
A Non-intrusive Approach for 2D Platform Game Design Analysis Based on

Provenance Data Extracted from Game Streaming

Lidson B. Jacob, Troy C. Kohwalter,
Esteban W. G. Clua and Daniel de Oliveira

Instituto de Computação
 Universidade Federal Fluminense (UFF)

Niterói, RJ, Brazil
{ljacob, tkohwalter, esteban, danielcmo} @ic.uff.br

Alex F. V. Machado
Departamento de Computação

Instituto Federal de Educação, Ciência e Tecnologia
Sudeste de Minas Gerias
Rio Pomba, MG, Brazil

alex.machado@ifsudestemg.edu.br

Abstract - The usage of provenance data drastically increases

the potential for game data mining since it is able to record

causes, effects and relationships of events and objects during

a game session. However, it commonly requires modifications

in the game engine in order to collect such provenance data.

The modifications in the game engine may be unviable in

commercial (and not open source) systems. In this paper, we

propose a novel and non-intrusive approach for collecting

provenance data in digital games. Our proposal collects

provenance data using image processing mechanisms and

pre-defined image patterns, thus avoiding accessing and

modifying the source code of the game. Using our approach,

we are able to generate, analyze and visualize game design

features based on the gameplay flow using provenance data.

Furthermore, we evaluated our proposal with a well known

commercial 2D game, called “Super Mario World”.

Keywords – provenance; game analytics; image processing;

image analysis

I. INTRODUCTION

The worldwide video game marketplace reached US$
93 billion in 2013 according to [5]. Only in 2013 a huge
number of game titles were released, including new
versions of well-established games, such as “Assassin’s
Creed” and “Call of Duty”. With thousands of new game
titles released every year, the game industry faces a
difficult and important task of attracting and maintaining
the interest of players for long periods of time [2]. The
popularization of each game title is essential to generate
income and to finance the game’s production, as well as
the possibility of making future games.

 Analyzing and understanding every part of a game
session is an important information in order to improve
game quality [8]. Thus, we claim that an analysis tool
allows for an easier study of player behavior and game
design. Therefore, such tool may aid the game designer
during the game development and improve the overall
quality of the game. By analyzing game data captured from
previous game sessions and successful games, the game
designer can obtain useful information about features or
gameplay mechanics for future productions or updates.

This game data is traditionally represented as a log file
that registers the game flow in details. However, log files
are not structured and do not allow to perform queries on
the data, which reduces the potential of inferences and data
mining. To overcome this limitation, we claim that games
should gather and represent game data in a provenance
repository. Provenance data represents the ancestry of an
object [4]. Provenance of an object, such as an NPC in the
game session, contains information about the actions
involved with this NPC. It provides important
documentation that is essential to preserve the data and to
interpret and validate results of a game session.

 However, to the best of our knowledge, to capture such
provenance data within a game session we have to modify
the game engine to be able to register information in
certain points of the game flow. This approach may be
unviable in several cases since most commercial game
titles has proprietary code, which means that no
modifications in the engine are allowed. Some approaches
already provide ways to capture game data in a structured
form such as the recently proposed Provenance in Games
framework [9], but all of them are intrusive in respect to
the source code of the game.

 The main goal of this paper is to present a non-intrusive
framework capable of gathering and storing provenance
data of a game session for analysis. However, unlike the
Provenance in Games framework, the proposed framework
does not require access to the source code in order to
gather provenance data. The proposed approach is based on
histogram and image processing techniques, thus only
requiring accessing the real time streaming of the game
session. This way, it can be applied in a variety of
proprietary games without access to its source code.

 After gathering the provenance data through image
processing techniques, we need to display the collected
data in a way that can be easily understood and analyzed
by the end user (or the game designer). Thus, we have
chosen to represent the gathered data in the form of a
graph, showing all actions taken by a player in the form of
vertices and the relationships between them as edges.

