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A B S T R A C T

Game Analytics comprises a set of techniques to analyze both the game quality and player behavior. To succeed
in Game Analytics, it is essential to identify what is happening in a game (an effect) and track its causes. Thus,
game provenance graph tools have been proposed to capture cause-and-effect relationships occurring in a ga-
meplay session to assist the game design process. However, since game provenance data capture is guided by a
set of strict predefined rules established by the game developers, the detection of long-range cause-and-effect
relationships may demand huge coding efforts. In this paper, we contribute with a framework named PingUMiL
that leverages the recently proposed graph embeddings to represent game provenance graphs in a latent space.
The embeddings learned from the data pose as the features of a machine learning task tailored towards detecting
long-range cause-and-effect relationships. We evaluate the generalization capacity of PingUMiL when learning
from similar games and compare its performance to classical machine learning methods. The experiments
conducted on two racing games show that (1) PingUMiL outperforms classical machine learning methods and (2)
representation learning can be used to detect long-range cause-and-effect relationships in only partially observed
game data provenance graphs.

1. Introduction

Acquiring understandable game metrics is essential to enhance a
data-driven game design. This information may be useful for many
purposes, such as game balancing [1,2], players behavior under-
standing [3,4], detection of failures during game design [5,6], or even
enhancing in-game monetizing strategies [7,8].
It is necessary to track and remotely gather data from the game

sessions to obtain such metrics, a task known as game telemetry [9].
Thus, game telemetry holds the pillars to intrinsically understand the
player’s behavior, instead of only relying on feedback that not always
retains the true beliefs and motivations of the player [10]. There are
different strategies for gathering and storing data collected from games,
ranging from raw logs to structured formats. Particularly, by using a
structured, relational representation, one can naturally handle objects,
entities, characters, their properties, and their relationships in a game.
With that in mind, provenance graph techniques were recently suc-
cessfully adapted to record game session history while still denoting the
elements of the game and the causal relationships between them

[11–14].
Game provenance solutions [13] enhance the capture and the

building of structured representation of game sessions, subserving fur-
ther game analysis. This structure includes, for example, the re-
presentation of the direct influence between elements, which are de-
picted through edges connecting sequential nodes in the provenance
graph. Still, there is also a need for implementing domain-specific
provenance tracking functions, since different games might have dif-
ferent mechanics. Because of that, these domain-specific functions must
be implemented by the game developer. One of the needs for domain-
specific functions is the indirect influence, i.e., a causal relation between
non-consecutive events. However, these functions might grow in com-
plexity if developers need to detect long-range indirect influences, that
is, if they need to identify the influence between nodes instantiated
along distant timestamps or with large path distances. Other difficulties
may arise when influences are defined by large sets of rules, conditions,
or formulas. For example, determining if a player’s movement is in-
fluenced by a suddenly appearing enemy would have to take into ac-
count several variables, such as their positions, orientations, previous
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and actual movement directions, speed, or assign threat levels re-
garding all the attributes of the involved entities. Furthermore, there
might still exist important influences not foreseen by the game devel-
oper, making it difficult to capture and evidence them even in a
structured representation such as a provenance graph.
Until now, these difficulties have remained unexplored, and no

improvement has been proposed regarding long-range influence de-
tection in game provenance graphs. In this paper, we propose a fra-
mework called PingUMiL that uses recent graph-based representation
learning techniques [15] to detect long-range influence edges and im-
prove game provenance data capture. Graph representation-learning
methods induce a mapping that embeds nodes, edges, or entire (sub)
graphs, as points in a low-dimensional vector space [15], which can,
therefore, be fed to a downstream machine learning method for tasks
such as classification, regression, or clustering [16]. We opted for
adopting GraphSAGE (Graph Sample and Aggregate framework) as the
graph representation learning method since it is capable of inductively
generating node embeddings taking into account the node local
neighborhood and its attributes.
By using our framework, the game developer/analyst benefits from

automatically detecting edges to complete provenance graphs in two
scenarios: (i) within a game that lacks some edges, for example, in case
of graphs captured with older provenance capture functions or with
older versions of the game, or (ii) the game designer or developer has
not realized influences which, in their turn, were not captured during
game sessions. Even though in this work, we focus on automatically
finding long-range influence edges, detection of other types of edges
may also be accomplished by the framework with minor modifications.
First, we define the PingUMiL framework, presenting all steps ne-

cessary for combining the provenance graph data structure, a graph-
based representation learning method, and a downstream machine
learning method. Then, we evaluate the benefits of our graph-based
framework by comparing its performance in terms of quantitative me-
trics (precision, recall, f1 score) against feeding classical machine
learning methods with raw log data (without provenance graph struc-
ture). The gameplay session data for the case studies were captured
from the provenance graphs of two racing games. In summary, we aim
at answering two main questions:

• Q1: Is it possible to detect long-range influences among the com-
ponents of a game using machine learning?
• Q2: Does provenance graph representation learning improve the
detection of influence edges compared to classical machine learning
techniques without provenance?

The experiments presented in this paper point out that long-range
influence detection is not only possible but better performed when
graph representation learning is employed.
The remaining of the paper is organized as follows: Section 2 pre-

sents a guiding example to contextualize both the background and our
framework proposal sections. Section 3 presents some recent work in
Game Analytics and Machine Learning and background about Prove-
nance in Games and Machine Learning on graphs. Section 4 presents
our framework proposal. Section 5 shows two case studies about racing
games, explaining in detail how the framework was applied to them.
Section 6 presents, analyzes, and discusses our experimental results.
Finally, Section 7 concludes this work, pointing out future works.

2. Guiding example

Let us consider a game development studio named Radical Games
that employs provenance graphs for tracking game data in their racing

game Speed Challenge. For this racing game, the player nodes are cap-
tured and contain the following attributes: player position (3d vector),
speed, current gear, current engine power, turn rate, velocity (3d
vector), angular velocity (3d vector), and a provenance label.
Provenance labels are tags for the current agent, activity, or entity
node. Possible values for the provenance label are:

• Player ID, for agent nodes.
• Actions from the list ChangedGear, Brake, Crash, Flying, Landing,
LostControl, Scraped, for activity nodes.

Since Speed Challenge is a simple racing game, no entity nodes are
instantiated. The game has no items, collectibles, power ups or inter-
active obstacles. Example of nodes are shown in Fig. 1.
According to the game design guidelines, game programmers from

Radical Games must implement domain-specific methods to collect
nodes and connect them to express influence relationships using a
Provenance tool. One of the desired influence relationships specified by
the game design guidelines is “After driving fast over a slope, a player’s
car loses contact with the ground (Flying event), and the player loses
control of the vehicle (LostControl event) due to its increasing speed.”
The “Flying” event is detected through the game engine provided col-
lision methods. The “LostControl” event is detected using a physics
formula whose inputs are velocity and angular velocity vectors, and
there is also a constraint regarding the increase of the speed attribute.
Activity nodes for all the actions/events are generated by the employed
Provenance tool, and if these nodes are instantiated respecting influ-
ence triggers defined by game programmers, edges are created between
them, materializing the influence relationship. An example of the re-
lationship mentioned above is depicted in Fig. 1, where a Flying Node
(index 313) is connected to LostControl Node (index 316). Events un-
related to that relationship can happen between the Flying and Lost-
Control nodes, such as the Landing node (index 314). Influence re-
lationships such as “Every Landing event is a consequence of a previous
Flying event” and “if the player has Lost Control of the vehicle and
Crashed less than 2 s after, player nodes representing these events are
connected” are similarly captured.
After implementing all these functions, it is possible to capture a

subgraph such as the one presented in Fig. 2, where Player A (red
nodes) and Player B (blue nodes) race each other on a section of the
track.

