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Goals

1 To introduce Maude as a framework for modeling
systems and model checking their properties.

2 To present a simple method of defining quotient
abstractions by means of equations collapsing the set
of states.

3 To show how the Maude Formal Environment tools can
help in discharging the associated proof obligations.
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Abstraction... what for?

• Abstraction reduces the problem of whether an infinite
state system satisfies a temporal logic property to
model checking that property on a finite state abstract
version.

• Some common abstractions are quotients of the
original system.

• We present a simple method of defining quotient
abstractions by means of equations collapsing the set
of states.

• Our method yields the minimal quotient system
together with a set of proof obligations that guarantee
its executability and can be discharged with tools such
as those in the Maude Formal Environment.
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Ingredients of rewriting logic

• Types (and subtypes).

• Typed operators providing syntax: signature S.
• Syntax allows the construction of both static data and
states: term algebra TS.

• Equations E define functions over static data as well
as properties of states.

• Rewrite rules R define transitions between states.

• Deduction in the logic corresponds to computation
with those functions and transitions.

• The Maude language is an implementation of
(equational and) rewriting logic, allowing the execution
of specifications satisfying some admissibility
requirements.
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So ... who is Maude?

• Maude follows a long tradition of declarative algebraic
specification languages in the OBJ family, including

• OBJ3,
• CafeOBJ,
• Elan.

• Computation = Deduction in the appropriate logic.

• Functional modules = (Admissible) specifications in
(membership) equational logic.

• System modules = (Admissible) specifications in
rewriting logic.

• Operational semantics is based on matching and
rewriting.

http://maude.cs.uiuc.edu
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Example: crossing the river

• A shepherd needs to transport to the other side of a
river

• a wild dog,
• a lamb, and
• a cabbage.

• He has only a boat with room for the shepherd himself
and another item.

• The problem is that in the absence of the shepherd

• the wild dog would eat the lamb, and
• the lamb would eat the cabbage.
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Example: crossing the river
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Example: crossing the river

• The shepherd and his belongings are represented as
objects with only an attribute indicating the side of the
river in which each is located.

• The group is put together by means of an associative
and commutative juxtaposition.

• Constants left and right represent the two sides of
the river.

• Operation ch(ange) is used to modify the
corresponding attributes.

• Rules represent the ways of crossing the river that are
allowed by the capacity of the boat.
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Example: crossing the river

mod RIVER-CROSSING is
sorts Side Group .

ops left right : -> Side [ctor] .
op ch : Side -> Side .
eq ch(left) = right .
eq ch(right) = left .

ops s w l c : Side -> Group [ctor] .
op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(ch(S)) .
rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .

endm
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Rewriting and equational simplification

Equational simplification: t !
E

t 0

A term t rewrites to a term t 0 by an equation l = r in E if:

1 there is a subterm t|
p

of t at a given position p of t
s. t. l matches t|

p

via a substitution s, i.e., s(l) ⌘ t|
p

2 t 0 is obtained from t by replacing the subterm
t|
p

⌘ s(l) with the term s(r ).

t = C [t|
p

] = C [s(l)] !
E

C [s(r )] = t 0

• We write t !⇤
E

t 0 to mean either t = t 0 (0 steps) or
t !

E

t1 !
E

t2 !
E

· · · !
E

t
n

!
E

t 0 with n � 0
(n+ 1 steps).
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Confluence and termination

E is confluent (or Church-Rosser)

Any two rewritings of a term t 2 TS can always be joined
by further rewriting: if t !⇤

E

t1 and t !⇤
E

t2, then there
exists a term t 0 such that t1 !⇤

E

t 0 and t2 !⇤
E

t 0.

t

�
E ⇥⇥⇥⇥

⇥⇥
⇥⇥

⇥⇥

�
E

���
��

��
��

�

t1

�
E

��

t2

�
E

⇥⇥
t⇥

E is terminating

There is no infinite sequence of rewriting steps such as:
t0 !

E

t1 !
E

t2 !
E

. . .
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Maude functional modules

• If E is both confluent and terminating, a term t can be
reduced to a unique normal or canonical form t #

E

,
that is, to a term that can no longer be rewritten.

• Checking semantic equality of two terms, t = t 0,
amounts to checking that their respective canonical
forms are equal, t #

E

= t 0 #
E

.

• Functional modules in Maude are assumed to be
confluent and terminating, and their operational
semantics is equational simplification, that is, rewriting
of terms until a canonical form is obtained.
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Equational attributes

• Equational attributes are a means of declaring certain
axioms in a way that allows Maude to use them
e�ciently in a built-in way: assoc, comm, id.

