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Abstract: In the Prize-Collecting Traveling Salesman Problem (PCTSP) we have to
determine a tour visiting each vertex in the graph at most one time. If a given vertex is
selected then an associated prize is collected, if a vertex is unrouted a penalty must be
paid. We want to minimize an objective function balancing between the travel cost and
the total penalties in a such way that a sufficiently large prize is collected. In this paper
we present an hybrid metaheuristic that combines Greedy Randomized Adaptive Search
Procedure (GRASP) and Variable Neigboorhood Search procedure as a local search.
Experimental results show that it is potentially a powerful heuristic device, since it
greatly enhace different features of  these  two approaches.

Key words: Greedy Randomized Adaptive Search Procedure - GRASP, Variable
Neighborhood Search  - VNS,   Local Search.

1  Introduction

In the Prize-Collecting Traveling Salesman Problem (PCTSP) a prize is acquired in every
visited city  and a penalty is paid  for every unrouted city. We want to mimimize the sum of travel
costs and net penalties, while including in this tour enough cities to collect a prescribed amount of
money (or prize). The generated tour must visit each city at most one time.

Since the PCTSP generalizes the well known Traveling Salesman Problem (TSP) it is also an
NP-hard problem (see Garey&Johnson [1979]). Observe that the PCTSP coincide with TSP if all
node associated penalties are infinite.

The PCTSP was introduced by Balas and Martin[1985] as a model for scheduling the daily
operation of a steel rolling mill. A rolling mill,  produces steel sheet from slabs by hot or cold
rolling. For reasons that have to do with the wear and tear of the rolls as well as other factors, the
sequence in which various orders are processed is essential. Scheduling a round consists of choosing
from an inventory of slabs assigned to orders, a collection that satisfies a lower bound on total
weight, and ordering it into an appropriate sequence, e.g., one that minimizes some function of the
sequence. Since the choice of slabs for the round limits the options available for their sequencing,
the two tasks must be solved jointly. The PCTSP  captures the essential features of this problem.

Balas[1989,1993] have been presented some structural properties of the PCTSP polytope.
Families of facet inducing inequalities are identified, some of which are related to the TSP polytope
and others with the knapsach polytope. Fischetti and Toth[1988] developed  bounding procedures
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based on different relaxations.  Lower bounds for the asymmetric version of the PCTSP are
presented by Dell’Amico, Maffioli and Värbrand[1994].

Goemans-Willianson[1992] provides a 2-approximation procedure to a version of the PCTSP
in which the minimum prize to be collected is removed. That is, the goal is simply to minimize the
cost of the tour as discussed above. To approximate the PCTSP of Balas;  Awerbuch, Azar, Blum
and Vempala[1995] developes the first approximation algorithm for the PCTSP having a poly-
logarithmic performance.

Before describing our basic procedure and variants, we provide background on both GRASP
and VNS in the following two sections. Section 4 presents a detailed description of our combined
GRASP+VNS metaheuristic. Section 5 presents the empirical results and concluding remarks are
given in section 6.

2  Greedy Randomized Adaptive Search Procedure (GRASP)

Consider a finite but large set S of arbitrary objects. Combinatorial optimization problem
consist in finding x*∈ X⊆ S such that some objetive function f is minimized, i.e. f(x*)=
min{f(x):x∈ X, X⊆ S}. The symbols S, X, x and f denotes respectively the solution space, feasible
set, feasible solution, and real valued function.

The Greedy Randomized Adaptive Search Procedures, proposed by Feo and Resende[1995]
are basically composed by two different phases: a construction phase, in which a feasible solution is
produced and a local search phase, in which a local minimum is obtained using the feasible solution
generated in the first procedure. The best overall solution is kept as the final result.

