properties
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mod MUTEX-PREDS is
protecting MUTEX .
including SATISFACTION .

subsort Conf < State .

ops crit wait : Name -> Prop [ctor] .

var N : Name . var C : Conf . var P : Prop .

eq [N, critical] C |= crit(N) = true .
eq [N, wait] C |= wait(N) = true .
eq C |= P = false [owise] .

endm



Model checkingmutual exclusion
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mod MUTEX-CHECK is
protecting MUTEX-PREDS .
including MODEL-CHECKER .
including LTL-SIMPLIFIER .
ops initial1 initial2 : -> Conf .
eq initial1 = $ [a, wait] [b, wait] .
eq initial2 = * [a, wait] [b, wait] .

endm

Maude> red modelCheck(initial1, [] ~(crit(a) /\ crit(b))) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true

Maude> red modelCheck(initial2, [] ~(crit(a) /\ crit(b))) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.
result Bool: true



Counterexamples
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If we check whether, beginning in the state initial1,
process bwill always be waiting, we get a
counterexample:

Maude> red modelCheck(initial1, [] wait(b)) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 4 system states.

result ModelCheckResult:
counterexample({$ [a, wait] [b, wait], ’a-enter}

{[a, critical] [b, wait], ’a-exit}
{* [a, wait] [b, wait], ’b-enter} ,
{[a, wait] [b, critical], ’b-exit}
{$ [a, wait] [b, wait], ’a-enter}
{[a, critical] [b, wait], ’a-exit}
{* [a, wait] [b, wait], ’b-enter})



Crossing the river: transitions
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mod RIVER-CROSSING is
sorts Side Group .

ops left right : -> Side [ctor] .
op ch : Side -> Side .
eq ch(left) = right .
eq ch(right) = left .

ops s w l c : Side -> Group [ctor] .
op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(ch(S)) .
rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .

endm



Crossing the river: properties
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mod RIVER-CROSSING-PROP is
protecting RIVER-CROSSING . including MODEL-CHECKER .
subsort Group < State . op initial : -> Group .
eq initial = s(left) w(left) l(left) c(left) .
ops disaster success : -> Prop [ctor] .

vars S S’ S’’ : Side .
ceq (w(S) l(S) s(S’) c(S’’) |= disaster) = true if S =/= S’ .
ceq (w(S’’) l(S) s(S’) c(S) |= disaster) = true if S =/= S’ .
eq (s(right) w(right) l(right) c(right) |= success) = true .
eq G:Group |= P:Prop = false [owise] .

endm

success characterizes the (good) state in which the
shepherd and his belongings are all in the other side,
disaster characterizes the (bad) states in which some
eating can take place.



Crossing the river
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Themodel checker only returns either true or paths
that are counterexamples of properties.
To find a safe path we need a formula that expresses the
negation of the property we like: a counterexample will
then witness a safe path for the shepherd.
If no safe path exists, then it is true that whenever
success is reached a disastrous state has been
traversed before:
<> success -> (<> disaster /\ ((~ success) U disaster))

A counterexample to this formula is a safe path,
completed so as to have a cycle.



Crossing the river
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Maude> red modelCheck(initial,
<> success -> (<> disaster /\ ((~ success) U disaster))) .

result ModelCheckResult: counterexample(
{s(left) w(left) l(left) c(left),’lamb}
{s(right) w(left) l(right) c(left),’shepherd}
{s(left) w(left) l(right) c(left),’wdog}
{s(right) w(right) l(right) c(left),’lamb}
{s(left) w(right) l(left) c(left),’cabbage}
{s(right) w(right) l(left) c(right),’shepherd}
{s(left) w(right) l(left) c(right),’lamb}
{s(right) w(right) l(right) c(right),’lamb}
{s(left) w(right) l(left) c(right),’shepherd}
{s(right) w(right) l(left) c(right),’wdog}
{s(left) w(left) l(left) c(right),’lamb}
{s(right) w(left) l(right) c(right),’cabbage}
{s(left) w(left) l(right) c(left),’wdog},
{s(right) w(right) l(right) c(left),’lamb}
{s(left) w(right) l(left) c(left),’lamb})
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Equational abstractions



Readers andwriters: transitions
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mod READERS-WRITERS is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

sort State .
op <_,_> : Nat Nat -> State [ctor] .

