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Abstract—Recent advances in cognitive radio (CR) technology
have brought about a number of wireless standards that support
opportunistic access to available white-space spectrum. Address-
ing the self-coexistence of CR networks in such an environment is
very challenging, especially when coexisting networks operate in
the same swath of spectrum with little or no direct coordination.
In this paper, we study the problem of co-channel self-coexistence
of uncoordinated CR networks that employ orthogonal frequency
division multiple access (OFDMA) in the uplink. We frame the
self-coexistence problem as a non-cooperative game, and propose
an uplink soft frequency reuse (USFR) technique to enable glob-
ally power-efficient and locally fair sharing of white-space spec-
trum. In each network, uplink resource allocation is decoupled
into two subproblems: subchannel allocation (SCA) and transmit
power control (TPC). We provide a unique optimal solution to
the TPC subproblem, and present a low-complexity heuristic for
the SCA subproblem. Furthermore, we frame the TPC and SCA
games, and integrate them as a heuristic algorithm that achieves
the Nash equilibrium in a fully distributed manner. Our simula-
tion results show that the proposed USFR technique significantly
improves self-coexistence in several aspects, including spectrum
utilization, power consumption, and intra-cell fairness.

I. INTRODUCTION

The opportunistic access to licensed spectrum by unlicensed
secondary users equipped with cognitive radios (CRs) [1][2]
and the resulting coexistence between secondary users and li-
censed primary users have given rise to a number of challeng-
ing technical problems. Thus far, the widely studied problem
of primary-secondary network coexistence has been addressed
by the use of incumbent geolocation databases [3][4] augment-
ed with spectrum sensing techniques. In contrast, however, an-
other important problem — the self-coexistence of secondary
CR networks — has not yet been well understood.

A. Motivation
Recently, self-coexistence mechanisms have been proposed

as a part of wireless standards for CR networks — e.g., IEEE
802.16h [5] and IEEE 802.22 [6]. For ease of implementation,
however, most of these standardized self-coexistence mecha-
nisms are conservative and can be inefficient. For instance, the
self-coexistence protocols in IEEE 802.22 based on time divi-
sion multiple access (TDMA) require that coexisting network
cells do not occupy the same channel at the same time. In other
words, co-channel spectrum sharing is not allowed. But when
an insufficient number of channels are used to accommodate
co-located CR networks operating in white-space spectrum, as
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expected in a dense urban environment, such co-channel shar-
ing is unavoidable. In fact, it is possible that some of the user
terminals in different cells share the same channel simultane-
ously with acceptable mutual interference. In many wireless
standards including IEEE 802.16h and IEEE 802.22, orthog-
onal frequency division multiple access (OFDMA) has been
widely used. In the OFDMA downlink, a soft frequency reuse
(SFR) [7]-[11] is used to enable co-channel self-coexistence.
However, the problem of achieving efficient co-channel shar-
ing in the uplink has yet to be addressed adequately.

To fill the technical void, in this paper, we propose an up-
link SFR (USFR) technique to enhance the self-coexistence of
CR networks in the OFDMA uplink. However, designing such
a technique is not trivial due to the following challenges:

First, USFR has to be spectrum-efficient in a dynamic envi-
ronment. Unlike the downlink interference caused by relative-
ly static broadcast signals from base stations (BSs), the uplink
inter-network interference caused by user-generated signals is
much more dynamic and unpredictable. The interference envi-
ronment that USFR has to handle becomes even more complex
when mobile/portable devices are considered in CR networks,
e.g. IEEE 802.16 amended by 802.16h and IEEE 802.22a [12].

Second, USFR has to be carried out in a distributed manner.
Unlike most licensed networks, e.g. cellular networks, that are
deployed with careful central frequency planning, there is typ-
ically no central entity that can address the issues of spectrum
sharing and inter-network interference for unlicensed CR net-
works. It is very probable that co-located coexisting networks
operating in the same swath of spectrum are managed by dif-
ferent network operators. In most cases, reliable and real-time
inter-network coordination cannot be available.

Third, USFR has to be globally power-efficient and locally
fair. In view of potentially mobile/portable devices in CR net-
works, power saving is necessary for battery-powered uplink
transmitters. In addition, fairness guarantee is also important,
because user terminals, either close to or far away from their
home BS, consume largely different amounts of power for the
same level of signal to interference and noise ratio (SINR).

B. Contributions
The contributions of this paper are summarized as follows:
First, uplink resource allocation (URA) in each network cell

is formulated as an optimization problem, and is further decou-
pled into two subproblems: subchannel allocation (SCA) and
transmit power control (TPC). Solving the former one requires
global knowledge, whereas solving the latter one does not.

Second, for the TPC subproblem, we provide a unique opt-
imal solution. We frame multi-cell TPC as a non-cooperative
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game, and prove that the Nash equilibrium can be established
in the TPC game without inter-cell coordination.

Third, for the SCA subproblem requiring global knowledge,
we present a low-complexity heuristic. We continue by fram-
ing multi-cell SCA as a non-cooperative game. After that, we
integrate the TPC and SCA games, and formulate a two-level
game-theoretic approach that is heuristic yet distributed.

Fourth, our simulation results show that the proposed USFR
technique effectively enhances the self-coexistence of CR net-
works jointly in several aspects, including spectrum utilization,
power consumption, and intra-cell fairness.

The remainder of this paper is organized as follows. Related
work is discussed in section II. System framework and basic
problem formulation are introduced in section III. Decoupled
TPC and SCA subproblems are studied in sections IV and V,
respectively. A two-level game-theoretic approach is proposed
in section VI. Simulation results are presented in section VII,
and conclusion is given in section VIII.

