
Reinforcing Software Engineering Learning
Through Provenance

Troy C. Kohwalter Esteban W. G. Clua Leonardo G. P. Murta
Instituto de Computação

Universidade Federal Fluminense
Niteroi – RJ, Brazil

{tkohwalter, esteban, leomurta}@ic.uff.br

Abstract—Software engineering is focused on practical and
theoretical aspects of the software production. Teaching software
engineering is traditionally done through theoretical classes with
some practical exercises. Recently, games and simulators were
introduced as a ludic alternative for software engineering
learning, where decisions and interactions become key factors to
transmit and acquire knowledge. However, mistakes made by
wrong decisions may jeopardize the learning process, especially
when reproducing its effects is not a viable option due to the non-
deterministic nature of games. With this in mind, in a previous
work we proposed a novel approach based on provenance
concepts in order to present the decisions and effects of such
decisions when learning through games. In this work, we present
an experimental evaluation of that approach with undergraduate
students. The obtained results show that the use of provenance
leads to faster and more accurate answers from students,
including learning aspects that could not be achieved by a
traditional educational game.

Keywords—software engineering; serious games; provenance;
education; game flux.

I. INTRODUCTION

Traditional Software Engineering teaching process consists
of lectures and usually a course project, which has the intent
of applying the theory in a practical situation. Moreover, these
projects are restricted to the length of the course, which limits
the opportunities for the students to practice and comprehend
all the concepts taught in classroom. Also, due to time
constraints, most course projects occurs in a straightforward
fashion that leaves little room for experiencing the many
facets of the software lifecycle. Lastly, these course projects
typically focus on project deliverables, which usually do not
stimulate the student’s interest. In order to solve this problem,
software engineering games [1]–[5] have been used for
helping students to learn concepts taught in classrooms by
stimulating curiosity and providing motivation for learning.

However, the outcomes of a digital game session derive
from a series of decisions and actions made throughout the
game. In many situations, analyzing and understanding the
events, mistakes, and fluxes of a concrete game session may
be useful for understanding the achieved results. Game session
analysis is also fundamental for detecting symptoms of
problems that occurred due to wrong decision-making and to
better understand if the student learned the concepts presented
by the game. Without a game flux analysis, the student would
be required to play the game multiple times to intuitively

guess which actions were incorrect. Similarly, the tutor would
be required to watch the game being played in order to
identify the mistakes made by the student. Depending on the
game dynamics and its complexity, reproducing the same state
can be unviable, making it difficult to adopt a trial and error
approach.

In our previous work [6], we introduced the usage of
digital provenance1 in games. The main goal of the previous
work was to propose a conceptual framework that collects
information during a game session and maps it to provenance
terms, providing the means for a post-game analysis. We
applied this conceptual framework over a serious game named
SDM [8], which focus on teaching Software Engineering
processes. The provenance support in SDM allowed for a
broader range of analysis by using collected game session
provenance information to generate a provenance graph [9].

Students and tutors can use this provenance information to
identify cause-and-effect relations amongst actions made
during a game session in order to understand the outcomes.
The provenance analysis process collects data and generates a
provenance graph, relating actions, decisions, and events that
occurred throughout the game in a high level model. This high
level model allows a broader range of analysis and data
mining. For instance, the provenance graph allows browsing
the data, identifying actions that influenced specific outcomes.
It also helps to understand how events were generated and
which decisions contributed to them. This process also aids in
the identification of mistakes, allowing students to reflect
upon them for future interactions or allowing tutors to know
which concepts students are having difficulties. Thus, this
knowledge can help on (1) confirming the hypotheses
formulated by students, (2) supporting tutors for a better
guidance, (3) motivating practical exercises around some case
studies, and (4) extracting behavior patterns from individual
sessions or groups of sessions.

The goal of this paper is to evaluate if the use of
provenance during a game analysis aids students to understand
the underlying reasons for the game outcome. This is
accomplished by using the provenance visualization tool Prov
Viewer [9], which was customized to work with SDM to

1Provenance refers to the documented history of an object's life cycle

and is generally used in the context of art, digital data, and science
[7].

2014 Brazilian Symposium on Software Engineering

978-1-4799-4223-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SBES.2014.16

131

visualize the provenance graph. We evaluated our approach
with different undergraduate classes to assess the viability of
analyzing a game session by using provenance. The goals of
these experiments were to know if the provenance analysis is
more efficient and effective than analyzing the game by re-
watching the session, trying to observe if it has a higher
identification rate of the cause-and-effect relations between
the actions and their outcomes. To do so, we answered the
following research questions:

1. Does provenance analysis help to understand events
that emerged during the game?

2. Is provenance analysis faster than only watching a
replay of the game session?

3. Is provenance analysis more accurate than only
watching a replay of the game session?

The rest of the paper is organized as follows: Section 2
presents some related work. Section 3 presents SDM with
provenance support and Prov Viewer. Section 4 explains the
experiment with two undergraduate classes, while Section 5
details our findings about using provenance analysis to
understand the game session. Section 6 concludes and presents
future works.