--- readers/writers

vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > . --- infinite system
rl < s(R), W > => < R, W > .

endm



The problem
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Given a concurrent system, we want to check whether
certain properties hold in it or not.
If the number of (reachable) states is finite, use model
checking.
If the number of (reachable) states is infinite (or too large)
this does not work. Then

we can employ deductive methods, or
we can calculate an abstract version of the systemwith a
finite number of states to which model checking can be
applied.



Our approach to abstraction
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A simple method of defining quotient abstractions is by
means of equations collapsing the set of states:
The concurrent system is specified by a rewrite theory
R = (Σ, E,R).
Then the quotient is obtained by adding more equations
toR, thus gettingR′ = (Σ, E ∪ E′, R).
Such a quotient will be useful for model-checking
purposes if

the resulting theory is executable, and
the state predicates are preserved by the equations.

These proof obligations can be discharged using the
tools in the Maude Formal Environment.



The system specification level
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In general, a concurrent system is specified by a rewrite
theoryR = (Σ, E, R)with:

(Σ, E) an equational theory describing the states;
R a set of rewrite rules defining the system transitions.

This determines, for each type k, a transition system

(TΣ/E,k, (→1
R)

•)

where
TΣ/E,k is the set of equivalence classes [t] of terms of type
k, modulo the equations E;

(→1
R)

• extends the one-step rewrite relation→1
R with an

identity pair ([t], [t]) for each deadlock state [t].



LTL properties of rewrite theories
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LTL properties are associated toR and a type k by
specifying the basic state predicatesΠ in an equational
theory (Σ′, E ∪ D) extending (Σ, E) conservatively.
State predicates, possibly parameterized, are constructed
with operators p : s1 . . . sn → Prop.
The semantics is defined bymeans of equations D using
the basic “satisfaction operator” _ |= _ : k Prop → Bool.
A state predicate p(u1, . . . , un) holds in a state [t] iff

E ∪ D ⊢ t |= p(u1, . . . , un) = true



LTL properties of rewrite theories
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The Kripke structure associated toR, k, andΠ is

K(R, k)Π = (TΣ/E,k, (→1
R)

•, LΠ)

where

APΠ = {p(u1, . . . , un) ground | p ∈ Π}

LΠ([t]) = {p(u1, . . . , un) | p(u1, . . . , un) holds in [t]}

Assuming that the equations E∪D are Church-Rosser and
terminating, and that the rewrite theoryR = (Σ, E, R) is
executable, the resulting Kripke structure is computable.



Equational abstractions
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We can define an abstraction forK(R, k)Π by specifying
an equational theory extension

(Σ, E) ⊆ (Σ, E ∪ E′)

This gives rise to an equivalence relation≡E′ on TΣ/E

[t]E ≡E′ [t′]E ⇐⇒ E ∪ E′ ⊢ t = t′ ⇐⇒ [t]E∪E′ = [t′]E∪E′

and then a quotient abstractionK(R, k)Π/≡E′ .
In what follows, we assume thatR is k-deadlock free and
k-topmost. In particular, (→1

R)
• =→1

R.



Equational abstractions
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Let us take a closer look at the quotient:

K(R, k)Π/≡E′ = (TΣ/E,k/≡E′ , (→1
R)

•/≡E′ , LΠ/≡E′
).

TΣ/E/≡E′
∼= TΣ,E∪E′ .

