
Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: www.elsevier.com/locate/entcom

Understanding game sessions through provenance

Troy Costa Kohwaltera,⁎,1, Felipe Machado de Azeredo Figueirab,2,
Eduardo Assis de Lima Serdeirob,2, Jose Ricardo da Silva Juniorb,2,
Leonardo Gresta Paulino Murtaa,1, Esteban Walter Gonzalez Cluaa,1

aUniversidade Federal Fluminense, Brazil
b Instituto Federal do Rio de Janeiro, Brazil

A R T I C L E I N F O

Keywords:
Game analytics
Tracked game data
Provenance graph

A B S T R A C T

The outcome of a gameplay session is derived from a series of events, decisions, and interactions made during the
game. Many techniques have been developed by the game industry to understand a gameplay session. A suc-
cessful technique is game analytics, which aims at understanding behavior patterns to improve game quality.
However, current methods are not sufficient to capture underlying cause-and-effect relationships that occur
during a gameplay session, which would allow designers to better identify possible mistakes in the mechanics or
fine-tune their game. Recently, it was proposed a conceptual framework based on provenance to capture these
relationships. In this paper, we present a concrete framework to capture provenance data, allowing developers to
add provenance gathering capabilities to their games. We instantiated our framework in two games, showing
how it can be used in practice, and we developed a new game to demonstrate how provenance could be em-
ployed in early stages of game development to assist balancing the difficulty. We conducted an experiment with
twelve volunteers and used the gathered provenance data to answer designers’ frequent questions when trying to
understand game sessions and balancing the difficulty of their games. This supports the relevance of collecting
provenance data from games.

1. Introduction

The analysis of tracked game data, also known as game telemetry,
has become an important stage of game design and production in the
last few years [1]. This gathered data brings relevant information and
possibilities, such as measuring the game stability [2], dynamically
adjusting the difficulty of the game [3], performing behavioral analysis
[4], understanding common behaviors [5], improving the monetization
process [1], and balancing the game experience [6]. Moreover, game
telemetry allows game developers to collect player interactions in the
game inconspicuously over extended time periods, during production
and after deployment.

Tracking game data and making it understandable is challenging
due to the complexity of the games, leading to huge amounts of in-
formation. Additionally, deciding which information should be tracked
and recorded is another challenge. One of the most common types of
telemetry data is through states changes [7–9]. Even though state data

is easier to examine, they typically lack contextual information and
provides only a high-level view of what happened in the game. In
contrast, telemetry data that captures events [10,11], can provide more
low-level and fine-grained information, capturing and describing the
player activity and relating it more closely to the game session. Fur-
thermore, since the data is collected at fine-grain, developers can use
aggregating techniques to summarize the data by giving an overview of
the game sessions and only digging through the fine-grained data when
necessary.

However, no known approaches for game analytics take into con-
sideration the cause-and-effect relationships between events during a
game session, which may be an important factor for determining the
reasons that led to a certain outcome. In a recent work, Kohwalter et al.
[12] introduced the usage of digital provenance 3 in games in order to
detect these cause-and-effect relationships through a conceptual fra-
mework, named Provenance in Games (PinG), that can collect informa-
tion during a game session and maps the data to provenance terms,

https://doi.org/10.1016/j.entcom.2018.05.001
Received 1 March 2018; Received in revised form 26 April 2018; Accepted 6 May 2018

⁎ Corresponding author.

1 Address: Av. Gal. Milton Tavares de Souza, s/no, Niterói, RJ, Brazil.
2 Address: Av. Maria Luiza, s/no, Eng. Paulo de Frontin, RJ, Brazil.

E-mail addresses: tkohwalter@ic.uff.br (T. Costa Kohwalter), felchado@gmail.com (F.M. de Azeredo Figueira), eduardoassislima@gmail.com (E.A. de Lima Serdeiro),
jose.junior@ifrj.edu.br (J.R. da Silva Junior), leomurta@ic.uff.br (L. Gresta Paulino Murta), esteban@ic.uff.br (E. Walter Gonzalez Clua).

3 Provenance refers to the documented history of an object’s life cycle and is generally used in the context of art, digital data, and science [13].

Entertainment Computing 27 (2018) 110–127

1875-9521/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/18759521
https://www.elsevier.com/locate/entcom
https://doi.org/10.1016/j.entcom.2018.05.001
https://doi.org/10.1016/j.entcom.2018.05.001
mailto:tkohwalter@ic.uff.br
mailto:felchado@gmail.com
mailto:eduardoassislima@gmail.com
mailto:jose.junior@ifrj.edu.br
mailto:leomurta@ic.uff.br
mailto:esteban@ic.uff.br
https://doi.org/10.1016/j.entcom.2018.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2018.05.001&domain=pdf

providing the means for a post-game analysis. That conceptual frame-
work was manually instantiated over a game named SDM [14], which
focuses on teaching Software Engineering concepts. The provenance
support in that game allowed for a broader range of analysis by using
collected provenance information to generate provenance graphs [15].
Even more recently, Kohwalter et al. [16] also demonstrated the ben-
efits of using their PinG approach during game analysis of serious
games, helping students to understand the underlying reasons for an
outcome.

In this paper, we present a concrete framework for capturing pro-
venance data for the game engine Unity, allowing developers to add
provenance gathering capabilities to their games. We detail how our
proposed framework can be instantiated in an existing game and show
how the generated provenance graph can be visualized using the pro-
venance visualization tool Prov Viewer [17], which is a visualization
tool that supports multiple features for visual data analysis, including
spatial-referencing the graph in the game level map.

We also provide an evaluation on how our framework can be used
for the analysis of the cause-and-effect relationships by instantiating it
over two open source games released by the Unity team. Additionally,
we also demonstrate that our concrete framework can be used at early
stages of game design and development by instantiating it over an in-
house game to aid the game balancing process. Instead of only relying
on beta testers feedback, we collect and analyze the cause-and-effect
relationships emerged during game sessions played by twelve invited
subjects. The analysis is used to answer a set of questions game de-
signers normally ask [18]4 (e.g., “How does the level of challenge in-
crease as the player succeeds?”).

This paper extends a prior conference paper [19] by demonstrating
how provenance can be used in early stages of game development to aid
the game design in the process of balancing a game. This analysis is
mapped to questions game designs normally ask during the balancing
process. The steps discussed here could be used with minor adjustments
for other games.

This paper is organized as follows. The Section 2 presents related
work and Section 3 provides background information as well as our
proposed PinG framework. Section 4 presents the PinG framework
usage and analysis over two existing games. Section 5 discuss the ex-
ecution of the experiment, subjects’ characteristics, and the design of
the developed game. The results and discussion of the data game pro-
venance analysis are also presented in the same section. Finally, Section
6 concludes this work, pointing out future works.

2. Related work

The literature adopts different terms for tracked game data, such
as gameplay data, logged data, play traces, and telemetry data.
Moreover, the process of analyzing such data, referenced here as game
analytics, is also named in different ways, such as gameplay visuali-
zation, visual data mining, and game session analysis. In this section,
we kept the original terms of each work, as they are usually reflected in
the approaches’ names.

Joslin [10] proposed the Gameplay Visualization Manifesto (GVM),
which is a framework for gameplay data logging that uncovers game-
play events by attaching logging methods in the game objects re-
sponsible for generating relevant events during the game. The event
model is the basis for the game data logging framework. It encapsulates
the information that is desired by users and classifies the events into
three groups: immersion, quest, and social. The immersion group re-
presents events related to increasing the player’s sensation of being
involved in the game flux. The quest group represents events related to
quest creation, execution, and analysis. Lastly, the social group

represents events related to social factors in the game, such as group
meeting or interaction with other characters.

The main application of GVM is for collecting game metrics, such as
player deaths, position, time spent in available features (e.g., crafting
and fighting), item usage (e.g., equipment), actions performed, and
player enjoyment. Therefore, GVM does not track cause-and-effect re-
lationships. It tracks only the executed actions along with their time-
stamp and location, in addition to character attributes and equipment.

