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a b s t r a c t

Spectrum scarcity is impeding practical implementations of emergingwirelessmultimedia
applications requiring significantly more frequency spectrum. Cognitive radio (CR) has
emerged as a promising solution to the current spectral congestion problem by imparting
intelligence to the conventional software defined radio that allows spectrum sharing
through opportunistic spectrum access. The principal objective of CR is to optimize the use
of under-utilized spectrum through robust and efficient spectrum sensing (SS). This paper
introduces cognitive functionality and provides an in-depth comparative survey of various
spectrum awareness techniques in terms of their sensing accuracy and computational
complexities along with their merits and demerits. Specifically, key challenges in SS are
highlighted and possible solutions are discussed. A classification of SS is presented to
address the sensing method selection criterion. Both non-cooperative and cooperative
sensing schemes are reviewed and open research problems are highlighted to identify
future research directions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The emerging wireless multimedia applications are
leading to an insatiable demand for radio spectrum. The
current fixed frequency allocation strategy worked well
in the past as it provided an optimal solution by avoiding
interference between active wireless users. However, with
steadily growing number of wireless subscribers and
operators, fixed assignment of radio spectrum is proving
to be a hurdle in the deployment of new wireless services.
As a result, several spectrum regulatory authorities around
the world carried out studies on current spectrum scarcity
with an aim to optimallymanage available radio spectrum.
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Interestingly, these studies revealed that a large portion of
assigned spectrum is either not used at all or only sparsely
utilized, for significant periods of time. According to
Federal Communications Commission (FCC) [1], spectrum
utilization varies from 15% to 85% with wide variance in
time and space. It was concluded that the root cause of
current spectrum scarcity is not the physical shortage of
spectrum rather the inefficient fixed spectrum allocation.
This finding opened doors to a new communication
paradigm of sharing the under-utilized radio spectrum
through dynamic and opportunistic spectrum access
(DOSA) [2].

The technology that enables un-licensed users to dy-
namically and opportunistically access the licensed spec-
trum, without affecting the existing users with legacy
rights to that spectrum, is the cognitive radio (CR) tech-
nology. The key component of CR technology is the ability
to sense and ultimately adapt to the continuously chang-
ing radio’s operating environment. In CR terminology, the
incumbents of a frequency band are called primary users
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(PU) while the term secondary users (SU) is reserved for
low-priority un-licensed users equipped with a cognitive
capability to exploit this spectrum without affecting the
operation of PU. Therefore, themost crucial task of SU (also
termed as simply CR in literature) is to reliably identify
available frequency bands across multiple dimensions like
time, space, frequency, angle and code etc., and efficiently
exploit them by dynamically updating its transmission
parameters under the stringent requirement of avoiding
interference to the licensed users of that spectrum. To ac-
complish this, the secondary users rely on robust and ef-
ficient spectrum sensing (SS) to identify vacant frequency
bands under uncertain radio frequency (RF) environment
and to detect primary users with high probability of detec-
tion, as soon as the incumbents become active in the band
of interest [3].

This paper presents an introductory tutorial on spec-
trum sensing for cognitive radio featuring both non-
cooperative and cooperative sensing strategies and
provides comparative analysis among various detection
techniques in terms of required prior information about
the source signal and propagation channel. Section 2 intro-
duces cognitive functionality, identifies its objectives and
highlights characteristic features of CR. Fundamental sens-
ing approaches are outlined in Section 3 and a comprehen-
sive classification of these schemes is provided. Section 4
presents a variety of conventional and emerging spectrum
sensing techniques based on recent advances in local, non-
cooperative detection of spectrum activity at CR and pro-
vides their performance comparison. This is followed by
a detailed discussion on the limitations associated with
single-user centric spectrum sensing, outlined in Section 5.
Section 6 explains the cooperative sensing concept anddis-
cusses various elements of cooperative sensing including
cooperation models, information fusion approaches, con-
trol channel and reporting concerns and user selection. An
insight into the cooperation overhead as the cost of achiev-
able cooperative gain is presented in Section 7 highlight-
ing the key challenges in cooperative detection. Finally,
open research problems and future research directions are
provided in Section 8 and our conclusions are drawn in
Section 9.

2. Cognitive radio

Cognitive radio is essentially an evolution of software
defined radio (SDR) which is formally defined by FCC [4] as

A ‘‘Cognitive Radio’’ is a radio that can change its transmit-
ter parameters based on interaction with the environment in
which it operates.

The ultimate objective of CR is to utilize the un-
used spectrum. In essence, this means that CR introduces
intelligence to conventional radio such that it searches
for a spectrum hole defined as ‘‘a licensed frequency band
not being used by an incumbent at that time within a
selected area’’. As most of the spectrum is already assigned
to PUs with legacy rights, the key task is to share licensed
spectrum without producing harmful interference to PUs.
Hence themain functionality of CR is to track the spectrum
hole [5]. Spectrum usage opportunity is then exploited
by CR as long as no spectrum activity is detected. If

this band is re-acquired by PU, CR being low-priority
secondary user must either vacate the band or adjust its
transmission parameters to accommodate the PU or, if
available/possible, shift to another spectrum hole.

2.1. Cognitive characteristics

Cognitive functionality described above is achieved
by two main characteristics of CR namely, cognitive
capability and reconfigurability. Cognitive capability refers
to the ability of radio technology to interact with its
radio environment in real time to identify and scavenge
‘‘un-occupied’’ licensed spectrum bands called spectrum
holes or white spaces [6]. The observations published by
FCC in [1], categorizes spectrum holes into two groups:
temporal spectrum holes and spatial spectrum holes. This
gives rise to two secondary communication schemes [7] of
exploiting spectrumopportunity in time and space domain
which are depicted in Fig. 1(a) and (b) respectively.

A temporal spectrum hole occurs when no primary
transmission is detected over the scanned frequency
band for a reasonable amount of time and hence this
frequency band is available for secondary communication
in current time slot. A spatial spectrum hole is generated
when the primary transmissions are confined to a certain
area as shown in Fig. 1(b) and hence this frequency
band is available for secondary communication (may be
in the same time slot) well outside the coverage area
of PU to avoid any possible interference with primary
communication. The secondary transmission over the
spatially available licensed spectrum is allowed if and only
if it remains transparent to presumably nearby primary
receiver. This puts a stringent requirement on SU to
be able to successfully detect PU at any place where
secondary communication may cause interference to
primary transmission. Therefore, a protection area of PU is
defined wherein SU must be able to detect any PU activity
to avoid harmful interference with primary receiver Dmin
apart from SU [8,9]. The cognitive capability is not limited
to only monitoring power in some frequency band rather
it demands multidimensional spectral awareness [10].
This requires that CR should be able to reconfigure
its communication parameters on the fly in order to
adapt to its dynamic radio environment, calling for the
reconfigurability characteristic of CR.

2.2. Key to cognition: spectrum sensing

The key concept in CR is the provision of opportunistic
and dynamic spectrum access of licensed frequency bands
to unlicensed users. Hence, the main functionality of CR
lies in efficient spectrum sensing so that whenever an
opportunity of unused spectrum band is identified, CR
may make use of it. This paper aims at exploring various
dimensions of spectrum sensing with an aim to review
ongoing and emerging trends in SS and compare different
SS techniques to identify room for potential research
opportunities in this field.
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Fig. 1. (a) Temporal spectrum hole. (b) Spatial spectrum hole.

Fig. 2. Classification of spectrum sensing techniques.

3. Spectrum sensing: fundamental approaches and
classification

SS is the task of obtaining spectrumoccupancy informa-
tion. Three main approaches can be adopted to obtain this
spectrum occupancy knowledge. They are:

1. Spectrum sensing using geolocation and database [11,
12].

2. Spectrum sensing by listening to cognitive pilot channel
(CPC) or PU beacons [13,14].

3. Local spectrum sensing at CR [15,16].

Themost efficient and simple approach to identify spec-
trum opportunity with low infrastructure requirement is
to detect primary receiver within operative range of CR.
Practically, however, it is not feasible as CR cannot locate
PU receiver, and hence, spectrum sensing techniques usu-
ally rely on primary transmitter detection. Before looking
into the details of spectrum sensing methods, we summa-
rize the typical grouping of SS schemes in Fig. 2 and high-
light characteristic features of these sensing approaches in
the following:

Typically, spectrum sensing is classified into threemain
detection approaches. In a non-cooperative primary trans-
mitter detection approach, CR makes a decision about the
presence or absence of PU on its local observations of pri-
mary transmitter signal. In comparison, cooperative de-
tection refers to transmitter detection based SS methods
where multiple CRs cooperate in a centralized or decen-
tralized manner to decide about the spectrum hole. Each
cooperating node in cognitive radio oriented wireless net-
work (CROWN)may apply any sensingmethod locally, and
then share its raw/refined sensing information with other
node(s), depending on a selected cooperation strategy.
Both of these approaches fall under the category of spec-
trum overlay wherein SUs only transmit over the licensed
spectrum when PUs are not using that band. The third
detection approach, based on spectrum underlay, wherein,
SUs are allowed to transmit concurrently with PUs under
the stringent interference avoidance constraint was ana-
lyzed and declared to be non-implementable [17] and thus
not discussed in this paper.