Under the above assumptions,R′ = (Σ, E ∪ E′,R) is also
k-deadlock free and

(→1
R/E′)

• = →1
R/E′ = (→1

R)
•/≡E′

Executability requires that:
The equations E ∪ E′ are (ground) Church-Rosser and
terminating.
The rules R are (ground) coherent relative to E ∪ E′.



Equational abstractions:
preservation of properties
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What about state predicates? By definition:

LΠ/≡E′
([t]E∪E′) =

∩
[x]E⊆[t]E∪E′

LΠ([x]E).

Coming up with equations D′ defining LΠ/≡E′
may not be

easy at all.
It becomesmuch easier if the predicates are preserved by
E′:

[x]E∪E′ = [y]E∪E′ ⇒ LΠ([x]E) = LΠ([y]E)

In this case we do not need to change the equations D
and therefore we have:

K(R, k)Π/≡E′
∼= K(R′, k)Π.



Equational abstractions: all together
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When E, E′ and R satisfy all the executability requirements
described above,
by construction, the quotient simulation

K(R, k)Π −→ K(R, E)Π/≡E′
∼= K(R′, k)Π

is strict and so it reflects satisfaction of arbitrary LTL
formulas.
Moreover, sinceR′ is executable, for an initial state [t]
having a finite set of reachable states we can use the
Maudemodel checker to check if a property holds.
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Readersandwriters



Readers andwriters: transitions
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mod READERS-WRITERS is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

sort State .
op <_,_> : Nat Nat -> State [ctor] .

--- readers/writers

vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > . --- infinite system
rl < s(R), W > => < R, W > .

endm



Readers andwriters: properties
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mod READERS-WRITERS-PREDS is
protecting READERS-WRITERS .
including SATISFACTION .
ops mutex one-writer : -> Prop [ctor] .
eq < s(N:Nat), s(M:Nat) > |= mutex = false .
eq < 0, N:Nat > |= mutex = true .
eq < N:Nat, 0 > |= mutex = true .
eq < N:Nat, s(s(M:Nat)) > |= one-writer = false .
eq < N:Nat, 0 > |= one-writer = true .
eq < N:Nat, s(0) > |= one-writer = true .

endm

mutual exclusion: readers and writers never access the
resource simultaneously: only readers or only writers can
do so at any given time.
one writer: at most one writer will be able to access the
resource at any given time.



Readers andwriters: abstraction
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mod READERS-WRITERS-ABS is
including READERS-WRITERS-PREDS .
including READERS-WRITERS .
eq < s(s(N:Nat)), 0 > = < s(0), 0 > .

endm

The exact number of readers is unimportant.
We are only interested in whether there is at least a
reader or not.



Readers andwriters: abstraction
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For the executability and the property-preservation
properties of this abstraction, we need to check:
1. that the equations in both READERS-WRITERS-PREDS

and READERS-WRITERS-ABS are (ground)
Church-Rosser and terminating;

2. that the equations in both READERS-WRITERS-PREDS
and READERS-WRITERS-ABS are sufficiently complete
(this is equivalent to requiring that properties are
preserved); and

3. that the rules in both READERS-WRITERS-PREDS and
READERS-WRITERS-ABS are ground coherent with
respect to their equations.



Readers andwriters: Church-Rosser
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Maude> (ccr READERS-WRITERS-PREDS .)
Church-Rosser check for READERS-WRITERS-PREDS

All critical pairs have been joined.
The specification is locally-confluent.
The module is sort-decreasing.

Maude> (ccr READERS-WRITERS-ABS .)
Church-Rosser check for READERS-WRITERS-ABS

All critical pairs have been joined.
The specification is locally-confluent.
The module is sort-decreasing.
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Maude> (scc READERS-WRITERS-PREDS .)
Sufficient completeness check for READERS-WRITERS-PREDS ...

Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved

Maude> (scc READERS-WRITERS-ABS .)
Sufficient completeness check for READERS-WRITERS-ABS ...

Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved
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Maude> (cch READERS-WRITERS-PREDS .)
Coherence checking of READERS-WRITERS-PREDS
Coherence checking solution:

All critical pairs have been rewritten and all equations
are non-constructor.

The specification is coherent.

Maude> (check coherence READERS-WRITERS-ABS .)
Coherence checking of READERS-WRITERS-ABS
Coherence checking solution:

The following critical pairs cannot be rewritten:
cp < s(0), 0 > => < s(N:Nat), 0 > .

A simple argument by cases shows that this critical pair
can be joined for each instantiation of N by considering
the two cases for natural numbers N = 0 and N = s(M),
thus proving ground coherence.
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mod READERS-WRITERS-ABS-CHECK is
protecting READERS-WRITERS-ABS .
including MODEL-CHECKER .

endm

Maude> reduce in READERS-WRITERS-ABS-CHECK :
modelCheck(< 0,0 >, []mutex) .

rewrites: 15 in 0ms cpu (0ms real) (28790 rewrites/second)
result Bool: true

Maude> reduce in READERS-WRITERS-ABS-CHECK :
modelCheck(< 0,0 >, []one-writer) .

rewrites: 15 in 0ms cpu (0ms real) (76142 rewrites/second)
result Bool: true
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Maude> search in READERS-WRITERS-ABS :
< 0, 0 > =>* C:State
such that C:State |= mutex = false .

No solution.
states: 3
rewrites: 9 in 0ms cpu (0ms real) (80357 rewrites/second)

Maude> search in READERS-WRITERS-ABS :
< 0, 0 > =>* C:State
such that C:State |= one-writer = false .

No solution.
states: 3
rewrites: 9 in 0ms cpu (0ms real) (94736 rewrites/second)
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It is an infinite-state protocol that achieves mutual
exclusion between processes by the usual method in
bakeries and deli shops: there is a number dispenser and
customers are served according to the number they hold.
Consider a simple Maude specification for the case of two
processes, where a state is represented by a tuple

op <_,_,_,_> : Mode Nat Mode Nat -> State .
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mod BAKERY is
protecting NAT .
sorts Mode State .
ops sleep wait crit : -> Mode [ctor] .
op <_,_,_,_> : Mode Nat Mode Nat -> State [ctor] .
op initial : -> State .
vars P Q : Mode . vars X Y : Nat .
eq initial = < sleep, 0, sleep, 0 > .
rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .
rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .
crl [p1_wait] : < wait, X, Q, Y > => < crit, X, Q, Y >

if not (Y < X) .
rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .
rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, s X > .
rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .
crl [p2_wait] : < P, X, wait, Y > => < P, X, crit, Y >

if Y < X .
rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .

endm
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mutual exclusion: the two processes are never
simultaneously in their critical section.
[]~ (1crit /\ 2crit )

liveness: whenever a process enters the waiting mode, it
will eventually enter its critical section.
(1wait |-> 1crit) /\ (2wait |-> 2crit)
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mod BAKERY-PREDS is
protecting BAKERY .
including SATISFACTION .
ops 1wait 2wait 1crit 2crit : -> Prop [ctor] .
vars P Q : Mode .
vars X Y : Nat .
eq < wait, X, Q, Y > |= 1wait = true .
eq < sleep, X, Q, Y > |= 1wait = false .
eq < crit, X, Q, Y > |= 1wait = false .
eq < P, X, wait, Y > |= 2wait = true .
eq < P, X, sleep, Y > |= 2wait = false .
eq < P, X, crit, Y > |= 2wait = false .
eq < crit, X, Q, Y > |= 1crit = true .
eq < sleep, X, Q, Y > |= 1crit = false .
eq < wait, X, Q, Y > |= 1crit = false .
eq < P, X, crit, Y > |= 2crit = true .
eq < P, X, sleep, Y > |= 2crit = false .
eq < P, X, wait, Y > |= 2crit = false .

endm
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We can define an abstraction by:

abs(< P, X, Q, Y >)
=

< P, Q, X == 0, Y == 0, Y < X >

Equivalently:
⟨P,N,Q,M⟩ ≡ ⟨P′,N′,Q′,M′⟩

iff

P = P′ and Q = Q′,
N = 0 iff N′ = 0,
M = 0 iffM′ = 0,
M < N iffM′ < N′.
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mod ABSTRACT-BAKERY is
including BAKERY .
vars P Q : Mode .
vars X Y : Nat .