• Given an equational theory A, a pattern term t and a
subject term u, we say that t matches u modulo A if
there is a substitution s such that s(t) =

A

u, that is,
s(t) and u are equal modulo the equational theory A.

• Given an equational theory A = [
i

A
f

i

corresponding
to all the attributes declared in di↵erent binary
operators, Maude synthesizes a combined matching
algorithm for the theory A, and does equational
simplification modulo the axioms A.
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Example: an unordered communication channel

• Consider a communication channel in which messages
can get out of order.

• There is a sender and a receiver.

• The sender is sending a sequence of data items, for
example numbers.
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In-order communication in an unordered channel

• The receiver is supposed to get the sequence in the
exact same order in which they were in the sender’s
sequence.

• To achieve this in-order communication in spite of the
unordered nature of the channel, the sender sends each
data item in a message together with a sequence
number.

• The receiver sends back an ack indicating that has
received the item.
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In-order communication in an unordered channel

• The contents of the unordered channel are modeled as
a multiset of messages of sort Conf(iguration).

• The entire system state is a 5-tuple of sort State,
where the components are:

• a bu↵er with the items to be sent,
• a counter for the acknowledged items,
• the contents of the unordered channel,
• a bu↵er with the items received, and
• a counter for the items received.

op {_,_|_|_,_} : List Nats Conf List Nats -> State [ctor] .
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Example: unordered channel infrastructure

fmod UNORDERED-CHANNEL-EQ is
sorts Nats List Msg Conf State .
op 0 : -> Nats [ctor] .
op s : Nats -> Nats [ctor] .
op nil : -> List [ctor] .
op _;_ : Nats List -> List [ctor] . *** list cons
op _@_ : List List -> List . *** list append

op [_,_] : Nats Nats -> Msg [ctor] .
op ack : Nats -> Msg [ctor] .
subsort Msg < Conf .
op null : -> Conf [ctor] .
op __ : Conf Conf -> Conf [ctor assoc comm id: null] .

op {_,_|_|_,_} : List Nats Conf List Nats -> State [ctor] .

vars N : Nats . vars L P : List .
eq nil @ L = L .
eq (N ; L) @ P = N ; (L @ P) .

endfm
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Rewriting logic

• Rewriting logic was introduced by J. Meseguer in 1990
as a unifying framework for concurrency.

• We arrive at the main idea behind rewriting logic by
dropping symmetry and the equational interpretation
of rules.

• We interpret a rule t ! t 0 computationally as a local
concurrent transition of a system, and logically as an
inference step from formulas of type t to formulas of
type t 0.

• Rewriting logic is a logic of becoming or change, that
allows us to specify the dynamic aspects of systems.
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Modeling systems in rewriting logic

• The static part is specified as an equational theory.

• The dynamics is specified by means of possibly
conditional rules that rewrite terms, representing parts
of the system, into others.

• The rules need only specify the part of the system that
actually changes: the frame problem is avoided.
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System modules

• System modules in Maude correspond to rewrite
theories in rewriting logic.

• A rewrite theory has both rules and equations, so that
rewriting is performed modulo such equations.

• The equations are divided into

• a set A of structural axioms (associativity,
commutativity, identity), for which matching
algorithms exist in Maude, and

• a set E of equations that are Church-Rosser and
terminating modulo A;

that is, the equational part must be equivalent to a
functional module.
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Example: unordered channel rules

mod UNORDERED-CHANNEL is
including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: {N ; L, M | C | P, J}
=> {N ; L, M | [N, M] C | P, J} .

rl [rec]: {L, M | [N, J] C | P, J}
=> {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M}
=> {L, s(J) | C | P, M} .

endm
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Coherence

• The rules R in the module must be coherent with the
equations E modulo A, allowing us to intermix
rewriting with rules and rewriting with equations
without losing rewrite computations by failing to
perform a rewrite that would have been possible before
an equational deduction step was taken.

t
1

R/A
⇤⇤

!E/A ��

t�

!
E/A

⇥⇥
w

u 1
R/A

⇤⇤ u�

!
E/A

⌅⌅

• A simple strategy available when coherence holds is to
always reduce to canonical form using E before
applying any rule in R .
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Tools around Maude



Equational
abstractions

Narciso Mart́ı-Oliet

Introduction

System modeling
Maude
Crossing the river
Functional modules
Unordered channel
System modules
Maude formal
environment

Model checking
Linear temporal logic
Kripke structures
Crossing the river

Equational
abstractions
Simulations
Rewrite theories
Abstractions
Executability

Unordered channel
Abstraction
Coherence
Properties
Model checking!