Depending on the application at hand, CR can opt for
either narrowband or wideband sensing. Thus, the focus
of CR will be on identifying narrowband hole or free
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Fig. 3. Enabling spectrum sensing techniques based on primary Tx. detection.

wideband spectrum. To find spectrumopportunity, CRmay
adopt either a proactive (periodic) or reactive (on-demand)
sensing strategy. Either of the two approaches may be
employed in the absence or presence of cooperation among
CRs.

A priori information required for PUdetection is another
important criterion upon which different SS methods
are classified. In this category, different transmitter
detection based sensing techniques are categorized as
non-blind, semi-blind or total blind. Non-blind schemes
require primary signal signatures as well as noise power
estimation to reliably detect PU. Semi-blind schemes

are relaxed in the sense that they need only noise
variance estimate to detect a spectrum hole. However,
most practical sensing techniques are generally total blind,
requiring no information on source signal or noise power
to determine PU activity.

Fundamental to all these classifications is to detect
presence or absence of PU signal. Here, we focus on trans-
mitter detection sensing based on a non-cooperative and
cooperative approach. Fig. 3 illustrates the SS classification
where different borders are used to group representative
transmitter detection techniques as non-blind, semi-blind
and blind schemes.



R. Umar, A.U.H. Sheikh / Physical Communication ( ) – 5

4. SS: transmitter detection (non-cooperative sensing)

A variety of sensing methods are proposed in literature
to identify spectrum holes [10,18]. In general, detection
problem is analyzed as a binary hypothesis model, defined
as:

x(t) =


n(t), 0 < t ≤ T H0
hs(t) + n(t), 0 < t ≤ T H1

(1)

where x(t) is the signal received by CR during observa-
tion window T , n(t) represents the additive white Gaus-
sian noise (AWGN) with mean 0 and variance σ 2, s(t)
represents the transmitted signal from primary userwhich
is to be detected and h is the channel gain. This is a clas-
sic binary signal detection problem in which CR has to de-
cide between two hypotheses, H0 and H1. H0 corresponds
to the absence of primary signal in scanned frequency band
while H1 indicates that the spectrum is occupied. It is im-
portant to point out here that under H1, spectrum may be
occupied by an incumbent or a secondary user. Hence, a
sensing scheme is generally required not only to detect but
also to differentiate between the primary and secondary
user signal. Conventionally, the performance of detection
algorithm is gagged with its sensitivity and specificity [10]
which are measured by probability of detection Pd and
probability of false alarm Pf , respectively. Pd is the prob-
ability of correctly detecting the PU signal present in the
considered frequency band. In terms of hypothesis, it is
given as

Pd = Pr(signal is detected|H1). (2)

Pf is the probability that the detection algorithm falsely
decides that PU is present in the scanned frequency band
when it actually is absent, and it is written as

Pf = Pr(signal is detected|H0). (3)

Thus, we target at maximizing Pd while minimizing Pf .
Another important parameter of interest is the probability
of missed detection Pm which is the complement of Pd.
Pm indicates the likelihood of not detecting the primary
transmission when PU is active in the band of interest and
can be formulated as

Pm = 1 − Pd = Pr(signal is not detected|H1). (4)

Total probability of making a wrong decision on spectrum
occupancy is given by the weighted sum of Pf and Pm.
Hence the key challenge in transmitter detection approach
is to keep both Pf and Pm under certain maxima as high
Pf corresponds to poor spectrum utilization/exploitation
by CR and high Pm may result in increased interference
at primary receiver if the missed signal belongs to the
incumbent.

A number of methods have been proposed for identi-
fying any spectrum usage opportunity in the scanned fre-
quency band ranging from very simple energy detection
to quite advanced cyclostationary feature extraction and
waveform based sensing. Recent work mainly focuses on
further sophistication of these basic techniques with an
aim to make sensing results more robust and accurate at
the same time [16,18]. The following subsections provide

a brief overview of principles of spectrum sensing tech-
niques based on the observation of PU signal. This review
provides a single unified reference guide to both classical
and emerging trends in SS for CR in addition to providing
reference to key publications for in-depth reading without
going into the mathematical details of sensing methods.

4.1. Energy detection

Energy detection is a naive signal detection approach
which is referred in classical literature as radiometry. In
practice, energy detector (ED) is especially suitable for
wideband SSwhen CR cannot gather sufficient information
about the PU signal. First, received primary signal is pre-
filtered with a band pass filter (BPF) of bandwidth W to
select the desired frequency band. Filtered signal is then
squared and integrated over observationwindow of length
T . This gives an estimated energy content of signal which is
then compared with a threshold value depending on noise
floor to decide about the presence of PU signal in scanned
sub-band [19].When the spectral environment is analyzed
in frequency domain and power spectral density (PSD) of
the observed signal is estimated, this approach is termed
as periodogram [20].

General performance analysis of ED is outlined in [7]
with some discussion on advanced power spectrum
estimation techniques while its performance in fading
environments is analyzed in [21]. Setting the right
threshold value is of critical importance [22]. The key
problem in this regard is illustrated in Fig. 4 which shows
probability density functions of received signal with and
without active PU. If Γ represents the test statistics in
the form of energy content of the received signal, energy
detection differentiates between the two hypotheses H0
and H1 by comparing Γ with threshold voltage Vt as:

Γ ≥ Vt ⇒ H1

Γ < Vt ⇒ H0.
(5)

Hence if the selected Vt is too low, the false alarm proba-
bility (Pf = Pr(Γ ≥ Vt |H0)) increases which results in low
spectrum utilization.

On the other hand, if Vt is kept unnecessarily high, the
probability of missed detection (Pm = Pr(Γ < Vt/H1)) is
increased which may result in interference with an active
PU.

Hence, a careful trade off is considered while setting
the threshold for ED [23]. In practice, if a certain spectrum
re-use probability of unused spectrum is targeted, Pf is
fixed to a small value (e.g. ≤5%) and Pd is maximized.
This is referred to as constant false alarm rate (CFAR)
detection principle. However, if in CROWN, it is required
to guarantee a given non-interference probability, Pm is set
at a minimum value (or equivalently Pd is fixed to a high
value (e.g. ≥95%)) and Pf is minimized. This requirement
is known as constant detection rate (CDR) principle.
Recently, a weighted combination of Pm and Pf is proposed
to define the spectrum sensing error which is minimized
to get the optimum threshold using a gradient-based
algorithm [24]. The authors have shown that the optimum
threshold value adapts to changes in the radio operating
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Fig. 4. Threshold setting in ED: trade off between missed detection and
false alarm.

Fig. 5. Performance of energy detector based spectrum sensing under
noise uncertainty.

environment and is suitable in dynamic scenarios, inwhich
the active PU signal and/or the background noise variances
change in time.

Favorable aspects of energy detection: The implementa-
tion simplicity and low computational complexity of ED
are its key favorable aspects that have motivated most of
the recent work in SS for CR towards enhanced energy
detection algorithms and its combinations with other ro-
bust and accurate SS methods [25]. ED needs to estimate
only the noise power to set its threshold and does not
require any information on primary transmission char-
acteristics. This makes energy detection based sensing a
semi-blind technique. Furthermore, it is shown to be anop-
timal technique for detecting independent identically dis-
tributed (IID) primary transmissions especially when PU
signal features are unknown to CR [8].

Limitations of energy detection: General limitations of
ED are addressed in [8] and some hidden assumptions
in conventional ED are unveiled more recently in [26].
The key limitation of ED based SS is uncertainty in
threshold that produces optimal sensing results, since it
strongly depends on the accurate estimation of the noise
power which changes temporally and spatially. Fig. 5
shows the performance degradation of ED under noise
uncertainty for different sample size and the presence of
SNR wall [27]. The SNR wall defines the minimum SNR
below which the performance of ED remains unreliable
even for infinite sensing duration (unlimited sample size).

Statistical performance of ED based on estimated noise
variance is analyzed in [28].

Sensing results based on ED have limited reliability as
energy observations are unable to differentiate between
primary and secondary user signals which appears as
a cost of semi-blind signal detection. This may result
in false detection of PU signal triggered by other un-
intended signals. Also, disability to differentiate between
signal types, causes difficulty in maintaining fair co-
existence among competing secondary users in CROWN.
Other limitations include its poor performance under
deep signal fades resulting from shadowing and fading
and inability to detect spread spectrum signals. All these
factors characterize ED with less robustness and low
accuracy/reliability.