 We used the game “Super Mario World” (SMW) [12]
as a case study. This game was chosen because it is a

2014 Brazilian Symposium on Computer Games and Digital Entertainment

2159-6662/14 $31.00 © 2014 IEEE

DOI 10.1109/SBGAMES.2014.33

41

classic game and with great success. Another reason is
because SMW is still used as a template for a large number
of games titles of the same genre. It is a platform-based
game, where the main character has to follow a path
picking items and destroying or deviating enemies.

 This paper is organized in four sections besides this
introduction: Section II introduces important concepts
about provenance and histogram used in this paper. Section
III shows related work about provenance in games. Section
IV shows how the provenance data is acquired, organized,
analyzed, stored, and displayed to game designer in our
case study. Finally, Section V concludes this paper, listing
contributions, limitations and future work.

II. BACKGROUND KNOWLEDGE

The main purpose of this paper consists on colecting

provenance data of a game flow, using image processing
techniques. Following we present some important concepts
for a better understanting of the proposed approach.

A. Provenance

 As defined by [10] and [11], provenance is traditionally
adopted in several areas as arts and digital libraries. The
data provenance refers to the historical documentation of
an object or documentation process life cycle of digital
objects. The historical documentation of an execution
application provides a better comprehension by tracking all
transformations and changes as well as causal
relationshiops between entities. According to [10],
computational methods should be transformed with the
purpose of generating a qualified provenance so it can be
recovered, analyzed and trustworthy, so that we may
understand the result of a historic object, answering
questions related to how the elements were achieved and
why [4].
 Detached in [1], the fundamental provenance concepts,
such as storing information of time and location. The
provenance references the origin of an information which
should contain its identification, generator, date or time
information, and sequences of processes applied to it.
 For provenance related to computational tasks, there
are two variations: prospective and retrospective. In the
prospective provenance, the steps followed or processes
used to generate a product are captured, allowing the
registration of an specification of a computational tasks.
The data recorded refers to the required steps to reach a
specific result. The retrospective provenance captures the
steps that were executed, in addition to information about
the circumstance that generated a specific data product.
Retrospective provenance also have a log that details the
execution of computational tasks [4].

First explored provenance in game production and
detach the importance of a game designer to visualize what
scripts and objects were modified, and how these objects

change over time [13]. [13] concluded that data provenance
is even more important if the script runtime has an unusual
execution model and detach that game-aware runtimes are
more difficult to implement than language features.
Language features can often be implemented piecemeal, as
programming patterns are identified and new language
features can be added without adversely affecting the old.
Runtimes elements, once architected, can be very
interdependent and difficult to change.

B. Provenance In Games

 In order to adopt provenance for the context of games,
it is necessary to map each type of vertices of the
provenance graph into elements that can be represented in
games. The PROV model uses three types of vertex:
Entities, Activities, and Agents. In order to use these vertex
types, it is first necessary to define their counterparts in the
game context.
 In the context of provenance, entities are defined as
physical or digital objects. Trivially, in our approach they
are mapped into objects present in the game, such as
weapons and potions. In provenance, an agent corresponds
to a person, an organization, or anything with
responsibilities. In the game context, agents are mapped
into characters present in the game, such as non-playable
characters (NPCs), monsters, and players. It can also be
used to map event controllers, plot triggers, or the game’s
artificial intelligence overseer that manages the plot. Thus,
agents represent beings capable of making decisions, while
entities represent inanimate objects. Lastly, activities are
defined as actions taken by agents or interactions with
other agents or entities. In the game context, activities are
defined as actions or events executed throughout the game,
such as attacking, dodging, and jumping.
 With all three types of vertex mapped into the game
context, it is also necessary to map their causal relations to
create the provenance graph. The PROV model defines
some causal relations that can be used similarly to their
original context. However, it also provides rules to extend
these relationships or to create new ones. For instance, it is
possible to create relationships to express the damage done
to a character or relationships that affect specific core
mechanics from the game, like attack rolls, healing, and
interactions with NPCs or objects. Also, the PROV model
deals well with the aspect of time, which can be heavily
explored in games, especially on games focused on
storytelling.
 Each NPC in the game should explicitly model its
behavior in order to generate and control its actions,
providing an array of behavior possibilities. With this
explicit model, a behavior controller can register
information about the action when it is executed. The main
reason of using provenance is to produce a graph
containing details that can be tracked to determine why
something occurred the way it did.