II. RELATED WORK

There is already considerable existing work addressing the
self-coexistence of OFDMA systems. In the downlink, several
autonomous SFR-based mechanisms are proposed in [9]-[11].
However, there is very limited work applying SFR in the up-
link. In [13], a semi-autonomous SFR-based resource alloca-
tion algorithm, which is similar to that in [9][10], is proposed
to maximize uplink cell throughput. However, neither power
consumption nor intra-cell fairness is properly studied, which
should be more important in the uplink case. In [14], several
heuristic SFR-based user scheduling mechanisms are roughly
compared in terms of uplink outage probability. However, such
mechanisms do not guarantee to create spectrum-efficient and
power-efficient resource allocation patterns.

As for developing distributed mechanisms, non-cooperative
game theory can be utilized to analyze the multi-cell resource
allocation in both the downlink [15][16] and uplink [17][18],
and the self-coexistence of CR networks [19][20]. However,
there is no existing work targeting to jointly achieve spectrum
utilization, power consumption, and intra-cell fairness.

III. SYSTEM MODEL

In this section, we discuss the system model that underpins
the proposed USFR technique as well as related issues.

A. Uplink Soft Frequency Reuse

In this paper, we assume a spectrum environment in a dense-
ly populated urban area, where co-channel spectrum sharing is
needed to accommodate the demands of coexisting networks.
In particular, we focus on the problem of sharing one single
white-space channel among uncoordinated CR network cells,
which are placed in adjacent geographic locations but managed
by different network operators. The commonly shared channel
further consists of a number of orthogonal subchannels. Each
BS can allocate certain subcarriers on each uplink subchannel
through OFDMA. User terminals associated with each BS, as
their home BS, can be either fixed or mobile/portable. We do
not address the issue of incumbent protection, as it is beyond
the scope of this paper. The co-channel self-coexistence of CR
networks can be enabled over one incumbent-free channel.

Fig. 1. Basic ideas: (a) SFR (left); (b) USFR (right).

The idea of SFR is illustrated in Fig. 1a. In each of the co-
channel cells, the user terminals next to their home BS, called
inner users, can fully occupy the entire common channel. But
the user terminals far away from their home BS, called edge
users, have to take an exclusive set of subchannels that should
not be used in other cells. Clearly, the inner users in different
cells can always access the same channel at the same time.
Similarly, in Fig. 1b, the idea of USFR is to allow some users
in a cell to share certain subchannels with some users in other
cells. However, things are more complex in the uplink case. We
still follow the same definitions of inner users and edge users.
Furthermore, uplink edge users can be either near or far ones
based on whether or not they are located close to any inter-
cell overlapping areas. Hence, there can be a greater number of
possible coexistence patterns, i.e. resource allocation patterns,
created in the uplink by the combinations of inner users, near
edge users, and far edge users operating in different cells.

B. Uplink Resource Allocation Problem
In each network cell, the BS is responsible for conducting

uplink resource allocation (URA) for the users under control.
Particularly, local URA includes subchannel allocation (SCA)
and transmit power control (TPC) for the users’ active uplink
sessions. Whenever a new session becomes active in any cell,
its home BS needs to redo URA in that cell to spare enough
resource for the accommodation of this new session.

Suppose that there are total of N cells coexisting on a com-
mon channel, which consists of K subchannels. In each cell
n for n ∈ N , {1, · · · , N}, there are M (n) active sessions.
Each user in cell n can maintain multiple sessions, and each
session mn for mn ∈M(n) , {1, · · · ,M (n)} can operate on
multiple subchannels. To avoid unnecessary intra-cell interfer-
ence, each subchannel k for k ∈ K , {1, · · · ,K} cannot be
assigned to more than one session in the same cell.

In the cell n = a, local URA strategy is characterized by
SCA and TPC strategy matrices, which are denoted by U(a) ,
{U (a)

ma,k
}M(a)×K and P(a) , {P (a)

ma,k
}M(a)×K , respectively.

Here, each U (a)
ma,k

in U (a) , {U(a)} denotes a binary indicator
that is equal to ‘1’ (‘0’) when session ma takes (does not take)
subchannel k, and each P (a)

ma,k
in P(a) , {P(a)} denotes the

corresponding allocated power level. The set of URA strategies
in the other N−1 cells is characterized by strategy matrix sets
U−a , ×̇n∈N ,n6=aU (n) and P−a , ×̇n∈N ,n6=aP(n), where
the operator ×̇ represents the Cartesian product [21].
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Ideally, the local URA in the cell a can be formulated as a
global optimization problem. Note that the assumption of per-
fect global knowledge will be removed later. The cell a’s local
objective in terms of power consumption, L(a), is defined as

L(a) ,
M(a)∑
ma=1

w(a)
ma

K∑
k=1

P
(a)
ma,k

, (1)

where each w
(a)
ma denotes session ma’s weight or priority. In

consideration of the intra-cell fairness among inner users, near
edge users, and far edge users, we define w(a)

ma as

w(a)
ma
,

∑N
n=1,n6=aH

(a,n)
ma

H
(a,a)
ma

, (2)

where each H(a,n)
ma denotes the propagation gain from session

ma to BS n. Under such definition of user weights, near edge
users are mostly assigned with the highest priorities for power
saving; inner users are assigned with the lowest priorities for
interference-free subchannels; and far edge users’ priorities are
somewhere in between. This setting is based on the facts that
near edge users always have to waste significant power for fad-
ing and shadowing, and they are likely to cause the greatest
harmful interference to other cells in the uplink.