Fig. 1. Subgraph from Speed Challenge game.
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3. Background

This Section presents related works and two fundamental topics for
understanding PingUMiL: Provenance in games and Learning graphs
embeddings. We start by contextualizing this work with other works
combining Machine Learning and Game Analytics. Then, we define
provenance in the game context, followed by a review on previous
game provenance works and a discussion on the weak and strong points
in the game provenance capture process. Next, we overview recent
advances in graph representation learning and present key concepts for
our framework, such as node embedding and neighborhood aggrega-
tion.

3.1. Related work

Machine Learning in Game Analytics is a recent research area,
whose advent is related to technological advances in cloud computing,
machine learning, infrastructures, etc. Recent works have explored
tasks such as the procedural generation of content, prediction (re-
commendation systems, event prediction), and game learning analytics
[17,18].

Schubert et al. [17] present a technique for segmenting matches of
the Multiplayer Online Battle Arena (MOBA) game DOTA into spatio-
temporally defined components called encounters. Through encounter-
based analysis, it was possible to break down complex dynamics into
manageable components and train a logistic regression classifier to
predict the outcome of an encounter based on its initial conditions.
Block et al. [18] present a procedurally generated content tool

called Echo, which uses live and historic match data to detect extra-
ordinary player performances and dynamically translates interesting
data points into audience-facing graphics. Echo compares the perfor-
mances metrics of each player to thousand of historical data, calcu-
lating how many percents of historic performances are exceeded in the
game session.
Freire et al. [19] combine the educational goals of Learning Ana-

lytics and tools and technologies from Game Analytics into Gaming
Learning Analytics (GLA) and defines a conceptual model of the tasks
required to analyze players interactions in serious games. The main
objective of GLA is to improve the practical applicability of serious
games. Recently, Kickmeier-Rust [20] combined learning performance
metrics and log files from serious games to predict learning perfor-
mances in serious games.

Fig. 2. Subgraph from Speed Challenge in a multiplayer race.
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The works mentioned above use game analytics to comprehend
events occurring during a game session and use machine learning for
tasks such as prediction and performance improvement related to the
game session itself. On the other hand, our work is an attempt to sup-
port and improve a game analytics process (in our case, Provenance in
Games [11]) using machine learning regarding causal relationships
between game components. To the best of our knowledge, there are no
works directly related to the framework proposed in this paper.

3.2. Provenance in games

The adoption of data provenance in the context of games was first
proposed by Kohwalter et al. [11] through the PinG (Provenance in
Games) framework. Following the Open Provenance Model [21], the
authors defined a mapping between game elements and each type of
node of a provenance graph. Summarizing the proposed mapping, one
can say that players, enemies, and NPCs (Non-playable characters) are
mapped as Agent nodes; items, weapons, potions, static obstacles, or any
other object used in the game are mapped as Entity nodes; and actions
and events are mapped as Activity nodes. Causal relationships between
game elements are mapped as edges connecting their respective nodes,
resulting in a game data provenance graph. Causality indicates a re-
lationship between two events where one event is affected by the other.
The provenance approach materializes causal relationships explicitly
defined by the game developer. Therefore, each edge captured through
a provenance approach represents the consequences between the game
objects’ actions and states.
The PinG framework was implemented in [22] as a domain-de-

pendant prototype and, later, in [13] as a generic framework for the
Unity game engine called Provenance in Games for Unity (PinGU). The
PinGU plugin is a domain-independent and low-coupling solution,
written in UnityScript (a version of JavaScript used by Unity) that
provides smoother provenance capture, requiring minimal coding in
the game’s existing components [14]. Besides the PinGU plugin, graph-
based visualization tools such as Prov Viewer [23] have also been de-
veloped for post-game session analysis.
Provenance capture through PinGU can be easily employed in a

game by following four steps: (1) instantiate and attach core prove-
nance scripts, (2) identify actions and interactions, (3) implement do-
main-specific provenance capture functions, and (4) export provenance
data. These domain-specific provenance tracking functions must be

attached to game elements scripts in a four-step recipe: (3.1) add game-
related attributes, (3.2) create nodes, (3.3) check for influences af-
fecting the current event or state, and (3.4) generate influence triggers
for future events or states. A simple example is the “Every Landing
event is a consequence of a previous Flying event” influence. It takes
two functions: one that is called whenever the car loses contact with the
ground, inserting a Flying node in the graph and generating an influ-
ence trigger for the next Landing node, and another that is called
whenever the car comes in contact with the ground, inserting a Landing
node and searching for a previous influence trigger.
One of the most prominent advantages of provenance graphs is its

richness of detail, i.e., the data collected at fine-grain Figs. 1–3 present
examples of racing game provenance graphs and their components. The
graph is plotted using the player node’s coordinates X and Z within the
game space so that it is possible to have a general view of the race
course and, for that specific scenario, follow the player trajectory and
other events by traversing the graph. It is crucial to notice that a single
lap has generated 140 nodes and more than 700 edges in less than a
two-minute gameplay session.
In Fig. 1, it is possible to observe all the attributes of a car controlled

by the player during the Flying, Landing, ChangedGear, and LostControl
activities. While PinGU implements several methods to facilitate pro-
venance capture, game developers must write domain-specific prove-
nance tracking functions and attach them to each entity in the game
[14]. Therefore, the amount of data gathered in a single node depends
on the developer’s design and his analytic choices.
In summary, the implementation of the data capture algorithms and

the events happening within a game session influence directly the
amount of generated data [14]. Also, this rich and raw provenance data
can be used in machine learning tasks, to describe hidden patterns, aid
the game maintenance, and help in future developments. These are the
main assumptions of this research.
Fig. 1 also presents activity nodes connected by edges, which re-

present the causal relationship between these activities. Edges, in their
turn, are capture according to their influence range. Direct edges are
edges connecting sequential nodes. Most direct edges are automatically
capture by PinGU due to their temporal relationship. In this context,
PinGU assumes that the current node (and its attributes) of a game
object is temporally related to its previous node. Influence edges, si-
milarly to node attributes capture, are capture through domain-specific
provenance tracking functions and can connect any pair of nodes in
order to model a cause and effect relationship of interest. Therefore,
influence edges can represent cause and effect relationships. We focus
on indirect influences. These indirect influences are provided by the
game designer, which, in turn, defines guidelines for methods that will
capture these influences.
For example, Fig. 1 shows a subgraph where the relationship “After

driving fast over a slope, a player’s car loses contact with the ground
(Flying event) and the player loses control of the vehicle (LostControl
event) due to its increasing speed” occurs and is captured. It is possible
to observe that nodes 314 (Landing event) and 315 (ChangedGear
event) are omitted from the relationship mentioned above. Further-
more, node 316 (LostControl event) is sequentially connected to node
315 (ChangedGear event) due to their temporal relation and because
they belong to the same agent (Player).
The amount of data gathered during a game session to be included

in a game provenance graph implies in huge time and manual efforts to
the game analysis process. Moreover, a considerable amount of effort
has also to be put by the game developer and the game designer when
implementing or adapting domain-specific provenance capture algo-
rithm, besides the possibility of not preconceiving all the types of

Fig. 3. Racing game provenance graph example.
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influences. Thus, we leverage recent advances of machine learning
techniques acting on graph-structured data to detect long-range influ-
ences as a first attempt to enhance and automate game provenance data
capture.