42

 The information collected during the game is used for
the generation of the game flux log, which in turn is used
for generating the provenance graph. In other words, the
information collected throughout the game session is the
information displayed by the provenance graph for
analysis. Thus, all relevant data should be registered,
preferentially at fine grain. The way of measuring
relevance varies from game to game, but ideally it is any
information that can be used to aid the analysis process.

C. Histogram

 Since the proposed approach is based on the analysis of
game streaming, histogram analysis is a key issue.
According to [3], the histogram of an image is a collection
of numbers that indicate the percentage of pixels in the
image with a determined tonality color. These values are
easy to understand and analyze through a bar graph that
provides the number of pixels for each tonality
corresponding in the image. Through visualization and
analysis of an image histogram, we can identify various
characteristics, such as the indication of its quality, the
contrast level, and its medium shine (if the image is
predominantly light or dark).

Each element of this collection is computed as:

������ =
	

	
 (1)

Where:

0 ≤ �� ≤ 1

� = 0, 1, . . . , � − 1, L is the number tonalities of the
digitized image;

� = total number pixels in the image;

������ = probability �-th of tonality;

�� = number of pixels with tonalities that corresponds

to �.

III. RELATED WORK

 Introduced in [6] a system that captures information
from a game of infinite run genre. The captured
information is represented as a graphic, so that it becomes
quick and easy to understand the behaviors occurred during
the game session. It also informs to the game designer
characteristics and behaviors of the gameplay as well as the
player’s behavior during the game.
 Some important features that can be analyzed
graphically are ilustrated in Figure 1, including distance
achieved by the player, the distribution of coins and special
items gathered by the player. By analyzing this graphic, it
is clear that the player achieved low distances in the initial

rounds of the game session. This behavior may be related
to being the first contact the player has with the game.
Thus the result suggests that the game need a better help or
tutorial before starting the game.

Another possible analysis is the distribution of coins
and special items. By analysing the graphic, the game
designer can verify if they were collected as intended. An
important feature can be observed by analyzing the
relationships between the data. For example, in the section
of the graph where the capture of special items are
growing and the distance is constant (round 5 to 12), and
immediately after when special items are constant and the
distance is growing (round 15 to 20), is possible to infer
that the capture of elements disturbed the player’s progress.
This may be because the items were in difficult local to be
captured, inducing the player to get lost. However, the
system requires accessing and modifying the source code
of the game. The represented information is limited, in our
proposal shows more information to the end user.

Introduced in [9] a framework that captures provenance
data during a game session. This data is exported as a game
flow log that can be used to generate a provenance graph.
The proposed framework has the intention of capturing
data while the user plays the game in order to generate a
provenance graph that can be shown at the end of the
session. This graph is able to help the player to understand
the reasons during the game that induced the final result,
allowing a feedback to the player about the decisions and
actions executed during the game in order to aid in the
learning process and identify his mistakes for future
sessions. However, the framework requires modifications
in the game engine, thus being intrusive.
 As a case of study, the authors used a serious game
called Software Development Manager (SDM). In this
game, the user have to manage a software development

Figure 1: Combined Analysis. [Jacob et al. 2013].

43

environment using the concepts of software engineering to
better develop the software following
stablished by the company’s client. The player has to
manage a group of employees by deciding strategies
software development in order to meet the established
prerequisites and restrictions. At
development, the player receives a payment in accordance
with the quality analysis.
 Following this work, [8] proposed an
representation of the provenance data gathered during a
game session in the form of a provenance
proposed graph has the intention of representing the
actions and decisions made by the player while running the
game. This graph allows for the developers and designers
to identify possible problems in gameplay
provenance graph from the game session.

The graph shown in Figure 2 is the visualization tool
named Prov Viewer created to generate the provenance
graph. The ilustrated graph is just an example that
represents a small flow of captured data of a game.
graph notations used follows the exisiting provenance
models, with vertices representing the activities, entities
and agents according to the legend. The edges represent
the relationship between the vertices and can be
or negatively in accordance with the color. The edge’s
thickness represents the intensity of the relationship,
edge represents bigger infuences, dotted edges are
relationships and have little importance besides associating
vertices neighbors or owners.