To build up one starting solution in the construction phase, one element at a time is selected.
The elements are initially ordered in a candidate list with respect to a greedy function previously
defined. This function measures the (myopic) benefit of selecting each element. This procedure is
adaptive since the benefits associated with every element are updated at each iteration of the
construction phase reflecting the changes brought on by the selection of the previous element.  The
best elements in the candidate list are considered to build up a new Restricted Candidate List - RCL.
The probabilistic component of a GRASP is characterized by a random choice of the element that is
not necessarily the top candidate of the RCL. This choice technique allows for different solutions to
be obtained at each GRASP iteration, but does not necessarily compromise the strength of the
adaptive greedy component of the method.

There is no guarantee that the solution generated in the construction phase is locally optimal.
Hence, a local search procedure is applied  generating a sequence of neighbours that improve the
initial solution. Therefore a neighborhood structure that associates a feasible solution x to a subset
of solutions N(x) must be constructed. The efficiency of the local search procedure basically
depends of  the suitable choice of a neighborhood structure and the starting point generated at the
construction phase.

It is difficult to formally analyze the quality of different solution values achieved by sucessive
iterations of the GRASP procedure. Nevertheless, based on empirical observations, it has been
found that the resulted sampling distribution generally has a mean value that is inferior to the one
obtained by a deterministic construction, but the over all trials dominates the deterministic solution
with a high probability (see  Feo and Resende [1995]).

As sumarized  by Resende[1998], a number of insteresting  enhancements to the basic
GRASP can be applied. Different strategies which deals with path relinking, reactive GRASP, long-
term memory, the proximate optimality principle, paralell GRASP can be considered. A more
detailed description and bibliographies related to these improvements can be found at
Resende[1998].
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3  Variable Neighborhood Search (VNS)

 Variable Neighborhood Search - VNS (see Mladenovic and Hansen [1997]), systematicly
change neighborhoods during the local search procedure. Contrary  to other metaheuristics based on
local search methods, VNS does not follow a trajectory but explores increasingly distant
neighborhoods of the current incumbent solution and jumps from this solution to a new one if and
only if an improvent is attained.

To rapidly expose the main steps of VNS, consider a finite set of pre-selected neighborhood
structures with Nk

, (k=1,.., kmax ), and with N xk ( )  the set of solutions in the k th  neighborhood of x.

Given an initial point x∈ X  the basic VNS heuristic comprises the following steps:

      Procedure VNS: Given Nk
, (k=1,.., kmax ) and some x∈ X

      01. Begin
      02.       Repeat
      03.       k = 1;
      04.             Repeat
      05.                   Generate at random x’∈ N xk ( ) ;

                           06.                    x”← apply local search with x’ as starting point;
      07.                    if  ( f(x”) < f(x) ) then
      08.             x ←x”;
      09.             k  ←1;
      10.                   else
      11.             k←k+1;
      12.             until k kmax=
      13.       until (some stop condition is satisfied);
      14. end.

Figure 3.1: Variable Neighborhood Search

The stopping condition  used, may be e.g. the maximum number of iterations, maximum CPU
time allowed or maximum number of iterations between two improvements.

Interesting enhancements may be considered in addition to the basic VNS procedure. Hansen
and Mladenovic[1998], suggests the use of descent-ascent steps allowing worst neighbours with
some probability. Hansen et al. [1998]  propose the Variable Neighborhood Decomposition Search -
VNDS for dealing with large instances of various problems.

As appointed by Mladenovic and Hansen[1997], often successive neighborhoods Nk
 will be

nested. Nevertheless, also distinguished neighborhoods may be considered exploring  different
features of the feasible set (not necessarilly in a nested fashion).

As a local optimum within some neighborhood is not necessarily one within another,  a
change of neighborhoods can be performed during the local search phase too. This local searh is
then called Variable Neighborhood Descent (VND). Its steps are described in the figure 3.2.
Observe that since no improvement is attained a new neighborhood is selected until the last
neighborhood N xkmax

( )  is reached.