3.3. Machine learning on graphs

Recently, efforts to learn representations from graph-structured data
with machine learning tasks have gained attention [24–29]. Most ma-
chine learning methods in this area seek to make predictions, discover
new patterns, or classify nodes by transforming graph-structured data
into feature information [30,31,15]. To that, these graph representation
learning methods incorporate information about the structure of the
graph to yield latent features that represent some properties of the data
[25,32,33,29]. The idea behind these representation learning ap-
proaches is to learn a mapping that embeds nodes, or entire (sub)
graphs, as points in a low-dimensional vector space, d. The goal is to
optimize this mapping so that geometric relationships in this learned
space reflect the structure of the original graph [15]. Vector re-
presentations resulting from mapping nodes into the learned space are
called node embeddings.
Hamilton et al. [15] point out that node embedding methods rely on

four components:

• A pairwise proximity function, which measures how closely con-
nected two nodes are.
• An encoder function, which generates node embeddings.
• A decoder function, which reconstructs pairwise proximity values
from the generated embeddings.
• A loss function, which determines the quality of the pairwise re-
constructions in order to train the model.

Earliest methods such as the Laplacian Eigenmap [34], HOPE [26],
DeepWalk [25], node2vec [27] generate vector representations for each
node independently. These methods rely on matrix factorization ap-
proaches for dimensionality reduction [34] (Laplacian Eigenmaps,
HOPE) or random walk statistics (DeepWalk, node2vec). However, they
do not consider node attributes during the encoding. This is a major
drawback since node attributes can be highly relevant for representing
a node.
Thus, convolutional approaches have been proposed to solve this

problem. In general, these approaches generate a node embedding
iteratively. At the first step, the node embedding is initialized with the
values of the node’s features. At each iteration, the node’s embeddings
aggregate their neighbors’ embeddings, generating new embeddings.
These approaches determine the node embedding according to its sur-
rounding neighborhood attributes. Therefore, they are also called
neighborhood aggregation methods. Examples of these methods are
Graph Convolutional Networks (GCN) [33], Column Networks [35],
and GraphSAGE [29]. Still, they have been proposed for homogeneous,
non-layered graphs and graphs in which proximity is more relevant to
embeddings than the structural role of the nodes. Extensions and so-
lutions have been lately proposed for handling these limitations
[36–38].
In this research, we opted for GraphSAGE [29] (Graph Sample and

Aggregate) framework due to the following reasons:

• GraphSAGE is an inductive approach to node embedding genera-
tion, which facilitates generalization across graphs with the same
form of features.
• It comprises an unsupervised setting, which emulates situations
where node features are provided to downstream machine learning
applications, as a service or in a static repository.
• It has multiple aggregator architectures, i.e., functions defined for
aggregating node embeddings according to its sample neighbor-
hood.

Fig. 4 illustrates the approach implemented by GraphSage. Its main
goal is to learn useful representations by aggregating features from a
node’s local neighborhood iteratively and then use graph-based loss
function to fine-tune weight matrices and aggregation functions’ para-
meters. This graph-based loss function enforces similarities on re-
presentations of nearby nodes.

4. PingUMiL

In this section, we present our PingUMiL1 approach, which is a
framework for using Machine Learning techniques to add missing in-
fluences in the captured game provenance using a graph-based re-
presentation through Machine Learning. The idea behind PingUMiL is
to create machine learning models capable of, given learned vector
representation of pair of nodes, determine if a type of influence occurs
between these pair of nodes. Fig. 5 presents an overview of the Pin-
gUMiL framework.
However, before going deeper into the framework’s workflow, it is

vital to define Machine Learning terminology in the current paper’s
context. The framework encompasses two phases: model training and
model usage.
During model training, Machine Learning algorithms receive as

input a dataset related to the task to be learned. A data point in a da-
taset is called an example. In a supervised setting, an example is com-
posed of a set of feature attributes = …X X X X[ , , , ]k1 2 and a target at-
tribute y. In a classification task, the target is within a discrete set of
values. Thus, an example can be seen as a vector X y[ , ]. In our case, the
attributes of an example are the data associated to a pair of nodes, and
we have a classification task where the target is a Boolean value in-
dicating the existence or not of an edge connecting those nodes.
Here, the training phase encompasses the act of feeding the set of

positive (target y value is True) and negative (target y value is False)
examples to an algorithm that tries to learn a model M capable of
classifying data accordingly, based on the provided data. In the model
usage phase, we call prediction the process of feeding new (real-world)
data (a set of attributes) to the trained model M to classify the target y
accordingly; in our case, real-world data is composed of the attributes

Fig. 4. Visual illustration of the GraphSAGE sample and aggregate approach
[29].
Source: http://snap.stanford.edu/graphsage.

Fig. 5. Overview of the PingUMiL framework.

1 https://github.com/sidneyaraujomelo/PingUMiL.
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related to a pair of nodes. Thus, given a candidate edge, the trained
model will try to predict if the candidate edge should be taken as a valid
edge and inserted into the enhanced graph, or taken as an invalid edge
and ignored. Finally, we call detection the process of, given a new graph,
sampling candidate edges and predicting their targets.
The general procedure of the framework proposed in this work is to

induce a latent representation of the edges in a provenance graph so
that they become the examples in a classification task, aiming at in-
ducing a model that discriminates whether an candidate edge is a valid
edge. For example, we may intend to know whether or not a given edge
candidate is a long-range influence edge.
We divided this section into three subsections. Before detailing the

steps, we introduce a motivation scenario in Section 4.1 based on our
guiding example that is revisited in each of the following subsections.
Then, we divided the proposed framework for detecting edges in two
steps: training (4.2) and usage (4.3).

4.1. Motivation scenario

Consider the guiding example presented in Section 2. There are
some influence relationships whose existence are harder to determine
using formulas and functions that leverage only node attributes but are
easily perceived by observation. For instance, Bob, who is a Game
Analytics expert from Game Studio Radical Games, analyzes the sub-
graph from Fig. 2 and notices that Player B (blue nodes) has braked in
node 491 due to Player A (red nodes) overtake and control loss to avoid
a collision. If they had collided, a crash node would have been in-
stantiated in the graph and connected to both Player As control loss and
Player Bs break. However, relationships such as “Player A control loss
influences Player B braking” are not trivial to determine through a
function or formula. The loss control event from A, the brake event
from B, and several attributes such as players positions in the track,
angles, distance, and speed must be taken into account to determine if
an edge should exist between these events. Otherwise, the function
might be more inclined to determine edges that do not represent the
intended relationship but are taken as representative by the function
(here called as false positive edges). Also, the number of interacting
agents during gameplay adds more variables to the problem.
On the other hand, Bob, as a Game Analytics expert, can perceive

more easily when the relationship mentioned above occurs by ob-
servation. By analyzing a recording of the gameplay session, which
could be a provenance graph (such as Fig. 2) or a gameplay video, Bob
can visually determine whenever “Player A control loss influences
Player B braking” occurs, add edges manually to the analyzed prove-
nance graph, and obtain a more detailed representation of the gameplay
session. However, the higher the number of graphs, the higher the cost
of introducing these new edges.
In this context, Bob would benefit from a solution that, given the

game provenance graphs and his example annotation of desired edges,
could generate a model capable of automatically detecting and adding
these edges in other similar game provenance graphs. In a real-life
scenario, Bob would annotate graphs with the desired edges and feed
them to our Machine Learning solution, which would, in its turn,
generate a model for detecting the desired edges. Afterward, Bob can
use the model on every new graph from Speed Challenge to automatize

the desired edges detection.

4.2. Model training

An overview of PingUMiL’s model training is shown in Fig. 6. A set
of provenance graphs is the input to the whole framework. These
graphs must be preprocessed due to node heterogeneity and the defi-
nition of balanced sets of positive and negative example edges for the
downstream classification tasks. Positive example edges are edges that
represent an influence relation between their connecting nodes, while
negative example edges are edges that do not represent an influence
relation between their connecting nodes. After the preprocessing,
graphs are fed to an embedding generation technique which outputs
node embeddings. Then, edges from positive and negative example
edge sets are encoded using their connecting nodes’ embeddings. En-
coded edges are finally fed to a classifier training algorithm. The re-
sulting classifier should be able to detect edges similar to the examples
edge sets and generalize this detection capability to semantically ana-
logous edges in graphs not seen in the training phase.