4.1.1. Applications of advanced power estimation techniques
to ED

Accurate power estimation is vital in determination of
the presence and absence of PU signals. A number of so-
phisticated power estimation techniques are proposed in
literature with an aim to improve over all sensing perfor-
mance particularly while scanning a wide frequency band.
The techniques include filter bank approach, multitaper
spectrum estimation, wavelet based spectrum sensing and
spectrum detection employing compressed sensing. In the
following, we present a brief overview of these wideband
sensing methods for ED.

ED using filter banks: In filter bank power spectrum
estimation technique, a bank of N sub-filters is used to
divide whole frequency band of interest into N sub-bands.
The i-th sub-filter of the bank

hi(n) = h(n)ej2π fin, (0 ≤ i ≤ N − 1) (6)

is used to extract spectral information from the i-th sub-
band of interest with normalized center frequency fi =

i
N

where, h(n) is termed as the prototype filter of the filter
bank defined as the low pass filter used to realize zero-
th sub-band. Frequency response of the prototype filter
influences the quality of estimated power in the sub-band
and it should be designed with low side lobes in spectral
characteristics in order to minimize the power drain from
the neighboring sub-bands to the sub-band of interest [29].

It is important to point out that the basic periodogram
approach employs rectangular window in time as proto-
type filter which is characterized by large side lobes in
frequency domain giving high power leakage. Improved
results may be obtained by preprocessing the received
signal before FFT operation with window functions that
suppresses the side lobes i.e. by tapering the cut-off charac-
teristics of thewindow. Prototype filters based on different
window functions have been discussed in [30].

Multitaper spectrum estimation: Though tapering effec-
tively improves the performance of conventional ED by
minimizing the power leakage from the neighboring sub-
bands to the sub-band of interest, however, it does so by
truncating the time domainwindowwhich results in infor-
mation loss. This information loss increases the variance of
power spectrum estimate and hence severely degrades the
accuracy and reliability of sensing results. In [31], authors
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have proposed to use multiple prototype filters or multi-
ple tapers in power spectrum estimation to increase the
accuracy of the estimate. The proposed algorithm is shown
to be an approximation to maximum likelihood (ML) PSD
estimator which behaves nearly optimal for wideband
signals and at the same time it comes out to be computa-
tionally feasible. Because of this reason, Haykin [6] recom-
mended this approach as a promising sensing technique
for ED based wideband SS.

Wavelet based SS: The wavelet approach is based on
detecting variations in the power level of the received
wideband signal at CR. Wavelet based SS models the
entire wide spectrum of interest as a train of consecutive
frequency sub-bands exhibiting a discontinuous power
level between adjacent sub-bands. In [32], the authors
assumed PSD within each sub-band to be almost flat
and treated changes in power spectral characteristics
as irregularities. Wavelet transform was then employed
to identify corner frequencies of each sub-band within
scanned band of interest. Practically, the receiver noise
introduces some spurious peaks in wavelet coefficients
which makes it difficult to extract actual frequency
boundaries. A novel PSD-whitening approach based on
thresholding using themaximumnoisewavelet coefficient
is recently proposed in [33]. The effect of using different
mother wavelets is investigated and comparison of multi-
scale product and multi-scale sum on the detection
performance revealed that median filtering of the received
signal’s PSD followed by single scale wavelet transform
can reliably identify the corner frequencies of different
sub-bands. Once the sub-bands are identified, power level
within each sub-band is estimated by averaging the values
inside each sub-band to decide about the spectrum hole.
It is important to point out that under the assumption of
zero mean additive white noise and a priori known fact
that at least one frequency band is vacant in the scanned
frequency range, the minimum power level in a frequency
sub-band can be treated as noise variance. This noise floor
is then subtracted from observed power level in each sub-
band to get an estimate of signal power level in that sub-
band. In this way, wavelet approach gives highly accurate
sensing results even in low SNR (−5.22 dB corresponding
to signal PSD = 3 and noise PSD = 10). This is evident
from Fig. 6 which illustrates different steps of wavelet
based SS and identify PSD values as [0, 24.0458, 2.9675,
29.9900, 0.1648, 36.3057, 0.0589] corresponding to the
true PSD values [0, 24, 3, 30, 0, 36, 0] respectively, and noise
PSD as 10.0804 corresponding to the true noise PSD value
of 10.

Furthermore, wavelet based sensing also outperforms
conventional wideband SS based on multiple narrowband
BPFs, in terms of both implementation costs and flexibility
in adapting to varying PSD structures over dynamic
frequency sub-bands.

Spectrum detection based on compressed sampling:
In [34], the authors have extended their approach of
wavelets to wideband SS using sub-Nyquist sampling by
exploiting the sparse nature of wireless signals in fre-
quency domain. The sparsity results due to the low per-
centage of spectrum occupancy by PUs. This technique
relies on the maximum sparsity order to determine the

a

b

c

d

Fig. 6. Wavelet based spectrum sensing: (a) original PSD after Median
filtering (b) wavelet transform modulus and noise threshold at scale 21

(c) wavelet transform modulus after thresholding (d) detected PU power
levels over scanned band.

fundamental limit on the sampling rate which turns out
to be unnecessarily high for the desired sensing perfor-
mance and hence wasteful of sensing resources. To alle-
viate wasteful sampling, a two step compressed spectrum
sensing (TS-CSS) scheme is proposed in [35]. The first step
estimates the actual sparsity order, given by the number of
non-zero elements in the received wideband primary sig-
nal vector at CR, using a small number of samples, and the
second step uses the estimated sparsity order to adaptively
decide about the number of additional samples required to
accurately reconstruct the wideband spectrum and iden-
tify any spectrum hole. In this way, TS-CSS achieves the
desired sensing accuracy at considerably lower average
sampling rate. However, being based on random sampling,
it requires complex clocking system which is practically
not feasible for opportunistic spectrum hunting.

Compressed sampling for SS has also been reported
in [36]. Authors have showed that linear compression
with time shifted random pre-integration is equivalent to
compressed sensing/sampling (CS) with Toeplitz matrices
preserving the autocorrelation properties of PU signal.
This allows for joint compressed spectrum estimation and
compressed signal detection in an efficient manner.

4.2. Feature (cyclostationary) detection

The idea of feature detection is based on capturing a
specific signature of PU signal. Wireless (digitally modu-
lated) signals are in general coupled with sine wave carri-
ers, pulse trains, repeating spreading or hopping sequences
or cyclic prefixes, which induce periodicity in the sig-
nal making them cyclostationary. This periodicity may re-
sult from modulation or even be deliberately generated
to assist channel estimation (regularly transmitted pilot
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sequences) and synchronization (preambles, mid-ambles
etc.). Cyclostationary feature detection exploits built-in pe-
riodicity of received signal to detect primary transmis-
sions in a background of noise and othermodulated signals
[37–43]. Features that can be extracted include RF carrier,
symbol rate and modulation type etc. [44].

The inherent periodicity in cyclostationary signals
causes key statistical characteristics of PU signal like mean
and correlation to repeat after regular time intervals.
This introduces correlation between widely separated fre-
quency components of the received primary signal which
is identified in cyclostationary detection by examining
cyclic autocorrelation function (CAF) [45], or, equivalently
in frequency domain by cyclic spectral density (CSD), also
known as spectrum correlation function (SCF) [37]. Most
of the cyclostationary-based feature detection algorithms
rely on the detection of cyclic prefix (CP)-induced peaks
in CAF whose location are known for standard signals like
orthogonal frequency divisionmultiplexing (OFDM). How-
ever, as SUs may also employ OFDM modulation with al-
most same useful symbol duration, this information can
be unreliable in differentiating between PU and SU sig-
nals. This issue has been addressed in [46] wherein the au-
thors have focused on the second-order cyclostationarity
of the OFDM-based mobile worldwide interoperability for
microwave access (WiMAX) and third-generation partner-
ship project long term evolution (3GPP LTE) signals to de-
velop a robust algorithm for their classification.

Favorable aspects of feature detection: The salient prop-
erty of cyclostationary detection is its ability to differ-
entiate PU signal from interference and noise and even
distinguish among different types of PUs. This stems from
the fact that noise is in general (white) uncorrelated while
every PU signal has a specific cyclostationary feature.
Another important advantage is robustness to noise un-
certainty which allows cyclostationary detector to identify
primary transmissions more than 30 dB below the noise
floor. Therefore, feature detector outperforms ED espe-
cially in low SNR regime. Hidden PU problem occur much
less likely than with ED because of its high Probability of
detection.

Limitations of feature detection: High accuracy of cy-
clostationary detection comes at the cost of increased
implementation complexity in terms of high process-
ing requirements which results in large sensing time.
Specifically, this processing is required to extract cyclic
frequencies (if not known a priori) from received primary
transmissionswhich in turn alsomakes this approach non-
blind. Also, short duration spectral opportunities cannot be
exploited efficiently using this approach because of large
observation time requirements.

Recent work [25] has reported to combine ED with fea-
ture detection to benefit from complementary advantages
of both the schemes by doing coarse detection using ED
which is then made more reliable by fine detection em-
ploying cyclostationary detection.