II. RELATED WORK

Exposing students to choices and decisions increase the
motivation and understanding process. For this reason, games
are being used as a powerful teaching tool, including in
Software Engineering. Navarro and van der Hoek [3]
conceived a Software Engineering simulation digital game
called SimSE. The purpose of this game is to address a gap in
the traditional techniques of Software Engineering teaching,
where students are exposed to various concepts and theories,
but have few opportunities to apply these ideas into practice.
In SimSE, the player assumes the position of a project
manager who has a team of developers and manages the
software development process by hiring and firing developers,
monitoring development progress, assigning tasks, and buying
new tools. The fundamental goal of the SimSE project is to
allow the customization of the simulated process model and
therefore to be used by professors during the presentation of
content related to the software life cycle.

SimSE provides an explanatory tool that includes plotting
graphics showing game values and action details, such as
when an action started and ended (e.g., creating requirement
document), the participants involved with the action
(employees, tools, and artifacts), and game rules associated
with it. It also shows all triggers and destroyers for each
action, displaying what could have caused the action to start
and end. The explanatory tool is a powerful analysis
mechanism that shows details for each clock-tick in the game.

However it does not show details about how each
participant of each action contributed to it, nor their respective
contribution values. It is not clear how well SimSE can show
cause-and-effect relationships. However it was stated by the
author that the graphs in their explanatory tool is not helpful
due to the difficulty of formulating a meaningful object and
action graph combination that produces an insightful

composite graph. The true usefulness of the tool lies in rule
descriptions.

Dantas et al. [1] present a simulation based digital game
for teaching Software Engineering, named The Incredible
Manager. The focus of this game is project management,
where the player main tasks are planning and managing
software development projects. As a project manager, the
player establishes a development plan for the project, estimate
the duration of each task, assign tasks to developers, negotiate
with stakeholders, control how long the team will work per
day, and determine the effort spent on quality assurance. One
important limitation reported by players was the inability to
trace and explain each action and their consequences during
the game in order to evaluate their own performance after
playing the game.

Drappa and Ludewig [2] present SESAM, a simulation
game where students assume the role of a project manager by
hiring, firing, or designating tasks to employees. The game
adopts a text-based interface where the student uses natural
language to interact with employees, receiving replies in the
form of statements. These statements are the only feedback
available for the player to gauge his decisions during the
game. At the end of the game session, SESAM displays the
player’s score, detailing the development statistics, such as the
number of days to finish the project, human effort, cost, and
requirements coverage. Previously hidden attributes of the
customer requirements are also displayed to the player.

However, according to their evaluation over eighteen
undergraduate students, students were making the same
mistakes when replaying a session, thus the game had no
apparent learning effect. The authors assumed that the cause
was related to the score output, since students were not
making a detailed analysis of the results. This was assumed by
the authors because, during their evaluation, students were
failing to reflect on the details of the game session and was
doing a trial-and-error approach. When their final score was
fairly good, they kept the same approach in the next
simulation. Otherwise they tried a different approach.

Other digital games were proposed for teaching Software
Engineering, such as MO-SEProcess and Groupthink [5]
which are add-ons for the multiplayer online game Second
Life. The first game, MO-SEProcess, is based on SimSE but
focus on the waterfall approach where each player is a
member of the development team. The second game,
Groupthink, is also an add-on for Second Life and is based on
a software specification exercise developed at MIT [10]. In
this game, players form teams and answer questions related to
software development. In both games, a final score is
displayed at the end of the session to the teams, with no
further feedback.

Finally, Pex4Fun [4], another digital game for teaching
Software Engineering, focuses on code duels, where the player
goal is to implement a puzzle method that follows a defined
specifications and is equivalent to the hidden puzzle method.
The only decision that needs to be made is related to the code
that will be written since there is no interaction with other
entities. Thus Pex4Fun is not compatible with our approach.

132

III. USING PROVENANCE IN GAMES FOR
ENHANCING SOFTWARE ENGINEERING LEARNING

A typical digital game architecture is mainly composed of
game objects and the game loop. All objects present in a
game, from environment objects to characters, are inherently
defined as game objects. Game objects by themselves do not
add characteristics to the game. Instead, they are containers
that hold components that implement actual functionality,
such as scripts (i.e., artificial intelligence, player controller,
etc.), meshes (the object structure or “body”), physics,
textures, animations, and audio. Meanwhile, the game loop is
responsible for the sequence of events that occur in a game,
allowing the game to keep running regardless of the user’s
input. The game loop keeps the game alive, updating game
object states and executing their actions and behaviors. Each
script in a game object has a function update, which is called
by the game loop in order to execute the specific game object
functionalities. Every time the game loop is ticked, it executes
the update function of the scripts that belongs to the game
objects present in the scene.

In a simulation or in a serious game some facts might not
be clear or transparent enough for the player to understand
why something went wrong. While in a traditional game this
can be solved with a new game session, in a serious games or
simulation it is important to give the opportunity to the player
to find what caused this situation in an analytical way. Thus,
in a previous work [6], we proposed a novel usage for
provenance in the game field. In order to adopt provenance for
the context of games, we mapped each type of vertices of a
provenance graph into elements typically found in games.

The PROV provenance model assume that provenance of
objects is represented by an annotated causality graph, which
is a directed acyclic graph enriched with annotations. These
annotations capture further information belonging to the
system execution. According to Luc Moreau [11], a
provenance graph is the record of a past or current execution,
and not a description of something that could happen in the
future. Using the PROV [12] notations, an entity was mapped

to static game objects present in a game, such as weapons,
equipment, and furniture. Agents were mapped to dynamic
game objects, such as characters, event controllers, and plot
triggers. Lastly, activities were mapped to actions or events
executed throughout the game, such as interactions with other
agents and entities. The causal relations, which are the edges
of a provenance graph, were mapped to influences occurred
during the game. Figure 1 illustrates this mapping of
provenance concepts into the game context, outlining
important information of each element type to be collected
during game execution for provenance analysis.