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .
eq < P, s s X, Q, 0 > = < P, s 0, Q, 0 > .
eq < P, s s s X, Q, s s s Y > = < P, s s X, Q, s s Y > .
eq < P, s s s X, Q, s s 0 > = < P, s s 0, Q, s 0 > .
eq < P, s s s X, Q, s 0 > = < P, s s 0, Q, s 0 > .
eq < P, s s 0, Q, s s Y > = < P, s 0, Q, s 0 > .
eq < P, s 0, Q, s s Y > = < P, s 0, Q, s 0 > .

endm
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The set of abstract states is finite.
The equations in both ABSTRACT-BAKERY and
BAKERY-PREDS are (ground) Church-Rosser and
terminating.
The equations in both ABSTRACT-BAKERY and
BAKERY-PREDS are sufficiently complete (this
guarantees that NAT and BOOL are really protected).
The rules (coming from BAKERY) and the equations in
ABSTRACT-BAKERY are ground coherent.
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mod ABSTRACT-BAKERY-PREDS is
protecting ABSTRACT-BAKERY .
including BAKERY-PREDS .

endm

The equations in ABSTRACT-BAKERY-PREDS are
(ground) Church-Rosser and terminating.
The equations in ABSTRACT-BAKERY-PREDS are
sufficiently complete.
This guarantees the required preservation of properties.
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eq enabled(< sleep, X, Q, Y >) = true .
eq enabled(< wait, X, Q, 0 >) = true .
ceq enabled(< wait, X, Q, Y >) = true if not (Y < X) .
eq enabled(< crit, X, Q, Y >) = true .
eq enabled(< P, X, sleep, Y >) = true .
eq enabled(< P, 0, wait, Y >) = true .
ceq enabled(< P, X, wait, Y >) = true if Y < X .
eq enabled(< P, X, crit, Y >) = true .

The equations for the enabled predicate are sufficiently
complete (although the current version of the SCC tool
does not help in proving this).
This implies that the system is deadlock-free.
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mod ABSTRACT-BAKERY-CHECK is
protecting ABSTRACT-BAKERY-PREDS .
including MODEL-CHECKER .

endm

Maude> reduce in ABSTRACT-BAKERY-CHECK :
modelCheck(initial, []~ (1crit /\ 2crit)) .

result Bool: true

Maude> reduce in ABSTRACT-BAKERY-CHECK :
modelCheck(initial, (1wait |-> 1crit)

/\ (2wait |-> 2crit)) .

result Bool: true
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Unordered
communicationchannel



Unordered communication channel
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Consider a communication channel in which messages
can get out of order.
There is a sender and a receiver. The sender is sending a
sequence of data items, for example numbers.
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The receiver is supposed to get the sequence in the exact
same order in which items were in the sender’s sequence.
To achieve this in-order communication in spite of the
unordered nature of the channel, the sender sends each
data item in amessage together with a sequence number.
The receiver sends back an ack indicating that has
received the item.
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The contents of the unordered channel are modeled as a
multiset of messages of sort Conf(iguration).
The entire system state is a 5-tuple of sort State, where
the components are:

a buffer with the items to be sent,
a counter for the acknowledged items,
the contents of the unordered channel,
a buffer with the items received, and
a counter for the items received.