There are several constraints for the minimization of L(a):
First, if U (a)

ma,k
= 1, then P (a)

ma,k
should be lower bounded by

Q̂
(a)
ma,k

, the minimum power for meeting session ma’s SINR
requirement, denoted by γ(a)ma . Moreover, P (a)

ma,k
should also be

upper bounded by Q̄(a)
ma,k

, the maximum power of session ma

on each subchannel k. But if U (a)
ma,k

= 0, then P (a)
ma,k

= 0. The
BS a cannot make decisions for the other cells to change U−a,
so we say U−a ≡ Ũ−a, where Ũ−a is a fixed strategy matrix
set. But P(a) and P−a may interact with each other due to the
change of inter-cell interference. Hence, these bounds should
be satisfied in each cell n, and we have

U
(n)
mn,k

Q̂
(n)
mn,k

≤ P (n)
mn,k

≤ U (n)
mn,k

Q̄
(n)
mn,k

for n ∈ N ;mn ∈M(n); k ∈ K,
(3)

where each Q̂(n)
mn,k

is written as

Q̂
(n)
mn,k

,
γ
(n)
mn(

∑N
n′=1,n′ 6=n

∑M(n′)

mn′=1 P
(n′)
mn′ ,kH

(n′,n)
mn′ +N0)

H
(n,n)
mn

,

in which N0 denotes average noise power. At each BS n, the
interference measurement on subchannel k is written as

I
(n)
k ,

N∑
n′=1,n′ 6=n

M(n′)∑
mn′=1

P
(n′)
mn′ ,kH

(n′,n)
mn′ .

Second, each session mn’s aggregated uplink capacity (per
unit bandwidth) in cell n should meet its corresponding QoS
requirement, denoted by θ(n)mn , and we have

K∑
k=1

log(1 +
P

(n)
mn,k

H
(n,n)
mn

I
(n)
k +N0

) ≥ θ(n)mn

for n ∈ N ;mn ∈M(n).

(4)

Third, as above, the BS a should not assign more than one
session in the same cell to any subchannel k, and we have

M(a)∑
ma=1

U
(a)
ma,k

≤ 1 for k ∈ K. (5)

The URA problem in the cell a towards our goal of globally
power-efficient and locally fair USFR is defined as follows.

Problem 1 (URA) Find: U (a),P(a),P−a;
Minimize: L(a);
Subject to: (3), (4), (5).

The Problem 1 is formulated as a mixed-integer non-linear
program (MINLP), which is NP-hard in general. Therefore,
solving it directly can be costly. As in [15], we can decouple
the complex URA problem in the cell a into two subproblems:
• SCA by adapting U (a) given fixed P(a) and P−a;
• TPC by adapting P(a) and P−a given fixed U (a).

In sections IV and V, these two subproblems will be studied
in detail in each cell and in the entire N -cell system.

C. A Game-Theoretic Framework
Due to the distributed nature of CR networks, each cell in

the multi-cell system has to conduct local URA individually.
In view of possible conflicts in coexisting cells’ local optimal
strategies, we choose to make use of game theory to study the
global performance of multi-cell URA problem.

The self-coexistence of uncoordinated CR networks can be
modeled as a non-cooperative game, in which each network
cell acts as a player. In the URA game, each cell solves Prob-
lem 1 independently. Then, minimizing L(n) is equivalent to
optimizing cell n’s utility. According to the decoupled SCA
and TPC subproblems, we adopt a two-level game-theoretic
approach to generate globally power-efficient and locally fair
coexistence patterns in a distributed manner. Specifically, the
URA game can be regarded as two levels of non-cooperative
games for SCA and TPC, respectively. In the two-level frame-
work, each acting cell plays the SCA game on the first level.
Given a strategy taken by any cell in the SCA game, the Nash
equilibrium is achieved in the TPC game on the second level,
which will be proved in the next section. The optimal utility
gain by taking this SCA strategy is shown accordingly. Based
on the utility gain, the acting cell is able to know whether this
two-level URA strategy is beneficial. As soon as nobody can
find an improving strategy, a stabilized coexistence pattern is
commonly agreed by all the cells in the URA game.

IV. GAME FOR TRANSMIT POWER CONTROL

In this section, we focus on the TPC subproblem, and study
multi-cell TPC as a non-cooperative game. The optimal TPC
strategy in each cell is proved to optimize the sessions’ power
consumption as well as power efficiency. Moreover, the Nash
equilibrium is proved to be established in the TPC game.

A. Transmit Power Control Subproblem
The existence of binary variables in U (a) makes Problem 1

costly to solve. If U (a) is fixed in advance, then the URA prob-
lem can be reduced to the TPC subproblem. The optimal TPC
strategy set, say P̃N , to it depends on the setting of U (a), say
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U (a) ≡ Ũ (a). In our two-level framework, Ũ (a) comes from
the previously solved SCA subproblem. Thus, Ũ (a) and P̃N

together should satisfy the constraints of Problem 1. In addi-
tion to (3), (4), and (5) for a ∈ N , the setting of U (a) ≡ Ũ (a)

also needs to satisfy the conditions (6) and (8) below to make
P̃N feasible to Problem 1. We have

U
(n)
mn,k

Q̃
(n)
mn,k

≤ U (n)
mn,k

Q̄
(n)
mn,k

for n ∈ N ;mn ∈M(n); k ∈ K,
(6)

where each Q̃
(n)
mn,k

= Q̂
(n)
mn,k
|
P

(n′)
m

n′ ,k
=P̃

(n′)
m

n′ ,k
and each P̃

(n)
mn,k

is from the solution to the following system of equations

P
(n)
mn,k

≡ U (n)
mn,k

Q̂
(n)
mn,k

for n ∈ N ;mn ∈M(n); k ∈ K. (7)

Note that the values of P̃ (n)
mn,k

are determined as long as Ũ (a)

is fixed, and so are that of Q̃(n)
mn,k

. Each Q̃(n)
mn,k

is the minimum
possible value of Q̂(n)

mn,k
under U (a) ≡ Ũ (a). We also have

K∑
k=1

log(1 + U
(n)
mn,k

γ(n)mn
) ≥ θ(n)mn

for n ∈ N ;mn ∈M(n).

(8)

Hence, the TPC subproblem in the cell a is defined as follows.

Problem 2 (TPC) Find: P(a),P−a;
Minimize: L(a);
Subject to: (3), (4), (5), (6), (8).

Lemma 1 Given that the previously fixed SCA strategy
set ŨN = Ũ (a)×̇Ũ−a satisfies (5) for a ∈ N , (6), and (8),
the unique optimal solution of TPC strategy set, say P̃N =
P̃(a)×̇P̃−a, to Problem 2 satisfies (7).