4.2.1. Pre-processing
The preprocessing step is fundamental for both the node/edges

embedding generation and the training of the classifier tasks and en-
compasses two main tasks: acquiring positive and negative examples
and homogenizing graphs. Fig. 7 presents an overview of the pre-
processing step, where each circle represent a node and each box a list
of attributes attached to that node. Orange boxes represents original
lists of attributes, which might differ from node to node in an hetero-
geneous graph, and green boxes represents lists of attributes after
homogenization. Given an input graph, positive example edges set is
defined by an expert’s annotation, and negative example edges are
sampled from the input graph. Also, the graph is homogenized in order
to provide a specific data structure for subsequent embedding genera-
tion step. Optionally, the positive example edges and their connecting
node’s attributes are used to define the sample criterion for sampling
negative example edges. For both tasks, it is essential to formally define
the provenance graphs in order to understand the algorithms developed
for this step.

Graph definition. Consider a graph =G V E T( , , )v . A node v is defined
as =v V x t( , )v v where xv

n v( ( )) is the node feature vector, is a
mapping function that maps node into a type t Tv and n is a function
that maps a type of node t into an integer that represents the dimension
of the type t. = = …T t i T{ , 1, , | |}v i

d
vi is the set of node types, where

di is the number of dimensions of the type ti. Every dimension of ti
represents an attribute a A such as “speed”, “hp”, “damage”, etc. In
summary, nodes have a vector or features and its dimension depends onFig. 6. Overview of the proposed framework.

Fig. 7. Overview of the preprocessing step.
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the type of the node. Every type t of a node defines a set of attributes so
that each attribute corresponds to a value in the node feature vector.
Using this notation, an activity node with attributes =HP 10 and

=Speed 5, and provenance label Running, could have, for example, a
type =t provenance type provenance label hp speed( _ , _ , , )x and

=x activity running( , , 10, 5)v . Edges are defined as ×v v V V( , ) . Even
though edge types are present in provenance graphs, they are not in-
serted in this notation for conciseness sake.
Embedding generation is realized through GraphSAGE [29], which

takes as input graphs with homogeneous nodes, i.e., nodes with the
same set of features. Provenance graphs with heterogeneous nodes
must, therefore, be mapped into homogeneous nodes. That can be
achieved by creating a new type = = …t l l t i T{ | , 1, , | |}i v . A homo-
geneous node is defined as =v x t( , )v , where xv

t| | is composed of
the original values of node feature vector xv, respecting attributes’ order
and default values for previously unaddressed features. We illustrate
that in Fig. 7, where the input graph contains 7 nodes of two types:
(A,B,C) and (A,B,D). The output graph, on the other hand, contains only
1 type of node: (A,B,C,D). In this case, for example, the homogeneous
node 5 receives all values from its heterogeneous version and a default
value for the attribute D. In a real-world scenario, the default value for
an attribute should be determined by the game designer or analyst. For
example, a possible default value for the Speed attribute is 0 if a game
object does not possess a Speed attribute, assuming that it probably does
not move.
Once all the nodes are homogeneous, any non-numeric attribute

must be mapped into one-hot-vector representations, i.e., a k-dimen-
sional binary vector with a single ‘1’ value, where k is the number of
possible values of the non-numeric attribute and the position of the ‘1’
value represents the attribute value.
Positive and negative example edges are necessary for following

binary classification tasks. Positive examples, as shown in Fig. 7, can be
obtained through expert annotation. In our example scenario, Bob is
interested in the “Player A control loss influences Player B breaking”
influence. In this step, Bob would make annotations on available graphs
in order to generate the set of positive example edges. After annotating
positive example edges, Bob could randomly sample disconnected pairs
of nodes to compose the set of negative example edges. However, in
order to enhance the quality of the training, he could also apply some
criteria based on his set of positive example edges to generate a more
competitive set of negative example edges.
Positive example edges types are used to determine a sample cri-

terion for negative example edges. Let = …L l l, ,v n1 be the set of node’s
provenance label values, where li is a provenance label such as “Flying”,
“ChangedGear” or “Landing”. Then, we define edge types as =z l le i j
where l l L,i j v. For example, an edge connecting a node with the
“Flying” provenance label with another node with the “Landing” pro-
venance label has the type “Flying Landing”. We define +ZE as the set
of edge types of all positive example edges. This defines the first cri-
terion for acquiring negative example edges, i.e., a negative example
edge e must have an edge type +z Zk E . Therefore, the set of negative
example edges types is defined as +Z ZE E .
Consider that, in our guiding example, Bob determines target in-

fluence edges such as those between nodes 491 (Brake event) and 489
(ChangedGear event), shown in Fig. 2, as positive example edge, i.e., an
edge with edge label ChangedGear Brake and apply the aforemen-
tioned criteria, i.e., =+L ChangedGear Brake( )E . Consequently, any
negative edge should have the label ChangedGear Brake.
Still in our guiding example, Bob could check the range of values of

attributes in the positive edge examples and use its values as a criterion
to enhance the quality of the negative edge examples. For example, in
Fig. 2, our positive example is composed of a Brake event with time-
stamp 409 and speed 50 and the ChangedGear event with timestamp
408 and speed 62. A simple criterion could prune negative examples
with speed values much above or much below these speed values.
Another criterion could prune negative examples whose timestamp

differences are much larger than 1. These criteria are optional and
could both be determined by the analyst or derived from game design
rules.
In our example scenario, Bob could use scripts already implemented

for negative sampling example edges using edge types and timestamp
difference as criteria.

Algorithm 1. Provenance to GraphSAGE files conversion algorithm

GraphSAGE is fed with graphs in the NetworkX2 format, JSON files
mapping node ids and node classes, and a numpy array containing node
features (npy file). Node id files map any domain-dependent node id
attribute to an integer id value. For example, in provenance graphs,
node id is a string. Every provenance node id is then assigned to a
unique integer value in the id mapping file. Since our work intends to
generate node embeddings in an unsupervised setting, node class file is
not relevant to embedding generation. Finally, node features are stored
in numpy arrays files. A stored numpy array maps a node id to its re-
spective node features.
Since all the data for these files are stored in the provenance graph

data structure, transformation algorithms must be implemented. The
provenance graph data is structured as an XML file containing nodes
and edges. Every node contains several attributes and its values. Edges
contain their connecting nodes ids and pairs of attribute-values. A tree-
traversing based algorithm could be used to visit provenance nodes and
store the id, attributes, and class values to their respective files, visit
provenance edges and build the graph structure into an instance of a
NetworkX graph. Also, GraphSAGE requires that nodes are divided into
training, test, and validations sets for supervised setting, as well as
edges for the unsupervised setting.
The pseudocode described in Algorithm 1 covers most requirements

2 https://networkx.github.io/.
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to generate GraphSAGE required files from a provenance graph. The
algorithm traverses through node elements and distribute their ids,
classes, and attributes into separate data structures. Then, it traverses
through edge elements, adding edges to the NetworkX graph instance.
The function defineSet distributes edges and nodes into train, test, and
validation sets. Also, the algorithm should take into account the order
of the attributes, since the heterogeneous nodes might have different
attributes, and generate homogeneous nodes that have all attributes in
the same order, including default values for unknown attributes. This is
not covered in Algorithm 1 for conciseness sake.
Back to our illustrative scenario, after annotating similar positive

example edges that represent the influence edge Player A control loss
influences Player B braking, such as edge (491,489) in Fig. 2, and
sampling negative example edges, Bob uses a script from PingUMiLs
framework to homogenize and convert the Speed Challenge graphs to
GraphSAGEs required input files.

