

D. Reidsma, H. Katayose, and A. Nijholt (Eds.): ACE 2013, LNCS 8253, pp. 320–331, 2013.
© Springer International Publishing Switzerland 2013

Game Flux Analysis with Provenance

Troy C. Kohwalter, Esteban G. W. Clua, and Leonardo G. P. Murta

Instituto de Computação, Universidade Federal Fluminense, Niterói – RJ, Brazil
{tkohwalter,esteban,leomurta}@ic.uff.br

Abstract. Winning or losing a game session is the final consequence of a series
of decisions and actions made during the game. The analysis and understanding
of events, mistakes, and fluxes of a concrete game play may be useful for dif-
ferent reasons: understanding problems related to gameplay, data mining of
specific situations, and even understanding educational and learning aspects in
serious games. We introduce a novel approach based on provenance concepts in
order to model and represent a game flux. We model the game data and map it
to provenance to generate a provenance graph for analysis. As an example, we
also instantiated our proposed conceptual framework and graph generation in a
serious game, allowing developers and designers to identify possible mistakes
and failures in gameplay design by analyzing the generated provenance graph
from collected gameplay data.

Keywords: Game flux, Game analysis, Provenance, Graph Analysis.

1 Introduction

The conclusion of a game session derives from a series of decisions and actions made
throughout the game. In many situations, analyzing and understanding the events,
mistakes, and fluxes of a concrete gameplay experience may be useful for understand-
ing the achieved results. A game flux analysis may also be fundamental for detecting
symptoms of problems that occurred due to wrong decision-making or even bad ga-
meplay design. Besides that, without any formalized process, this type of analysis
may be subjective and, depending on the game dynamics and its complexity, it would
require playing the game successively, making the same decisions, to intuitively guess
which ones were responsible for generating the observed effects. Thus, reproducing
the same state can be unviable, making it difficult to replay and identify, in a trial and
error approach, the source of the problem. In addition, examining the game flux might
allow for the identification of good and bad attitudes made players. This knowledge
can be used in future game sessions to avoid making the same mistakes or even to
adjust gameplay features.

The analysis process for detecting gameplay issues is done nowadays in an artisan-
al way by using a popular beta testing [1] approach. The beta test phase is an indis-
pensable source of data for the developers about technical issues or bugs found in
the game. Normally, beta testers are volunteers who were recruited to play the game
in an early, pre-release, build of the game where they can provide information about

 Game Flux Analysis with Provenance 321

technical issues and provide feedback about the gameplay mechanics. Thus, beta test-
ing is a crucial part of the development to identify important issues in the game.
However, developers have little control over the beta testers’ gameplay experience or
the environment because they can play at home.

The goal of this paper is to improve the game designer’s understanding of the game
flux, providing insights on how the gameplay progressed and influences in the out-
come. In order to improve understanding, we provide the means to analyze the game
flux by using provenance. The provenance analysis requires processing the collected
gameplay data and generating a provenance graph, which relates the actions and
events that occurred during the game session. This provenance graph allows the user
to identify critical actions that influenced the game outcome and helps to understand
how events were generated and which decisions influenced them. This analysis could
be used in conjunction with the beta testing in order to aid in the identification of
gameplay or technical issues, allowing the designer to analyze the tester’s feedback
report and the gameplay data from the game session.

In our previous work [2], we introduced the usage of digital provenance [3] in
games. The main goal of the previous work was to propose a framework that collects
information during a game session and maps it to provenance terms, providing the
means for a post-game analysis. This was the first time that the provenance concept
and formalization was used in the representation of game flux. The present paper is
based on the conceptual framework definition introduced in the previous paper. How-
ever, while in the previous work focused on the provenance gathering, this work fo-
cuses on the provenance graph construction and manipulation to support analysis.
Even though the scenario used in this paper is over a serious game, we believe that the
concepts discussed here are applicable to any kind of game and are useful to support
advanced game flux analysis, such as gameplay design and balancing, data mining,
and even for storytelling.

