Equational abstractions in rewriting logic and Maude

Narciso Martí-Oliet
(joint work with J. Meseguer, M. Palomino, F. Durán, and A. Verdejo)

Facultad de Informática
Universidad Complutense de Madrid, Spain
narciso@ucm.es

SBMF 2014, Maceió, Brazil, 30 Sept 2014
To introduce Maude as a framework for modeling systems and model checking their properties.

2 To present a simple method of defining quotient abstractions by means of equations collapsing the set of states.

3 To show how the Maude Formal Environment tools can help in discharging the associated proof obligations.
Outline

- System modeling
- Model checking
- Equational abstractions
- Examples
Abstraction... what for?

- **Abstraction** reduces the problem of whether an infinite state system satisfies a temporal logic property to model checking that property on a finite state abstract version.

- Some common abstractions are *quotients* of the original system.

- We present a simple method of defining quotient abstractions by means of *equations collapsing the set of states*.

- Our method yields the minimal quotient system together with a set of proof obligations that guarantee its executability and can be discharged with tools such as those in the **Maude Formal Environment**.
Outline

System modeling in Maude

Maude's theoretical background

Examples

Maude Formal Environment
Ingredients of rewriting logic

- Types (and subtypes).
- Typed operators providing syntax: signature Σ.
- Syntax allows the construction of both static data and states: term algebra T_Σ.

- Equations E define functions over static data as well as properties of states.
- Rewrite rules R define transitions between states.
- Deduction in the logic corresponds to computation with those functions and transitions.

- The Maude language is an implementation of (equational and) rewriting logic, allowing the execution of specifications satisfying some admissibility requirements.
So ... who is Maude?

- Maude follows a long tradition of declarative algebraic specification languages in the **OBJ** family, including
 - OBJ3,
 - CafeOBJ,
 - Elan.
- Computation = **Deduction** in the appropriate logic.
- Functional modules = (Admissible) specifications in (membership) equational logic.
- System modules = (Admissible) specifications in rewriting logic.
- Operational semantics is based on **matching** and rewriting.

http://maude.cs.uiuc.edu
Example: crossing the river

- A **shepherd** needs to transport to the other side of a river
 - a **wild dog**,
 - a **lamb**, and
 - a **cabbage**.
- He has only a boat with room for the shepherd himself and another item.
- The problem is that in the absence of the shepherd
 - the wild dog would **eat** the lamb, and
 - the lamb would **eat** the cabbage.
Example: crossing the river
Example: crossing the river

- The shepherd and his belongings are represented as **objects** with only an attribute indicating the **side** of the river in which each is located.
- The group is put together by means of an **associative and commutative** juxtaposition.
- Constants **left** and **right** represent the two sides of the river.
- Operation **ch(ange)** is used to modify the corresponding attributes.
- **Rules** represent the ways of **crossing the river** that are allowed by the capacity of the boat.
Example: crossing the river

mod RIVER-CROSSING is
 sorts Side Group .

 ops left right : -> Side [ctor] .
 op ch : Side -> Side .
 eq ch(left) = right .
 eq ch(right) = left .

 ops s w l c : Side -> Group [ctor] .
 op __ : Group Group -> Group [ctor assoc comm] .

 var S : Side .

 rl [shepherd] : s(S) => s(ch(S)) .
 rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
 rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
 rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .
endm
Rewriting and equational simplification

Equational simplification: \(t \rightarrow_E t' \)

A term \(t \) rewrites to a term \(t' \) by an equation \(l = r \) in \(E \) if:

1. there is a subterm \(t|_p \) of \(t \) at a given position \(p \) of \(t \) s. t. \(l \) matches \(t|_p \) via a substitution \(\sigma \), i.e., \(\sigma(l) \equiv t|_p \)

2. \(t' \) is obtained from \(t \) by replacing the subterm \(t|_p \equiv \sigma(l) \) with the term \(\sigma(r) \).

\[
t = C[t|_p] = C[\sigma(l)] \rightarrow_E C[\sigma(r)] = t'
\]

- We write \(t \rightarrow^*_E t' \) to mean either \(t = t' \) (0 steps) or \(t \rightarrow_E t_1 \rightarrow_E t_2 \rightarrow_E \cdots \rightarrow_E t_n \rightarrow_E t' \) with \(n \geq 0 \) (\(n + 1 \) steps).
Confluence and termination

E is confluent (or Church-Rosser)

Any two rewritings of a term \(t \in T_\Sigma \) can always be joined by further rewriting: if \(t \overset{*}{\rightarrow}_E t_1 \) and \(t \overset{*}{\rightarrow}_E t_2 \), then there exists a term \(t' \) such that \(t_1 \overset{*}{\rightarrow}_E t' \) and \(t_2 \overset{*}{\rightarrow}_E t' \).