4.3. Coherent sensing: pilot based detection

Coherent sensing makes use of known patterns in
PU signal to coherently detect the presence of active

PU. These known patterns, sometimes termed as pilot
signals, are usually transmitted periodically by PU to
assist channel estimation and achieve time and frequency
synchronization at primary receiver. When CR has a priori
knowledge of these known signal patterns in primary
transmission, it can detect the PU signal by either passing
the received signal at CR through a filter (matched filter:
MF) having impulse response matched to the incoming
signal or correlating it with a known copy of itself.
Thus there are two main approaches of coherent sensing
namely: Matched filtering and correlation (waveform-
based) detection.

4.3.1. Matched filtering
Matched filtering is an optimal detection approach as it

maximizes the output SNR. The output of MF is compared
with a threshold to decide about the presence or absence
of PU signal. More details on SS based on matched filtering
can be found in [7].

4.3.2. Waveform based sensing
Waveform based approach is less complex as compared

toMF and consists of a correlatorwhich exploits the known
patterns in PU signal by correlating the received primary
signal at CR with its own copy. Similar to MF, correlator
output is compared with a fixed threshold to pick out
spectrum hole [47].

Favorable aspects of pilot based detection: The main ad-
vantage of pilot based sensing lies in its high processing
gain which is achieved in comparatively very short time
because of coherent detection [48]. As is the case of cyclo-
stationary feature detection, coherent detection exploits a
priori knowledge about PU signals to be able to distinguish
them from interference and noise and thus detecting PU
in very low SNR. Moreover, it is computationally less com-
plex as compared to cyclostationary detection. It is shown
in [47] that performance of waveform based sensing is bet-
ter thanED in termsof reliability and convergence time and
improves further with increasing length of known signal
patterns.

Limitations of pilot based detection: Pilot based detection
requires CR to demodulate the signal prior to detection.
As a result, it requires perfect knowledge of PU transmis-
sion parameters like carrier frequency, bandwidth, modu-
lation type and order, frame format, pulse shaping etc. This
makes this scheme non-blind and detection performance
degrades dramatically in case of inaccurate PU signal infor-
mation or synchronization errors. A significant drawback
ofMF is its stringent requirement of dedicated receivers for
all possible primary signal formswhichmakes this scheme
unpractical [49]. MF also suffers from high power con-
sumption because of its computational complexity. Wave-
form based detector has been shown to be very sensitive
to synchronization errors [47].

4.4. Covariance based detection

Covariance based detection exploits the inherent cor-
relation in received PU signal samples resulting from the
time dispersive nature of wireless channel and oversam-
pling of received signal [50]. If CR uses multiple antennas,
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received signal samples are also spatially correlated as they
originate from the same source (primary) signals.

In multi-antenna CR, multiple copies of the received PU
signal can be coherently combined to maximize the SNR
of received (combined) signal. The diversity combining
approaches of maximum ratio combining (MRC) and
selection combining (SC) are analyzed for ED in [51].
Although, MRC gives optimal detection performance but
is difficult to implement as it requires channel between
transmitter (primary) and receiver (secondary) to be
known at the receiver. In comparison, blind detection
calls for equal gain combining (EGC) or blind combining
(BC). In [52], authors revisited the combining strategies
for PU signal samples received at different CR antennas
during different time intervals. An optimal combining
approach (MRC), requires a priori information about the
primary signal and channel in the form of eigenvector
corresponding to maximum eigenvalue of the received
source (primary) signal covariance matrix. However,
this eigenvector can be estimated using the received
signal samples only without requiring any information
of primary transmitted signal. In this way, temporal
spatial combining of received samples may be achieved
blindly. After combining, ED is used to identify any vacant
spectrum band in the received wideband signal. The
authors have namedMRC based ED as optimally combined
energy detection (OCED) and BC based ED as blindly
combined energy detection (BCED) in [52].

There are other possible ways to utilize eigenvalues of
received sample covariance matrix for SS. In [53], authors
have indicated that number of significant eigenvalues is
directly related to presence/absence of data in received
signal and may be exploited to identify vacant spectrum
bands. The ratio of maximum eigenvalue to minimum
eigenvalue (MME) and the ratio of average eigenvalue
(energy of received signal) to minimum eigenvalue (EME)
are used in [54] to detect the presence of primary signal.
Figs. 7 and 8 provide a comparison of semi-blind ED
with variety of blind eigenvalue based detection (EBD)
algorithms under no noise uncertainty and 0.5 dB noise
uncertainty case respectively. It is evident that EBD not
only outperforms ED for correlated PU signals by capturing
the inherent correlation in source signals but is also robust
to noise uncertainty. However, it is important to point out
here that EBD relies on the distribution of ratio of extreme
eigenvalues of received covariance matrix whose closed
form expressions are still mathematically untractable
and asymptotic assumptions are usually employed to
set the detection threshold [55,56]. More recently, an
upper bound on the joint probability density function
of the largest and smallest eigenvalues of the received
covariance matrix is used to derive analytically simple
expression for the required distribution of the ratio of
extreme eigenvalues as reported in [57,58]. Eigenvalue
based detection is discussed in detail in [59–61].

If the signals exhibit time correlation as well, the
concept of EBD can be extended to incorporate joint
space–time processing. This approach is generally known
as covariance based detection, EBD being its one special
case where the eigenvalues of received signal sample
covariance matrix are used for PU signal detection.
Covariance based detection has been addressed in [62–64].

Fig. 7. Performance comparison of the conventional energy detector
with eigenvalue based detection under no noise uncertainty.

Fig. 8. Performance comparison of the conventional energy detector
with eigenvalue based detection under 0.5 dB noise uncertainty factor.

Favorable aspects of covariance based detection: Gener-
ally covariance based detection does not require any infor-
mation about the primary signal or noise. However, if some
a priori information about primary signal correlation be-
comes available, this may assist in choosing corresponding
elements in sample covariancematrixmaking the decision
test statistic more efficient. Most importantly, covariance
based detection does not need noise power estimation as
the threshold is related to Pf and sample size N of the re-
ceived signal at CR only thereby, it achieves better perfor-
mance for highly correlated signals.

Limitations of covariance based detection: Performance
of covariance based detection strongly depends on statis-
tics of received primary signal which degrades if primary
signal tends to be uncorrelated.
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Fig. 9. SS using BSS: observed noisymixed signals at four antennas of CR.

4.5. Other blind spectrum sensing techniques

A variety of promising blind sensing techniques are
reported in recent literature. In [65], moments of received
PU signal are investigated to identify spectral opportunity.
Model selection tools such as Akaike information criterion
(AIC) and Akaike weights [66] are applied to SS in [67]
where authors have analyzed Akaikeweights under AWGN
to decide if the distribution of received signal at CR fits
the noise distribution or not. Blind SS algorithm based on
oversampling the received signal or employing multiple
antennas at CR is proposed in [68]. In this approach, linear
prediction is used in conjunctionwithQRdecomposition of
the received signal matrix to compute two signal statistics
whose ratio indicates the presence/absence of primary
signal in the scanned frequency band.
Blind source separation (BSS) technique is discussed for
the CR system model with multiple antennas in [69] to
simultaneously detect active PUs in the scanned spectrum.
For the sake of illustration, four channels/PU signals are
analyzed in [70] and performance of BSS in CROWN is
simulated using simple PU signal models. In this setup,
channel one and twoare occupiedbypure tones of 5Hz and
20 Hz, respectively, channel three is amplitude modulated
(AM) with carrier centered at 50 Hz while channel four is
kept idle andhence contains only noise. These four primary
signals are observed at four antennas/sensors and appear
to be noisy linear mixture of active PU signal samples,
represented by ri[k] (i = 1, 2, 3, 4) in Fig. 9. These mixed
observed samples are then passed through a whitening
filter before applying a low complexity, non-iterative BSS
approach for multiuser detection. Finally, the inherent
channel sequence uncertainty in BSS is resolved by looking
at the frequency spectrum of separated signal samples
shown by Yi(f ) (i = 1, 2, 3, 4) in Fig. 10.

Recently, Kurtosis metric is used inside BSS algorithm
based on independent component analysis (ICA). A new
framework for SS is proposed that combines BSS based
SS with conventional blind SS techniques employing

Fig. 10. SS using BSS: frequency spectrumof noisy recovered signals after
pre-whitening.

EBD [71]. In this approach, sensing accuracy is significantly
increased as SS can be performed even when the cognitive
transmitter is in operation.

4.6. Emerging sensing schemes

A glimpse of recent advances in spectrum sensing is
given below:

4.6.1. Quickest detection
The key requirement in spectrum overlay is that the

SU must vacate the spectrum as quickly as possible when
the primary user resumes its transmissions in that band.
The theory of quickest detection [72] has been applied to
spectrum sensing problem in order to promptly detect the
change of distribution in spectrumoccupancy observations
and combine generalized likelihood ratio test (GLRT) with
parallel cumulative sum (CUMSUM) test to estimate the
amplitude of the discovered PU signal [73]. More recently,
collaborative quickest detection has also been explored
in [74].