Kim et al. [11] proposed the Tracking Real-Time User Experience
(TRUE) approach that combines human–computer interaction (HCI)
instrumentation, which collects user initiated events (UIEs), and log file
analysis techniques in order to automatically record user interactions
with games. Thus, TRUE can capture behavioral data and the attitu-
dinal information behind the decisions made by the player in order to
obtain better understanding of the context of each captured behavior.

Nevertheless, the designer still needs to infer the reasons behind the
elements that led to an outcome. This occurs because the contextual
information is only extra attributes that were tracked during the ex-
ecution of the action and not actual relationships between events. Thus
it does not capture cause-and-effect relationships. The cause-and-effect
relationships must be inferred by the designer when analyzing the
logged data. Moreover, TRUE was designed for the industry and is not
easily available for indie companies. Even though we did not explore
attitudinal data with PinG, it can be trivially incorporated in our ap-
proach as attributes for the player’s actions or by creating specific ac-
tivity vertices only for the attitudinal data when they are captured.

Playtracer [8], which is a visual tool designed to illustrate how
groups of players move through the game space, aids the designer by
tracking game states and showing common pathways and alternatives
that players used to succeed or fail in their tasks, identifying pitfalls and
anomalies in the scene. Nonetheless, Playtracer does not consider tem-
poral information and does not preserve the order of the states visited
by players when he/she revisits the same state. Moreover, incorporating
Playtracer in the game design is challenging because it requires de-
signers to define a state distance metric and identify relevant states.

Play-Graph [7] captures and illustrates the sequence of states and
the actions that caused the player’s state changes over the course of the
game. In the Play-Graph context, a game state describes a certain
configuration of the game or an entity, while actions consist on player
interactions within the game, such as shooting, jumping, or using an
object. In this concept, a game is viewed as a finite state machine with a
finite number of states and transitions between them. The states are
composed of a set of attributes from the game and players trigger ac-
tions at some specific points in the game. However, due to the nature of
how the data is structured in Play-Graph, the understanding of player
behavior is guided by the player progression in the game (e.g., killed a
boss), and not by how he/she interacted with the world (e.g., combat
rounds from the battle against the boss). From the available doc-
umentation, there is no way to determine interactions or influences.
Only the changes from one state to another, caused by an action exe-
cuted by the player, can be identified. Conversely, influences in the
player’s action, such as an influence from another character that af-
fected the transition of one state to another, are not present in the graph
(there are no edges linking edges).

According to Fernandez-Vara [20], different analyses need to be
performed in order to increase the video game quality. Such analyses
include understanding the game balancing in order to better attune for
the vast majority of players. This process can be facilitated by using the
collected game data. Furthermore, balancing also impacts how the
player perceives the game difficulty. The analysis presented by Fer-
nandez-Vara can be performed automatically to adapt the game diffi-
culty to match the current player’s skills. According to Black and Hickey
[21], player’s profile can change progressively or suffer immediate
changes. The former is referred as evolutionary adaptation while the
latter is referred as revolutionary adaptation. There are a plenty of
approaches designed for performing dynamic difficulty adjustments

4 In the book, Lens #31 (The Lens of Challenge), Schell defines a set of questions ad-
vised to be used while performing game balancing.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

111

[3], ranging from the simplest to more complex ones. While the sim-
plest can consider just state variables for performing such adjustments
[22], more complex approaches for dynamic difficulty adjustments in-
clude using the player emotional state [23], procedural level design
balancing [24], player modelling [21], and artificial intelligence
[25,26] among others. The main drawback of them consists on the need
of processing data to infer cause-and-effect relationships during ana-
lysis.

3. PinG: Provenance in games

The Provenance in Games (PinG) conceptual framework [12] was
developed to map provenance concepts to the context of games. PinG
was based on the PROV model [27], which provides the basis for spe-
cifying information that was involved in creating or influencing a
particular object. Thus, PinG provides a mapping of elements from the
provenance domain to the corresponding elements in a game domain,
relating each data type of the provenance graph to typical elements
found in games. In the game context, the provenance graph shows ac-
tions performed by characters (player or non-player) and events that
occurred during game sessions and the causal dependencies among
these actions or events. It is important to notice that the edges’ or-
ientation in the provenance graph goes from the present to the past,
instead of the common orientation used in graphs, which are from the
past to the future.

In the context of provenance, entities are defined as physical or di-
gital objects. In the PinG approach, they are mapped into game objects
without autonomous behavior. In provenance, an agent corresponds to a
person, an organization, or anything with responsibilities. In the game
context, agents are mapped into characters present in the game or game
objects with autonomous behavior, such as event controllers, plot
triggers, or the game’s artificial intelligence overseer that manages the
plot. Therefore, agents represent elements capable of making decisions
or that have responsibilities in the game, while entities represent objects
with no autonomous behavior. Lastly, activities are defined as actions
taken by agents or interactions with entities. In the game context, ac-
tivities are defined as actions executed or events that occurred
throughout the game, such as attacking, dodging, and jumping.

The information collected during the game is used for the genera-
tion of the provenance graph, which is, in turn, used by a visualization
tool. In other words, the information collected throughout the game
session is the information displayed by the provenance graph for ana-
lysis. Thus, all relevant data should be registered, preferentially at a
fine grain. The way of measuring relevance varies from game to game,
but ideally, it is any information deemed relevant by the game designer
that can be used to aid the analysis process.

However, Kohwalter et al. [16] implemented the provenance data
gathering directly in the game as a prototype. In the work described by
this paper, we created an independent and generic framework for Unity
that is capable of gathering provenance during a game session. Thus,
our provenance gathering framework is a domain-independent and low-
coupling solution. Our framework is for the game engine Unity, which
is written in UnityScript (a version of JavaScript used by Unity) that
provides easier provenance extraction, requiring minimal coding in the
game’s existing components. The proposed framework has three dif-
ferent types of modules: seven Core modules, one Interface module, and
six Auxiliary modules.

Fig. 1 illustrates a simplified class diagram for this framework,
which we named as PinGU (PinG for Unity). Core classes are in yellow,
Interface classes are in light blue, and Auxiliary classes are in orange.
The Core classes represent the original infrastructure of PinG and are
responsible for provenance information management, making every-
thing transparent to the game designer. Analogously, it can be refer-
enced as the provenance “server”. Behind the scenes, the Provenance
Controller class manages the creation of new vertices and edges and
links them in the provenance graph. Meanwhile, the Influence Controller

class manages the cause-and-effect relationships (influence edges),
dealing with possible influences and passing it to the Provenance Con-
troller class when they actually materialize in the game. The Provenance
Container class exports the data to a XML file.

The Interface classes are the gateway between the game and the Core
classes. While the Core classes can be seen as the server, the Interface
classes can be seen as the client application. The Provenance Extractor
class is where all provenance-gathering operations must pass through in
order to reach the provenance-managing unit (or server). The Auxiliary
classes contain pre-defined functions customized for a specific beha-
vior, making easier to implement the provenance gathering.

3.1. Integrating PinGU into an existing game

A game developer can use PinGU to capture provenance data from a
game by following the four stages described in this section: (1) adding
the provenance controllers in the scene, (2) attaching the provenance
extractors in each agent, (3) analyzing the game design document to
extract knowledge for the provenance tracking, and (4) creating and
attaching the provenance tracking functions. We use the game 2D
Platformer Tutorial5 from Unity as a running example of the PinGU in-
tegration. Fig. 2 shows a screenshot of the game where the player has to
kill aliens to gain score points. The game has two different types of
enemies and the player can collect two different types of items to aid in
his fight (health and ammunition items).

The first stage of usage consists of creating a game object in the
scene to act as a centralizing server for the provenance information.
This game object will have two attached classes: ProvenanceController
and InfluenceController, which is illustrated in Fig. 3(a). As said earlier,
both classes are used to manage all provenance information and graph
generation, thus only one instance of each are necessary for each game
scene. If the game is comprised of multiple scenes, then each scene will
have its own provenance graph. These two classes use the other Core
classes, which act as libraries and must not to be included in the scene.