The provenance analysis infrastructure, which uses the
framework presented in [6], was instantiated in a software
engineering educational game named SDM (Software
Development Manager) [8]. The goal of SDM is to allow
undergraduate students to understand the existing cause-effect
relationships in the software development process. Thus, the
adoption of provenance has the potential to better support
knowledge acquisition, allowing tracking mistakes made
during a game session or identifying concepts that are not well
understood by the students.

A. SDM
In SDM the player manages a team of employees that

develop software according to contracts made with customers.
The gameplay and game mechanics are modeled presenting
possibilities to the player to decide strategies for development
and defines the roles and tasks for each staff member. As in
any contract, the software has requirements that must be
followed during development. From a gameplay point of view,
these requirements help to balance the mechanics and rules.
When the software is completed and delivered to the
customer, there is a quality assessment of the software and a
project completion payment accordingly to the product
assessment. Since SDM focuses in people management, the
main elements of the game are the employees, which represent
the player’s labor force. Employees can perform different
roles (analyst, architect, manager, marketing, programmer, and
tester), which use the employees’ human attributes to calculate
their performance depending on the respective roles. Another
attribute present in the game is specialization, which is used to
define the employee working competence. With the
specialization system, it is possible for employees to undergo
training to learn new sets of skills. Also the concepts of
working hours, morale, and stamina are used to modify the
employee’s productivity.

These characteristics are illustrated in Figure 2, which
shows a simplified version of SDM’s class diagram focusing
on the employee. Each employee is defined by his human
attributes (adaptability, auto didacticism, human relations,
logical reasoning, meticulousness, negotiation, objectivity,
organization, and patience), can have specializations
categorized in three different types (with a total of 14 different
specializations), and can be allocated for training in order to
acquire new specializations.

Each employee can have up to two different roles at the
same time, among six possible roles available. Each role has a
different set of tasks, which are administered by decisions

Figure 1: Mapping of provenance and game domains. Gray
classes belong to the provenance domain. Yellow classes belong to
the game domain.

133

trees [13] that considers internal (attributes, morale, and
stamina) and external (player or staff) influences to determine
how these tasks are executed. Tasks can influence and be
influenced by other tasks from another employee and can also
generate artifacts, which can represent prototypes, used to
validate software requirements, or test cases (unit, integration,
system, and user acceptance). Lastly, employees belong to the
player’s staff and develop the software for a customer,
respecting the customer’s requirements and deadlines.

B. Provenance Gathering in SDM
The data structure used in SDM to collect provenance

information was adapted and mapped to be suitable for the
proposed provenance structure presented in [6], which is as
follows: each project contains a list of employees involved in
its development. In turn, each employee has a list of his
actions executed throughout the development. If any action
had an external influence during its execution, then the action
also has a pointer to the action that influenced it. Throughout
the game, the information about actions that are executed or
triggered is collected at runtime and stored for later usage.
Executed actions go to their respective employee lists. When
new employees are added to the project, they receive their
own list of actions and are added to the project’s employee
list. Each day of the game universe stores the state of the
software development at the end of that day.

Since the information collected is used for the generation
of the provenance graph, its content is mapped to one of the
three possible types of provenance vertex: activities, agents, or
entities. This mapping is made according to the data model
explained in [6] and previously mentioned at the beginning of
this section: activities map to actions or events, entities map to
static game objects (prototypes, test cases, software
development state), and agents map to dynamic game objects
(employees and clients).

The majority of the provenance gathering, which is related
to activities, is administrated by decisions trees and occurs at
leaf nodes of the tree, where actions are executed. The

information gathered varies according to the element type, as
can be seen in Figure 3. Activities’ provenance information (c)
is taken directly from the decision tree, getting the execution
information and retracing the tree path from the leaf to the
root. Agents’ information (b) is gathered when they first
interact in the game. Entities’ information gathering varies
according to the entity type. For example, the project as a
whole (a) has its information gathered in a daily basis,
recording the current state of development. On the other hand,
prototypes and test cases entities have their provenance
collected when they are created.

Moreover, the causal relationship between elements is also
gathered. This occurs, for instance, when an activity is
influenced by another activity or generates an influence to an
entity. Examples of influences include an employee aiding
another employee or when a task changes the state of the
software under development.

C. Provenance Visualization
With the adaptations for provenance gathering made in the

original SDM [6], it became possible to use the collected
provenance data to generate a provenance graph for analysis.
The collected game data, known as game flux log, is exported
to Prov Viewer [9], which is a provenance graph visualization
tool adapted for usage with SDM. In Prov Viewer, the game
flux data is processed and automatically used to generate an
interactive provenance graph of the game session to aid the
analysis process.

