
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works. IEEE Transactions on Software Engineering – https://doi.org/10.1109/TSE.2018.2871083

On the Nature of Merge Conflicts:
a Study of 2,731 Open Source Java Projects

Hosted by GitHub
Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek, Member, IEEE

Abstract— When multiple developers change a software system in parallel, these concurrent changes need to be merged to all

appear in the software being developed. Numerous merge techniques have been proposed to support this task, but none of them

can fully automate the merge process. Indeed, it has been reported that as much as 10% to 20% of all merge attempts result in

a merge conflict, meaning that a developer has to manually complete the merge. To date, we have little insight into the nature of

these merge conflicts. What do they look like, in detail? How do developers resolve them? Do any patterns exist that might suggest

new merge techniques that could reduce the manual effort? This paper contributes an in-depth study of the merge conflicts found

in the histories of 2,731 open source Java projects. Seeded by the manual analysis of the histories of five projects, our automated

analysis of all 2,731 projects: (1) characterizes the merge conflicts in terms of number of chunks, size, and programming language

constructs involved, (2) classifies the manual resolution strategies that developers use to address these merge conflicts, and (3)

analyzes the relationships between various characteristics of the merge conflicts and the chosen resolution strategies. Our results

give rise to three primary recommendations for future merge techniques, that – when implemented – could on one hand help in

automatically resolving certain types of conflicts and on the other hand provide the developer with tool-based assistance to more

easily resolve other types of conflicts that cannot be automatically resolved.

Index Terms—Software Merge, Merge Conflict, Merge Resolution.

—————————— u ——————————

1 INTRODUCTION

ONCURRENT work is essential to large-scale software
development. Once developers finish their independ-

ent work, changes must be integrated and made available
to other developers. A traditional approach to do so is to
apply a merge tool, which implements some underlying
merge technique that aims to automate as much as possible
of the task of combining parallel changes [1].

Many merge techniques have been developed over the
years [1], [2], differing considerably in what they use as a
basis for comparing two versions of an artifact and resolv-
ing any conflicting changes exhibited by the two versions.
A significant number of merge techniques rely on lines of
code as the basis; these techniques are called unstructured
merge techniques [3]–[8]. Other, more complex techniques
have also been developed, some relying on syntax [9]–[15]
and others on semantics [16], [17]; these techniques are
termed structured merge techniques. Hybrid approaches
that mix aspects of both unstructured and structured tech-
niques have been explored as well [2], [18], [19]. These are
termed semi-structured techniques.

Despite the many different merge tools in use today, it
is well known that, in practice, they are not perfect. Be-
cause they cannot account for every possible concurrent
change that developers may and regularly do make, con-
flicts arise between concurrent changes that cannot be au-
tomatically resolved, leading the merge attempt to fail [1].
The developer has to step in, analyze the respective
changes and the merge conflict they caused, and resolve
the conflict manually. This is a difficult task, one that de-
velopers wish to avoid as much as possible [20], [21].

Still, it has been reported that 10% to 20% of all merges
fail [22], [23], with some projects experiencing rates of al-
most 50% [22], [24]. To spur the development of new merge
techniques that could potentially reduce the high failure
rate, we posit that it is necessary to take a deep dive into
the nature of merge conflicts and how they are resolved.
What do they look like, exactly? How do developers re-
solve them? Do any relationships exist between the nature
of certain merge conflicts and the resolution strategies cho-
sen by developers?

A few studies have begun to answer these kinds of
questions (e.g., [2], [22]–[30]). Some focus on classifying the
type of conflict (i.e., merge, build, or test failure) [22], [23].
Others examine the existence of correlations between cer-
tain development and code characteristics and resulting
merge failures [26]–[30]. Yet others compare unstructured
and semi-structured merge techniques, finding that semi-
structured techniques can reduce, but not eliminate, merge
conflicts [2], [25]. To this emerging body of literature, this
paper contributes a new study that differs in: (a) taking a
fine-grained approach to dissecting the nature of merge

————————————————

• Gleiph Ghiotto is with the Computing Institute, Fluminense Federal Uni-
versity, Niterói, RJ, Brazil and Computer Science Department, Federal

University of Juiz de Fora, Juiz de Fora, MG, Brazil. E-mail:
gmenezes@ic.uff.br.

• Leonardo Murta is with the Computing Institute, Fluminense Federal Uni-
versity, Niterói, RJ, Brazil. E-mail: leomurta@ic.uff.br.

• Márcio Barros is with the Information Systems Program, UNIRIO, Rio de
Janeiro, RJ, Brazil. E-mail: marcio.barros@uniriotec.br.

• André van der Hoek is with the Department of Informatics, University of
California Irvine, Irvine, CA, USA. E-mail: andre@ics.uci.edu.

C

2

conflicts, anchoring our analysis on individual conflicting
chunks (as a merge conflict might be the result of incom-
patible changes in multiple, disjoint parts of an artifact)
and the programming language constructs they contain,
and (b) seeded by a manual analysis of a handful of pro-
jects, performing an automated, large-scale analysis of
over 2700 projects, compared to the typical few projects
studied in prior work.

We manually examined the history of five open source
projects, finding the merges that conflicted. For each such
failed merge, we collected the following: (1) the number of
conflicting chunks, (2) the size of each of the versions of the
conflicting chunk in lines of code, (3) the programming
language constructs contained within each version of the
conflicting chunk, and (4) the way developers resolved
each conflicting chunk. We then looked for patterns be-
tween characteristics of the conflicting chunks and the de-
cisions made by the developers as to how to resolve them.
Using this manual analysis as the seed, we developed the
tools necessary to engage in a large-scale automated analysis
involving 2,731 open source projects with 25,328 failed
merges. We collected the same information as in the man-
ual analysis, so we could address the same research ques-
tions.

Our results show that the creation of fully automated
merge techniques is likely to be impossible, as too many
conflicts have manual resolutions that cannot be antici-
pated. Yet, our results also give rise to three findings that
show promise for the design of future merge techniques:

1. For 87% of conflicting chunks, the conflicting chunk
contained all the lines of code that appeared in the
merged result, and in 94% of those cases, the conflict-
ing chunk involved less than 50 lines of code in each
of its versions. Developers used anywhere from just
a few lines of one version to all lines of both versions
in creating a merged result. Sometimes they concate-
nated both versions wholesale, while at other times
they interspersed individual lines. However, for the
majority of merge conflict resolutions, no new lines
of code were written. This suggests that it may be
beneficial to create heuristics that cover the common
cases, as well as design tools that assist developers in
reorganizing the lines of code of failed merges.

2. Of all failed merges, 60% involved multiple conflict-
ing chunks. Moreover, depending on the project, in
14% to 46% of the failed merges involving multiple
chunks, dependencies existed among chunks in that
the resolution of one conflicting chunk might offer
guidance for how the remaining conflicting chunks
are to be resolved. As an example, one chunk would
contain a conflict in a method declaration, and other
chunks conflicts in the corresponding method invo-
cations. This suggests that new merge tools may be
able to better assist developers by presenting them
with a suggested order in which chunks should be
resolved according to their dependencies, as well as
by resuming automated merging once key conflicts
are resolved.

3. For both projects and individual developers, certain
tendencies existed in how conflicting chunks were
resolved. As one example, though nearly 20% of the
conflicting chunks in one project were resolved with
new code (a high percentage), some developers rarely
used that strategy. As another example, across a
number of the projects, some kinds of conflicts were
resolved with certain resolution strategies more of-
ten, regardless of individual developer preferences.
Such historical patterns, and others like it, could be
leveraged by new merge tools to present developers
with the distributions of past choices and allowing
them to choose one to be performed.

The remainder of this paper is organized as follows.
Section 2 describes the materials and methods used to con-
duct the study. Section 3 presents our results, characteriz-
ing merge conflicts, resolution strategies, and apparent re-
lationships between the two. Section 4 discusses the impli-
cations of our findings. Section 5 covers threats to validity.
Section 6 presents related work and, finally, Section 7 con-
cludes with an outlook at future work.

2 MATERIALS AND METHODS

This section introduces relevant terminology, presents the
analyses that we perform, details our data collection pro-
cedure for the manual analysis, and describes our data col-
lection for the automated analysis.

2.1 Terminology

Distributed version control systems such as Git [4] support
concurrent development through both implicit and named
branches [31]. An implicit branch is typically created when
a developer clones a repository to work in parallel with
other developers. This kind of branch is often short-lived,
only useful until the developer merges the changes back
into the remote repository. Named branches exist in both
the local and remote repositories and are typically created
to separate long-term parallel lines of development, for in-
stance when multiple customers require somewhat differ-
ent versions of the same software. Each named branch may
accommodate commits from multiple developers. De-
pending on the goal of the named branches, changes made
on one may need to be merged into another (e.g., a bug fix
common to multiple variants of the product). Sometimes,
named branches are merged back together in their entirety.

When a merge attempt fails, it means that one or more
changes that were made to the artifacts being merged are
in conflict. The exact nature of the conflict depends on the
merge technique, but regardless of technique, a conflict can
manifest itself in multiple parts of the artifacts. That is, it is
possible—and frequently so—that, when a merge fails, the
conflict exhibits itself in several regions across the artifacts.
We term each pair of those regions that is in conflict a con-
flicting chunk.

Fig. 1 shows a conflicting chunk in Git [4], using three
marks: (i) the beginning mark, represented by “<<<<<<<”,
which is followed by the version in which changes are to
be integrated (in this case HEAD, the version in the devel-
oper local repository); (ii) the separator, “=======”,

 3

which divides the code that differs between the two ver-
sions in conflict; and (iii) the ending mark, “>>>>>>>”,
which is followed by the version from which the changes
are to be included, in this case
b80ad5052d1b693be6e5c0a2b.

To ease comprehension, we adopt the side-by-side rep-
resentation depicted in Fig. 2. We refer to the code in gray
background on the left-hand side of Fig. 2 as version 1 (be-
fore the separator in Fig. 1, representing the changes made
in the local repository of the developer) and the code in
gray background on the right-hand side as version 2 (after
the separator in Fig. 1, representing the version from which
the changes be integrated into the local repository). The
code in white background belongs to the common ancestor
of versions 1 and 2 (i.e., the base version).

A specific goal of our study is to dive into detail regard-
ing the nature of conflicting chunks, asking such questions
as to which language constructs (e.g., for, while, if, variable,
class) show a tendency of appearing together in conflicting
chunks. We selected the Java language specification to cre-
ate the list of language constructs for our analysis, includ-
ing, among others, statements (e.g., for, if), definitions (e.g.,
class declaration, method declaration), and invocations (e.g.,
method invocation). We grouped language constructs that
play a similar role, such as @Override, @NotNull, and oth-
ers like it as annotation, and constants, class fields, and local
variables as variable.

To classify different conflicting chunks, we define a kind
of conflict as the concatenation of all the unique language
constructs (in alphabetical order) that are present in a con-
flicting chunk. To assign a kind of conflict for a given con-
flicting chunk, then, we take the language constructs from
both version 1 and version 2, sort them, remove duplicates,
and concatenate the remaining ones. In Fig. 2, the kind of
conflict is “annotation, method declaration, variable” (both the
return statement and its variable reside within a containing
method declaration already in conflict, which is why we
do not include them in the kind of conflict, a decision we
further discuss in Section 2.3). We remove duplicate lan-
guage constructs and sort the remaining ones so we create
a relatively short set of kinds of conflicts, as compared to
the millions that may result if we did not sort first and then
remove duplicates. This choice, then, leads to a higher fre-

quency for each of the kinds of conflicts, which in turn al-
lows us to more meaningfully detect possible patterns.

When developers face a failed merge, they have to re-
solve the conflicting chunk(s). Exactly how they do that is
what we term a developer decision. We study developer de-
cisions on a conflicting chunk by conflicting chunk basis,
and identify six different ways of resolving a conflict: (1)
adopt the code of version 1, (2) adopt the code of version 2,
(3) concatenate both versions wholesale, in either order, (4)
incorporate in some interleaving order select lines of code
from both versions, without writing any new lines or mod-
ifying selected lines, (5) mix existing code from one or both
versions with newly written code, and (6) use none of the
versions, that is, the developer discards both versions. We
identify these choices in the remainder of the paper as: ver-
sion 1 (V1), version 2 (V2), concatenation (CC), combination
(CB), new code (NC), and none (NN).

Finally, our study categorizes the difficulty that a par-
ticular kind of conflict poses. For this, the size of the code
in the conflicting chunks is obviously important, but an-
other indication is provided by the choices a developer
makes in resolving a kind of conflict. A kind of conflict that
is always resolved with new code is presumably more diffi-
cult than a kind of conflict that is resolved by always choos-
ing version 1 or version 2, for example. To provide a (rela-
tively crude, but as we shall see effective) basis for compar-
ison, we distinguish between straightforward chunks (con-
flicting chunks that are resolved with version 1, version 2,
concatenation, or none) and complex chunks that are resolved
with combination or new code. The motivation is that the lat-
ter two kinds of conflicts require a developer to engage in
depth with the conflicting chunks, and generally involve
more time and effort. We placed none in straightforward
chunks, as a manual inspection of the few occurrences of
none that we encountered revealed that they were small
merge failures where the developer decided neither option
was good; complex merge cases from which the developer
backed away were usually resolved by placing a comment
in the code, making it new code.

2.2 Analyses

The focus of our work is on understanding merge conflicts
in detail, together with the resolutions that developers use
to address them. The more of an understanding we de-
velop, the more of an opportunity might exist to design
new merge tools that leverage the lessons learned.

To build this understanding, we identified seven incre-
mental analyses that we performed on the 25,328 historical
conflicts of the 2,731 Java projects we studied (see below
for project selection). Each analysis adds detail to the pre-
vious analyses either by performing a more fine-grained
analysis of earlier results or by correlating findings from
previous analyses with factors that may explain them. We
describe each analysis briefly here, and detail them further

 public RuleStopState stopState;
<<<<<<< HEAD
 public boolean isPrecedenceRule;
=======

 @Override
 public int getStateType() {
 return RULE_START;
 }
>>>>>>> b80ad5052d1b693be6e5c0a2b
}

Fig. 1. Conflicting chunk of merge b14ca5 (common ancestor
f7d0ca) from ANTLR4.

public RuleStopState stopState;

version 1 version 2
public Boolean isPrecedenceRule; @Override

public int getStateType() {
 return RULE_START;
}

}

Fig. 2. Simplified side-by-side representation for the conflicting chunk of Fig. 1.

4

in Section 3 when we discuss our results.

A1. What is the distribution in number of conflicting chunks for
merge failures?

The number of conflicting chunks involved in a merge
failure influences the difficulty of resolving the overall
conflict. The more chunks, the more places developers
need to examine and crosscheck. This is equally true
for tools: it is likely to be more difficult to develop ef-
fective merge tools that can consider the full complex-
ity of a multitude of chunks being in conflict as com-
pared to just one or a few. Our first analysis, then, fo-
cuses on understanding the number of conflicting
chunks that appear in merge failures.

A2. What is the distribution in size of conflicting chunks, as
measured in lines of code (LOC)?

When it comes to the anticipated difficulty of resolving
a merge failure, complementary to the number of con-
flicting chunks is the size of those conflicting chunks:
the higher the LOC, the more code must be inspected
and worked with to resolve the conflict – whether by
a developer or a merge tool. Hence, our second analy-
sis focuses on assessing the distribution of LOC in con-
flicting chunks.