The second stage is to attach the ProvenanceExtractor class in each
character or entity in the game (i.e. NPCs, player, interactive objects,
prefabs) and link it to the object created in the first step. This class is
responsible for creating all the provenance vertices for the game entity
that is attached to and then passing these vertices to the
ProvenanceController to insert it in the graph. Fig. 3(b) illustrates an
example of adding the class to the Hero game object, which is the
player’s avatar from the 2D Platformer.

The third stage is to identify the actions and their interactions with
other actions in the game design document. In the running example, we
identify the existing classes that contain the actions that we want to
track, which are illustrated in Fig. 4. The same figure also shows a
summary of each selected class and their responsibility in the game,
grouped by the identified agents (i.e., Enemy, PlayerControl, Pick-
upSpawner). The classes for the agents also contain additional actions,
such as spawning item and movement.

The fourth stage is creating the domain-specific provenance tracking
functions and attaching it to each entity in the game that has the
ProvenanceExtractor module. Each existing module should have a pro-
venance function for each possible action that the entity can perform and
that we are interested in tracking.

Unfortunately, it is necessary to create these provenance function
calls due to domain contextual information. However, all these prove-
nance functions are small and simple, following the same four-step re-
cipe and changing only the context information used during each step:

1. Add game-related attributes (e.g., health points, experience points,
etc.);

2. Create the appropriate vertex (Activity, Agent, or Entity);

5 https://www.assetstore.unity3d.com/en/#!/content/11228.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

112

https://www.assetstore.unity3d.com/en/#!/content/11228

3. Check for influences (if applicable);
4. Generate influence (if applicable).

The first step is used to configure the desired information to be
extracted during the execution of each action or event. They will appear
at the graph’s vertices as attributes. Unity already provides default at-
tributes, such as location, tag, object name. However, game-sensitive
attributes such as health points, magic points, and player score must be
manually added by the AddAttribute(< name> ,< value>) function

of ProvenanceExtractor class. After adding the desired attributes, the
second step creates the provenance vertex and places it in the graph.
This vertex can be any of the three provenance types and must be
specified by the user by calling the NewActivityVertex, NewAgentVertex,
or NewEntityVertex functions.

The third and fourth steps are related to influence. The third step is
used to verify if there is any influence that can affect the current action.
If so, they are automatically inserted in the graph as an edge connecting
the respective vertices. This verification can be made by a tag
(HasInfluence(< tag>)), which is used to group a collection of influ-
ences that has something in common, or by an influence ID
(HasInfluence_ID(< ID>)).

The forth step is responsible for creating influences
(GenerateInfluence), so they can be used by the third step. Influences can
be created with some restrictions: They can expire when a certain time
passes (e.g., spell duration), leading to the E (expire) suffix at the
function (i.e., GenerateInfluenceE), or after a number of times used (e.g.,
spell that block the next attacks) leading to the C (consumable) suffix
(i.e., GenerateInfluenceC), or both (GenerateInfluenceCE). There is an-
other type of influence that can be combined with the restrictions
above, which represents something that was expected to happen but for
some reason, it did not. For example, there is a health item in the scene
that the player is supposed to get, but he forgot or skipped it. Thus, if
the player did not get it, then an influence is generated saying that the

Fig. 1. Simplified class diagram for PinGU.

Fig. 2. 2D Platformer game. Source: https://www.assetstore.unity3d.com/
en/#!/content/11228.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

113

https://www.assetstore.unity3d.com/en/#!/content/11228
https://www.assetstore.unity3d.com/en/#!/content/11228

player “missed” the item. However, if the player did, in fact, get the
item, then the normal influence (effect of getting the item) occurs. For
those, the function has the suffix M (“missable”) (i.e.,
GenerateInfluenceMC, GenerateInfluenceMCE).

Listing 1 shows an example of a provenance function for our run-
ning example of one of the possible actions that can be executed by an
enemy. The calls used in the Prov_Attack are implemented in the Pro-
venanceExtractor (NewActivityVertex, HasInfluence, GenerateInfluenceCE),
with the exception of Prov_GetEnemyAttributes, which is domain related
and the developer need to specify the desired attributes for tracking,
besides the default attributes from Unity (i.e., Tag, object name, object
coordinates). This is accomplished by creating a function (e.g., Prov_-
GetEnemyAttributes from the auxiliary classes) that invokes the function
AddAttribute from ProvenanceExtractor by passing the attribute name

and value for each attribute, as illustrated by Listing 2.
After creating the necessary provenance functions for their respective

game objects, the next step is to incorporate the function calls in ex-
isting game classes in order to register the provenance information. All
this process becomes trivial if the developers have a detailed game
design document stating all the possible actions that can be executed in
the game along with their purpose. The action list shows the actions
that are desired to be tracked and the necessary provenance functions
that need to be made. Meanwhile, the action’s purpose gives us insights
on the influences that they can generate during or after executing the
action.

Listing 3 shows an example of code insertion in an existing game
module responsible for controlling the artificial intelligence (AI) of
enemy characters in the game. The “damageAmount” is a configurable
variable from the original class that states the damage the attack will
cause. We inserted the provenance call for the Prov_Attack function,
whose code appears in Listing 1, in the function responsible to make the
enemy AI fire at the player. We added a package of auxiliary classes
that, depending on the type of the game, does the majority of the work
and requires only coding the function call in the existing game classes.
Furthermore, they can also be used as a guiding example in cases that
the desired action is not already implemented. These classes are
PBMProv, PlayerProv, EnemyProv, and EnviromentProv, and each is cus-
tomized for the particular type they represent (Car-related movements,
Player, Enemy, and Environment).

The last step is to add a provenance export function to an event so it
can save the current provenance graph to an external XML file when the
designated event is executed (e.g., player’s death, completing the level).
Listing 4 illustrates the provenance functions for our running example
responsible for exporting the tracked data, which is linked to the
player’s death, and Listing 5 shows the insertion of the provenance
function call to track the information.

Fig. 5 shows an example of the generated provenance graph from
the tracked actions executed during a game session, which was

Fig. 3. PinG integration.

Fig. 4. 3rd stage for PinG integration, showing the 2D Platformer classes and
Game Design.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

114

rendered using Prov Viewer. We can see in this graph the player’s and
each enemies’ actions and how they interacted with each other by
looking at the vertical colored edges.

3.2. Capturing game scene

We also implemented a specialized camera module in order to
simplify the process of capturing the game map to use it in combination
with the provenance graph. This camera is orthographic, which pre-
serves the dimensions and does not change coordinates to accom-
modate the perspective of the viewer. Thus, this camera needs to be
placed either directly above the game scene or laterally (for platform
games), allowing it to capture the entire map. This module auto-
matically captures the screenshot of the scene and the necessary data
required to align the provenance graph, which uses world space co-
ordinates, with the captured map, which uses pixel position. The
screenshot resolution can also be adjusted in the module.

The camera module captures the camera’s world position

(cameraPosition) and the camera’s upper left corner coordinates in
world position (leftCorner). The camera’s position is used to translate
the game map in order to align it with the graph and is easily obtained
by getting the position of the camera in world space. The second in-
formation is used to scale the graph to match the picture and is cap-
tured by converting the camera position from viewport space to world
space, which is the upper left corner.

In order to align the graph with the map, it is necessary to find a
scale factor, that can be trivially be calculated by Eq. (1). The equation
uses half the screenshot’s picture width to determine the distance be-
tween the center, which is the position in the picture where the camera
is when the screenshot was taken, to the left edge to properly scale the
graph.

=
×

−
scaleFactor

pictureWidth
leftCorner cameraPosition

0.5

x x (1)

The scaleFactor is used to transform the world coordinates captured
from the provenance data to pixel coordinates used in the screenshot of

Listing 1. PinG code for tracking game data. Orange text in the code is domain-related.

Listing 2. Example of a provenance function for
tracking attributes.

Listing 3. Provenance function call insertion into existing classes.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

115

the game map. Therefore, the game designer only needs to position the
orthographic camera in the game scene and add the camera module in
order to capture the entire map and the necessary data. After that, the
designer can use the coordinates captured by the module and the
screenshot in a visualization tool.

3.3. Provenance graph visualization

One of the purposes of collecting provenance data is to be able to
generate a provenance graph to aid the developer in analyzing and
inferring the reasons for the outcomes. After incorporating the PinGU
approach into an existing game, the provenance data is captured and
stored while a game session is being played. Afterwards, users can
generate a provenance graph for that specific game session.

