
A Large-scale Study about Quality and

Reproducibility of Jupyter Notebooks

João Felipe Pimentel∗, Leonardo Murta∗, Vanessa Braganholo∗, and Juliana Freire†

∗Universidade Federal Fluminense

Niterói, Brazil

{jpimentel,leomurta,vanessa}@ic.uff.br
†New York University

New York, USA

juliana.freire@nyu.edu

Abstract—Jupyter Notebooks have been widely adopted by
many different communities, both in science and industry. They
support the creation of literate programming documents that
combine code, text, and execution results with visualizations
and all sorts of rich media. The self-documenting aspects and
the ability to reproduce results have been touted as significant
benefits of notebooks. At the same time, there has been grow-
ing criticism that the way notebooks are being used leads to
unexpected behavior, encourage poor coding practices, and that
their results can be hard to reproduce. To understand good and
bad practices used in the development of real notebooks, we
studied 1.4 million notebooks from GitHub. We present a detailed
analysis of their characteristics that impact reproducibility. We
also propose a set of best practices that can improve the rate of
reproducibility and discuss open challenges that require further
research and development.

Index Terms—jupyter notebook, github, reproducibility

I. INTRODUCTION

Literate programming is a paradigm that seeks to help in the

communication of programs [1] by interleaving formatted nat-

ural language text, executable code snippets, and computation

results. Code snippets generate the computation results and

natural language text explains both the code and the results.

Jupyter Notebook is the most widely-used system for in-

teractive literate programming [2]. It was designed to make

data analysis easier to document, share, and reproduce. The

system was released in 2013, and today there are over 1

million notebooks in GitHub [3]. Jupyter Notebook originated

from IPython [4] and, in addition to Python, it supports a

variety of programming languages, such as Julia, R, Javascript,

and C. Notebooks interleave not only code and text, but also

different kinds of rich media, including image, video, and even

interactive widgets combining HTML and JavaScript.

Kluyver et al. [5] advocate the usage of notebooks for pub-

lishing reproducible research, due to their ability to combine

reporting text with the executable research code. However, the

format has been increasingly criticized for encouraging bad

habits that lead to unexpected behavior and are not conducive

to reproducibility [6]–[8]. Among the main criticisms are

hidden states, unexpected execution order with fragmented

code, and bad practices in naming, versioning, testing, and

modularizing code. Also, the notebook format does not encode

its library dependencies with associated versions, which can

make it hard (or even impossible) to reproduce the notebook.

These criticisms reinforce prior work which has emphasized

the negative impact of the lack of best practices of Software

Engineering in scientific computing software [9], regarding

separation of concerns [10], tests [11], and maintenance [12].

Existing work attempted to understand how notebooks

are used [3], [13], [14]. They analyzed different aspects of

notebooks, including use cases [13], narrative [3], [13], and

structure [3], [14]. However, they did not attempt to run the

notebooks and check characteristics related to reproducibility.

In this paper, we present a study that aims to provide

insights into the reproducibility aspects of real notebooks.

To better understand the different characteristics that impact

reproducibility, using the aforementioned criticisms as a guide,

we define metrics to analyze the extent of adoption of both

good and bad practices. To compute these metrics, we created

a corpus consisting of 1,159,166 unique notebooks collected

from 264,023 GitHub repositories and extracted information

about the structure of the notebooks. Besides, to assess the

reproducibility rate, we attempted to execute the notebooks. As

we discuss in Section IV, out of 863,878 attempted executions

of valid notebooks (i.e., notebooks with defined Python version

and execution order), only 24.11% executed without errors and

only 4.03% produced the same results. Based on our findings,

we propose a set of best practices for the development of

Jupyter Notebooks.

This paper is organized as follows. Section II provides

some background about literate programming and Jupyter

Notebooks. Section III describes the method we followed in

this study and our notebook corpus. We present the analysis

results in Section IV. In Section V, we propose a set of

best practices for the development of Jupyter Notebooks. We

discuss the threats to the validity of our study in Section VI

and present related work in Section VII. Finally, we conclude

in Section VIII where we outline directions for future work.

II. BACKGROUND

Knuth [1] introduced the literate programming paradigm

that, by combining code and natural language, enables pro-

grammers to explicitly state the thoughts behind a program’s

1

55

In [3]:

Out[3]:

Fibonnaci

Let’s plot the numbers

def fib(x):

if x <= 1:

return x

return fib(x-1) + fib(x-2)

fib(10)

from matplotlib import pyplot

%matplotlib inline

x = range(15)

y = [fib(n) for n in x]

pyplot.plot(x, y);

In [8]:

0 2 4 6 8 10 12 14

0

50

100

150

200

250

300

350

Markdown

Cells

Code

Cells

Execution

Counter
Output 2

Output 1

Fig. 1. A notebook example with markdown, code, and output.

logic. It allows the programmers themselves and others to

more easily understand the code. Nowadays, literate program-

ming is used in interactive computational notebook environ-

ments [2], which allow parts of a notebook to be executed

with immediate visualization of results and formatted text.

A Jupyter Notebook [2] is at the same time an interactive

literate programming document and an application that exe-

cutes the document. In this paper, to avoid the ambiguity, we

use the term Jupyter to refer to the application, as well as to

Jupyter Lab and other applications that execute notebooks. We

use the terms Notebook or Jupyter Notebook interchangeably

to refer to the literate programming document.

A notebook is composed of cells, which can be of three

types: code, markdown, and raw. A code cell contains ex-

ecutable code used to produce results. A markdown cell

contains formatted text. Finally, a raw cell contains text that is

neither code nor formatted text. Tools that convert notebooks

into other formats use raw cells for configuration.

Jupyter uses a kernel to execute code cells. When Jupyter

sends a code cell for execution, it marks the cell as executing

by assigning “*” to the cell execution counter. After the

execution, the kernel allocates a number to the counter, which

indicates the execution order. Users can execute the cells in

any order, and a given cell can be executed multiple times.

Storing either executed or non-executed notebooks is pos-

sible. A non-executed notebook contains only prospective

data [15], i.e., the notebook title and definition of its cells. An

executed notebook contains prospective data plus retrospective

data [15] derived by the execution of the notebook cells –

the output of code cells and their execution counters. The

execution of a notebook does not require cleaning the outputs

of previous executions. Thus, an executed notebook may

contain retrospective data of multiple executions.

Figure 1 shows an executed Jupyter notebook which con-

tains two markdown cells and two code cells. On the left of

code cells, Jupyter displays an execution counter that indicates

the order in which the cells were executed. Below the code

cells, Jupyter displays their outputs. Note that the first code

cell returns a number, identified by Out[3] and the second

code cell displays an image, without returning it. This figure

also presents two skips on the execution counters. A skip

represents cell executions that do not have explicit definitions

in the notebooks. In this case, the two executions before the

execution counter 3 represent one skip, and the four executions

between 3 and 8 represent the other.

III. MATERIALS AND METHODS

In this section, we discuss the method for the analyses we

have carried out and data collection procedures we used to

obtain evidence for quality and reproducibility best practices

(or lack of thereof) in Jupyter notebooks.