IV. A NON-INTRUSIVE FRAMEWORK FOR
EXTRACTING PROVENANCE DATA FROM GAMES

 In this paper we propose a novel strategy for extracting
and storing provenance data from game session based on
image processing techniques. The proposed approach is
based in a workflow that is showed in
solution starts with a player interacting with a
game session. The entire streaming is captured and the
rendered images are stored to be further analyzed. It is
important to highlight that this rendered image extraction is
not a simple and fast process to be performed. In order to
analyze the captired images, we need to have template
images that will be identified and recognized in the
extracted rendered images. For example, in the case of
SMW game, template images for each character (
Mario, Koopa, Toad, Yoshi, etc.) have to be provided in
order to perform image recognization. We also store
metadata associated to the template images such as names
of the characters and influences in the game.
 This way, with the template images and the extractect
rendered images we can indeitify the elements in the entire

environment using the concepts of software engineering to
 the requirements

The player has to
deciding strategies of

in order to meet the established
 the end of the

payment in accordance

] proposed an approach for the
gathered during a

a provenance graph. The
the intention of representing the

actions and decisions made by the player while running the
the developers and designers

identify possible problems in gameplay by analyzing the
.

the visualization tool
created to generate the provenance

is just an example that
represents a small flow of captured data of a game. The
graph notations used follows the exisiting provenance

resenting the activities, entities
The edges represents
and can be positively

ce with the color. The edge’s
thickness represents the intensity of the relationship, thick

s, dotted edges are neutral
ittle importance besides associating

INTRUSIVE FRAMEWORK FOR
EXTRACTING PROVENANCE DATA FROM GAMES

In this paper we propose a novel strategy for extracting
and storing provenance data from game session based on

processing techniques. The proposed approach is
based in a workflow that is showed in Figure 3. The
solution starts with a player interacting with a game in a
game session. The entire streaming is captured and the
rendered images are stored to be further analyzed. It is
important to highlight that this rendered image extraction is
not a simple and fast process to be performed. In order to

aptired images, we need to have template
images that will be identified and recognized in the
extracted rendered images. For example, in the case of
SMW game, template images for each character (e.g.

) have to be provided in
order to perform image recognization. We also store
metadata associated to the template images such as names
of the characters and influences in the game.

This way, with the template images and the extractect
rendered images we can indeitify the elements in the entire

game session by comparing t
the extratectd images with the historgram of template
images to verificy if the characters are parte of a specific
session. If a character is identified and an action associated
to this character is also identified (
enemy) we have to store this information in our
provenance repository. This provenance repository is
further queried by Prov Viewer

graph. This way, during the player interaction, his input
data are also stored and will
features, generating a graph with the dynamic elements.
The game designer can interpret what happened during the
game session by analyzing the provenance graph and can
plan future developments or correct bugs in the current
version of the game, for example.

Figure 2: Example of a generated provenance graph. [Kohwalter
2013].

game session by comparing the histograms of each one of
the extratectd images with the historgram of template
images to verificy if the characters are parte of a specific
session. If a character is identified and an action associated
to this character is also identified (e.g. Mario touches an
enemy) we have to store this information in our
provenance repository. This provenance repository is

Prov Viewer to generate a provenance
graph. This way, during the player interaction, his input
data are also stored and will be connected with image
features, generating a graph with the dynamic elements.
The game designer can interpret what happened during the
game session by analyzing the provenance graph and can
plan future developments or correct bugs in the current

of the game, for example.

: Example of a generated provenance graph. [Kohwalter et al.
2013].

44

A. Data Capture

 The framework starts capturing images of the game

session. In the proposed approach, � frames
per second, with � being a parameter that is defined by the
end user. Ideally, n should have the smallest possible
without incurring in extremely large scale processing that
demands too much time, thus being unfeasible to be used.
Since processing images require a high computational cost

Figure 3: Organization Modules

Figure 4: Sequence of pictures that represents each second during a game session.

