Complexity of paths, trails and circuits in arc-colored digraphs

Laurent Gourvès¹, Adria Lyra², Carlos Martinhon², Jérôme Monnot¹

1. CNRS - LAMSADE Université Paris Dauphine, France 2. Fluminense Federal University, Brazil

TAMC 2010 - Prague - June 2010

Motivation

Many problems in edge-colored graphs have applications in

- molecular biology
- transportation
- social science

Those problems consist of finding a

- Eulerian path
- Hamiltoinian path/cycle
- s t path (where s and t are two given nodes)

whose set of edges must

- be monochromatic, or alternate colors, or follow a given pattern
- use a minimum/maximum number of colors
- minimize transitions of colors

A trail allow the repetition of vertices but not the repetition of edges $% \label{eq:constraint}$

```
path \Rightarrow trail but trail \not\Rightarrow path
```

Some previous work in undirected graphs

 $\mathsf{PEC} = \mathsf{properly}\ \mathsf{edge}\ \mathsf{colored} = \mathsf{no}\ \mathsf{two}\ \mathsf{consecutive}\ \mathsf{edges}\ \mathsf{share}\ \mathsf{the}\ \mathsf{same}\ \mathsf{color}$

Polynomial problems

- Deciding whether an edge-colored graph contains a PEC s t path [Szeider 00]
- Characterization of edge-colored graphs containing a PEC cycle [Yeo 97], closed trail [Abouelouaoualim et al 08]

NP-complete problems

 Deciding whether an 2-edge-colored graph contains a PEC Hamiltonian cycle, PEC Hamiltonian s - t path [Bang-Jensen & Gutin 06]

The first part of this talk is about...

Typical instance

- a set of c colors $\{1, \cdots, c\}$
- a digraph D^c whose arcs have a color $\{1, \cdots, c\}$

properly arc colored or PAC

solutions in which two consecutive arcs have different colors

The first part of this talk is about...

Typical instance

- a set of c colors $\{1, \cdots, c\}$
- a digraph D^c whose arcs have a color $\{1, \cdots, c\}$

properly arc colored or PAC

solutions in which two consecutive arcs have different colors

Is it polynomial or **NP**-complete to decide whether an arc-colored digraph contains PAC trails, paths and circuits?

Input :

- a *c*-colored digraph *D^c*
- s and t are two given nodes of $V(D^c)$

Theorem

One can decide in polynomial time whether D^c contains a PAC s - t trail

Min cost flow in an appropriate auxiliary graph

Input :

- a *c*-colored digraph *D^c*
- s and t are two given nodes of $V(D^c)$

Theorem

One can decide in polynomial time whether D^c contains a PAC s - t path if there is no cycle

Use Depth First Search

Theorem

If D^c has no PAC circuit, deciding the existence of a PAC s - t path is NP-complete

Reduce the *Path with Forbidden Pairs Problem* (PFPP for short) **Input** :

- a directed graph D
- a pair of distinct nodes $v, w \in V(D)$
- q "forbidden" pairs of vertices $\{(a_1, b_1), (a_2, b_2), \cdots, (a_q, b_q)\}$, with $(a_i \neq b_i)$

Question : Is there a directed path from v to w and passing through **at most one** vertex of each pair?

PFPP is **NP**-complete even if *D* is acyclic and $\{a_i, b_i\} \cap \{a_j, b_j\} = \emptyset$ (disjoint pairs) [Gabow et al 76]

Example of PFPP

Example of PFPP

Reduction

Start from an **acyclic** instance of PFPP and transform it into a 2-arc colored digraph without PAC circuit

wlog. the indegree of v and the outdegree of w are equal to 0

For every arc (x, y) do

- create a new node z_{xy} (see the small circles)
- add a blue arc (x, z_{xy}) and a red arc (z_{xy}, y)
- remove (x, y)

For i = 1..k - 1 and the nodes a_i , b_i , a_{i+1} , b_{i+1} do

- create 4 new nodes z_i^1 , z_i^2 , z_i^3 and z_i^4 (see the small squares)
- add a red arc (a_i, z_i^1) and a blue arc (z_i^1, a_{i+1})
- add a red arc (a_i, z_i^2) and a blue arc (z_i^2, b_{i+1})
- add a red arc (b_i, z_i^3) and a blue arc (z_i^3, a_{i+1})
- add a red arc (b_i, z_i^4) and a blue arc (z_i^4, b_{i+1})

w

- create a node s
- add two blue arcs (s, a_1) and (s, b_1)
- add two red arcs (a_q, v) and (b_q, v)

The transformed graph is as follows

Claims

- no PAC cycle
- There is a PAC s w path iff the original graph admits a v w path which passes through at most one node per forbidden pair

- a PAC s w path is made of two parts :
 - from s to v, passing through (exactly) one vertex per forbidden pair and using the small squares
 - If rom v to w, passing through at most one vertex per forbidden pair and using the small circles

Tournaments

Definition

Take a complete undirected graph and assign a direction to each edge

Tournaments

Definition

Take a complete undirected graph and assign a direction to each edge

Rédei's Theorem

Every tournament has a Hamiltonian path

the starting and ending points are not fixed

Previous works

[Bang-Jensen et al 92]

Given s and t, one can decide in polynomial time whether a tournament contains a Hamiltonian s - t path

[Bang-Jensen & Gutin 06] [Feng et al 06]

Given s and t, one can decide in polynomial time whether a complete edge-colored graph contains a PEC Hamiltonian s - t path

Previous works

[Bang-Jensen et al 92]

Given s and t, one can decide in polynomial time whether a tournament contains a Hamiltonian s - t path

[Bang-Jensen & Gutin 06] [Feng et al 06]

Given s and t, one can decide in polynomial time whether a complete edge-colored graph contains a PEC Hamiltonian s - t path

Question

What about PAC Hamiltonian s - t paths in arc-colored tournaments?

Theorem

Given s and t, deciding whether a 2-arc colored tournament contains a PAC s - t path is **NP**-complete

Reduce the Hamiltonian s - t path problem in digraphs (NP-complete)

s must be v^1 and t must be v^n (n = |V|)

- Replace every vertex v^i by v^i_{in} (square) and v^i_{out} (circle)
- put a blue arc between v_{in}^i and v_{out}^i for all i
- put a red arc between v_{out}^i and v_{in}^j for all arc (i, j) existing in the original graph

These red and blue arcs are called "original arcs" in the following

Assume i < j and for every missing arc, use the following rule to complete the digraph and get a tournament

These arcs are called the "missing arcs" in the following Assume i < j and for every missing arc, use the following rule to complete the digraph and get a tournament

These arcs are called the "missing arcs" in the following

Assume i < j and for every missing arc, use the following rule to complete the digraph and get a tournament

These arcs are called the "missing arcs" in the following

Claim

No PAC path from v_{in}^1 to v_{out}^n can use a missing arc

backward argument

Final remarks

First part

The proof of NP-completeness can be extended to planar graphs with $\Omega(|\mathcal{V}|^2)$ colors

Second part

The proof of NP-completeness of the first part can be used to show that deciding whether a c-arc-colored tournament contains a PAC circuit visiting a given vertex is NP-complete

weak version of an open problem left by Gutin, Sudako & Yeo '98 (no given vertex)