Proof According to (1) and (2), we know that

∂L(a)

∂P
(a)
ma,k

= w(a)
ma

> 0 for ma ∈M(a); k ∈ K. (9)

Obviously, in order to minimize L(a), each P (a)
ma,k

in P(a) has
to be as small as possible. Then, we can see that any inequality
relationship P (a)

ma,k
≥ U (a)

ma,k
Q̂

(a)
ma,k

in (3) can be rewritten as

P
(a)
ma,k

≥
N∑

n=1,n6=a

M(n)∑
mn=1

c
(n,a)
mn,ma,k

P
(n)
mn,k

+ c
(a)
ma,k

for ma ∈M(a); k ∈ K,

(10)

in which all the coefficients c’s are non-negative. Furthermore,
for each P (n)

mn,k
on the right-hand side (RHS) of (10), we have

P
(n)
mn,k

≥
N∑

n′=1,n′ 6=n

M(n′)∑
mn′=1

c
(n′,n)
mn′ ,mn,k

P
(n′)
mn′ ,k + c

(n)
mn,k

for n ∈ N , n 6= a;mn ∈M(n); k ∈ K,

(11)

in which all the coefficients c’s are non-negative. We can see
that every P (n)

mn,k
in P(n) is lower bounded by a linear com-

bination of P (n′)
mn′ ,k in P−n with all non-negative coefficients.

All the inequality relationships in (10) and (11) are in a cycle,

since each P (a)
ma,k

on the left-hand side (LHS) of (10) appears
on the RHS of (11) as well. Clearly, when the equalities hold
for all in (10) and (11), each P

(n)
mn,k

in PN = P(a)×̇P−a

reaches its lower bound U (n)
mn,k

Q̂
(n)
mn,k

= U
(n)
mn,k

Q̃
(n)
mn,k

. At the
same time, the weighted sum L(a) is minimized by P̃N that
solves (7) without considering any other constraints. Note that
(7) is a system of linear equations, thus P̃N is unique.

We next verify the feasibility of P̃N , which is the unique
solution that minimizes L(a). As long as ŨN and P̃N together
satisfy the constraints of Problem 1, we get the desired optimal
TPC strategy set. It is easy to see that (3) holds given (6) and
(7). If (7) holds, the LHSs of (4) and (8) are same, so (4)
holds given (7) and (8). And (5) for a ∈ N is known to hold.
Hence, P̃N satisfies the constraints of Problem 1, and is thus
the unique optimal solution to Problem 2. �

In addition to minimizing the sessions’ power consumption
as defined by L(a), we are also interested in maximizing the
sessions’ power efficiency, i.e. uplink capacity per unit power.
Again in the form of weighted sum, the cell a’s local objective
in terms of power efficiency, E(a), is defined as

E(a) ,
M(a)∑
ma=1

v(a)ma

K∑
k=1

U
(a)
ma,k 6=0

log(1 +
P

(a)
ma,kH

(a,a)
ma

I
(a)
k +N0

)

P
(a)
ma,k

, (12)

where each v(a)ma can be any positive weight. At the BS a, the
SINR measurement on subchannel k is written as

S
(a)
ma,k

,
P

(a)
ma,k

H
(a,a)
ma

I
(a)
k +N0

.

Lemma 2 The unique solution of TPC strategy set that
satisfies (7), i.e. P̃N = P̃(a)×̇P̃−a, maximizes E(a), subject
to the constraints of Problem 2.

Proof We start from proving that P̃N maximizes

Ê(a) ,
M(a)∑
ma=1

v(a)ma

K∑
k=1

U
(a)
ma,k 6=0

log(1 + S
(a)
ma,k

)

S
(a)
ma,k

. (13)

Define f(s) = s
1+s−log(1+s). It is trivial to prove that f(s) is

a non-increasing function of s. Hence, f(S
(a)
ma,k

) ≤ f(0) ≡ 0,
since each S(a)

ma,k
≥ 0 always holds. Then, we have

∂Ê(a)

∂S
(a)
ma,k

= v(a)ma

S
(a)
ma,k

1+S
(a)
ma,k

− log(1 + S
(a)
ma,k

)

(S
(a)
ma,k

)2
≤ 0

for ma ∈M(a); k ∈ K.

(14)

As in the proof for Lemma 1, each S
(a)
ma,k

is minimized to
U

(a)
ma,k

γ
(a)
ma by P̃N . And Ê(a) is maximized accordingly. To

find the relationship between E(a) and Ê(a), we can see that

log(1 + S
(a)
ma,k

)

P
(a)
ma,k

=
log(1 + S

(a)
ma,k

)

S
(a)
ma,k

H
(a,a)
ma

I
(a)
k +N0

for ma ∈M(a); k ∈ K.

(15)
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On the RHS of (15), P̃N maximizes each
log(1+S

(a)
ma,k)

S
(a)
ma,k

, and

the corresponding I
(a)
k is minimized simultaneously. Hence,

each
log(1+S

(a)
ma,k)

P
(a)
ma,k

is maximized by P̃N that solves (7), and

so is the weighted sum E(a) with all positive weights. �

B. Multi-Cell TPC as Non-Cooperative Game

Although the optimality of the TPC subproblem is proved
to be attainable, the behavior of each cell in presence of other
coexisting cells is still unclear. We frame multi-cell TPC prob-
lem as a non-cooperative game, which serves as the second
level of the URA game as in our two-level framework. In the
TPC game, each cell solves Problem 2 independently.

Theorem 1 The unique solution of TPC strategy set that
satisfies (7), i.e. P̃N , establishes the Nash equilibrium in the
non-cooperative TPC game defined by Problem 2.