In order to apply a based VNS or VND as a local search (in our GRASP procedure) we
carefully selected neighborhoods  exploring different features of the feasible set. The next section
give us a detailed description of our hybrid procedure applied to the PCTSP
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  Procedure VND: Given Nk
, (k=1,.., kmax ) and some x∈ X

  01. Begin
  02. Repeat
  03.       k=1;
  04.           Repeat
  05.              x’ ← local-search(x , N xk ( ) );

  06. if  ( f(x’) < f(x) ) then x ←x’
  07. else   k←k+1;
  08.     until k kmax= ;

  09. until (some stop condition is satisfied)
  10. end.

Figure 3.2: Variable Neighborhood Descent

4  An Hybrid GRASP+VNS for the Prize-Collecting TSP

Prior to the presentation of our hybrid procedure some basic definitions are necessary. Let
G V E= ( , )0

 denote a complete non-directed graph  with a vertex set V0
 with n+1 vertices indexed

{0,1,2,..,n} and an edge set E. Futhermore assume V V⊂ 0
 to be the subset of vertices  indexed by

{1,2,..,n}. All vertices in V are associated with customers and the vertex indexed by 0 is associated
with the depot or a starting point. To each  edge (i,j) beloning to E one has travel costs cij

 which may

express time, distance or a combination of both. Let Μ be the minimum amount of money (prize) to
be collected, wi  be the associated prize to be paid if  vertex  i V∈ 0  is visited and γ i  the

corresponding penalty  if  vertex i V∈ 0  is unrouted. We  take γ 0 = ∞  to force visitation of  node 0.

We do not take into account the prize assotiated to the depot  (i.e w0 = 0). The sequence of visited

nodes will be represented by α  and E(α)⊆ E denotes the set of edges with both extremities in α.
Travel costs and the  collected prize assotiated to route α will be given respectively by Tα  and  Pα .

Given α, let k be an arbitrary vertex not beloning to α. We will denote by g kα ( )  the resulted

gain at the objective function value after the addition of node k to route α.  Then:

     g k max c c c
i j E

ij k ik kjα α
γ( ) { }

( , ) ( )
= + − −

∈
      (4.1)

where c cij ik,  and  ckj are the corresponding travel costs and γ k  the penalty to be paid if node k

is unrouted.
Observe that, if  α  is a feasible route the assotiated prize Pα

 is greater than M (the minimum

amount of prize to be collected). These gains are computed and stored in a vector L. It is easy to
observe that the objective function value can be decreased  if g kα ( )>0 is considered for some node

k∉α . Using L a Restricted Candidate List RCLλ
 is obtained  only using the best λ values of L where

0 1≤ ≤λ . The RCLλ
 is computed  considering values in the interval ( )( )[ ]1 − − +λ g g g gmax min min max,  where

gmax
 and gmin

 denotes respectively the maximum and minumum values of L. Observe that λ=0
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implies in a purely greedy choice since RCLλ
 only contains the gmax

 element. On the other side, if

λ=1, RCLλ
 and L are identical.

Our algorithm is  summarized in the figure 4.1. The parameters GIter denotes the overall
GRASP iterations while CIter represents the total number of  initial starting points (at the
construction phase) before the local search procedure.

Procedure: (GRASP+VNS/ Prize-Collecting TSP)
01 . Begin
02 .     Tβ ← ∞ ; {value of the best encountered solution}

03 .     ρ ← 0 ;     Pρ ← 0; {find an initial solution ρ }

04 .      Compute:    T i
i

ρ
ρ
γ=

∈
∑ ; {initialize value of the objective function}

05.   For (each k∉ ρ ) do
06. g k max c c c

i j E
ij k ik kjρ ρ

γ( ) { }
( , ) ( )

= + − −
∈

;

07.       Compute:   { }L g k for each k= ∉ρ ρ( ) ;

08.       Obtain the RCLλ  using the best λ values of  L ;
09.       For (i=1,...,GIter) do
10.   Tα ← ∞ ;  {initialize value of the best solution in the construction phase}

