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Abstract—In Cognitive Radio Networks (CRNs), when the
Primary Users (PUs) appear, the SUs have to evacuate the licensed
spectrum in use or reduce the transmit power so that no harmful
interference is introduced to the PUs. In this paper, we explore
the multiple Secondary Users (SUs) coexistence system in CRNs
based on power control mechanism and interference temperature
model. We propose an optimal solution that can maximize the
channel capacity and minimize the spectrum handover overhead,
constrained by the accumulated interference of both the SUs-to-
PU and SUs-to-SUs. We formulate this problem as a non-linear
optimization problem and propose a heuristic algorithm to solve
it efficiently. Experimental results show that compared with two
alternative approaches, our algorithm can improve the usage of
the spectrum by up to 51% (with a random approach) and up
to 278% (with a conservative approach).

I. INTRODUCTION

Cognitive radio (CR) is an effective method to alleviate the
frequency scarcity problem [1]. While PUs have the priority
to access the licensed spectrum, SUs can opportunistically use
spectrum when no harmful effects to the PUs are introduced
[2]. When the PUs appear, the SUs have to evacuate the
occupied spectrum and move to some other validated ones.
This is the so called spectrum handover. Frequent spectrum
handovers will cause significant performance degradation for
the SUs because of the large handover overhead such as the
reconstruction of the wireless connections, re-establishment of
the TCP links, and etc.

Indeed, spectrum handover is not the only option for the
SUs when the PUs appear. FCC [3] suggested the Interference
Temperature Model (ITM) to regulate the SUs’ behavior.
According to this model, the SUs are allowed to co-exist with
the PUs when the SUs’ aggregated interference on the PUs is
below a certain level. In other words, SUs can appropriately
adjust their transmit power to fully exploit all the spectrum
opportunities, while the interference to the PUs is low enough
to have no harmful effect. This is called power control based
spectrum handover [4].

In the existing power-control based spectrum handover,
researchers mainly focus on the cumulative effects of SUs on
PU, and the basic goal is to maximize the individual link ca-
pacity while no harmful effect is introduced. This is, however,
not necessary to be optimal solution that can fully exploit the
spectrum opportunity. Besides the interference caused by the
PUs, there may be interference between SUs when multiple

SUs co-exist with the PUs. Such interference between SUs
will severely affect the communications in between, causing
a significantly degraded communication capacity.

To maximize the utilization of the spectrum opportunity
and the network capacity, in this paper, we analyze the
accumulated interference constraints on both the SUs-to-PU
and SUs-to-SUs. We extend the ITM to a multi-SU spectrum
sharing cognitive network. We formulate the problem as a
constrained non-linear optimization problem and show that
the problem is in general an NP-hard problem. To address
the problem in a feasible way, we design a heuristic algorithm
based on a 0-1 knapsack problem. We prove that the algorithm
is guaranteed to converge. Simulation experiments show that
compared with two alternative approaches, namely a random
algorithm and a conservative algorithm, the network capacity
can be increased by up to 51% and 278% respectively.

The rest of the paper is organized as follows. Section
II reviews the related literature on the spectrum access and
hanover. Section III presents the system model. We formulate
the multi-SU spectrum handover problem as a constrained
optimization model in section IV. Section V simplifies the
optimization model and an optimal solution is given. Section
VI shows our simulation results. Finally, we conclude the
paper in section VII.

II. RELATED WORK

The prior works on spectrum access in the CR network
can be divided into two categories: the overlay access and
the underlay access. In the overlay way, SUs use the licensed
channel opportunistically. Zheng et al. [5] propose a color-
sensitive graph approach which characterizes the interference
between the PUs and the SUs using a binary model. In [6] and
[7], the authors present a proactive and a cooperative sensing
model respectively to discover as many spectrum opportunities
as possible. However, in their work, the coexistence of PUs and
SUs on the same channel is not considered. In the underlay
way, an SU can operate on the same frequency with PUs,
provided the interference temperature at each licensed receiver
does not exceed an interference temperature threshold [8].
Power control is usually applied to avoid interference to PUs
in the underlay access [9] [10].

As a critical issue in cognitive radio networks, spectrum
handover plays an important role in spectrum access. Mo-
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Fig. 1. The coexistence system of PU and SU.

hamed et al. [11] propose a scheme to reduce the spec-
trum handover. In this scheme, unlicensed channels are used
as backup channels. However, if the number of unlicensed
channels reduces, the scheme degenerates to the traditional
one. L.Giupponi et al. [12] propose a fuzzy-based approach
which makes effective decisions on spectrum handover in
the context characterized by uncertain, incomplete and het-
erogeneous information. But it is difficult to determine an
appropriate decision threshold. Feng et al. [13] extend the
spectrum handover problem to multi-hop networks in which
they formulate an optimization problem to minimize the total
latency under the constraint of network connectivity. Different
to their work, we focus on optimizing the spectrum handover
scheme through power control. In our prior work [14], we
propose a power control based spectrum handover scheme
to improve the transmission efficiency by avoiding some of
the handovers. In that scheme, a combination of dynamic
spectrum allocation and power control is adopted. However,
the accumulated interference introduced by SUs-to-SUs will
degrade the channel capacity since there is no coordination
among the SUs using the same channel. Different to the
prior works, in this paper, we consider the interference among
multiple secondary users besides the interference of SUs-to-
PU.