Proof According to the fixed point theorem [21] in game
theory, two conditions must be satisfied for the existence of
Nash equilibrium in the non-cooperative game:
• The strategy space, PN = ×̇n∈NP(n), for searching PN

should be a non-empty, compact, and convex subset of
certain Euclidean space;

• The utility functions, L(n) for n ∈ N , should be contin-
uous in PN and quasi-convex in P(n).

Due to the bounds defined in (3) for each P (n)
mn,k

in P(n), P(n)

in each cell n is closed and bounded, and thus compact. It is
also trivial to show that P(n) is convex. We know that the
Cartesian product of compact and convex sets is still compact
and convex. Hence, the first condition is satisfied. As defined
in (1), each L(n) is a linear combination of P (n)

mn,k
in P(n)

with all positive coefficients. Clearly, L(n) is continuous in
PN . We know that a linear combination of convex functions
with positive coefficients is again convex, and every convex
function is also quasi-convex. Then, L(n) is quasi-convex in
P(n). Hence, the second condition is satisfied as well.

As in the proof for Lemma 1, not only P (a)
ma,k

in P(a) but
also P

(n)
mn,k

in P−a are minimized to U
(n)
mn,k

Q̃
(n)
mn,k

by P̃N .
These lower bounds are determined as soon as ŨN is fixed.
Regardless the different positive weights in coexisting cells’
local objectives, the optimal TPC strategies applied in different
cells are always the same unique one, i.e. P̃N = P̃(1)×̇P̃−1 =
· · · = P̃(N)×̇P̃−N , that solves (7). According to the fixed
point theorem, we know that any fixed point of the best stra-
tegy space, RN = ×̇n∈NR(n), is the Nash equilibrium. Surely,
the unique common best strategy set P̃N is a fixed point of RN

in the TPC game, since any cell’s best strategy is always to stay
once P̃N has been reached. As a result, the Nash equilibrium
is established by P̃N in the TPC game. �

The Theorem 1 offers a guideline of designing TPC algo-
rithms in a multi-cell system. In fact, there are already various
existing TPC algorithms that do not rely on perfect inter-cell
coordination, e.g. iterative water-filling algorithm [15]. Given
each fixed SCA strategy set, multi-cell TPC can be performed
iteratively in a distributed manner. Specifically, in each cell n,
any P (n)

mn,k
with U (n)

mn,k
= 1 is gradually increased from zero

following the rise of I(n)k to always just keep S(n)
mn,k

≡ γ
(n)
mn .

If there exists a solution to (7), TPC is done when the SINR
requirements of all the sessions have been met.

V. GAME FOR SUBCHANNEL ALLOCATION

In this section, we focus on the SCA subproblem, and study
multi-cell SCA as a non-cooperative game as well. However,
unlike the case of TPC that can be addressed optimally, several
undesired facts for the SCA subproblem and SCA game are
briefly discussed before going any further.

A. Subchannel Allocation Subproblem

If P(a) and P−a in Problem 1 are fixed in advance, then the
URA problem can be reduced to the SCA subproblem. Taking
advantage of the unique optimal solution to Problem 2 as in
Lemmas 1 and 2, the setting of P(a) and P−a can be PN =
P(a)×̇P−a ≡ P̃N . Besides (7) for such setting, the conditions
(5) for a ∈ N , (6), and (8) for the setting of U (a) ≡ Ũ (a) in
Problem 2 also become the constraints of the SCA subproblem
in the cell a, which is defined as follows.

Problem 3 (SCA) Find: U (a);
Minimize: L(a);
Subject to: (5), (6), (7), (8).

In fact, solving Problem 3 is equivalent to performing both
the two levels of URA in the cell a, i.e. SCA and TPC. As in
Theorem 1, the setting of PN ≡ P̃N in Problem 3 is based
on the Nash equilibrium established in the TPC game defined
by Problem 2. In our two-level framework, given each SCA
strategy, say Ũ (a), taken by the cell a on the first level, the
TPC game is played on the second level and gives P̃N under
U (a) ≡ Ũ (a). Thus, Problem 2 always follows Problem 3.

B. Multi-Cell SCA as Non-Cooperative Game

Like the TPC game, we try to frame multi-cell SCA problem
as a non-cooperative game, where each cell solves Problem 3
independently. However, the SCA game that serves as the first
level of the URA game does not have the desirable properties
as the TPC game does due to the following facts.

Corollary 1 Solving Problem 3 for the optimal SCA stra-
tegy necessarily requires the perfect global knowledge of Ũ−a,
P̃−a, and H(n,n′)

mn for n ∈ N , n 6= a in the cell a.
Proof Obviously, real-time inter-cell coordination is nec-

essary to keep track of Ũ−a and P̃−a. Although it is possible
to estimate the values of H(a,n′)

ma in the cell a by decoding
downlink pilot signals from BSs n′ [13][14], that of H(n,n′)

mn

for n 6= a are hard to get without inter-cell coordination. �
Corollary 2 The worst-case complexity of searching for

the optimal solution to Problem 3 is O(K!).
Proof Due to the setting of PN ≡ P̃N , any session ma’s

uplink capacity on each taken subchannel is always log(1 +

γ
(a)
ma) given γ

(a)
ma . To minimize L(a) and make (8) hold, the

number of subchannels taken by each session ma is given by

T (a)
ma
, d θ

(a)
ma

log(1 + γ
(a)
ma)
e.

Then, the number of subchannels taken by the cell a is T (a) =∑M(a)

ma=1 T
(a)
ma . In view of (5), the number of possible solutions
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for U (a) is K!
(K−T (a))!

. Hence, the complexity of solving Prob-
lem 3 via brute force is on the order of O(K!). �

Corollary 3 The Nash equilibrium does not always exist
in the non-cooperative SCA game defined by Problem 3.