Figure 4 illustrates the graphical user interface (GUI) of
Prov Viewer and the displayed provenance graph from a
gameplay session generated by SDM. Using the visual
notations defined in [11], square vertex represents an activity,
while circle represents an entity and an octagon represents an
agent. The provenance graph is displayed at the center of the
screen but only part of it is visible due to the graph size.
However it is possible to zoom in or out and navigate through
the graph. The graph layout is set to be similar to a spread
sheet, where each “line” represents the activities of each agent
and each “column” represents a day in the game. The filters,
specifically defined for SDM, are located at the lower region
of the interface. The “Collapse Agent” button collapses all the

Figure 2: Mapping of game and Software Engineering domains.
Yellow classes belong to the game domain, showed in Figure 1.
Blue classes belong to SE domain (SDM game).

Figure 3: Provenance information regarding the project as a
whole (a), an employee (b), and an action (c).

134

agent’s vertices into the agent itself. It is useful to detect if an
agent had any influence throughout the game, instead of
looking vertex by vertex. The “Collapse” button allows the
user to collapse selected vertices, creating a meta-vertex that
summarizes edges (influences) by type. The “Extend” button
removes the last collapse made to generate the selected meta-
vertex.

The “Display Edge” is an important aspect during analysis,
allowing for the identification of types of influences in the
graph, filtering the graph edges that are not relevant for the
desired analysis. The displayed graph only shows the selected
edges types, omitting unselected types. For example, in Figure
4 the edge types “Neutral” and “Aid” are selected, thus
showing all positive (green) and negative (red) influences of
the “Aid” type and all “Neutral” (dotted-black) type edges,
which in this case are association edges.

Another usage of the display edge is to detect the reasons
for drastic changes during the game. For example, detecting a
major variation in the analyst’s performance as shown in
Figure 5, which dropped from 342 to 34 requirement
validation. The left picture has the “Val” edge display on,
while the right picture has the “Aid” edge display on. The
employees’ roles in the figure are manager (upper tasks),
marketing (Middle), and analyst (bottom). The change in

performance was detected by activating the “Val” edge filter
and comparing the values (342 versus 34). The reason for this
sudden drop can be traced to the manager and marketing
employees by changing the filter to “Aid”, which is a possible
type of influence. By analyzing the displayed edges, the
manager employee provided an aid of 298% in day 10 and a
penalty of 248% at day 11 to the analyst due to wrong
decision making. Moreover, the marketing employee provided
a bonus of 227% and 136%, respectively for days 10 and 11.
By combining these factors, at day 10 the analyst received a
bonus of 525% in his task, while at day 11 he had, in total, a
penalty of 112% for the execution of his task. The analyst
productivity without any bonus was 65 at day 10 and 53 at day
11, which is within his productivity margin.

The “Attribute Status” changes the vertex color according
to their values from the selected attribute. In SDM they can
be: Morale, Stamina, Hours (short for Working Hours),
Weekend (highlighting “Saturday” and “Sunday” vertices),
Credits, and Role. The vertex color does not change if it does
not have the selected attribute. The default mode shows
common activities with a shade of gray and uncommon
activities with different colors. Common activities in SDM are
normal tasks executed by employees during their roles, while
uncommon activities are activities that do not happen
frequently. The color difference amongst vertices is useful to
quickly identity non-ordinary events. For example, by looking
at the graph shown in Figure 4 it is possible to quickly identify
that an employee was trained (purple vertices) during some
days and was idle (red vertices) for a couple of days after the
training was complete. This type of visualization, based on the
evaluation of attributes, is useful to quickly identify particular
sections in the graph.

With the available features, users can manipulate the graph
by deciding which type of edges and color schemes will be
displayed on the provenance graph. Furthermore, he can
navigate in details through the graph, exploring different

Figure 4: Prov Viewer’s GUI instantiated for SDM.

Figure 5: Analyzing the analyst’s productivity.

135

sections of the game session or zoom out for a broader view. It
is also possible to collapse sections of the graph in order to
reduce its size and thus omitting vertices that might not be
relevant for the current analysis. All graph manipulations can
be reverted and no information is lost during this process.

IV. EVALUATION

As discussed before, the goal of this paper is to answer the
following research questions:

1. Does provenance analysis help to understand events
that emerged during the game?

2. Is provenance analysis faster than only watching a
replay of the game session?

3. Is provenance analysis more accurate than only
watching a replay of the game session?

To assess the possibility of using provenance analysis for
improving understanding, we generated a replay of a game
session and compared it with provenance analysis using a
provenance graph. This comparison was conducted through a
questionnaire containing specific questions about events that
occurred during the game session. Volunteers were divided
into two groups: with and without provenance. Both groups
watched the replay of the game session. The group with
provenance also had access to the provenance graph. At the
end, both groups answered the same questionnaire. Note,
however, that we do not want to measure if watching a replay
video is better or not than analyzing with provenance. Our
goal is to verify if by giving access to provenance data about a
game session, which in this case is the video, the usage of
provenance is beneficial and if it aids in the understanding of
the events.

Lastly, we used two metrics to compare the results
obtained by both groups: precision and time. The precision
metric shows the correctness of the answers provided by both
groups, which is related to understanding the factors that
influenced the results. The time metric shows how long each
volunteer took to answer all questions, thus allowing us to
know if using or not provenance is faster.