Conclusion

References

Maude Formal Environment

• Maude Termination Tool (MTT) to prove termination
of system modules by connecting to external
termination tools.

• Church-Rosser Checker (CRC) to check the
Church-Rosser property of functional modules.

• Su�cient Completeness Checker (SCC) to check that
defined functions have been fully defined in terms of
constructors.

• Coherence Checker (ChC) to check the coherence of
system modules.

• Inductive Theorem Prover (ITP) to verify inductive
properties of functional modules.
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Maude Formal Environment

CRC

Church-Rosser Checker

MTT

Maude Termination Tool

ChC

Coherence Checker
SCC

Sufficient Completeness Checker



Equational
abstractions

Narciso Mart́ı-Oliet

Introduction

System modeling
Maude
Crossing the river
Functional modules
Unordered channel
System modules
Maude formal
environment

Model checking
Linear temporal logic
Kripke structures
Crossing the river

Equational
abstractions
Simulations
Rewrite theories
Abstractions
Executability

Unordered channel
Abstraction
Coherence
Properties
Model checking!

Conclusion

References

Example: termination and confluence

Maude> (select tool MTT .)
The MTT has been set as current tool.
Maude> (select external tool aprove .)
aprove is now the current external tool.

Maude> (ct UNORDERED-CHANNEL .)
Success: The module UNORDERED-CHANNEL is terminating.

Maude> (select tool CRC .)
The CRC has been set as current tool.

Maude> (ccr UNORDERED-CHANNEL .)
Church-Rosser check for UNORDERED-CHANNEL
All critical pairs have been joined.
The specification is locally-confluent.
The module is sort-decreasing.

Maude> (submit .)
The termination goal for the functional part of UNORDERED-CHANNEL

has been submitted to MTT.
The functional part of module UNORDERED-CHANNEL has been checked

terminating.
Success: The module is therefore Church-Rosser.
Success: The module UNORDERED-CHANNEL is Church-Rosser.



Equational
abstractions

Narciso Mart́ı-Oliet

Introduction

System modeling
Maude
Crossing the river
Functional modules
Unordered channel
System modules
Maude formal
environment

Model checking
Linear temporal logic
Kripke structures
Crossing the river

Equational
abstractions
Simulations
Rewrite theories
Abstractions
Executability

Unordered channel
Abstraction
Coherence
Properties
Model checking!

Conclusion

References

Example: su�cient completeness

Maude> (select tool SCC .)
The SCC has been set as current tool.

Maude> (scc UNORDERED-CHANNEL .)
Sufficient completeness check for UNORDERED-CHANNEL
Completeness counter-examples: none were found
Freeness counter-examples: none were found
Analysis: it is complete and it is sound
Ground weak termination: not proved
Ground sort-decreasingness: not proved

Maude> (submit .)
The sort-decreasingness goal for UNORDERED-CHANNEL has been

submitted to CRC.
The termination goal for the functional part of UNORDERED-CHANNEL

has been submitted to MTT.
Church-Rosser check for UNORDERED-CHANNEL

The module is sort-decreasing.
Success: The functional module UNORDERED-CHANNEL is sufficiently

complete and has free constructors.
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Example: coherence

Maude> (select tool ChC .)
The ChC has been set as current tool.
Maude> (cch UNORDERED-CHANNEL .)
Coherence checking of UNORDERED-CHANNEL

All critical pairs have been rewritten and no rewrite with
rules can happen at non-overlapping positions of equations
left-hand sides.
The sufficient-completeness, termination and Church-Rosser
properties must still be checked.

Maude> (submit .)
The Church-Rosser goal for UNORDERED-CHANNEL has been submitted

to CRC.
The Sufficient-Completeness goal for UNORDERED-CHANNEL has been

submitted to SCC.
The termination goal for the functional part of UNORDERED-CHANNEL

has been submitted to MTT.
Sufficient completeness check for UNORDERED-CHANNEL

[...]
Church-Rosser check for UNORDERED-CHANNEL

[...]
The functional part of module UNORDERED-CHANNEL has been checked

terminating.
The module UNORDERED-CHANNEL has been checked Church-Rosser.
Success: The module UNORDERED-CHANNEL is coherent.
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Outline

Model checking

Theoretical background:
LTL & Kripke Structures

Maude Model Checker:
Design & Examples
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Model checking

• Two levels of specification:

• a system specification level, provided by the
rewrite theory specified by a system module,

• a property specification level, given by some
properties that we want to state and prove about
our module.