Proof The discrete strategy space for searching U (a) can-
not satisfy the conditions for the existence of Nash equilibrium
as in the proof for Theorem 1. The endless cycles representing
interest conflicts among coexisting cells may occur. �

VI. A TWO-LEVEL GAME-THEORETIC APPROACH

Towards the globally power-efficient and locally fair USFR,
we propose a two-level game-theoretic approach. In general,
the two-level approach is still based on Problems 2 and 3. But
some extra effort is necessary due to the above facts. Instead
of getting the optimal solution relying on perfect global knowl-
edge and high computational capability, we resort to a heuristic
yet practical approach. In consideration of uncoordinated CR
networks coexisting in dynamic white-space spectrum, the pro-
posed low-complexity algorithm can converge to near-optimal
coexistence patterns in a fully distributed manner.

A. Local Uplink Resource Allocation Algorithm

Without assuming perfect global knowledge and high com-
putational capability, local SCA in each cell can be conducted
heuristically. In the cell a, solving Problem 3 is to find Ũ (a)

that minimizes the weighted sum of sessions’ power consump-
tion. The original purpose of defining user weights is to achi-
eve intra-cell fairness. In (2), the numerator

∑N
n=1,n6=aH

(a,n)
ma

characterizes session ma’s potential of interference to other
cells, while the denominator H(a,a)

ma characterizes session ma’s
tolerance for interference from other cells. The sessions with
larger weights are either more likely to cause interference or
more vulnerable to interference. Thus, such weights represent-
ing the sessions’ priorities can be used to heuristically perform
local SCA. Intuitively, near edge users tend to claim dedicated
subchannels for complete interference avoidance and need to
be scheduled at first, while in contrast, inner users are most
coexistence-friendly and can be scheduled at last.

Now, we focus on a certain session, say ma, that has been
scheduled to take subchannels in the cell a. Suppose that the
perfect knowledge of Ũ−a, P̃−a, and H(n,a)

mn for n 6= a is not
available. The only information that can be locally obtained by
the BS a is I(a)k , i.e. the aggregated interference measurement
on each subchannel k. Hence, the local SCA decisions for the
session ma is merely based on the interference measurements
Î
(a)
k , I

(a)
k (P̃N |

U
(a)
ma,k=0

) or Ī
(a)
k , I

(a)
k (P̃N |

U
(a)
ma,k=1

),

where P̃N is generated in the TPC game under the fixed Ũ−a
and certain U (a). Intuitively, the session ma is supposed to take
T

(a)
ma subchannels with the lowest Ī(a)k to meet the required

SINR and QoS. However, the values of Ī(a)k are costly to get
if inter-cell coordination is not assumed, since the session ma

has to try each subchannel k by triggering the TPC game to
create Ī(a)k . Instead, the session ma can take T (a)

ma subchannels
with the lowest Î(a)k thanks to the connection between Î

(a)
k

and Ī(a)k . In most cases, Ī(a)k1
< Ī

(a)
k2

is true if Î(a)k1
< Î

(a)
k2

for
the same session ma. Therefore, a heuristic solution of SCA
strategy to Problem 3 can be given by Algorithm 1 as follows.

Algorithm 1 Local URA algorithm

1: sort the sequence of session ma for ma ∈M(a) by w(a)
ma

in descending order, and store the sorted sequence in array
M(i) for i = 1→M (a)

2: set U (a) = {0}, and measure Î(a)k for k ∈ K generated in
the TPC game

3: sort the sequence of subchannel k for k ∈ K by Î
(a)
k in

ascending order, and store the sorted sequence in array
K(j) for j = 1→ K

4: for i = 1→M (a) do
5: set ma = M(i)
6: for j = 1→ K do
7: set k = K(j)

8: if
∑M(a)

m=1 U
(a)
m,k == 0 then

9: set U (a)
ma,k

= 1, · · · , U (a)

ma,k+T
(a)
ma−1

= 1

10: break
11: end if
12: end for
13: end for
14: measure Ī(a)k for k whose

∑M(a)

m=1 U
(a)
m,k == 1 generated

in the TPC game, and adjust P (a)
ma,k

if U (a)
ma,k

== 1

Corollary 4 The worst-case complexity of running Algo-
rithm 1 is O(KM (a)).

Proof The major cost for running Algorithm 1 comes from
the two sorting operations in lines 1 and 3 and the nested FOR
loops between lines 4 and 13. Sorting sessions leads to the
complexity of O(M (a) logM (a)) via e.g. merge sort. Like-
wise, sorting subchannels incurs O(K logK). The nested FOR
loops result in the complexity of O(KM (a)). Because K >
M (a) and possibly M (a) > logK, the complexity of running
Algorithm 1 is on the order of O(KM (a)). �

B. Two-Level Game-Theoretic Algorithm
Due to the fact that the SCA game as the first level of the

non-cooperative URA game does not always converge to the
Nash equilibrium, a cost or pricing function [21] should be
considered in the definition of utility. Although our goal is to
define a cost function that does not require global knowledge,
we can still get some clues from a cooperative URA game
where coexisting cells share the same global objective. Any
cell’s common global objective, G, can be defined as

G ,
N∑

n=1

L(n) =

N∑
n=1

M(n)∑
mn=1

w(n)
mn

K∑
k=1

P
(n)
mn,k

. (16)

It is trivial to show that the cooperative game in which each
cell minimizes G can converge to the unique globally optimal
coexistence pattern. In the end, nobody in the game can further
decrease the value of G. We can rewrite (16) as G = L(a) +
C

(a)
g , where C(a)

g =
∑N

n=1,n6=a L
(n) is equivalent to the cell

a’s global cost function and can be rewritten as

C(a)
g ,

N∑
n=1,n6=a

M(n)∑
mn=1

N∑
n′=1,n′ 6=n

K∑
k=1

P
(n)
mn,k

H
(n,n′)
mn

H
(n,n)
mn

. (17)
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On the RHS of (17), each P (n)
mn,k

H
(n,n′)
mn represents the inter-

ference from session mn to BS n′. In the cell a, however, only
the sum of the interference components P (n)

mn,k
H

(n,a)
mn on each

subchannel k, i.e. I(a)k , is known. Hence, the cell a’s local cost
function, denoted by C(a)

l , can be defined as

C
(a)
l , δ(a)

K∑
k=1

I
(a)
k , (18)

where δ(a) denotes a positive price factor that is adaptable.
Note that unlike the commonly defined cost functions, such
as

∑M(a)

ma=1

∑K
k=1 log(P

(a)
ma,k

) [21], that change in the opposite
direction of the change in L(a) as any P (a)

ma,k
is adapted, C(a)

l

and L(a) can be reduced together most of the time. This is
because the physical meaning of L(a) is the weighted sum of
interference to other cells, and that of C(a)

l is the weighted
sum of interference from other cells. When the cell a performs
local URA to minimize L(a), most of the coexisting cells in
the multi-cell system can reduce power simultaneously for the
drop of interference from the cell a. Based on such heuristic,
globally power-efficient self-coexistence can be achievable.