A. Experiment Execution
We originally planned to run the experiment with students

playing the game, which in turn would result in different game

scenarios. However, due to the nature of game dynamics and
its randomness, the questionnaire would need to have general
questions for all types of outcomes. So we opted for a more
controlled environment in order to reduce the number of
independent variables, which would be beyond our control.
This way, instead of playing the game, volunteers were
required to watch a recorded game session previously played
by a third person. Thus, the questionnaire could be customized
to this game session, allowing asking specific questions about
events that occurred in that particular session. Also, the
questionnaire was designed to measure the precision of the
answers provided by both groups (with and without
provenance) and the time volunteers took to finish it. Precision
[14] is a traditional metric for information retrieval and can be
seen as a measure of correctness, which is the percentage of
results that are relevant. Time was measured in minutes taken
to complete the questionnaire.

The execution was divided in two stages: a pilot
experiment to detect any issues that needed to be addressed,
and the experiment itself. During the pilot, volunteers were
required to read and watch tutorials due to the unfamiliarity
with the game and the Prov Viewer tool before filling the
questionnaire. The pilot was applied to an undergraduate class
composed of 28 volunteers and was structured as follows:
volunteers were randomly divided into two groups and the
pilot experiment began with volunteers watching the SDM
tutorial, then the Prov Viewer tutorial (only for the group with
provenance) and the replay of the game session video. Lastly,
they received the questionnaire.

By analyzing the pilot execution and the obtained results,
we decided to change the order of the videos due to the fact
that volunteers were reviewing the Prov Viewer tutorial while
answering the questionnaire. This happened because they were
forgetting how to operate the tool after watching the replay of
the game session video, which takes around seven minutes.
Another change made for the experiment was related to the
questions in the questionnaire. Some questions were allowing
different interpretations, which caused too many mistakes on
both groups. Thus, we decided to create a new scenario (and
video) with a different set of questions. The collected data
from the pilot was discarded during statistical analysis.

After changing the original experiment structure used
during the pilot, the resulting experiment plan was divided in

Figure 6: Experiment process.

136

three stages, as illustrated in Figure 6: Generating the
questionnaire, running the experiment with volunteers
(students), and analyzing the results. According to the plan
shown in Figure 6, we executed the first stage (Create
Questionnaire) before running the experiment. In this stage we
recorded a game session of SDM that narrates the player’s
decisions throughout the game.

The next stage was the experiment execution with
volunteers. We applied the experiment in two different
undergraduate classes [15], composed of 18 and 19 volunteers
each. From the total of 37 volunteers, only 32 finished the
experiment, thus 5 partially answered questionnaires were
discarded because volunteers decided to abandon the
experiment. Figure 7 illustrates the volunteer’s characteristics,
where the majority has never heard about software
engineering. The volunteers watched the SDM tutorial, which
explains details about the game interface, and read a written
document summarizing key features. Subsequently, they
watched the game session video and were randomly selected
for two groups: those that would use provenance and those
that would not. After watching the game session video, the
questionnaire was handled to the volunteers. However, the
group with provenance also watched another tutorial video
about the tool before receiving the questionnaire. This stage
also has a time limit to avoid fatigue. The game session and its
provenance graph are available at http://gems.ic.uff.br/ping.
Lastly, we performed a statistical analysis over the results by
means of hypothesis test in order to compare the obtained
results with and without provenance.

An important factor for the design of the experiment
concerns the definition of the significance level used during
statistical analysis. We used a confidence interval of 95%,
which translates to α = 0.05, where α is the probability of
rejecting the null hypothesis given that it is true (Type I error)
[16]. The following subsections describe the game session
used for the experiment and the questionnaire.

1) Game Session Scenario

We adopted the following scenario for recording the game
session. The player had at his disposal four employees: Yesha,
Tornik, Mirax, and Emmy. He first assigned roles for each
employee. Yesha was assigned as the staff’s manager and had
the task of aiding analysts. Tornik was assigned as an analyst.
Mirax was assigned as marketing, which aids analysts and
provides cash income to the player by making deals. Lastly,
Emmy was assigned as programmer. Then, the player asked
Yesha to hire tree new employees: Arden, which was placed in
training, Marke, an architect, and Daniel, an analyst that
would work for 14 hours a day. After a two-week training,
Arden was allocated to work as programmer.

Starting the third week in the game, the player had

financial problems and runs out of cash. Daniel, due to the
extra hours, was tired and quitted. The game continued with
some rearrangements in task: Tornik was assigned to do both
elicitation and specification tasks and Arden started to work as
programmer. Mirax was later promoted at the third week.
During the fourth week, Marke’s role was changed to
programmer, focusing on repairing reported bugs,
accumulating with the role of tester. Near the end of the week,
Arden and Marke resigned due to lack of payments since the
player was having financial problems. At the start of the next
month, and after receiving cash for achieving a milestone, the
player hired another employee (Miera) as a programmer to
replace Arden. At the same week, the player set Mirax to
negotiate with the client, asking to extend the project’s
deadline by one extra week, since the deadline was ending.
Because of the deadline extension, the staff managed to finish
the project, delivering the software to the client.