The generated provenance graph is exported to a simple XML file
containing a list of vertices and edges in the graph. This data can be
used for data mining, exploration, and visualization. For this work, we
employ the open-source provenance visualization tool named Prov
Viewer6 [17], which uses a graph framework to allow detailed rendering
and visual data analysis and exploration of the provenance information.
The tool provides many visualization and manipulation features: (1)
collapsing, highlighting the relevant information in the graph; (2) fil-
tering, removing information that is not relevant for a given analysis;
(3) graph merge, integrating the analysis of multiple game sessions; (4)
specialized layouts, organizing the graph in a more understandable
way; (5) domain configuration, customizing the visualization for spe-
cific needs; and (6) shapes, sizes, and colors, supporting a clear dis-
tinction between information types. Fig. 6 illustrates the tool’s archi-
tecture, highlighting its main features.

When evaluating tracked attributes, Prov Viewer uses traffic light

scheme to quickly differentiate values, thus changing vertex color to the
appropriate shade. The shades vary from red to green, with yellow as
the middle term. Similarly, edges also use shades to distinguish values
of the same type (e.g., damage), as well as thickness to show how strong
the relationship is. Bright red represents negative values, bright green
represents positive values, and darker shades represent values near
zero. This feature allows the user to quickly identify strong influences in
the graph just by looking at the edge’s thickness and their color. Fig. 7
illustrates some of these visualizations features in action.

The tool also has a spatial layout that organizes the vertices in the
graph by their spatial coordinates and can be used for spatial or geo-
referencing the data. The layout supports the usage of an orthographic
image, which is captured in the PinGU framework. This is particularly
useful for corresponding elements with other graphical representations,
such as a map of the game scene. When using the spatial layout in
conjunction with a background image, the user can see where each
tracked event occurred just by looking at the graph’s placement in the
image. All the graph images in the following sections were rendered
using Prov Viewer.

4. Case studies on the instantiation of PinGU over existing games

The following sub-sections present two open-source game samples
(Car Tutorial7 and Angry Bots8) where we demonstrate the generated
provenance graphs by incorporating PinGU in existing games. In the
first game, we focus on showing that the provenance data can facilitate
the graph analysis on how previous actions or events affect future ac-
tions. We also show how the provenance graph evolves when the game
has multiple cycles. In the second game, we show another case of

Listing 4. Provenance function for the player’s death action.

6 http://gems-uff.github.io/prov-viewer/.

7 https://www.assetstore.unity3d.com/en/#!/content/10.
8 https://www.assetstore.unity3d.com/en/#!/content/12175.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

116

http://gems-uff.github.io/prov-viewer/
https://www.assetstore.unity3d.com/en/#!/content/10
https://www.assetstore.unity3d.com/en/#!/content/12175

provenance data with a different genre of game, allowing for easy
identification of sections that were not explored by the player and
where he/she had more difficulty. We did not modify the games in any

way nor added new features besides coupling with the PinGU, which is
only responsible for tracking provenance data. Both case studies use
Prov Viewer tool for visualizing the provenance graphs.

Listing 5. Fragment of the original Remover module: Added the provenance function call in the player’s death.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

117

4.1. Car tutorial

The first case study is the Car Tutorial, freely available at the Unity
asset store. This tutorial has only one racetrack and focuses on the ar-
cade style racing game. In addition, there is no implemented AI for
opponent cars. Fig. 8 shows a screenshot of the game. Following the

conceptual framework, PinG tracks events and actions executed during
the game session, along with their effects on other events, to compose
the provenance graph (e.g., crashing the car, pressing the car’s brake).

We can use the car’s coordinates on the track to plot the graph so
that it is possible to visualize where the player was when the action was
executed. This visualization also allows the designer to quickly identify
which sections of the track the player had trouble. Thus, we can take
advantage of spatial-referencing the data during the provenance vi-
sualization. We used a screenshot of the game map taken by our camera
module with dimensions of 1070 × 802.

Fig. 9(a) shows the provenance graph of one game session, using the
car’s coordinates and the track’s picture as background. This graph is
composed of 169 vertices and 867 edges extracted from a 107-s game
session, which represents one complete lap in the track. The vertices are
colored according to the car’s speed (gradient from white when close to
zero and green for high values) and the visible edges are the speed delta
between vertices.

We can quickly identify sections of the track that the player may
have had issues, either by reducing the speed too much or by crashing,
by just looking at the plotted graph in the race track. As an example,
Fig. 9(b) shows a zoomed section of the graph to better illustrate the
reasons behind a car crash. The zoomed section of the graph has a
different vertex-coloring scheme to differentiate events. By analyzing it,
we can see that the car crash (red vertex) was influenced by two factors.
The first one was on the previous curve, where the car lost contact with
the ground (purple vertex with a blue edge linking the crash) after
passing through the rumble strips at the end of the maneuver, thus
preventing the player to prepare for the following turn. The second
reason was that the player was too fast, as indicated by the red edge
from the blue vertex, which is a reduction of the car’s turn rate due to
high speed.

Using the tracked telemetry data from other laps of the race, we can
begin to detect patterns during the game session or even compare the
player’s performance between laps. This analysis can also be extended
to different game sessions by comparing the generated provenance
graphs. Fig. 10(a) illustrates an example of the generated provenance
graph when gathering data from multiple laps during a single play
session, enabling the designer to detect behavioral patterns and loca-
tions where the players are struggling the most. For example, Fig. 10(b)
shows a section of the track that is characterized by having multiple
curves in the track. We can see the player’s performance during each
lap of the race, where each lap is represented by a different edge color.
The first, second, and third laps are presented by red, green, and blue
edges respectively. Moreover, the first and last vertices of each lap are
marked with circles of the same color as the edge and the timestamps
are represented by the yellow numbers together with the vertex. As we
can see, the player had approximately the same speed in all laps due to
having the same shade of green when entering this section of the track.
However, the player took fifteen seconds to pass through this section of
the track on his first lap (52–37), seventeen seconds during the second
lap (131–114), and ten seconds on the third lap (200–190).

By analyzing Fig. 10(b), we can see a purple edge that represented
the reason behind the crash in the first lap (marked by the purple
circle). This purple edge represents a cause-and-effect relationship,
showing that the crash happened because the player passed through
rumble strips (brown circle) and, as a result, lost car stability and could
not complete the turn. Furthermore, notice the steep angles the player
had to make due to his positioning in each curve. During the second lap
(green edges), the player tried to avoid the crash by reducing speed.
However, the player reduced too much speed to enter the second curve
(white-green vertices). During the third lap (blue edges), the player
managed to improve his performance. He/she avoided any crashes by
better positioning the car before each curve, reducing the necessary
angle to make the turn while maintaining a nearly constant speed.

Fig. 5. Example of the generated graph for the 2D Platformer.

Fig. 6. Prov Viewer’s high-level architecture (from [17]).

Fig. 7. (a) Original graph; (b) graph with a color schema; (c) collapse of two
activities; (d) collapsing of the agent’s activities; (e) graph c after another
collapse; and (f) temporal filter (from [17]).

Fig. 8. Car Tutorial screenshot. Source: https://www.assetstore.unity3d.com/
en/#!/content/10.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

118

https://www.assetstore.unity3d.com/en/#!/content/10
https://www.assetstore.unity3d.com/en/#!/content/10

4.2. Angry bots

We conducted a second case study using a very different style of
game, called Angry Bots, also freely available at the Unity asset store. A
screenshot of the game is presented in Fig. 11. Angry Bots belongs to the
hack-and-slash genre, being a top-down action shooter. In the available
scenario, the player has to face enemy robots and interact with the
environment in order to complete the level.

Fig. 12 illustrates one of the possible visualizations of the prove-
nance data gathered by our framework, showing the vertex visualiza-
tion scheme for the player’s health attribute value (vertex color using a
traffic light scheme) and the edges that influence in it (green and red
edges) as the game progresses. Blue vertices represent other characters
in the game (enemies), blue edges represent the chronological order of
events, and green edges represent player’s health generation due to his
passive regeneration ability. By analyzing Fig. 12, we can see the
chronology of events, regions visited by the player, sections where more
action happened, places where the player engaged in battle, and when

Fig. 9. Car Tutorial provenance graph.