III. SYSTEM MODEL

We consider a cognitive radio network in which a PU
and several SUs coexist on licensed channel c. As we can
see from Fig. 1, PT (PU transmitter) is far from the PR
(PU receiver). SU transmitters and receivers are in the PU
receiver location area, where the emissions from undesired
SU transmitters could cause unbearable interference exceeding
the interference temperature limit. The receiver measures the
inference temperature for the region and broadcasts a message
indicating the temperature values over that region. Then the
transmitter could adopt the power control mechanism to reduce
the transmit power on channel c or switch to an idle channel.
In the “best” case, when PU appears, all SUs switch to
an idle channel without causing harmful interference to the
PU receiver. But this will increase the spectrum sensing
and switching cost and decrease the capacity of channel c
. If all SUs remain in the channel and coordinate to keep
the transmit power below the interference temperature limit,
some of the SUs would transmit while some may not. In

Fig. 2. Interference model in multi-user CR network.

the “worst” case, all SUs cause non-harmful interference to
the PU receiver. For a given SU, however, the rest of the
SU transmitters could cause harmful cumulative interference
to block its communication. In this paper, we consider the
accumulated interference of both the SUs-to-PU and SUs-to-
SUs to maximize the capacity on the licensed channel and
minimize the spectrum handover overhead of the multi-SU
CR network.

A. Interference Temperature

For a given area, FCC establishes an interference tem-
perature limit TL. This value of TL would be a maximum
amount of tolerable interference for a given frequency band
in a particular location. In this paper, we use the following
formulation [15]

TI(fc, B) + TN ≤ TL(fc, B), (1)

where TI(fc, B) is the interference temperature for channel c ,
with central frequency fc and bandwidth B. TN is the original
noise floor. TI(fc, B) can be given

TI(fc, B) =
PI(fc, B)

kB
, (2)

where Boltzmann’s constant k is 1.38·10−23 Joules per Kelvin
degree. PI(fc, B) is the interference power over the channel
with central frequency fc and bandwidth B.

Any SU transmitter on the band c must guarantee that
the introduced interference of its transmission to the existing
interference must not exceed the interference temperature limit
TL at a PU receiver. Moreover, in our model, the receiving
interference of any SU receiver utilizing this band also must
not exceed TL. The model is shown in Fig. 2. From the PU
receiver, we can get

TN (fc, B) +

N∑
i=1

MiP
i
su tx

kB
≤ TL(fc, B), (3)

where Mi is a fractional value between 0 and 1, representing a
multiplicative attenuation due to fading and path loss between
the ith SU transmitter and the licensed receiver. P i

su tx is the
ith SU’s transmit power, N is the number of SU transmission
pairs.
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To guarantee that the SINR at the SU receiver is greater than
the minimum SINR γmin required for decoding the signal,
P i

su tx must be no less than P i
su tx min. Then we can get

P i
su tx min − f(ri)

kBTL
= γmin, (4)

where f(ri) is a path loss function, and f(ri) = 10n log(ri).
ri is the distance between the transmitter and the receiver, n
is the path loss exponent which is usually a constant in the
range of 2 ∼ 4. For the jth SU receiver, the following equation
could be obtained.

TN (fc, B) +

N∑
i=1,i �=j

LiP
i
su tx

kB
≤ TL(fc, B) , (5)

where Li is similar to Mi, except that it represents multiplica-
tive path loss between the ith SU transmitter and SU receiver.
Our goal is to maximize the capacity on licensed channel while
minimizing the spectrum switching overhead to accommodate
more SUs. At the same time, the receiving interference of both
PU and SU receivers which utilize the licensed channel should
not exceed the interference temperature limit TL.

B. Calculation of Secondary Users’ Capacity

For the definition of channel capacity C, Shannon-Hartley
theorem states

C = Blog2(1 +
S

No
), (6)

where B is the bandwidth of the licensed channel, S is the
received signal power at the SU receiver. No is the noise and
interference power over the band.