The framework starts capturing images of the game

frames are analyzed
a parameter that is defined by the

smallest possible value
without incurring in extremely large scale processing that
demands too much time, thus being unfeasible to be used.

processing images require a high computational cost,

it may require a long time to process
amounts of images. However, the
low, otherwise information could be lost
example, if in one second the character perform

actions, with σ being bigger th
actions that will not be appropr
state that in Figure 4 where
perform various actions in one

Figure 5, we found that � = 3
execution time optimization and reliability.
 After the image acquisition
the agents and entities involved
the main character, such as “Mario”

have some behavior in the game
“Yoshi”, “Red Koopa”, and
as agents by framework.
elements that the main character
such as the “Red Mushroom”, “Green Mushroom”,

“coins” in SMW example.
 Agents and entities are detecte
color histogram. In this pap
pattern. This is achieved by a
each agent and entity with a
layer. This search is performed by c
histogram of the template image

: Organization Modules

: Sequence of pictures that represents each second during a game session.

Figure 5: Relation between actions and frames per second showing the
loss of information to value � in one game session.

a long time to process even for medium
However, the n number cannot be too

ould be lost in the process. For
if in one second the character performed σ

bigger then �, we then have σ - �
appropriately captured. We can

where the character Mario can
perform various actions in one second. By analyzing of

= 3 is a good balance between
optimization and reliability.

the image acquisition, the framework identifies
involved. The agents in a game are

“Mario” and other objects that
have some behavior in the game. For example, the

and “Green Koopa” are classified
. The entities are defined as

elements that the main character can capture or interact,
“Red Mushroom”, “Green Mushroom”, and

and entities are detected by comparing their
paper, we use the RGB color

This is achieved by analyzing the histogram of
with a section of image that we call

layer. This search is performed by checking if the
template image is contained in a specified

: Sequence of pictures that represents each second during a game session.

: Relation between actions and frames per second showing the

in one game session.

45

part of the game frame. The process of searching consists
on scanning the template image through the complete
frame window. If a template image is not in the layer, then
it is considered as not being an object and
analysis of the next layer.
 As the agents move during the game, the color
histogram changes as well. One way to treat this is by
comparing the histogram of each frame with the
of the agents. However, this process
processing time. For example, to analyze an image with
800 × 600 pixels that has a window of 50 × 50, then 37,500
histograms should be analyzed. If we consider an
animation being composed of 9 frames, then the amount of
histogram to be analyzed for this agent would be 337,500.
Remember that this value is calculated for a single image.
Nevertheless, we need to analyze a video with hundreds or
even thousands of images.
 One way we use to optimize this process is to create a
setting to define whether or not a layer contains or not a

template image. Let us consider ε as the margin of error for

each index tonality of RGB and a value
error for total percentage. If �� of the layer

�� - ε of the template image, we consider that the

contains � of the template image. Moreover,
the layer that contains � of the template image

than the ∑ ��
�
� - δ, then we also consid

contains the template image.

 Another optimization for this process was sliding the
layer with more than one pixel of offset.
does not contain a ���	 value (specified minimum
percentage) of the desired object, then t
increments by a number of pixels, but skips an offset
corresponding to its complete size. For this paper, we
assume that the objects do not occupy the same place.
When is confirmed a presence of an object in the window,
then the entire layer is skipped.
 In the vast majority of games, the main character is
usually located in the center of the screen.
analyzing only the red central region as presented
7 to further reduce the processing time. For the framework
execution, we painted the border of the layer which
contained the histogram of the template image
analyze what was correctly being captured.
example of colors used to represent some objects.
 Figure 8 (A) shows an example where the matching
correctly occurs. However, objects with similar histogram
may lead to incorrect matching, as can be observed with
the pipes and coins in Figure 8 (B)
similarity of colors, resulting in a false positive.
identify this false positive, after an analysis of the data that
will be detailed in the next section by comparing what was
captured with what should have been captured.
in TABLE 1 the sample objects captured

part of the game frame. The process of searching consists
through the complete

not in the layer, then
object and proceeds to the

As the agents move during the game, the color
. One way to treat this is by

comparing the histogram of each frame with the animation
 costs too much

For example, to analyze an image with
800 × 600 pixels that has a window of 50 × 50, then 37,500
histograms should be analyzed. If we consider an

rames, then the amount of
histogram to be analyzed for this agent would be 337,500.
Remember that this value is calculated for a single image.
Nevertheless, we need to analyze a video with hundreds or