Fig. 10. Car Tutorial provenance graph from multiple laps.

Fig. 11. Angry Bots screenshot. Source: https://www.assetstore.unity3d.com/
en/#!/content/12175.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

119

https://www.assetstore.unity3d.com/en/#!/content/12175
https://www.assetstore.unity3d.com/en/#!/content/12175

the player suffered heavy health loss. In this game, we used a screenshot
taken by our camera with the dimensions of 4280 × 3208 in order to
show that the figure size does not affect the graph alignment process.
This increase of resolution allows for a higher detail of the game scene
visualization when zooming the graph during analysis.

Considering that the player recovers health periodically, it is pos-
sible to infer that the cause of some deaths was the rush through the
level without waiting to recover health or because of a tough enemy.
Fig. 13 illustrates the first case, where the player tried to rush through
the game without waiting to regenerate the player’s health, which was
lost from the previous battles. The light blue arrows were added to the
figure to highlight the player’s general movement and does not belong
to the provenance data.

After the player engaged an enemy in a major battle, which the
player didn’t leave unscathed by looking at the orange vertices, the

player continued advancing through the level. Then, on the player’s
third major engagement, where he/she was still wounded by looking at
the orange vertices, the player lost the majority of his remaining health,
as illustrated by the following red vertices. Even though the player was
low on health, he managed to dispatch his enemies on the forth battle
without losing a single health point (no red edges). However, the player
continued pressing on without resting, which would allow for him to
gradually restore his lost health points before his next engagement,
until dying on the next battle when the player got hit by the enemy
(Battle #5).

Fig. 14(a), (b), and (c) illustrate the second case, showing the se-
quence of events that led the player to a tough engagement (Fig. 14(c)).
By analyzing the picture, we can see that the player started these events
(Fig. 14(a)) with good health (green vertices), leaving the first battle
slightly injured (yellow vertex). A few moments later he encountered
another enemy in a side room (Fig. 14(b)), where once again he over-
came the enemy with only minor wounds (the vertex is still yellow).
However, just when he left the room, the player was ambushed by
another enemy that was patrolling the corridor (the new blue vertices
in the corridor from Fig. 14(c)). This enemy was a mech, which is much
tougher than a regular enemy (notice the high number of dark red
edges that represent player doing damage to the enemy). This battle
resulted in the player’s death after getting hit by two rockets
(Fig. 14(d)) followed by his resurrection shortly after (green vertex in
the bottom of Fig. 14(c) that is linking the green edge to a red vertex).

Fig. 15 illustrates the moments when the player died, which are
marked by red circles. Meanwhile, the orange circles illustrate the
player “refreshed” state after resurrecting, as well as the resurrected
location. Both situations have a green edge linking the player’s death to
the resurrection, which shows that his health went from zero (red
vertex) to maximum (green vertex) after resurrecting. Notice that the
player actually died three times trying to beat the mech enemy from
Fig. 14(c) before finally defeating it.

5. A case study on the use of provenance during the design of a
game from scratch

In this section, we discuss the usage of provenance in the early
stages of game development using PinGU when implementing the
MorphWing game from scratch. Although in this paper we use the
analysis performed for helping the game balancing process, we believe
that designing a game with provenance may also be useful for other
purposes such as dynamic level of difficulty and bug identification.

The main objective of this section is to evaluate how useful is the
usage of provenance for answering game design questions in early
stages of game development. We selected four design questions (DQ)
frequently used by game designers for balancing a game for this ex-
periment. These four questions have been answered through prove-
nance data collected from 12 participants. The four design questions
used to guide this analysis are detailed below:

DQ1: How the player expertise increases with time? This DQ as-
sesses how the player masters the game after playing it for a certain
number of times. The answer to this question can be used to tailor how
challenges should increase along the time.
DQ2: How is the impact of the enemies’ behavior on the player
performance? This DQ analyzes the influence of different types of
enemies on the players. This analysis can suggest how and when each
type of enemy should be placed in the game.
DQ3: How the collectible items impact positively or negatively on
the player experience? This DQ verifies the impact of both positive and
negative spawned items that are found in the game, as well as how they
influence the players’ performance. As in the DQ2, the answer to this
question can tailor how and when the collectible items should be spawned
in the game.
DQ4: How the participants perceive the difficulty of the game as a

Fig. 12. Picture of the entire graph. Vertex coloring based on player’s Health
attribute.

Fig. 13. Player’s health when trying to rush the game.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

120

whole? This DQ is aimed to check, through an interview, if the analyses
and conclusions obtained from provenance are also perceived by the
player.

The following subsections describe MorphWing, the game im-
plemented for demonstrating the early usage of provenance during
development. Next the experiment design is explained, followed by
results and discussions of the posed DQs.

5.1. MorphWing design

The MorphWing game was developed using the Unity game engine
and our PinGU framework so participants could answer the design
questions previously presented in this paper.MorphWing is a 2D game
where the main objective is to live as longer as possible. It is im-
portant to stay clear with the game’ main objective as all the following
analysis will be performed with it in mind.

During the game, items are spawned throughout the game session,
which can positively or negatively affect the player. A screenshot of the
game is presented in Fig. 16.

In MorphWing the player starts with a total of ten health points and
loses it while colliding with the enemy or being hit by enemy pro-
jectiles. In both cases, the player becomes invincible for a very short
moment, nullifying all damage in this period, in order to give a chance
for the player to recover. During the game, the player has two different
type of weapons: a Spread and a Heavy weapon. The former produces

Fig. 14. Sequence of events of the player from exploring a room to his death.

Fig. 15. Filtered graph showing the moments the Player died and was resur-
rected.

Fig. 16. The MorphWing Game.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

121

three projectiles at once with different directions, each causing one hit
point damage. The latter produces just one projectile, causing eight hit
point damage. Besides their inflict damage difference, their availability
for use is also different: Spread can be used five times in a second while
Heavy just once per second.

MorphWing presents four different enemy types with a maximum of
four enemies at the same time. This value was chosen as it presented a
good challenge balancing in the initial development tests, without using
provenance. The characteristics and behavior of each type of enemy are
as follows:

• Straight: moves in a straight direction until it reaches the other side
of the screen, disappearing afterwards. This enemy has a total of six
health points and causes one hit point if collides with the player.

• Chaser: chases the player for colliding, causing two hit points of
damage to the player. It has a total of ten health points.

• Boomerang: after appearing from a random corner of the screen,
this enemy moves straight for a moment and then stops, shooting a
bullet on the player’s direction and moves back towards its spawn
point, disappearing when reaching it. It starts with four health
points, and both the Boomerang’s bullet and its collision with the
player inflict one damage hit point.

• Round Shooter: after appearing from a random corner of the
screen, moves straight for a moment, stops, then shoots bullets
clockwise in 8 directions on a circular pattern, starting from the top.
It starts with five health points, and both the Round Shooter’s bullet
and its collision with the player inflict one damage hit point.

Items are spawned and remains visible for 4 s and are removed if not
collected by the player. Except for the healing item, which is in-
stantaneous, the effect from all other itens has duration of 2 s. In total,
up to three items can be on the screen simultaneously. Each item has a
different icon as well as color, with green or red tinted for positive and
negative effects, respectively.

The following items are available in the game:

• Healing: recover two player’s health points.

• Control Reverser: temporarily inverts the player’s movement di-
rections (up becomes down and vice versa, left becomes right and
vice versa).

• Damage Up: temporarily increases the player’s damage output by a
factor of two.

• Damage Down: temporarily decreases the player’s damage output
by a factor of two.

• Speed Up: temporarily increases the player’s movement speed by a
factor of 1.5.

• Speed Down: temporarily decreases the player’s movement speed
by a factor of 1.5.

5.2. Experiment design

The experiment has been conducted with 12 participants (named P1
- P12), who never have played the game before. Fig. 17 presents their
characteristics. All participants are aged between 16 and 25 years old.