![Diagram showing confluence](image)

E is terminating

There is no infinite sequence of rewriting steps such as:

\[t_0 \overset{E}{\rightarrow} t_1 \overset{E}{\rightarrow} t_2 \overset{E}{\rightarrow} \cdots \]
Maude functional modules

- If E is both confluent and terminating, a term t can be reduced to a unique normal or canonical form $t \downarrow_E$, that is, to a term that can no longer be rewritten.

- Checking semantic equality of two terms, $t = t'$, amounts to checking that their respective canonical forms are equal, $t \downarrow_E = t' \downarrow_E$.

- Functional modules in Maude are assumed to be confluent and terminating, and their operational semantics is equational simplification, that is, rewriting of terms until a canonical form is obtained.
Equational attributes

- **Equational attributes** are a means of declaring certain axioms in a way that allows Maude to use them efficiently in a built-in way: `assoc`, `comm`, `id`.

- Given an equational theory A, a pattern term t and a subject term u, we say that t matches u modulo A if there is a substitution σ such that $\sigma(t) =_A u$, that is, $\sigma(t)$ and u are equal modulo the equational theory A.

- Given an equational theory $A = \bigcup_i A_{f_i}$ corresponding to all the attributes declared in different binary operators, Maude synthesizes a combined matching algorithm for the theory A, and does **equational simplification modulo** the axioms A.
Example: an unordered communication channel

- Consider a communication channel in which messages can get out of order.
- There is a sender and a receiver.
- The sender is sending a sequence of data items, for example numbers.
In-order communication in an unordered channel

- The receiver is supposed to get the sequence in the exact same order in which they were in the sender’s sequence.
- To achieve this in-order communication in spite of the unordered nature of the channel, the sender sends each data item in a message together with a sequence number.
- The receiver sends back an ack indicating that has received the item.

\[\{ d_i d_{i+1} d_{i+2} \ldots d_n, i \} \rightarrow \{ d_1 d_2 \ldots d_{j-1}, j \} \]
In-order communication in an unordered channel

• The contents of the unordered channel are modeled as a multiset of messages of sort Conf(iguration).

• The entire system state is a 5-tuple of sort State, where the components are:
 • a buffer with the items to be sent,
 • a counter for the acknowledged items,
 • the contents of the unordered channel,
 • a buffer with the items received, and
 • a counter for the items received.

\[
\text{op \{_,_|_\|_\|_,_\} : List Nats Conf List Nats -> State [ctor].}
\]
Example: unordered channel infrastructure

fmod UNORDERED-CHANNEL-EQ is
 sorts Nats List Msg Conf State.
 op 0 : -> Nats [ctor].
 op s : Nats -> Nats [ctor].
 op nil : -> List [ctor].
 op _;_ : Nats List -> List [ctor]. *** list cons
 op _@_ : List List -> List. *** list append
 op [_,_] : Nats Nats -> Msg [ctor].
 op ack : Nats -> Msg [ctor].
 subsort Msg < Conf.
 op null : -> Conf [ctor].
 op __ : Conf Conf -> Conf [ctor assoc comm id: null].
 op {_,_|_|_|_,_} : List Nats Conf List Nats -> State [ctor]

 vars N : Nats.
 vars L P : List.
 eq nil @ L = L.
 eq (N ; L) @ P = N ; (L @ P).
endfm
Rewriting logic

- Rewriting logic was introduced by J. Meseguer in 1990 as a unifying framework for concurrency.
- We arrive at the main idea behind rewriting logic by dropping symmetry and the equational interpretation of rules.
- We interpret a rule $t \rightarrow t'$ computationally as a local concurrent transition of a system, and logically as an inference step from formulas of type t to formulas of type t'.
- Rewriting logic is a logic of becoming or change, that allows us to specify the dynamic aspects of systems.
The static part is specified as an equational theory.

The dynamics is specified by means of possibly conditional rules that rewrite terms, representing parts of the system, into others.

The rules need only specify the part of the system that actually changes: the frame problem is avoided.
System modules

- **System modules** in Maude correspond to rewrite theories in rewriting logic.
- A rewrite theory has both rules and equations, so that rewriting is performed *modulo* such equations.
- The equations are divided into
 - a set A of **structural axioms** (associativity, commutativity, identity), for which matching algorithms exist in Maude, and
 - a set E of equations that are Church-Rosser and terminating *modulo* A;
- that is, the equational part must be equivalent to a functional module.
Example: unordered channel rules

mod UNORDERED-CHANNEL is
 including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: {N ; L, M | C | P, J}
 => {N ; L, M | [N, M] C | P, J} .

rl [rec]: {L, M | [N, J] C | P, J}
 => {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M}
 => {L, s(J) | C | P, M} .

endm
Coherence

- The rules R in the module must be coherent with the equations E modulo A, allowing us to intermix rewriting with rules and rewriting with equations without losing rewrite computations by failing to perform a rewrite that would have been possible before an equational deduction step was taken.