4.2.2. Embedding generation
As aforementioned, embedding generation is done using the

GraphSAGE framework, which is based on neighborhood aggregation
techniques and includes several aggregation methods based on func-
tions and neural network architectures. These neighborhood aggrega-
tion techniques are used to aggregate neighbor nodes’ attributes to
generate node embeddings that leverage both the node and its local
context. An exhausting list of aggregation methods implemented within
GraphSAGE is:

1. Mean-based aggregator: this architecture generates embeddings by
taking the element-wise mean of feature vectors.

2. LSTM-based aggregator: this architecture generates embeddings by
feeding a random permutation of the node’s neighborhood to an
LSTM network.

3. Max-pooling aggregator: in this architecture, each neighbor’s fea-
ture vector is independently fed through a fully-connected neural
network. Then, an element-wise max-pooling operation is applied to
aggregate information.

4. Mean-pooling aggregator: similar to the previous one, but using an
element-wise mean-pooling operation.

5. GCN-based aggregator: this architecture generates embeddings by
feeding node and its neighbors’ feature vector into an inductive GCN
(Graph Convolutional Network).

Fig. 8 presents an overview of this step. Using the unsupervised
setting of GraphSAGE with any of the provided methods above to ag-
gregate the representation of the nodes, we finally have the embeddings
that are going to pose as features to a machine learning classifier. Also,
these embeddings can be used for other downstream machine learning
tasks such as clustering and regression, for example. Also, GraphSAGE
generates a trained model for embedding generation MEmb, whose
function is to generate embeddings for new graphs using parameters
and weights learned for older graphs of the same domain. We refer to
models MEmb generated by GraphSAGE as embedding models from now

on.
Back to our scenario, Bob generates node embeddings hv for all

nodes v from all graphs he has used for annotation using a GraphSAGE
aggregation technique of his choice and an embedding model MEmb.

4.2.3. Classifier training
Classification tasks can be done using several predictive models,

such as decision trees or functions, which in turn can be induced based
on optimization algorithms such as stochastic gradient descent.
Nowadays, there is several different libraries and packages available
that implement machine learning algorithms, such as Apache Spark’s
MLLib [39], SciKit-Learn [40], and WEKA [41]. Any of these classifi-
cation tools require input examples in the form of feature vectors and
their respective target classes, which are, in our binary case, 0 or 1.
Input feature vectors are composed of example edges encoded

Fig. 8. Overview of the embedding generation step.

Fig. 9. Overview of the classifier training step.

Fig. 10. Overview of the model usage.
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through their connecting node’s embeddings. In this way, each feature
is one of the dimensions of the input vector, represented in a latent
space. Since generated node embeddings are vectors, all with the same
dimension, it is possible to generate edge embeddings using a simple
function =embed edge v v h h_ ( , ) v v1 2 1 2 where v1 and v2 are the con-
necting nodes of edge e and is an operation such as concatenation,
element-wise sum or cross product. Positive examples, representing
long-range influence, receive target class 1, while negative examples,
which are long-range edges that do not represent an influence relation
between their connecting nodes, receive target class 0.
Finally, classifier training is achieved by feeding the input feature

vectors and their classes. The resulting model can then be used to detect
the targeted edges in provenance graphs. Both edge encoding and
classification training are illustrated in Fig. 9.
In our scenario, Bob uses PingUMiL’s classifier training script to

generate the detection model MD. In this script, he inputs node em-
beddings, sets of positive and negative examples, chooses an encoding
function between the ones available (concatenation or elementwise
multiplication) and SciKit-Learn’s classifier model (such as MLP, SGD).
At the end of the process, the PingUMiL’s script outputs a detection
model MD trained to detect the desired type of edge. Now that Bob has
an embedding model MEmb and a detection model MD for an influence
edge of his interest, he can apply them into new graphs to automatically
detect such edges.

4.3. Model usage

The model usage phase is illustrated in Fig. 10 and is very similar to
the model training phase. The resulting model MD is trained to detect
encoded candidate edges. Given a new graph Gn that should be en-
hanced using model MD, all its nodes must be embedded using the same
architecture and settings employed in the Embedding generation step,
i.e., homogenized and embedded using the embedding model MEmb
produced in step Embedding Generation. Parallel, candidate edges
should be annotated or sampled to reduce the search space and encoded
using the same encoding function employed in the Classifier training
step. Encoded edges are fed to the trained model MD in order to be
predicted as a target edge or not. If positively predicted, candidate
edges are added to the graph. Still, strategies for sampling candidate
edges from this new graph are also needed. Otherwise, one should test
every possible edge, which is a computationally expensive task.
We list below some advice and strategies about sampling candidate

edges for graph enhancement:

• Trivially, as it is not necessary to encode candidate edges using
nodes already connected in graph Gn because doing so, one would
try to detect edges that already exist in Gn.
• Candidate edges could be encoded by capture, similar to a search
window approach, excluding the ones that are already connected.
• Another approach would be to set edge type constraints such as
those defined in the preprocessing step, i.e., candidate edges type
must belong to the target edge type’s set. Both search window and
edge type constraint approaches could be applied simultaneously.

It is worth mentioning that by not using the edge type constraints
approach, the trained model might predict candidate edges positively
with edge types differently from the ones defined in positive examples
training phase. These different edge types come from nodes whose la-
bels were not used in the training step. That means, it is possible that
the model MD detects an influence between pairs of nodes with label
sequence unobserved in the model training. For example, consider that
Bob used only edges of type Brake ChangedGear in the model
training and experimentally opted not to use a type constraint ap-
proach. It is possible that an edge Brake Flying is sampled as a can-
didate edge and positively classified as a valid influence by model MD.
We name this possible phenomenon as “influence discovery.” The

aggregation approach and deep learning architectures used in
Embedding generation step are the premises for the validity of dis-
covered influences.
The aggregation methods aggregate information from sampled

neighbors. In other words, in these methods, a nodes neighborhood
affects its resulting embedding. Also, it is well known that deep learning
techniques are capable of learning relevant unforeseen features and
structures from their inputs. Therefore, candidate edges with un-
observed provenance edge types (in our previous example,
Brake Flying candidate edge), classified positively by the resulting
model MD, could also represent existing influences between nodes, si-
milar to the ones used in the training step (in our previous example,
Brake ChangedGear example edges). Evaluation of these kinds of
candidate edges could be performed by game analytics and game design
experts. Also, we intend to investigate the use of this frameworks re-
sulting models on influence discovery soon.
In our final scenario example step, Bob makes a new Speed

Challenge’s graph Gk homogeneous. After that, Bob uses the edge type
constraint approaches and samples several candidate edges of type
Brake ChangedGear across graph Gk. Finally, he uses a PingUMiL
script that takes the homogeneous graph Gk, the sampled candidate
edges, the embedding and detection models MEmb and MD as inputs and
outputs an enhanced graph +Gk with automatically detected
Brake ChangedGear edges. Also, future graphs can be processed by
the influence edge detector, so that Bob can resume his game analytic
tasks with more thoroughgoing working material.