This paper is organized as follows: Section 2 provides related work in the area of
game flux analysis. Section 3 provides a background on provenance, and Section 4
introduces our framework for provenance gathering. Section 5 presents our approach
for provenance visualization through graphs. Section 1 presents the adoption of prov-
enance visualization in a software engineering game, with visualization examples.
Finally, Section 7 concludes this work and points out some future work.

2 Related Work

In the digital game domain, Warren [4] proposes an informal method to analyze the
game flux using a flux graph, mapping game actions and resources into vertices. By
his definition, resources are dimensions of the game state that are quantifiable, while
actions are rules of the game that allowed the conversion of one resource into another.
Consalvo [5] presents a more formal approach based on metrics collected during the
game session, creating a gameplay log to identify events caused by player choices.
Playtracer [6] allows the user to visually analyze play steps, providing detailed visual
representation of the actions taken by the player through the game.

322 T.C. Kohwalter, E.G.W. Clua, and L.G.P. Murta

These three approaches are developer-oriented, meaning that they aim to improve
the quality of the game by providing feedback to the development team. However,
Consalvo [5] presents a template for analysis, acting as guidelines to how the analysis
should be done. Meanwhile, Playtracer [6] focuses on identifying the player’s strate-
gies by visually analyzing play traces instead of using queries.

Lastly, the Game Analytics [7] from Unity3D [8] allows visualizing game data as
heat maps directly on the scene. This identifies bottlenecks and hotspots, and unde-
rused and overused areas of the game. It also measures the game retention rate, where
players are stopping playing, and how the game progression develops.

3 Provenance

Provenance is well understood in the context of art or digital libraries, where it re-
spectively refers to the documented history of an art object, or the documentation of
processes in a digital object's life cycle [9]. In 2006, at the International Provenance
and Annotation Workshop (IPAW) [10], the participants were interested in the issues
of data provenance, documentation, derivation, and annotation. As a result, the Open
Provenance Model (OPM) [11] was created during the Provenance Challenge [12],
which is a collocated event of IPAW. Recently, another provenance model was de-
veloped, named PROV [13], which can be viewed as the successor of OPM. Both
models aim at bringing provenance concepts to digital data.

Both provenance models assume that provenance of objects is represented by an
annotated causality graph, which is a directed acyclic graph enriched with annota-
tions. These annotations capture further information pertaining to execution. Accord-
ing to [11], a provenance graph is the record of a past or current execution, and not a
description of something that could happen in the future. The provenance graph cap-
tures causal dependencies between elements and can be summarized by means of
transitive rules. Because of this, sets of completion rules and inferences can be used in
the graph in order to summarize the information.

4 Provenance Gathering in Games

In order to adopt provenance for the context of games, it is necessary to map each
type of vertices of the provenance graph into elements that can be represented in
games. As mentioned in section 3, OPM and PROV use three types of vertex: Arti-
facts/Entities, Process/Activities, and Agents. In order to use these vertex types, it is
first necessary to define their counterparts in the game context. To avoid misunders-
tanding, we adopt throughout this paper the terms used in PROV (entities, activities,
and agents).

In the context of provenance, entities are defined as physical or digital objects. Tri-
vially, in our approach they are mapped into objects present in the game, such as
weapons and potions. In provenance, an agent corresponds to a person, an organiza-
tion, or anything with responsibilities. In the game context, agents are mapped into
characters present in the game, such as non-playable characters (NPCs), monsters,

 Game Flux Analysis with Provenance 323

and players. It can also be used to map event controllers, plot triggers, or the game’s
artificial intelligence overseer that manages the plot. Thus, agents represent beings
capable of making decisions, while entities represent inanimate objects. Lastly, activi-
ties are defined as actions taken by agents or interactions with other agents or entities.
In the game context, activities are defined as actions or events executed throughout
the game, such as attacking, dodging, and jumping.