One way we use to optimize this process is to create a
setting to define whether or not a layer contains or not a

margin of error for

each index tonality of RGB and a value δ as margin of
layer is larger than

, we consider that the layer

Moreover, if ∑ ��
�
� of

template image is larger

consider that the layer

optimization for this process was sliding the
layer with more than one pixel of offset. When a window

specified minimum
the layer does not

a number of pixels, but skips an offset
For this paper, we

t occupy the same place.
When is confirmed a presence of an object in the window,

the main character is
in the center of the screen. Thus, we are

as presented in Figure
For the framework

execution, we painted the border of the layer which
template image so we can

analyze what was correctly being captured. Figure 6 is an
example of colors used to represent some objects.

shows an example where the matching
objects with similar histogram

may lead to incorrect matching, as can be observed with
(B), caused by the

false positive. We can
after an analysis of the data that

omparing what was
captured. We can see

the sample objects captured with their

respective errors, which corresponds approximately
of accuracy.

B. Activity Identification

After having the position
screen, it is possible to infer wh
the player. We consider the captured entities when the
player is closer than a specified
entity, with the exception
clamp, such as turtle shells in case of SMW

If the player’s position is higher than agent, then it is
considered that he/she is stepping in the agent. If the height
of the player is approximately equal to
considered that he/she caught the agent. Furthermore, if the
height of the player is smaller t
considered that he touched in the agent. The possible
actions that the main character can realize in relation to
some other agents and entities are illustrated in

Figure 6: Referential colors of objects

Figure 7: Central area where search happens.

, which corresponds approximately 90.2%

the position of each agent or entity in the
infer which actions were taken by

We consider the captured entities when the
specified distance from another

 of some entities that enable
in case of SMW.

position is higher than agent, then it is
is stepping in the agent. If the height

is approximately equal to the object, then it is
ght the agent. Furthermore, if the

is smaller than the object, it is
considered that he touched in the agent. The possible
actions that the main character can realize in relation to
some other agents and entities are illustrated in TABLE 2.

: Referential colors of objects.

: Central area where search happens.

46

TABLE 1: SAMPLE OBJECTS CAPTURED COMPARED
WITH WHAT SHOULD BE CAPTURED.

 Expected Captured

420 432

16 6

4 4

4 2

16 8

8 8

50 68

6 4

Total 524 532

Figure 8: Object capturing process.

C. Storing Provenance Data

 After capturing and analyz
organized and stored in the provenance repository that
follows the provenance schema
diagram showed in Figure 9
the information from the game
Example of information includes
goals, and location of each agent
Koopa" has the hull as an attrib
ground.

 The “entity” table is filled by the game designer
contains the name, type, importance, location and attributes
of each entity in the game.
identify as possible help or hinder
importance field serves to represent how much
mean to the game designer, considering his
Finally, the location represents where
the game and can be used for

The table “activitytype”
designer and contains the possible actions types during a
game, such as catch, touch,
entity. The table “gamesession

processing and analysis of
about time and phase of the game.
stores the agent or entity involved in the action with the
player, as well as the type of action. This
stored for each game session
may have various activities.

: SAMPLE OBJECTS CAPTURED COMPARED
WITH WHAT SHOULD BE CAPTURED.

Captured Error

 12

10

0

2

8

0

18

2

52

: Object capturing process.

 TABLE 2: POSSIBLE ACTIONS RELATED TO SOME
AGENTS AND ENTITIES.

