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Abstract 

Breast cancer is the second most common cancer in the world. 

Currently, there are no effective methods to prevent this 

disease. However, early diagnosis increases chances of 

remission. Breast thermography is an option to be considered 

in screening strategies. This paper proposes a new dynamic 

breast thermography analysis technique in order to identify 

patients at risk for breast cancer. Thermal signals from 

patients of the Antonio Pedro University Hospital (HUAP), 

available at the Mastology Database for Research with 

Infrared Image - DMR-IR were used to validate the study. 

First, each patient´s images are registered. Then, the breast 

region is divided into subregions of 3x3 pixels and the average 

temperature from each of these regions is observed in all 

images of the same patient. Features of the thermal signals of 

such subregions are calculated. Then, the k-means algorithm 

is applied over feature vectors building two clusters. 

Silhouette index, Davies-Bouldin index and Calinski-Harabasz 

index are applied to evaluate the clustering. The test results 

showed that the methodology presented in this paper is able to 

identify patients with breast cancer. Classification techniques 

have been applied on the index values and 90.90% hit rate has 

been achieved. 
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Introduction 

Breast cancer is the most common cancer among women 

worldwide. However, when diagnosed and treated in early 

stages, this cancer type has relatively good prognosis [1]. 

Screening is a strategy adopted by health authorities in order 

to identify women who are at initial stages of breast disease. 

Thus, it is necessary to develop methods and techniques in 

order to improve screening procedures because even 

mammography, which is considered the gold standard for 

cancer detection, has its limitations, such as high false positive 

classification rate, insufficient effectiveness in dense breasts 

and use of ionizing radiation to form breast images [2][3]. 

Since the cancerous tissue temperature is generally higher than 

healthy surrounding tissues, thermography has been 

considered a promising screening method for breast cancer 

detection by generating images that reveal the heat distribution 

on the breast surface [3].  

The thermal signals used in this work originated from 

dynamic thermography, which is a method for monitoring the 

dynamic response of the skin temperature after thermal 

stimulus. In other methods for detecting breast cancer, the 

thermal stimulus most utilized is the application of air flow 

directed to the breasts by an electric fan [4][5][6]. The cooling 

of the breasts, theoretically, improves the thermal contrast 

between healthy and unhealthy tissues in the image, because 

blood vessels promoted by cancerous tumors do not have 

muscular layer and neural regulation like embryological 

vessels. These vessels are only endothelial tubes and therefore 

do not contract in response to sympathetic stimulation. For 

that reason breast region with cancerous tumors remain with 

unchanged temperature while the healthy part of the breast is 

cooled down [7]. 

When compared to static thermography, dynamic 

thermography is faster and more robust. Indeed, static 

thermography requires rigid environmental conditions and 

significantly long time for acclimatization of the patient to 

examining room conditions. On the other hand, dynamic 

thermography is much less dependent of the conditions and 

temperature of the examining room [8]. 

This paper proposes a new dynamic breast thermography 

analysis technique in order to identify patients at risk for 

breast cancer. Dynamic thermal signals from patients of the 

HUAP, available at the Mastology Database for Research with 

Infrared Image - DMR-IR [9] were used for validating this 

hypothesis. First, each patient has her images registered. 

Second, the breast region is divided into regions of 3x3 pixels 

and average temperature from each of these regions is 

observed in all images of the same patient. Features of the 

thermal signals of such regions are calculated. Then, the k-

means algorithm is applied over the feature vectors building 

two clusters. Silhouette, Davies-Bouldin and Calinski-

Harabasz indexes are applied to evaluate clustering. The test 

results demonstrated that the methodology presented in this 

paper is able to identify these patients. Classification 

techniques have been applied on the index values and 90.90% 

hit rate has been achieved. 

The remainder of the paper is organized as follows: related 

work section contains main work identified in the literature; 

the methodology proposed in this work is detailed in the 

section of same name; in the section tests and results, results 

are presented and discussed; and the conclusion section 

concludes this paper and indicates future work. 