• Temporal logic allows specification of properties such
as safety properties (ensuring that something bad
never happens) and liveness properties (ensuring that
something good eventually happens), related to the
possibly infinite global behavior of a system.

• Maude 2 includes a model checker to prove properties
expressed in linear temporal logic (LTL).
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Linear temporal logic: syntax

• Main connectives:

• True: >
• Atomic propositions: p 2 AP

• Next: �j

• Until: j U y

• Negation and disjunction: ¬j, j _ y

• Derived connectives:

• False: ? = ¬>
• Conjunction: j ^ y = ¬((¬j) _ (¬y))

• Implication: j ! y = (¬j) _ y

• Eventually: ⌃j = > U j

• Henceforth: ⇤j = ¬⌃¬j
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Linear temporal logic: intuition

• > is a formula that always holds at the current state.

• �j holds at the current state if j holds at the state
that follows.

• j U y holds at the current state if y is eventually
satisfied at a future state and, until that moment, j
holds at all intermediate states.

• ⇤j holds if j holds at every state from now on.

• ⌃j holds if j holds at some state in the future.
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Kripke structures

• A Kripke structure is a triple A = (A,!A, L) such
that

• A is a set, called the set of states,
• !A is a total binary relation on A, called the
transition relation, and

• L : A �! P(AP) is a labeling function,
associating to each state a 2 A the set L(a) of
those atomic propositions in AP that hold in a.

• A path in a Kripke structure A is a function
p : IN �! A with p(i) !A p(i + 1) for every i .

• pi is the su�x of p starting at p(i).
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Linear temporal logic: semantics

• Satisfaction relation between a Kripke structure A, a
state a 2 A, and an LTL formula j 2 LTL(AP):

A, a |= j () A,p |= j for all paths p with p(0) = a.

• Satisfaction relation for paths A,p |= j defined by
structural induction on j:

A,p |= p () p 2 L(p(0))
A,p |= > () true
A,p |= j _ y () A,p |= j or A,p |= y
A,p |= ¬j () A,p 6|= j
A,p |= �j () A,p1 |= j
A,p |= j U y () there exists n 2 IN such that

A,pn |= y and,
for all m < n,A,pm |= j

• The semantics of the remaining operators can be
derived from these.
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Kripke structures associated to rewrite theories

• Given a system module M specifying a rewrite theory
R = (S,E ,R), we

• choose a type k in M as our type of states;
• define in a module, say M-PREDS, protecting M
some state predicates P and their semanticsby
means of the basic satisfaction operation

op _|=_ : State Prop -> Bool .

• Then we get a Kripke structure (more details later)

K(R, k)P = (TS/E ,k , (!1
R)

•, LP).

• Under some assumptions on M and M-PREDS, including
that the set of states reachable from t is finite, the
relation K(R, k)P, t |= j can be model checked.
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Crossing the river: transitions

mod RIVER-CROSSING is
sorts Side Group .

ops left right : -> Side [ctor] .
op change : Side -> Side .
eq change(left) = right .
eq change(right) = left .

ops s w l c : Side -> Group [ctor] .
op __ : Group Group -> Group [ctor assoc comm] .

var S : Side .

rl [shepherd] : s(S) => s(ch(S)) .
rl [wdog] : s(S) w(S) => s(ch(S)) w(ch(S)) .
rl [lamb] : s(S) l(S) => s(ch(S)) l(ch(S)) .
rl [cabbage] : s(S) c(S) => s(ch(S)) c(ch(S)) .

endm
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Crossing the river: properties

mod RIVER-CROSSING-PROP is
protecting RIVER-CROSSING .
including MODEL-CHECKER .
subsort Group < State .
op initial : -> Group .
eq initial = s(left) w(left) l(left) c(left) .

ops disaster success : -> Prop [ctor] .
vars S S’ S’’ : Side .
ceq (w(S) l(S) s(S’) c(S’’) |= disaster) = true if S =/= S’ .
ceq (w(S’’) l(S) s(S’) c(S) |= disaster) = true if S =/= S’ .
eq (s(right) w(right) l(right) c(right) |= success) = true .
eq G:Group |= P:Prop = false [owise] .

endm

• success characterizes the (good) state in which the
shepherd and his belongings are all in the other side,

• disaster characterizes the (bad) states in which some
eating takes place.