A. Analyses

As discussed in Section I, Jupyter has received substantial

criticism for encouraging bad coding habits and practices that

hinder reproducibility [6]–[8]. In what follows, we discuss

these criticisms and propose analyses to quantify their impact

on notebooks present in GitHub. These criticisms relate to both

prospective and retrospective components of notebooks [15].

We thus frame our analyses in terms of seven research ques-

tions (RQ1, RQ2, RQ3, RQ4, RQ5, RQ6, and RQ7), which

we organize into these two categories.

1) Analysis of Prospective Data: Notebooks store cell

definitions and the notebook title as prospective data. In our

analyses, we tried to answer the following questions:

RQ1. How are literate programming features used in note-

books? According to Wilson et al. [9], scientists should write

programs for people and not for computers. Being a literate

programming tool, Jupyter can fulfill this goal. Jupyter allows

users to write markdown cells with text describing the logic

behind their programs, followed by direct visualizations of

the results. However, the ability to do it does not imply that

users will write descriptions or whether these descriptions are

meaningful. Grus [7] pointed out that among the officially

recommended tutorials written in Jupyter, there are tutorials

with descriptive text that does not correctly explain what the

code does. We analyze whether Jupyter is used as literate

programming tool by looking at the number of markdown cells

and their positions in the notebooks. Investigating the presence

of linguistic anti-patterns [16] or whether the markdown

descriptions are meaningful for the notebooks is outside the

scope of this work.

RQ2. How are notebooks named? By default, Jupyter

creates notebooks titled “Untitled”. This discourages users to

choose meaningful names [7]. Also, the notebook title is the

same as the filename. Using the filename creates OS-based

restrictions in the size of titles and the allowed characters (e.g.,

in Windows, it is impossible to create or use a notebook that

has ”?” in the title [17]). Moreover, it makes the notebook

title susceptible to filename conventions (e.g., not using space

characters [18]). We analyze the number of “Untitled” note-

books, the number of notebooks with “-Copy” in the title,

the size of notebook titles, and the presence of characters not

2

recommended by the POSIX fully portable filenames guide

(the guide recommends A-Z a-z 0-9 . -) [19].

RQ3. How do notebooks use modules, functions, and

classes? In traditional programming languages, modules,

functions, and classes are essential constructs to maintain

the separation of concerns in software [10]. In literate pro-

gramming environments, markdown cells could be used to

separate the concerns. However, this would suffer from the

lack of referencing and reusability. Moreover, Python treats

every script as a module and allows users to import functions

and classes from them, which improves the reusability across

scripts. However, importing notebooks is hard and unusual [7].

We extract the Python Abstract Syntax Tree (AST) from cells

to analyze the presence of local module imports, and function

and class definitions as evidence of separation of concerns.

RQ4. How are notebooks tested? Testing is a good practice

to verify that a given program meets its requirements and

keeps working after changes are applied [11]. Since notebooks

are not modules, testing code in a notebook is challenging

as it requires mixing text code with the notebook narrative

code [7], [8]. To search for evidence of testing in notebooks,

we analyze the imported modules names that contain “test”,

“Test”, “TEST”, “mock”, “Mock”, or “MOCK” as a sub-

string. We also checked for known Python testing tools that

do not have these sub-strings (i.e., antiparser, aspectlib, be-

have, doublex, fit, fudge, fusil, hypothesis, lettuce, ludibrio,

mox, nose, peckcheck, pester, pry, pythoscope, reahl.tofu,

reahl.stubble, sancho, subunit, taof, twisted.trial). We obtained

this list of modules from the categories unit testing tools, mock

testing tools, fuzz testing tools, and acceptance testing tools

of the Python testing tools taxonomy page [20].

2) Analysis of Retrospective Data: Notebooks store cell

outputs and execution counters as retrospective data. We use

the following questions to explore the retrospective data.

RQ5. Do users store notebooks with retrospective data?

Displaying execution results is part of the literate programming

aspect of notebooks. The support for rich media enhances the

narratives and the writing of programs for people. Moreover,

having partial cell results helps in checking the reproduction

of a notebook, by allowing the comparison of the cell outputs

upon re-execution. However, some advocate that the results

of notebook execution should be removed before committing

to avoid noise in diffs [21]. Furthermore, Jupyter is also used

as an IDE for general purpose software development with the

goal of extracting the produced code to scripts afterward [13].

We analyze the number of notebooks that have retrospective

data and whether Jupyter is used as literate programming tool

by looking at the output formats (i.e., MIME types of cells’

outputs) in executed notebooks.

RQ6. How are notebooks executed? Jupyter allows users

to execute cells in any order. While notebooks present the

cells in a linear top-bottom narrative, a user may choose to

execute the cells in a non-linear, arbitrary order. This ability

is not intuitive to how most people expect to run code [6]–[8].

Moreover, cells that appear at the beginning of notebooks may

depend on cells that appear later, causing even more issues to

Out[4]:

co = 0

2

In [1]:

co += 1In [3]:

coIn [4]:

(a)

Out[3]:

co = 0

1

In [1]:

co += 2In [2]:

coIn [3]:

(b)

Out[3]:

co = 0

1

In [1]:

coIn [3]:

(c)

Fig. 2. Three types of Hidden States: (a) Re-execution; (b) edited cell; (c)
removed cell.

people that run them in the default order [22]. To quantify the

prevalence of this issue, we identify notebooks that have cells

in a non-linear order.

In addition to the out-of-order cell issue, when Jupyter

executes a code cell, the execution may change a state in

the environment. It does not cause problems when users run

cells only once and do not change the previously executed

cells. However, when the user runs the same cell multiple

times, edits, or removes the cell code after executing it, the

environment state may no longer represent the code definition,

and this can lead to bugs and make debugging harder [6], [7].

Figure 2 presents three examples of hidden states caused

by these situations. Note that hidden states caused by cell

re-execution or removal make the notebooks skip numbers

in the execution counter sequence. Thus, in our analyses,

we count how many execution counters skips there exist in

the notebooks. Note that a removed or re-executed cell that

causes a skip number does not necessarily produce a hidden

state when it has code that does not change the environment.

Hence, our measurement states the susceptibility of notebooks

to have hidden states rather than confirming that they have

them. Additionally, our analysis does not consider hidden

states caused by edited cells that were not executed.

Finally, the presence of non-executed code cells in the

middle of the notebooks also hinders the reasoning about the

execution. We analyze this issue by counting how many non-

executed cells there exist in the notebooks and by comparing

their positions with the position of executed ones.

RQ7. How reproducible are notebooks? Notebooks do not

declare the versions of imported libraries [7]. The lack of

versions may cause incompatibilities and prevent the usage in

other systems. In Python, this issue can be addressed by defin-

ing dependencies in standard files: requirements.txt,

setup.py, and Pipfile. We analyze how many notebooks

belong to repositories with such files.

The existence of hidden states, out-of-order cells, hard-

coded paths, and other bad practices also prevent the repro-

duction of notebooks. To assess the rate of reproducibility,

we perform a reproducibility analysis of all unambiguous

execution order Python notebooks. We define unambiguous

execution order notebooks as notebooks that have only one

valid execution sequence. That is, they have neither cells with

repeated execution counters, nor cells whose counter count

indicates that they are being executed. Note that this definition

does not guarantee that the notebook outputs represent a

single execution, but it is a close approximation with practical

3

implications in our analyses.