A3. What is the distribution in language constructs involved in
conflicting chunks?

As already stated, the language constructs involved in
a conflict can influence the difficulty of resolving it.
Consider a case in which the only language construct
present in a conflicting chunk is import. Concatenating
the two import statements will likely resolve the con-
flict in most cases, and is an operation that can easily
be performed by a tool (perhaps with some checks if
both imports are truly needed in the final merged re-
sult after all conflicting chunks have been processed).
Whether or not the creation of such heuristics is a via-
ble direction for new merge tools depends on the fre-
quency of appearance of different combinations of lan-
guage constructs. Our third analysis, then, focuses on
the distribution of language constructs involved in
conflicting chunks.

A4. What, if any, patterns exist in the language constructs of
failed merges involving multiple conflicting chunks?

When a failed merge involves multiple conflicting
chunks, it may be that dependencies exist that are in-
dicative of possible heuristics that could help resolve
the conflict. For instance, if one conflicting chunk in-
volves an import and another conflicting chunk a
method invocation, resolving the method invocation con-
flict first could well help in resolving the import con-
flict. Understanding which patterns exist across
chunks is the focus of our fourth analysis.

A5. What is the distribution of developer decisions?

From all the different decisions that developers can
make, only one involves addition of new code. If the

majority of decisions does not involve new code, a sen-
sible first step forward is to develop a new merge tool
that presents the five options (version 1, version 2, con-
catenation, combination, and none) and assists the devel-
oper in choosing from among them (and, in the case of
combination, in selecting and ordering desired lines of
code from each of the two versions). Conversely, if
most conflicting chunks involve new code, such a new
merge tool would not help much. Understanding the
resolutions that developers choose, then, should give
us a first indication of the space of possible merge tools
that should be designed next, and is the focus of our
fifth analysis.

A6. What is the distribution in difficulty level of kinds of con-
flicts?

While the first five analyses examine properties of con-
flicting chunks, our next analysis studies the chunks
based on the relation between the kinds of conflicts
they contain and what the chosen developer decisions
reveal about the apparent difficulty levels of the dif-
ferent kinds of conflicts. It might be, for instance, that
some kinds of conflicting chunks nearly always are re-
solved with new code, while other kinds mostly involve
concatenation. This, in turn, provides preliminary guid-
ance toward what kind of tool support may be re-
quired when.

A7. What, if any, patterns exist between the language constructs
of conflicting chunks and developers’ decisions?

Our final analysis takes a closer look at the relation-
ship between the kinds of conflicting chunks and de-
veloper decisions by examining whether the presence
of certain language constructs or combinations thereof
might explain the difficulty level of resolution. That is,
rather than examining the kind of conflict in its en-
tirety, we look at individual and smaller combinations
of language constructs to examine whether some of
them can predict certain developer decisions. If this is
the case, one could imagine the possibility of heuristics
that encapsulate these patterns in the support offered
by new merge tools.

2.3 Data Collection Procedure for Manual Analysis

While we could have chosen to only perform an automated
analysis of a large number of projects, we felt it was pre-
ferred to perform a manual analysis of a few projects prior.
First, we felt it would help us understand the issues in
much greater detail, shaping the automated analysis, and
thereby not putting the proverbial cart before the horse.
Second, observations from our manual inspections fueled
the formulation of the analyses we performed in Section 3,
as engaging with the conflicts at a very detailed level
helped us to understand what sorts of phenomena were
present in the data we were collecting. Finally, performing
a manual analysis helped us to identify insightful exam-
ples, with several of them presented in the below.

To select projects for the manual analysis, we gathered

 5

all projects from the first page of the GitHub trending site1
at the time. We removed non-Java projects and sorted the
remaining projects in descending order by the number of
merge conflicts. This led us to the following top four pro-
jects that we selected: MCT, Lombok, ANTLR, and Twit-
ter4J. We added Voldemort, as it is studied by most of our
related work. MCT is a NASA-developed real-time moni-
toring platform; Lombok is a project that helps in writing
succinct boilerplate code via annotations; ANTLR4 is a par-
ser for programming languages; Twitter4J is an API for ac-
cessing Twitter; and Voldemort is a distributed key-value
storage system.

These projects were popular when we began our study,
meaning that they likely were offering useful functionality
to many. Moreover, all five were hosted on GitHub, our
target platform (since it strongly promotes a culture of par-
allel work) and most of their code is in one programming
language, Java, so we can draw inferences across the pro-
jects. All had over 1,000 commits and involved at least 10
developers, increasing our changes of identifying mean-
ingful conflicts. Table 1 presents key statistics related to the
history of these projects: the total number of commits over
the history of the project (#Commits); the number of
merges (#Merges); the number of developers who per-
formed at least one commit (#Developers); the number of
failed merges (#FM); and the total number of conflicting
chunks (#CC).

TABLE 1

KEY STATISTICS OF THE SELECTED PROJECTS, INCLUDING THE

NUMBER OF COMMITS, MERGES, DEVELOPERS, FAILED MERGES

(FM), AND CONFLICTING CHUNKS (CC)

Project #Commits #Merges #Developers #FM #CC

ANTLR4 2,870 352 14 27 86

Lombok 1,636 106 13 22 69

MCT 1,013 206 16 17 52

Twitter4J 1,938 211 84 38 98

Voldemort 4,275 480 54 65 401

Total 11,732 1,355 181 169 706

Java total - - - 147 616

 The process of collecting our study data started with
the identification of merges, for which we used a standard
Git command that lists all commits with more than one
parent. Afterward, we replayed each merge case to deter-
mine whether a merge was successful. To do so, we ac-
cessed the parents of the merge and ran the Git merge com-
mand again. When this returned no conflicts and produced

1 https://github.com/trending

code equivalent to the original merge result, we recorded
the merge as successful and ignored it. Note that Git uses
a three-way merge, because all changes are stored in its re-
pository and thus the common ancestor is always availa-
ble. We also note that both fast-forward merges and octo-
pus merges create no conflicts by definition, so they do not
influence our results.

When a merge failed, we analyzed each of its conflicting
chunks to record the size of each of its respective versions,
as well as the language constructs that were part of each of
those versions. By doing this manually, we identified cases
where a naïve line-by-line comparison would record some-
what superficial conflicts. For instance, some conflicts were
the result of whitespace, something a pass of a code beau-
tifier before merge could easily address. More importantly,
however, we could identify the situation that is illustrated
in Fig. 3. From the original merge result (shown at the bot-
tom as performed manually by the developer), we deduce
that the situation was one in which a pair of developers
each added a method, only one of which was needed, but
in somewhat adjusted form. Thus, the conflict does not
concern all four of method signature, return statement, method
invocation, and variable, as a naïve approach may have pos-
sibly documented, but just two method declarations: adjust-
SeekIndex and reset. Thus, this conflict was recorded as a
method declaration kind of conflict. This situation arose mul-
tiple times, in various forms involving different language
constructs. In each of the cases it turned out that the outer-
most language construct (typically a language declaration,
but sometimes also a for or an if) was the governing con-
cern regarding the conflict and its resolution. As a rule,
then, we documented the outermost language constructs
involved in each of the conflicting chunks we found, with
a language construct being considered outermost if it be-
longs to the conflicting chunk and its parent node in the
AST does not belong to the same conflicting chunk. The
only exception we made was assignment, which was ob-
structing other more relevant language constructs. In the
case of assignment, we considered its children as outermost.
Note that, from here on out and for reasons of brevity, we
will use the term language constructs in our results to refer
to outermost language constructs as defined here.

We also examined every conflicting chunk and its orig-
inal merge resolution to understand how developers chose
to resolve the conflict that was present. We categorized this
choice as V1, V2, CC, CB, NC, or NN (as defined in Section
2.1). For example, Fig. 3 includes a resolution in which the
developer chose only a few lines across both versions, and

@Override

version 1 version 2
protected int adjustSeekIndex(int i) {
 return skipOffTokenChannels(i);

public void reset() {
 super.reset();
 p = nextTokenOnChannel(p, channel);

}

merge resolution
@Override
protected int adjustSeekIndex(int i) {
 return nextTokenOnChannel(i, channel);
}

Fig. 3. Conflicting chunk of merge 18f535 (common ancestor ea7037) and its new code resolution in ANTLR4.

6

changed a line from “return skipOffTokenChannels(i);” to
“return nextTokenOnChannel(i, channel);”. Thus, the devel-
oper decision was NC.

We extracted developer decisions from the commit im-
mediately after the failed merge, which is the merge com-
mit. However, to account for situations in which develop-
ers postponed a resolution, either by choosing NN and
manually integrating the changes without tool support
later or by choosing one version (usually theirs) and ignor-
ing the other developer’s changes until a later time when
they integrate them manually, we did not only analyze the
immediate next commit, but also any commits up to one
month after the original commit. If such a later commit
changed the code of the merge commit, we examined if it
represented a postponed resolution by verifying if any
code from the conflict was now included. This occurred in
a few cases, six times to be precise. The raw data used in
the manual analysis is available at http://gems-
uff.github.io/merge-nature.

2.4 Data Collection Procedure for Automated
Analysis

To perform a large-scale, automated analyses of merge fail-
ures, we first used the GitHub API to select 1,997,541 pro-
jects out of the set of projects residing in its repository. Our
initial target was 2 million projects, but a handful of unex-
plained data collection failures led to a slightly smaller in-
itial set. For each of the projects, we collected the last time
it was updated, the size of its development team, and the
size of its source code as written in the programming lan-
guages used in the project (e.g., 57% Java, 36% C#, 7%
XML).

Next, we selected all active Java projects from this sam-
ple. A project was classified as active if it was updated at
least once after January 2015 and before our data collection
date of March 2016. A project was considered as Java if the
percentage of source code written in Java was greater than
the percentage of code written in any of the other lan-
guages. For instance, a software project having 34% of its
code in Java, 33% in C, and 33% in HTML was included.
After filtering the projects in our sample according to these
criteria, 13,576 projects remained.

We then cloned the repositories of these projects and re-
played the merges (960,366 of them) using the same proce-
dure as in the manual analysis. Each merge commit was
classified as failed or successful by identifying the parents
of its merged version, redoing the merge of these parents,
and observing if a conflict arose. When the merge did not
lead to a conflict, it was discarded.

As our last step, we discarded projects that were forks
of other projects in our dataset or whose conflicts did not
appear in their Java files (for example appearing in the C#
or XML files instead). Projects that were forks were dis-
carded to avoid counting the same merge multiple times,
since forks share parts of the history of their source project.
Projects without a Java conflict were discarded for the ob-
vious reason. This led to 2,731 projects with 25,328 failed
merges and 175,805 conflicting chunks.

Having these projects in hand, we implemented a num-

ber of scripts to extract the data that we had previously ex-
tracted manually for the five projects. The scripts were de-
signed and implemented based on our experience with the
manual analysis, and incorporated the practices we estab-
lished there. For instance, the scripts ignore formatting
characters such as blank spaces and line breaks. As another
example, when a conflict involved nested language con-
structs (e.g., variable and method invocation inside a for state-
ment) the scripts record the outermost language construct
only (e.g., the for statement).

At the core, the scripts replay each failed merge to: (1)
analyze it for the number of conflicting chunks, size of the
chunks, and outermost language constructs involved, and
(2) analyze it in the context of the merge commit to figure
out the resolution that was used. These analyses are largely
straightforward, though nuances exist that have to be con-
sidered. For instance, the context lines delineating each
chunk can generally be found in the merge commit, but if
not, we assume that the developer manually performed
edits that cross the chunk border (and thus lead to NC as
the resolution we mark for this chunk). As another exam-
ple, the code in conflicting chunks can generally be parsed
fine, but sometimes fails when the developer provided in-
complete or faulty code. In such cases, the scripts resort to
using Eclipse’s AST error recovery mechanism to ignore
the language constructs that exhibit syntax error and cor-
rectly collect the remaining language constructs. A more
intricate example pertains to a situation where some lines
of code from one of the versions are used more than once
in the resolution. In that case, as long as no new code has
been written elsewhere, we would classify the resolution
as CB. For additional detail, all scripts and the raw data are
available at http://gems-uff.github.io/merge-nature.

3 RESULTS

This section presents our results, organized per each of the
analyses outlined in the previous section. For each analy-
sis, results of the manual analysis are discussed first, fol-
lowed by results from the automated analysis.

3.1 What is the distribution in number of
conflicting chunks for merge failures?

Concerning the manual analysis, Fig. 4 shows the num-
ber of failed merges involving different numbers of con-
flicting chunks. Most failed merges involved just four or
fewer conflicting chunks (111 out of 147, 76%) and more
than half involved merely one or two (87 merges, 59%).
Such low numbers provide initial hope that opportunities
may exist for newly designed merge tools. This, of course,
depends on the nature of the conflicting chunks, as fewer
chunks does not necessarily mean less complicated resolu-
tions. We return to this topic in subsequent analyses. Four
failed merges involved more than 20 chunks each, with one
of them involving as many as 39. Manual inspection of
these revealed that they are very complex merges, all re-
quiring code from both versions that was significant ad-
justed, as well as entirely new code that was written.

The automated analysis led to the distribution pre-
sented in Fig. 5. Similar to the manual analysis, most failed

 7

merges in the 2,731 projects have few conflicting chunks:
40% of the failed merges have a single conflicting chunk
and 90% have 10 or fewer. The remaining 10% had 11 or
more chunks, with the maximum an astounding 10,315
chunks (merge 7a9c34 of project Jnario, which was the re-
sult of a conflict between a set of feature enhancements and
refactorings on one branch and a major framework up-
grade on the other branch).

Fig. 4. Histogram of conflicting chunks (manual analysis).

Fig. 5. Histogram of conflicting chunks (automated analysis).

Because a single failed merge may involve multiple
files, we analyzed how the conflicting chunks are distrib-
uted over files. We found that 62% of the conflicting files
have just one conflicting chunk and 95% of the conflicting
files have five or fewer conflicting chunks. Just in rare cases
(less than 0.4%), an individual file has more than 20 con-
flicting chunks.

3.2 What is the distribution in size of conflicting
chunks, as measured in lines of code (LOC)?

Fig. 6 shows the relationship between the number of lines
of code in version 1 and the number of lines of code in ver-
sion 2, for each conflicting chunk (with the bottom left rec-
tangle of the left figure blown up in the right figure) for the
manual analysis. First, we note the range that exists: the
number of lines of code that are in conflict in version 1 var-
ies from 0 to 313, and in version 2 from 0 to 270. 96% of the
conflicting chunks, however, have less than 50 LOC in both
version 1 and version 2. This means that developers have at
most 100 LOC in total to examine to resolve these chunks.
When we focus on chunks with at most five LOC in each
version, this still accounts for 51% of the cases, meaning
that in over half of the conflicting chunks, developers have
to look at merely ten LOC total. Note that in several cases
one of the versions in the chunk has zero LOC; this is the

result of conflicts where one version involves deleting
some lines of code, with some or all of those being changed
in the other version.