11.   For (j=1,...,CIter) do {generate a set of  starting points - filter}
12. T Tρ ρ← ;  ρ ρ← ;  P Pρ ρ← ;

13. L L← ;      RCL RCLλ λ← ;

14. Repeat
15. Select at random a value of RCLλ

. Let k ∈ V  the associated node;

16. Insert k  in  route ρ;   {update ρ}
18. P P w

kρ ρ← + ;

19. T T g kρ ρ ρ← − ( ) ;

20. Update L;
21. Update RCLλ

;

22. Until  g k and P Mρ ρ( ) ≤ ≥0 ;

23. If ( T Tρ α< ) then        {save the best starting point in the construction phase}

24. T Tα ρ← ;    α ρ← ;   P Pα ρ← ;

25. end if;
26.     end for;
28.         Local-search ( , , );α α αT P {using VNS (or VND)  -  return a new α αand T }

29.         If  ( T Tα β< )  then {update the best overall solution}

30. β α← ,  P Pβ α←  and  T Tβ α← ;

31.     end for;
32. End.

Figure 4.1: GRASP+VNS/Prize-Collecting TSP



Gomes, Diniz  e Martinhon

Prize-Collecting Traveling Salesman Problem 6

At the filtering algorithm (comprising lines 11-26),  the construction phase is executed by
CIter iterations and the best encountered solution is gathered as initial point to our based VNS or
VND local search. This idea was successful used by Laguna and Martí[1997] for coloring sparse
graphs. Note that, CIter = 1 corresponds to the standard GRASP construction phase.

The combined GRASP+VNS procedure,  starts considering node 0 as initial route and then
perform a sequence of ADD-steps until feasibility is reached and no more positive gains g kρ ( )  (for

k∉α ) are found.  Obviously, the opposite can also be done considering an initial TSP solution and
then executing a sequence of  DROP-steps always preserving feasibility.

To apply the local search using  the VNS methodology, a set of  distinct neighborhood
structures must be considered. In our approach, the main idea is to explore different features of the
solution space. The implemented based VNS local seach procedure is composed by three different
neighborhood structures.

The classical 3-optimal (or 2 optimal) procedure is used to define the first neighborhood (S.
Lin [1965], Christofides and Eilon [1972]). Observe that this edge-exchange procedure mantains the
same set of nodes gathered in the construction phase. Clearly,  3-optimal or 2-optimal procedures
will terminate at a local optimum (not necessarily a global optimum), thus producing an approximate
solution.

In order to define the other two neighborhood structures, two types of movements are first
considered: DROP-step and ADD-step respectively. Using the DROP procedure we can apply a
sequence of node removals (from route α) while the objective function value is being decreased.
Analogously, using the ADD procedure, a sequence of node additions can be performed while some
improvement is attained. These two procedures will be alternately used in a convenient way to
define neighborhoods 2 and 3.

To describe the DROP procedure, let us define respectively p sk k, ∈ α  be the predecessor and

sucessor of  node k ∈α .

       Procedure: DROP-steps (α α α, , )T P ;

       01. Begin
       02.       For (each k∈α ) do {compute the reduction  in the obj. function for each k}
       03. h k c c cp k k s p s kk k k kα γ( ) , , ,= + − − ;

       04        Let L h k w such that P w M and kk k= − ≥ ∈{ ( ) / }α α α ;

       05.       Repeat
       06.      Select: { }k max h k w for each k Lk= ∈arg ( ) /α

;

       07.      If h kk ( ) > 0  then

       08. Remove k  to route α;   {update α}
       09. P P w

kα α← −   and  T T h kα α α← − ( ) ;

       10. Update L;
       11. end if;
       12.       Until L = ∅ ;
       13. End.

Figure 4.2: DROP-steps with best improving/ Prize Collecting TSP

Observe that,  if one applies a DROP movement to some feasible route α the updated prize
must remain greater or equal to M (the miminum amount of prize to be collected). Analogously to
the greedy algorithm for  the continuous 0-1 knapsak problem (see for example, Horowitz and Sahni