In this analysis, we execute notebooks following the execu-

tion counter order to identify notebooks that when executed

lead to results that are the same as the results stored with the

notebooks.

While Jupyter supports multiple kernels, a Python instal-

lation is usually restricted to a single IPython kernel. Thus,

we use conda environments to manage multiple Python in-

stallations and kernels in the experiments [23]. Conda is a

package and environment management system that installs

and manages the dependencies of packages. It simultaneously

supports multiple versions of Python installed with different

dependencies. Before executing each notebook, we prepared

a conda environment with the declared Python version and

installed all dependencies declared in the repository through

the files mentioned above. In repositories that did not declare

dependencies, we installed all anaconda [24] dependencies.

Anaconda is both a conda package and a Python and R dis-

tribution that includes over 100 Scientific Packages, including

numpy, scipy, and matplotlib. We set a time limit of 5

minutes for the execution of each notebook.

B. Data Collection

We used the GitHub API to find repositories created be-

tween January 1st, 2013 and April 16th, 2018 that had a

file with “Jupyter Notebook” as identified language. This

query returned 265,143 repositories with 1,450,071 notebooks.

We did not collect checkpoint notebooks that were stored in

.ipynb_checkpoints directories.

Most repositories (59.97%) have 2 or fewer notebooks.

Only 12.46% of the repositories have 10 or more notebooks.

However, 61.45% of the notebooks belong to repositories with

10 or more notebooks.

After collecting the notebooks, we excluded invalid note-

book files, empty notebooks, and empty repositories resulting

in 1,423,676 notebooks from 264,023 repositories. From this

result, we also excluded 264,510 (18.58%) duplicated note-

books. The goal was to reduce the bias towards forks and

notebook copies. We detected these notebooks by calculating

the SHA1 hashes from cell sources and output formats. We

did not use the output results nor other metadata when we

calculated the hashes to be able to detect notebooks that only

had distinct retrospective data as duplicates. This resulted in

1,159,166 notebooks for the analyses.

We then analyzed the declared programming languages.

Figure 3 presents, in log scale, the 15 most declared pro-

gramming languages we found. Python is by far the most

used programming language, corresponding to 93.32% of the

notebooks. It is followed by R (1.31%) and Julia (0.93%).

Due to the interactive nature of notebooks, most programming

languages are scripting languages. Nonetheless, Jupyter is also

used for compiled languages such as C++ and Haskell. A total

of 43,204 notebooks do not declare a programming language,

and 33,378 of them use nbformat lower than 4, which predates

the release of the language-agnostic Jupyter. Although this is

py
tho

n
un

kn
ow

n R
jul

ia
sca

la
ba

sh
rub

y lua
oc

tav
e

sca
la2

11 c+
+

jav
as

cri
pt

matl
ab

ha
ske

ll sa
s

Programming Language

1,000

10,000

100,000

1,000,000

No
te

bo
ok

s

1,081,702

43,204
15,20410,772

1,243 892 648 626 586 560 503 494 473 363
166

Fig. 3. Top 15 most declared programming languages. Notebooks axis in
logarithmic scale.

1

13

30

71

158
Fig. 4. Distribution of maximum execution counter. Max. outlier: 11,037.

a strong indication that these notebooks also use Python, we

opted for removing them from Python-specific analyses.

Since most notebooks contain Python code (1,081,702) and

questions RQ3, RQ4, and RQ7 require language-specific anal-

yses, we focus on Python notebooks to answer these questions.

We extracted declared versions and cells with metadata from

Python scripts, and we used the Python AST to extract Python

constructs and imported modules. The most used version is

Python 2.7, which corresponds to 36.00% of the notebooks.

However, by combining major releases, Python 3 surpassed

Python 2. In fact, 63.91% of the Python notebooks use Python

3. The remaining did not declare a version. For RQ3 and RQ4,

we used only valid Python notebooks (i.e., notebooks with a

valid Python syntax in all code cells). Valid Python notebooks

correspond to 1,005,689 (86.76%) notebooks. For RQ7, we

did not have this restriction, because we ran only executed

cells of Python notebooks with unambiguous execution order,

which correspond to 863,878 (74.53%) notebooks.

In addition to these restrictions, we analyzed only executed

notebooks for RQ5 and RQ6. It corresponds to 985,595

(85.03%) notebooks. Figure 4 presents the distribution of the

maximum execution counter value by notebooks. Note that

50% of the notebooks executed 30 or more cells.

IV. RESULTS AND DISCUSSION

In this section, we present the results we collected to answer

each of the research questions of our study.

A. How are literate programming features used in notebooks?

An important aspect of literate programming is using natural

language for describing the code. In the collected data, note-

books have a median of 4 markdown cells. As a comparison,

notebooks have a median of 13 code cells. Note, however,

that 30.93% of the notebooks have no markdown cell at all.

In notebooks that have markdown cells, these cells concentrate

at the beginning of the notebooks, as presented in Figure 5.

Among the 69.07% notebooks that have markdown cells,

50% have at least 26 meaningful markdown lines. Addition-

ally, 50% of the notebooks have at least 168 meaningful words,

which is a bit bigger than two times the size of this paragraph.

4

Beginning Middle End
%

 o
f C

el
ls markdown

code

Fig. 5. Distribution of cell types in the notebook.

We consider meaningful words all the words that are not

part of the markdown syntax. Similarly, meaningful lines are

lines that have meaningful words. We also count stopwords as

meaningful. Stopwords correspond to a median of 44 words

in the notebooks for which we could detect the language.

English appears in the markdown cells of 87.16% (697,825)

of notebooks with markdown cells. However, only 309,334

are solely in English. We detected other languages in cells of

46.44% (371,791) of the notebooks with markdown. Besides

English, the most popular languages are French, Italian, Ger-

man, Romanian, Indonesian, Spanish, Norwegian, Portuguese,

and Danish, in this order. Additionally, we could not detect the

language of cells in 38.17% of notebooks with markdown.

Finally, the most common markdown elements are headers

(H1, H2, and H3), and paragraphs. These elements appear

respectively in 90.71% and 79.53% of notebooks with mark-

down. Notebooks have a median of 18 words in all headers

and 88 words in all paragraphs.

RQ1. How are literate programming features used in note-

books?

Answer: Most notebooks have markdown cells, which is a

literate programming characteristic. Moreover, markdown cells

correspond to almost one-fourth of the cells. On the other

hand, the text is often short, and the most used elements

are simple headers and paragraphs, despite the possibility of

displaying lists, images, links, and other formatted elements.

Implications: Markdown plays a considerable role in note-

books, but the size of markdown cells may not be enough

for well-described narratives, potentially compromising repro-

ducibility. Their position indicates that users give more atten-

tion to the beginning of notebooks. Additionally, markdown

could provide descriptions on how to reproduce the notebook.

In both cases, reproducing the last cells may represent a

challenge (in fact, we observe a decay of reproducibility in

the last cells when answering RQ7).