Catch Touch

Touch

Storing Provenance Data

and analyzing the elements, the data is
the provenance repository that

follows the provenance schema represented in the class
9. The “agent” table contains

game agents for further analysis.
nformation includes the name, attributes,

of each agent. For example, the "Red

the hull as an attribute and she walks on the

filled by the game designer and
contains the name, type, importance, location and attributes

 The attribute type is used to
hinder the main character. The

serves to represent how much this entity
game designer, considering his analysis.

the location represents where the entity is found in
the game and can be used for playability analysis.

 is also filled by the game
the possible actions types during a

, or step in another agent or
gamesession” is filled after the

processing and analysis of the data, saving information
about time and phase of the game. The table “activity”,

the agent or entity involved in the action with the
type of action. This table is also

session. However, a game session
may have various activities. In other words, table

: POSSIBLE ACTIONS RELATED TO SOME
AGENTS AND ENTITIES.

Touch Step

Touch

47

“activity”, stored all the information collected from the
images analysis. This enables the reconstruction of
sequence of actions that occurred during the game
execution.

D. Data Representation

 We used the tool Prov Viewer from [7
changes to become possible to represent our collected data
allowing it to be easily compreensible for
designers during their analysis process.
was related to the vertices structures, where we added
importance, time and gamessession elements,
required for our context.
 This input.xml file is created by querying the
provenancedatabase. The vertex tags represent
with their proper information. We created in the same
manner a tag for each activity and entity.
input.xml file we added an edge tag with
order to associate all actions with the next action
edge tags contain the element sourceid,

action and the targetid containing the next action.
generated a graph with edges organizing actions in

Figure 9: Class Diagram representing the provenance schema of the provenance repository

all the information collected from the
the reconstruction of

sequence of actions that occurred during the game

7] and made some
represent our collected data,

compreensible for the game
. The main change

was related to the vertices structures, where we added
importance, time and gamessession elements, which are

by querying the
represent each agent

We created in the same
manner a tag for each activity and entity. In the same

edge tag with Neutral type in
ll actions with the next action. The

sourceid, it is the current
containing the next action. We then

a graph with edges organizing actions in

chronological order. Assuming
the main character, we generate a tag for every action with
targetid containing the entity or agent which relates to the
main character. We can see this in
as follows. <vertex> <id>ac38</id> <type>Activity</type> <label>Touch</label> <date>0</date> <importance>1</importance> <time>14</time> <gamesession>4</gamesession> <details/> </vertex> <edge> <id>e53</id> <type>Neutral</type> <label></label> <value>1</value>

Class Diagram representing the provenance schema of the provenance repository

Assuming that all actions are made by
e generate a tag for every action with

containing the entity or agent which relates to the
We can see this in sections of input.xml file <importance>1</importance> <gamesession>4</gamesession>

Class Diagram representing the provenance schema of the provenance repository.

48

 <time>66</time> <gamesession>4</gamesession> <sourceid>ac53</sourceid> <targetid>ac54</targetid> </edge>
 The Figure 10 illustrates the graph generated by
Viewer with our modifications. Purple squares represents
activities performed by the main character. The agents are
represented by an orange pentagon. Entities are represented
by a yellow circle. The edges represents the relationship
between two vertices. The green edge represents a positive
action bringing benefits to the character with its proper

Figure 10: Representation of the provenance graph using the modified Prov Viewer.

the graph generated by Prov

urple squares represents
main character. The agents are

Entities are represented
by a yellow circle. The edges represents the relationship

The green edge represents a positive
action bringing benefits to the character with its proper

associated importance and the red edge is a bad action t
brings prejudice to the character.
 It can be observed that the edges have different
thickness according to its value. The beige frames are the
detailed information of each vertex or edge. This frame is
tooltip that is shown when we
the vertices or edges. We made this motage in
showing various frames at the same time to be represented
in a single figure.

With this type of graph and the information that brings
to the game designer, we can see all actions performed by
the main character in chronological order. We can identify
possible problems in the game session
repetition of actions. It happens

: Representation of the provenance graph using the modified Prov Viewer.

associated importance and the red edge is a bad action that
brings prejudice to the character.