Equational
abstractions

Narciso Mart́ı-Oliet

Introduction

System modeling
Maude
Crossing the river
Functional modules
Unordered channel
System modules
Maude formal
environment

Model checking
Linear temporal logic
Kripke structures
Crossing the river

Equational
abstractions
Simulations
Rewrite theories
Abstractions
Executability

Unordered channel
Abstraction
Coherence
Properties
Model checking!

Conclusion

References

Crossing the river

• The model checker only returns either true or paths
that are counterexamples of properties.

• To find a safe path we need a formula that expresses
the negation of the property we like: a counterexample
will then witness a safe path for the shepherd.

• If no safe path exists, then it is true that whenever
success is reached a disastrous state has been
traversed before:

<> success -> (<> disaster /\ ((˜ success) U disaster))

Equivalently

<> success -> ((˜ success) U disaster)

• A counterexample to this formula is a safe path,
completed so as to have a cycle.
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Crossing the river

Maude> red modelCheck(initial,
<> success -> (<> disaster /\ ((˜ success) U disaster))) .

result ModelCheckResult: counterexample(
{s(left) w(left) l(left) c(left),’lamb}
{s(right) w(left) l(right) c(left),’shepherd}
{s(left) w(left) l(right) c(left),’wdog}
{s(right) w(right) l(right) c(left),’lamb}
{s(left) w(right) l(left) c(left),’cabbage}
{s(right) w(right) l(left) c(right),’shepherd}
{s(left) w(right) l(left) c(right),’lamb}
{s(right) w(right) l(right) c(right),’lamb}
{s(left) w(right) l(left) c(right),’shepherd}
{s(right) w(right) l(left) c(right),’wdog}
{s(left) w(left) l(left) c(right),’lamb}
{s(right) w(left) l(right) c(right),’cabbage}
{s(left) w(left) l(right) c(left),’wdog},
{s(right) w(right) l(right) c(left),’lamb}
{s(left) w(right) l(left) c(left),’lamb})
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The problem

• Given a concurrent system, we want to check whether
certain properties hold in it or not.

• If the number of (reachable) states is finite, use model
checking.

• If the number of (reachable) states is infinite (or too
large) this does not work. Then

• we can employ deductive methods, or
• we can calculate an abstract version of the system
with a finite number of states to which model
checking can be applied.
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Our approach to abstraction

• A simple method of defining quotient abstractions is
by means of equations collapsing the set of states:

• The concurrent system is specified by a rewrite theory
R = (S,E ,R).

• Then the quotient is obtained by adding more
equations to R, thus getting R0 = (S,E [ E 0,R).

• Such a quotient will be useful for model-checking
purposes if

• the resulting theory is executable, and
• the state predicates are preserved by the
equations.

• These proof obligations can be discharged using the
tools in the Maude Formal Environment.
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Simulations between Kripke structures

• An AP-simulation H : A �! B between Kripke
structures A and B over AP is a total relation
H ✓ A⇥ B such that:

•
a �!A a0

H H
b �!B b0

• If aHb then LB(b) ✓ LA(a).

• H is strict if the previous inclusion is an equality.

• H : A �! B reflects the satisfaction of a formula j if

B, b |= j and aHb implies A, a |= j.

Theorem

AP-simulations reflect satisfaction of LTL�(AP) formulas
(where LTL�(AP) is the negation-free fragment of LTL).
Strict simulations reflect satisfaction of LTL(AP) formulas.
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Minimal systems

• Often we only have a Kripke structure M and a
surjective function to a set of abstract states
h : M �! A.

• The minimal system Mh

min

(over A) corresponding to
M and h is defined by (A,!Mh

min

, LMh

min

), where:

• x !Mh

min

y ()
9a.9b.(h(a) = x ^ h(b) = y ^ a !M b)

• LMh

min

(a) =
T
x2h�1(a) LM(x).

Theorem

h : M �! Mh

min

is indeed a simulation.
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Minimal systems as quotients

• Minimal systems can also be seen as quotients.

• For a Kripke structure A and ⇠ an equivalence relation
on A, define A/⇠ = (A/⇠,!A/⇠, LA/⇠), where:

• [a1] !A/⇠ [a2] ()
9a01 2 [a1]. 9a02 2 [a2]. a01 !A a02

• LA/⇠([a]) =
T
x2[a] LA(x).