- A simple strategy available when coherence holds is to always reduce to canonical form using E before applying any rule in R.

$$
\begin{array}{c}
t \\
\downarrow E/A \\
\vdash \downarrow E/A \\
\vdots \\
\downarrow E/A \\
\vdash \downarrow E/A \\
\end{array}
$$
Maude Formal Environment

- **Maude Termination Tool (MTT)** to prove termination of system modules by connecting to external termination tools.
- **Church-Rosser Checker (CRC)** to check the Church-Rosser property of functional modules.
- **Sufficient Completeness Checker (SCC)** to check that defined functions have been fully defined in terms of constructors.
- **Coherence Checker (ChC)** to check the coherence of system modules.
- **Inductive Theorem Prover (ITP)** to verify inductive properties of functional modules.
Maude Formal Environment

Equational abstractions

Narciso Martí-Oliet

Introduction

System modeling

Maude

Crossing the river

Functional modules

Unordered channel

System modules

Maude formal environment

Model checking

Linear temporal logic

Kripke structures

Crossing the river

Equational abstractions

Simulations

Rewrite theories

Abstractions

Executability

Unordered channel

Abstraction

Coherence

Properties

Model checking

Conclusion

References
Example: termination and confluence

Maude> (select tool MTT .)
The MTT has been set as current tool.
Maude> (select external tool aprove .)
aprove has now been set as current external tool.

Maude> (ct UNORDERED-CHANNEL .)
Success: The module UNORDERED-CHANNEL is terminating.

Maude> (select tool CRC .)
The CRC has been set as current tool.

Maude> (ccr UNORDERED-CHANNEL .)
Church-Rosser check for UNORDERED-CHANNEL
All critical pairs have been joined.
The specification is locally-confluent.
The module is sort-decreasing.

Maude> (submit .)
The termination goal for the functional part of UNORDERED-CHANNEL
has been submitted to MTT.
The functional part of module UNORDERED-CHANNEL has been checked terminating.
Success: The module is therefore Church-Rosser.
Success: The module UNORDERED-CHANNEL is Church-Rosser.
Example: sufficient completeness

Maude> (select tool SCC .)
The SCC has been set as current tool.

Maude> (scc UNORDERED-CHANNEL .)
Sufficient completeness check for UNORDERED-CHANNEL
Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved

Maude> (submit .)
The sort-decreasingness goal for UNORDERED-CHANNEL has been submitted to CRC.
The termination goal for the functional part of UNORDERED-CHANNEL has been submitted to MTT.
Church-Rosser check for UNORDERED-CHANNEL
 The module is sort-decreasing.

Success: The functional module UNORDERED-CHANNEL is sufficiently complete and has free constructors.
Example: coherence

Maude> (select tool ChC .)
The ChC has been set as current tool.
Maude> (cch UNORDERED-CHANNEL .)
Coherence checking of UNORDERED-CHANNEL
 All critical pairs have been rewritten and no rewrite with
 rules can happen at non-overlapping positions of equations
 left-hand sides.
 The sufficient-completeness, termination and Church-Rosser
 properties must still be checked.

Maude> (submit .)
The Church-Rosser goal for UNORDERED-CHANNEL has been submitted
to CRC.
The Sufficient-Completeness goal for UNORDERED-CHANNEL has been
submitted to SCC.
The termination goal for the functional part of UNORDERED-CHANNEL
has been submitted to MTT.
Sufficient completeness check for UNORDERED-CHANNEL
 [...] Church-Rosser check for UNORDERED-CHANNEL
 [...] The functional part of module UNORDERED-CHANNEL has been checked
 terminating.
The module UNORDERED-CHANNEL has been checked Church-Rosser.
Success: The module UNORDERED-CHANNEL is coherent.
Outline

- Theoretical background: LTL & Kripke Structures
- Model checking
- Maude Model Checker: Design & Examples
Model checking

- Two levels of specification:
 - a **system specification** level, provided by the rewrite theory specified by a system module,
 - a **property specification** level, given by some properties that we want to state and prove about our module.

- Temporal logic allows specification of properties such as **safety** properties (ensuring that something bad never happens) and **liveness** properties (ensuring that something good eventually happens), related to the possibly infinite global behavior of a system.

- Maude 2 includes a **model checker** to prove properties expressed in **linear temporal logic** (LTL).
Linear temporal logic: syntax

- **Main connectives:**
 - **True:** \top
 - **Atomic propositions:** $p \in \text{AP}$
 - **Next:** $\bigcirc \varphi$
 - **Until:** $\varphi \mathcal{U} \psi$
 - **Negation and disjunction:** $\neg \varphi, \varphi \lor \psi$

- **Derived connectives:**
 - **False:** $\bot = \neg \top$
 - **Conjunction:** $\varphi \land \psi = \neg((\neg \varphi) \lor (\neg \psi))$
 - **Implication:** $\varphi \rightarrow \psi = (\neg \varphi) \lor \psi$
 - **Eventually:** $\lozenge \varphi = \top \mathcal{U} \varphi$
 - **Henceforth:** $\square \varphi = \neg \lozenge \neg \varphi$
Linear temporal logic: intuition