B. How are notebooks named?

Only 1.99% of the notebooks start with “Untitled”, and

only 0.69% of the notebooks have “-Copy” in their names. A

considerable number of notebooks (26.91%) have characters

not recommended by the POSIX fully portable filenames

guide. Many of these names do not cause problems for most

systems, but 0.15% of the notebooks would not work on

Windows. Since we used Linux to clone the repositories, we

do not know how many titles Linux does not support, if any.

Figure 6 presents the length of filenames. Note that all note-

books finish with “.ipynb”. We found 12 notebooks without

title (i.e., their filename was just “.ipynb”). Excluding the

0

10

16

24

45

Fig. 6. Distribution of filename lengths. Max. outlier: 187.

nu
mp

y
ma

tpl
otl
ib

pa
nd
as

skl
ea
rn os

sci
py

se
ab
orn tim
e

ma
th

IPy
tho

n

Modules

0

100,000

200,000

300,000

400,000

500,000

600,000

No
te
bo

ok
s

663,640

530,174

437,533

252,793

167,132 158,338 134,754
91,772 89,389 85,430

Fig. 7. Top 15 most imported modules.

Beginning Middle End

%
 o

f C
el

ls no-import

import

Fig. 8. Distribution of imports in notebooks.

extension, 50% of the notebooks have 16 letters or less. It

corresponds to an average of 2 to 3 English words.

RQ2. How are notebooks named?

Answer: Most users seem to change the default name in the

titles of their committed notebooks and use meaningful but

not long names. On the other hand, a considerable number

of users do not seem to care about OS-based restrictions and

conventions in naming files.

Implications: Although caring about the title is important

for the narrative, not caring about OS-based restrictions may

hamper the reproducibility on other operating systems.

C. How do notebooks use modules, functions, and classes?

To answer this question, we analyzed the AST of all

1,005,689 valid Python notebooks. While 91.25% of them

had imports, only 10.30% of them had local imports (i.e.,

imports of modules defined in the repository directory). Fig-

ure 7 presents the top 15 most imported modules. The most

used modules are numpy, matplotlib, and pandas, which are

modules related to scientific software and data analytics. Built-

in Python modules also appear among the top 15, but in

a much lower number of notebooks. Figure 8 presents the

distribution of cells with imports in notebooks. Note that most

imports occur at the beginning of notebooks. In Python scripts,

the official Python style guide (PEP 8) recommends writing

imports at the top of the files [25].

Next, we analyzed the AST constructs from notebooks

to understand if they define functions and classes. Figure 9

presents the used AST constructs from valid Python note-

books. Note that only 53.94% of valid Python Notebooks

define functions and only 8.54% define classes. While these

numbers may indicate that notebooks discourage writing func-

5

tions, we found that 70.90% of notebooks that have loops or

condition structures also have function definitions.

RQ3. How do notebooks use modules, functions, and classes?

Answer: On the one hand, users seem to create functions

in notebooks that have more complex code with control

flow constructs. On the other hand, users do not seem to

extract functions to local modules, given the fewer number

of notebooks with local modules. Class definitions are indeed

rare, but it may be a consequence of the multi-paradigm design

of Python. In Python, it is common to evolve object-oriented

code from a functional or imperative script [26].

Implications: While defining functions and classes inside

notebooks achieves the benefits of reusability and abstraction,

these benefits are limited to internal use of the notebook. On

the one hand, local modules could be better explored to extend

the reusability to other notebooks and scripts, and reduce the

size of code cells in notebooks. On the other hand, keeping

the code inside the notebook can be good for reproducibility,

as it allows users to share only the notebook file with all code.

D. How are notebooks tested?

Only 15,473 (1.54%) valid Python notebooks import known

testing modules or modules that have “test”, “Test”, “TEST”,

“mock”, “Mock”, “MOCK” as a sub-string of their names.

The most imported testing module is problem unittests, which

is a local module from a deep-learning course that has been

forked 3,211 times at the time of this writing [27]. Note that

we excluded duplicated notebooks. Thus, all the notebooks

that import this file have a distinct source code. The second

most imported testing module is unittest, which is the built-in

Python module for unit testing.

The reason why we found very few notebooks with tests

may not be the notebook environment. As presented in Sec-

tion IV-C, Jupyter Notebooks are mainly used for scientific

software and data analytics. Testing this kind of software is

hard due to the lack of oracles, the large number of tests

required, and the difficulty of judging the number of tests [28].

RQ4. How are notebooks tested?

Answer: Very few notebooks import testing modules. Some

tools have been implemented to enhance tests on Jupyter [29],

[30], but we could not detect many uses of these tools.

Moreover, they require modifying the notebook code in a way

that may break the narrative.

Implications: There is an opportunity for improving tests on

notebooks. As presented in Section IV-C, users already tend

to create functions in notebooks that have a more complex

code. These are probably the most appropriate abstractions

for testing with default testing tools, such as the Python

unittest. An appropriate test suite is important for assuring

the reproducibility in other environments.

TABLE I
OUTPUT FORMATS IN CELLS AND NOTEBOOKS

Format % of cells with output % of executed notebooks

Text 95.79% 81.98%
Image 31.41% 51.00%
HTML/JS 22.90% 36.86%
Error 3.22% 14.90%
Formatted 1.78% 1.93%
Extension 1.04% 0.00%
PDF 0.12% 0.12%

E. Do users store notebooks with retrospective data?

As stated in Section III-B, we collected 985,595 executed

notebooks, which corresponds to 85.03% of the notebooks.

These notebooks have retrospective data.

Among the executed notebooks, 26.69% of the cells had

an output, and 85.28% of the notebooks had at least one cell

with an output. Table I presents the percentage of cells and

notebooks with each output format. Note that a cell can have

multiple output formats. Thus, the percentages add up to more

than 100%. The same happens for notebooks. In this table,

Image represents PNG, JPEG, and SVG formats, which are the

default image formats supported by Jupyter. About 51.00% of

executed notebooks displayed an image. Formatted represents

markdown and LATEX formats. Finally, Extension combines

all extension-specific formats. The most common extension

formats are Jupyter Widgets, plotly, and bokeh formats. Very

few notebooks use the extension formats. Note in this table

that most executed notebooks have outputs in cells.

RQ5. Do users store notebooks with retrospective data?

Answer: Most notebooks store cells with outputs.

Implications: This result fosters reproducibility. Knowing the

expected output allows users to re-run notebooks and check

if they reproduce the results. Additionally, the number of

notebooks with images and rich-media indicates that users use

the retrospective data to enhance the notebook narratives.

F. How are notebooks executed?

Among the 1,053,653 executed notebooks, 21.11% had non-

executed code cells, and 62.08% had empty cells. Figure 10

presents the distribution of code cells in the notebooks. Note

that the percentage of executed code cells drops towards the

end of notebooks, while the percentage of non-executed and

empty cells grows. While 59.07% of executed notebooks finish

with empty cells, only 11.33% of executed notebooks have

empty cells among non-empty ones.

We collected 912,343 notebooks with unambiguous execu-

tion order (i.e., the ones that neither have repeated values

in execution counters nor executing cells, marked with an

asterisk). This number corresponds to 86.59% of the executed

notebooks. Among the notebooks with unambiguous execution

order, 36.36% have cells out-of-order.