With all three types of vertex mapped into the game context, it is also necessary to
map their causal relations to create the provenance graph. The PROV model defines
some causal relations that can be used similarly to their original context. However, it
also provides rules to extend these relationships or to create new ones. For instance, it
is possible to create relationships to express the damage done to a character or rela-
tionships that affect specific core mechanics from the game, like attack rolls, healing,
and interactions with NPCs or objects. Also, the PROV model deals well with the
aspect of time, which can be heavily explored in games, especially on games focused
on storytelling.

Each NPC in the game should explicitly model its behavior in order to generate
and control its actions, providing an array of behavior possibilities. For example, de-
cision trees [14] can be used to model the NPC’s behaviors. With this explicit model,
a behavior controller can register information about the action when it is executed.
Actions can be represented by a series of attributes that provide a description and the
context of the action, allowing the creation of a provenance graph. As illustrated by
Fig. 1, every action needs some information: a reason for its existence, why the action
was performed, what triggered it, and who performed the action. In addition, the time
of its occurrence can be important depending of the reason of using provenance. The
main reason of using provenance is to produce a graph containing details that can be
tracked to determine why something occurred the way it did. Therefore, with this
assumption, the time of the action, the person who did it, and the effects of the action
can be recorded for future analysis.

Fig. 1. Data model diagram. Gray classes represent generic provenance classes.

324 T.C. Kohwalter, E.G.W. Clua, and L.G.P. Murta

Events also work in a similar way as actions, with the difference in who triggered
them, since events are not necessary tied to characters. For objects, its name, type,
location, importance, and the events that are generated by it can also be stored to aid
in the construction of the graph. Lastly, agents can have their names, attributes, goals,
and current location recorded. The information collected during the game is used for
the generation of the game flux log, which in turn is used for generating the prove-
nance graph. In other words, the information collected throughout the game session is
the information displayed by the provenance graph for analysis. Thus, all relevant
data should be registered, preferentially at fine grain. The way of measuring relevance
varies from game to game, but ideally it is any information that can be used to aid the
analysis process.

5 Provenance Visualization

The purpose of collecting information during a game session is to be able to generate
a provenance graph to aid the developer to analyze and infer the reasons of the out-
comes. In this paper we introduce a provenance visualization tool named Prov Viewer
(Provenance Flux Viewer), which uses JUNG [15] graph framework and allows de-
tailed analysis of a previously gathered game flux log through a graph. A game using
the provenance in games conceptual framework is able to generate a game flux log
that can be analyzed by Prov Viewer.

First, the game flux log, which contains game events, is processed and used to gen-
erate a provenance graph for analysis. After that, our tool creates the graph’s edges
and vertices following a defined set of rules to build the provenance graph. This graph
is a representation of the game flux log and is available for the developer to interact
and analyze, reaching events and causes about how events occurred during the game,
and how they influenced other events. It is also possible to manipulate the graph by
omitting facts and collapsing chains of action for a better understanding and visualiza-
tion experience. No information is lost in this process, so the user can undo any
changes made during analysis.

Fig. 2. illustrates a small example of a generated provenance graph. Following the
provenance notation specification, each vertex shape of the example is related to its
type. Square vertex represents activities, circles represent entities and octagons
represent agents. The edges in the provenance graph represent relationships between
vertices, which can be agents, entities or activities. As such, activities vertices can be
positively or negatively influenced by other activities and have relationships with
entities and agents. The context of such relationships may vary according to the type
of relation between vertices.

Prov Viewer has other features besides vertex shape by type. It uses shapes and
colors to distinguish displayed information and provides two types of filters: vertex
and edge filter. As previously noted, vertices have different shapes according to their
types. However, it is also possible to differentiate one vertex from another with dif-
ferent borders and colors. As an example, activities that do not interact with other
activities are dotted, as illustrated in the upper right corner of Fig. 2.