We also observe that it is relatively rare for the two ver-
sions of a conflicting chunk to both have high LOC. Just six
out of 616 chunks have more than 50 LOC in both versions,
and 18 have more than 50 LOC in one version and fewer
than or equal to 50 in the other. Table 2 provides an alter-
native view, examining the median size (Median), average
size (Mean), and standard deviation (Std) of the conflicting
changes in version 1 and version 2, per project. Version 1 rep-
resents the larger average change in all projects, except
MCT. MCT also stands out in terms of the average size of
its conflicting chunks: they are much larger than the other
systems. This is perhaps not surprising, given the high
number of lines of code added per commit for MCT, which
a separate calculation reveals on average to be 467.74. Still,
as compared to the other projects (ANTLR4 427.74; Twit-
ter4J 205.79; Voldemort 197.94; Lombok 104.97), this does
not entirely explain the difference, especially with respect
to ANTLR4, which has the smallest average size per con-
flicting chunk yet the second-largest average number of
added lines of code per check-in.

Fig. 6. LOC in version 1 versus 2 (manual analysis).

TABLE 2

AVERAGE SIZE OF CONFLICTING CHUNKS

Project
Version 1 Version 2

Median Mean Std Median Mean Std

ANTLR4 3 6.20 9.56 2 5.97 11.68

Lombok 4.5 6.73 17.26 7 4.85 9.31

MCT 2 20.57 50.18 2 26.72 54.28

Twitter4J 3 14.58 39.99 4 9.08 13.52

Voldemort 2 7.77 25.41 3 7.40 12.38

Results from our automated analysis support the man-
ual analysis, as shown in Fig. 7. 94% of the conflicting
chunks have up to 50 LOC in each version (165,616 out of
175,805), 68% have up to ten LOC in each, and slightly over
half (50%) five or fewer. At the other end of the spectrum,
0.05% of the chunks have more than 2,000 LOC in each ver-
sion, with the extreme case involving 13,035 and 14,074
LOC, respectively (merge 310dbe of project ThingML).
Across all 175,805 conflicting chunks, 4,147 (2%) involve
more than 50 LOC in both versions, while 6,042 (3%) have
more than 50 LOC in one version and less than 50 LOC in
the other. Further examination indicates that a subset of

8

projects is responsible for these excesses. While 700 pro-
jects (26%) have at least one chunk with both versions in-
volving more than 50 LOC, only 95 projects (3%) have
more than ten such chunks and just four projects have over
a hundred such chunks. In absolute terms, the Wro4J4 pro-
ject has the highest number: 179 (9%) of its conflicting
chunks have more than 50 LOC in each version. In relative
terms, Axis2/java5 and StatET6 are the worst: 39% and
42% of their conflicting chunks have at least 50 LOC in both
versions, respectively.

Fig. 7. LOC in version 1 versus 2 (automated analysis).

The average size across all projects of version 1 is 19.5
LOC and version 2 27.6 LOC, with average standard devia-
tions of 20.6 and 28.6 LOC, respectively, and median size
of 2.0 and 2.5 LOC. Overall, the numbers show that some
large chunks drag the mean size upwards and increase the
standard deviation, despite the majority of chunks having
less than three lines of code in one or both versions.

3.3 What is the distribution in language constructs
involved in conflicting chunks?

Starting the discussion with the manual analysis, Table 3
presents the number of conflicting chunks per number of
language constructs. Almost all chunks consist of up to
four language constructs (594 of 616, 96%). The low num-
ber of language constructs involved is not surprising,

given our decision to only record the outermost language
constructs (see Section 2.3). Because the code in either ver-
sion of a single chunk is contiguous, it is rare for there to
be lots of outermost language constructs. Table 3, thus,
should be interpreted as the distribution of how many lan-
guage constructs are the primary reason for a conflict (e.g.,
a for loop has been added, an if statement has been added,
a non-nested for loop and if statement have been added).

TABLE 3

NUMBER OF CONFLICTING CHUNKS PER NUMBER OF LANGUAGE

CONSTRUCTS (MANUAL ANALYSIS)

Language

constructs

Conflicting chunks

ANTLR4 MCT Lombok Voldemort Twitter4J Total

1 30 (41%) 28 (61%) 29 (49%) 183 (53%) 50 (54%) 320 (52%)

2 25 (34%) 6 (14%) 21 (36%) 95 (28%) 23 (25%) 170 (28%)

3 10 (14%) 7 (15%) 7 (12%) 32 (9%) 10 (11%) 66 (11%)

4 6 (8%) 2 (4%) 0 (0%) 24 (7%) 6 (6%) 38 (6%)

5 1 (1%) 1(2%) 1 (2%) 9 (3%) 3 (3%) 15 (2%)

6 1 (1%) 2 (4%) 1 (2%) 0 (0%) 0 (0%) 4 (1%)

7 1 (1%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 2 (0%)

8 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 1 (0%)

We note that 52% of conflicting chunks involve a single
language construct and 80% just one or two. Because a lim-
ited set of language construct combinations occur fre-
quently (see below), we believe this suggests that an explo-
ration of specialized merge techniques that deal with few
language constructs is an important direction forward. For
instance, consider the conflict in Fig. 8, taken from the
Twitter4J project. A traditional merge technique cannot re-
solve this conflict, because the same area was edited in par-
allel. A tailored merge technique that understood that the
two if statements address different conditions may suggest
concatenating the two (which is indeed the resolution that
the developer chose).

We analyzed which language constructs occurred most
frequently in conflicting chunks and contrasted the results
with the frequency of the language constructs across the
whole code base (based on the most recent version of each
project). Table 4 presents the results, when focusing on a
single language construct at a time. The symbol ä is used
when the percentage of a language construct across the
conflicting chunks is lower than across the whole code
base, with the symbol ã signaling the opposite. The seven
language constructs listed in Table 4 represent nearly 80%
of the language constructs in conflicting chunks. The three
most frequently involved language constructs (method in-
vocation, variable, and method declaration) together account

}

version 1 version 2
if (!json.isNull("lang")) {
 lang = getUnescapedString("lang", json);

if (!json.isNull("scopes")) {
 JSONObject s… = json.getJSONObject("scopes");
 if (!s….isNull("place_ids")) {
 JSONArray p… = s….getJSONArray("place_ids");
 int len = p….length();
 String[] placeIds = new String[len];
 for (int i = 0; i < len; i++) {
 placeIds[i] = p….getString(i);
 }
 scopes = new ScopesImpl(placeIds);
}

}

Fig. 8. Conflicting chunk from merge 3a3869 (common ancestor 6b1485) of project Twitter4J.

 9

for over 50% of the language constructs in conflicting
chunks.

TABLE 4

MOST FREQUENT LANGUAGE CONSTRUCTS (MANUAL ANALYSIS)

Language

construct

Occurrences

Conflicting chunks Source code

Method invocation 252 (22%) 250,469 (39%) ä

Variable 208 (18%) 104,410 (16%) ã

Method declaration 118 (10%) 40,171 (6%) ã

Comment 112 (10%) 44,983 (7%) ã

If statement 97 (9%) 21,646 (3%) ã

Import 64 (6%) 33,408 (5%) ã

Method signature 62 (5%) 40,171 (6%) ä

Table 5 provides a refined view, listing the most fre-
quent kinds of conflicts (per the definition in Section 2.1).
Method invocation, the top language construct in Table 4, is
often not a standalone change, but one that has other
changes surrounding it. It appears alone a mere 63 out of
252 times, with all other occurrences in combination with
other language constructs. The same is true for variable: 37
individual occurrences are complemented by 58 combina-
tions with method invocation, 19 occurrences with if state-
ment and method invocation, and others.

TABLE 5

MOST FREQUENT KINDS OF CONFLICTS (MANUAL ANALYSIS)

Kind of conflict Occurrences Percentages

Method invocation 63 10%

Import 60 9%

Method invocation, variable 58 9%

Method declaration 57 9%

Variable 37 6%

If statement 20 3%

Method signature 19 3%

If statement, method invocation, variable 19 3%

A particularly interesting example is method invocation,
variable, which represents a combination of the two most
frequent language constructs in Table 4. We found that the
conflict most often concerned a method call to initialize or
assign a value to a variable, with the conflict being one ver-
sion changing the method being called and the other ver-
sion changing the variable name. The last line of Table 5
represents an ‘expansion’ of this combination: this kind of
conflict frequently captures the initialization of a variable
depending on the condition of an if statement.

Excluding import, which by virtue of where it must ap-
pear in the source code nearly always occurs alone in a con-
flicting chunk, other language constructs occur as part of
kinds of conflicts that involve multiple language con-
structs over 50% of the time. While this is on one hand en-
couraging, in that it means different kinds of conflicts exist
that can perhaps be addressed through special techniques

tailored to each, our results show that the payoff of doing
so diminishes relatively quickly. For instance, consider the
if statement, method invocation, variable kind of conflict
which is the eight-most frequent (Table 5; 19 out of 616 to-
tal chunks, or 3%). Amortized across the many projects un-
der development today, 3% represents a non-trivial effort
that can be eased, but as we move to 25th most or 50th most
frequently occurring kind of conflict, the benefits decline
rapidly, appearing only in 0.6% and 0.3% of the times, re-
spectively. After the 50th most frequently occurring kind of
conflict, all kinds of conflict occur just once.

We extracted association rules involving language con-
structs occurring together in conflicting chunks. Table 6
shows these association rules, presented in the form of “A
à B” and as measured in terms of support (s%), confidence
(c%), and lift (L). For instance, the association rule if state-
ment, variable à method invocation has 80% confidence,
meaning that 80% of the chunks that include if statement
and variable also have method invocation. In addition, the lift
for this rule is 1.96, which means that the occurrence of if
statement and variable increases the probability of method in-
vocation in the same chunk by 96%. Table 6 only includes
association rules that have minimum absolute support of
12 (2%) occurrences and at least 50% confidence. The rules
are ordered by lift and only the top ten rules according to
these criteria are shown.

TABLE 6

 RELATION AMONG LANGUAGE CONSTRUCTS THAT BELONG TO

CONFLICTING CHUNKS, SHOWING SUPPORT (SUP.), CONFIDENCE

(CON.) AND LIFT (MANUAL ANALYSIS)

Association rule Sup. Con. Lift

Annotation à method declaration 3% 64% 3.34

For statement à variable 2% 67% 1.97

If statement, variable à method invocation 6% 80% 1.96

Comment, method invocation à variable 4% 66% 1.95

If statement, method invocation à variable 6% 62% 1.84

Method invocation, method signature à variable 2% 58% 1.73

Method signature, variable à method invocation 2% 70% 1.71

Try statement à method invocation 4% 69% 1.70

Return statement à method invocation 3% 69% 1.69

Try statement, variable à method invocation 2% 68% 1.67

These association rules give further meaning to the re-
sults presented in Table 4, and particularly provide direc-
tionality to the co-occurrences shown in Table 5. As such,
they may help in formulating new heuristics that explore
these directionalities. Consider the conflicting chunk pre-
sented in Fig. 9, which is covered by the association rule
return statement à method invocation. The conflict could not
be automatically resolved, because each version uses a dif-
ferent method invocation. A heuristic that examines the re-
turn type of the corresponding method declarations and, if
they differ, selects the method invocation that matches the
type expected to be returned may be able to assist devel-

+ categorySlug + "/members.json");

version 1 version 2
return factory.createUserListFromJSONArray(res); return factory.createUserList(res.asJSO…(), res);

}

Fig. 9. Conflicting chunk extracted from Twitter4J project resulting of the merge 98caafc (common ancestor 5a6648).

10

opers in the resolution of this conflict. While such a heuris-
tic would not solve all conflicts involving the association
rule return statement à method invocation, given the confi-
dence of 69% and lift of 1.69, offering the heuristic as an
option for the developer to automatically perform can sig-
nificantly reduce effort.

The automated analysis confirms all the results from our
manual analysis, with just minor variations (see Table 7).
Half the conflicting chunks have a single language con-
struct, 72% have one or two constructs, and 90% have up
to four constructs – numbers that are remarkably similar.
Method invocation is the most frequent language construct,
appearing alone in 8% of the 175,805 conflicting chunks
and in combination with other language constructs in 12%
of the chunks (for a total of nearly 20%, a number just be-
low the 23% of the manual analysis). The seven most fre-
quent language constructs appearing individually are the
same for both the manual and automated analysis, alt-
hough they occupy different positions when ordered by
frequency of appearance (see Table 8). The eight kinds of
conflicts identified as most frequently appearing in Table
5 are also among the ten most frequently appearing ac-
cording to the automated analysis.

TABLE 7

NUMBER OF CONFLICTING CHUNKS PER NUMBER OF LANGUAGE

CONSTRUCTS (AUTOMATED ANALYSIS)

Language

constructs

Conflicting

chunks

1 87,899 (50%)

2 39,317 (22%)

3 19,875 (11%)

4 12,505 (7%)

5 7,064 (4%)

6 4,247 (2%)

7 2,498 (1%)

8 1,236 (1%)

TABLE 8

MOST FREQUENT LANGUAGE
CONSTRUCTS (AUTOMATED ANALYSIS)

Language construct
Frequency among

Language Constructs

Frequency among

Kinds of Conflicts

Method invocation 75,045 (20%) 13,549 (7%)

Variable 64,613 (17%) 8,229 (4%)

Commentary 55,081 (14%) 19,447 (11%)

If statement 32,943 (8%) 7,570 (4%)

Import 24,267 (6%) 20,538 (11%)

Method signature 23,177 (6%) 3,606 (2%)

Method declaration 20,500 (5%) 3,632 (2%)

Annotation 12,458 (3%) 1,191 (0.6%)

Return statement 11,227 (3%) 207 (0.1%)

For statement 5,771 (1%) 299 (0.1%)

Some differences could be found in the association rules

derived from the automated analysis as compared to the
manual analysis. Shown in Table 9 as ordered by lift and
having support greater or equal to 2%, we notice the lack
of control flow commands, except for return. Common
across all relations, however, are the involvement of method
invocation, signature, and declaration, indicating that these

are core language constructs involved in many different
kinds of conflicts and thereby implying that it likely is chal-
lenging to devise new merge techniques or heuristics that
focus solely on one of those language constructs in isola-
tion. It instead is more likely that combinations must be
addressed by specialized approaches.

TABLE 9

 RELATION AMONG LANGUAGE CONSTRUCTS THAT BELONG TO

CONFLICTING CHUNKS, SHOWING SUPPORT (SUP.), CONFIDENCE

(CON.) AND LIFT (AUTOMATED ANALYSIS)

Association rule Sup. Con. Lift

Method declaration, Method invocation à Method

signature, Variable

2% 58% 8.2

Method signature, Variable à Method declaration,

Method invocation

2% 33% 8.2

Method invocation, Method signature àMethod dec-

laration, Variable

2% 28% 6.5

Method declaration, Variable à Method invocation,

Method signature

2% 53% 6.5

Method declaration, Method invocation àMethod

signature

3% 74% 5.6

Method signature à Method declaration, Method in-

vocation

3% 22% 5.6

Method signature à Method declaration, Method in-

vocation, Variable

2% 18% 5.5

Method declaration, Method invocation, Variable à

Method signature

2% 72% 5.5

Method invocation, Method signature à Return state-

ment

3% 33% 5.2

Return statement à Method invocation, Method sig-

nature

3% 43% 5.2

3.4 What, if any, patterns exist in the language
constructs of failed merges involving multiple
conflicting chunks?

When a failed merge involves multiple chunks, it might be
that certain dependencies exist that are indicative of strat-
egies that could help resolve the conflict. For instance, Fig.
10 depicts a case in which it is desirable to resolve chunk A
before chunk B, as the change in the signature of the create-
Field method affects its invocation. Consequently, attempting
to resolve chunk B first is likely less ineffective. To deter-
mine whether opportunities may exist for new merge tools
to exploit this and other patterns, we first collected the data
presented in Table 10 for the manual analysis. We deter-
mined the presence of dependencies (“with dependen-
cies”) by manually searching ('using ‘grep’) for usage of
the same identifier across different chunks.