After replacing L(a) with L(a) +C
(a)
l , the revised Problem

1 is again decoupled into two subproblems: SCA and TPC.
The revised TPC subproblem in the cell a is stated as follows.

Problem 4 (TPC) Find: P(a),P−a;

Minimize: L(a) + C
(a)
l ;

Subject to: (3), (4), (5), (6), (8).

Lemma 3 Given that the previously fixed SCA strategy
set ŨN = Ũ (a)×̇Ũ−a satisfies (5) for a ∈ N , (6), and (8),
the unique optimal solution of TPC strategy set, say P̃N =
P̃(a)×̇P̃−a, to Problem 4 satisfies (7). Globally, P̃N further
establishes the Nash equilibrium in the non-cooperative TPC
game defined by Problem 4.

Proof The proof follows the same logic as that for Lemma
1 and Theorem 1, and thus is omitted. �

As above, taking advantage of the unique optimal solution
to Problem 4 as in Lemma 3, the setting of PN ≡ P̃N gives
the revised SCA subproblem in the cell a as follows.

Problem 5 (SCA) Find: U (a);

Minimize: L(a) + C
(a)
l ;

Subject to: (5), (6), (7), (8).

Similarly, solving Problem 5 is as same as performing both
the two levels of URA in the cell a, i.e. SCA and TPC. To
guarantee the convergence of the URA game to a commonly
agreed coexistence pattern, the adaptation of price factor δ(n)

in each C
(n)
l is necessary to eliminate the interest conflicts

among greedy cells in the game. We do not assume perfect
global knowledge and centralized decision maker like virtual
referee [17]. Intuitively, it is difficult to ensure that the non-
cooperative URA game defined by C(a)

l always converges to
the so-called globally optimal coexistence pattern created by
the cooperative URA game defined by C

(a)
g . Moreover, even

such coexistence pattern can be established via perfect inter-
cell coordination, it can be subject to frequent change due to
dynamic white-space environment and potential user mobility.

Combined with Algorithm 1, a heuristic yet distributed Algo-
rithm 2 is proposed as follows, which is able to create near-
optimal coexistence patterns with low complexity.

Algorithm 2 Two-level game-theoretic algorithm

1: set δ(a) = δ
(a)
0 (δ(a)0 is a positive constant), and begin to

participate in the SCA game
2: loop
3: set the backoff timer for a random time interval
4: repeat
5: do the countdown of backoff timer
6: until the backoff timer expires
7: measure Ĩ(a)k for k ∈ K, and compute L̃(a) under the

current UN and P̃N generated in the TPC game
8: set L0 = L̃(a), I0 =

∑K
k=1 Ĩ

(a)
k , and F0 = L0 + δ

(a)
0 I0,

and record U (a)
0 = U (a)

9: run Algorithm 1
10: set L = L̃(a), I =

∑K
k=1 Ĩ

(a)
k , and F = L+δ(a)I under

the updated UN and P̃N from Algorithm 1
11: if F ≥ F0 then
12: set U (a) = U (a)

0 (give up acting in the SCA game)
13: end if
14: if !(L ≤ L0 && I ≤ I0) then
15: update δ(a) = δ(a) + ∆ (∆ is a positive constant)
16: end if
17: end loop

In Algorithm 2, the loop between lines 2 and 17 describes
the cell a’s behavior in the SCA game, which is on the first
level of the URA game. At any time a new SCA strategy is
chosen by the cell a, the TPC game as in lines 2 and 14 in
Algorithm 1 is played and achieves the Nash equilibrium as
in Lemma 3. The TPC game, on the second level of the URA
game, is played more frequently than the SCA one. The use
of backoff timer between lines 3 and 6 aims to simplify the
scheduling of acting cells in the multi-cell system. The adap-
tation of δ(a) in line 15 is to make the cell a contribute to the
Nash equilibrium in the game, which is proved below.

Theorem 2 In the non-cooperative URA game defined by
Problems 4 and 5, the cells that run Algorithm 2 independently
agree on a common coexistence pattern under the established
Nash equilibrium without inter-cell coordination.

Proof As in Lemma 3, the TPC game defined by Problem
4 can always achieve the Nash equilibrium whenever any cell
in the game takes another SCA strategy. Then, we verify that
the cells running Algorithm 2 can agree on a common UN

0 =

×̇n∈NU (n)
0 in the SCA game with no inter-cell coordination,

and nobody has the intention of changing UN
0 . According to

the price adaptation, δ(a) in the cell a is increased by ∆ if the
taken SCA strategy does not contribute to the desired Nash
equilibrium. The cell a contributes to the Nash equilibrium
only when L ≤ L0 and I ≤ I0. If δ(a) has been increased
to always make F ≥ F0 hold, the cell a no longer takes any
action in the SCA game. The adaptation of δ(n) for n 6= a is
similar. Once all the cells give up acting in the SCA game, a
certain common UN

0 is agreed. The Nash equilibrium is then
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established by the TPC game under the fixed UN
0 . In the end,

a commonly agreed coexistence pattern is created. �
The proposed two-level game-theoretic approach as in Al-

gorithm 2 is heuristic, and does not guarantee the resulting
coexistence pattern to be unique and globally optimal. How-
ever, it does not rely on any inter-cell coordination and has low
complexity. Our two-level approach is always based on actual
local interference measurements and does not need any esti-
mates of coexisting networks. For these reasons, the proposed
USFR technique and associated algorithm are suitable for the
self-coexistence of uncoordinated CR networks that operate in
dynamic white-space spectrum environment.