To investigate the performance of multiple secondary users,
we consider the capacity of the secondary users. At the ith
SU receiver, capacity can be formulated as follows

Ci = Blog2(1 +
LiP

i
su tx

kBTL(fc, B)
). (7)

IV. THE OPTIMIZATION MODEL

In this section, we formulate the spectrum handover scheme
as a constrained optimization problem in terms of interference
caused by multi-SU CR network. As mentioned above, when
PU appears, each SU has two options, switching to another
channel or lowering its transmit power. When there is no unli-
censed channels available, SUs have to remain in the licensed
channel. Then the global capacity of SUs is formulated as a
constrained optimization problem

max{max(x1 · Blog(1 + δa)), · · · ,
max(xN · Blog(1 + δa))} s.t.

N∑
j=1,j �=i

xijaj < βi, 1 ≤ i ≤ N

xij = xji, 1 ≤ i ≤ N, 1 ≤ j ≤ N
xij ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ N,

(8)

where xi = (xi1, . . . , xiN ), a = (a1, . . . , aN ), ai =
P i

su tx and δ = Li/kBTL(fc, B), βi = (TL − TN )kB/Li.
max(xi ·Blog(1 + δa)) is the maximum element of the vector

xi · Blog(1 + δa). Without loss of generality, we assume the
SUs in a given area have the same multiplicative attenuation
M between the SU transmitter and the PU Receiver. Then each
component of vector a is a constant with an upper bound and
lower bound

N∑
i=1

ai ≤ α

ai ≥ γ, 1 ≤ i ≤ N,
(9)

where α = (TL − TN )kB/M and γ is the minimum transmit
power of SUs.

Formulation (8) shows the objective function followed by a
set of constraints. The first constraint shows the accumulated
interference of SU receivers utilizing the licensed channel
should not exceed the interference temperature limit. The
second constraint means that the interference among the SUs
is symmetrical. As long as the SU does not switch to another
channel, the interference exists. The last constraint shows
that the value of SU’s behavior is 0 (switch) or 1 (lower
power). The equation (9) is a constraint on the interference
of SUs-to-PU, which means that the receiving interference of
PU receivers on the licensed channel should not exceed the
interference temperature threshold.

V. OPTIMIZATION MODEL SOLUTION

In this section, we employ a heuristic algorithm to simplify
the optimization model and then the optimization problem
can be transformed into a 0-1 knapsack problem. Finally, the
dynamic programming method is adopted to obtain the optimal
solution.

A. Analysis of Our Optimization Model

Let yi = xi · B log(1 + δa). Therefore, to optimize formu-
lation (8), we are required to obtain the maximum value of
each element yi and then select the maximum one among
N elements. Since there are many algorithms to find the
maximum value of an array, we just need to focus on how
to get the optimal value of each yi here. The optimization
model is then reformulated. For each element yi, we have

max(yi) s.t.
N∑

j=1,j �=i

xijaj < βi, 1 ≤ i ≤ N

xij = xji, 1 ≤ i ≤ N, 1 ≤ j ≤ N
xij ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ N.

(10)

Obviously, formulation (10) represents a typical binary inte-
ger programming or 0-1 integer programming problem (BIP).
It is considered that there unlikely exists an efficient algorithm
to solve a BIP. Related works often adopt linear programming-
based branch and bound algorithm to solve BIP problems. The
central idea of the branch and bound algorithm is to create
a binary-search tree by repeatedly adding constraints to the
problem, and each constraint is represented as a node of the
binary tree. However, constructing such a binary tree is both
expensive and memory demanding. To solve this problem, we
will give a simplified model in the next subsection.
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B. The Simplified Model Based on 0-1 Knapsack Problem

To reduce the time and space complexity when solving
equation (10), we simplify the optimization model according
to heuristics rules and convert our model into a well-known
0-1 knapsack problem [16]. The heuristics principle depends
on such an observation: yi could get a maximum value only
when xi · a is maximized because Blog(·) is an increasing
function. To get the optimal value of yi, we first determine
the largest possible value of xij(1 ≤ i, j ≤ N, j �= i) and
then find the best solution that satisfies the constraint

N∑
j=1,j �=i

xijaj ≤ βi, 1 ≤ i ≤ N. (11)

As for each xij in the ith row of equation (11), there is
xij = xji. So the constraint imposed on xij , j �= i is

xij = xji ≤ βj/ai −
N∑

s=1,s �=i,j

xjsas/ai ≤ βj/ai

xij ∈ {0, 1}.
(12)

So we get xij ≤ min(1, �βj/αi�), i �= j. It can be deduced
that xij equals to zero when �βj/αi� < 1. Here, we do not
consider the components that definitely equal to zero in xi , but
only decide the remaining components that could be either 0 or
1. Let Z = {zt = xij | j �= i and �βj/ai� ≥ 1} be the current
unknowns. Let W = {wt = aj | j �= i and �βj/ai� ≥ 1} be
the weight of each unknown. n is the size of Z and W . we
solve the value of each elements of Z according to

max(
n∑

t=1
wtzt) s.t.