Across the five projects we analyzed, the percentage of
failed merges that involve multiple conflicting chunks and
exhibit dependencies among two or more of these chunks
varies from 14% to 46%. To assess if any commonality ex-
ists, Table 11 presents the most frequent association rules
for conflicts with multiple chunks, ordered by lift and with
support and confidence thresholds of 10% and 50%, re-
spectively. Table 11 is similar to Table 6, but instead of
providing results for individual chunks, it presents associ-
ation rules for entire failed merges. In line with the intra-
chunk analysis performed previously, method-related lan-
guage constructs again appear frequently on both sides of
the rules. Comments, imports, conditional statements, and

 11

variables are also common.

TABLE 10

 DEPENDENCIES IN FAILED MERGES (MANUAL ANALYSIS)

Projects
Failed merges

Total With multiple chunks With dependencies

ANTLR4 22 12 (55%) 3 (14%)

Lombok 14 9 (64%) 3 (21%)

MCT 18 9 (50%) 4 (22%)

Twitter4J 36 21 (58%) 6 (17%)

Voldemort 57 41 (72%) 26 (46%)

Total 147 92 (63%) 42 (29%)

As compared to the association rules presented in Table
6, the association rules in Table 11 appear more complex as
they involve more language constructs on both sides of the
association rules. It may therefore not be as easy to explore
any patterns that exist. Taking a closer look, however, we
note the presence of method declaration or method signature
in each of the rules, indicating that changes in method
names, parameters, and return types appear to drive cross-
chunk dependencies. The presence of comments, imports,
and if statements in the association rules of Table 11 can be
explained, then, by their semantic relation with methods
(to explain a method, to point to the package containing
types used in a method signature, and to denote condi-
tional calls to a method). Therefore, it may still be possible
that resolving the conflict by focusing on the method dec-
laration first could gather useful information that a merge
tool could take advantage of, in the best case automating
the rest of the resolution necessary.

TABLE 11

RELATION AMONG LANGUAGE CONSTRUCTS THAT BELONG TO

FAILED MERGES, SHOWING SUPPORT (SUP.), CONFIDENCE

(CON.) AND LIFT (MANUAL ANALYSIS)

Association rule Sup. Con. Lift

Import, method invocation, variable à if statement,

method declaration

10% 68% 4.01

If statement, method declaration à import, method in-

vocation, variable

10% 60% 4.01

Comment, if statement, variable à method invoca-

tion, method signature

12% 71% 4.00

Method invocation, method signature à comment, if

statement, variable

12% 65% 4.00

If statement, import à method declaration, method in-

vocation, variable

10% 79% 3.87

Method declaration, method invocation, variable à if

statement, import

10% 50% 3.87

Comment, method declaration, variable à method in-

vocation, method signature

12% 68% 3.84

Method invocation, method signature à comment,

method declaration, variable

12% 65% 3.84

Import, method invocation à if statement, method

declaration, variable

10% 63% 3.83

Method invocation, method signature à comment,

method declaration, variable

12% 65% 3.84

This naturally leads to the observation that resolution of
failed merges involving multiple conflicting chunks may
be easier if the chunks are addressed in a particular order.
In Fig. 11, for instance, in resolving the conflict in the
method signature a developer makes decisions that lead to a
single possible resolution for the chunk that declares the

}

version 1 version 2
private static FieldDeclaration
 createField(LoggingFramework framework,
 Annotation source,
 ClassLiteralAccess loggingType,
 String logFieldName,
 boolean useStatic) {

public static FieldDeclaration
 createField(LoggingFramework framework,
 Annotation source,
 ClassLiteralAccess loggingType,
 String loggerCategory) {

int pS = source.sourceStart, pE = source.sourceEnd;

Conflicting chunk A

ClassLiteralAccess loggingType = selfType(owner, source);

version 1 version 2
FieldDeclaration field = createField(framework,
 source,
 loggingType,
 logFieldNa…,
 useStatic);

FieldDeclaration field = createField(framework,
 source,
 loggingType,
 loggerCat…);

fieldDeclaration.traverse(new SetGeneratedByVisitor(source), typeDecl.staticInitializerScope);

Conflicting chunk B

Fig. 10. Dependent chunks of merge f956ba (common ancestor 7d5184) from project Lombok.

// public List<Integer> states;

version 1 version 2
…
public int s = -1;
public Token start, stop;

public Symbol start, stop;
…
public int ruleIndex;

/** Set during parsing to identify which alt of rule parser is in. */

Conflicting chunk A

}

version 1 version 2
public Token getStart() { return start; }
public Token getStop() { return stop; }

…
public Symbol getStart() { return start; }
public Symbol getStop() { return stop; }
…

/** Used for rule context info debugging during parse-time, not so much for ATN debugging */

Conflicting chunk B

Fig. 11. Dependent chunks of merge 92ae0f (common ancestor 542e70) from project ANTLR4.

12

variables. Similar kinds of scenarios could arise for method
signatures and invocations, return statements and return
types specified in method signatures, changes in parame-
ters (order or type), and so on. While many of the failed
merges will require decisions from developers as part of
their resolution, properly ordering the chunks so that deci-
sions are taken in a sequence that allows automating or
providing guidance for the following steps may prove to
be a useful strategy for the next level of automated merge
assistance.

Table 12 presents the association rules extracted by the
automated analysis. Though these rules are not exactly the
same as those found by the manual analysis, their essence
is very similar: we still observe the omnipresence of method
declaration as combined with method invocation, com-
ments, variables, and conditional statements. Thus, the
strategy of ordering the resolution of conflicting chunks to
increase our ability to provide automatic resolution or
guidance applies to the results found by the automated
analysis.

TABLE 12

ASSOCIATION RULES OF MERGES WITH HIGHEST LIFT
(AUTOMATED ANALYSIS)

Association rules Sup. Con. Lift

If statement, Method declaration, Method invocation

à Comment, Method signature, Variable

10% 67% 4.02

Comment, Method signature, Variable à If statement,

Method declaration, Method invocation

10% 53% 4.02

If statement, Method declaration à Comment,

Method invocation, Method signature, Variable

10% 64% 3.99

Comment, Method invocation, Method signature, Var-

iable à If statement, Method declaration

10% 55% 3.99

Comment, Method invocation, Method signature à If

statement, Method declaration, Variable

10% 52% 3.99

If statement, Method declaration, Variable à Com-

ment, Method invocation, Method signature

10% 68% 3.99

If statement, Method declaration à Comment,

Method signature, Variable

11% 65% 3.93

Comment, Method signature, Variable à If statement,

Method declaration

11% 54% 3.93

If statement, Method declaration à Comment,

Method invocation, Method signature

11% 65% 3.83

Comment, Method invocation, Method signature à If

statement, Method declaration

11% 53% 3.83

3.5 What is the distribution of developer
decisions?

Table 13 shows that, across all 616 conflicting chunks stud-
ied in the manual analysis, a primary choice that develop-
ers make is to select one of the versions, either version 1 (V1,
21%) or version 2 (V2, 35%). This was, to us, an unexpected
result. Given all the commentary and folklore surrounding
the merge problem and how difficult it is said to be to re-
solve merge conflicts [4], [21], we had expected new code
(NC) to be the most common choice. It is not: only 19% of
chunks are resolved by writing some new code as part of
the resolution. This means that a full 81% of the conflicting
chunks are resolved using only the contents from the code
contained within the chunk without actually adding or ed-

iting lines of code (V1, V2, CC, and CB; note that NN is neg-
ligible, because it occurs so infrequently). While this does
not necessarily mean that doing so is trivial, it does mean
that merge resolution through one of these four strategies
could be supported not by yet more automation, but per-
haps by tool support that assists developers in making one
of these four choices in the first place and, in case of CC
and CB, by helping them select and order the necessary
lines of code.

TABLE 13

HOW DEVELOPERS RESOLVE CONFLICTS (MANUAL AND AUTO-

MATED ANALYSIS)

Developer decision Manual analysis Automated analysis

Version 1 21% 50%

Version 2 35% 25%

Concatenation 12% 3%

Combination 13% 9%

New Code 19% 13%

None 0% 0%

Fig. 12 breaks down Table 13 by project, offering several
interesting insights. First, the maximum amount of resolu-
tions involving NC is 26%, which, while above the average
of 19%, still reinforces that, for each of the projects, a ma-
jority of conflicting chunks is resolved without writing
new code. Second, significant differences exist across pro-
jects. For instance, the dominant choice of V2 in Voldemort
(45%) is contrasted by a mere 4% in MCT. MCT, on the
other hand, has a high percentage of resolutions involving
CB, especially when compared to Voldemort, where this
choice was rarely made. The presence of such unique
trends might be useful when it comes to supporting devel-
opers, at a minimum by informing them of such tenden-
cies, but it may also be possible to auto-select them based
on certain factors.

Fig. 12. How conflicting chunks are resolved in each project.

We also analyzed resolution choices per developer. One
pattern immediately stood out: for four of the projects, a
single developer resolved the majority of the conflicts, de-
spite the fact that the projects had code contributions from
13 to 84 developers. This is not out of line with the histori-
cal open source practice of numerous contributors submit-
ting patches, but few having commit privileges to integrate
the patches into the main repository. ANTLR4 as well as
Lombok seem to have a pair of developers that assume that
role, whereas in Voldemort the responsibility appears
more divided (with four to six developers resolving most

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Version	1 Version	2 Concatenation Combination New	code None

ANTLR4 MCT Lombok Twitter4j Voldemort Total

 13

merge failures).
This information is summarized in Table 14, which lists,

per project, all developers who performed at least one
merge, the number of conflicting chunks each developer
resolved (CH), the percentage of each decision (V1, V2, CC,
CB, NC, NN) that each developer took, and the percentage
of conflicting chunks that they resolved in each project (To-
tal). The last column sums up to 100% for each project.

TABLE 14

HOW EACH DEVELOPER RESOLVES CONFLICTING CHUNKS

Project Developer CH V1 V2 CC CB NC NN Total

ANTLR4 Terence Parr 28 25% 21% 14% 14% 25% 0% 38%

ANTLR4 Sam Harwell 46 24% 17% 11% 22% 26% 0% 62%

Lombok Roel Spilker 13 0% 46% 23% 31% 0% 0% 22%

Lombok R. Zwitserloot 46 22% 17% 7% 30% 24% 0% 78%

MCT Peter B. Tran 1 0% 100% 0% 0% 0% 0% 2%

MCT Dan Berrios 3 0% 0% 67% 33% 0% 0% 7%

MCT C. Webster 4 0% 0% 0% 25% 75% 0% 9%

MCT Victor Woeltjen 38 29% 3% 16% 34% 18% 0% 83%

Twitter4J danaja 1 100% 0% 0% 0% 0% 0% 1%

Twitter4J jsirois 2 100% 0% 0% 0% 0% 0% 2%

Twitter4J John Corwin 3 33% 67% 0% 0% 0% 0% 3%

Twitter4J Takao Nakaguchi 5 0% 80% 0% 0% 20% 0% 5%

Twitter4J Yusuke Yamamoto 82 29% 32% 11% 15% 12% 1% 88%

Voldemort Ismael Juma 2 0% 0% 50% 0% 50% 0% 1%

Voldemort Jay Kreps 6 0% 33% 0% 0% 67% 0% 2%

Voldemort Vinoth Chandar 6 50% 0% 17% 0% 33% 0% 2%

Voldemort Neha 7 0% 100% 0% 0% 0% 0% 2%

Voldemort Alex Feinberg 20 45% 50% 0% 0% 5% 0% 6%

Voldemort Lei Gao 26 31% 46% 8% 0% 15% 0% 8%

Voldemort Kirk True 44 14% 34% 18% 18% 16% 0% 13%

Voldemort Chinmay Soman 49 16% 51% 18% 4% 10% 0% 14%

Voldemort Roshan Sumbaly 87 10% 41% 8% 11% 29% 0% 25%

Voldemort Bhupesh Bansal 97 19% 51% 11% 2% 16% 1% 28%

Several developers had no clear preference in resolution
decisions, employing a variety of them, but others appear
more likely to resolve conflicts in the same manner. For in-
stance, developer Lei Gao resolved almost 50% of conflict-
ing chunks by choosing V2, while Yusuke Yamamoto used
V1 and CB in approximately 30% of the cases each. Such
patterns may be related to specific developers or project
policies, but may also be related to conflict-specific charac-
teristics – for instance resolving all conflicting chunks in a
single failed merge in the same way by choosing one ver-
sion, each time. Examples exist, however, of failed merges
in which developers use a variety of strategies. For in-
stance, facing a failed merge (970260) involving 28 conflict-
ing chunks in Voldemort, developer Roshan Sumbaly
chose V1 four, V2 12, CB five, and NC seven times, respec-
tively.

We assessed whether the number of conflicting chunks
in a failed merge had any effect on developer decisions as
to how to resolve the conflicts. Table 15 shows the results,
with a clear shift visible from V1 and V2 being a more fre-
quent choice when fewer conflicting chunks are present to
CB and NC in case of higher numbers of conflicting chunks.
Lombok, especially, has 70% of chunks resolved by CB or
NC for merges involving 16 or more chunks; MCT, too, has

64% of its merges involving six to 15 conflicting chunks re-
solved by CB or NC (as Twitter4J and ANTLR4, MCT has
no failed merges of 16 or more conflicting chunks). Twit-
ter4J represents an interesting exception: only 27% of its
failed merges involving six to 15 conflicting chunks used
CB or NC. Again, this shows that projects may exhibit in-
dividual characteristics that may possibly be exploited.

TABLE 15

DISTRIBUTION OF DEVELOPER DECISIONS BY CONFLICTING

CHUNKS, GROUPED BY THE RANGES FOR THE NUMBER OF

CHUNKS (#CHUNKS), THE NUMBER OF FAILED MERGES IN THE

RANGE (FM), AND THE TOTAL NUMBER OF CHUNKS IN THE

RANGE (TOTAL)

Project #Chunks FM Total V1 V2 CC CB NC NN

ANTLR4 1 10 10 30% 30% 10% 10% 20% 0%

ANTLR4 2 4 8 38% 38% 25% 0% 0% 0%

ANTLR4 3-5 5 19 32% 11% 5% 16% 37% 0%

ANTLR4 6-15 3 37 16% 16% 14% 27% 27% 0%

ANTLR4 16+ 0 0 - - - - - -

Lombok 1 9 9 22% 33% 33% 11% 0% 0%

Lombok 2 2 4 0% 0% 50% 25% 25% 0%

Lombok 3-5 4 15 13% 7% 7% 47% 27% 0%

Lombok 6-15 2 14 36% 43% 0% 14% 7% 0%

Lombok 16+ 1 17 6% 24% 0% 41% 29% 0%

MCT 1 5 5 0% 20% 0% 40% 40% 0%

MCT 2 6 12 8% 8% 42% 17% 25% 0%

MCT 3-5 1 4 50% 0% 50% 0% 0% 0%

MCT 6-15 2 25 32% 0% 4% 44% 20% 0%

MCT 16+ 0 0 - - - - - -

Twitter4J 1 15 15 47% 13% 13% 7% 13% 7%

Twitter4J 2 8 16 38% 19% 25% 13% 6% 0%

Twitter4J 3-5 11 40 28% 40% 5% 18% 10% 0%

Twitter4J 6-15 2 22 18% 50% 5% 9% 18% 0%

Twitter4J 16+ 0 0 - - - - - -

Voldemort 1 16 16 13% 31% 19% 6% 31% 0%

Voldemort 2 12 24 25% 29% 17% 8% 21% 0%

Voldemort 3-5 8 33 6% 45% 9% 9% 30% 0%

Voldemort 6-15 17 154 18% 56% 12% 3% 10% 1%

Voldemort 16+ 4 117 20% 37% 9% 10% 25% 0%

Recall from the discussion in Section 2.3 that developers
sometimes postpone resolution of a conflict. We therefore
did not only analyze the immediate next commit, but also
the commits up to one month after the original commit to
examine whether a developer returned to the conflict later
to choose a different resolution. The conflicting chunk in
Fig. 13, for instance, involved a postponed resolution,
since, at first, the developer selected V2, but later changed
to NC (V1 with ‘<arg>’ replaced by <arg>).