The software delivered still had one known unfixed bug,
plus other 25 unknown bugs that were not identified during
development but eventually showed up in production. Aside
from the bugs, the code quality was with a rate of 75.84. This
rate can vary from 10 to 120, where 10 represent the
maximum negative modifier, 100 is neutral and does not
generate a negative modifier, and above 100 is superb,
providing a positive modifier. Thus, the value 75.84 is near the
average (65.0). Concerning the player’s financial status, the
player started the game with 40,000 credits and at the end he
had 5,969 credits and gained another 8,335 credits (out of
34,335) for delivering the software. The difference in payment
is due to the number of bugs left in the software (26 bugs).
Also, the player’s reputation did not increase because of the
poor quality of the delivered software (number of bugs).
Concerning the staff, the player kept all starting employees,
but lost three, out of four, hired employees. Three of the
remaining employees lost morale during the development and
one is fatigued. At the end of the session, the game flux log
was generated by using the collected information from the
game (employees, actions, and the project daily progression).

2) Questionnaire

The questionnaire was designed based on the video,
consisting of ten questions. The first and the last questions are
related to time measurements: the time when the volunteer
started and finished the questionnaire. The second question
was designed to identify the group of the volunteer: with
provenance, which used Prov Viewer while answering the
questionnaire, or without provenance, which answered the
questionnaire only based on the game session video. The other
seven questions are related to events that emerged during the
game and have the same weight with values varying from 0
(wrong) to 1 (correct), depending on the provided answer. A
value of 0.5 means the answer was partially correct, meaning
that only one item was correctly identified. These questions
explore different aspects of the game session, and some
questions require a deeper knowledge of it.

The third question asks what made the employee Arden to
quit. The forth question is equivalent to the third one, but
related to the employee Daniel, since their reasons for quitting
were different. Arden left because of lack of payment (morale

Figure 7: Volunteer’s characterization results for SE knowledge.

137

decreased due to lack of payment) while Daniel left due to
overworking and lack of payment (morale decreased due to
low stamina and lack of payment). Either answer was
acceptable because we only asked for one reason. The fifth
question asks why Tornik had made no progress during a
certain period of time. The sixth question asks why Daniel’s
productivity had a sudden drop from one day to another. The
seventh question asks the most contributing factor that
allowed finishing the software in time. The eighth question
asks the two most contributing factors that caused financial
problems after day eleven. The ninth question asks which
employee was idle for a period of time.

V. STATISTICAL ANALYSIS

A fundamental part of the statistical analysis of an
experiment is the hypothesis test [17]. In the hypothesis test,
two hypotheses are proposed and used to evaluate the
collected data. However, hypothesis testing involves two types
of error: Type-I and Type-II. The Type-I error refers to the
rejection of the null hypothesis even when it is true, while the
Type-II error refers to the acceptance of the null hypothesis
when it is false. These errors depend on the power of the test,
which is the probability 1 - β that the test is true if H0 is false.
Consequently, β is the probability of committing the Type-II
error. There are parametric or non-parametric hypothesis test.
Parametric tests have a greater power, thus produces more
accurate and precise estimates. However, parametric tests can
only be used if the samples follow a normal distribution.
Nevertheless, non-parametric tests do not require normality
and are recommended when samples are small [17].

The statistical analysis was performed with the intention of
checking the obtained results and verifying if they have any
significant difference. The main idea is to compare the results
obtained from the questionnaire and the elapsed time of both
groups. All tests were done using R [18], which is an open-
source tool commonly used for statistical analysis.

First, we run a normality test, where the null hypothesis H0
states that the collected data follows a normal distribution. The
alternative hypothesis, H1, states that the collected data does
not follow a normal distribution. Given this, a normality
analysis from the obtained data decides between using
parametric or non-parametric tests. Thus, we used the Shapiro-
Wilk test [19] with the following hypotheses:

��: �����	
�,
�, … ,

ℎ��	 ������ ������������

��: �����	
�, … ,

 ��	� ��� ℎ��	 ������ ������������

The normality assumption was violated for all obtained
results from the experiment with p-value< 0.01. It is possible
to verify that p-value < α since α = 0.05, thus rejecting the null
hypothesis. We also visually analyzed the data to consider
using robust parametric tests, but the distribution differs
significantly from a normal distribution. Therefore, non-
parametric tests were adopted for statistical analysis. The non-
parametric test used to compare the means was Mann-
Whitney, which is also known as Wilcoxon rank-sum [20]
test. Although there are other non-parametric tests, such as
Chi-2 and Kruskal-Wallis, Mann-Whitney was chosen because
it compares two means from two different samples against the
same alternative hypothesis, which fits to our experiment

design. The next subsection presents the results obtained from
Mann-Whitney test to verify if the results, with and without
provenance, differ.

1) Comparison of Means

We adopted the following hypothesis in our tests, naming
prov as the group that used the tool and replay the group that
did not:

��: ����� = �����!"

��: ����� ≠ �����!"

The mean is calculated for each question from the
questionnaire and for the duration that each volunteer took to
finish it. Table 1 illustrates the mean and the standard
deviation of each question for both methods, with green values
representing the group with higher mean at each question from
the questionnaire.

The boxplots shown in Figure 8 summarize the
distributions of both approaches (with and without
provenance). In these graphs, the boxes represent part of the
central distribution, which contains 50% of data. Thus, the
data scattering is proportional with the box’s height. A black
line inside the box represents the median. This way, 25% of
data is between the box’s edges and the median. The median
location indicates if the distributions are symmetrical in the
experiments. Lastly, circles indicate outliers. The boxplots for
each question measures the correctness of the answer given by
volunteers, while the last boxplot (duration) measures time, in
minutes, for answering the entire questionnaire. We opted to
only measure the total time due to the difficulty to control the
time for each question for each volunteer in big groups of
students.