Gomes, Diniz  e Martinhon

Prize-Collecting Traveling Salesman Problem 7

[1978]), a balance between h kα ( )  and wk (for k∈α ) is taken into account. A large improvement in the

objective function value simply considering h kα ( )  may be disadvantageous if the corresponding

prize wk  is too large. The algorithm in the figure 4.2 ilustrates the use of a best-improving strategy,

since we look at all neighbours of a given solution and then move to the best (steepest descent). The
first-improving strategy can also be considered. In this case, we look at the neighbours one by one,
taking them in a random order, and moving to the first one that improves the current solution.
Details of these two strategies are discussed by Anderson[1996].

Note that, only nodes whose removal does not imply infeasibility are considered. As we shall
see later, to define distinct neighborhoods, DROP-steps with negative gains or even defining
infeasible solutions can also be performed.

Given a route α, Tα (cost) and Pα  (assotiated prize), the ADD procedure can be described as

follows :

       Procedure: ADD-steps(α α α, , )T P ;

      01. Begin
      02.       For (each k∉α ) do     {compute the increasing in the obj. function value for each k}
      03. g k max c c c

i j E
ij k ik kjα α

γ( ) { }
( , ) ( )

= + − −
∈

;

      04.       Let L g k for each k= ∉{ ( ): }α α ;

      05.       Repeat
      06.      Select: { }k max g k for each k= ∉arg ( )α α

      07.      If g kk ( ) > 0  then

      08. Insert k  to route α;   {update α}
      09. P P w

kα α← +   and  T T g kα α α← − ( ) ;

      10. Update L;
      11. end if;
      12.       Until L = ∅ ;
      13. End.

Figure 4.3: ADD-steps with best -improving/ Prize Collecting TSP

Like DROP, the ADD procedure also defines a greedy heuristic. Observe that, if g kα ( ) > 0 for

some k∉α ,  a decreasing  in the objetive function value will be done. Analogously to the DROP-step
procedure the first-improving strategy can also be considered. Figure 4.3 ilustrates the use of the
best-improving strategy.

To define the second neighborhood structure (node-exchange1) we alternately consider a
sequence of DROP and ADD movements. The main aspect to be observed is that all movements are
executed preserving feasibility. A sequence of  feasible DROP movements is considered until no
improvement in the objetive function value is attained. After that, a sequence of ADD movements is
performed until is possible (using the first or best improving strategy). Each iteration in the node-
exchange1 correspond to a sequence of  feasible DROP-steps followed by a sequence  of feasible
ADD-steps. Another examples, in which DROP and ADD-steps are used to define new
neighborhoods are given by Voβ[1996] for the Traveling Purchaser Problem.

In the third neighborhood (node-exchange2) only DROP movements with h kα ( ) < 0  are

considered. Some carefull however, must be taken. Assotiated to an infeasible removal, a sequence
of the best additions (not using node k) must be done restoring feasibility. This idea remind the
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strategic oscillation present in the tabu search algorithm (see Glover [1989], [1990]). If one DROP
movement does not destroy feasibility, a sequence of  positive ADD’s (with  g kk ( ) > 0 , for k∉α ) is

done until is possible. In this case, each iteration corresponds to a single DROP-step (feasible or not)
followed by a sequence of node aditions restoring feasibility when necessary.

The local search  using our based VNS procedure is summarized in the figure 4.4:

Procedure: Local seach -VNS(α α α, , )T P

01. Begin
02.       do
03.            do
04.                 α α α← −3 optimal T( , ); {First Neighborhood  / Edge-exchange}

05.                    Repeat {Second Neighborhood / Node-exchange1}
06.           execute DROP-steps as described in the figure 4.2
07.           If  some removal was performed then
08.      apply  ADD-steps until is possible;
09.                   until no ADD movements are performed;
10.           while  some improvement in the second neighborhood is attained;
11.         { }H k h k= ∈ <α α/ ( ) 0 ; {Third Neighborhood / Node-exchange2}