- \top is a formula that always holds at the current state.
- $\bigcirc \varphi$ holds at the current state if φ holds at the state that follows.
- $\varphi U \psi$ holds at the current state if ψ is eventually satisfied at a future state and, until that moment, φ holds at all intermediate states.
- $\Box \varphi$ holds if φ holds at every state from now on.
- $\Diamond \varphi$ holds if φ holds at some state in the future.
Kripke structures

- A **Kripke structure** is a triple $\mathcal{A} = (A, \rightarrow_\mathcal{A}, L)$ such that
 - A is a set, called the set of **states**,
 - $\rightarrow_\mathcal{A}$ is a **total** binary relation on A, called the **transition relation**, and
 - $L : A \rightarrow \mathcal{P}(AP)$ is a **labeling function**, associating to each state $a \in A$ the set $L(a)$ of those **atomic propositions** in AP that hold in a.

- A **path** in a Kripke structure \mathcal{A} is a function $\pi : \mathbb{N} \rightarrow A$ with $\pi(i) \rightarrow_\mathcal{A} \pi(i + 1)$ for every i.
- π^i is the suffix of π starting at $\pi(i)$.
Linear temporal logic: semantics

- **Satisfaction relation** between a Kripke structure \mathcal{A}, a state $a \in A$, and an LTL formula $\varphi \in \text{LTL}(AP)$:

 $$\mathcal{A}, a \models \varphi \iff \mathcal{A}, \pi \models \varphi \text{ for all paths } \pi \text{ with } \pi(0) = a.$$

- **Satisfaction relation** for paths $\mathcal{A}, \pi \models \varphi$ defined by structural induction on φ:

 - $\mathcal{A}, \pi \models p \iff p \in L(\pi(0))$
 - $\mathcal{A}, \pi \models \top \iff \text{true}$
 - $\mathcal{A}, \pi \models \varphi \lor \psi \iff \mathcal{A}, \pi \models \varphi \text{ or } \mathcal{A}, \pi \models \psi$
 - $\mathcal{A}, \pi \models \neg \varphi \iff \mathcal{A}, \pi \not\models \varphi$
 - $\mathcal{A}, \pi \models \Box \varphi \iff \mathcal{A}, \pi^1 \models \varphi$
 - $\mathcal{A}, \pi \models \varphi \mathcal{U} \psi \iff$ there exists $n \in \mathbb{N}$ such that $\mathcal{A}, \pi^n \models \psi$ and, for all $m < n$, $\mathcal{A}, \pi^m \models \varphi$

- The semantics of the remaining operators can be derived from these.
Kripke structures associated to rewrite theories

• Given a system module \mathbb{M} specifying a rewrite theory $\mathcal{R} = (\Sigma, E, R)$, we
 - choose a type k in \mathbb{M} as our type of states;
 - define in a module, say \mathbb{M}-PRED’s, protecting \mathbb{M} some state predicates Π and their semantics by means of the basic satisfaction operation
 \[\text{op } _ \models _ : \text{State Prop} \to \text{Bool} \, . \]
• Then we get a Kripke structure (more details later)
 \[\mathcal{K}(\mathcal{R}, k)_{\Pi} = (T_{\Sigma/E,k}, (\rightarrow_{\mathcal{R}}^1)^{\cdot}, L_{\Pi}) \, . \]
• Under some assumptions on \mathbb{M} and \mathbb{M}-PRED’s, including that the set of states reachable from t is finite, the relation $\mathcal{K}(\mathcal{R}, k)_{\Pi}, t \models \varphi$ can be model checked.
mod RIVER-CROSSING is
 sorts Side Group .

 ops left right : -> Side [ctor] .
 op change : Side -> Side .
 eq change(left) = right .
 eq change(right) = left .

 ops s w l c : Side -> Group [ctor] .
 op __ : Group Group -> Group [ctor assoc comm] .

 var S : Side .

 rl [shepherd] : s(S) => s(ch(S)) .
 rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
 rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
 rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .
endm
Crossing the river: properties

mod RIVER-CROSSING-PROP is
 protecting RIVER-CROSSING .
 including MODEL-CHECKER .
subsort Group < State .
op initial : -> Group .
eq initial = s(left) w(left) l(left) c(left) .

ops disaster success : -> Prop [ctor] .
vars S S' S'' : Side .
ceq (w(S) l(S) s(S') c(S'') |= disaster) = true if S =/= S' .
ceq (w(S'') l(S) s(S') c(S) |= disaster) = true if S =/= S' .
eq (s(right) w(right) l(right) c(right) |= success) = true .
eq G:Group |= P:Prop = false [owise] .
endm

- **success** characterizes the (good) state in which the shepherd and his belongings are all in the other side,
- **disaster** characterizes the (bad) states in which some eating takes place.
The model checker only returns either true or paths that are counterexamples of properties.

To find a safe path we need a formula that expresses the negation of the property we like: a counterexample will then witness a safe path for the shepherd.