It can be observed that the edges have different
thickness according to its value. The beige frames are the
detailed information of each vertex or edge. This frame is a

shown when we pass the mouse cursor over
We made this motage in Figure 10

showing various frames at the same time to be represented

raph and the information that brings
, we can see all actions performed by
chronological order. We can identify

in the game session. For example, the
t happens probably, because the

: Representation of the provenance graph using the modified Prov Viewer.

49

associated action is very easy or very difficult to be
performed. In Figure 10 we can observe a large number of
association of activitytype Touch with the entity Coin
because it is an easy and ordinary task and very common in
the game session. Similarly, this hard tasks in the game
session would be identified as well, since the user would
repeat the same actions several times. However, the
associate will be negative and have a red color.

V. CONCLUSION

This paper presents a novel provenance based approach to
help the game designer by allowing an analysis of their
games. The most important feature of this work is the
possibility of analyze gameplay of 2D platform games
without depending upon the game’s source code. In other
words, our approach is non-intrusive and can be applied in
various existing games and does not requires the source
code in order to generate the game log. By gathering the
provenance data using simple image processing techniques
and later displaying it in the form of provenance graph, the
game designer can better understand the game flow.
 We plan to enhance some of the existing features as
future work, especially when treating the false positives
generated by objects with similar histogram. In order to
solve this, it is possible to include other image processing
techniques, such as image segmentation. In order to
accelerate the image analysis, we may implement all the
image analysis at the GPU level.
 Although we focused this work for 2D platform games,
it is possible to increase the technique for other 2D styles
of games. This is a trivial work, being only necessary to
formalize the corresponded activities and behaviors.
Nonetheless, this paper presents interesting results
allowing the visualization and possible actions
interpretations in the game flow through data provenance
collected from image sequence. This technique provides a
basis for future work beyond its use in different type of
games and can be studied in other interactive applications
outside the game environment.

ACKNOWLEDGEMENTS

 We would like to thank CNPq, CAPES, FAPERJ, and
FAPEMIG for partially support this work.

REFERENCES

[1] Cruz, S. M. S., Campos, M. L. M., Mattoso, M. 2009. Towards a
Taxonomy of Provenance in Scientific Workflow Management
Systems. Los Angeles, CA, Congress on Services - I, pp.259-266.

[2] Drachen, A., 2012. Game Analytics. Available at:
http://blog.gameanalytics.com/blog/announcing-game-analytics-
maximizing-the-value-of-player-dat.html [Accessed April 22,
2013].

[3] Filho, O. M., & Neto, H. V., 1999. Processamento Digital de
Imagens. Brasport. pp. 55.

[4] Freire, J., Koop, D., Santos, E., & Silva, C. T., 2008. Provenance
for Computational Tasks: A Survey. Computing in Science and

Engineering , pp. 11-21.

[5] Gartner, Inc., 2013. Gartner Says Worldwide Video Game
Market to Total $93 Billion in 2013. Available at:
http://www.gartner.com/newsroom/id/2614915 [Accessed July
22, 2014].

[6] Jacob, L. B., et al., 2013. A game design analytic system based
on data provenance. Entertainment Computing – ICEC, pp.114-
119 .

[7] Kohwalter, T. C., 2013. Provenance in Games. Dissertação
(Mestrado em Computação) Niterói, RJ, Universidade Federal
Fluminense.

[8] Kohwalter, T. C., Clua, E. W., and Murta, L. G., 2013. Game
Flux Analysis with Provenance. Advances in Computer

Entertainment , pp. 320-331.

[9] Kohwalter, T. C., Clua, E. W., and Murta, L. G., 2012.
Provenance in Games. XI SBGames . pp. 162-171

[10] Moreau, L.et al., 2007a. The open provenance model(v1.00).
Technical report, University of Southampton .

[11] Moreau, L., et al., 2007b. The Provenance of electronic data.
Communications of the ACM 51.4 , pp. 52-58.

[12] Nintendo 2014. Super Mario World. Available at:
http://www.nintendo.com/games/detail/OnTm1QccFa_Ht39i-
dKiI-f8WRu2Cje [Accessed July 22, 2014].

[13] White, W., et al. 2009. Better scripts, better games.
Communications of the ACM, v. 52(3), pp. 42-47.

50

