Complexity of paths, trails and circuits in arc-colored digraphs

Laurent Gourvès ${ }^{1}$, Adria Lyra² ${ }^{2}$, Carlos Martinhon ${ }^{2}$, Jérôme Monnot ${ }^{1}$

1. CNRS - LAMSADE Université Paris Dauphine, France
2. Fluminense Federal University, Brazil

TAMC 2010 - Prague - June 2010

Motivation

Many problems in edge-colored graphs have applications in

- molecular biology
- transportation
- social science

Those problems consist of finding a

- Eulerian path
- Hamiltoinian path/cycle
- $s-t$ path (where s and t are two given nodes)
whose set of edges must
- be monochromatic, or alternate colors, or follow a given pattern
- use a minimum/maximum number of colors
- minimize transitions of colors
(1) General arc-colored digraphs
(2) Tournaments
(1) General arc-colored digraphs
(2) Tournaments

Laurent Gourvès

Trails

A trail allow the repetition of vertices but not the repetition of edges
path \Rightarrow trail but trail \nRightarrow path

Some previous work in undirected graphs

$\mathrm{PEC}=$ properly edge colored $=$ no two consecutive edges share the same color

Polynomial problems

- Deciding whether an edge-colored graph contains a PEC $s-t$ path [Szeider 00]
- Characterization of edge-colored graphs containing a PEC cycle [Yeo 97], closed trail [Abouelouaoualim et al 08]

NP-complete problems

- Deciding whether an 2-edge-colored graph contains a PEC Hamiltonian cycle, PEC Hamiltonian $s-t$ path [Bang-Jensen \& Gutin 06]

The first part of this talk is about...

Typical instance

- a set of c colors $\{1, \cdots, c\}$
- a digraph D^{c} whose arcs have a color $\{1, \cdots, c\}$

properly arc colored or PAC

solutions in which two consecutive arcs have different colors

The first part of this talk is about...

Typical instance

- a set of c colors $\{1, \cdots, c\}$
- a digraph D^{c} whose arcs have a color $\{1, \cdots, c\}$

properly arc colored or PAC

solutions in which two consecutive arcs have different colors

Is it polynomial or NP-complete to decide whether an arc-colored digraph contains PAC trails, paths and circuits?

Trail

Input :

- a c-colored digraph D^{c}
- s and t are two given nodes of $V\left(D^{c}\right)$

Theorem

One can decide in polynomial time whether D^{c} contains a PAC $s-t$ trail

Min cost flow in an appropriate auxiliary graph

Path

Input :

- a c-colored digraph D^{c}
- s and t are two given nodes of $V\left(D^{c}\right)$

Theorem

One can decide in polynomial time whether D^{c} contains a PAC $s-t$ path if there is no cycle

Use Depth First Search

Theorem

If D^{c} has no PAC circuit, deciding the existence of a PAC $s-t$ path is NP-complete

Reduce the Path with Forbidden Pairs Problem (PFPP for short) Input :

- a directed graph D
- a pair of distinct nodes $v, w \in V(D)$
- q "forbidden" pairs of vertices

$$
\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \cdots,\left(a_{q}, b_{q}\right)\right\}, \text { with }\left(a_{i} \neq b_{i}\right)
$$

Question : Is there a directed path from v to w and passing through at most one vertex of each pair?

PFPP is NP-complete even if D is acyclic and $\left\{a_{i}, b_{i}\right\} \cap\left\{a_{j}, b_{j}\right\}=\emptyset$ (disjoint pairs) [Gabow et al 76]

Example of PFPP

Example of PFPP

Reduction

Start from an acyclic instance of PFPP and transform it into a 2-arc colored digraph without PAC circuit wlog. the indegree of v and the outdegree of w are equal to 0

For every arc (x, y) do

- create a new node $z_{x y}$ (see the small circles)
- add a blue arc $\left(x, z_{x y}\right)$ and a red arc $\left(z_{x y}, y\right)$
- remove (x, y)