Related work 

In Gerasimova et al. [10], dynamic thermography has been 

performed in 46 histopathologically proven breast malignant 

and benign tumor cases before surgery. From regions with and 

without tumor, thermal signals have been generated and 

Fourier Analysis, Wavelet Transform and phase diagram have 

been applied in order to examine the behavior of these signals. 

The authors have concluded that chaotic phase diagrams 

correspond to the healthy tissue; while for cancerous tissues, 

irregular shape in phase space is typical. Furthermore, results 

indicate that for healthy tissue, the thermal signals are anti-

MEDINFO 2015: eHealth-enabled Health
I.N. Sarkar et al. (Eds.)

© 2015 IMIA and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-564-7-746

746



correlated, whereas in cancerous tissue, thermal noise 

correlation has been observed. According to these authors, 

these results indicate that abnormal tissue has no ability to 

adapt to external influences. In addition, according to the 

authors, the results are consistent to the golden rule in 

biomedical sciences. This rule states that healthy and normal 

biomedical systems are often very complex and that the 

complexity decreases when an abnormality or disease occurs. 

In another work, Gerasimova et al. [3] have performed 

multifractal analysis over breast thermal signals produced by 

dynamic thermography to detect differences in behavior 

between tissue with malignant tumor and healthy tissue. The 

modulus maxima wavelet transform method has been applied 

to characterize the multifractal properties of the one-

dimensional thermal signals of cancerous and healthy breasts. 

The authors have concluded that complex scalar multifractal 

properties of the signals over autonomic regulation are 

drastically altered when the disease is present. In such a study, 

both breasts of 9 women were imaged, 6 with cancer and 3 

healthy. A photovoltaic detector camera InSb was used. 

During acquisition of the images, the patient remains seated 

with the arms down in order to avoid discomfort. Frontal 

images were captured at 1 meter distance in a controlled 

temperature environment between 20ºC to 22ºC. Each set 

contains 30,000 image frames acquired during 10 minutes. 

Skin surface markers were used as landmarks for image 

registration phase in order to eliminate motion artifacts and do 

not hinder the analysis. In sick patients, the tumor region and 

the symmetrically positioned region in the other breast are 

delimited by square regions of 8 x 8 pixels. The analysis has 

been performed only within these regions. The methodology is 

able to discriminate between healthy region and region with 

tumor. Healthy regions exhibited signals with multifractal 

dimension as complexity signature and tumor regions 

exhibited signs with monofractal dimension as evidence of 

loss of complexity. 

Recently, Gerasimova et al. published another work [11] using 

a much larger database, with 33 patients with 

histopathologically proven cancer and 14 healthy volunteers 

for control. The findings reaffirm the results of the prior study 

[3]. 

Scully et al.[12] also conducted analysis of skin thermal signal 

in patients with skin cancer. The temperature monitoring was 

performed by dynamic thermography. 1,500 thermograms, 

containing the region with disease, were collected using a 

camera FLIR SC7700, during 25 minutes. The collected 

images have been registered in relation to the first image and 

Wavelet Transform was used to analyze the thermal signals. 

They found significant differences between the region of 

control and tumor regions. 

Herman [8] claims that dynamic thermography is able to 

measure the difference in infrared emission between healthy 

tissue and melanoma during the temperature recovery process 

after removal from cold stress. Test results suggest that the 

temperature is higher in cancerous lesion than in non-

cancerous lesion during the first 45-60 seconds of thermal 

recovery. In this methodology, the region with tumor is 

surrounded by a bounding rectangle. Then, a digital 

photograph and an infrared image are captured. The infrared 

image observes the situation of steady state under ambient 

conditions. After, the skin is cooled by cold airflow per 1 

minute. Next, infrared images are captured during 200 

seconds. The methodology was applied in 37 patients, 3 with 

histopathologically confirmed cancerous lesions. The method 

achieved 100% accuracy.  

Liu et al. [13] used thermograms to observe the forearm 

temperature variation and perform classification between three 

tissues: with micro-vascularity, with large veins and no veins. 