5. Case study

The following sub-sections illustrate our proposal applied in two
racing game prototypes, detailing every step of the framework. Both
game prototypes are example stages of racing games in which a single
player drives along a single track. The first game is Car Tutorial Unity
(CT),3 presented in Fig. 11a, and the second one is Arcade Car Physics
(AC),4 presented in Fig. 11b. Car Tutorial Unity (CT) is a free prototype
asset for racing games, designed for Unity 3.x, i.e., an older version of
the game engine. The game is single player, contains only a single track,
and uses Unity’s native car physics. Arcade Car Physics (AC) is an open
source prototype implemented in Unity 2018. Like CT, this prototype is
single player and has only one track, even though it provides several
objects outside the track, like bridges and ramps, for simulating physics.
However, this prototype presents a significant difference from CT when
it comes to car physics. AC implements several algorithms over or in-
stead native engine physics, such as Speed Curve, Ackermann Steering,
and Stabilizer Bar Forces [42].
Beyond serving as examples for the PingUMiL framework applica-

tion, both case studies are used for answering the research questions
stated in the introduction. That is, all graphs, edge sets, and models
produced by the steps described in the following subsections are used in
our Experimental Results Section (6).
All datasets and codes mentioned in this section can be found in the

framework’s Github repository.5

5.1. Graph capture

First, we captured provenance graphs from game sessions. We used
the provenance capture algorithm for CT developed by Kohwalter et al.
[14] in CT and adapted with minor changes for AC, mostly due to
differences in physics implementation between both games. The pro-
venance capture algorithm for CT already implemented a simple long-

3 https://assetstore.unity.com/packages/templates/tutorials/car-tutorial-
unity-3-x-only-10.
4 https://github.com/SergeyMakeev/ArcadeCarPhysics.
5 https://github.com/sidneyaraujomelo/PingUMiL.
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range influence edges capturing the following type of edges:
Crash Crash, Crash LostControl, Crash Scraped, Flying Crash,
Flying Landing, Flying LostControl, Flying Scraped, Hand-
Brake LostControl, Scraped Crash, and Scraped Scraped.
Most of these influences have been implemented using a time-con-

strained function. For example, the Crash LostControl edge materi-
alizes the influence A Control Loss event is a consequence of a Crash
event that happened at most 2 s earlier. In our experiment, we consider
these edges as experts annotation and, therefore, as positive examples.
However, it is not our intent to question the validity of these edges or
their capture functions.
For CT, 10 game session graphs were capture, which in total contain

9194 nodes and 47,497 edges. For AC, 3 game session graphs were
capture, which in total contain 4146 nodes and 21,397 edges. Game
sessions were recorded by a group of three testers with no link to this
research. The testers were all male, with age between 20 and 35 years
and considered themselves experienced players.

5.2. Preprocessing

Provenance capture algorithm for CT [14] already implemented
long-range influence edges capture for a previously enumerated type of

edges. As aforementioned, the same provenance algorithm for CT was
adapted and implemented in AC, i.e., the same type of influence edges
was also captured for AC.
Since we take these long-range influence edges as positive examples

annotated by experts, we need to remove them from the graph in this
step for both CT and AC. This is necessary for simulating a scenario
where the input graph does not contain the target edges.

(a) Car Tutorial Unity screenshot. (b) Car Arcade Physics screenshot.

Fig. 11. Racing games screenshots. (a) Car Tutorial Unity screenshot. Source: https://answers:unity:com=questions=582986. (b) Car Arcade Physics screenshot.

(a) Positive example. (b) Negative example.

Fig. 12. Flying Crash edge ex-
amples.

Table 1
Total number of positive and negative examples of CT.

Edge Type Positive Examples Negative Examples

Crash Crash 98 138
Crash LostControl 16 230
Crash Scraped 3 150
Flying Crash 199 266
Flying Landing 42 507
Flying LostControl 90 343
Flying Scraped 1 265
HandBrake LostControl 62 68
Scraped Crash 81 78
Scraped Scraped 2 99
Total 594 2144
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Once the positive example set is defined, it is possible to define the
sample criterion for sampling negative edge examples. The first sample
criterion is the set of types of positive examples. In this case, negative
examples would necessarily connect two nodes with provenance labels
represented in the positive example set, respecting the node label’s
order. For better understanding, a positive and negative example of
Flying Crash edges are shown in Fig. 12. For both examples, the
nodes are colored according to the player’s speed value, i.e., the higher
the speed, the higher the color saturation. The positive example ex-
hibited in Fig. 12a presents an influence edge of type Flying Crash
between nodes 74 (Flying) and 81 (Crash). In this example, the player
flies, lands, and tries to prevent a crash by not accelerating, which re-
sults in a sequence of ChangedGear nodes. Still, (s) he is not able to
prevent the crash. A case of a candidate negative example is shown in
Fig. 12b. Notice that the edge between node 115 (Flying) and node 118
(Crash) is a positive example. Node 118 (Crash) leads to another Crash
node, i.e., node 119. An edge between nodes 115 (Flying) and 119
(Crash) is a negative example since Crash in node 199 is already a direct
consequence from Crash node 118.
The second criterion is derived from the provenance capture algo-

rithm itself. Kohwalter et al. [14] define a time constraint of two sec-
onds for non-consecutive sequential nodes with most label sequences
defined in the first criterion. We define a relaxed constraint based on
node path distances by using a search window of 10 nodes. That is,
given a node v, we check every non-adjacent node u whose path dis-
tance to v is smaller than 10 and check if the type of the virtual edge

=e u v( , ) belongs to positive example edges’ type’s set; in case it does
belong, the edge becomes a negative example edge. Statistics regarding
all positive and negative examples for CT an AC are shown in Tables 1
and 2, respectively.
Since edge types distribution is unbalanced between negative and

positive examples, both sets are reduced so that every edge type has the
same amount of examples in both positive and negative sets. For this
balancing, edges are chosen at random. Hence, positive and negative
sets will also have the same number of examples. However, for a type of
edge with fewer examples, this might imply in undersampling for this

type of edge. The resulting datasets for both games are shown in
Table 3.

5.3. Embedding generation

Embedding generation is realized using GraphSAGE on its un-
supervised setting. The default settings were applied for most archi-
tectures, except for using 10 epochs, the number of samples in layers 1
and 2 sample_1 = sample_2 =2 and the number of output dimensions
in the first layer dim_1=256. These settings were observed to reach
minimal error during embedding generation. We generated embeddings
with all the available architectures.
Each architecture performance and their resulting embeddings are

evaluated and discussed in Section 6 through several experiments and
simulations.

5.4. Classifier training

Classifier training is realized using positive and negative example
sets defined in the preprocessing step and node embeddings defined on
the previous step. We adapted node classification evaluation algorithms
provided by GraphSAGE so that it takes encoded edges as inputs and
their labels as output. As aforementioned, edges are encoded using the
connected node’s embeddings. We used concatenation to encode node
embeddings into edges. After preparing the data for the classifier
training, we opted for Sci-kit learn [40], a well-known Machine
Learning library in python that provides several supervised learning
models based on many well-known solutions (linear models, SVM,
Decision Trees, and Neural Networks).
Also, we discuss the performance of classifier models when de-

tecting edges using embedded data for both AC and CT graphs through
several experiments and simulations in the following section.

6. Experimental results

In this section, we describe how our solution may answer the pro-
posed research questions through the experiments described in Section
5.
We test the performance of PingUMiL generated classifier models

for AC and CT. Three main settings describe a model: aggregation ar-
chitecture (used in embedding generation step), edge encoding function
(defined in classifier training step), and classifier method (also defined
in classifier training step). In our experiments, every model uses a
combination of the following options:

• Aggregation architecture: LSTM, MaxPool, MeanPool, Mean, and
GCN
• Edge encoding functions: Mult(Elementwise Multiplication) and Cat
(Concatenation)
• Classifier method: MLP (multilayer perceptron neural network
classifier), SGD (Stochastic Gradient Descent based classifier), and
SVM (Support Vector Machine based classifier).

For example, a model PingUMiL.LSTM +Concat +MLP(100,1) is
a model which relies on the LSTM aggregator for embedding genera-
tion; a concatenation function for edge encoding; and an MLP neural
network whose architecture is described by a tuple (k,n) where the k
represents the number of hidden units per layer and n represents the
number of hidden layers, i.e., MLP(100,1) is an MLP with a single

Table 2
Total number of positive and negative examples of AC.

Edge Type Positive Examples Negative Examples

Crash Crash 38 31
Crash LostControl 11 85
Crash Scraped 6 127
Flying Crash 51 125
Flying Landing 136 278
Flying LostControl 29 165
Flying Scraped 8 217
HandBrake LostControl 4 15
Scraped Crash 56 38
Scraped Scraped 11 153
Total 350 1234

Table 3
Total number of edge examples of both CT and AC.