4.6.2. Learning/reasoning-based sensing
In learning-based sensing, CR updates its sensing deci-

sion based on previous sensing results while reasoning-
based sensing improves its sensing decision through
deductive inference. A reinforcement learning based arti-
ficial intelligence approach is proposed in [75] to estimate
the available resources in multiple frequency bands. This
facilitates the CR to switch to another frequency band in
case of shortage of resources in the active band. The same
idea is investigated for a group of cooperating CRs under
different conditions in [76–78] for the case of cognitive
radio ad hoc networks. Medium access layer (MAC) sens-
ing scheme using knowledge-based reasoning is analyzed
in [79] and an optimal data transmission and rate selec-
tion strategy is developed to maximize the CR through-
put. More recently, the extended version of the scheme
is discussed in [80] to improve the fine sensing accuracy
by jointly considering network states and environmental
statistics.
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Fig. 11. Comparison of spectrum sensing methods.

4.6.3. Joint spectrum sensing and resource allocation
In the hunt for empty frequency band in the scanned

spectrum with multiple bands, the availability probabil-
ity of each radio channel is unknown to CR. As a result,
efficient spectrum sharing policy must maintain a bal-
ance between exploring new white spaces and exploiting
the available free channels in a competitive environment
where multiple secondary users compete for available
radio resources. This leads to cross-layer optimization
problem solved by merging spectrum sensing with re-
source allocationwhich translates intomulti-armed bandit
problem [81]. Such problems are usually NP-hard. A low
complexity asymptotically optimal medium access strat-
egy is developed recently in [82] and a generic case of si-
multaneously sensing and accessing multiple channels is
analyzed.

4.7. Comparison of sensing methods

The selection of a sensingmethod comeswith a tradeoff
between accuracy and complexity. A concluding compari-
son of spectrum sensing techniques is presented in Table 1
to identify key factors in deciding on a sensing strategy.

Fig. 11 compares different SS methods in terms of their
implementation, computational complexities and sensing
accuracies. When nothing is known about the PU signal,
ED happens to be most simple approach but it fails in
the presence of fading and noise uncertainties. Advanced
power spectrum estimation techniques achieve accuracy
while sacrificing the simplicity of energy detection. As a
matter of fact, some a priori knowledge about primary
transmissions is necessary to distinguish primary signal
from secondary signal and interference/noise. Processing
of this known information achieves reliability in detection
at the cost of additional computational complexities. Such
schemes are classified as non-blind and the type of the
detection approach depends on the available information
about primary signal. In particular, cyclostationary detec-
tor is suitable when cyclic frequencies associated with pri-
mary transmissions are known while coherent detector is
preferred when pilot transmissions of primary system are
known. Blind sensing, based on received signal covariance
matrix and other approaches achieves high accuracy with

its computational complexity dependent on sensing algo-
rithm used.

It is important to note that, practically, there are num-
ber of factors that may significantly compromise the
promised sensing accuracy/reliability of these schemes
[83]. The following section highlights such limiting factors
that are common to all transmitter detection based non-
cooperative spectrum sensing techniques.

5. Challenges in non-cooperative detection

In the following, we discuss some of the key challenges
associated with single-user centric transmitter detection
schemes that impede them to achieve promised sensing
performance under practical conditions.

5.1. Restricted sensing ability

CRs need to sense their multidimensional radio envi-
ronment with limited sensing ability. In general, CRs have
no information regarding the possible primary communi-
cation over a licensed band. This makes spectrum sensing
for cognitive radio a very challenging task.

5.2. High detection sensitivity requirements

Detection of low-power primary signals in itself is an
arduous job which becomes challenging under uncertain
channel conditions. In a typical wireless environment, se-
vere multipath fading and shadowing cause high attenu-
ation of primary transmitted signal such that the SNR at
CR for even high power digital TV signal may be practi-
cally as low as −21 dB. Poor CR sensitivity in this case re-
sults in missed detection of PU (transmitter), ending up
in secondary transmissions offering unacceptable interfer-
ence to PU receiver. It is important to point out here that, in
practice, these sensitivity requirements aremore demand-
ing and must be raised by additional 30–40 dB [49]. SS is
further challenged by noise/interference power variations
which are dependent on both time and space [84,85].

5.3. Vulnerability of primary receivers to secondary transmis-
sions

The locations of PUs are unknown; the SU may lie out-
side the PU coverage area or it may be located within the
PU’s transmission range but primary signal is obscured
due to deep fading or shadowing. These practical scenar-
ios are referred to as primary receiver uncertainty prob-
lem (Fig. 12(a)) and hidden primary transmitter problem
(Fig. 12(b)), respectively. In both cases, primary receiver
may become vulnerable to harmful interference by sec-
ondary communications as such situations make CR inca-
pable of picking up ongoing primary transmissions.

5.4. SS in multiuser environment

Usually, CRs reside in a multiuser environment con-
sisting of users with and without exclusive rights for fre-
quency spectrum. In addition, CRs can be co-located with
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Table 1
Comparison of spectrum sensing methods.

SS approach Advantages Disadvantages Comments

Energy
detection

+ Implementation simplicity – Non robust
• Threshold strongly depends on noise

uncertainties
• Threshold strongly depends on noise

uncertainties

Advanced power estimation techniques
become feasible for wideband spectrum
sensing
• Multitapering [31]
• Wavelets [32]
• Compressive sensing [34]

+ Low computational
complexity

– Low accuracy/reliability
• Unable to differentiate interference from PU

signal and noise
• Poor performance under low SNR (due to

shadowing and multipath fading)
• Inability to detect spread spectrum signals

+ Optimal for detecting IID
primary signals

– Inefficient for detecting correlated primary
signals

+ Semi-blind (No a priori PU
signal information required)

– More susceptible to hidden terminal problem

Feature
detection

+Robust to noise uncertainty
+ High accuracy/reliability
• Able to differentiate PU
signal from interference and
noise
• Able to differentiate among
PU signals

– Implementation complexity
– Non-blind

Hybrid schemes employing coarse
detection using ED and fine sensing using
feature detection give complementary
advantages of both ED and feature
detection

+ High prob. of detection – High prob. of miss-detection resulting from large
observation time

+Less susceptible to hidden
terminal problem

Pilot based
detection

+ Less complex than
cyclostationary feature
detection

– (Matched filtering) High complexity and high
sensitivity to inaccurate PU signal information

Benefits from all advantages of feature
detection at reasonable complexity cost
but susceptible to errors in a priori
information

+ Higher agility than
cyclostationary feature
detection

– (Waveform based sensing) High sensitivity to
synchronization errors

+ Less susceptible to hidden
terminal problem

– Non-blind

Covariance
based
detection

+High accuracy
+ Low computational
complexity
+ Blind

– Performance degrades for uncorrelated PU signals • Detection accuracy can further be
increased by making use of available a
priori information about PU signal
correlation
• Computational complexity depends on
blind detection algorithm
• Hidden terminal problem points to
cooperation among CRs for sensing
performance improvement

other secondary networks in the hunt for same spectrum
resource. The presence of a second secondary network af-
fects the detection capability of a CR in two ways:

• A secondary signal may be detected as a primary signal.

• A secondary signal may mask the primary signal thus
deteriorating the PU detection capability of CR.

The above discussed limitations of conventional spec-
trum sensing can be overcome by sharing the sensing in-
formation among spatially distributed CRs in the CROWN
which leads to the concept of cooperative detection. In the
following section, we explore various aspects of coopera-
tive spectrum sensing and analyze how it can guarantee
improved sensing performance with minimum incurred
cost.

6. Cooperative detection

The most serious limitation of transmitter detection
approach is its degraded performance in the presence of
multi-path fading and shadowing. This problem can be
solved by exploiting the inherent spatial diversity in a
multi-user environment resulting from the fact that if
some SUs are in deep fade or observe severe shadowing, as
shown in Fig. 13, there might be other SUs, in the network,
with relatively strong signal from primary transmitter.
Consequently, combining the sensing information from
different CRs gives a more reliable spectrum awareness.
This leads to the concept of cooperative spectrum sensing
(CSS) wherein CRs employing different technologies,
exchange information about the time and frequency usage
of spectrum to avail more efficiently any vacant spectrum
opportunity [86,87].



R. Umar, A.U.H. Sheikh / Physical Communication ( ) – 13

a b

Fig. 12. Vulnerability of primary receivers to secondary transmissions. (a) Receiver uncertainty. (b) Hidden primary transmitter.

Fig. 13. Cooperative SS in a shadowed environment.