12.         while H ≠ ∅  do
13.           select an arbitrary k H∈ ;
14.    H H k← −{ };

  15.     ξ α← ; T Tξ α←  and P Pξ α← ;

  16.     remove k  from ξ; {DROP movement}
  17.     If P w M

kξ − <  then

18.              apply ADD-steps until feasibility is restored;
19.     perform  feasible ADD-steps while g lξ ( ) > 0  for  l∉ξ ;

20.     If  T Tξ α<  then

21.  α ξ← ; T Tα ξ←  and P Pα ξ← ; {update α}

22.  update H;
23.           end if;
24.          end while;

  25.       while  some improvement in the third neighborhood is attained;
  26.  end.

Figure 4.4: Based VNS Local Searh / Prize Collecting TSP

Only feasible moves decreasing the objetive function values are used to define the second
neighborhood (node-exchange1). As a consequence, all changes are performed directly on route α.
The same does not happen with node-exchange2. Since a single DROP-step (with h kξ ( ) < 0 for

some k ∈ ξ ) is applied, the undesirable increasing in the objective function value is repaired with a

sequence of node additions. If the resulting cost Tξ
 is less than Tα ; we updadte α, Pα  and Tα

respectively. If T Tξ α≥ , route ξ is rejected. One shoud notice that, since nodes to be removed are
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chosen at random, the described procedure (at the third neighborhood) corresponds to the first
improving strategy.

Observe that, each time we perform a single iteration in the second or third neighborhood
(node-exchange procedures), different number of ADD-DROP steps are necessary.  A large number
of  node additions or removals at the current route will probably result in a non organized sequence
of  nodes.  The returning to the first neighborhood (edge exchange procedure) is justified specially
if  the total number of single ADD-DROP movements is large. To reduce the number of times the
edge-exchange is performed, a parameter θ may be introduced in order to allow 3-optimal (or 2-
optimal) procedure if and only if the total number of  ADD and DROP steps  is larger than θ.

A based VND local search procedure has also been considered. In addition to the three
neighborhoods used, another edge-exchange procedure (2-optimal) was implemented. The sequence
of selected neighborhoods are as follows:  2-optimal,  node-exchanges 1 and 2 (as discussed above)
and finally 3-optimal procedure. Some computational  results “comparing”  the use of the based
VNS and VND as local search as well as the the use of filtering procedure at the GRASP
construction phase are listed at section 5.

5  Computational Results

Computational experiments have been conducted in order to evaluate the quality of the upper
bounds proposed in this paper. These experiments were performed on a Pentium III 450Mz with 128
of RAM Memory under the Linux operating system . The algorithms were coded in C and the option
gcc <arc>.c -o <arc> -lm -O3 was activated for compilation.

 Text problems for the Prize-Collecting TSP were not encountered at the avaliable literature.
Consequently a set of  instances were generated at random (see table 5.1). The coordinates of each
point have been taken from the TSPLIB (http:/www.iwr.uni-heidelberg.de/iwr/comopt/ software/
TSPLIB 95). In all cases we simply added new columns at random defining assotiated prizes and
penalties.

Table of figure 5.1 ilustrates the use of  two different versions of the GRASP construction
phase.  The first one applies a construction phase without filtering while the second one filters the
best solution to be used in the local search.  In both GRASP+VNS algorithms, we set GIter=500 and
λ=0.20 respectively. Computational time expended in both cases (with and without filter) as well as
the associated objective function values are listed.