Edge Type CT Examples AC Examples

Crash Crash 196 62
Crash LostControl 32 22
Crash Scraped 6 12
Flying Crash 398 102
Flying Landing 84 272
Flying LostControl 180 58
Flying Scraped 2 16
HandBrake LostControl 124 8
Scraped Crash 156 76
Scraped Scraped 4 22
Total 1182 650

Table 4
Averaged time (seconds) duration of CT’s embedding generation step.

LSTM MaxPool MeanPool Mean GCN

61.236 25.823 24.876 22.367 20.175
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hidden layer with 100 units.
In our experiments, we measure precision, recall, and f1-score [43]

for encoded edges of both case studies in a stratified k-fold cross-vali-
dation setting [44]. That means, encoded edges are split into k folds.
One fold is taken as the test data set while the remaining ones are taken
as the training data set. Then, a model is fit on the training set and
evaluated on the test set. This procedure is realized k times so that every
fold is used as test set once. In our results, we show the average mean of
all folds measured metrics. Regarding k-fold cross-validation of our case
studies, CT is divided into 7 folds while AC is divided into 4 folds. We
opted for these respective number of folds so that each fold from both
game prototypes have approximately the same amount of edges.
We compare the generated classifiers from PingUMiL against tra-

ditional classification methods using features without provenance and
the same classifiers as before (SVM, MLP, and SGD). We call features
without provenance the attribute values attached to each node in the
original provenance graph, such as speed, acceleration, position, but
without the provenance graph structure and, therefore, without the
relational nature of the data. In this scenario, each node is an entry in
the game log. The features without provenance were fed to these
methods in order to provide a baseline. The primary motivation of this
baseline is to investigate whether the use of embeddings enhance edge
detection over features without provenance and answer the research
questions Q2. We also use these experiments to answer research ques-
tion Q1 since both classical and graph representation approaches are
applied for influence detection.

6.1. Car Tutorial

As aforementioned, Car Tutorial example edges were split into 7
folds and fed into several different learning settings, leading to more
than 60 models. Tables 4 and 5 presents averaged time duration of
embedding generation (for all CT nodes) and some classifiers’ training
step, respectively, which shows that GraphSAGE is capable of proces-
sing a vast number of nodes, and learning embeddings for them in, at
most, 62 s. Each combination of fold and model is trained 50 times, and
their performance is measured and averaged for each fold and each
model. Table 6 presents some results for the generated models’ analysis.
All averaged metrics presented in Table 6 has variance<0.002. The best
average performance was achieved by LSTM-based aggregation
method, concatenation as edge encoder and an MLP neural network
with approximately 67% on all metrics, which implies in a 13% gain

over the best baseline.
We observed that the aggregator architectures Mean and GCN tend

to score less than the other architectures on several experimental set-
tings for CT. Also, in some settings, models composed of these archi-
tectures presented metrics lower than baseline. A similar trend holds for
the classifier methods SVM and SGD. Therefore, it is possible that these
architectures and methods are not suitable for the intended task with
CT graphs.
LSTM, MaxPool, and MeanPool aggregation architectures, on the

other hand, have shown more than 10% gain over baseline with MLP
based classifiers. The results show little variation between edge en-
coding functions and MLP architectures with these aggregation archi-
tectures. Still, the most relevant results were achieved with the number
of hidden layers n between 1 and 10 and hidden units per layer k be-
tween 100 and 512.
In Fig. 14, we compare results the performance of three models per

fold. First, PingUMiL.LSTM +Cat +MLP(100,2), which presented the
best overall metrics in Table 6. Then, PingUMiL.LSTM +Cat +MLP
(100,1), which achieved best average recall and F1 with 72,2% and
71,9%, respectively, also in fold 1. Finally, PingUMiL.LSTM +Mult
+MLP(100,1), which achieved the best average precision in fold 1
with 72,3%. It’ is possible to perceive that the distribution of the me-
trics among folds of the Cat models are very similar. The MLP(100,1)
architecture’s values seem to vary less, which leads to the intuition that
adding more layers to the MLP does not improve performance sig-
nificantly. Comparing Cat models and the Mult model, it is possible to
notice that the latter tends to present less variance, except for fold 7.
These top performances suggest that PingUMiL generated models cap-
able of detecting target edges. We expect similar results for AC ex-
periments.
Another relevant observation about the aforementioned top per-

formances is that they were achieved on the same fold (fold 1).
Analogously, several models performed better on fold 1 than on the
other folds. It is possible that fold 1’s edge sets have some characteristic
or pattern which improves model training. Therefore, we intend to
investigate it further soon.
After evaluating the overall performance of the generated models,

an in-depth investigation regarding the quality of predictions per type
of edges was realized. For this investigation, the output of a generated
PingUMiL.LSTM +Cat +MLP(100,1) model for each test fold is taken
randomly. We took the number of false negatives (FN), which are valid
indirect edges predicted as invalid indirect edges; false positives (FP),
i.e., invalid indirect edges predicted as valid indirect edges; true ne-
gatives (TN), invalid indirect edges predicted as invalid indirect edges;
and true positives (TP), valid indirect edges predicted as valid indirect
edges.
It is possible to observe in the Fig. 13, in which the horizontal axis

lists edge types and the vertical axis represents the number of edges
predicted as FN, FP, TN, and TP, that a trend holds for most edge types:
most edges are correctly classified (TP and TN outnumbers FP and FP)

Table 5
Averaged time (seconds) duration of CT’s classifier training.

Classifier LSTM MaxPool MeanPool Mean GCN

MLP(100,1) 3.811 4.912 3.104 2.577 3.033
MLP(100,2) 2.504 3.109 3.021 1.9 2.327
MLP(256,1) 6.802 8.3 6.903 4.922 5.062
SGD 0.128 0.122 0.122 0.125 0.12

Table 6
Averaged results of CT classifiers in a 7-fold cross-validation setting.

Approach Precision Recall F1

Without Provenance + SVM 0.249 0.293 0.261
Without Provenance +MLP 0.381 0.382 0.381
Without Provenances + SGD 0.545 0.542 0.534
PingUMiL.LSTM+Mult+MLP(100,1) 0.673 0.663 0.664
PingUMiL.LSTM+Mult+MLP(100,2) 0.641 0.654 0.638
PingUMiL.LSTM+Cat+MLP(100,1) 0.664 0.662 0.661
PingUMiL.LSTM+Cat+MLP(512,1) 0.672 0.656 0.662
PingUMiL.LSTM+Cat+MLP(100,2) 0.674 0.668 0.669
PingUMiL.MeanPool+Cat+ SGD 0.605 0.598 0.575
PingUMiL.Mean+Cat+MLP(100,1) 0.613 0.618 0.614
PingUMiL.GCN+Mult+MLP(100,2) 0.549 0.567 0.538

Fig. 13. Overall prediction results per edge type in CT graphs.
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and the number of false positives is higher than the number of false
negatives.
In our understanding, false negatives are more dangerous to Game

Analytics tasks than false positives. In a real-world scenario, a false

negative would be a valid influence edge incorrectly predicted and,
therefore, not inserted in the graph enhanced by PingUMiL. On the
other hand, a false positive is an edge that (1) makes no sense in its
neighborhood context and can be ignored by the game analyst or (2)
represents an unforeseen influence with regard to edge examples fed to

Fig. 14. Boxplots of the Precision, Recall and F1 metrics for 3 CT PingUMiL models per fold.

Table 7
Averaged time (seconds) duration of AC’s embedding generation step.

LSTM MaxPool MeanPool Mean GCN

58.839 24.061 20.936 18.328 17.091

Table 8
Averaged time (seconds) duration of AC’s classifier training.