3,000 thermographs were captured during 12 minutes and 

were registered afterwards with reference to the first image of 

the sequence. Thermal signals of each pixel were built, 

totaling 81,000 signs. Clustering using k-means algorithm and 

Short Time Series (STS) distance were applied over the signs 

to identify tissues with similar behavior in time. The authors 

demonstrated differences between three tissue types in terms 

of temperature change over time (via temporal profiles), 

magnitude of frequency response (via FFT), and coherency 

(via wavelet phase coherence and power spectrum 

correlation). 

Unlike previous work, our methodology applies machine 

learning to decide whether or not a given patient is at risk of 

breast cancer. 

Methodology 

Our methodology steps are: image registration; thermal signal 

construction; thermal signal feature extraction; clustering; 

clustering evaluation and classification model building. 

Image Registration 

During examination by dynamic thermography, the patient 

may perform involuntary movements from breathing and 

momentary imbalance. These movements cause differences 

from one image to another and consequently generate thermal 

noise in the formed signs. Figure 1 shows (a) the first image of 

a particular patient, (b) the seventeenth image of the same 

patient, and (c) the result of the subtraction of (b) and (a) 

images. It is possible to see the difference between the images 

by observing image (c) which illustrates the effect of the 

movement of the patient during the examination. 

Figure 1- Image registration: (a) first image of sequence; (b) 

seventeenth image of sequence; (c) subtraction of (b) by (a) 

before registration; (d) the same subtraction after registration 

of these images. 

In order to decrease the effects of these movements on thermal 

signals, registration of all images is performed. Registration is 

a process in which images, roughly speaking, are "matched". 

Considering two images (reference and sensitive) of the same 

scene, registration seeks to create a relationship between them 

to achieve the best overlap possible [14]. In this work, the first 

image of the sequence was considered the reference 

(immutable) image and the remaining images have been 

considered sensitive (transformable) images. 
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The registration is performed in two steps. In the first stage, a 

rigid body registration is applied based on intensities with 

geometric transformation consisting of translation, rotation, 

and scale. The second step uses non-rigid 2D registration with 

Residual Complexity (RC) [15]. 

The result of the registration can be seen in Figure 1(d). That 

image represents the subtraction of image (b) by image (a). 

After registration, the difference is much smaller than that one 

shown in image (c), before registration. 

It is noteworthy that the data used in the analysis described in 

this paper are the temperature matrices of the breast surface, 

captured by an infrared camera. Thus the temperature matrix 

is converted to an image in gray tones, then the registration is 

performed in this image and the transformations are 

transferred back to the temperature matrix. 

Thermal Signal Construction 

After registration of the images, the formation of the thermal 

signal from the dynamic sequence of 20 images of a particular 

patient comprises the following steps: 

1. The region of the breasts of the first image of the 

sequence is segmented creating a mask as shown in 

Figure 2(a); 

2. The image region corresponding to the created mask 

is divided into a grid of 3x3 pixel squares��(Figure 

2(b)), with k�1,...,p , where p is the amount of 
formed squares; 

3. The averaged temperature of each square �� is 

observed in all twenty images of the sequence 

producing the  	� � 
��,t�,...,t20
 thermal signal; 
4. These twenty points are interpolated by cubic 

convolution yielding a signal of 1,901 points (in each 

interval between two points, 100 new points have 

been inserted, then 100x19 intervals = 1,900 + 1 (last 

point) = 1,901).   

The 	� series values are ordered chronologically, i.e., ��is the 
mean temperature square �� in the first image of the 

sequence, �� is the mean temperature square �� in the second 

image of the sequence, and so on. 

Figure 2 – Mask and grid of squares 

 

Figure 3 shows the thermal signals of a sick patient and Figure 

4 shows the thermal signals of a healthy patient. The x-axis 

represents time (the 20 points of each serie). The y-axis 

contains each of Sk (the index) of each thermal signal. The z-

axis indicates the temperature in Celsius degrees. It can be 

seen that there is a group of thermal signals with higher 

temperature (red color) and with sharper increase in the early 

stages of the temperature recovery after thermal stress for the 

sick patient (Figure 3) however the same is not true for the 

healthy patient (Figure 4). The extracted features attempt to 

emphasize these differences. 

 

 

Figure 3 - Thermal signs of a sick patient. 