By following the sequence of execution counters in unam-

biguous execution order notebooks, we counted how many

6

Va
ria

ble
As

sig
n

Au
gA

ssi
gn

Dele
te

Mod
ule

 Im
po

rt
Im

po
rt

Im
po

rtF
rom

Data
 St

ruc
tur

e
Lis

t
Tu

ple Dict Se
t

Lo
op Fo

r
Whil

e
Bre

ak
Co

nti
nu

e
Defi

nit
ion

Fu
nc

tio
nD

ef
La

mbd
a

Cla
ssD

ef
Gen

era
tor

Dec
ora

tor
Co

nd
itio

n If
IfE

xp

Co
mpre

he
ns

ion
Lis

tCo
mp

Gen
Ex

pr
Dict

Co
mp

Se
tCo

mp

Ex

ce
pti

onWith Try
As

se
rt

Ra
ise

Construct

0

200,000

400,000

600,000

800,000

1,000,000

No
te

bo
ok

s

94.51% 91.05% 86.33%

63.30% 58.05%
47.48%

30.42%
23.44%

Category
Construct

Fig. 9. Distribution of Python constructs in notebooks. This figure groups constructs into categories. The constructs of a category appear on the right of the
category bar. A category corresponds to the union of its constructs.

Beginning Middle End

%
 o

f C
el

ls

executed

no-exec

empty

Fig. 10. Distribution of code cells in notebooks.

0

1

2

4

8
Fig. 11. Distribution of skips. Max. outlier: 220.

skips occurred. Since skips represent cell executions without

explicit definitions, they may indicate the presence of hidden

states. Figure 11 presents the distribution of skips by note-

books. 76.90% of unambiguous execution order notebooks

have at least one skip. A skip contains 12.82 executions

on average. By considering only skips in the middle (i.e.,

excluding skips in the first cell), the percentage of notebooks

with skips drops to 66.08%. Additionally, the average of

skipped executions drops to 10.32.

RQ6. How are notebooks executed?

Answer: Many unambiguous execution order notebooks have

non-executed code cells, out-of-order cells, and skips in the

execution count. All these characteristics hinder the reasoning

about execution states. The number of notebooks with skips

and the average size of skips drop when we exclude skips

at the beginning of the notebooks. A possible cause of these

skips only at the beginning of a notebook is the re-execution

of all of its cells without restarting the kernel.

Implications: There is an opportunity for proposing ap-

proaches that measure non-executed code cell, out-of-order

cells, and skips as code smells in notebooks, i.e., structures

in the code that violate design principles and can negatively

impact quality [31]. Fortunately, most of these code smells are

easily fixable by restarting the kernel and executing all cells

again before committing. Nonetheless, such approach could

detect out-of-order cells by looking not only to cell numbers

but also to variable usages occurring before the definition.

G. How reproducible are notebooks?

Only 149,259 notebooks belong to repositories that de-

clare module dependencies. Most of these repositories use

requirements.txt (10.04%), while 5.98% use setup.py. Among

these, many repositories (3.23%) have both setup.py files and

requirements.txt files. Moreover, some repositories even have

more than one of these files. In addition to these files, we found

1,541 notebooks that belong to repositories with Pipfile.

In the remainder of this section, we describe a repro-

ducibility study in which we executed all 863,878 Python

notebooks with unambiguous execution order. Among these,

118,483 (13.72%) declared dependencies using the files men-

tioned above. Not all dependency declarations are valid. We

attempted to install the dependencies of these notebooks in

conda environments. However, the dependencies of 75,059

notebooks failed to install. To install the dependencies, we

first installed all the setup.py files in the repository. Then,

we installed the requirements.txt files. Finally, we installed

the Pipfile files. The failure rate for these files were 67.55%,

61.17%, and 65.20%, respectively.

The failure rate for the installation of requirements.txt was

lower than the other formats. While the requirements.txt is a

declarative format in which the module version is pinned, the

setup.py is a generic Python script that supports any flexible

installation code. Thus, setup.py is more susceptible to errors.

In comparison to Pipfile, requirements.txt is a well-established

format that has been used for many years. Pipfile, on the other

hand, exists for less than two years, and its specification still

goes through constant revisions.

Among the reasons for installation errors, we identified that

35.04% have files that require other unavailable files (e.g.,

sub-requirements and downloads from unavailable servers),

24.77% have malformed files (i.e., wrong syntax or conflicting

dependencies), 25.67% have files that require a previous

installation of Python packages (e.g., a setup.py that requires

Cython to compile and build a package), 8.73% have files that

require external tools (e.g., compilers and libraries), 4.77%

have files designed for other systems (e.g., Raspberry Pi and

Windows), and 1.02% have dependencies that do not support

the declared Python version (e.g., the repository has a Python

2 notebook, but the setup.py requires a module that dropped

support to Python 2 and did not pin the module version).

We were able to install the dependencies of 43,424 note-

books. In addition to these notebooks, we prepared anaconda

environments for 745,389 notebooks that did not declare de-

pendencies. Different from the previous conda environments,

7

Im
po

rtE
rro

r
Nam

eE
rro

r

Mod
ule

NotF
ou

nd
Err

or
Fil

eN
otF

ou
nd

Err
or

IOErr
or

Ty
pe

Err
or

Va
lue

Err
or

Att
rib

ute
Err

or
Sy

nta
xE

rro
r

Std
inN

otI
mple

men
ted

Err
or

Exception

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

No
te

bo
ok

 E
xe

cu
tio

ns

178,999

125,548

73,518 73,309

35,458

9,992 9,750 9,080 8,785 8,719

Fig. 12. Top 10 most common exceptions.

an anaconda environment comes with a comprehensive set of

scientific Python packages, such as numpy, matplotlib, and

pandas. Combining both sets, we had 788,813 notebooks for

the reproducibility study. However, we excluded 32 of them

because they had corrupted files.

Many notebooks failed to execute all the cells. A total

of 9,982 notebooks failed because their execution exceeded

a time limit of 5 minutes, while 570,476 notebooks failed

due to an exception. Figure 12 presents the 10 most common

exceptions the notebooks presented in our assessment.

29.23% of the notebook executions failed due to ImportEr-

ror and ModuleNotFoundError exceptions. These exceptions

are related to missing dependencies. Surprisingly, 45.18% of

the notebooks from repositories with declared dependencies

failed with one of these errors, while only 31.24% of the

notebooks from repositories without declared dependencies

failed with these errors. It probably occurred because we used

bloated anaconda environments for the latter ones. Still, it

indicates that many dependency files do not declare all the

notebook dependencies.

Another very common exception was NameError (14.53%

of notebook executions). This exception occurs when Python

tries to access a variable that was not defined. While this

exception is related to hidden states and out-of-order cells,

the experiment design may also cause this issue. In the repro-

ducibility study, we executed cells following their execution

order and not a more natural top-down cell definition order. We

opted for the former order because notebook users can execute

cells at any order and skip the execution of some cells. Note

that 21.11% of Python notebooks had non-executed code cells

that could produce distinct result should we execute them by

following the top-down order. The execution order may also

be the reason for the meager rate of notebooks that execute

and produce the same results (4.03%). Additionally, the lack of

tests, the presence of hidden states, among many other factors,

may influence this result.