If no safe path exists, then it is true that whenever success is reached a disastrous state has been traversed before:

\[
\langle\rangle \text{success} \rightarrow (\langle\rangle \text{disaster} \lor ((\neg \text{success}) \mathbin{U} \text{disaster}))
\]

Equivalently

\[
\langle\rangle \text{success} \rightarrow ((\neg \text{success}) \mathbin{U} \text{disaster})
\]

A counterexample to this formula is a safe path, completed so as to have a cycle.
Maude> red modelCheck(initial,
 <> success -> (<> disaster /\n ((¬ success) U disaster))

result ModelCheckResult: counterexample(
 {s(left) w(left) l(left) c(left),’lamb}
 {s(right) w(left) l(right) c(left),’shepherd}
 {s(left) w(left) l(right) c(left),’wdog}
 {s(right) w(right) l(right) c(left),’lamb}
 {s(left) w(right) l(left) c(left),’cabbage}
 {s(right) w(right) l(left) c(right),’shepherd}
 {s(left) w(right) l(left) c(right),’lamb}
 {s(right) w(right) l(right) c(right),’lamb}
 {s(left) w(right) l(left) c(right),’shepherd}
 {s(right) w(right) l(left) c(right),’wdog}
 {s(left) w(left) l(left) c(right),’lamb}
 {s(right) w(left) l(right) c(right),’cabbage}
 {s(left) w(left) l(right) c(left),’wdog},
 {s(right) w(right) l(right) c(left),’lamb}
 {s(left) w(right) l(left) c(left),’lamb})
Outline

- Equational abstractions
- Narciso Martí-Oliet
- Introduction
 - System modeling
 - Maude
- Crossing the river
 - Functional modules
 - Unordered channel
 - System modules
 - Maude formal environment
- Model checking
 - Linear temporal logic
 - Kripke structures
 - Crossing the river
 - Equational abstractions
 - Simulations
 - Rewrite theories
- Abstractions
 - Executability
 - Unordered channel
 - Abstraction
 - Coherence
 - Properties
- Model checking
- Conclusion
- References
The problem

- Given a concurrent system, we want to check whether certain properties hold in it or not.
- If the number of (reachable) states is **finite**, use model checking.
- If the number of (reachable) states is **infinite** (or too large) this does not work. Then
 - we can employ **deductive** methods, or
 - we can calculate an **abstract** version of the system with a finite number of states to which model checking can be applied.
Our approach to abstraction

- A simple method of defining quotient abstractions is by means of equations collapsing the set of states:
- The concurrent system is specified by a rewrite theory \(\mathcal{R} = (\Sigma, E, R) \).
- Then the quotient is obtained by adding more equations to \(\mathcal{R} \), thus getting \(\mathcal{R}' = (\Sigma, E \cup E', R) \).
- Such a quotient will be useful for model-checking purposes if
 - the resulting theory is executable, and
 - the state predicates are preserved by the equations.
- These proof obligations can be discharged using the tools in the Maude Formal Environment.
Simulations between Kripke structures

• An \(AP \)-simulation \(H : \mathcal{A} \rightarrow \mathcal{B} \) between Kripke structures \(\mathcal{A} \) and \(\mathcal{B} \) over \(AP \) is a total relation \(H \subseteq A \times B \) such that:
 \[
 \begin{align*}
 a &\xrightarrow{H} a' \\
 b &\xrightarrow{H} b'
 \end{align*}
 \]

• If \(aHb \) then \(L_B(b) \subseteq L_A(a) \).

• \(H \) is strict if the previous inclusion is an equality.

• \(H : \mathcal{A} \rightarrow \mathcal{B} \) reflects the satisfaction of a formula \(\varphi \) if
 \[
 \mathcal{B}, b \models \varphi \quad \text{and} \quad aHb \quad \text{implies} \quad \mathcal{A}, a \models \varphi.
 \]

Theorem

\(AP \)-simulations reflect satisfaction of \(\text{LTL}^- (AP) \) formulas (where \(\text{LTL}^- (AP) \) is the negation-free fragment of \(\text{LTL} \)).

Strict simulations reflect satisfaction of \(\text{LTL} (AP) \) formulas.
Minimal systems

- Often we only have a Kripke structure \mathcal{M} and a surjective function to a set of abstract states $h : M \rightarrow A$.

- The minimal system $\mathcal{M}_{\text{min}}^h$ (over A) corresponding to \mathcal{M} and h is defined by $(A, \rightarrow_{\mathcal{M}_{\text{min}}^h}, L_{\mathcal{M}_{\text{min}}^h})$, where:
 - $x \rightarrow_{\mathcal{M}_{\text{min}}^h} y \iff \exists a. \exists b. (h(a) = x \land h(b) = y \land a \rightarrow_{\mathcal{M}} b)$
 - $L_{\mathcal{M}_{\text{min}}^h}(a) = \bigcap_{x \in h^{-1}(a)} L_{\mathcal{M}}(x)$.