The first step of the experiment involves giving initial instruction for
each of the participants, explaining about the enemies in the game and
their behavior as well as the available items and their effects, and an-
swering questions that came out during this step. Following, the par-
ticipants had the chance to play the game once in order to understand
its mechanics. After this, the participants play three more sessions that
were used for the analysis process. Finally, an exit interview was con-
ducted with each participant, in order to answer DQ4. We fixed the
enemy and items spawn position, as well as their number, across all
sessions to minimize the bias from the randomized elements of the
game. In this case, all three sessions have almost the same level of
difficulty.

5.3. Results and discussion

We collected the generated provenance data from participants’
sessions to analyze our proposed design questions, showing that col-
lecting provenance in early design stages can be useful for balancing the
game.

DQ1: How the player expertise increases with time?
In this design question, we aim to show how the player’s expertise

evolves through time. In order to answer this question, it becomes ne-
cessary to analyze how the player behaves along different sessions of
the game by using some type of metric. Normally, a commonly used
metric involves counting the total number of enemies hit by the player.
Although this is an empirical observation, the game sessions of the test
showed that it was a reasonable metric. Moreover, we defined a player’s
hit rate variable (KH), that varies across the time, using the formula

=KH K
S

E
T
, where KE and ST represent enemies hit and session time (in

seconds), respectively. Fig. 18 shows how KH varies across the different
sessions.

According to Fig. 18, it is possible to observe three important facts.
The first one involves players getting better across the sessions. In this
case, the provenance showed us that 7 out of 12 (58%) participants
increased their KH from session 1 to session 3. Additionally, a second
fact that can be observed thanks to the provenance is that the increment
in skill among the participants presented a high variation. For instance,
P1 and P3 differ their skill rate in about three hits/s in session 3. This
indicates that players evolve at different rates. Finally, the provenance
showed that some participants presented a decreasing KH along the
sessions (P6, P9, P11, and P12). In the proposed game, it is essential for
the player to move in the scenario for avoiding being hit by the enemies
or collide with them. While looking in Fig. 19, which shows the pro-
venance related to the total distance traveled for each participant, it is
possible to notice that all these four participants decrease their distance
traveled, being an easy target for the enemies.

Using the provenance graph, we traced the survival time (T) and
distance traveled (D) by the player, producing 12 tuples in the form
<T,D> per session. For each session, we applied a correlation (using the
Spearmans ρ) analysis for detecting a possible relationship between
time and distance travelled. The result shows a positive correlation
between them (0.79, 0.65, and 0.27 for session 1, 2, and 3, respectively)
indicating that players who move frequently stay alive longer. Besides
that, it is possible to observe a decreasing correlation from session 1 to
session 3, indicating players survival time is getting less dependent to
distance traveled. One possible reason for this behavior is players
shooting getting more accurate, reducing the necessity to evade in order
to avoid being hit by the enemies.

In order to demonstrate this fact, Fig. 20 shows the provenance
graph of the longest (P12 - Session 3) and the shortest (P8 - Session 3)
playing time. Orange pentagon outside the screen game field represents
enemy’s spawn points. According to this figure, it is possible to observe
that P12 is scatted in almost all positions in the map (vertex colored in
magenta), while P8 is concentrated in a small area of the map. This
dynamic transition in the scenario allowed P12 to be more efficient in
killing (represented by green vertices) and evading enemies than P8.

The presented analysis leads to a conclusion that the usage of pro-
venance at early stages of game development can unveil how expertise
changes among the players. At first, a strong correlation has been found
between distance traveled and survival time, showing that movement is
important to be successful in the game. However, this correlation de-
creases in future game sessions, indicating players found strategies
other than keeping moving to be successful in the game.

DQ2: How is the impact of the enemies behavior on the player
performance?

Each kind of enemy has different behavior and movements. In our
experimental game this is present in the Straight enemy that moves in
just one direction, and the Chaser enemy that pursuit the player until it

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

122

gets destroyed. Besides that, some enemies can shoot using different
patterns. Most of the difficulty the player faces in the game is related to
how strong each kind of enemy is as well as how many of them are on
the field simultaneously. Due to this fact, the balance factor of the game
considering the players abilities is closely related to the number of
enemies on the screen and their strength.

In a first moment, it is important to understand how each type of
enemy harms the player. One of the main characteristics of the devel-
oped game is having various instances of an enemy type on the field at
the same time. In this case, such analysis involves understanding how
these numbers influence the player’s performance. We used the

provenance graph for checking the number of times each type of enemy
inflicted damage to the player for all the three sessions. This informa-
tion can be seen in Fig. 21.

According to Fig. 21, it is possible to observe that Chaser enemy is
the one that most inflicted damage to the player for the three sessions.
Following, the Boomerang enemy is the second that most inflicted da-
mage to the player.

Fig. 22 presents the interview conducted with each participant,
asking about the most challenging enemy. The majority of the partici-
pants answered Chaser (83.3%), followed by Round Shooter (16.7%). In
fact, according to Fig. 21, the Chaser is the one that most harmed the

Fig. 17. Participant’s characteristics.

Fig. 18. Player’s skill evolution across the sessions.

Fig. 19. Distance traveled by each participant in each session.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

123

players in all sessions. This shows that the provenance analysis was able
to correctly capture the participant’s perception regarding the game
difficulty.

It is important to state that different analysis can be performed using
tracking counters inside the game. However, these counters must be
conceived and instrumented a priori in the game’s source code. In a
situation where a new analysis must be performed but a counter is not
being tracked, then the counter cannot be obtained. On the other hand,

by using provenance, it becomes possible to get a new information even
in the case where it has not been previously identified as required in the
game design document.

DQ3: How the collectable items impact positively or negatively
on the player experience?

One important factor in the player’s performance is the items he/she
collects. For instance, if the player is able to collect items that increase
the damage caused to enemies, there are chances that the player lives
longer and become able to collect more healing items. Thus, it becomes
important to understand how these elements influence the player.
Table 1 presents the number of spawned and collected items and the
rate it represents in the game.

According to Table 1, it is possible to see that Healing item is the
most spawned. However, only about half of them have been collected
by the players. While observing the participants playing the game, it
was possible to notice that most of them tried to collect the item but
was not able due to their distance. One way to balance the game should
be by spawning the item in a location next to the player or increase the
time it stays on the screen depending on how much damage the player
had taken. When considering items that affect the player positively
(Damage Up and Speed Up), they also have a low collect rate. On the
other hand, among the items that affect the player negatively, the
Control Reverse and Speed Down items had the lowest rating (5.26% and
3.45%, respectively) with exception of the Damage Down. According to
Table 1, Damage Down is the second most spawned item with a high
collecting rate.

In order to understand the influence of both positive and negative
effects on the game sessions, we extract the correlation (using the
Spearmans ρ) between the total number of collected items of each type,
the total time the participant survived, and how many times he/she hit
an enemy. Each participant produced a tuple in the form
< ∑ ∑ ∑ ∑ ∑ >Time HE DU DD SU HitEnemy, , , , , for each session, tota-
lizing 12 tuples per session. These 12 tuples have been used for calcu-
lating the correlation for each session. Please notice that Speed Down
and Control Reverse items have not been considered, as just one of these
items has been collected by the participants during the whole experi-
ment. Table 2 presents the correlation among these variables for each
session.

According to Table 2, Healing has a high correlation with how long
the player survived and hitting enemies for all sessions. As expected,
the player can survive longer and hit more enemies every time the

Fig. 20. The longest and shorter distance travelled by participants.

Fig. 21. Damage inflicted by each type of enemy for each session.

Fig. 22. The most challenging enemy according to the participants.

Table 1
Total of items spawned, collected, and rate.