Theorem

Given M and h surjective, the Kripke structures Mh

min

and
M/⇠

h

are isomorphic, where x ⇠
h

y i↵ h(x) = h(y).
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Remarks on minimal systems

• The adjective minimal is appropriate since Mh

min

is the
most accurate approximation to M consistent with h.

• It is not always possible to have a computable
description of Mh

min

.

• The transition relation:

x !Mh

min

y () 9a.9b.(h(a) = x ^h(b) = y ^ a !M b)

is not recursive in general.

• Here we present methods that, when successful, yield a
computable description of Mh

min

.
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The system specification level

• In general, a concurrent system is specified by a
rewrite theory R = (S,E ,R) with:

• (S,E ) an equational theory describing the states;
• R a set of (conditional) rewrite rules defining the
system transitions.

• This determines, for each type k , a transition system

(TS/E ,k , (!1
R)

•)

where

• TS/E ,k is the set of equivalence classes [t] of
terms of type k , modulo the equations E ;

• (!1
R)

• completes the one-step rewrite relation
!1

R with an identity pair ([t], [t]) for each
deadlock state [t], to get a total relation.
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LTL properties of rewrite theories

• LTL properties are associated to R and a type k by
specifying the basic state predicates P in an equational
theory (S0,E [D) extending (S,E ) conservatively.

• State predicates, possibly parameterized, are
constructed with operators p : s1 . . . s

n

! Prop.

• The semantics is defined by means of equations D
using the basic “satisfaction operator”
|= : k Prop ! Bool.

• A state predicate p(u1, . . . , u
n

) holds in a state [t] i↵

E [D ` t |= p(u1, . . . , u
n

) = true
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LTL properties of rewrite theories

• The Kripke structure associated to R, k , and P, with
atomic propositions

APP = {p(u1, . . . , u
n

) ground | p 2 P}

is then defined as

K(R, k)P = (TS/E ,k , (!1
R)

•, LP)

where

LP([t]) = {p(u1, . . . , u
n

) | p(u1, . . . , u
n

) holds in [t]}

• Assuming that the equations E [D are Church-Rosser
and terminating, and that the rewrite theory R is
executable, the resulting Kripke structure is indeed
computable.
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Equational abstractions

• We can define an abstraction for K(R, k)P by
specifying an equational theory extension

(S,E ) ✓ (S,E [ E 0)

• This gives rise to an equivalence relation ⌘
E

0 on TS/E

[t]
E

⌘
E

0 [t 0]
E

() E [E 0 ` t = t 0 () [t]
E[E 0 = [t 0]

E[E 0

and therefore a quotient abstraction K(R, k)P/⌘
E

0 .

• Question: Is K(R, k)P/⌘
E

0 the Kripke structure
associated to another rewrite theory?
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Equational abstractions

• We focus on those rewrite theories R satisfying the
following requirements:

• R is k-deadlock free, that is (!1
R)

• = !1
R on

TS/E ,k ,

• R is k-topmost, so k only appears as the coarity
of a certain operator f : k1 . . . k

n

�! k , and

• no terms of type k appear in the conditions.

• A rewrite theory R can often be transformed into an
equivalent one satisfying these requirements.

• The unordered channel example satisfies these
requirements.
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Equational abstractions

• Let us take a closer look at the quotient:

K(R, k)P/⌘
E

0 = (TS/E ,k/⌘
E

0 , (!1
R)

•
/⌘

E

0 , LP/⌘
E

0 ).

• TS/E

/⌘
E

0 ⇠= TS,E[E 0 .

• Under the above assumptions, R/E 0 = (S,E [ E 0,R)
is k-deadlock free and

(!1
R/E

0)• = !1
R/E

0 = (!1
R)

•
/⌘

E

0

• Therefore, at a purely mathematical level, R/E 0

seems to be what we want.
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Equational abstractions: executability

• Executability requires that:

• The equations E [ E 0 are ground Church-Rosser
and terminating.

• The rules R are (ground) coherent relative to
E [ E 0.

• For example, the rules

a �! c b �! d

are not coherent relative to the abstraction

a = b .

• To check and enforce these conditions, and get an
executable rewrite theory R0 semantically equivalent
to R/E 0, we can use some Maude tools.
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Equational abstractions: preservation of
properties

• What about state predicates? By definition:

LP/⌘
E

0 ([t]E[E 0) =
\

[x ]
E

✓[t ]
E[E 0

LP([x ]
E

).

• Coming up with equations D 0 defining LP/⌘
E

0 may not
be easy.