 Game Flux Analysis with Provenance 325

Fig. 2. Example of a generated provenance graph

Different formats can also be used for edges, as well as colors. The thickness
shows as how strong the relationship is. A thin edge represents a low influence on the
activity. On the other hand, the higher the influence is, the ticker the edge. This fea-
ture can be used to quickly identify strong influences in the graph just by looking at
the edge’s thickness. The edge’s color is used to represent the type of relationship,
which can be any of these three types: positive, which indicates a beneficial relation;
negative, which is a prejudicial relation; and neutral, which is neither beneficial nor
prejudicial. For each type of relationship (positive, negative, and neutral), a different
color is used. Green is used for positive influences, red for negative, and black for
neutral. Lastly, dashed edges represent edges without values, which are association
edges such as the edges binding activities to an agent. These edge types are also illu-
strated in Fig. 2, where neutral edges are dashed to emphasize their lack of impor-
tance.

In order to better analyze graph data, the vertex filter feature is also available.
Since the graph is generated from collected game data, not all collected information is
relevant for every type of analysis. Thus, the provenance graph might contain actions
that did not provoke any significant change. These elements act as noise and can be
omitted during analysis. To do so, it is possible to collapse vertices in order to reduce
the graph size by changing the information display scale, grouping nearby vertices
together and thus changing the graph granularity. Another usage of collapse is to
group activities from the same agent, improving visibility of all influences and
changes that the agent did throughout the game. Similar edges that have the same
target are also grouped together when collapsing vertices, as shown in Fig. 3. The
collapsed edge’s information is calculated by the sum or average (depending on the
edge type) of the values from the collapsed edges. For example, edges representing
expenses uses sum, while edges representing aid modifiers (in percentage) uses aver-
age. Another type of filter present in Prov Viewer is the edge filter, which filters
edges by context and by the type of relationship.

The last feature present is the attribute status display. When selecting the desired
attribute, all vertices with the specified status have their colors changed according to
their respective values. It uses the traffic light scale [16], which indicates the status of
the variable using three colors: red, yellow, and green. As an example, imagine that

326 T.C. Kohwalter, E.G.W. Clua, and L.G.P. Murta

Fig. 3. Collapsing vertices. The original state showing four activities and two entities with
edges of the same type (a), the collapse of both entities into one (b), and the collapse of two
activities, and their respective edges since they were from the same type (c). The size of the
resulting edge is bigger than the original ones as a resulting from summing each edge’s values.

we desire to analyze the player’s financial situation throughout the game. When fil-
tered by this status, all vertices that contain a player financial value have their colors
changed according to their values. Activating this type of feature allows the developer
to see the player’s finances throughout the game, making it easier to identify situa-
tions where he might have had financial problems (red color). Section 1 provides
more examples of those features.

Using these features for graph manipulation and visualization, the developer is able
to interact with the provenance graph, identifying relevant actions that had an impact
in the story or in the desired type of analysis. It can also be used to analyze player’s
behavior, detecting situations that the player had difficulties or didn’t behave accord-
ing to the developer’s plan. The next subsection describes alternatives to deal with
problems related to graph size and visualization.

5.1 Granularity

Depending on the game style, a game session might take several hours or days to be
completed. This makes the size of the provenance graph overwhelming, even when
making pre-filtering during the generation of the game flux log. One way to avoid
such situations is to show the provenance graph with some filters selected instead of
its full extension. For example, before showing the graph to the user, it is possible to
collapses less relevant vertices to reduce the graph’s size. For instance, combats stag-
es can be identified and collapsed into a single vertex for each instance. Places visited
in the game can also be collapsed into a single vertex, containing all interactions made
in that location. It is also possible to collapse collapsed vertices. In this case, a col-
lapsed combat inside a collapsed area visited by the player may contain other actions
aside from the combat, such as interactions with the ambient. This gives an impres-
sion of a map from the player’s journey, showing vertices for each location visited by
the player, while allowing the developer to expand only the situations he desires to
analyze.