op {_,_|_|_,_} : List Nats Conf List Nats -> State [ctor] .
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fmod UNORDERED-CHANNEL-EQ is
sorts Nats List Msg Conf State .
op 0 : -> Nats [ctor] .
op s : Nats -> Nats [ctor] .
op nil : -> List [ctor] .
op _;_ : Nats List -> List [ctor] . *** list cons
op _@_ : List List -> List . *** list append

op [_,_] : Nats Nats -> Msg [ctor] .
op ack : Nats -> Msg [ctor] .
subsort Msg < Conf .
op null : -> Conf [ctor] .
op __ : Conf Conf -> Conf [ctor assoc comm id: null] .
op {_,_|_|_,_} : List Nats Conf List Nats -> State [ctor] .

vars N : Nats . vars L P : List .
eq nil @ L = L .
eq (N ; L) @ P = N ; (L @ P) .

endfm
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mod UNORDERED-CHANNEL is
including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: {N ; L, M | C | P, J}
=> {N ; L, M | [N, M] C | P, J} .

rl [rec]: {L, M | [N, J] C | P, J}
=> {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M}
=> {L, s(J) | C | P, M} .

endm
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Maude> (ccr UNORDERED-CHANNEL .)
Church-Rosser check for UNORDERED-CHANNEL

All critical pairs have been joined.
The specification is locally-confluent.
The module is sort-decreasing.

Maude> (submit .)
The termination goal for the functional part of

UNORDERED-CHANNEL has been submitted to MTT.
The functional part of module UNORDERED-CHANNEL has been

checked terminating.
Success: The module is therefore Church-Rosser.
Success: The module UNORDERED-CHANNEL is Church-Rosser.
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Maude> (scc UNORDERED-CHANNEL .)
Sufficient completeness check for UNORDERED-CHANNEL

Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved

Maude> (submit .)
The sort-decreasingness goal for UNORDERED-CHANNEL has been

submitted to CRC.
The termination goal for the functional part of

UNORDERED-CHANNEL has been submitted to MTT.
Church-Rosser check for UNORDERED-CHANNEL

The module is sort-decreasing.
Success: The functional module UNORDERED-CHANNEL is

sufficiently complete and has free constructors.
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Maude> (cch UNORDERED-CHANNEL .)
Coherence checking of UNORDERED-CHANNEL

All critical pairs have been rewritten and no rewrite with
rules can happen at non-overlapping positions of equations
left-hand sides. [...]

Maude> (submit .)
The Church-Rosser goal for UNORDERED-CHANNEL has been

submitted to CRC.
The Sufficient-Completeness goal for UNORDERED-CHANNEL

has been submitted to SCC.
The termination goal for the functional part of

UNORDERED-CHANNEL has been submitted to MTT.
Sufficient completeness check for UNORDERED-CHANNEL [...]
Church-Rosser check for UNORDERED-CHANNEL [...]
The functional part of module UNORDERED-CHANNEL has been

checked terminating.
The module UNORDERED-CHANNEL has been checked Church-Rosser.
Success: The module UNORDERED-CHANNEL is coherent.
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mod UNORDERED-CHANNEL is
including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: {N ; L, M | C | P, J}
=> {N ; L, M | [N, M] C | P, J} .

rl [rec]: {L, M | [N, J] C | P, J}
=> {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M}
=> {L, s(J) | C | P, M} .

endm
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The channel should not contain repeated copies of sent
messages:

mod UNORDERED-CHANNEL-ABSTRACTION is
including UNORDERED-CHANNEL .
vars M N P K : Nats .
vars L L’ : List .
var C : Conf .
eq [A1]: {L, M | [N, P] [N, P] C | L’, K}

= {L, M | [N, P] C | L’, K} .
endm
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Maude> (cch UNORDERED-CHANNEL-ABSTRACTION .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION
The following critical pairs cannot be rewritten:

cp UNORDERED-CHANNEL-ABSTRACTION2 for A1 and rec
{L:List,M:Nats | #3:Conf[N:Nats,J:Nats]| P:List,J:Nats}
=>{L:List,M:Nats | #3:Conf ack(J:Nats)[N:Nats,J:Nats]|
P:List @ N:Nats ; nil,s(J:Nats)}.