Spawned Collected Rate

Healing (HE) 261 124 51.34%
Control Reverse (CR) 19 1 5.26%
Damage Up (DU) 40 10 25.00%
Damage Down (DD) 46 11 23.91%
Speed Up (SU) 38 17 44.73%
Speed Down (SD) 29 1 3.45%

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

124

player heal himself by picking a healing item. For instance, considering
the mean of healing items picked (=h 3.70) and survival time
(=t 31.41 sec.) for all sessions, participant P12 is the one who most
collected healing items (31 collected) as well as the one who survived
the longer (=P 73.00t

12 sec.).
In the same way, Damage Up increases the player’s damage to ene-

mies, allowing he/she to kill more enemies in the game field and
contributing to the player’s survival by staying alive longer (correlation
of 0.69 in session 2). However it is important to observe that it does not
have a high correlation with hitting enemies (maximum of 0.58 in
session 2, decreasing to 0.39 in session 3) as it does not relates to ac-
curacy. Thanks to provenance data, a game designer could opt to add a
new item that enhances the player’s accuracy for a specific time to
increase his hit-ratio. In an opposite way, Damage Down reduces the
player’s damage to enemies and so should present a neutral or inverse
relationship with player survival time and hitting enemies. When
looking at Table 2, it is possible to see that in session 1 this item had
almost no contribution to the player’s survival time nor hitting enemies.
However, in the next two sessions, it contributed to reducing the
player’s survival time (−0.47 in session 2) and hitting enemies (−0.36
in session 2). For instance, P10 is the one who collected the most Da-
mage Down item (a total of 3), living below the mean (=P 20.33t

10 sec.).
Finally, Speed Up has an interesting behavior on the players session.

In the first session, it presented a directed relationship with the survival
time and hitting enemies (0.42 and 0.55, respectively), indicating that
players would take advantages of getting this item. However, in the
second session, it contributed negatively to the players survival time
and hitting enemies (−0.17 and −0.27, respectively), becoming posi-
tive again in the third session. The observed analysis indicates a pos-
sible design problem with this item. Normally, it is expected that po-
sitive effects give the player more advantages in relation to obstacles, as
the case observed for both Healing and Damage Up. Additionally, the
provenance data shows us that while the participants have an effect
that maximizes their speed, they normally tend to collect items on the
scenario. P12, for instance, was the participant that most collected
Speed Up items (4 in total) in addition to being the one that most

collected Healing items (=P 10.33h
12). In our exit interview, we asked the

participants which items they felt more beneficial and harmful to them
(excluding the Healing item). The result is presented in Fig. 23, in-
dicating that Damage Up was considered the most beneficial. On the
other hand, all the three negative items were classified equally by the
participants.

According to Table 2, it is possible to see that Damage Up was the
item that most beneficiate the participants, since it has the highest
correlation with both Hit Enemies (0.58 in session 2) and Time (0.69 in
session 2). The results presented in Fig. 23(a) also demonstrate this
perception by the participants as most of them (81.80%) chose this
item. On the other hand, all the harmful items had the same distribution
among the participants (33.33%), according to Fig. 23(b).

DQ4: How the participants perceive the difficulty of the game
as a whole?

In order to analyze this element, we used a 10-point Likert scale in
the exit interview for asking the participants about their evaluation in
terms of the game level of difficulty (1 mean easy and 10 hard), enemy
spawn rate (1 indicates low and 10 high), and items spawn rate (1 in-
dicates low and 10 high).

According to Fig. 24(a), neither of the participants found the game
to be easy. All of them classified the game from medium to high diffi-
culty. Even though the majority of the participants increased their skill,
as showed by the provenance data, it was not enough for the game to be
classified as easy. Based on participants’ characteristics presented in
Fig. 17(b), most of them can be considered an experienced player. This
indicates that the game should be even more challenging to grasp from
novice players, requiring lowering the game difficulty to accommodate
them. Thanks to the provenance analysis, it was possible to observe the
same for the spawn rate of enemies (Fig. 24(b), where most of the
players found it to be too high. Finally, when looking at the item spawn
rate (Fig. 24(c)) the participants neither found it to be too low or too
high.

6. Conclusion

This paper presented the use of PinG for Unity, a framework for
game telemetry that tracks the actions and events alongside with their
cause-and-effect relationships. Our framework facilitates the process of
tracking and storing the provenance data for exploration and analysis.
This provenance data can aid the detection of gameplay issues, support
developers for a better gameplay design, identification of game sections
where players had issues and the reasons behind these issues, and
mining behavioral patterns from individual sessions or groups of ses-
sions. Moreover, we showed how PinG could be used to extract pro-
venance data, giving examples of some common analyses. By using two
open source games, we demonstrated the possibility of referencing the

Table 2
Correlation between each item type in the game and player hitting enemies and
time survived.

Session 1 Session 2 Session 3

Hit Time Hit Time Hit Time

Healing 0.91 0.81 0.62 0.71 0.88 0.86
Damage Up 0.53 0.59 0.58 0.69 0.39 0.59
Damage Down 0.03 0.08 −0.36 −0.47 −0.27 −0.36
Speed Up 0.55 0.42 −0.27 −0.17 0.43 0.40

Fig. 23. Most beneficial and harmful item according to participants.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

125

provenance data in the game map to better visualize and understand
the events of a game session. Besides that, we also used PinG in a game
developed from scratch, collecting provenance data from 12 invited
participants for analysis. The analysis has been guided by four design
questions (adapted from Schell [18]) normally used during the game
balancing process. Furthermore, we believe that the richness of the
provenance data extracted when using the PinG for Unity framework
provides the necessary means to make other types, and possibly deeper,
game data analyses.

We are currently working on ways to improve the PinG framework
to automate even further the data tracking, especially for influences
and, in the future, possibly implement the framework for other game
engines. Moreover, due to the quantity of the data extracted with PinG,
we are studying techniques to improve even further the visual analysis
process. These studies involve, but are not limited to, automatic graph
inferences, data mining, graph reduction, multiple graph analysis to
compare multiple game sessions or even cycles during a game (e.g., laps
in a racing game), enabling better strategies of provenance gathering
that take advantage of the games genre and type.

Finally, the collected provenance data could be used as a source for
a model capable of performing automatic and dynamic difficulty ad-
justment, considering each player’s skills individually. As we show in
this paper, the collected provenance data shows players’ skill im-
provement over 58% of the participants in different ways and rates.
Additionally, when analyzing the enemies level of difficulty for the
player, it is possible to observe that they are different. This represents a
possible situation where the number of weaker enemies could be in-
creased, while the strongest decreased. In addition, we collected and
analyzed information that clearly shows how the items collected by the
players have influence over their session time as well as the killed
enemies. By considering the position and velocity of the player, these

items should be put in places that could be reached by the player in-
stead of a random position.

Acknowledgment

The authors would like to thank CAPES, CNPq, and FAPERJ for the
financial support.

References

[1] M. El-Nasr, A. Drachen, A. Canossa (Eds.), Game Analytics – Maximizing the Value
of Player Data, Springer Science & Business Media, London, 2013.

[2] G. Zoeller, Development telemetry in video games projects, in: Game Developer
Conference (GDC), 2010.

[3] R. Hunicke, Robin, The case for dynamic difficulty adjustment in games, in:
Proceedings of the 2005 ACM SIGCHI International Conference on Advances in
Computer Entertainment Technology - -ACE ’05, ACM Press, New York, New York,
USA, 2005, pp. 429–433. http://dx.doi.org/10.1145/1178477.1178573. URL:
http://portal.acm.org/citation.cfm?doid=1178477.1178573.

[4] A. Drachen, R. Sifa, C. Bauckhage, C. Thurau, Guns, swords and data: Clustering of
player behavior in computer games in the wild, Conference on Computational
Intelligence and Games (CIG), 2012, pp. 163-170. http://dx.doi.org/10.1109/CIG.
2012.6374152.

[5] B.G. Weber, M. John, M. Mateas, A. Jhala, Modeling Player Retention in Madden
NFL 11, in: Innovative Applications of Artificial Intelligence Conferences (IAAI),
2011.

[6] C. Pedersen, J. Togelius, G. Yannakakis, Modeling Player Experience for Content
Creation, Trans. n Comput. Intell. AI in Games (T-CIAIG) 2 (1) (2010) 54–67,
http://dx.doi.org/10.1109/TCIAIG.2010.2043950.

[7] G. Wallner, Play-Graph: a methodology and visualization approach for the analysis
of Gameplay data, in: Foundations of Digital Games (FDG), 2013, pp. 253–260.