• It becomes easy if the predicates are preserved by E 0:

[x ]
E[E 0 = [y ]

E[E 0 =) LP([x ]
E

) = LP([y ]
E

)

• In this case we do not need to change the equations D
and therefore we have:

K(R, k)P/⌘
E

0 ⇠= K(R/E 0, k)P.
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Equational abstractions: preservation of
properties

• How can we prove

[x ]
E[E 0 = [y ]

E[E 0 =) LP([x ]
E

) = LP([y ]
E

) ?

Theorem

If the equations in E 0 are of the form t = t 0 if C, with t, t 0

of type k, and for each such equation

E [D `
ind

8~x . 8~y . C )
(t(~x) |= p(~y) = true , t 0(~x) |= p(~y) = true)

then the state predicates P are preserved by E 0.

• Instead, we can use tools in the Maude Formal
Environment to mechanically discharge these proof
obligations.
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Equational abstractions: all together

• When E ,E 0 and R satisfy the executability
requirements described above,

• by construction, the quotient simulation

K(R, k)P �! K(R,E )P/⌘
E

0 ⇠= K(R/E 0, k)P

is strict, so it reflects satisfaction of arbitrary LTL
formulas.

• Since R/E 0 is executable, for an initial state t having
a finite set of reachable states we can use the Maude
model checker to check if a property holds.
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System modeling

Model checking

Equational abstractions

Unifying Example
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Communication channel’s transitions

mod UNORDERED-CHANNEL is
including UNORDERED-CHANNEL-EQ .

vars N M J : Nats .
vars L P : List .
var C : Conf .

rl [snd]: {N ; L, M | C | P, J}
=> {N ; L, M | [N, M] C | P, J} .

rl [rec]: {L, M | [N, J] C | P, J}
=> {L, M | ack(J) C | P @ (N ; nil), s(J)} .

rl [rec-ack]: {N ; L, J | ack(J) C | P, M}
=> {L, s(J) | C | P, M} .

endm
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Communication channel: abstraction

The channel should not contain repeated copies of sent
messages:

mod UNORDERED-CHANNEL-ABSTRACTION is
including UNORDERED-CHANNEL .
vars M N P K : Nats .
vars L L’ : List .
var C : Conf .
eq [A1]: {L, M | [N, P] [N, P] C | L’, K}

= {L, M | [N, P] C | L’, K} .
endm
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Abstraction: termination and confluence

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION is terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION .)
[...]
Maude> (submit .)
[...]
Success: The module UNORDERED-CHANNEL-ABSTRACTION is Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION .)
[...]
Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION is

sufficiently complete and has free constructors. However‘,
module UNORDERED-CHANNEL-ABSTRACTION may still not be
sufficiently complete or not have free constructors.
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Abstraction: coherence

Maude> (select tool ChC .)
The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION
The following critical pairs cannot be rewritten:
cp UNORDERED-CHANNEL-ABSTRACTION2 for A1 and rec

{L:List,M:Nats | #3:Conf[N:Nats,J:Nats]| P:List,J:Nats}
=>{L:List,M:Nats | #3:Conf ack(J:Nats)[N:Nats,J:Nats]|
P:List @ N:Nats ; nil,s(J:Nats)}.
The sufficient-completeness, termination and Church-Rosser
properties must still be checked.
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Abstraction: recovering coherence

In this example, the critical pair indicates that a rule is
missing.

mod UNORDERED-CHANNEL-ABSTRACTION-2 is
including UNORDERED-CHANNEL-ABSTRACTION .

vars M N K : Nats .
vars L L’ : List .
var C : Conf .

rl [snd2]: {L, M | [N, K] C | L’, K}
=> {L, M | [N, K] ack(K) C | L’ @ N ; nil, s(K)} .

endm
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Abstraction: coherence recovered

Maude> (select tool ChC .)
The ChC has been set as current tool.

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-2 .)
Coherence checking of UNORDERED-CHANNEL-ABSTRACTION-2

All critical pairs have been rewritten and no rewrite with
rules can happen at non-overlapping positions of equations
left-hand sides.
The sufficient-completeness, termination and Church-Rosser
properties must still be checked.

Maude> (submit .)
[...]
Success: The module UNORDERED-CHANNEL-ABSTRACTION-2 is coherent.



Equational
abstractions

Narciso Mart́ı-Oliet

Introduction

System modeling
Maude
Crossing the river
Functional modules
Unordered channel
System modules
Maude formal
environment

Model checking
Linear temporal logic
Kripke structures
Crossing the river

Equational
abstractions
Simulations
Rewrite theories
Abstractions
Executability

Unordered channel
Abstraction
Coherence
Properties
Model checking!