(1) (2) (3) (4) (5) (6)
Problems Min

Prize
GRASP+VNS

without   filtering
cpu time

(secs)
GRASP+VNS
with  filtering

cpu time
(secs)

pc50a 400 380,45 19,85 380,45 19,84
pc50b 500 380,45 21,03 380,45 20,74
pc50c 600 381,38 27,67 381,38 25,82
pc50d 700 393,59 47,92 394,57 40,51
pc69a 1000 672,33 209,90 672,33 167,89
pc75a 900 503,61 245,76 503,61 212,57
pc75b 1050 503,34 251,76 503,61 215,99
pc100 550 644,79 1213,50 645,15 1025,49
pc120a 1000 654,03 1577,44 654,03 1333,33
pc130 1000 654,73 2388,20 653,87 2059,68
pc136 2500 685,08 3418,41 685,08 2940,85
pc266 5000 1205,44 47972,29 1195,13 41.387,35
pc360a 7000 2150,47 78499,19 2159,32 78.460,55
pc360b 9000 10.383,69 121989,31 10190,41 113543,83

Figure 5.1: Filtering procedure at the GRASP construction phase
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The 3-optimal algorithm was applied to define the first neighborhood (edge-exchange
procedure). Column (1) exibits the name of each instance as well as the total number of customers to
be considered. Column (2) shows the miminum amount of prize to be collected.  Column (3) shows
the performance of the GRASP+VNS without filtering (CIter = 1) and column (4) exibits the
corresponding computational effort. Finally, columns (5) and (6) ilustrates the use of the filtering
procedure (CIter = 10) and the associated computational performance.

Note that, despite the computational effort expended at the GRASP construction phase using
filtering procedure, a lower computational time is observed compared to those ones listed at column
(3) (without filtering). The computational effort evolved at the based VNS local search, may be
mininimized if a good starting point is used. One should notice that, bad starting points allows for a
great number of local search iterations.

Table of figure 5.2 ilustrates the use of  two different versions of  the based VNS procedure
(using 2-opt and 3-opt respectively) and a version of the based VND local search. All cases were
performed  using the filtering procedure at the GRASP construction phase. The parameter CIter = 10
was applied in all situations.  Columns (1) and (2) are as defined before (figure 5.1). Column (3)
shows the objective function values when the 3-optimal procedure (used at the first neighborhood) is
changed by the 2-optimal procedure. The objective function values (using 3-opt) are listed at column
(5). Column (7) exibits the performance of the hybrid GRASP+VND algorithm. As discussed
before, the selected neighborhoods at the based VND local search are: 2-optimal, nodes-exchange 1
and 2 and finally the 3-optimal procedure. The collected prizes associated with the corresponding
feasible routes are listed at columns (4), (6) and (8) respectively. The expended time necessary in
each one of the three tested versions are described in the figure 5.3. Boldface values in each line
correspond to the best computational results.

(1) (2) (3) (4) (5) (6) (7) (8)
Problems Min

Prize
GRASP+VNS

(2-opt)
Collected

Prize
  GRASP+VNS

(3-opt)
Collected

Prize
GRASP+VND Collected

Prize
pc50a 400 380,61 573 380,45 580 380,45 580
pc50b 500 380,61 573 380,45 580 380,45 580
pc50c 600 382,12 600 381,38 600 381,38 600
pc50d 700 402,83 706 394,57 706 394,57 706
pc69a 1000 672,33 2763 672,33 2763 672,33 2763
pc75a 900 506,11 1062 503,61 1062 503,61 1062
pc75b 1050 504,09 1062 503,61 1062 503,61 1062
pc100 550 657,71 3596 645,15 3596 642,53 3596
pc120a 1000 666,25 1769 654,03 1777 654,03 1777
pc130 1000 661,62 1876 653,87 1887 656,28 1478
pc136 2500 696,01 5773 685,08 5787 685,08 5787
pc266 5000 1227,11 5008 1195,13 5009 1206,87 5017
pc360a 7000 2166,57 7004 2159,32 7001 2152,59 7003
pc360b 9000 10.367 9002 10.190,41 9001 10227,32 9004

Figure 5.2: Best upper bounds

In all considered versions above, edge-exchange procedures (2 and 3 optimal) as well as the
ADD-step algorithm  used to define neighborhoods 2 and 3 (node-exchanges) were performed using
the best improving strategy. Computational experiments has shown a superior performance of the
first improving strategy in the DROP-step algorithm.