Finally, the other very common exceptions were FileNot-

FoundError and IOError (12.59% of the notebooks). These

errors occur when users use absolute paths to access data files

or do not include the data in the repositories.

Only 208,323 notebooks finished their executions success-

fully. This represents 24.11% of the notebooks we attempted

to reproduce. Despite being able to execute these notebooks

Beginning Middle End
Execution Counter Order

%
 o

f C
el

ls different result

same result

Fig. 13. Distribution of cell reproducibility.

following the cell execution order, 173,487 of them produced

different results. The percentage of finished executions is very

close to the reproducibility rate of 24.9% that Collberg et

al. [32] achieved in their study of reproducibility in general

computer systems research. In their study, they did not check

the validity of results. Thus, we cannot compare this rate with

the rate of notebooks that produce the same results.

Figure 13 presents the distribution of cell reproducibility

in notebooks that finishes the execution. The position in

this figure refers to the execution order and not to the cell

position in the notebook. Note that different results appear

more frequently towards the end of the notebooks. The area

of same result is slightly bigger than the area of different

result in this figure. It indicates that more cells produced

the same results than the opposite. However, by selecting

only notebooks that failed to produce the same results, we

calculated that 50% of them have distinct results in more than

53% of their cells.

RQ7. How reproducible are notebooks?

Answer: We were able to successfully run 24.11% of the

unambiguous execution order Python notebooks. This number

is close to the results of a previous reproducibility study [32]

about general computer systems research (24.9%). However,

the rate is way smaller (4.03%) when we count only notebooks

that produce the same results. The most common causes of

failures were related to missing dependencies, the presence of

hidden states and out-of-order executions, and data accessibil-

ity.

Implications: While the reproducibility rate is comparable to

the rate in general computer systems research [32], it is far

from ideal. The identification of the root causes indicates that

there is an opportunity to improve the reproducibility rate in

notebooks by devising approaches that address these problems.

More specifically, managing the dependencies of notebooks

and guaranteeing the linear execution order could improve

the reproducibility rate. It is worthy of note that dependency

resolution problems are also common in other contexts, such as

building past snapshots of software [33]. Additionally, there

are tools such as ReproZip [34] that automatically capture

dependencies (both libraries and data) and create packages

including these dependencies, thus ensuring reproducibility.

ReproZip has a plugin for Jupyter [35].

V. BEST PRACTICES FOR THE REPRODUCIBILITY OF

NOTEBOOKS

In Section IV, we identified a set of bad practices that hinder

the reproducibility and the benefits of the literate programming

8

aspects of notebooks. Based on our findings, we propose the

following best practices for the development of notebooks.

1. Use short titles with a restrict charset (A-Z a-z 0-9 .

-) for notebook files and markdown headings for more

detailed ones in the body. As discussed in Section IV-B,

some operating systems may not support characters that many

notebook titles use. Since notebooks support markdown, we

recommend using it to write the complex titles inside the

notebooks and leave the notebook title as simple as possible.

2. Pay attention to the bottom of the notebook. Check

whether it can benefit from descriptive markdown cells or

can have code cells executed or removed. Users seem to pay

more attention to the beginning of the notebook, as depicted

in Section IV-A, Section IV-C, and Section IV-F. Particularly,

the bottom of notebooks usually has fewer markdown cells

and fewer executed code cells, compromising reproducibility.

3. Abstract code into functions, classes, and modules and

test them. As presented in Section IV-C, most users do not

extract code into modules. This hinders the reuse and test of

the notebooks. This is especially serious because notebooks

are not packed together with tests. Thus, we recommend to

abstract and test notebooks.

4. Declare the dependencies in requirement files and pin

the versions of all packages. In Section IV-G, we identified

that requirements.txt files fail less than other formats. We

also recognized that many failures occur due to the lack of

module dependencies. Hence, we recommend defining the

dependencies explicitly and pinning the versions.

5. Use a clean environment for testing the dependencies

to check if all of them are declared. In Section IV-G, we

identified that installing dependencies in a clean environment

failed more than just using a bloated anaconda environment.

Thus, we recommend setting a clean environment and test-

ing the notebooks dependencies before releasing it to check

whether all of them are declared.

6. Put imports at the beginning of notebooks. This is not

only close to the PEP 8 [25] recommendation but also helps

in the verification of imports that we discussed above.

7. Use relative paths for accessing data in the repository.

We identified that accessing files was also a common cause of

errors in Section IV-G. Accessing project files using relative

paths can reduce this issue.

8. Re-run notebooks top to bottom before committing.

As presented in Section IV-F, many notebooks have out-of-

order cells and skips. Moreover, these issues seem to impact

the reproducibility (Section IV-G). Thus, we recommend re-

running notebooks for restoring the execution counters and

minimizing the impact of hidden states and out-of-order cells.

VI. THREATS TO VALIDITY

This study attempts to obtain a picture of quality and

reproducibility practices used in the design of Jupyter Note-

books. As presented in Section III, we have designed measures

that capture different aspects of notebooks that impact their

reproducibility. These measures, however, have some threats

to validity that we discuss below.

Internal. While we used clean conda environments in the

reproducibility study, we did not isolate the executions in the

system. It means that a notebook execution or dependency

installation could install or modify system dependencies before

the preparation and execution of another notebook.

Additionally, we examined all notebooks from GitHub as

valid subjects in this work. We did not account for the

perils of mining software repositories from GitHub [36]. Some

analyzed notebooks may not be intended to be reproducible

and may not value quality. For instance, students prepare

exercises with the goal of studying for a course. These

exercises have a short life-span and are often not classified

as engineered software projects [37]. A basic check for note-

books containing words related to exercises (“assignment”,

“course”, “exercise”, “homework”, “lesson”) returns 253,008

non-duplicated notebooks (21.83%). Even though this check

is very susceptible to false positives and false negatives, it

indicates that exercises are a solid use case for notebooks

and deserves investigations. Other use cases for notebooks

(e.g., tutorial notebooks, research notebooks, dashboards, and

others) may also have different goals in terms of quality and

reproducibility and also require further investigations.

Construct. The methods we use to answer the research

questions aim to attain an approximated answer since it is

not possible to get accurate answers that precisely represent

all notebooks without false positives and false negatives. For

instance, a module for statistical tests could have “test” in its

name and appear as an answer to RQ4 without being a module

for testing software. Similarly, we may not detect a testing

module that does not have “test” or “mock” in its name, and

that does not appear in the Python testing tools taxonomy [20].

External. We collected repositories from GitHub for over one

year. During this period, many repositories were updated, and

many repositories were removed. Despite having data until

April 16th, 2018, the repository states represent their state

during the collection and not their state on this date. Addi-

tionally, we restricted our analysis to committed notebooks.

Presumably, these notebooks receive more attention than the

average scratch pad notebook and follow better practices.

For instance, Grus [7] pointed out the problem of Untitled

notebooks, but in our data, these notebooks correspond only

to 1.99% of the notebooks.

VII. RELATED WORK

Neglectos [14] analyzed 2,702 Jupyter Notebooks written in

Python and reported on the most commonly-used modules and

modules that are used together. Their results for the most used

modules are similar to ours (see Figure 7). In both analyses,

numpy and matplotlib appear as the most imported modules,

in this order. Additionally, six other modules appear in both

analyses (pandas, sklearn, os, scipy, tensorflow, and IPython),

but in a distinct order. They show warnings and collections in

the top 10, while we indicate seaborn and time.