VII. SIMULATION RESULTS

In this section, real-time performance of USFR is evaluated.
We focus on a certain self-coexistence scenario, as in Fig. 2,
where N = 7 CR networks are forced to share a single TV
white-space channel. Each CR network is centrally controlled
by a BS (triangle mark), and direct inter-network coordination
is not available. In each network cell n, M (n) uplink sessions
are generated and randomly distributed. The coverage radius of
each cell is 5 km, and the propagation gains are computed via
log-distance path-loss model with exponent 3.2. But note that
the only information known to each BS n is the interference
measurements I(n)k . The other parameters are set as follows:
γ
(n)
mn = 30, T (n)

mn = 1, Q̄(n)
mn,k

= 100 mW, and N0 is given by
noise density −174 dBm/Hz and TV channel width 6 MHz.
The coexistence patterns created by Algorithm 2 under differ-
ent combinations of M (n) and K are analyzed. For ease of
comparison, M (n) = m for n ∈ N . We define the number of
subchannels per session by κ , K

7m , which characterizes the
degree of spectrum sharing. As κ becomes smaller, more ses-
sions have to share subchannels. When κ ≥ 1, any session in
the system get T (n)

mn = 1 subchannel. Note that a session with
T

(n)
mn > 1 can be regarded as multiple sessions with T (n)

mn = 1.

Fig. 2. A 7-cell simulation scenario.

First, we evaluate the convergence of USFR. The average
number of iterations required to agree a common coexistence
pattern is presented in Fig. 3. Here, one iteration represents a
change of URA strategy by any cell in the 7-cell system. The
starting point of UN

0 in Algorithm 2 is any feasible point to
Problem 1. We can see that the convergence of USFR does not
take too many iterations (per cell) even if the shared channel
is crowded with mutually interfering sessions, i.e. small κ.

Fig. 3. Convergence of USFR (∆ = 1 × 1010).

Fig. 4. Spectrum utilization of USFR.

Second, we evaluate the spectrum utilization of USFR. The
distributed USFR is compared with the centralized frequency
planning in Fig. 4 in terms of the minimum K required to
accommodate 7m sessions. With the global knowledge of the
7-cell topology as in Fig. 2, the frequency planning typically
requires 3m subchannels to accommodate 7m sessions with
T

(n)
mn = 1. This is because the cells 2, 4, and 6 can share the

same subchannels safely, and so can the cells 3, 5, and 7. We
can see that our USFR achieves a similar level of spectrum
utilization without inter-cell coordination. In each cell, most
inner users can be matched with edge users, probably far edge
users, in other cells with acceptable mutual interference.

Fig. 5. Power consumption of USFR: (a) m = 4 (left); (b) m = 8 (middle);
(c) m = 16 (right).

Third, we evaluate the power consumption of USFR. The
objective ratio heuristic value of G

optimal value of G
is studied in Fig. 5, where

the heuristic objective value is from the non-cooperative URA
game under C(n)

l , and the optimal one is from the cooperative
URA game under C(n)

g . Note that scheduling the cells in dif-
ferent orders may create different coexistence patterns, while
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in Algorithm 2, we just employ a random cell scheduling for
coordination avoidance. Therefore, in addition to the average
ratio value, we also compare the best-case and worst-case ones
for a complete evaluation. We can see that our USFR achieves
near-optimal performance in most cases, especially when the
shared channel is not overcrowded, i.e. not too small κ.

Fig. 6. A sample of sessions’ received power levels at home BS:
(a) κ = 4

7
(top); (b) κ = 9

14
(middle); (c) κ = 5

7
(bottom).

Fig. 7. Intra-cell fairness of USFR: (a) m = 4 (left); (b) m = 8 (middle);
(c) m = 16 (right).

Finally, we evaluate the intra-cell fairness of USFR. We first
focus on a specific scenario as in Fig. 2. A sample of sessions’
received power levels at their home BS is shown in Fig. 6. As
we can see, the received power levels at BS are generally same
regardless the sessions’ different link distances. The near edge
users like sessions 1 and 2 in the cell 1 tend to take subchan-
nels exclusively. But the inner users like sessions 3 and 4 in the
cell 1 have to coexist with some users in other cells, and thus
need even higher received power to guarantee SINR. Next, we
focus on a general case. In each cell n, the fairness factor is

defined by
max

mn∈M(n),k∈K,U
(n)
mn,k

6=0
{P (n)

mn,kH
(n,n)
mn

}

min
mn∈M(n),k∈K,U

(n)
mn,k

6=0
{P (n)

mn,kH
(n,n)
mn }

, as investi-

gated in Fig. 7. Besides the average ratio value over the cells,
we also record the worst-case ratio among those of the 7 cells.
We can see that our USFR always tries to improve fairness as
more subchannels become available. The users wasting more
power for path-loss save more power from interference control.

VIII. CONCLUSION

In this paper, the technique of USFR has been proposed in
order to enhance the self-coexistence of CR networks operat-

ing in white-space spectrum. In view of the distributed nature
of CR networks in a dynamic environment, we have resorted
to the two-level game-theoretic approach that does not require
direct inter-network coordination. In the non-cooperative game
for multi-cell URA, the second-level TPC is solved optimally,
while the first-level SCA is done heuristically without relying
on global knowledge and high computational capability. Based
on reasonable heuristic, our USFR has been shown to effec-
tively improve self-coexistence jointly in spectrum utilization,
power consumption, and intra-cell fairness.
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