Instead of collapsing all combats and locations, filters can be used to decide which
combats or locations were not relevant to the story, or had no noticeable impact in the
player’s journey, while keeping important events visible to the developer. This is
possible because provenance is analyzed from the present to the past. This way, com-

 Game Flux Analysis with Provenance 327

bats outcomes are known and can be used to decide if they are relevant or not. If the
player was victorious with minor challenge, did not suffer severe wounds, or barely
used any resources at his disposal, then the entire combat can be simplified into just
one vertex representing the combat with the enemy. However, if the combat was chal-
lenging or the player lost, it may be interesting to display all actions for a correct
analysis, allowing the player to identify important facts that influenced the combat
outcome. Note that this type of filter is heavily dependable of the game context, so a
specific set of filters should be implemented for each individual game.

6 Case Study

We instantiated this provenance analysis infrastructure, which uses the proposed
framework presented in [2] and described in section 4, in a Software Engineering
educational strategy game named SDM (Software Development Manager) [17]. The
goal of SDM is to allow undergraduate students to understand the existing cause-
effect relationships in the software development process. Thus, the adoption of prove-
nance becomes an important instrument to better support knowledge acquisition, al-
lowing tracking mistakes made during a game session or identifying game mechanics
that requires tinkering.

6.1 Information Storage

The information structure used on SDM is similar to the one explained in [2]. As
such, each project contains a list of employees that are involved in its development.
Each employee has a list of actions executed as well as links to other actions in case
of external influences. Throughout the game, information is collected and stored for
generating the provenance graph used during analysis. Since provenance graphs con-
tains three types of vertex (activities, agents, and entities), the collected information is
mapped to each type, according to the data model explained in [2]. Each vertex con-
tains different information according to its type.

Activities vertices, which represent actions executed during the game by em-
ployees, store information about their executions. This information includes who
executed it, which task and role the employee was occupying, as well as the current
morale and stamina status. Worked hours, credits spent to execute the action, and
progresses made are also stored. Besides those, if the action had any external influ-
ences or used or altered entities, then links to them are also stored.

Agent vertices, representing employees, store the employee’s name, his current
staff grade, his level, human attributes, which are used in the game, and specializa-
tions. Entities vertices represent Prototypes, Test Cases, and instances of the Project’s
development. All information from the game is collected in real time, during the ex-
ecution of actions and events. Thus it is required to change the method responsible for
executing each action and event to also store information. After the data is collected
and extracted, a provenance graph corresponding to that scenario is generated and
displayed for visual analysis, similarly to the one presented by Fig. 2.

328 T.C. Kohwalter, E.G.W. Clua, and L.G.P. Murta

6.2 Provenance Graph

With the adaptations made in the original SDM [2], it is possible to collect data and
use it to generate a provenance graph. The collected game data, known as game flux
log, is exported to Prov Viewer. In that application, the data is processed and used to
generate a provenance graph to aid in the analysis process.

By analyzing the graph, it is possible to reach some conclusions of why the story
progressed the way it did. As an example1, Fig. 4 illustrates a scenario where the
player had financial problems. To simplify the picture, some collapses were made,
omitting most of the agent’s activities. The entities represent instances of the devel-
opment stage and are colored according to the player’s financial condition. The activi-
ties present in the picture represent hiring actions in gray and resigning actions in
brown.

Fig. 4. An example of credits status filter (a) and the non-collapsed provenance graph (b) using
filter: Morale. Brown activity vertices represent employees leaving the player’s staff.

Fig. 4 was already subject of an attribute status display and a filter to show the
player’s credits status, both in the edges and in the vertices. In vertex 1, the project
had a substantial financial income and a new employee was hired, as marked by
the thick green edge to an agent and thick red edge to a gray dotted activities. The
player’s credits are also in a green zone as marked by the project’s vertex color. How-
ever, due to the hiring fee paid in vertex 1 and the resources used by the staff in vertex
2, the player’s credits changed to a yellow zone, even with the minor income from
agent Ag.