Kery et al. [13] interviewed 21 data scientists and surveyed

45 data scientists to understand how they use notebooks. They

identified 3 types of use cases for notebooks: (i) scratchpad

9

notebooks, (ii) notebooks with code that is later extracted to

scripts, and (iii) notebooks for sharing results and knowledge.

The existence of use cases not too related to literate program-

ming (i and ii) indicates why some notebooks do not have

markdown cells. For those notebooks that have markdown

cells, Kery et al. [13] identified that data scientists go through

a cleaning phase, in which they reduce the notebook size

by merging small cells into bigger ones, adding markdown

annotations, and organizing the linearity of the execution.

Kery et al. [13] also identified good and bad practices

on notebooks. As a bad software engineering practice, they

recognized that data scientists tend to copy and paste the code

for reuse, instead of extracting the code to a function. As a

good practice, they identified that data scientists do not let

their notebooks grow too much beyond their scope. However,

this good practice occurs mainly due to notebook constraints

in performance and navigability.

Rule et al. [3] performed three analyses over notebooks.

In the first one, they analyzed 1.23 million notebooks from

191,402 GitHub repositories. While their goal on this analysis

is to extract insights on the usage of notebooks, our goal is to

dive into evidence of best practices. Nonetheless, we obtained

similar results when we analyzed the distribution of notebooks

by repository, the most used programming languages, the

distribution of cell types in the notebook, the size of markdown

cells, and the top 3 most imported Python modules.

In the second analysis, Rule et al. [3] sampled 221 note-

books from 52 repositories with an academic reference in the

README to understand the narrative of academic notebooks.

Most of these repositories contained not only the notebook

files, but also raw data, figures, and manuscript files. They

identified two types of notebooks: full analysis and tutorial

notebooks. Both are related to the literate programming use

case. They also identified that while 55% of notebooks had

introductory markdown text, only 3% had a conclusion.

Finally, in the third analysis, Rule et al. [3] interviewed 15

data analysts that recognized the importance of cleaning and

annotating notebooks and indicated 4 reasons for reusing a

notebook: tracking provenance, code reuse, reproducibility of

experiments, and presentation of results. Our results suggest

that the reproducibility of notebooks is far from ideal with

only 4.03% of Python notebooks being replicated successfully.

Additionally, since we identified a high amount of hidden state

cells in our analysis, notebooks may not be very suitable for

tracking provenance by themselves. Instead, it is better to use

a tool designed for provenance tracking [22], [38], [39].

Unlike prior work, we focus on the quality and reproducibil-

ity of Jupyter Notebooks and try to identify (and quantify the

use of) practices that hinder reproducibility.

VIII. CONCLUSION

This paper has three main contributions. First, it analyzes

evidence of good and bad practices on the development of

Jupyter Notebooks regarding reproducibility by going through

the main criticisms that the format receives [6]–[8]. Second,

it presents a full reproducibility study that measures the

reproducibility rate of notebooks (RQ7). Finally, it proposes

a set of good practices that intends to minimize the criticisms

and raise the reproducibility rate (Section V).

In our results, we found at the same time evidence of good

and bad practices. As good practices, we found the usage of

literate programming aspects of notebooks (e.g., markdown

cells and visualizations), the application of abstractions on

notebooks that have more complex control flows, and the usage

of descriptive filenames. As bad practices, we found that most

notebooks do not test their code, and that a high number of

notebooks has characteristics that hinder the reasoning and the

reproducibility, such as out-of-order cells, non-executed code

cells, and the possibility of hidden states.

Despite discussing and analyzing many criticisms of note-

books in this paper, we did not discuss all of them. Other

criticisms relate to the versioning [6], [8], security risks [6],

lack of IDE features [7], [8], lack of support for long asyn-

chronous tasks [8], and lock-in aspects of Jupyter [7].

In the reproducibility study, we found that most repositories

do not declare their dependencies. Among the ones that do,

many do not declare all their dependencies. We were only

able to execute 24.11% of the notebooks that we attempted

to run without exceptions, and only 4.03% produced the same

results. As future work, we intend to infer the dependencies

of notebooks and run them using different orders to check

whether the reproducibility rate can be improved.

We propose a set of practices that intends to raise the

reproducibility rate of notebooks on the current state-of-the-

practice. At the same time, we foresee the development of

approaches for reducing the bad practices as future work. A

tool that detects imports and fills up requirement files should

raise the number of notebooks with declared modules and

reduce the number of undeclared dependencies. A notebook

linting tool should be able to detect hidden states and out-of-

order cells. Finally, a cleaning tool could help to transform

scratchpad notebooks with bad practices into clean and repro-

ducible notebooks for publishing.

This study is a first step towards assessing the quality and

reproducibility of notebooks. There are many other questions

that we plan to investigate in the future. We intend to in-

vestigate strategies to assess the different types of projects

(e.g., student notebooks, tutorial notebooks, research note-

books, scratchpads, dashboards, and others) to compare their

metrics. We also plan to extend the modularization analysis

(RQ3) to check the prevalence of copy and paste of code,

instead of the usage of functions. We foresee the comparison

of the notebooks to general-purpose scripts to understand

whether one or another have better quality and reproducibility

measures. Finally, we intend to continue the research with

qualitative studies to understand the reasoning behind some

phenomena observed in this study.

The data, scripts, and notebooks used in this study are

available at https://doi.org/10.5281/zenodo.2592524.

Acknowledgments. This work is partially supported by

CAPES, CNPq, FAPERJ, and the NYU Moore-Sloan Data

Science Environment.

10

https://doi.org/10.5281/zenodo.2592524

REFERENCES

[1] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[2] H. Shen, “Interactive notebooks: Sharing the code,” Nature News, vol.
515, no. 7525, p. 151, 2014.

[3] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in
computational notebooks,” in Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems, ser. CHI ’18. New
York, NY, USA: ACM, 2018, pp. 32:1–32:12. [Online]. Available:
http://doi.acm.org/10.1145/3173574.3173606

[4] F. Pérez and B. E. Granger, “Ipython: a system for interactive scientific
computing,” Computing in Science & Engineering, vol. 9, no. 3, pp.
21–29, 2007.

[5] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay
et al., “Jupyter notebooks ? a publishing format for reproducible
computational workflows,” in ELPUB, F. Loizides and B. Scmidt, Eds.
Gttingen, Germany: IOS Press, 2016, pp. 87–90. [Online]. Available:
https://eprints.soton.ac.uk/403913/

[6] K. Pomogajko. (2015) Why I Don’t Like Jupyter (FKA IPython Note-
book). [Online]. Available: https://yihui.name/en/2018/09/notebook-war/

[7] J. Grus, “I don’t like notebooks.” 2018, jupyterCon. [On-
line]. Available: https://conferences.oreilly.com/jupyter/jup-ny/public/
schedule/detail/68282

[8] A. Mueller. (2018) 5 reasons why jupyter note-
books suck. [Online]. Available: https://towardsdatascience.com/
5-reasons-why-jupyter-notebooks-suck-4dc201e27086/

[9] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis,
R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D.
Plumbley, B. Waugh, E. P. White, and P. Wilson, “Best practices for
scientific computing,” PLOS Biology, vol. 12, no. 1, pp. 1–7, 01 2014.
[Online]. Available: https://doi.org/10.1371/journal.pbio.1001745

[10] W. L. Hürsch and C. V. Lopes, “Separation of concerns,” Northeastern
University, Tech. Rep., 1995.