Figure 4 - Thermal signs of a healthy patient. 

Thermal Signal Feature Extraction  

The 	� time series can be treated as a biological signal of 
temperature ��, i�1 … �, where N�20. In biomedical systems, 

the evaluation of the complexity (main feature) is an important 

factor for diagnosis. This is possible through identifying and 

evaluating the complexity of the signal created by these 

systems [16]. 

In this work we used two signal complexity measures as 

features: the signal mobility which uses normalized first-order 

variations of the signal; and the signal complexity that uses 

second-order variations of the signal. The two characteristics 

measure the degree of variation along the signal. [16]. 

Considering a particular patient, from each sign �� first-order 
variations are calculated, defined by ���t� � ����, i�2 … �, 

and second-order variations, defined by ���d� � ����, i�3 … �. 

 		 � �∑ ��
��

i�1

�
(1) 

  	� � �∑ 
�
��

i�2

���
(2) 

  	� � �∑ ��
��

i�3

���
(3) 

Measures of complexity and mobility are defined in Equations 

(4) and (5), respectively: 

C����
�

�

� � �


�

��
�(4)                    M� �


��
 (5) 

Clustering, Evaluation of Clusters and Classification  

The calculated features for each signal are stored in a vector. 

Clustering is performed over the set formed by feature vectors. 

In this work, we applied the k-means algorithm for clustering 

the vector set into two clusters. The two expected clusters are: 

thermal signals generated from diseased tissue and thermal 

signals generated from healthy tissue. We believe that for 

healthy patients the two clusters formed are very similar 

(healthy patients have no diseased tissues and, therefore, all 

the signs of both breasts are very similar), whereas for sick 
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patients the two clusters formed are more compact and well 

separated. The k-means algorithm has been performed by 

applying the correlation distance and three repeated steps, 

where each iteration has a different set of initial cluster 

centroid positions. The formed clusters are evaluated by 

clustering validity indexes. In this work, we applied: 

Silhouette index [17], Davies-Bouldin [18], Krzanowski-Lai 

index [19] and Calinski-Harabasz index [20]. 

The Silhouette index indicates the number of clusters that best 

separate the data set, i.e., the maximum value of this index 

indicates the optimal number of compact and well separated 

clusters. It is defined by: 

	
�
 � ���������

max�����,b����
 (6) 

where ��is the average dissimilarity (i.e. how far away two 
elements are from each other using, e.g., Euclidean distance) 

of i with all other data within the same cluster, �� is the 
lowest average dissimilarity of i to any other cluster of 

which i is not a member. Note that �1  	  1. 
The Calinski-Harabasz index is defined in terms of the traces 

of the between-clusters and within-cluster scatter matrices. 

The trace is defined to be the sum of the elements on the main 

diagonal of the matrix. Calculated for each possible cluster 

solution, the maximal achieved index value indicates the best 

data clustering. It is calculated using the following equation: 

CH� �traceB !⁄ ��#

�traceW �⁄ ��#
for K % & (7) 

where B denotes the error sum of squares between different 

clusters (inter-cluster) and W the squared differences of all 

objects in a cluster from their respective cluster center (intra-

cluster). 

The Krzanowski-Lai is based on the square differences of all 

feature vectors in a cluster from their respective cluster center. 

It is calculated using the following equation: 

KL
(
 � ) DIFF�!�

DIFF�K)��
) (8) 

where 

DIFF
(
 � 
( � 1
�

� - traceW!�� � (�

� - traceW! (9) 

which is the difference between a clustering in K and a 

clustering in K − 1 clusters. J is the number of variables that 

have been measured on each 2� % 3and trace 4! the sum of 

square function that corresponds to the clustering in K 

clusters. 

Regarding the Davies-Bouldin index, it requires the dispersion 

measure and the cluster similarity (how much the elements 

resemble each other) measure. Thus it is defined as the ratio of 

the dispersion within the clusters and the separation between 

clusters and is calculated by: 

DB
(
 � �

!
∑ ��
!
k+� ,K % & (10) 

where 

7�
)S�

k,j

8 ,   k % 91, … ,K: (11) 
and 

	� � �

∑-k,i

∑ ;2� � 2̄�;.
i+� ,k % 91, … ,K: (12) 

as well as 

�k,j � =2̄� � 2̄1= (13) 
In the case of this index, the minimum observed value 

indicates the best solution for clustering.  