Table 16 tallies the number of times a commit (with as-
sociated chunks) changed code from a previous commit in
the month before, together with the number of times such
a commit (and its associated chunks) was a postponed res-
olution. Clearly, not every change to code from a previous
commit is a postponed resolution, since it is natural for fu-
ture changes to build on previous ones. The majority of
these commits were of this nature, but six of the commits
represented postponed merges (4%, representing only 2%

14

of all conflicting chunks). In manually examining the six,
no pattern or reason seems to dominate. In one case, the
developer adjusted the variable name due to a rename re-
factoring that they postponed (see Fig. 14). In other cases,
the developers added comments or simply left the source
code in conflict to resolve it afterwards.

For instance, Fig. 15 represents a situation in which two
developers worked in parallel on the same class on the
same day, but chose to postpone the merge of a comment
section multiple times; they instead performed a series of
rebases, merging without removing the merge markers in
the comments section. One week later one of them finally

committed (05f23e) an update to the comments that finally
removed merge markers, with a message “code clean up”.
Across all 14 conflicting chunks that were part of post-
poned merges, the dominant developer decision for the
first resolution was NC (eight occurrences) followed by V2
(five occurrences). From this, we can conclude that post-
poned merges seem to address situations that are complex,
and generally require new code to be written.

Switching to the results of the automated analysis, Table
13 shows the distribution of how developers resolved con-
flicting chunks across all 2,731 projects. While we observe
some sizeable differences (V1 is chosen 50% of the time as

*/

version 1 version 2
CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR cannot generate
'<arg>' code as of version " + Tool.VERSION,
ErrorSeverity.ERROR_ONE_OFF),

CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR cannot generate
<arg> code as of version " + Tool.VERSION,
ErrorSeverity.ERROR),

original merge resolution
*/
CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR cannot generate <arg> code as of version " + Tool.VERSION,
ErrorSeverity.ERROR),

eventual merge resolution
*/
CANNOT_CREATE_TARGET_GENERATOR(31, "ANTLR cannot generate <arg> code as of version " + Tool.VERSION,
ErrorSeverity.ERROR_ONE_OFF),

Fig. 13. Conflicting chunk extracted from project ANTLR4 regarding merge d85ea0 (common ancestor 5bd415) that was resolved by a commit
using V2, but in a latter commit the resolution was changed to NC.

version 1 version 2
if (!isDirectDesc… && !callSuper && implicit) {

errorNode.addWarning("… If this is intentional, add
'@EqualsAndHashCode(callSuper = false)' to your
type.");

if (!isDirectDesc… && !callSuper) {
errorNode.addWarning("…");

}

original merge resolution
if (!isDirectDesc… && !callSuper && implicit) {
 errorNode.addWarning("… If this is intentional, add '@EqualsAndHashCode(callSuper = false)' to your type.");
}

eventual merge resolution
if (!isDirectDesc… && !callSuper && implicitCallSuper) {
 errorNode.addWarning("… If this is intentional, add '@EqualsAndHashCode(callSuper = false)' to your type.");
}

Fig. 14. Conflicting chunk extracted from project Lombok regarding merge 4e152f (common ancestor 2bdc12) that was resolved by a commit
using the contents of version 1, but in a latter commit (f1124a) was changed due to a refactoring.

first rebase with postponed resolution
…
=======
>>>>>>> add clientId for voldemort client
…

second rebase with postponed resolution
…
<<<<<<< HEAD
=======
>>>>>>> add clientId for voldemort client
=======
>>>>>>> Adding System store functionality
…

merge with postponed resolution
…
<<<<<<< HEAD
<<<<<<< HEAD
=======
>>>>>>> add clientId for voldemort client
=======
>>>>>>> Adding System store functionality
=======
>>>>>>> leigao/client-registry
…

Fig. 15. Sequence of two rebases (a21bf2, 234ac9) followed by merge 3fbef9 (common ancestor cd19e8), all with postponed resolutions, in
project Voldemort.

 15

opposed to just 21% in the five projects we manually ana-
lyzed; V2 25% instead of 35%; NC 13% instead of 19%), the
primary observation from the manual analysis still stands:
just 13% of the conflicting chunks involve new code, mean-
ing that in 87% of the cases, all of the code that is necessary
to resolve a conflict already exists and is present in the two
versions in conflict. This once again shows that the source
code used in resolving conflicting chunks is frequently pre-
sent in one of the versions, either as a full resolution or its
parts. Indeed, a full three quarters of the conflicting chunks
were resolved simply by choosing V1 or V2.

TABLE 16

CHANGES IN CONFLICTING CHUNKS AREAS

Project
Merges Conflicting Chunks

Changed Postponed Changed Postponed

ANTLR4 3 (14%) 1 (5%) 3 (4%) 1 (1%)

Lombok 5 (28%) 1 (6%) 15 (25%) 2 (3%)

MCT 5 (36%) 0 (0%) 17 (37%) 0 (0%)

Twitter4J 4 (11%) 0 (0%) 7 (8%) 0 (0%)

Voldemort 20 (35%) 4 (7%) 58 (17%) 11 (3%)

Total 37 (25%) 6 (4%) 100 (16%) 14 (2%)

Interestingly, the choice of V1 is twice as frequent as the
choice of V2, which is in contrast to our findings for the
manual analysis. This can be explained if we consider that
one of the primary reasons why developers resolve failed
merges is to integrate the changes they made on implicit
branches. In this case, a bias seems to exist in that they
choose their own code over what changes exist in the re-
pository.

Fig. 16 provides a closer look at the developer decisions,
this time plotting individual projects and the percentage of
their conflicting chunks that were resolved by a given de-
cision (every project, then, is part of each box and whisker
in Fig. 16). The plot reveals a number of interesting pat-
terns. First, each developer decision has at least one project
for which all the decisions were of that type (e.g., all V1 or
all NC). In some ways, this is not surprising, because, as we
discussed in our answer to A1, 40% of failed merges in-
volve just one conflicting chunk and it would be highly un-
likely if for one reason or another one of the developer de-
cisions is not represented in this 40%. At the same time, it
confirms that programmers use every kind of decision,
even in the simplest case of just one conflicting chunk.

Returning to Table 13 and the 13% of NC decisions that
were made overall, we observe that they are scattered over
75% of the projects (the first quartile of the box plot for NC
lies at 0). This has two implications. First, it implies that, in
25% of the projects, all the merge failures were resolved by
using existing code from V1 and V2. Second, in examining
the box plot for NC, we note that some projects encounter
NC as the resolution strategy more frequently among their
respective failed merges (indeed, we see a good number of
projects with roughly 50% to nearly 100% of new code).

Finally, confirming what we found in our manual anal-
ysis, NN (none) is the least frequently used developer deci-
sion. Its box plot is a flat line at the origin, followed by a
few outliers, including two projects in which 100% of con-
flicting chunks were resolved with none: Firefly and

Bookie-Android. Both of these two projects had one single
failed merge involving just one conflicting chunk, account-
ing for the anomaly. These two projects are a clear excep-
tion: they represent just 0.07% of our project corpus.

Fig. 16. Box-plots for the distribution of developer decisions.

We did not attempt to account for postponed merges in
our automated analysis. On one hand, it is difficult to en-
vision a heuristic that would work fully automatically. On
the other hand, the number of failed merges to examine is
too high to reasonably assess the next month's check-ins
manually.

3.6 What is the distribution in difficulty level of
kinds of conflicts?

Based on the concept of straightforward and complex
chunks as introduced in Section 2, we analyzed the approx-
imate difficulty of different kinds of conflicts with the help
of the following difficulty ratio:

For each kind of conflict, we took all its conflicting
chunks and assigned to each chunk the label of straightfor-
ward or complex based on the developer decision made for
that chunk. Then, we calculated the conflict's difficulty ra-
tio: the higher this value, the more difficult the kind of con-
flict appears to resolve. Table 17 shows the kinds of con-
flicts that appear in more than ten conflicting chunks, in
descending order of difficulty ratio (DR), as found by our
manual analysis.

The kinds of conflicts consisting solely of variable or im-
port seem to be the easiest to resolve, since their resolution
rarely involves writing new code. CC is the most frequent
decision in resolving these kinds of conflicts, with V1 and
V2 also chosen frequently. Perhaps counter-intuitively, CB
also is used at times. This represents situations in which
multiple variables or multiple imports that are in conflict are
combined (either all or as a subset) in a different order than
straightforward concatenation. An example is shown in
Fig. 17, with the developer including both versions of the
conflicting chunk, but reordering some imports in an order
they preferred.

At the other end of the spectrum, the kinds of conflicts
of comment and if statement, method invocation seem to be
most difficult to resolve, as their relative proportion of CB
and NC as the developer decision is the highest. The pres-

16

ence of comment as the top difficult kind of conflict was sur-
prising to us. On one hand, comments are normally written
in natural language and thus may not be a good match for
automation. On the other hand, it is rare to hear about com-
ments being a major source of frustration or difficulty
when it comes to merging. We return to this in the context
of the automated analysis.

TABLE 17

DIFFICULTY RATIO OF RESOLVING KINDS OF CONFLICTS
(MANUAL ANALYSIS)

Kind of conflict V1 V2 CC CB NC NN DR

Comment
4

29%

4

29%

0

0%

1

7%

5

36%

0

0%
43%

If statement, method invocation
2

17%

3

25%

2

17%

2

17%

3

25%

0

0%
42%

Method invocation, variable
17

29%

20

35%

1

2%

10

17%

10

17%

0

0%
35%

Method invocation
6

10%

31

49%

5

8%

10

16%

10

16%

1

2%
32%

Method signature
5

26%

8

42%

0

0%

1

5%

5

26%

0

0%
32%

If statement
6

30%

7

35%

1

5%

1

5%

5

25%

0

0%
30%

Comment, method declaration
5

29%

5

29%

2

12%

2

12%

2

12%

1

6%
24%

Method declaration
10

18%

24

42%

11

19%

4

7%

8

14%

0

0%
21%

If statement, method invocation,

variable

4

21%

10

53%

1

5%

2

11%

2

11%

0

0%
21%

Import
12

20%

14

23%

22

37%

10

17%

2

3%

0

0%
20%

Variable
9

24%

8

22%

13

35%

4

11%

3

8%

0

0%
19%

That the if statement, method invocation kind of conflict is
among the most difficult to resolve surprised us, especially
in comparison to the if statement, method invocation, variable
kind of conflict. The latter has more language constructs
involved, yet appears significantly easier to address (with
a DR score of 21% compared to 42% for if statement, method
invocation). Inspecting the two kinds of conflicts closely, we
noticed that the if statement, method invocation, variable kind
of conflict often consisted of a conditional method invocation
assigning a variable a value, with the if statement, method in-
vocation typically involving more complex behavior. The
example in Fig. 18 shows a situation in which CC and even
CB would fail: the message id of Native Backup had to be
updated to 30 in order to preserve uniqueness of messages
in the output stream.

A final highlight concerns the method declaration kind of
conflict. Developers decide upon one version or the other
in the vast majority of cases (V1 in 10 cases, V2 in 24) and
quite frequently also concatenate both (11 cases). Only in
four cases did they combine the two by choosing a subset
of lines of each, and in eight cases did they integrate the
two with new code to help them do so.

Table 18 shows the results of the same analysis as Table
17, but repeated for our automated analysis. The top ten
kinds of conflict appearing in more than 2,000 chunks are
shown, ordered by their difficulty ratio. Although seven

out of 10 kinds of conflicts appear in both tables, the diffi-
culty ratios that result from the automated analysis are
quite different from those of the manual analysis. For in-
stance, in stark contrast to the results found in the manual
analysis, comment turns out to be easier to resolve (diffi-
culty ratio equal to 5%), not even appearing among the
most complex kinds of conflicts for the automated analy-
sis. Though very distinct from the results of the manual
analysis in terms of difficulty ratio, results from the auto-
mated analysis are more in line with what might reasona-
bly be expected. We are unsure what caused the bias in the
five projects of the manual analysis, other than that com-
ment is the second least common kind of conflict in the
manual analysis (meeting our criterion of at least 10 occur-
rences) and it had six out of 14 being resolved through CB
or NC, meaning some selection bias likely occurred.

TABLE 18

DIFFICULTY RATIO OF RESOLVING KINDS OF CONFLICTS
(AUTOMATED ANALYSIS)

Kind of conflict V1 V2 CC CB NC NN DR

Comment, Method invo-

cation, Variable

1048

40%

789

30%

57

2%

313

12%

437

16%

6

0%
28%

Method invocation, Vari-

able

6079

43%

3940

28%

258

2%

1341

9%

2533

18%

31

0%
27%

If statement 3773

50%

1688

22%

47

1%

128

2%

1932

26%

2

0%
27%

If statement, Method in-

vocation, Variable

1512

45%

905

27%

40

1%

436

13%

457

14%

4

0%
27%

Import 7338

36%

5377

26%

2058

10%

3493

17%

1964

10%

308

1%
27%

If statement, Method in-

vocation

1326

49%

638

23%

59

2%

410

15%

290

11%

2

0%
26%

Variable 4038

49%

2011

24%

455

6%

503

6%

1206

15%

16

0%
21%

Comment, Variable 1171

51%

496

21%

170

7%

245

11%

224

10%

5

0%
20%

Annotation, Method dec-

laration

926

45%

590

29%

137

7%

132

6%

250

12%

6

0%
19%

Comment, Method decla-

ration

1197

48%

769

31%

84

3%

167

7%

264

11%

7

0%
17%

Method declaration combined with annotation or comment

figure among the easiest kinds of conflict to resolve – de-
velopers typically pick the new version (V1, in 45% or 48%
of the chunks, respectively), the old one (V2, in 29% or 31%
of the chunks), or concatenate both (CC, 7% or 3% of the
chunks, respectively). These results, despite V1 and V2
switching in relative frequency compared to the manual
analysis for method declaration in isolation, overall confirm
its finding of method declaration being easy to resolve. Inter-
estingly, if statement (27%), if statement, method invocation
(26%), and if statement, method invocation, variable (27%) are
among the most difficult kinds of conflicts to resolve.
Based on a small sample of conflicting changes involving
these constructs, we believe that this may be because if
statements often govern the semantics of a program. As in
the example of Fig. 18, our informal sample contained

 17

many instances in which the changes in the if clause itself
needed to be met with semantic changes in the contents of
its body.