6.1. Classification of cooperative sensing

Cooperative sensing can be classified based on different
criteria. The key questions in this regard include: who
performs sensing, who makes the final decision about
spectrum opportunity, how the sensing information is
shared and what information is shared among the
cooperating SUs. Classification of cooperative spectrum
sensing based on these questions is depicted in Fig. 14.

A very comprehensive survey on CSS is provided
in [88]. In essence cooperative spectrum sensing is a
series of actions involving Local Sensing, Reporting and
Information Fusion. The following subsections highlight the
distinguishing features of cooperation strategies.

6.1.1. Centralized and distributed sensing
The conventional cooperation strategy completes the

three above mentioned steps based on centralized ap-
proach which is the most popular cooperation scheme. In
centralized cooperation, a central unit, also called the fusion
center (FC), decides about the spectrum hole after collect-
ing local sensing information fromcooperating SUs [89,90].
This spectrum opportunity is then either broadcast to all

CRs or central unit itself controls the CR traffic by man-
aging the detected spectrum usage opportunity in an op-
timum fashion. This central node is an access point (AP)
in a wireless local area network (WLAN) or a base station
(BS) in a cellular network while in CR ad hoc networks,
any CR can act as a master node to coordinate CSS. Hence,
centralized cooperation can take place in both centralized
and distributed network architectures. On the other hand,
in distributed cooperation, CRs do not rely on a FC to make
a cooperative decision. Instead, CRs communicate among
themselves and converge to a joint global decision on the
presence or absence of PU in an iterative manner [91–93].
This is accomplished in three basic steps defined by a dis-
tributed algorithm as follows:

• Each cooperating CR sends its local sensing data to other
CR users in its neighborhood (defined by transmission
range of CR user).

• Each cooperating CR combines its data with received
sensing information from other users to decide on pres-
ence or absence of PU based on its local criterion. The
shared spectrum observations are usually in the form
of soft sensing results or quantized (binary/hard) ver-
sion of local decisions about spectrum hole availability.

• If spectrum hole is not identified, CRs send their com-
bined sensing information to other secondary users in
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Fig. 14. Classification of cooperative spectrum sensing.

a b

Fig. 15. Cooperative SS (a) centralized approach (b) distributed approach.

Table 2
Comparison of centralized and distributed spectrum sensing.

CSS
approach

Advantages Disadvantages

Centralized
sensing

+ Bandwidth efficient
for same number of
cooperating CRs as
compared to
distributed cooperation

– One CR i.e. FC becomes
very critical as well as
complex to carry the
burden of all cooperating
CRs

Distributed
sensing

+ No need of backbone
infrastructure resulting
in low implementation
cost

– Large control bandwidth
required for information
exchange among all
cooperating CRs
– Finding neighbors in
itself is a challenging task
for CRs
– Large sensing duration
resulting from iterative
nature of distributed
algorithm

next iteration. The process continues until the scheme
converges and a final unanimous opinion on spectrum
availability is achieved.

In this way, each CR in distributed cooperation partially
plays the role of FC. The significant features of centralized
and distributed cooperation are highlighted in Table 2.

The working principle of centralized and distributed
cooperation is shown in Fig. 15(a) and (b) respectively.

As shown in Fig. 15, CRs make use of sensing and
reporting channels to arrive at a cooperative decision. At
first, CRs establish a link with primary Tx. to perform
local sensing over the selected licensed frequency band.

This physical channel between primary Tx. and each
cooperating CR is termed as sensing channel. During the
reporting phase, CRs need a control channel, also known
as reporting channel to share local spectrum sensing data
with FC or each other. This control channel, depending
upon system requirements, can be implemented using a
dedicated spectrum, an un-licensed band such as ISM or
an underlay approach such as ultra-wide band (UWB) [94].
Usually, a medium access protocol governs the shift
between the sensing and control channel.

6.1.2. Data and decision fusion
In both centralized and distributed sensing, a control

channel is required for sharing sensing information within
CROWN to reach a cooperative decision on spectrum hole
availability. The bandwidth of the control channel limits
the amount of sensing information that can be reported
to FC or shared among cooperating CRs. If the entire
local sensing data or the complete local test statistics are
shared, joint processing of the raw sensing data offers the
best detection performance at the cost of control channel
communication overhead. This fundamental component
of cooperative sensing is termed as data fusion. Variety
of signal combining techniques are reported in literature
to implement data fusion based on optimally combining
the weighted local observations. In [95], authors have
proposed a generalized soft combining scheme that reduces
to equal gain combining (EGC) at high SNR and boils
down to maximal ratio combining (MRC) at low SNR.
Furthermore, a two-bit quantized soft combining scheme
is also presented in the same work to overcome the
computational complexity of data fusion scheme and



R. Umar, A.U.H. Sheikh / Physical Communication ( ) – 15

Fig. 16. Relay-assisted cooperative SS.

relax the control channel bandwidth requirement. In
comparison to quantized soft combining, hard combining is
another alternative to perform cooperation under control
channel bandwidth constraint. In this approach, sensing
data is processed locally before transmitting it over the
control channel and the one-bit local decision from each
of the cooperating secondary users is combined using
linear fusion rules. This leads to decision fusion based
cooperative detection which requires much less control
channel bandwidth at the cost of depreciated sensing
performance when compared with data fusion based
CSS. Typically, OR, AND, and MAJORITY rules are used
for decision fusion which can be considered as special
instances of generalized k out of N rule. It has been shown
in [96] that OR (k = 1) rule outperforms when number of
cooperating secondary users is large while AND (k = N)
rule gives optimal performance for small number of CRs.
In general, half-voting rule (k = N/2) in comparison to
majority (k ≥ N/2) is shown to offer optimal or near-
optimal performance by achieving minimum total error
probability in identifying vacant spectrum opportunity.
More advanced data fusion and decision fusion techniques
are discussed in [97,98], respectively.

6.1.3. Relay-assisted cooperative sensing
It is noteworthy that under realistic transmission con-

ditions, both sensing and reporting channel are not ideal.
Such a scenario is illustrated in Fig. 16 where CR1 and CR2
observe strong sensing channels but weak reporting chan-
nels (to FC) due to possible shadowing or multipath effect.
In this case, sensing data from these CRs is forwarded to
CR3 and CR4 who suffer from shadowed sensing channels
but strong reporting channels. Hence, CR3 and CR4 act as
relays to transmit sensing information from CR1 and CR2
to FC through them and thus the reporting channels be-
tween CR3, CR4 and FC are termed as relay channels. This
scheme is popularly known as Relay-assisted cooperative
sensing and has been discussed in [99].

6.1.4. Single hop and multi-hop cooperative sensing
It is important to point out that Fig. 16 shows a

centralized network for sake of simplicity, however, relay-
assisted cooperation is equally applicable in distributed
sensing where each cooperating CR plays the role of
FC. In fact, when sensing data reaches the intended
secondary user throughmultiple hops, all the intermediate
hops act as relays. Hence, centralized and distributed
sensing schemes depicted in Fig. 15 are classified as single
hop cooperative sensing while relay-assisted cooperation
shown in Fig. 16 falls under the category of multi-hop
cooperative sensing.

6.1.5. Internal and external sensing
From the network perspective, both centralized and

distributed sensing, involving either single hop or multi-
hop (relay-assisted), fall under the category of internal
sensing, which results in suboptimal utilization of spec-
trum opportunity as both the spectrum sensing and sub-
sequent data transmission on the detected frequency band
are collocated at a single CR. In [100], CR network architec-
ture based on two distinct networks i.e. the sensor network
and an operational network has been proposed as a third
approach for cooperative PU detection, known as External
sensing. In external sensing, a dedicated network composed
of only sensing nodes is employed to scan the targeted
frequency band continuously or periodically. The sensing
results are then passed on to the master sensor in this
external network which optimally combines the sensing
data and shares the PU activity information in the sensed
area with operational network. In this way, CRs in the op-
erational network, do not spend time for spectrum sensing
rather simply use the data from (external) sensor network
for selecting the appropriate spectrum and time duration
for secondary transmissions. As a result, external sensing
not only solves the shadowing/fading and hidden PU prob-
lems but also increases spectrum efficiency by allowing
CRs to acquire available spectrum usage opportunity with
minimum delay.
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Fig. 17. Sensing performance enhancement through cooperation.

6.2. Favorable aspects of cooperative detection

Cooperative detection mitigates the multipath fading
and shadowing effects which are the key issues in spec-
trum sensing. In this way, cooperative detection results
in much improved sensing performance of CR network by
improving the detection probability while simultaneously
decreasing the probabilities of mis-detection and false
alarms. Performance enhancement through CSS involving
cooperation among 10 CRs is depicted in Fig. 17. The fig-
ure shows the complementary receiver operating charac-
teristics (ROC) (plot of Pm vs. Pf ) of ED under Rayleigh
fading and Log-normal shadowing (with 6 dB spread) for
time-bandwidth product = 5 and average received SNR of
10 dB [101].

In addition, cooperative detection solves the hidden PU
problem. This results in improved agility with decreased
sensitivity requirements [102].