n∑
t=1

wtzt ≤ βi, zt ∈ {0, 1}.
(13)

Formulation (13) shows a typical 0-1 knapsack problem. We
will determine each element of Z to be included in a collection
so that the total weight is less than βi and the total value
n∑

t=1
wtzt is optimized. With the solution of equation (13), the

optimal value of yi is opt yi = opt xi · B log(1 + δa) where
each component of opt xi equals to

opt xij =

⎧⎨
⎩

0 �βj/ai� < 1 and i �= j
zt �βj/ai� ≥ 1 and i �= j
1 i = j

. (14)

C. Model Solution

Given the simplified optimization model shown in equation
(13) and (14), we obtain the largest opt yi and the corre-
sponding opt xi as the optimal solution. Algorithm 1 shows
the pseudo code of solving the optimization model. Note that
Zeros returns a zero vector, AddtoSet gets the set W , Copytox
copies the values of Z to vector x, getmax computes the largest
opt yi and the corresponding opt xi.

In dynamic prog knapsack, we solve the 0-1 knapsack
problem using dynamic programming. Dynamic programming
is an optimization method that is often used when the solution

Algorithm 1: Algorithm for solving the optimal model
Input: B, δ, a,β
Output: opt value,opt x value
begin

for i ← 1 to N do
Zeros(xi);
for j ← 1 to N do

if i �= j then
xij ←− min(1, �βj/ai�);
if xij == 1 then

AddtoSet(W,aj);
end

end
end
if W is not empty then

Z ←− dynamic prog knapsack(W,βi);
Copytox(Z, xi);

end
xii ←− 1;
opt xi ←− xi;
opt yi ←− opt xi · Blog(1 + δa);
(opt x value, opt value) ←−
getmax(opt yi, opt xi);

end
end

TABLE I
SIMULATION PARAMETERS

Parameter Value

Carrier Frequency 2.4GHz

Bandwidth 20 ∼ 50MHz

Minimum SINR γmin 10dB

Temperature Interference Limit TL 148 ∼ 150dB

Noise Floor TN 5dB

Overhead of Frequency Sensing and Handover 3.5ms

Distance R 2 ∼ 6 m

Path Loss Exponent n 2

can be recursively described in terms of solutions to sub-
problems. A dynamic programming solution for the 0-1 knap-
sack problem generally runs in pseudo-polynomial time. Since
the dynamic programming method is guaranteed to converge
to the optimal solution, so the optimization method used in
this paper also converges.

VI. NUMERICAL RESULTS

In this section, we investigate the performance of our
proposed optimization algorithm. System parameters used are
shown in Table I.

Fig. 3 shows the cumulated capacity of all the secondary
users using the same channel. Without loss of generality,
we assume that the distance between the SU transmitters
and receivers are uniformly distributed. As a comparison, we
evaluate three approaches: Conservative, Random and our pro-
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posed optimization algorithm. In the conservative algorithm,
all secondary users lower the transmit power when the primary
users come. Since the transmission cannot be guaranteed to
succeed after the power falls, the network performance will
degrade. It can be seen from Fig. 3 that as the bandwidth
of the licensed channel rises, the cumulated capacity of
secondary users on this channel is greatly increased. As we
also can see, our optimization algorithm outperforms the other
two algorithms as the bandwidth rises. The capacity can be
increased up to 51% and 278% respectively than the random
algorithm and the conservative algorithm.

In Fig. 4, we compare the spectrum handover overhead of
three approaches with respect to the number of secondary
users. In the aggressive algorithm, all SUs on the licensed
channel switch to other available channels as soon as the
PU appears. Assume that the SU receivers are uniformly
distributed in the coverage of the corresponding SU transmitter
with the distance ranging from 2 to 6 meters, and a handover
costs 3.5ms, we can calculate the cumulative overhead of
all the handovers. As shown in Fig. 4, the overhead of the
aggressive algorithm is larger than others since the handovers
lead to longer latency. Obviously, our approach can drastically
reduce the spectrum handover overhead through optimally
handling the SUs’ coexistence.

VII. CONCLUSION

Spectrum handover is a critical issue in cognitive radio
networks. Frequent spectrum handover leads to disruptions
of SU’s transmissions. In a multi-SU cognitive network, this
problem becomes even more urgent. In this paper, we explore
the coexistence potential of SUs and PU to maximize the
capacity of licensed channels and minimize the spectrum
switching overhead considering the accumulated interference
at SUs. We formulate the spectrum handover problem as a
constrained optimization problem, and then give the optimal
solution. Numerical results show that our algorithm can im-
prove the network performance efficiently.
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