Classifier LSTM MaxPool MeanPool Mean GCN

MLP(100,1) 4.719 4.126 4.501 4.467 4.831
MLP(100,2) 2.117 1.872 1.965 1.839 2.517
MLP(256,1) 7.726 6.445 6.656 6.08 8.176
SGD 0.131 0.148 0.14 0.138 0.144

Table 9
Averaged results of AC classifiers in a 4-fold cross-validation setting.

Approach Precision Recall F1

Without Provenance + SVM 0.249 0.334 0.273
Without Provenance +MLP 0.394 0.394 0.394
Without Provenance + SGD 0.596 0.578 0.575
PingUMiL.LSTM+Cat+MLP(100,1) 0.696 0.7 0.697
PingUMiL.LSTM+Cat+MLP(100,2) 0.695 0.69 0.692
PingUMiL.LSTM+Cat+MLP(256,1) 0.696 0.702 0.698
PingUMiL.LSTM+Cat+ SGD 0.662 0.613 0.608
PingUMiL.MeanPool+Mult+MLP(100,1) 0.646 0.638 0.641
PingUMiL.Mean+Cat+MLP(100,1) 0.665 0.628 0.646
PingUMiL.GCN+Cat+MLP(256,1) 0.695 0.663 0.678
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PingUMiL model. That last possibility would need to be validated by the
game analyst and could lead to refinement of the model and discovery
of new influences edge types.

6.2. Arcade Car

The Arcade Car example edges were split into 4 folds and fed into
the same learning settings used in CT experiments. Tables 7 and 8
presents averaged time duration of embedding generation (for all AC
nodes) and some classifiers’ training step, respectively. Similarly, each
combination of fold and model is trained 50 times, and their perfor-
mance is measured and averaged for each fold and each model. Table 9
presents some results for the generated models’ analysis. All averaged
metrics presented in Table 9 had variance < 0.002. The best average
performance was obtained by LSTM-based aggregation method, con-
catenation as edge encoder and an MLP neural network with approxi-
mately 70% on all metrics, which implies in a 10% gain over the best
baseline.
Regarding the aggregation architecture, the highest performances

were again achieved using LSTM. However, different from CT experi-
mental results, the Mean and GCN aggregators achieved a better per-
formance than the baseline classifiers in several experiments, while
MaxPool aggregator presented lower performance compared to the

Fig. 15. Overall classification results per edge type in AC graphs.

Fig. 16. Boxplots of the Precision, Recall and F1 metrics for 3 AC PingUMiL models per fold.
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baseline methods.
Notice that most of the results in Table 9 use the Cat (Concatena-

tion) edge encoding function. Most models using Mult (elementwise
multiplication) encoding function performed worse than its con-
catenation counterparts. Results for the model PingUMiL.MeanPool
+Mult +MLP(100,1) achieved the highest performance using a
model with the “Mult” edge encoding function.
The performance reached by the MLP classifiers were analogous to

the previously discussed CT experiments, except for the use of 256
hidden units, which tended to outperform other MLP configurations. In
Fig. 16, we compare results from all metrics for models PingU-
MiL.LSTM +Mult +MLP(256,1), which achieved best averaged result
in Table 9, PingUMiL.GCN +Cat +MLP(256,1), which achieved the
best average precision and F1 in fold 4 with 77,1% and 74,3%, re-
spectively, on fold 4, and PingUMiL.MeanPool + Cat +MLP(256,1),
whose average recall achieved 74% in fold 4. In general, the boxplots
corroborates with the balanced performance achieved by LSTM. For
both Precision and Recall, even though GCN and MeanPool models,
respectively, achieved the best average value in fold 4, the distribution
per fold shows that LSTM is still more reliable. Nevertheless, these
measures corroborate the edge detection capability of PingUMiL
models.
Similar to fold 1 in CT experiments, folds 1 and 4 concentrated best

performance metrics in their experiments, especially for LSTM models.
This repeated behavior confirms that fold composition influences the
model’s performance and must be investigated in the near future.
Observing the results presented in both Tables 6 and 9, it is possible

to answer the research questions Q1 and Q2. For Q1, Machine Learning
techniques can detect influence between game components represented
as edges in a game provenance graph, given that the models achieved
above 77% average precision. For Q2, PingUMiL best performance
presents a gain of at least 10% over classical machine learning ap-
proaches. These performance results points that game data structured in
provenance graphs are capable of providing better information to the
model since every embedded node aggregates itself and its neighbor-
hood attributes during the model training step.
Similar to the previous subsection, we investigate the model’s per-

formance regarding the quality of predictions per type of edges using a
generated PingUMiL.GCN +Cat +MLP(256,1) model for each test
fold. Fig. 15 shows a bar graph in which the horizontal axis lists edge
types and the vertical axis represents the number of edges predicted as
FN, FP, TN and TP. Different from the results in CT, AC presents the
smallest gap between incorrectly detected examples (FN and FP) and
correctly detected examples (TN and TP). In Flying Landing,
Flying LostControl, and Scraped Scraped edges, the number of TN
is higher than TP, i.e., the models managed to correctly predict invalid
examples easier than valid ones. Consequently, the number of FN is
higher than FP, which is dangerous for the reasons already discussed in
the previous subsection: a false negative edge is a valid influence edge
incorrectly predicted and, therefore, not inserted in the graph enhanced
by PingUMiL, which leads to missing information to Game Analytics
tasks.

7. Conclusion

This work, to the best of our knowledge, is the first attempt in the
literature to combine machine learning and game provenance. We in-
troduced PingUMiL, a framework for enhancing game provenance
based on graph-based representation learning, motivated by a long-
range indirect edge detection task. PingUMiL includes four steps for
running edge detection tasks on game provenance graphs: graph cap-
ture, pre-processing, embedding generation, and classifier training.
These four steps generate a model which can then be applied for edge
detection and graph enhancement. We found that edge detection,
especially long-range influence edges, is possible using both classic and
graph representation learning based machine learning approaches. For

both approaches, precision and recall metrics in several experimental
settings scored above 50%. Still, models generated by PingUMiL have
achieved better performance than classical machine learning techni-
ques without provenance with a gain of at least 10% on precision, re-
call, and F1 scores. Since we realized experiments in similar games, we
intend to assess the generalization capabilities of such models in the
near future.
During the experiments, some combinations of GraphSAGE’s ag-

gregator architectures and classifier approaches have proven to be
unsuitable for the task at hand due to their poor performance. Since
PingUMiL is a general framework and defines a set of steps for edge
detection tasks, any tool used in our experiments can be substituted in
the future. For example, we intend to investigate the use of other em-
bedding generation techniques soon. Even though GraphSAGE is a
powerful, usable, and expressive embedding generation tool, it still
lacks heterogenous nodes support. It is relevant to mention that the
PingUMiL framework should benefit from upcoming improvements and
advances in graph representation learning techniques.
One of the main assumptions of this research is the cost and effort of

manual addition of edges and implementation of methods for capturing
indirect influences being higher than using our edge annotation based
machine learning approach. As future work, we intend to scientifically
confirm this assumption, by comparing the performance of a model and
human experts in terms of time and soundness.
Also, experiments conducted in our case study game prototypes

intended to assess the framework and evaluate its potential capabilities.
The case study games, in their turn, do not reflect the complexity of the
guiding example presented in the paper or real-world game develop-
ment industry. Instantiating the PingUMiL framework in this type of
scenario is necessary to obtain stronger evidence of this paper’s con-
tribution.
In conclusion, our results suggest that PingUMiL can be a useful tool

for game analytics tasks envolving game provenance graphs such as
long-range influence edge detection. We believe that other several
game analytics tasks can also be attacked by PingUMiL generated
models by performing minor adaptations on the steps described along
this work.
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