The sufficient-completeness, termination and Church-Rosser
properties must still be checked.
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In this example, the critical pair indicates that a rule is
missing.

mod UNORDERED-CHANNEL-ABSTRACTION-2 is
including UNORDERED-CHANNEL-ABSTRACTION .

vars M N K : Nats .
vars L L’ : List .
var C : Conf .

rl [snd2]: {L, M | [N, K] C | L’, K}
=> {L, M | [N, K] ack(K) C | L’ @ N ; nil, s(K)} .

endm
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Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-2 .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION-2

All critical pairs have been rewritten and no rewrite
with rules can happen at non-overlapping positions of
equations left-hand sides.
The sufficient-completeness, termination and Church-Rosser
properties must still be checked.

Maude> (submit .)
[...]
Success: The module UNORDERED-CHANNEL-ABSTRACTION-2

is coherent.
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We assume that all initial states are of the form:
{n1 ; ... ; nk ; nil , 0 | null | nil , 0}

The sender’s buffer contains a list of numbers
n1 ; ... ; nk ; nil

and has the counter set to 0.
The communication channel initially is empty.
The receiver’s buffer is also empty and the receiver’s
counter is initially set to 0.
One essential property is that it achieves in-order
communication in spite of the unordered channel.
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mod UNORDERED-CHANNEL-PREDS is
protecting BOOLEAN . protecting UNORDERED-CHANNEL .
sort Prop .
op _~_ : Nats Nats -> Bool . *** equality predicate
op _|=_ : State Prop -> Bool [frozen] . *** satisfaction

vars M N K P : Nats . vars L L’ L’’ : List .
var C : Conf .
eq 0 ~ 0 = true . eq 0 ~ s(N) = false .
eq s(N) ~ 0 = false . eq s(N) ~ s(M) = N ~ M .

op prefix : List -> Prop [ctor] .

eq [I1]: {L’, N | C | K ; L’’, P} |= prefix(M ; L)
= (M ~ K) and {L’, N | C | L’’, P} |= prefix(L) .

eq [I3]: {L’, N | C | nil, K} |= prefix(L) = true .
eq [I4]: {L’, N | C | M ; L’’, K} |= prefix(nil) = false .

endm
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mod UNORDERED-CHANNEL-ABSTRACTION-CHECK is
extending UNORDERED-CHANNEL-ABSTRACTION-2 .
including UNORDERED-CHANNEL-PREDS .
op init : -> State .
eq init = {0 ; s(0) ; s(s(0)) ; nil , 0 | null | nil , 0} .

endm

The set of abstract states is finite.
The equations in both UNORDERED-CHANNEL-PREDS
and UNORDERED-CHANNEL-ABSTRACTION-CHECK
are Church-Rosser and terminating.
The equations in both UNORDERED-CHANNEL-PREDS
and UNORDERED-CHANNEL-ABSTRACTION-CHECK
are sufficiently complete.
UNORDERED-CHANNEL is deadlock free.
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Maude> (ct UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is

terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is

Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION-CHECK

is sufficiently complete and has free constructors. [...]

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is

coherent.
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mod UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK is
including UNORDERED-CHANNEL-ABSTRACTION-CHECK .
including LTL-SIMPLIFIER . *** optional
including MODEL-CHECKER .

endm

Maude> reduce in UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK :
modelCheck(init, []prefix(0 ; s(0) ; s(s(0)) ; nil)) .