Theorem

$h : \mathcal{M} \rightarrow \mathcal{M}_{\text{min}}^h$ is indeed a simulation.
Minimal systems as quotients

- Minimal systems can also be seen as quotients.
- For a Kripke structure \mathcal{A} and \sim an equivalence relation on A, define $\mathcal{A}/\sim = (A/\sim, \to_{\mathcal{A}/\sim}, L_{\mathcal{A}/\sim})$, where:
 - $[a_1] \to_{\mathcal{A}/\sim} [a_2] \iff \exists a'_1 \in [a_1]. \exists a'_2 \in [a_2]. a'_1 \to_{\mathcal{A}} a'_2$
 - $L_{\mathcal{A}/\sim}([a]) = \bigcap_{x \in [a]} L_{\mathcal{A}}(x)$.

Theorem

*Given \mathcal{M} and h surjective, the Kripke structures $\mathcal{M}^h_{\text{min}}$ and \mathcal{M}/\sim_h are isomorphic, where $x \sim_h y$ iff $h(x) = h(y)$.***
Remarks on minimal systems

- The adjective **minimal** is appropriate since $\mathcal{M}^h_{\text{min}}$ is the most accurate approximation to \mathcal{M} consistent with h.
- It is **not** always possible to have a **computable** description of $\mathcal{M}^h_{\text{min}}$.
- The transition relation:

$$x \xrightarrow{\mathcal{M}^h_{\text{min}}} y \iff \exists a. \exists b. (h(a) = x \land h(b) = y \land a \rightarrow \mathcal{M} b)$$

is not recursive in general.
- Here we present methods that, when successful, yield a computable description of $\mathcal{M}^h_{\text{min}}$.

Remarks on minimal systems
The system specification level

- In general, a **concurrent system** is specified by a rewrite theory \(R = (\Sigma, E, R) \) with:
 - \((\Sigma, E)\) an equational theory describing the states;
 - \(R\) a set of (conditional) **rewrite rules** defining the system transitions.
- This determines, for each type \(k \), a transition system
 \[
 \left(T_{\Sigma/E,k}, (\rightarrow^1_R)^\bullet \right)
 \]
 where
 - \(T_{\Sigma/E,k} \) is the set of equivalence classes \([t]\) of terms of type \(k \), modulo the equations \(E \);
 - \((\rightarrow^1_R)^\bullet\) completes the one-step rewrite relation
 \(\rightarrow^1_R \) with an identity pair \(([t], [t]) \) for each deadlock state \([t]\), to get a total relation.
LTL properties of rewrite theories

- LTL properties are associated to \mathcal{R} and a type k by specifying the basic state predicates Π in an equational theory $(\Sigma', E \cup D)$ extending (Σ, E) conservatively.
- State predicates, possibly parameterized, are constructed with operators $p : s_1 \ldots s_n \rightarrow \text{Prop}$.
- The semantics is defined by means of equations D using the basic "satisfaction operator"
 $$\models : k \text{ Prop} \rightarrow \text{Bool}.$$
- A state predicate $p(u_1, \ldots, u_n)$ holds in a state $[t]$ iff
 $$E \cup D \vdash t \models p(u_1, \ldots, u_n) = \text{true}.$$
LTL properties of rewrite theories

- The Kripke structure associated to \mathcal{R}, k, and Π, with atomic propositions

$$AP_\Pi = \{p(u_1, \ldots, u_n) \text{ ground} \mid p \in \Pi\}$$

is then defined as

$$\mathcal{K}(\mathcal{R}, k)_\Pi = (T_{\Sigma/E,k}, (\rightarrow^1_{\mathcal{R}})^*, L_\Pi)$$

where

$$L_\Pi([t]) = \{p(u_1, \ldots, u_n) \mid p(u_1, \ldots, u_n) \text{ holds in } [t]\}$$

- Assuming that the equations $E \cup D$ are Church-Rosser and terminating, and that the rewrite theory \mathcal{R} is executable, the resulting Kripke structure is indeed computable.
We can define an abstraction for \(\mathcal{K}(\mathcal{R}, k)_{\Pi} \) by specifying an equational theory extension

\[
(\Sigma, E) \subseteq (\Sigma, E \cup E')
\]

This gives rise to an equivalence relation \(\equiv_{E'} \) on \(T_{\Sigma/E} \)

\[
[t]_E \equiv_{E'} [t']_E \iff E \cup E' \vdash t = t' \iff [t]_{E \cup E'} = [t']_{E \cup E'}
\]

and therefore a quotient abstraction \(\mathcal{K}(\mathcal{R}, k)_{\Pi}/\equiv_{E'} \).

Question: Is \(\mathcal{K}(\mathcal{R}, k)_{\Pi}/\equiv_{E'} \) the Kripke structure associated to another rewrite theory?
We focus on those rewrite theories \mathcal{R} satisfying the following requirements:

- \mathcal{R} is k-deadlock free, that is $(\xrightarrow{1\mathcal{R}})^* = \xrightarrow{1\mathcal{R}}$ on $T_\Sigma/E,k$,
- \mathcal{R} is k-topmost, so k only appears as the coarity of a certain operator $f : k_1 \ldots k_n \rightarrow k$, and
- no terms of type k appear in the conditions.