In vertex 3, the player’s credits changed to red zone due to payments, meaning that
his resources are almost empty and he will not have enough credits to keep paying his
employees. When that happens, employees’ morale is lowered due to the lack of
payment and if it reaches red zone, they can resign, as shown by brown activities.
Observing Fig. 4, we can see the employees’ morale getting lower by lack of pay-
ment. This helps us to understand why they resigned. Without credits to hire new
employees and without a staff, the player loses the game.

This analysis can be used to detect player’s behaviors and the reasons of why they
lost the game. In the example, the cause was the lack of resources due to hiring a new
employee. If it was necessary to hire a new employee, then there is a problem that
requires immediate attention. However, hiring an employee causes the player to lose

1 In order to reduce graph size and provide a quicker understanding for the presented exam-

ples, some in game parameters were configured to allow faster state transitions.

 Game Flux Analysis with Provenance 329

the game, leading to the conclusion that if hiring is optional, then some changes might
also be required because the penalty is too severe and causes the player to lose, in-
stead of giving only a small setback.

Another example of analysis is checking the employee productivity and under-
standing why variations occurred by using multiple filters to test theories. In SDM,
productivity is defined by the executed task, the amount of outside help, the em-
ployee’s job (junior, mid-level, and senior), the working hours, and the stamina and
morale stats. Fig. 5 illustrates an example scenario. To simplify the graph visualiza-
tion due to size limits, we focus only on two agents and the entity known as “project”.
Those agents’ roles are programmer and manager, with the manager acting as a sup-
porting role for the programmer.

Analyzing the picture we can see that the programmer’s productivity fluctuated
throughout vertices 1 to 7. We can also see that the manager did not cause this fluctu-
ation, since his aid bonus did not have much variation. In vertex 2, the programmer
maximizes his productivity at the cost of quality. This information, as well as other
details about the vertex, is displayed in the vertex’s tooltip. The change in vertex 3
can be identified by observing his working hours, which can be done by looking at
each individual vertex or by adding a filter, as shown in Fig. 5.

Fig. 5. Example of a provenance graph analysis. The entity is project’s stages of the develop-
ment. Agents are employees from the development staff, with the programmer being the upper
agent and the manager the lower one. Graph using different display features: default mode
(gray activity vertices) displaying edge values (a), working hours (b), stamina (c), and morale
visualization modes (d). Red vertices represent low, yellow represent average, and green
represent high values.

330 T.C. Kohwalter, E.G.W. Clua, and L.G.P. Murta

In Fig. 5 one can see via the change from yellow to red that the programmer’s
working hours per day increased. Since the activity in vertex 3 is red, it means the
employee is doing extra hours, which increases his productivity. From vertices 3 to 7,
his working hours remained unaltered. Therefore, the change from vertices 2 to 3 was
mainly due the change on his daily working time. However, if we look at vertex 4, we
can see a drop in his productivity.

By changing the filter again to show stamina levels, we can see that in vertex 3 the
programmer’s stamina dropped to yellow because of the extra hours and in vertex 4 it
reached red due to exhaustion. Another side effect of his exhaustion was the change
on the programmer’s morale, which also reached the red zone in vertex 5. Lastly, the
small variation from vertices 5 to 7 comes from a random range modifier during
productivity computation, since the programmer is already working at minimal levels
at the current configuration. With both the morale and stamina at lowest levels, the
extra hours were not compensating his productivity loss. As previously shown, if his
morale levels do not increase, the programmer might resign. This example of analysis
covered all possibilities that affect a programmer’s behavior and can be used to fur-
ther refine game modifiers or state transitions, as well as identifying odd behaviors
caused by game modifiers.

7 Conclusion

This paper introduces new perspectives on gameplay modeling and analysis, leverag-
ing the current state of the art, based on gameplay, to a level where the game prove-
nance can aid the detection of gameplay issues. This knowledge can help on (1)
confirming the hypotheses formulated by the beta tester, (2) supporting developers
for a better gameplay design, (3) identifying issues not reported by testers, and (4)
data-mining behavior patterns from individual sessions or groups of sessions.