Clustering validity index values have been used as features to 

generate classification models. These values have been 

submitted to Weka tool [22] applying the 

MultilayerPerceptron (a neural network), the BayesNet (a 

bayesian network), and the J48 (a decision tree) algorithms. 

Tests and results 

The used infrared images are from the Mastology Database 

for Research with Infrared Image - DMR-IR. This database is 

described by Silva et al. [9], where the image acquisition 

protocol is also described with more details. Briefly, in the 

execution of the protocol, regions of the breasts and armpits of 

the patient are cooled by an electric fan for some minutes in an 

environment with controlled temperature (20ºC to 22ºC). 

After cooling, 20 images are captured during 5 minutes. 

Images are captured using a FLIR thermal camera, model 

SC620 [21]. The sensitivity of the camera is smaller than 

0.04ºC, the detectable temperature range is between -40ºC and 

500ºC and images are generated with dimension of 640x480 

pixels. 

Tests have been performed with images of 22 patients 

including 11 with histopathologically proven cancer and 11 

healthy. For each patient, all images obtained by dynamic 

thermography are submitted to the steps of the methodology 

described in the previous section and implemented in MatLab. 

The results are in Table 1, Table 2 and Table 3, respectively. 

In all tests, the k-Folds Cross Validation technique has been 

applied in order to evaluate the classification results, with 

k=3. In all tables, TP Rate is the true positive rate, FP is the 

false positive rate and AUC is the area under the ROC. 

Table 1: Neural network classification result 
Class TP Rate  FP Rate Precision AUC 

With cancer 0.81 0.00 1.00 1.00 

Healthy 1.00 0.18 0.85 1.00 

Weighted Avg 0.91 0.09 0.93 1.00 

Confusion Matrix 
Expected class 

With cancer Healthy 

Classified as with cancer 9 2 

Classified as healthy 0 11 

Correctly Classified Instances  20 90.91% 

  

Table 2: Bayesian network classification result 
Class TP Rate  FP Rate Precision AUC 

With cancer 0.73 0.00 1.00 0.93 

Healthy 1.00 0.27 0.79 0.93 

Weighted Avg 0.86 0.14 0.89 0.93 

Confusion Matrix 
Expected class 

With cancer Healthy 

Classified as with cancer 8 3 

Classified as healthy 0 11 

Correctly Classified Instances  19 86.36% 

 

Table 3: Decision tree classification result 
Class TP Rate  FP Rate Precision AUC 

With cancer 0.91 0.09 0.91 0.92 

Healthy 0.91 0.09 0.91 0.92 

Weighted Avg 0.91 0.09 0.91 0.92 

Confusion Matrix 
Expected class 

With cancer Healthy 

Classified as with cancer 10 1 

Classified as healthy 1 10 

Correctly Classified Instances  20 90.91% 

 

The percentage of correctly classified instances ranges from 

86.36% to 91.90% considering the results of all classifiers. 

From the results obtained, we can conclude that the proposed 

methodology is potentially able to identify patients at risk for 

breast cancer. However, we will definitely confirm the 

effectiveness of the methodology when we extend our test 

database. At the moment, we are working hard to that effect. 
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Conclusion 

Breast cancer has been killing many women around the world. 

This work has exploited the fact that breast regions with 

cancer produce thermal signals with complexity alteration 

when analyzed over time. Thermal signals have been 

generated by dynamic thermography. The complexity of these 

signals has been measured by well-known measures described 

in the literature. Then the k-means algorithm has been applied 

to the extracted features for clustering them into two clusters. 

Clustering validity indexes were applied to identify patients at 

risk for breast cancer. The test results demonstrated that the 

methodology presented in this paper is able to identify these 

patients. Classification techniques have been applied on the 

index values and 90.90% hit rate has been achieved. In future 

work, other features will be extracted as well as other 

clustering algorithms and clustering validity indexes will be 

tested. 
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