[8] Y.-E. Liu, E. Andersen, R. Snider, S. Cooper, Z. Popović, Feature-based projections
for effective playtrace analysis, in: Foundations of Digital Games (FDG), 2011, pp.
69–76. http://dx.doi.org/10.1145/2159365.2159375.

[9] M.S. El-Nasr, T.-H. Nguyen, Glyph: visualization tool for understanding problem
solving strategies in puzzle games, in: Foundations of Digital Games (FDG), 2015.

[10] S. Joslin, R. Brown, P. Drennan, The gameplay visualization manifesto: a framework
for logging and visualization of online gameplay data, Comput. Entertain. 5 (3)
(2007) 6, http://dx.doi.org/10.1145/1316511.1316517.

[11] J.H. Kim, D.V. Gunn, E. Schuh, B. Phillips, R.J. Pagulayan, D. Wixon, Tracking real-
time user experience (TRUE): a comprehensive instrumentation solution for com-
plex systems, in: Human Factors in Computing Systems (CHI), 2008, pp. 443–452.
http://dx.doi.org/10.1145/1357054.1357126.

[12] L. KOHWALTER, Troy; CLUA, Esteban; MURTA, Provenance in Games, in: Brazilian
Symposium on Games and Digital Entertainment (SBGAMES), 2012, pp. 162–171.

[13] Data Dictionary for Preservation Metadata, Tech. rep., OCLC Online Computer
Library Center & Research Libraries Group, 2005.

[14] L. KOHWALTER, Troy; CLUA, Esteban; MURTA, SDM An Educational Game for
Software, in: Brazilian Symposium on Games and Digital Entertainment
(SBGAMES), 2011, pp. 222–231.

[15] T. C. Kohwalter, E. G. W. Clua, L. G. P. Murta, Game flux analysis with provenance,
in: Proceedings of the 10th International Conference on Advances in Computer
Entertainment, vol. 8253, Springer-Verlag New York, Inc., 2013, pp. 320–331.
http://dx.doi.org/10.1007/978-3-319-03161-3_23. URL: http://link.springer.com/
10.1007/978-3-319-03161-3_23.

[16] L. KOHWALTER, Troy; CLUA, Esteban; MURTA, Reinforcing Software Engineering
Learning through Provenance, in: Brazilian Symposium on Software Engineering
(SBES), 2014, pp. 131–140.

[17] T. Kohwalter, T. Oliveira, J. Freire, E. Clua, L. Murta, Prov Viewer: a graph-based
visualization tool for interactive exploration of provenance data, in: Proceedings of
the 6th International Provenance and Annotation Workshop on Provenance and
Annotation of Data and Processes, vol. 9672, IPAW 2016, Springer-Verlag New
York, Inc., New York, 2016, pp. 71–82. http://dx.doi.org/10.1007/978-3-319-
40593-3_6.

[18] J. Schell, The Art of Game Design: A Book of Lenses, Elsevier/Morgan Kaufmann,
2008.

[19] T.C. Kohwalter, Leonardo Gresta Paulino Murta, Esteban Gonzalez Walter Clua,
Capturing Game Telemetry with Provenance, in: Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames), 2017.

[20] C. Fernandez-Vara, Introduction to Game Analysis, Routledge, 2014.
[21] M. Black, R.J. Hickey, Maintaining the performance of a learned classifier under

concept drift, Intell. Data Anal. 3(6) (1999) 453–474. http://dx.doi.org/10.1016/
S1088-467X(99)00033-5. URL: https://www.sciencedirect.com/science/article/
pii/S1088467X99000335?via%3Dihub.

[22] D. Charles, M. Black, Dynamic player modelling: A framework for player-centered
digital games, in: International Conference on Computer Games: Artificial
Intelligence, Design and Education, 2004, pp. 8–10. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.579.6671.

[23] T.J.W. Tijs, D. Brokken, W.A. IJsselsteijn, Dynamic Game Balancing by Recognizing

Fig. 24. Participants’ parception about game level of difficult, enemy and item
spawn rate.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

126

http://refhub.elsevier.com/S1875-9521(18)30013-2/h0005
http://refhub.elsevier.com/S1875-9521(18)30013-2/h0005
http://dx.doi.org/10.1145/1178477.1178573
http://portal.acm.org/citation.cfm?doid=1178477.1178573
http://dx.doi.org/10.1109/CIG.2012.6374152
http://dx.doi.org/10.1109/CIG.2012.6374152
http://dx.doi.org/10.1109/TCIAIG.2010.2043950
http://dx.doi.org/10.1145/2159365.2159375
http://dx.doi.org/10.1145/1316511.1316517
http://dx.doi.org/10.1145/1357054.1357126
http://dx.doi.org/10.1007/978-3-319-03161-3_23
http://link.springer.com/10.1007/978-3-319-03161-3_23
http://link.springer.com/10.1007/978-3-319-03161-3_23
http://dx.doi.org/10.1007/978-3-319-40593-3_6
http://dx.doi.org/10.1007/978-3-319-40593-3_6
http://refhub.elsevier.com/S1875-9521(18)30013-2/h0090
http://refhub.elsevier.com/S1875-9521(18)30013-2/h0090
http://refhub.elsevier.com/S1875-9521(18)30013-2/h0095
http://dx.doi.org/10.1016/S1088-467X(99)00033-5
http://dx.doi.org/10.1016/S1088-467X(99)00033-5
https://www.sciencedirect.com/science/article/pii/S1088467X99000335?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1088467X99000335?via%3Dihub
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.579.6671
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.579.6671

Affect, Springer, Berlin, Heidelberg, 2008, pp. 88–93. http://dx.doi.org/10.1007/
978-3-540-88322-7_9. URL: http://link.springer.com/10.1007/978-3-540-88322-
7_9.

[24] R.J.V. de Medeiros, T.F.V. de Medeiros, Procedural Level Balancing in Runner
Games, 2014 Brazilian Symposium on Computer Games and Digital Entertainment,
IEEE, 2014, pp. 109–114, , http://dx.doi.org/10.1109/SBGAMES.2014.30 http://
ieeexplore.ieee.org/document/7000038/.

[25] J.K. Olesen, G.N. Yannakakis, J. Hallam, Real-time challenge balance in an RTS
game using rtNEAT, in: 2008 IEEE Symposium On Computational Intelligence and

Games, IEEE, 2008, pp. 87–94. http://dx.doi.org/10.1109/CIG.2008.5035625.
URL: http://ieeexplore.ieee.org/document/5035625/.

[26] L.J.F. Perez, L.A.R. Calla, L. Valente, A.A. Montenegro, E.W.G. Clua, Dynamic game
difficulty balancing in real time using evolutionary fuzzy cognitive maps, in: 2015
14th Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames), IEEE, 2015, pp. 24–32. http://dx.doi.org/10.1109/SBGames.2015.17.
URL: http://ieeexplore.ieee.org/document/7785838/.

[27] Y. Gil, S. Miles, PROV Model Primer, 2010.

T. Costa Kohwalter et al. Entertainment Computing 27 (2018) 110–127

127

http://dx.doi.org/10.1007/978-3-540-88322-7_9
http://dx.doi.org/10.1007/978-3-540-88322-7_9
http://link.springer.com/10.1007/978-3-540-88322-7_9
http://link.springer.com/10.1007/978-3-540-88322-7_9
http://dx.doi.org/10.1109/SBGAMES.2014.30
http://ieeexplore.ieee.org/document/7000038/
http://dx.doi.org/10.1109/CIG.2008.5035625
http://ieeexplore.ieee.org/document/5035625/
http://dx.doi.org/10.1109/SBGames.2015.17
http://ieeexplore.ieee.org/document/7785838/

	Understanding game sessions through provenance
	Introduction
	Related work
	PinG: Provenance in games
	Integrating PinGU into an existing game
	Capturing game scene
	Provenance graph visualization

	Case studies on the instantiation of PinGU over existing games
	Car tutorial
	Angry bots

	A case study on the use of provenance during the design of a game from scratch
	MorphWing design
	Experiment design
	Results and discussion

	Conclusion
	Acknowledgment
	References