It is possible to assert that there is a difference in mean if
the null hypothesis is rejected. The null hypothesis is not
rejected if p-value is greater than the significance level α. In
other words, there is not enough evidence to assert a
difference between results. When the null hypothesis is
rejected (p-value< α), it is necessary to identify which method
is superior by analyzing the confidence interval CI. If CI – α <
0, then ����� > �����!" . Otherwise ����� < �����!". By
analyzing the p-values from Table 2, the usage of provenance
analysis provided better results in question 3 and in the time
required to finish the questionnaire (duration), while there is
not enough evidence to assert difference between results for
the other questions (p-value > α). Even though both questions
3 and 4 asked about the reason that an employee quit the staff,
only one volunteer that answered the questionnaire without
provenance identified that the lack of payment was the reason
for it.

By comparing the boxplots in Figure 8 and the statistical
results, it is possible to infer that question 3 yielded better
results by using provenance while questions 4 and 5 had equal
results. Meanwhile, questions 7 and 8 results were similar but
with varying scattering. Even though results are matching with
Mann-Whitney test, question 9 has a different behavior due to
the small difference from p-value to α (p-value = 0.07 against
α = 0.05). By analyzing the boxplot for question 9, the results
for using provenance are greater than without provenance.

138

While without provenance’s data is scattered around the
maximum and minimum values with the median at the middle,
the provenance’s median is located at the maximum value.

Lastly, as shown by the Mann-Whitney test, using
provenance for analysis provides faster answers than
analyzing the game session’s replay. This is clearly seen by
comparing the medians between both methods and the box’s
scattering (height) position. The next section details existing
threats to the validity of the experiment.

B. Threats to Validity
Despite the care in reducing the threats to the validity of

the experiment, there are factors that can influence the results.
In relation to internal validity, the selection of participants for
both groups (with provenance and without provenance) can
affect the results because of the natural variation in human
performance. Furthermore, the experiment was executed with
volunteers, which generally are more motivated for executing
tasks. Anyone from the class could choose to be dismissed
from the experiment and be released earlier. One possible
threat is related to each individual perception of the events that
occurred during the video. Lastly, the experiment was the first
contact of the volunteers with both the game mechanics (by
watching the video) and the tool. Thus, the lack of experience
can affect the results, even when minimized by the usage of
tutorials. Regarding external validity, we mitigated the
discrepancy in experience level by selecting participants from
two different classes of the same discipline (Introduction to
Computer Programming), which occurs in the first period of
undergraduate course in Computer Science at Universidade
Federal Fluminense.

Regarding construct validity, the questionnaires were
composed of several questions to reduce threats related to a
lack of knowledge from the game, thus exploring different
aspects from it. Another risk is related to people being afraid
of being evaluated, thus trying to “look better” by lying. This
is the case of how long they took to finish answering the

questionnaire. To minimize this, we stated the exact time they
began answering the questionnaire and verified the time they
finished and delivered the questionnaire.

A threat related to conclusion validity is the reliability of
measures. This is dependent on factors like question wording,
which may allow for different interpretations, and the graph
layout. To minimize the threat, we answered any doubts
voiced by volunteers related to the questions or regarding the
tool (Prov Viewer). It is important to notice that volunteers
examined a video of the gameplay session instead of playing it
to allow us better control over independent variables.
However, in a real situation, they would play the game then
proceed to the game flux analysis with provenance.

VI. CONCLUSION
This paper introduces new perspectives on software

engineering learning process, leveraging the current state of
the art, based on game sessions, to a level where the game
provenance can induce deeper analysis and discussions
regarding the game session. This knowledge can help on (1)
confirming the hypotheses formulated by students, (2)
supporting tutors for a better guidance, (3) motivating
practical exercises around some case studies, and (4)
extracting behavior patterns from individual sessions or
groups of sessions.

The provenance graph aids in the understanding of the
concepts taught by the game by making explicit the cause-and-
effect relationships between entities and actions. The
provenance visualization allows the discovery of issues that
contributed to specific game fluxes and results achieved
throughout the game session. This analysis can be used to
improve understanding of the game flux and identifying
actions that influenced the outcome [21], aiding the student to
understand why they happened the way they did. It can also be
used by the tutor to analyze a game session to verify the
student’s progress by checking his decisions and their
consequences in the outcome, identifying concepts that might

Table 1: Mean and Standard Deviation for each question
Q3 Q4 Q5 Q6 Q7 Q8 Q9 Duration

With
Prov

Mean 0.5 0.9375 0.1875 0 0.375 0.1562 0.8125 23.1875
Standard Deviation 0.5164 0.25 0.4031 0 0.5 0.3010 0.4031 4.2461

Without
Prov

Mean 0.0625 0.875 0.1875 0 0.25 0.0938 0.5 28.9375
Standard Deviation 0.25 0.3416 0.4031 0 0.4472 0.2015 0.5162 10.5797

Figure 8: Boxplots from the experiment

Table 2: Results obtained from the Mann-Whitney test
α = 0.05 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Duration
p-value 0.007259 0.5757 1 1 0.467 0.6371 0.07049 0.03595

139

not be clear to the student. For the research questions 1 and 3,
the results from the experiment indicates in at least one case
that analyzing the game session with provenance is beneficial
and provides equal or more correct answers than analyzing the
game without access to provenance data. It also aids in
understanding the underlying influences between events and
their effects. In relation to correctly identifying the causes of
the events in the game, using provenance provided better
statistical results in at least one case (question 3, related to
lack of payment), and slightly better results in another
(question 9, related to identifying the idle employee). The
other cases were not statistically different with the current
sample size even when their mean values were greater when
analyzing the game session with provenance. Meanwhile, for
research question 2, the results clearly show that analyzing the
game flux with provenance is faster than analyzing without
having access to provenance data, even when using the
visualization tool for the first time.