6.3. Limitations of cooperative detection

While cooperative sensing provides high sensing accu-
racy, these are not feasible on resource-limited networks
due to the need for additional infrastructure, increased
computational complexity, overhead control traffic and
operations. Furthermore, CSS is based on exploiting in-
herent spatial diversity in the local observations of co-
operating CRs resulting in enormous cooperation gain as
indicated in Fig. 17. However, the practically achievable
cooperation gain may diminish when cooperating CRs are
obstructed by the same blockade resulting in correlated
shadowing. Sensing performance degrades further when
more and more spatially correlated CRs participate in
reaching a cooperative decision [90,101]. In addition to
gain-limiting elements, CSS can incur cooperation overhead
in terms of cooperative sensing delay, increased energy re-
quirements and more vulnerability to security attacks.

7. Challenges in cooperative detection

Key challenge in cooperative sensing is to achieve
optimal cooperation gain without being compromised

by the associated cost. Open problems in this regard
are devising efficient information sharing approach with
minimum control channel overhead (e.g. short-listing
reliable CRs to cooperate, minimizing information to share
etc.) and information fusion criteria. In a comparative
analysis, the spectrum efficiency may be impacted how
much resources have been used in sensing and spectrum
utilization for actual data. In the following, we discuss
some of the fundamental challenges in CSS and present
possible solutions to meet these challenges.

7.1. Cooperative sensing delay

As opposed to non-cooperative spectrum sensing, CSS
involves sharing local sensing information to achieve
a unified global cooperative decision. As a result, the
total sensing time in cooperative detection must include
reporting time along with the conventional local sensing
time. Following three factors play a critical role in deciding
about the overall reporting time:

• amount of reporting data,
• number of cooperating secondary users and
• reporting channel access scheme.

Synchronization among the cooperating CRs is also
taken as an underlined assumption in many typical
cooperative sensing schemes such as ED based CSS. Such
schemes, being blind or semi-blind suffer from the lack
of the capability to distinguish between primary and
secondary transmissions and hence require all CRs to halt
their transmissions for simultaneous sensing operations.
Also, most of the cooperative sensing techniques assume
that the sensing results become available for combining
not only instantly but also concurrently. In such cases,
the delay for synchronization also needs to be taken into
account while analyzing the cooperative sensing delay.

Moreover, the cooperative decision results from an
iterative process in distributed cooperation and thus
convergence rate of distributed cooperation algorithm also
affects the overall sensing time in CSS.

Therefore, it is evident that cooperative sensing de-
lay is influenced by multiple factors which must be care-
fully analyzed in order to determine practically achievable
throughput of CROWN employing cooperative detection.
Many approaches have been discussed in literature to keep
cooperative sensing delay overheadwithin acceptable lim-
its. In [103], authors proposed to decrease the coopera-
tive sensing delay by optimizing the local sensing results
both in terms of size and reliability. In this approach, only
reliable CRs are involved in making cooperative decision
and their local sensing results are shared in the form of
one bit hard decision. They have used two thresholds in
conventional energy detector to reliably detect a spectrum
hole and have also considered reporting over bandwidth
limited and imperfect control channel. To avoid synchro-
nization induced delays in CSS, variety of asynchronous
sensing methods are proposed. In [104], a sliding win-
dow algorithm is devised to sequentially detect the change
point in received sensing reports while a probability based
combination approach is studied to combine the sensing
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results arriving at different times in [105]. Increased re-
porting overhead for cognitive radio ad hoc wireless net-
works with large number of secondary users is addressed
in [106]. It is further shown that the overall throughput
of CROWN can been significantly improved by employing
fast physical layer signaling to save temporal resources for
secondary data transmission. An interesting cooperation-
processing tradeoff between the sensing time and report-
ing delay is reported in [107].

7.2. Spatially correlated shadowing and optimal user (CR)
selection

Cooperative sensing is most efficacious when coop-
erating nodes witness independent fading and shadow-
ing [108,109]. Correlated shadowing results in increased
probability of missed detection, degrading the overall
sensing performance of CROWN which has been analyzed
in [110]. In this paper, it is shown that spread out loca-
tions of cooperating CRs result in better defense against
fading and shadowing.Hence, the key challenge tomitigate
correlated shadowing lies in optimal user (CR) selection en-
suring that all cooperating CRs experience independent
observations under practical fading and shadowing con-
ditions. Careful CR selection in CSS not only improves the
reliability and security of CROWN but also increases the
overall network efficiency both in terms of throughput
and energy requirements. CR selection, usually termed as
user selection, schemes based on centralized and decen-
tralized approach are discussed in literature [111,112]. In
centralized user selection, FC selects independent CRs for
cooperation based on location estimates of CRs sharing in-
formation with this FC. Empirical results [113] show that
spatial correlation between two CRs is a decaying expo-
nential function of the inter-user distance and hence there
exists a decorrelation distance beyond which the cooper-
ating radios can be considered to experience uncorrelated
shadowing. When large number of CRs are involved in co-
operative detection, centralized user selection suffer from
prohibitively large control channel bandwidth and much
increased reporting delay. Hence, a distributed selection
technique needs to be adopted for optimal user selection
particularly for large networks. For such scenarios, vari-
ety of clustering methods are proposed in [114]. These
clustering techniques rely on the availability of location
information of primary and secondary users in CROWN
and can be either statistical, random, reference-based or
distance-based. Similarly, optimally choosing the number
of cooperating CRs is another challenge which has been
studied in [115]. It has been shown that CRs with high
PU’s SNR give optimum sensing performance rather em-
ploying all SUs in CROWN to cooperate. A classic heuristic
algorithm based on the binary particle swarm optimiza-
tion (BPSO) approach to find suitable cooperative nodes is
applied in [116] to show improved sensing performance
when compared with the case that all neighboring nodes
participate in sensing.

7.3. Information fusion criterion

Finding an efficient information sharing approach is
another challenge in CSS. This problem in itself is manifold

and becomes very critical when the number of CRs in
CROWNbecome large, requiring prohibitively large control
channel band width along with added computational
complexity and reporting delay [117]. Optimum decision
combining approach is analyzed for both soft and hard
combining at FC in [118] and a genetic-based soft
combining algorithm is proposed to improve cooperative
decision provided SNRs of all cooperating CRs and channel
conditions are known while combining. More recently,
in [119], the optimal value of cooperating nodes (k)
for k out of N (where, N stands for total number of
nodes) decision fusion rule is derived using completely
blind, learning automata based, voting rule optimization
approach.

7.4. Energy efficiency

The energy consumption in CSS is proportional to
number of cooperating CRs and amount of sensing
information that is shared among CRs. Optimal user
selection and decision fusion approaches are generally
invoked to deal with the increased energy consumption
overhead in CSS. The key challenge in this regard is to
let only those CRs sense and report (i.e. consume energy)
which participate in final cooperation. In this regard, a
combination of censoring and sleeping policies is proposed
for the cases of known and unknown PU activity in [120].
Authors have shown that applying this technique in large
sensor networks results in almost constant number of
active nodes out of total operating nodes in any given time
slot. Hence, overall energy consumption of the network
becomes independent of the number of cooperating nodes.

7.5. PU and CR mobility

Mobility of primary and/or secondary users in CROWN
is a unique challenge for cooperative detection as it may
boost or diminish the achievable cooperative gain in CSS.
For example, if we consider stationary PU, moving CRs
may observe independent or correlated shadowing at
different times depending on their direction and speed.
In this way, cooperation throughput changes with the
movement of cooperating CRs. Problem analysis becomes
more challenging if PU also starts to move simultaneously
with secondary users in CROWN. Impact of mobility on
sensing is addressed in [121] though such studies are still
in their infancy phase and need detailed analysis for the
actual deployment of CROWN.

7.6. Data falsification and security attacks

Security plays a critical role in CSS. The risk of involving
malfunctioning and malicious secondary users increases
proportionally with the increasing number of cooperating
CRs. Such unwanted secondary users may intentionally
corrupt or send unreliable sensing information to influence
the cooperative decision in their favor. PU emulation
attacks and control channel jamming are examples of
security attacks where legitimate CRs are forced to
vacate the acquired frequency band for attackers. To
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address security problems, all cooperating users are
authenticated [122] which puts additional overhead in
cooperative detection. The open research challenge in this
regard is to ensure security during cooperation under the
constraint of minimum incurred overhead.