Figure 5.4, summarizes the mean objective function values and associated computational
times expended at the set of instances at the table of figure 5.1. Different scales were used at both
valuations (time and objective function values). It is important to emphasize that, since all results are
concerning to a restricted set of instances, carefull must be taken in order to generalize
computational results.
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(1) (2) (3) (4)
Problems GRASP+VNS (2)

cpu time (secs)
GRASP+VNS (3)

cpu time (secs)
GRASP+VND
cpu time (secs)

pc50a 9,31 19,84 17,51
pc50b 9,47 20,74 17,14
pc50c 10,55 25,82 21,53
pc50d 11,17 40,51 41,30
pc69a 25,84 167,89 125,02
pc75a 39,90 212,57 169,74
pc75b 34,59 215,99 158,91
pc100 72,55 1025,49 802,38
pc120a 131,26 1333,33 954,03
pc130 166,11 2059,68 1503,32
pc136 177,40 2398,51 2394,05
pc266 1875,65 41.387,35 13927,61
pc360a 7096,34 78.460,55 25153,59
pc360b 6702,83 113543,83 59471,00

Figure 5.3: CPU  time (secs)

         
        CPU  Time
         Upper bounds

      Versions

  GRASP+VNS(2)     GRASP+VNS(3)     GRASP+VND

Figure 5.4:  Upper bounds and CPU time

As observed in the figures 5.2, 5.3 and 5.4, the GRASP+VNS(2) procedure expends low
computational times compared to procedures GRASP+VNS(3) and GRASP+VND respectively.
Nevertheless, poor objective function values are obtained. An equilibrium in terms of solution
quality (objective function) is observed between GRASP+VNS(3) and GRASP+VND procedures.
However, the computational effort expanded by GRASP+VND is a little bit lower than that
expended by GRASP+VNS(3) procedure.

Additional tests and reasearch may be applied considering different neighborhood structures
in order to try a reduction at the expended computational times. As an example of future research,
the GENIUS heuristic proposed by Gendreau et al. [1992] to solve the TSP, can be adapted in a
convenient way to define new neighborhoods for  the PCTSP. Within the same proposed
GRASP+VNS framework, the GENI procedure maybe used in the development of edge-exchange
procedures while US algorithm maybe adapted to be applied in the construction of node-exchange
procedures.
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6  Conclusions

In this paper we present an hybrid metaheuristic that combines Greedy Randomized Adaptive
Search Procedure (GRASP) and uses based VNS and VND as local search. A filtering procedure
was applied in the GRASP construction phase looking for good starting points to our local seach.
The main idea was to combine interesting enhacements of  the studied metaheuristics.

Four different neighborhood structures were applied. The edge exchange procedures (2 or 3-
optimal) mantains the same set of nodes gathered in the construction phase of GRASP, while at the
node-exchange procedures, some node additions and node removals are performed.

The sequence of  removals in the second neighborhood mantains feasibility while the third
neighborhood allows negative or even infeasible DROP movements remembering  strategic
oscillation in the tabu search procedure.

Some numerical investigation have been conducted in order to generate upper bounds for the
Prize Collecting TSP. Tests considering based VNS and VND as local search were also performed.
It is hard to say if the quality of the generated upper bounds pays the substantial increasing in the
computional time. Additional research must be done in order to reduce computational effort
expended in the local search procedure.

Further research with the PCTSP might be the development of a more evolved exact (e.g.
branch-and-bound) algorithm. Logical tests and preprocessing techniques might be helpful in both
settings, i.e., when applied to aproximate as well as exact solution procedures. Within the same
framework is possible to consider different neighborhood structures.  In all cases they must explore
increasinly distance neighbours or  neighborhoods dealing with different features of  the solution
space. Another interesting improvements as the reactive GRASP to automaticaly update the size of
the Restricted Candidate List  and the use of proximate optimality principle, path-relinking or long-
term memory can also be considered.
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