A rewrite theory \mathcal{R} can often be transformed into an equivalent one satisfying these requirements.

The unordered channel example satisfies these requirements.
• Let us take a closer look at the quotient:

\[K(\mathcal{R}, k)_{\Pi} / \equiv_{E'} = (T_{\Sigma/E}, k / \equiv_{E'}, (\rightarrow_{\mathcal{R}})^\bullet / \equiv_{E'}, L_{\Pi} / \equiv_{E'}). \]

• \(T_{\Sigma/E} / \equiv_{E'} \cong T_{\Sigma,E \cup E'}. \)

• Under the above assumptions, \(\mathcal{R}/E' = (\Sigma, E \cup E', R) \) is \(k \)-deadlock free and

\[(\rightarrow_{\mathcal{R}/E'})^\bullet = \rightarrow_{\mathcal{R}/E'} = (\rightarrow_{\mathcal{R}})^\bullet / \equiv_{E'} \]

• Therefore, at a purely mathematical level, \(\mathcal{R}/E' \) seems to be what we want.
Equational abstractions: executability

• Executability requires that:
 • The equations \(E \cup E' \) are ground Church-Rosser and terminating.
 • The rules \(R \) are (ground) coherent relative to \(E \cup E' \).
• For example, the rules

\[
a \rightarrow c \quad b \rightarrow d
\]

are not coherent relative to the abstraction

\[
a = b.
\]

• To check and enforce these conditions, and get an executable rewrite theory \(\mathcal{R}' \) semantically equivalent to \(\mathcal{R}/E' \), we can use some Maude tools.
Equational abstractions: preservation of properties

- What about state predicates? By definition:

\[L_{\Pi/\equiv_{E'}}^{}([t]_{E\cup E'}) = \bigcap_{[x]_E \subseteq [t]_{E\cup E'}} L_{\Pi}^{}([x]_E) \]

- Coming up with equations \(D' \) defining \(L_{\Pi/\equiv_{E'}}^{} \) may not be easy.

- It becomes easy if the predicates are preserved by \(E' \):

\[[x]_{E\cup E'} = [y]_{E\cup E'} \implies L_{\Pi}^{}([x]_E) = L_{\Pi}^{}([y]_E) \]

- In this case we do not need to change the equations \(D \) and therefore we have:

\[\mathcal{K}(\mathcal{R}, k)_{\Pi/\equiv_{E'}} \cong \mathcal{K}(\mathcal{R}/E', k)_{\Pi}. \]
Equational abstractions: preservation of properties

- How can we prove

\[[x]_{E \cup E'} = [y]_{E \cup E'} \implies L_\Pi([x]_E) = L_\Pi([y]_E) \]

Theorem

*If the equations in \(E' \) are of the form \(t = t' \) if \(C \), with \(t, t' \) of type \(k \), and for each such equation

\[
E \cup D \vdash_{ind} \forall \vec{x}. \forall \vec{y}. C \Rightarrow \\
(t(\vec{x}) \models p(\vec{y}) = true \iff t'(\vec{x}) \models p(\vec{y}) = true)
\]

then the state predicates \(\Pi \) are preserved by \(E' \).*

- Instead, we can use tools in the Maude Formal Environment to mechanically discharge these proof obligations.
Equational abstractions: all together

- When \(E, E' \) and \(R \) satisfy the executability requirements described above,
- by construction, the quotient simulation

\[
\mathcal{K}(\mathcal{R}, k)_{\Pi} \longrightarrow \mathcal{K}(\mathcal{R}, E)_{\Pi} / \cong_{E'} \cong \mathcal{K}(\mathcal{R} / E', k)_{\Pi}
\]

is strict, so it reflects satisfaction of arbitrary LTL formulas.
- Since \(\mathcal{R} / E' \) is executable, for an initial state \(t \) having a finite set of reachable states we can use the Maude model checker to check if a property holds.
mod UNORDERED-CHANNEL is
 including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: {N ; L, M | C | P, J}
 => {N ; L, M | [N, M] C | P, J} .

rl [rec]: {L, M | [N, J] C | P, J}
 => {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M}
 => {L, s(J) | C | P, M} .
endm
Communication channel: abstraction

The channel should not contain repeated copies of sent messages:

mod UNORDERED-CHANNEL-ABSTRACTION is
 including UNORDERED-CHANNEL .
vars M N P K : Nats .
vars L L’ : List .
var C : Conf .
endm
Abstraction: termination and confluence

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION .)
[...]
Maude> (submit .)
[...]
Success: The module UNORDERED-CHANNEL-ABSTRACTION is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION .)
[...]
Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION is sufficiently complete and has free constructors. However, module UNORDERED-CHANNEL-ABSTRACTION may still not be sufficiently complete or not have free constructors.
Abstraction: coherence