We were somewhat surprised at the high difficulty ratio
for import. Part of this can be attributed to the frequent use
of CB to selectively incorporate imports from both ver-
sions. The use of NC to address situations in which a set of
imports is replaced by a single import with a wildcard or
situations in which they wanted to include a complemen-
tary import (e.g., ArrayList in addition to List) explains
most of the other situations. In both cases, we note that
semi-automated support could exploit these patterns to
provide assistance to the developer.

3.7 What, if any, patterns exist between the
language constructs of conflicting chunks and
developer decisions?

Our final analysis focuses on the possible relationships be-
tween language constructs and developer decisions, which
we explored through association rules. Table 19 shows as-
sociation rules with confidence threshold of 30% and abso-
lute support threshold of six occurrences among the con-
flicting chunks of the five projects selected for manual
analysis. The top ten rules are shown, ordered by lift. Sup-
port values are small for most of the rules due to the large
number of potential combinations among language con-
structs and developer decisions, resulting in a vast space
that is sparsely covered by the 616 conflicting chunks.
However, a few patterns still exist.

TABLE 19

RELATION BETWEEN LANGUAGE CONSTRUCTS AND RESOLU-

TIONS, SHOWING SUPPORT (SUP.), CONFIDENCE (CON.) AND

LIFT (MANUAL ANALYSIS)

Association rules Sup. Con. Lift

Annotation, variable g NC 1% 58% 3.07

Import declaration g CC 4% 34% 2.98

For statement g CB 1% 33% 2.50

Method invocation, try statement g CB 1% 32% 2.40

Comment, method signature g V2 2% 67% 1.88

For statement, variable g V2 1% 64% 1.82

Method signature, variable g V2 2% 60% 1.70

Annotation g NC 1% 32% 1.68

Return statement g NC 1% 31% 1.62

Method invocation, meth. signature, variable g V2 1% 57% 1.61

First, we note that four out of ten cases involve V2 as the
developer decision. On one hand, having V2 as a common
choice developers make is, in a way, not surprising. By
choosing V2 over V1, the developer resolving a conflict is
choosing to keep established code that was added by other
developers to the repository, instead of overwriting these
changes with those they made in their local repository. Ex-
isting changes do impose a certain degree of inertia and
may cause developers to refrain from modifying them. On
the other hand, these results contrast with earlier results
from the automated analysis, which seem to favor V1 over
V2. We return to this topic shortly below.

Second, Table 19 includes the association rule import

import com.sun.tools.javac.tree.JCTree.JCLiteral;

version 1 version 2
import com.sun.tools.javac.tree.JCTree.JCPrimit…;
import com.sun.tools.javac.tree.JCTree.JCUnary;
import com.sun.tools.javac.tree.TreeMaker

import com.sun.tools.javac.tree.JCTree.JCModifi…;
import com.sun.tools.javac.tree.JCTree.JCTypePa…;
import com.sun.tools.javac.tree.TreeMaker;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.util.Name;

/**

merge resolution
import com.sun.tools.javac.tree.JCTree.JCLiteral;
import com.sun.tools.javac.tree.JCTree.JCModifi…;
import com.sun.tools.javac.tree.JCTree.JCPrimit…;
import com.sun.tools.javac.tree.JCTree.JCTypePa…;
import com.sun.tools.javac.tree.JCTree.JCUnary;
import com.sun.tools.javac.tree.TreeMaker;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.util.Name;
/**

Fig. 17. Conflicting chunks among import declarations from project Lombok regarding merge 45697b (common ancestor 620616).

}

version 1 version 2
if (hasInitiateRebalanceNodeOnDonor()) {
 output.write…(28, getInitiateRebalanceNode…());
}
if (hasDeleteStoreRebalanceState()) {
 output.write…(29, getDeleteStoreRebalanceS…());

if (hasNativeBackup()) {
 output.write…(28, getNativeBackup());

}

merge resolution
}
if (hasInitiateRebalanceNodeOnDonor()) {
 output.write…(28, getInitiateRebalanceNode…());
}
if (hasDeleteStoreRebalanceState()) {
 output.write…(29, getDeleteStoreRebalanceS…());
}
if (hasNativeBackup()) {
 output.write…(30, getNativeBackup());
}

Fig. 18. Conflicting chunk from project Voldemort from merge 491863 (common ancestor 74e0d9).

18

declaration à CC with 34% of confidence, meaning that in
34% of conflicting chunks that have import declarations,
the developer decision is CC. Moreover, this association
rule has lift 2.98, denoting a strong relation between import
and CC (when import is involved, it increases the chances
of choosing CC by 198%). A question is why developers do
not choose CC all the time, as only 37% of developer deci-
sions are CC (Table 17) when import is the conflict. The is-
sue here is the fact that resolving the chunk pertaining to
the import does not take place in isolation – other resolu-
tions, to other conflicting chunks, dictate what import dec-
larations are ultimately needed. That is, developers appear
to take care to not over-include imports when they do not
need them.

Table 20 provides the results of the automated analysis,
as ordered by lift. Compared to the manual analysis, we
dropped the support and confidence thresholds to 0.1%
and 30%, respectively. With 175,585 chunks, too high a
support threshold filtered developer decisions that are rel-
atively rare but nonetheless frequently enough (i.e., at least
175 times at a support of 0.1%) to warrant a closer exami-
nation. Table 20 shows the top ten association rules relat-
ing kinds of conflicts (on the left-hand side) to developers'
decisions (right-hand side). This table differs significantly
from the results of the manual analysis, both in the lan-
guage constructs involved in the rules and the developer
decisions. While rules found through our manual analysis
are spread over distinct language constructs, from annota-
tions to exception handling, rules collected from the auto-
mated analysis are more uniform, showing a prominence
of method-related constructs, as co-occurring with com-
ments, control flow statements, and references to variables.
Furthermore, we notice that all rules are resolved either
through the addition of new code or by picking V1.

TABLE 20

RELATION BETWEEN LANGUAGE CONSTRUCTS AND RESOLU-

TIONS, SHOWING SUPPORT (SUP.), CONFIDENCE (CON.) AND

LIFT (AUTOMATED ANALYSIS)

Association rules Sup. Con. Lift

Method invocation, Method signature, Return

statement, Try statement g NC

0.1% 31% 2.39

Method declaration, Method invocation,

Method signature, Try statement, Variable g

NC

0.1% 30% 2.36

Method declaration, Method signature, Try

statement, Variable g NC

0.1% 30% 2.36

Method declaration, Method invocation, Try

statement, Variable g NC

0.1% 30% 2.32

Method declaration, Try statement, Variable g

NC

0.1% 30% 2.32

Method signature, Return statement, Try state-

ment g NC

0.1% 30% 2.31

Comment, Do statement, If statement g V1 0.1% 95% 1.89

Comment, Do statement, If statement, Method

invocation g V1

0.1% 95% 1.89

Comment, Do statement, If statement, Variable

g V1

0.1% 95% 1.89

Comment, Do statement, If statement, Method

invocation, Variable g V1

0.1% 95% 1.89

If we repeat the analysis of Table 20 without any confi-
dence threshold, association rules with higher lift appear
in the top 10. Particularly, the rule with the highest lift
turns out to be import à NN (support 0.1%, confidence 1%,
lift 3.58), while import à CC (support 1.2%, confidence 9%,
lift 2.59) also appears. Interestingly, all remaining rules in
the top 10 have CC or CB in the consequent, with lift rang-
ing from 2.90 to 2.41, but confidence dropping to the range
of 8% to 22%. As none of these rules, except import à CC,
belong to the top 10 list of the manual analysis (Table 19),
results from the automated analysis highlight that the re-
sults of our manual analysis are not representative for a
larger set of projects. On the other hand, the persistence of
method-related rules points to the fact that it could be ben-
eficial to focus the design of new merge techniques on such
constructs – in line with results from our previous analyses
above.

4 DISCUSSION

Grounded in the results presented in the previous section,
we now return to the original question that motivated our
study in the first place: by examining the nature of merge
conflicts in detail, is it possible to unearth information that
could assist in the design of future merge tools? We believe
the answer to this question is ‘yes, but with caution’, an
answer upon which we expand in the below.

It is clear from the results that merge conflicts represent
a difficult problem to tackle generically. Some conflicts are
small, involving a single conflicting chunk with merely a
few language constructs (sometimes even just one). Other
conflicts are large, with many conflicting chunks and many
different language constructs involved. New techniques
that may work for the former likely will not work so well
for the latter, and vice versa. Even when conflicts are quite
similar, of roughly the same size and with the same lan-
guage constructs involved, it is apparent that developers
still choose different ways of resolving them.

Based on our results, then, it is difficult to envision a
single generic merge technique that can automatically re-
solve all possible conflicts, since the diversity in conflicts
we encountered is simply too great. At the same time, we
believe it is possible to improve over the existing state-of-
the-art of tools that use a single technique to attempt merg-
ing any and all conflict and that defer resolution of con-
flicts that do not fit its technique to the user for manual res-
olution.

We envision two avenues forward. First, our results
seem to indicate that it is possible to improve over current
merge techniques by creating a portfolio of highly specific
complementary techniques that each can resolve a type of
conflict that current techniques cannot handle. Plugged-in
to existing tools to handle the exceptions that normally oc-
cur, this should alleviate developers from encountering
some subset of merge conflicts altogether. Second, for the
conflicts that still cannot be addressed with such comple-
mentary techniques, our results suggest creating advanced
tool support for assisting developers in easily resolving
conflicts manually. For instance, it may be possible to cre-
ate intelligent interfaces that enable developers to choose

 19

from several ‘most likely’ precomputed candidate resolu-
tions. Overall, such tool support would create solutions
that are neither fully automated nor fully manual, but
nonetheless help developers in resolving conflicts that to-
day take significant time.

In the below, we substantiate why we believe these two
avenues forward are feasible with three conclusions that
we draw from the results in the previous section.

Conflicting chunks generally contain all the necessary
information to resolve them. As shown in Table 13, only
13% of conflicting chunks require developers to produce
extra code beyond the code already present in the chunk
(as part of version 1, version 2, or both), given that the de-
velopers chose to resolve conflicting chunks via V1, V2,
CC, CB, and NN in 87% of all cases (automated analysis).
This means that the necessary resources for resolving con-
flicts are already present and available inside the conflict-
ing chunks in the majority of conflicts. While a developer
certainly may need to examine other parts of the code and
spend time thinking on how to proceed, for the actual
change that must be made, the source code lines in the con-
flicting chunk suffice. An example is shown in Fig. 20,
where the solution is to concatenate the contents of version
1 (i.e., variable) and version 2 (i.e., annotation and method dec-
laration).

More complex examples exist as well, where the devel-
oper interleaves lines of code from version 1 and version 2.
Fig. 19 showed an example of this. While the resolution is
non-trivial, with the developer needing to carefully order
the lines of code from both versions, no new code was writ-
ten.

To assist developers in performing these kinds of man-
ual resolutions, it is necessary to re-envision merge tools,
for example in supporting developers in quickly reshuf-
fling the lines of code from both versions into a single ver-
sion, perhaps by drag and drop of relevant blocks of code
from a column on the left (version 1) and a column on the
right (version 2) to a middle column (merged version). Or,
if the number of conflicting lines of code is small, a merge
tool could generate a set of reasonable permutations (ex-
cluding permutations that are syntactically incorrect or fail

test cases) and present those to the developer. The latter
solution likely requires creation of various heuristics, as
the number of possible permutations suffers from a com-
binatorial explosion. A combination of search-based soft-
ware engineering techniques with smart ways of pruning
the search tree will be necessary to identify most likely can-
didates.

Important to the feasibility of this approach is that many
conflicting chunks are small. In 94% of the cases, the con-
flicting chunk involved less than 50 lines of code in each of
its versions. More strikingly, 40% of merge failures in-
volved just a single chunk, and the median size of the ver-
sions in conflicting chunks was 2 (version 1) and 2.5 (version
2) across all the projects from the automated analysis. The
search space, then, is often small and even if the search
space cannot be pruned by much, the resulting number of
choices to present to the developer is limited and likely can
be ordered in some way representing the prospect of the
result being applicable.

Resolution order of conflicting chunks can matter. About
60% of failed merges in the manual analysis consist of mul-
tiple conflicting chunks (Fig. 4), with 29% exhibiting de-
pendencies (Table 10). In existing merge tools, once a
merge fails, the developer is presented with all conflicting
code at once for them to resolve. The merge tool provides
an editor in which the entire code of both versions is pre-
sented side-by-side, with color-coded marks indicating
where the conflicting chunks reside. From there on, the de-
veloper is left to their own devices, manually working out
the desired result.

We observe that resolving conflicting chunks in a given
order often can be beneficial. For instance, Fig. 10 pre-
sented a pair of conflicts, one concerning changes to the
method signature of createField (conflicting chunk A) and the
other concerning changes to one if its method invocations
(conflicting chunk B). Resolving chunk A before chunk B is
beneficial, as the choice of method signature decides the sub-
sequent choice of method invocation. As another example,
returning to the ANTLR4 example in Fig. 11, we know
which method to choose should the variable be resolved
(with, in this case, the reverse also working: once the return

}

version 1 version 2
/** Grab *all* tokens from stream and return string */
@Override
public String toString() {
 lazyInit();

 fill();
 return toString(0, tokens.size()-1);
}

/** Get the text of all tokens in this buffer. */
@NotNull
@Override
public String getText() {
 if (p == -1)
 setup();
 fill();
 return getText(Interval.of(0,size()-1));
}

@NotNull

merge resolution
}
/** Get the text of all tokens in this buffer. */
@NotNull
@Override
public String getText() {
 lazyInit();
 fill();
 return getText(Interval.of(0,size()-1));
}
@NotNull

Fig. 19. Conflicting chunk with annotation, comment, and method declaration from project ANTLR4 regarding merge 18f535 (common ancestor
ea7037).

20

type is chosen, the type of the variable can be resolved).
We note that the association rules listed in Table 6 and

Table 9 can be a source of support for merge tools that seek
to assist developers in ordering the conflicting chunks for
resolution. For instance, the association rule return state-
ment à method invocation (Table 6) indicates that 69% of the
chunks with conflicts in return statement also exhibit con-
flicts in method invocation. As the opposite rule (method in-
vocation à return statement) does not even appear in Table
6 due to being lower than the confidence threshold of 50%,
this indicates that changes in the return statement imply
changes in method invocation, and not the other way around
– giving directionality to the order in which a tool presents
the developer the chunks to resolve.

Of course, not every set of conflicting chunks is covered
by our set of association rules and, even when they are, the
order implied will not always be the order in which a de-
veloper performs resolution. This means that any merge
tool that builds on this information should probably take
an advisory role: instead of automation, it should offer
suggestions from which a developer can choose. One way
that this could be done is simply through visually high-
lighting dependencies among conflicting chunks in the
merge resolution tool. Another way might be to encode the
set of association rules in some expert system that, together
with some general rules inspired by the Java grammar, can
field queries as to what the best order might be for a given
subset of conflicting chunks. In this context, various heu-
ristics will need to be developed and tested for effective-
ness.