Currently, we do not make automatic inferences from the
provenance graph, but let the user decide what he wants to
infer. Studies in this area are being made in order to identify
information that can be omitted from the user without
affecting the overall analysis. Another interesting research is
to automatically identify patterns in the game flux and points
of interest for the student and tutor. For future work, we plan
to work on different graph visualization layouts and introduce
the provenance support in other education games. We also
plan to run more experimental studies, with players playing
the game instead of watching a video, on the usage of
provenance in educational games to evaluate the aspects of
learnability. We also believe that the ideas discussed in this
paper can open a wide range of research in the field of
behavior patterns data mining of learning sessions.

ACKNOWLEDGMENT

We would like to thank CNPq, FAPERJ, and CAPES for
the financial support.

REFERENCES

[1] A. Dantas, M. Barros, and C. Werner, “A Simulation-
Based Game for Project Management Experiential
Learning,” Softw. Eng. Knowl. Eng. SEKE, vol. 19, p.
24, 2004.

[2] A. Drappa and J. Ludewig, “Simulation in software
engineering training,” Int. Conf. Softw. Eng. ICSE, pp.
199–208, 2000.

[3] E. O. Navarro and A. van der Hoek, “SimSE: an
educational simulation game for teaching the Software
engineering process,” Innov. Technol. Comput. Sci.
Educ. ITiCSE, vol. 36, no. 3, pp. 233–233, 2004.

[4] N. Tillmann, J. De Halleux, T. Xie, S. Gulwani, and J.
Bishop, “Teaching and learning programming and
software engineering via interactive gaming,” Int. Conf.
Softw. Eng. ICSE, pp. 1117–1126, 2013.

[5] E. Ye, C. Liu, and J. A. Polack-Wahl, “Enhancing
software engineering education using teaching aids in 3-

D online virtual worlds,” Front. Educ. FIE, pp. T1E–8–
T1E–13, 2007.

[6] T. Kohwalter, E. Clua, and L. Murta, “Provenance in
Games,” Braz. Symp. Games Digit. Entertain.
SBGAMES, 2012.

[7] PREMIS Working Group, “Data Dictionary for
Preservation Metadata,” Implementation Strategies
(PREMIS), OCLC Online Computer Library Center &
Research Libraries Group, Final report, 2005.

[8] T. Kohwalter, E. Clua, and L. Murta, “SDM – An
Educational Game for Software Engineering,” Braz.
Symp. Games Digit. Entertain. SBGAMES, pp. 222–231,
2011.

[9] T. Kohwalter, E. Clua, and L. Murta, “Game Flux
Analysis with Provenance,” Adv. Comput. Entertain.
ACE, 2013.

[10] M. D. Ernst, “The groupthink specification exercise,”
Int. Conf. Softw. Eng. Educ. ICSE, pp. 89–107, 2006.

[11] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P.
Groth, N. Kwasnikowska, S. Miles, P. Missier, J.
Myers, B. Plale, Y. Simmhan, E. Stephan, and J. V. den
Bussche, “The Open Provenance Model core
specification (v1.1),” Future Gener. Comput. Syst., vol.
27, no. 6, pp. 743–756, 2007.

[12] Y. Gil and S. Miles, “PROV Model Primer,” 2010.
[Online]. Available: http://www.w3.org/TR/prov-
primer/. [Accessed: 21-Mar-2013].

[13] B. Moret, “Decision Trees and Diagrams,” ACM
Comput. Surv. CSUR, vol. 14, no. 4, pp. 593–623, 1982.

[14] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[15] M. Svahnberg, A. Aurum, and C. Wohlin, “Using
students as subjects - an empirical evaluation,” Empir.
Softw. Eng. Meas. ESEM, pp. 288–290, 2008.

[16] G. R. Norman and D. L. Streiner, Biostatistics: The
Bare Essentials, 3 Pap/Cdr edition. Shelton, Conn:
People’s Medical Publishing House, 2012.

[17] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.
Regnell, and A. Wesslén, Experimentation in software
engineering: an introduction. Norwell, MA, USA:
Kluwer Academic Publishers, 2000.

[18] “R.” [Online]. Available: http://www.r-project.org/.
[Accessed: 26-Mar-2013].

[19] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance
Test for Normality (Complete Samples),” Biometrika,
vol. 52, no. 3/4, p. 591, 1965.

[20] “R Documentation: Wilcoxon Rank Sum and Signed
Rank Tests.” [Online]. Available: http://stat.ethz.ch/R-
manual/R-patched/library/stats/html/wilcox.test.html.
[Accessed: 26-Mar-2013].

[21] C. Werner, R. Cepeda, M. Schots, and L. Murta, “How
Design Style Relates to the Representational Power of
Design Outcomes,” NSF-Spons. Workshop Stud. Prof.
Softw. Des., 2010.

140