Maude> (select tool ChC .)
The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION

The following critical pairs cannot be rewritten:

\[
\begin{align*}
&\text{cp UNORDERED-CHANNEL-ABSTRACTION2 for A1 and rec} \\
&\quad \{L:List, M:Nats \mid #3:Conf[N:Nats, J:Nats] \mid P:List, J:Nats\} \\
&\quad \Rightarrow \{L:List, M:Nats \mid #3:Conf \text{ ack}(J:Nats)[N:Nats, J:Nats]\} \\
&\quad P:List @ N:Nats ; \text{nil, s}(J:Nats)\}.
\end{align*}
\]

The sufficient-completeness, termination and Church-Rosser properties must still be checked.
Abstraction: recovering coherence

In this example, the critical pair indicates that a rule is missing.

mod UNORDERED-CHANNEL-ABSTRACTION-2 is
including UNORDERED-CHANNEL-ABSTRACTION .

vars M N K : Nats .
vars L L’: List .
var C : Conf .

rl [snd2]: {L, M | [N, K] C | L’, K}
 => {L, M | [N, K] ack(K) C | L’ @ N ; nil, s(K)}
endm
Maude> (select tool ChC .)
The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-2 .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION-2
 All critical pairs have been rewritten and no rewrite with
 rules can happen at non-overlapping positions of equations
 left-hand sides.
 The sufficient-completeness, termination and Church-Rosser
 properties must still be checked.

Maude> (submit .)
[...]
Success: The module UNORDERED-CHANNEL-ABSTRACTION-2 is coherent.
Communication channel: properties

- We assume that all initial states are of the form:
 \[\{n_1; \ldots; n_k; \text{nil}, 0 | \text{null} | \text{nil}, 0\} \]
- The sender’s buffer contains a list of numbers
 \[n_1; \ldots; n_k; \text{nil} \]
 and has the counter set to 0.
- The communication channel initially is empty.
- The receiver’s buffer is also empty and the receiver’s counter is initially set to 0.
- One essential property is that it achieves in-order communication in spite of the unordered channel.
mod UNORDERED-CHANNEL-PREDS is
 protecting BOOLEAN .
 protecting UNORDERED-CHANNEL .

sort Prop .

op _˜_: Nats Nats -> Bool . *** equality predicate
op _|=_: State Prop -> Bool [frozen] . *** satisfaction

vars M N K P : Nats . vars L L’ L’’ : List .
var C : Conf .

eq 0 ˜ 0 = true .
eq 0 ˜ s(N) = false .
eq s(N) ˜ 0 = false .
eq s(N) ˜ s(M) = N ˜ M .

op prefix : List -> Prop [ctor] .

 eq [I1]: \{L’ , N | C | K ; L’’ , P\} |= prefix(M ; L)
 = (M ˜ K) and \{L’ , N | C | L’’ , P\} |= prefix(L) .
 eq [I3]: \{L’ , N | C | nil, K\} |= prefix(L) = true .
 eq [I4]: \{L’ , N | C | M ; L’’ , K\} |= prefix(nil) = false .
endm
mod UNORDERED-CHANNEL-ABSTRACTION-CHECK is
 extending UNORDERED-CHANNEL-ABSTRACTION-2 .
 including UNORDERED-CHANNEL-PREDS .
 op init : -> State .
 eq init = {0 ; s(0) ; s(s(0)) ; nil , 0 | null | nil , 0} .
endm

- The set of abstract states is finite.
- The equations in both UNORDERED-CHANNEL-PREDS and UNORDERED-CHANNEL-ABSTRACTION-CHECK are Church-Rosser and terminating.
- The equations in both UNORDERED-CHANNEL-PREDS and UNORDERED-CHANNEL-ABSTRACTION-CHECK are sufficiently complete.
- UNORDERED-CHANNEL is deadlock free.
Communication channel: properties preservation

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION-CHECK is sufficiently complete and has free constructors. However [...]

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is coherent.
mod UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK is
 including UNORDERED-CHANNEL-ABSTRACTION-CHECK .
 including LTL-SIMPLIFIER . *** optional
 including MODEL-CHECKER .
endm

Maude> reduce in UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK :
 modelCheck(init, []prefix(∅ ; s(∅) ; s(s(∅)) ; nil)) .
result Bool: true
Concluding remarks

- The equational abstraction technique is fairly simple and takes advantage of the expressiveness of rewriting logic as well as of the tools available in the Maude Formal Environment.
- Other examples are available in the references, but without using the Maude Formal Environment in its current integrated form.
- Related work: Generalization of the equational theory extension \((\Sigma, E) \subseteq (\Sigma, E \cup E')\) to theory interpretations \((\Sigma, E) \longrightarrow (\Sigma', E'')\) and to (stuttering) simulations.
- Future work: improving the interface of the Maude Formal Environment to make it more user-friendly.
- In particular, the Inductive Theorem Prover (ITP) needs more and better integration with the other tools.
References