Finally, we note that, as conflicting chunks are resolved
by the developer, more information becomes available that
can make it possible for the merge tool to resume merging
automatically again. In the case of an import and a method
invocation, for instance, choosing the method invocation
should generally suffice for the merge tool to automatically
choose the import necessary, rather than continuing with
the manual approach of asking the developer which import
conflicting chunk to use. This is equally true in the exam-
ples of Fig. 10 and Fig. 11. In both cases, resolving one of
the conflicting chunks should cause the merge tool to re-
solve the other conflicting chunk automatically by choos-
ing one of the two versions. Merge tools, thus, should not
outright fail when they encounter a situation they cannot
resolve, but instead seek input when they need it to help
them direct their automated efforts.

Underlying the above observations is the fact that a lim-
ited set of language constructs and combinations thereof is
most common to occur in conflicting chunks (see Table 3
and Table 7). This means that it should not be necessary to
have to design a plethora of different heuristics, but that a
set of strategically chosen heuristics tackling the more fre-
quent cases should suffice to reduce developer effort.

Past choices of how conflicting chunks were resolved can
inform future choices. With today's merge tools, each new
merge is performed afresh, without any history. This, how-
ever, leaves an important opportunity on the table. Our re-
sults indicate that some (certainly not all) developers ex-
hibit patterns in their choices in terms of how they resolve
conflicts over time. A possible extension to existing tools
would be to identify such historical patterns, and present
them to developers when similar situations appear (i.e.,
one could imagine a tool that communicates to a developer
‘In the past, you resolved 16 conflicts similar to this one,
eight of those by choosing version 2, six by choosing ver-
sion 1, and two by writing new code.’).

This idea, however, can be taken further: what if it may
be possible to develop a learning merge tool? Such learn-
ing may play out at different levels. For instance, returning
to the observation that it can be helpful to resolve multiple
conflicting chunks in a specific order, it may be possible for
a tool to learn what different preferred orders are for dif-
ferent situations, as based on the kinds of conflicts, associ-
ation rules, and past ordering choices of the developer.

As another, and more elaborate example, one can think
of merge tools that analyze historical changes in detail and
attempt to build patterns from these changes. It may be, for
instance, that a merge tool might learn that, in 64% of cases
where a conflict in method parameters exists and where
one of the conflicting parameters is used in newly written
code in version 2, that parameter must be renamed accord-
ing to the code of version 1. Such a pattern is invisible to
individual developers, but a learning approach might dis-
cover it.

The idea of a learning merge tool is not necessarily lim-
ited to a developer, project, or organization. It might even
be possible to push it into the realm of the crowd, by build-
ing upon the idea that code is regular [32] and that repeti-
tive patterns of change exist. The collective wisdom of the
crowd concerning how to merge may well outperform the
design of any set of heuristics an individual or team could

public final class RuleStartState extends ATNState {
 public RuleStopState stopState;

version 1 version 2
public boolean isPrecedenceRule; @Override

public int getStateType() {
 return RULE_START;
}

}

merge resolution
public final class RuleStartState extends ATNState {
 public RuleStopState stopState;
 public boolean isPrecedenceRule;

 @Override
 public int getStateType() {
 return RULE_START;
 }
}

Fig. 20. Conflicting chunk (top) and its resolution (bottom) of merge b14ca56 (common ancestor f7d0ca) from project ANTLR4.

 21

come up with.

5 THREATS TO VALIDITY

Concerning internal validity, language constructs were
extracted manually by a single researcher for the manual
analysis, which may have inadvertently introduced data
collection errors. To mitigate this risk, two of the remaining
authors verified the language constructs that were ex-
tracted, discussing with the first author any discrepancies
to fix rare errors. Further, we cross-checked the results
from the automated analysis with those of the manual
analysis for the five projects they have in common, ensur-
ing consistency among both analyses. Finally, we note that
tallying language constructs is not a subjective or ambigu-
ous task – a construct is there or not. As compared to cod-
ing conversations in an online help forum, for instance, less
risk exists for biasing results.

Similarly, it is possible that we misclassified developer
decisions. For the manual analysis, we used the same strat-
egies as for language constructs: two other authors verified
the developer decisions independently and we compared
the results from the manual analysis to those of the auto-
mated analysis. For the automated analysis, however, it is
still possible that our scripts and heuristics do not address
certain edge cases that might be present in the repository.
We performed random checking on the decisions and also
studied unexpected results (e.g., chunks without language
constructs, none of which turned out to be misclassified be-
cause of possible parser errors).

Also concerning internal validity, although Git tracks
the version history of a project precisely as it occurred and
generally provides a faithful record, it does allow history
rewriting. In particular, the rebase command eliminates
any trace of the branch being integrated in serializing the
version history. It is known that some development teams
use rebase instead of merge to reintegrate implicit
branches [4], meaning that an after-the-fact analysis such
as ours will not identify these actions as actual merges. The
number of merges we analyzed, thus, is a lower bound as
compared to the actual total number of merges in the pro-
jects. Moreover, it is possible that rebase merges exhibit
different patterns from the ones we found, in which case
our results would not be fully representative.

With respect to construct validity, which refers to a mis-
alignment between a study’s intent and its design, all ana-
lyzed data stems from open source software projects, cap-
turing real failed merges that took place and were resolved
by developers in practice. Thus, our results document
what we intended to observe: how developers tackle
merge conflicts. Of course, our study only observes after-
the-fact outcomes, not the detailed strategies a developer
uses leading up to the eventual resolution. We, thus, might
still miss important information concerning their thought
process and actions. At the same time, our detailed analy-
sis based on language constructs and developer decisions
adds an important dimension to the literature on merge
conflicts.

Another threat concerning construct validity stems
from the fact that we replayed history by using the default

three-way merge of Git to detect conflicts. Consequently,
we may have reported false positives in cases where the
developers used external tools to perform their merges and
the external tools produced different results. Git's three-
way merge, however, is the default and is highly conven-
ient to use since it is part of all Git front-end GUIs to per-
form merges. Moreover, according to Git’s manual
(https://git-scm.com/docs/git-merge), its three-way
merge "has been found to result in fewer merge conflicts
without causing mismerges by tests done on actual merge
commits taken from the Linux 2.6 kernel development his-
tory." As such, we believe the risk of significant numbers
of projects not using the three-way merge from Git is low.

A third threat to construct validity concerns the diffi-
culty ratio metric, which we use to discriminate among
kinds of conflicts and how difficult they appear to resolve.
Clearly, more precise characterizations can be built (for in-
stance taking into account the size of chunks or exactly
which language constructs are involved) that in future can
perhaps even accurately predict individual conflicts and
how long it will take a developer to resolve them.

Regarding conclusion validity, first we note that several
of the association rules we identified have relatively small
support. Therefore, some of them may not hold in case an
even larger population of projects is studied. On the other
hand, our study identified a set of patterns for which their
frequent occurrences are difficult to accredit to chance.

One last threat to conclusion validity is the lack of post-
poned merge collection for the automated analysis, which
may have led to a smaller number of NC occurrences in the
distribution of developer decisions for these projects. The
difficulties related to automating this task, along with the
small frequency with which postponed merges appear in
the manual analysis, inhibited performing this analysis.

Finally, regarding external validity, we note that the
ability to generalize our findings is restricted by the char-
acteristics common to our selected projects: all of them are
open source, with the majority of their code written in Java.
Thus, our results do not necessarily generalize to industrial
projects or open source projects written in C#, for instance.
Our analysis, though, has shown that patterns exist in the
sample we chose, and we strongly believe similar kinds of
patterns may be present in other projects and languages.
Additional study is needed to assess this.

6 RELATED WORK

All software merge techniques exhibit tradeoffs among
precision (the percentage of parallel changes they success-
fully can merge), generality (the types of files they sup-
port), and performance (the time it takes to perform
merges). The first merge techniques (e.g., [3]–[8]) were un-
structured, prioritizing performance and generality over
precision. Building on lines of code as the unit of compari-
son and resolution [33] enabled these techniques to merge
any textual file at a reasonable speed. Because most source
code is stored as text files, unstructured techniques today
are still the preferred choice in most version control sys-
tems. However, the use of lines as the unit of comparison
can lead to false positives (e.g., two developers add two

22

different method declarations in the same region) and false
negatives (e.g., a developer removes a method declaration,
while a second developer adds an invocation to the re-
moved method declaration), compromising precision.
Moreover, whether or not a conflict is flagged depends on
particulars of the unstructured version control systems in
question. For instance, Git flags a conflict if two different
adjacent lines are changed, while Darcs and Subversion do
not [27]. Thus, a precise rule to identify conflicts is absent.
However, Nguyen and Ignat [27] suggest that Subver-
sion’s way is most appropriate.

In attempts to reduce false positives and false negatives,
researchers started exploring structured merge techniques,
which are less general and usually slower, but take into ac-
count the syntax [9]–[15] or the semantics [16], [17] of the
code. Westfechtel [15], for instance, proposed a technique
that uses a context-free grammar and, as another example,
Binkley et al. [10] introduced a technique that considers the
behavior of procedure calls. While these techniques repre-
sented important steps toward structured merge, they still
failed in relatively simple situations such as a rename.
Hunt and Tichy [12] therefore proposed an extensible, lan-
guage-aware technique that can deal with renaming and
non-local conflicts, though it too has limitations in not
identifying behavioral differences caused by dynamic
binding, as one example. While structured merge tech-
niques have improved precision, the cost of being lan-
guage specific (less general) and typically more computa-
tionally expensive (less performant) seems to have prohib-
ited widespread use in practice to date.

In attempts to address precision, generality, and perfor-
mance together, researchers have begun exploring semi-
structured techniques, combining aspects of both unstruc-
tured and structured merge techniques [2], [18], [19]. Apel
et al. [19], for instance, parameterize their merge tool using
language grammars to both increase generality (in adopt-
ing unstructured merge as the base) and precision (in in-
corporating structured techniques to resolve potential con-
flicts in a language-specific manner). While the initial solu-
tion suffered in performance as a consequence, the authors
tackled this in subsequent work [2], [18].

Other research focuses on reducing the number of failed
merges through tools that alert developers about parallel
work and potential conflicts early, at the time they are be-
ginning to develop. CASI [34], CloudStudio [35], CoDesign
[36], CollabVS [37], Crystal [22], FastDash [38], Palantír
[39], SafeCommit [40], Syde [41], and WeCode [42] all mon-
itor developer workspaces to detect when two developers
begin modifying the same file or different files that exhibit
some syntactic or semantic dependency. If they detect such
an instance, they inform the involved developers, who
then are expected to coordinate to address the emergent
issue, for instance by one of them postponing their changes
until the other is done. Even though these approaches play
an important role in minimizing the incidence of conflicts,
they still do not guarantee conflict-free merges. Different
factors may lead to failed merges even when these ap-
proaches are in place, such as: (1) developers working on
project forks that eventually need to be reintegrated, (2) the
nature of some parallel changes (e.g., bug-fixes and new

features over the same component), and (3) offline
changes.

Despite all these efforts, today’s merge techniques still
require user intervention to resolve failed merges. Recent
studies report that approximately 10% to 20% of all merges
fail [22], [23], with some projects experiencing a failure rate
of nearly 50% [22], [24]. These studies focused on unstruc-
tured merge tools, given their popularity in practice. While
some of the merge failures could theoretically have been
avoided with a structured (or semi-structured) merge tool,
the fact that the use of unstructured merge tools remains
so prevalent means that our findings are relevant to to-
day’s practices and may lead to tools and techniques that
better integrate with those practices.

Only a few studies have begun to address the questions
of how conflicts arise and how they are resolved (e.g., [2],
[22], [23], [25], [26], [43]). Brun et al. [22] studied the history
of nine projects and found that 16% of merges have struc-
tural failures (code), 1% syntactic (compilation) failures,
and 6% semantic (test) failures. Kasi and Sarma [23] made
a similar analysis of four projects, not only finding high
percentages of merge failures (40%, 44%, 34%, and 54%),
but also that, on average, 14% of merges have structural
failures, 8% syntactic failures, and 22% semantic failures.
Moreover, the authors observed that the number of days
the conflict existed in the repository ranged from approxi-
mately three to about 16. Nguyen and Ignat [27] analyzed
four open source projects to understand the relationship
between the integration rate (i.e., number of concurrently
modified files over all modified files) and conflict rate (i.e.,
number of files with unresolved conflicts over the ones
concurrently modified). They found an unexpected result:
the lower the integration rate, the higher the conflict rate.
They further found that developers generally roll back to a
prior version when facing a syntactic or semantic conflict.
Leßenich et al. [28] proposed seven indicators for identify-
ing merge conflicts, for example based on the number of
commits in a branch, the number of commits in a timespan,
and the number of files changed in parallel. However,
none of the seven indicators have a strong correlation with
the number of failed merges. Finally, Ahmed et al. [29] an-
alyzed 163 projects and 6,979 failed merges, finding that
smelly code is three times more likely to be involved in
merge conflicts and specifically that method-level smells
(e.g., Blob operation and internal duplication) are highly
correlated with semantic conflicts. Compared to this work,
our work delves deeper into the nature of the merge fail-
ures: what language constructs are typically part of them
and what kinds of developer decisions are being made?

With a somewhat different focus, Leßenich et al. [2] and
Cavalcante et al. [25] examined 50 and 60 projects, respec-
tively, to compare semi-structured and unstructured
merge techniques in terms of how many conflicts they re-
port. Both studies found that semi-structured merge tech-
niques can reduce the number of conflicts by approxi-
mately half, but not eliminate them. Cavalcante et al. [44]
used the findings from their previous study to improve
their semi-structured merge technique to address conflicts
involving import declarations and initialization blocks.
Although important, the studies by Leßenich et al. and

 23

Cavalcante et al. miss information about conflicts that hap-
pen inside method bodies, as the semi-structured merge
techniques they used treated method bodies as plain text.
Accioly et al. [45] also studied semi-structured merge, an-
alyzing 70,047 merges from 123 GitHub projects. They
found that 87.57% of merge conflicts take place inside the
same method and suggest that awareness tools should be
used to avoid them. Interesting, when discussing future
work, they suggest further analyses to answer questions
similar to the ones we answer in this paper: What are the
conflict patterns inside method bodies? What percentage
of those conflicts involve method signatures or just state-
ments inside the method bodies?

Yuzuki et al. [26] analyzed the characteristics of con-
flicts at the level of individual methods. Using the version
history of ten Java projects, they found that 44% of conflicts
were due to concurrent changes (edits in the same part of
the method made by two or more developers), 48% to re-
moving methods in their entirety, and 8% to renames. They
report that 99% of the conflicts were resolved by choosing
one of the versions – a number that does not align with our
results, but might be an artifact of the small number of pro-
jects they studied.

McKee et al. [43] first interviewed 10 developers and
then performed a follow-on survey with 162 other devel-
opers to build a detailed understanding of developer per-
ceptions regarding merge conflicts. They found, among
other things, that complexity of the conflicting lines of code
and file as a whole, number of LOC involved in the con-
flict, and developers’ familiarity with the lines of code in
conflict all impact how difficult developers find a conflict
to resolve. They also found that, when it comes to merge
tools, developers feel they need better usability, better
ways of filtering out less relevant information, better ways
of exploring project history, and better graphical represen-
tation of information they need. These findings are in line
with our findings, with the results from our quantitative
analyses suggesting some concrete ways of actually ad-
dressing some of those needs.