For $i=1 . . k-1$ and the nodes $a_{i}, b_{i}, a_{i+1}, b_{i+1}$ do

- create 4 new nodes $z_{i}^{1}, z_{i}^{2}, z_{i}^{3}$ and z_{i}^{4} (see the small squares)
- add a red arc $\left(a_{i}, z_{i}^{1}\right)$ and a blue arc $\left(z_{i}^{1}, a_{i+1}\right)$
- add a red arc $\left(a_{i}, z_{i}^{2}\right)$ and a blue arc $\left(z_{i}^{2}, b_{i+1}\right)$
- add a red arc $\left(b_{i}, z_{i}^{3}\right)$ and a blue arc $\left(z_{i}^{3}, a_{i+1}\right)$
- add a red $\operatorname{arc}\left(b_{i}, z_{i}^{4}\right)$ and a blue $\operatorname{arc}\left(z_{i}^{4}, b_{i+1}\right)$

w

\bigcirc
- create a node s
- add two blue arcs $\left(s, a_{1}\right)$ and $\left(s, b_{1}\right)$
- add two red arcs $\left(a_{q}, v\right)$ and $\left(b_{q}, v\right)$

The transformed graph is as follows

Claims

- no PAC cycle
- There is a PAC $s-w$ path iff the original graph admits a $v-w$ path which passes through at most one node per forbidden pair
a PAC $s-w$ path is made of two parts :
(1) from s to v, passing through (exactly) one vertex per forbidden pair and using the small squares
(2) from v to w, passing through at most one vertex per forbidden pair and using the small circles

Laurent Gourvès

(1) General arc-colored digraphs

(2) Tournaments

Laurent Gourvès

Tournaments

Definition

Take a complete undirected graph and assign a direction to each edge

Tournaments

Rédei's Theorem

Definition

Take a complete undirected
Every tournament has a Hamiltonian path

the starting and ending points are not fixed

Previous works

[Bang-Jensen et al 92]

Given s and t, one can decide in polynomial time whether a tournament contains a Hamiltonian $s-t$ path

[Bang-Jensen \& Gutin 06] [Feng et al 06]

Given s and t, one can decide in polynomial time whether a complete edge-colored graph contains a PEC Hamiltonian $s-t$ path

Previous works

[Bang-Jensen et al 92]

Given s and t, one can decide in polynomial time whether a tournament contains a Hamiltonian $s-t$ path

[Bang-Jensen \& Gutin 06] [Feng et al 06]

Given s and t, one can decide in polynomial time whether a complete edge-colored graph contains a PEC Hamiltonian $s-t$ path

Question

What about PAC Hamiltonian $s-t$ paths in arc-colored tournaments?

Theorem

Given s and t, deciding whether a 2-arc colored tournament contains a PAC $s-t$ path is NP-complete

Reduce the Hamiltonian $s-t$ path problem in digraphs (NP-complete)

s must be v^{1} and t must be $v^{n}(n=|V|)$

- Replace every vertex v^{i} by $v_{\text {in }}^{i}$ (square) and $v_{\text {out }}^{i}$ (circle)
- put a blue arc between $v_{i n}^{i}$ and $v_{\text {out }}^{i}$ for all i
- put a red arc between $v_{o u t}^{i}$ and $v_{i n}^{j}$ for all arc (i, j) existing in the original graph

These red and blue arcs are called "original arcs" in the following

Assume $i<j$ and for every missing arc, use the following rule to complete the digraph and get a tournament

These arcs are called the "missing arcs" in the following

Assume $i<j$ and for every missing arc, use the following rule to complete the digraph and get a tournament

These arcs are called the "missing arcs" in the following

Assume $i<j$ and for every missing arc, use the following rule to complete the digraph and get a tournament

These arcs are called the "missing arcs" in the following

Claim

No PAC path from $v_{i n}^{1}$ to $v_{\text {out }}^{n}$ can use a missing arc
backward argument

Final remarks

First part

The proof of NP-completeness can be extended to planar graphs with $\Omega\left(|V|^{2}\right)$ colors

Second part

The proof of NP-completeness of the first part can be used to show that deciding whether a c-arc-colored tournament contains a PAC circuit visiting a given vertex is NP-complete weak version of an open problem left by Gutin, Sudako \& Yeo '98 (no given vertex)