The provenance visualization can happen on either on-the-fly or post-mortem sessions.
It allows the discovery of issues that contributed to specific game fluxes and results
achieved throughout the gaming session. This analysis can be used on games to improve
understanding of the game flux and identifying actions that influenced the outcome, aiding
developers to understand why events happened the way they did. It can also be used to
analyze a game story development, how it was generated, and which events affected it in
the following game genres: role-playing, strategy, and simulation.

Currently, we do not make inferences to the user, but let the user or developers de-
cide what needs to be inferred. However, we provide the necessary tools to create
inference rules, like filters and collapses (both for vertices and edges). Studies in this
area can be made in order to identify information that can be omitted from the user
without affecting the overall analysis. Another interesting research is to automatically
identify patterns in the game flux. Lastly, we are working on different graph visuali-
zation layouts and also studying the possibility of using game provenance in educa-
tional digital games to aid in the understanding of the concepts taught in the game.

Acknowledgments. We would like to thank CNPq, FAPERJ, and CAPES for the
financial support.

 Game Flux Analysis with Provenance 331

References

1. Davis, J., Steury, K., Pagulayan, R.: A survey method for assessing perceptions of a game:
The consumer playtest in game design. Game Studies 5 (2005)

2. Kohwalter, T., Clua, E., Murta, L.: Provenance in Games. In: Brazilian Symposium on
Games and Digital Entertainment (SBGAMES) (2012)

3. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A Sur-
vey. Computing in Science Engineering 10, 11–21 (2008)

4. Warren, C.: Game Analysis Using Resource-Infrastructure-Action Flow,
http://ficial.wordpress.com/2011/10/23/game-analysis-using-
resource-infrastructure-action-flow/

5. Consalvo, M., Dutton, N.: Game analysis: Developing a methodological toolkit for the qu-
alitative study of games. Game Studies 6 (2006)

6. Andersen, E., Liu, Y.-E., Apter, E., Boucher-Genesse, F., Popović, Z.: Gameplay analysis
through state projection. In: Foundations of Digital Games (FDG), pp. 1–8 (2010)

7. Wulff, M., Hansen, M., Thurau, C.: GameAnalytics For Game Developers Know the facts
Improve and Monetize, http://www.gameanalytics.com/

8. Higgins, T.: Unity - 3D Game Engine, http://unity3d.com/
9. PREMIS Working Group: Data Dictionary for Preservation Metadata. Implementation

Strategies (PREMIS), OCLC Online Computer Library Center & Research Libraries
Group (2005)

10. Moreau, L., Foster, I., Freire, J., Frew, J., Groth, P., McGuiness, D.: IPAW,
http://www.ipaw.info/

11. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Bussche, J.V.:
The Open Provenance Model core specification (v1.1). Future Generation Computer Sys-
tems 27, 743–756 (2007)

12. Miles, S., Heasley, J., Szalay, A., Moreau, L., Groth, P.: Provenance Challenge WIKI,
http://twiki.ipaw.info/bin/view/Challenge/

13. Moreau, L., Missier, P.: PROV-DM: The PROV Data Model,
http://www.w3.org/TR/prov-dm/

14. Moret, B.: Decision Trees and Diagrams. ACM Computing Surveys (CSUR) 14, 593–623
(1982)

15. O’Madadhain, J., Fisher, D., Nelson, T.: JUNG: Java Universal Network/Graph Frame-
work, http://jung.sourceforge.net/

16. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evolution of
Software. Springer (2007)

17. Kohwalter, T., Clua, E., Murta, L.: SDM – An Educational Game for Software Engineering.
In: Brazilian Symposium on Games and Digital Entertainment (SBGAMES), pp. 222–231
(2011)

	Game Flux Analysis with Provenance
	1 Introduction
	2 Related Work
	3 Provenance
	4 Provenance Gathering in Games
	5 Provenance Visualization
	5.1 Granularity

	6 Case Study
	6.1 Information Storage
	6.2 Provenance Graph

	7 Conclusion
	References