All in all, no prior work is as detailed as ours, shedding
light on the nature of merge conflicts in terms of what con-
flicts look like, what kinds of conflicts occur, how develop-
ers fix them, how conflicts involving different chunks re-
late, and more. Moreover, no prior work analyzed as ex-
tensive a corpus of projects as we did.

7 CONCLUSION

This paper contributes a two-part, in-depth study of merge
conflicts, what they look like in detail, and how developers
choose to resolve them. First, we analyzed, by hand, over
a thousand merges from five open source projects, identi-
fied the merges that led to a conflict and, on a conflicting
chunk by conflicting chunk basis, catalogued the language
constructs involved and the resolution strategies that de-
velopers used to address the conflicts they encountered.
We then examined the data from a number of perspectives
that articulate what makes some merge conflicts more dif-
ficult than others, including the number of conflicting
chunks, the size of the chunks, the language constructs that

appear in the conflicting chunks, the patterns in language
constructs that are present inside and across chunks, and
the patterns relating language constructs and developer
decisions. Second, inspired by the results from the manual
analysis, we replicated the analysis on a large-scale corpus
of 2,731 Java projects involving 25,328 failed merges and a
total of 175,805 conflicting chunks. With a few exceptions
that we highlighted in the paper, findings from the large-
scale corpus align with those from the five initial projects.

From our analyses, it becomes clear that an all-purpose,
general merge technique may never be reached: too much
variability exists in the developer decisions being made in
otherwise similar kinds of merge conflicts. We envision
new merge tools that integrate several components: (1) an
existing base technique, whether structured or unstruc-
tured, (2) extensions in the form of plug-ins that each can
automatically handle a specific kind of conflict, (3) user in-
terface tools that offer tailored heuristics with relevant
choices that guide the developer when the merge tool can-
not resolve a conflict on its own, and (4) the ability to con-
tinue merging automatically once relevant manual choices
are made. Supporting this vision are the following key
findings from our study: 87% of conflicting chunks (auto-
mated analysis; 83% manual analysis) had all the infor-
mation needed to resolve them as resolution did not re-
quire any new code to be written; 60% of failed merges in-
volved multiple conflicting chunks, with, depending on
project, from 14% to 46% of all chunks (29% average) hav-
ing dependencies on other chunks; and patterns exist in
both how certain kinds of conflicts are addressed repeat-
edly and how developers make similar resolution choices
over time.

Our future work is twofold. First, we intend to study the
nature of merge conflicts in more detail yet, as well as more
broadly. As one example, we plan to examine merges that
result from concatenation and study whether any patterns
exist in which lines of code from both versions are selected
and how they are interwoven. As another example, we
plan to replicate our study with projects written in differ-
ent programming languages. Our second direction of fu-
ture work turns to the design and exploration of new
merge tools that are inspired by the observations made in
this paper. Short term, we are particularly interested in de-
signing semi-automated tool support that assists develop-
ers in the incremental resolution of conflicting chunks by
suggesting possible resolutions based on the patterns we
found. Long term, we plan to explore the design of learn-
ing-based approaches to merging.

ACKNOWLEDGMENT

The authors thank CAPES, CNPq, and FAPERJ for the fi-
nancial support. Part of this work was supported by the
NSF under grant number CCF-1414197.

REFERENCES

[1] T. Mens, “A State-of-the-Art Survey on Software Merging,”
IEEE Trans. Softw. Eng., vol. 28, no. 5, pp. 449–462, 2002.

24

[2] O. Leßenich, S. Apel, and C. Lengauer, “Balancing precision
and performance in structured merge,” Autom. Softw. Eng.
ASE, vol. 22, no. 3, pp. 367–397, May 2014.

[3] T. Berlage and A. Genau, “A framework for shared applica-
tions with a replicated architecture,” in Symposium on User

Interface Software and Technology (UIST), Atlanta, Georgia,
USA, 1993, pp. 249–257.

[4] S. Chacon, Pro Git, 1st ed. Berkeley, CA, USA: Apress, 2009.
[5] J. W. Hunt and M. D. McIlroy, “An Algorithm for Differential

File Comparison,” Bell Laboratories, Murrray Hill, NJ, Com-
puting Science Technical Report CSTR 41, 1976.

[6] W. Miller and E. W. Myers, “A file comparison program,”
Softw. Pract. Exp., vol. 15, no. 11, pp. 1025–1040, 1985.

[7] E. W. Myers, “An O(ND) Difference Algorithm and its Vari-
ations,” Algorithmica, vol. 1, no. 2, pp. 251–266, 1986.

[8] G. Oster, P. Urso, P. Molli, and A. Imine, “Data Consistency
for P2P Collaborative Editing,” in Conference on Computer
Supported Cooperative Work (CSCW), Banff, Alberta, Can-
ada, 2006, pp. 259–268.

[9] T. Apiwattanapong, A. Orso, and M. J. Harrold, “JDiff: A Dif-
ferencing Technique and Tool for Object-oriented Programs,”

Autom. Softw. Eng. ASE, vol. 14, no. 1, pp. 3–36, 2007.
[10] D. Binkley, S. Horwitz, and T. Reps, “Program Integration for

Languages with Procedure Calls,” ACM Trans. Softw. Eng.
Methodol. TOSEM, vol. 4, no. 1, pp. 3–35, 1995.

[11] J. Buffenbarger, “Syntactic software merging,” in Interna-
tional Conference on Software Engineering (ICSE), London,
UK, 1995, pp. 153–172.

[12] J. J. Hunt and W. F. Tichy, “Extensible language-aware merg-
ing,” in International Conference on Software Maintenance

(ICSM), Montreal, Canada, 2002, pp. 511–520.
[13] H. Shen and C. Sun, “A complete textual merging algorithm

for software configuration management systems,” in Com-
puter Software and Applications Conference (COMPSAC),
Hong Kong, China, 2004, pp. 293–298 vol.1.

[14] H. Shen and C. Sun, “Syntax-based reconciliation for asyn-
chronous collaborative writing,” in International Conference
on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), San Jose, CA, USA, 2005,
pp. 10 pp.-.

[15] B. Westfechtel, “Structure-oriented Merging of Revisions of
Software Documents,” in Workshop on Software Configura-
tion Management (WSCM), Trondheim, Norway, 1991, pp.
68–79.

[16] V. Berzins, “Software merge: semantics of combining changes
to programs,” ACM Trans. Program. Lang. Syst. TOPLAS,

vol. 16, no. 6, pp. 1875–1903, 1994.
[17] D. Jackson and D. A. Ladd, “Semantic Diff: a tool for summa-

rizing the effects of modifications,” in International Confer-
ence on Software Maintenance (ICSM), Victoria, BC, Canada,
1994, pp. 243–252.

[18] S. Apel, O. Lessenich, and C. Lengauer, “Structured merge
with auto-tuning: balancing precision and performance,” in
Automated Software Engineering (ASE), Essen, Germany,

2012, pp. 120–129.
[19] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,

“Semistructured Merge: Rethinking Merge in Revision Con-
trol Systems,” in European Conference on Foundations of
Software Engineering (ESEC/FSE), Szeged, Hungary, 2011,
pp. 190–200.

[20] D. Berlin and G. Rooney, Practical Subversion, 2nd ed.
Apress, 2006.

[21] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integra-

tion: Improving Software Quality and Reducing Risk. Boston,
MA: Addison-Wesley, 2007.

[22] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive
detection of collaboration conflicts,” in European Conference

on Foundations of Software Engineering (ESEC/FSE), Sze-
ged, Hungary, 2011, pp. 168–178.

[23] B. K. Kasi and A. Sarma, “Cassandra: Proactive Conflict Min-
imization Through Optimized Task Scheduling,” in Interna-
tional Conference on Software Engineering (ICSE), Pisca-

taway, NJ, USA, 2013, pp. 732–741.
[24] T. Zimmermann, “Mining Workspace Updates in CVS,” in

Proceedings of the Fourth International Workshop on Mining
Software Repositories, Washington, DC, USA, 2007, p. 11.

[25] G. Cavalcanti, P. Accioly, and P. Borba, “Assessing Semis-
tructured Merge in Version Control Systems: A Replicated Ex-
periment,” in International Symposium on Empirical Software
Engineering and Measurement (ESEM), Beijing, China, 2015,

pp. 1–10.
[26] R. Yuzuki, H. Hata, and K. Matsumoto, “How we resolve con-

flict: an empirical study of method-level conflict resolution,”
in International Workshop on Software Analytics (SWAN),
Montreal, Canada, 2015, pp. 21–24.

[27] H. L. Nguyen and C.-L. Ignat, “Parallelism and conflicting
changes in Git version control systems,” presented at the
IWCES’17 - The Fifteenth International Workshop on Collab-

orative Editing Systems, 2017.
[28] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen,

“Indicators for merge conflicts in the wild: survey and empir-
ical study,” Autom. Softw. Eng., vol. 25, no. 2, pp. 279–313,
Jun. 2018.

[29] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A.
Sarma, “An Empirical Examination of the Relationship be-
tween Code Smells and Merge Conflicts,” in 2017 ACM/IEEE
International Symposium on Empirical Software Engineering

and Measurement (ESEM), 2017, pp. 58–67.
[30] R. Santos and L. G. P. Murta, “Evaluating the Branch Merging

Effort in Version Control Systems,” in 2012 26th Brazilian
Symposium on Software Engineering (SBES), Natal, RN - Bra-
zil, 2012, pp. 151–160.

[31] B. O’Sullivan, “Making sense of revision-control systems,”
Commun. ACM, vol. 52, no. 9, p. 56, Sep. 2009.

[32] P. Devanbu, “New Initiative: The Naturalness of Software,” in

International Conference on Software Engineering (ICSE),
Florence, Italy, 2015.

[33] L. G. P. Murta, H. L. R. Oliveira, C. R. Dantas, L. G. B. Lopes,
and C. M. L. Werner, “Odyssey-SCM: An integrated software
configuration management infrastructure for UML models,”
Sci. Comput. Program., vol. 65, no. 3, pp. 249–274, 2007.

[34] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Piattini,
“Tools to Support Global Software Development Processes: A

Survey,” in 5th IEEE International Conference on Global
Software Engineering (ICGSE), 2010, pp. 13–22.

[35] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Unifying
Configuration Management with Merge Conflict Detection
and Awareness Systems,” in 2nd Australian Software Engi-
neering Conference (ASWEC), Washington, DC, USA, 2013,
pp. 201–210.

[36] J. young Bang et al., “CoDesign: a highly extensible collabo-

rative software modeling framework,” presented at the 2010
ACM/IEEE 32nd International Conference on Software Engi-
neering, 2010, vol. 2, pp. 243–246.

[37] P. Dewan and R. Hegde, “Semi-synchronous conflict detection
and resolution in asynchronous software development,” Eur.
Conf. Comput.-Support. Coop. Work ECSCW, pp. 159–178,
2007.

[38] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“FASTDash: A Visual Dashboard for Fostering Awareness in

Software Teams,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, New York, NY,
USA, 2007, pp. 1313–1322.

 25

[39] A. Sarma, D. Redmiles, and A. van der Hoek, “Palantir: Early
Detection of Development Conflicts Arising from Parallel
Code Changes,” IEEE Trans Softw Eng, vol. 38, no. 4, pp.
889–908, Jul. 2012.

[40] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-commit Analy-

sis to Facilitate Team Software Development,” in 31st Inter-
national Conference on Software Engineering (ICSE), Wash-
ington, DC, USA, 2009, pp. 507–517.

[41] L. Hattori and M. Lanza, “Syde: a tool for collaborative soft-
ware development,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, 2010, vol. 2, pp. 235–
238.

[42] M. L. Guimarães and A. R. Silva, “Improving early detection

of software merge conflicts,” in 34th International Conference
on Software Engineering (ICSE), Piscataway, NJ, USA, 2012,
pp. 342–352.

[43] S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software Prac-
titioner Perspectives on Merge Conflicts and Resolutions,” in
2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2017, pp. 467–478.

[44] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and Im-

proving Semistructured Merge,” Proc ACM Program Lang,
vol. 1, no. OOPSLA, pp. 59:1–59:27, Oct. 2017.

[45] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-
structured merge conflict characteristics in open-source Java
projects,” Empir. Softw. Eng., pp. 1–35, Dec. 2017.

Gleiph G. L. Menezes holds a Ph.D. (2016) and Master (2011) de-
grees in Computer Science from the Computing Institute of Univer-
sidade Federal Fluminense (UFF) and a B.S. (2009) degree in Com-
puter Science from Universidade Federal de Viçosa (UFV). He is a
Professor at the Computer Science Department of Universidade Fed-
eral de Juiz de Fora (UFJF). He received a distinguished Master The-
sis award at Simpósio Brasileiro de Qualidade de Software (SBQS) in
2012. His research area is software engineering, and his current re-
search interests include configuration management and software evo-
lution.

Leonardo G. P. Murta is an Associate Professor at the Computing
Institute of Universidade Federal Fluminense (UFF). He holds a Ph.D.
(2006) and a M.S. (2002) degree in Systems Engineering and Com-

puter Science from COPPE/UFRJ, and a B.S. (1999) degree in Infor-
matics from IM/UFRJ. He has a productivity research grant level 2
from CNPq since 2009 and a Young Scientist research grant from
FAPERJ since 2012. He has published over 150 papers on journals
and conferences and received an ACM SIGSOFT Distinguished Pa-
per Award at ASE 2006 and three best paper awards at SBES in 2009,
2014, and 2016. He has served as program committee member of
ICSE 2014, program chair of SBES 2015, associate editor of JBCS
since 2013 and editor in chief of JSERD since 2017. His research area
is software engineering, and his current research interests include
configuration management, software evolution, software architecture,
and provenance.

Marcio de O. Barros holds a Ph.D. degree (2001) in Computer Sci-

ence and System Engineering from COPPE/UFRJ at Rio de Janeiro,

Brazil. He is an Associate Professor at Universidade Federal do Es-

tado do Rio de Janeiro (UNIRIO). He has a productivity research grant

level 2 from CNPq since 2007. His research interests involve the ap-

plication of search-based optimization to software construction related

activities, such as design, code improvement and version control sys-

tems, as well as earlier software development activities, including re-

quirements prioritization and project management. He serves on sev-

eral international program committees and acts as reviewer for rele-

vant software engineering journals.

André van der Hoek serves as chair of the Department of Informatics
at the University of California, Irvine and heads the Software Design
and Collaboration Laboratory, which focuses on understanding and
advancing the roles of design, collaboration, and education in soft-
ware engineering. He is co-author of 'Software Design Decoded: 66
Ways How Experts Think' and co-editor of 'Studying Professional Soft-
ware Design: a Human-Centric Look at Design Work', two books that
detail the expert practices of professional software designers. He has
authored and co-authored over 100 peer-reviewed journal and confer-
ence publications, and in 2006 was a recipient of an ACM SIGSOFT
Distinguished Paper Award. He was recognized as an ACM Distin-
guished Scientist in 2013, and in 2009 he was a recipient of the Prem-
ier Award for Excellence in Engineering Education Courseware. He is
the principal designer of the B.S. in Informatics at UC Irvine and was
honored, in 2005, as UC Irvine Professor of the Year for his outstand-
ing and innovative educational contributions. He holds a joint B.S. and
M.S. degree in Business-Oriented Computer Science from Erasmus
University Rotterdam, the Netherlands, and a Ph.D. degree in Com-
puter Science from the University of Colorado at Boulder.