rewrites: 361 in 41ms cpu (42ms real) (8780 rewrites/second)
result Bool: true
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Given terms t and u, we say that t and u are unifiable if
there is a substitution σ such that σ(t) ≡ σ(u).
Given an equational theory A and terms t and u, we say
that t and u are unifiable modulo A if there is a
substitution σ such that σ(t) ≡A σ(u).
Maude supports order-sorted equational unification
modulo many combinations of equational attributes
such as assoc, comm id (as well as variant-based
equational unification).
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Narrowing generalizes term rewriting by allowing free
variables in terms (as in logic programming) and by
performing unification instead of matching in order to
(non–deterministically) reduce a term.
A term t narrows to a term t′ using a rule l ⇒ r in R and a
substitution σ if
1. there is a subterm t|p of t at a nonvariable position p of t

such that l and t|p are unifiable via σ, and
2. t′ = σ(t[r]p) is obtained from σ(t) by replacing the

subterm σ(t|p) ≡ σ(l)with the term σ(r).



Narrowing

More features 95/106

Narrowing can also be definedmodulo an equational
theory.
Narrowing with Rmodulo E requires E-unification at each
narrowing step.
Maude supports a version of narrowing modulo with
simplification, where each narrowing step with a rule is
followed by simplification with the equations.
There are some restrictions on the allowed rules; for
example, they cannot be conditional.
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Narrowing can be used as a general deductive procedure
for solving reachability problems of the form

(∃⃗x) t1(⃗x) → t′1(⃗x) ∧ · · · ∧ tn(⃗x) → t′n(⃗x)

in a given rewrite theory.
he terms ti and t′i denote sets of states.
For what subset of states denoted by ti are the states
denoted by t′i reachable?
No finiteness assumptions about the state space.
Sound and complete for topmost rewrite theories.

Narrowing can be also used for logical model checking.
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Maude-NPA (NRL Protocol Analyzer) is a tool to find or
prove the absence of attacks using backwards search in
possibly infinite state systems.
Uses rewriting logic as general theoretical framework:

protocols and intruder rules are specified as rewrite rules,
crypto properties as oriented equational properties and
axioms.

Uses narrowingmodulo equational theories in twoways:
as a symbolic reachability analysis method,
as an extensible equational unification method.

Combines with state reduction techniques of NRL
Protocol Analyzer: grammars, optimizations, etc.
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Maude-NPA supports as equations the algebraic
properties of the cryptographic functions:

explicit encryption and decryption,
exclusive or,
modular exponentiation,
homomorphism.

Reasoning modulo such algebraic properties is very
important.
Some protocols that can be proved secure when
cryptographic functions are treated as a “black box” can
actually be broken by an attacker making clever use of
the algebraic properties of cryptographic functions.
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SMT rewrite rules are conditional rewrite rules of the form

t(⃗x) → t′(⃗x, y⃗) if ϕ

where
y⃗ are SMT variables, and
ϕ is an SMT constraint.

Rewriting is extended to SMT rewriting between
constrained terms

u | φ ⇝ v | ψ

Applying a rule requires satisfaction of its condition by
SMT solving.
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Maude has been interconnected to SMT solvers, such as
Z3, CVC4, Yices2.
Rewriting modulo SMT has been used to develop
executable semantics for NASA’s PLEXIL language for
distributed programming of robot tasks, used in several
projects.
Also to analyze the CASH scheduling algorithm, which
attempts to maximize system performance while
guaranteeing that critical tasks are executed in a timely
manner.
This algorithm uses an unbounded queue of unused
execution budgets, and thus it cannot be analyzed by
means of timed-automata formalisms.
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Algebraic simulations
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The equational abstraction technique is simple and takes
advantage of the expressiveness of rewriting logic and
the tools available in the Maude formal environment.
Other examples, such as the bakery protocol for an
arbitrary number of processes and the bounded
retransmission protocol, are available in the references.
These ideas can be generalized to an arbitrary theory
interpretation H : (Σ, E) −→ (Σ′, E′′), and to (stuttering)
simulations between different sets AP and AP′ of state
predicates.



Symbolicmethods combinations
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Many colleagues are working on the combination of
SMT solving,
rewriting- and narrowing-based analysis, and
(automata-based) model checking;

and new formal tools for applying these symbolic
techniques all together.
Much work remains to be done.
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