[11] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[12] S. Horwitz and T. Reps, “The use of program dependence graphs
in software engineering,” in Proceedings of the 14th international

conference on Software engineering. ACM, 1992, pp. 392–411.

[13] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers,
“The story in the notebook: Exploratory data science using a literate
programming tool,” in Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems, ser. CHI ’18. New
York, NY, USA: ACM, 2018, pp. 174:1–174:11. [Online]. Available:
http://doi.acm.org/10.1145/3173574.3173748

[14] Neglectos. (2018) A preliminary analysis on the use of python
notebooks. [Online]. Available: https://blog.bitergia.com/2018/04/02/
a-preliminary-analysis-on-the-use-of-python-notebooks/

[15] J. Freire, D. Koop, E. Santos, and C. Silva, “Provenance for computa-
tional tasks: A survey,” Computing in Science & Engineering, vol. 10,
no. 3, pp. 11–21, 2008.

[16] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them,” Empirical Software

Engineering, vol. 21, no. 1, pp. 104–158, 2016.

[17] Microsoft. (2018) Naming files, paths, and namespaces. Windows Dev
Center. [Online]. Available: https://docs.microsoft.com/en-us/windows/
desktop/FileIO/naming-a-file

[18] Tim and Doorknob. (2014) Is space not allowed in a filename? Unix
& Linux. [Online]. Available: https://unix.stackexchange.com/q/148043

[19] D. Lewine, POSIX programmers guide. ”O’Reilly Media, Inc.”, 1991.

[20] P. Wiki. (2019) Python testing tools taxonomy. [Online]. Available:
https://wiki.python.org/moin/PythonTestingToolsTaxonomy

[21] T. Staley. (2017) Making git and jupyter notebooks
play nice. [Online]. Available: http://timstaley.co.uk/posts/
making-git-and-jupyter-notebooks-play-nice/

[22] D. Koop and J. Patel, “Dataflow notebooks: encoding and tracking
dependencies of cells,” in 9th USENIX Workshop on the Theory and

Practice of Provenance (TaPP 17). USENIX Association. Seattle,
Washington: USENIX, 2017, pp. 1–7.

[23] I. Anaconda. (2017) Conda documentation – managin envi-
ronments. [Online]. Available: https://conda.io/docs/user-guide/tasks/
manage-environments.html

[24] Anaconda. (2018) Anaconda software distribution. [Online]. Available:
https://www.anaconda.com

[25] G. van Rossum, B. Warsaw, and N. Coghlan. (2001) Pep 8: style guide
for python code. [Online]. Available: https://www.python.org/dev/peps/
pep-0008/

[26] N. Vavrová and V. Zaytsev, “Does python smell like java?” The Art,

Science and Engineering of Programming (Programming), vol. 1, no. 2,
pp. 11–1, 2017.

[27] Udacity. (2017) Deep learning nanodegree foundation. [Online].
Available: https://github.com/udacity/deep-learning

[28] D. Hook and D. Kelly, “Testing for trustworthiness in scientific
software,” in ICSE Workshop on Software Engineering for

Computational Science and Engineering, SE-CSE 2009, Vancouver, BC,

Canada, May 23, 2009. IEEE Computer Society, 2009, pp. 59–64.
[Online]. Available: https://doi.org/10.1109/SECSE.2009.5069163

[29] T. Burns and G. Ward. (2013) ipython-nose. [Online]. Available:
https://github.com/taavi/ipython nose

[30] J. F. Pimentel. (2016) ipython-unittest. [Online]. Available: https:
//github.com/JoaoFelipe/ipython-unittest

[31] V. Garousi and B. Küçük, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52–81, 2018.

[32] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, and A. M.
Warren, “Measuring reproducibility in computer systems research,”
Department of Computer Science, University of Arizona, Tech. Rep.,
2014.

[33] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “There and back again: Can you compile that
snapshot?” Journal of Software: Evolution and Process, vol. 29, no. 4,
p. e1838, 2017.

[34] F. S. Chirigati, D. E. Shasha, and J. Freire, “Reprozip: Using provenance
to support computational reproducibility.” in TaPP, 2013.

[35] N. Y. University. (2017) Making Jupyter Notebooks Reproducible with
ReproZip. [Online]. Available: https://docs.reprozip.org/en/1.0.x/jupyter.
html

[36] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings

of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[37] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[38] J. F. N. Pimentel, V. Braganholo, L. Murta, and J. Freire, “Collecting
and analyzing provenance on interactive notebooks: when ipython meets
noworkflow,” in Workshop on the Theory and Practice of Provenance

(TaPP). Edinburgh, Scotland: USENIX, 2015, pp. 155–167.
[39] S. Samuel and B. König-Ries, “Provbook: Provenance-based semantic

enrichment of interactive notebooks for reproducibility,” in The 17th

International Semantic Web Conference (ISWC), ser. ISWC. Monterey,
California, USA: Springer, 2018, pp. 1–4.

11

http://doi.acm.org/10.1145/3173574.3173606
https://eprints.soton.ac.uk/403913/
https://yihui.name/en/2018/09/notebook-war/
https://conferences.oreilly.com/jupyter/jup-ny/public/schedule/detail/68282
https://conferences.oreilly.com/jupyter/jup-ny/public/schedule/detail/68282
https://towardsdatascience.com/5-reasons-why-jupyter-notebooks-suck-4dc201e27086/
https://towardsdatascience.com/5-reasons-why-jupyter-notebooks-suck-4dc201e27086/
https://doi.org/10.1371/journal.pbio.1001745
http://doi.acm.org/10.1145/3173574.3173748
https://blog.bitergia.com/2018/04/02/a-preliminary-analysis-on-the-use-of-python-notebooks/
https://blog.bitergia.com/2018/04/02/a-preliminary-analysis-on-the-use-of-python-notebooks/
https://docs.microsoft.com/en-us/windows/desktop/FileIO/naming-a-file
https://docs.microsoft.com/en-us/windows/desktop/FileIO/naming-a-file
https://unix.stackexchange.com/q/148043
https://wiki.python.org/moin/PythonTestingToolsTaxonomy
http://timstaley.co.uk/posts/making-git-and-jupyter-notebooks-play-nice/
http://timstaley.co.uk/posts/making-git-and-jupyter-notebooks-play-nice/
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://www.anaconda.com
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/udacity/deep-learning
https://doi.org/10.1109/SECSE.2009.5069163
https://github.com/taavi/ipython_nose
https://github.com/JoaoFelipe/ipython-unittest
https://github.com/JoaoFelipe/ipython-unittest
https://docs.reprozip.org/en/1.0.x/jupyter.html
https://docs.reprozip.org/en/1.0.x/jupyter.html