Conclusion

References

Communication channel: properties

• We assume that all initial states are of the form:

{n1 ; ... ; nk ; nil , 0 | null | nil , 0}

• The sender’s bu↵er contains a list of numbers

n1 ; ... ; nk ; nil

and has the counter set to 0.

• The communication channel initially is empty.

• The receiver’s bu↵er is also empty and the receiver’s
counter is initially set to 0.

• One essential property is that it achieves in-order
communication in spite of the unordered channel.
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Communication channel: properties

mod UNORDERED-CHANNEL-PREDS is
protecting BOOLEAN .
protecting UNORDERED-CHANNEL .

sort Prop .
op _˜_ : Nats Nats -> Bool . *** equality predicate
op _|=_ : State Prop -> Bool [frozen] . *** satisfaction

vars M N K P : Nats . vars L L’ L’’ : List .
var C : Conf .

eq 0 ˜ 0 = true .
eq 0 ˜ s(N) = false .
eq s(N) ˜ 0 = false .
eq s(N) ˜ s(M) = N ˜ M .

op prefix : List -> Prop [ctor] .

eq [I1]: {L’, N | C | K ; L’’, P} |= prefix(M ; L)
= (M ˜ K) and {L’, N | C | L’’, P} |= prefix(L) .

eq [I3]: {L’, N | C | nil, K} |= prefix(L) = true .
eq [I4]: {L’, N | C | M ; L’’, K} |= prefix(nil) = false .

endm
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Communication channel: properties preservation

mod UNORDERED-CHANNEL-ABSTRACTION-CHECK is
extending UNORDERED-CHANNEL-ABSTRACTION-2 .
including UNORDERED-CHANNEL-PREDS .
op init : -> State .
eq init = {0 ; s(0) ; s(s(0)) ; nil , 0 | null | nil , 0} .

endm

• The set of abstract states is finite.

• The equations in both UNORDERED-CHANNEL-PREDS
and UNORDERED-CHANNEL-ABSTRACTION-CHECK are
Church-Rosser and terminating.

• The equations in both UNORDERED-CHANNEL-PREDS
and UNORDERED-CHANNEL-ABSTRACTION-CHECK are
su�ciently complete.

• UNORDERED-CHANNEL is deadlock free.
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Communication channel: properties preservation

Maude> (ct UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is

terminating.

Maude> (ccr UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is

Church-Rosser.

Maude> (scc UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Warning: The functional module UNORDERED-CHANNEL-ABSTRACTION-CHECK
is sufficiently complete and has free constructors. However [...]

Maude> (cch UNORDERED-CHANNEL-ABSTRACTION-CHECK .)
Maude> (submit .)
Success: The module UNORDERED-CHANNEL-ABSTRACTION-CHECK is

coherent.
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Communication channel: model checking, finally

mod UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK is
including UNORDERED-CHANNEL-ABSTRACTION-CHECK .
including LTL-SIMPLIFIER . *** optional
including MODEL-CHECKER .

endm

Maude> reduce in UNORDERED-CHANNEL-ABSTRACTION-MODEL-CHECK :
modelCheck(init, []prefix(0 ; s(0) ; s(s(0)) ; nil)) .

rewrites: 361 in 41ms cpu (42ms real) (8780 rewrites/second)
result Bool: true



Equational
abstractions

Narciso Mart́ı-Oliet

Introduction

System modeling
Maude
Crossing the river
Functional modules
Unordered channel
System modules
Maude formal
environment

Model checking
Linear temporal logic
Kripke structures
Crossing the river

Equational
abstractions
Simulations
Rewrite theories
Abstractions
Executability

Unordered channel
Abstraction
Coherence
Properties
Model checking!

Conclusion

References

Concluding remarks

• The equational abstraction technique is fairly simple
and takes advantage of the expressiveness of rewriting
logic as well as of the tools available in the Maude
Formal Environment.

• Other examples are available in the references, but
without using the Maude Formal Environment in its
current integrated form.

• Related work: Generalization of the equational theory
extension (S,E ) ✓ (S,E [ E 0) to theory
interpretations (S,E ) �! (S0,E 00) and to (stuttering)
simulations.

• Future work: improving the interface of the Maude
Formal Environment to make it more user-friendly.

• In particular, the Inductive Theorem Prover (ITP)
needs more and better integration with the other tools.
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