8. Open problems and future research directions

The cognitive radio research has witnessed immense
growth in the past fewyears after the FCC legalized the sec-
ondary access to TV white spaces for broadband wireless
networks in November, 2008 [123]. There are, however,
number of concerns that need critical investigations before
the actual deployment of cognitive radio networks. Most
importantly, practical operating conditions need to be in-
corporated while evaluating the performance of proposed
sensing algorithms and required sensing accuracy needs
to be carefully examined against the implementation com-
plexity of these schemes. In the following, we present open
issues in this regard that have not been exploredmuch and
require substantial research efforts in the field of spectrum
sensing:

8.1. Dynamic scenarios

Spectrum sensing techniques discussed in this paper
have been developed and analyzed under static scenar-
ios, where the spectrum usage and noise statistics do not
vary in time. However, in the real-world, the number of
active transmissions and/or their transmission parameters
change and the background noise varies due to temper-
ature fluctuations. In [124], authors have examined noise
samples from a reference channel to estimate noise power
and dynamically adapt the energy detection threshold ac-
cordingly. More recently, it has been shown that dynamic
selection of detection threshold based on the present noise
level increases the detection probability for moderate SNR
in the range −12 dB and above [125]. However both of
these work target simple energy detectors while there is
plenty of research opportunities in analyzing the sens-
ing performance of other more robust and accurate sens-
ing schemes under dynamic scenarios, where SNR changes
during sensing.

8.2. Fair coexistence

Non-blind sensing schemesusually exploit someknown
features of the primary signal. For example, typical TV
whitespace network designs rely on cyclostationary-based
feature detectors tuned for digital TV signals. As pointed
out in [126], such a signal-specific approach may offer
desired performance under assumed conditions but com-
pletely fails to detect any activity when the scanned spec-
trum is occupied by another secondary user who does not
transmit a digital TV signal over that band. Similarly, blind
schemes inherently cannot classify active transmissions as
primary or secondary and hence can trigger false alarm
much frequently. Such limitations pose open challenges in
achieving fair division of opportunistic spectrum resources
among secondary users.

8.3. Frequency selective fading

The effect of channel uncertainties on spectrum sens-
ing has been studied focusing on flat fading and log-normal
shadowing with very little attention given to multipath
fading. Some of the recent works [127,128] show simula-
tion results under frequency selective fading but they have
limited scope in the sense that they target OFDM signals
and do not give the mathematical analysis of the prob-
lem. Performance analysis of variety of sensing techniques
discuss in this review paper remains an open challenge
which needs thorough investigations in order to compare
the sensing performance of available detectors in actual
multipath-rich radio environment.

8.4. Sensing performance metric

The traditional sensing problem is mathematically
casted as a binary hypothesis testing problem giving
probability of missed detection and probability of false
alarm as key performance evaluation metrics. However,
such a formulation focuses on the temporal dimension
of the possible spectrum hole while missing the possible
opportunity in the spatial dimension. In [129], it was
emphasized that CR can reuse the spectrum not only when
PU signal is truly absent but also when PU is active but
lies far away from the CR. In this regard, the degree of
required detector sensitivity was investigated and a joint
space–time perspective of the sensing problem was put
forward as composite hypothesis test. This hypothesis-
testing framework led to two new sensing performance
metrics namely, fear of harmful interference (FHI), capturing
the PU safety and weighted probability of area recovered
(WPAR) capturing the sensing performance of CRs across
different spatial locations, as discussed in [130]. The
comparison of different sensing schemes based on these
new performance metrics is an interesting open problem
that can reveal the true tradeoffs between PU safety and
SU performance.

8.5. Practical wideband sensing

Recent advances in compressed sensing has relaxed
much of the stringent requirements on RF front-end of
cognitive radio to accomplishwideband sensing. However,
due to limited number of samples resulting from sub-
Nyquist rate sampling, a weak PU signal with a nearby
strong secondary signalmay not be properly reconstructed
for detection. This poses a typical near-far problemmaking
it practically very difficult to achieve desired detection
sensitivity in wideband sensing.

8.6. Sensing duration and sensing frequency

The key to efficient spectrum utilization is rapid
and reliable spectrum sensing. However, sensing time
reduction is always traded off with sensing reliability. An
important thing to note is that a channel that is being
used by SU cannot be used for sensing. This requires
SU to interrupt their data transmission for possible PU
identification on that channel [131]. As a result, spectrum
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utilization of secondary network is compromised. To
combat this situation, a method known as dynamic
frequency hopping (DFH) has been reported in [132]
which assumes availability of multiple channels. During
transmission over a working channel, intended channel is
sensed simultaneously and if its availability is reported,
the intended channel becomes the working channel. In
this way, spectrum efficiency can be improved to some
extent though some of the time would still be wasted
in sensing the intended channel which can otherwise be
used for secondary transmissions. However,multiple users
operating in DFHmust coordinate their hopping pattern to
avoidmutual blocking/interferencewhich in itself is a non-
trivial task and requires further investigations to reach
practically viable solution. Similarly, sensing frequency
(i.e. how often spectrum sensing is performed) is another
design parameter that must be selected very carefully.
Finding an optimum value of sensing frequency depends
on CR capabilities and PU temporal characteristics in the
radio environment [133] and poses an open challenge in
achieving desired sensing performance.

8.7. Detecting spread spectrum primary signals

PUs employing spread spectrum signaling spread their
transmitted power over wide frequency range. This may
be a single band in the case of direct sequence spread
spectrum (DSSS) or multiple bands for frequency hopping
spread spectrum (FHSS). In both the cases, SS becomes
difficult and needs some a priori information regarding
frequency hopping patterns and synchronization pulses
to successfully detect such primary transmissions [49].
It is important to highlight here that a spectrum usage
opportunitymight exist in code dimension of the spectrum
space and hence advanced SS techniques need to be
devised that can detect both the frequency and used code
for primary transmissions. In this way, secondary users
can coexist with primary users by employing orthogonal
or near orthogonal codes as compared to primary signals.
Detection of this new opportunity is an open research
challenge and has not been well explored in the literature.

8.8. Exploiting spectrum usage opportunity in angle dimen-
sion of spectrum space

With the recent advances in multiple input multiple
output (MIMO) technology and signal processing, PUs
instead of emitting radio waves over air interface in
all directions may confine their transmissions within
an angle targeting particular primary receivers present
in specific direction. In such cases, different users can
transmit over the same frequency band, at the same time
in the same geographical area using the same codes.
Such users employ highly directional antennas or use
signal processing techniques like beamforming to avoid
interference with neighboring users. In CR technology, this
means that primary and secondary users can share the
same frequency band in the same time slot and in same
area if the secondary transmissions can be directed in
directions other than the primary transmission directions.
To benefit from this new dimension of spectrum space, CR

must estimate the angle of arrivals (AoAs) of the primary
transmissions along with the occupied frequency band
which is a challenging task and needs yet to be explored
in depth for its practical feasibility.

8.9. Efficient remote knowledge base access

With the recent FCC ruling [134], the cognitive use of
TV white spaces is proposed to be based on database ar-
chitecture only rather than spectrum sensing capabilities.
As part of that ruling, TV white space devices must down-
load all the information about the RF environment such
as traffic patterns, location, transmit power etc. from a re-
mote database, known as knowledge base. Though knowl-
edge base enhances the detection performance of CR by
utilizing the accumulated knowledge and learned experi-
ence from the history yet it raises new challenges in ef-
ficiently accessing the remote knowledge base. Recently,
cognitive radio cloud network (CRCN) is proposed for co-
operative sensing in TV bands [135], however, significant
research efforts are required to achieve fast, secure, scal-
able and energy efficient access to knowledge base.

8.10. Other challenges

For the sake of completeness of topic, some of the other
challenges hindering the actual deployment of state-of-
the-art wireless networks with cognitive capabilities are
indicated below.

(a) Spectrum sharing solutions typically assume a com-
mon control channel (CCCH) for information sharing.
However, when a PU becomes active this control chan-
nel also needs to be vacated. This requires that local
CCCHs should be exploited for clusters of nodes.

(b) In CROWN, legitimacy of PU is an important aspect to
consider. The proposed security measures are limited
in their scope and devising a universal security scheme
is an open research avenue to explore.

(c) Keeping track of interference level enhancement by
secondary transmissions of opportunistic unlicensed
users is another research challenge which requires
substantial analysis before the actual deployment of
cognitive networks.

9. Conclusions

In this paper, we examined various aspects of cogni-
tive radio and identified spectrum sensing as the prereq-
uisite requirement for the deployment of cognitive radio
oriented wireless networks. Variety of detection tech-
niques were studied, compared and classified. We found
that blind transmitter detection sensing techniques are
most generic in their application and are robust to all kinds
of channel/system uncertainties. Moreover, they provide
highly accurate results at realizable complexity. However,
performance of all single-user centric sensing schemes de-
grades drastically in multipath fading environment which
is unavoidable inwireless communication. Hence, for prac-
tical scenarios, CROWN must be equipped with cooper-
ative sensing ability. The intrinsic features of cognitive
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technology impose stringent requirements on the spec-
trum awareness strategies. Comparison of sensing algo-
rithms revealed wide variability in their computational
complexity for the targeted detection performance. As a
result, future research is envisioned to be focused more
on implementation-friendly, low-complexity sensing algo-
rithms that are robust enough to provide required sensing
performance with demanded reliability in minimum time.
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