
Provchastic: Understanding and predicting game
events using provenance?

Troy C. Kohwalter1[0000−0002−5183−473X], Leonardo G. P.
Murta1[0000−0002−5173−1247], and Esteban W. G. Clua1[0000−0001−5650−1718]

Fluminense Federal University, Niterói RJ 24210-346, BR {troy,leomurta,
esteban}@ic.uff.br

Abstract. Game analytics became a very popular and strategic tool for
business intelligence in the game industry. One of the many aspects of
game analytics is predictive analytics, which generates predictive models
using statistics derived from game sessions to predict future events. The
generation of predictive models is of great interest in the context of game
analytics with numerous applications for games, such as predicting player
behavior, the sequence of future events, and win probabilities. Recently,
a novel approach emerged for capturing and storing data from game
sessions using provenance, which encodes cause and effect relationships
together with the telemetry data. In this work, we propose a stochas-
tic approach for game analytics based on that novel game provenance
information. This approach unifies all gathered provenance data from
different game sessions to create a probabilistic graph that determines
the sequence of possible events using the commonly known stochastic
model of Markov chains and also allows for understanding the reasons to
reach a specific state. We integrated our solution with an existing open-
source provenance visualization tool and provided a case study using real
data for validation. We could observe that it is possible to create prob-
abilistic models using provenance graphs for short and long predictions
and to understand how to reach a specific state.

Keywords: Provenance Graph, Predictive analytics, Markov Chains, Stochas-
tic model

1 Introduction

Game analytics became an emerging field that is very popular and important for
business intelligence in the game industry. It provides a wealth of information
for game designers, including feedback about design and gameplay mechanics,
player experience, production performance, and even market reaction. Thus, the
main goal of game analytics is to support the decision-making process at the
operational, tactical, and strategic levels for game development. Moreover, it is
the main source of business intelligence for the game industry [5].

? Supported by CAPES, CNPq, and Faperj.



2 T. Kohwalter et al.

One of the many aspects of game analytics is predictive analytics [6], which
generates predictive models using statistics derived from datasets to generate
statistical scores to predict future events [2]. Predictive analytics has a lot of
usages in the game domain. It can be used to predict player behavior, sequence
of future events based on the current game state, win probabilities, strategies on
competitive games, or even be used in monetization decisions and increase the
game’s revenue [1].

Thus, the generation of predictive models is of great interest in the context
of game analytics, and is not a new field [7,12,13,15–17]. For example, Dereszyn-
ski et al. [4] presented a probabilistic framework for RTS games based on hid-
den Markov models by counting the number of units and buildings to predict
build order. Yang et al. [19] proposed a data-driven approach to discover combat
strategies of winning teams in MOBA games. Schubert et al. [14] presented a
predicting model for Dota 2 to predict match results based on the encounters
within the game session. Cleghern, Zach, et al. [3] introduced an approach to
forecast changes in the hero’s health in the MOBA game Dota 2 by observing
past game session data. However, none of these works take into consideration
contextual information that might impact in the outcome and use game metrics
over the course of the game session for predictions.

Recently, Kohwalter et al. [10] proposed a novel approach named PinGU1 [10]
for capturing and storing provenance data from a game session based on the
Provenance in Games conceptual framework [9]. The wealth of provenance data
collected during a game session is fundamental for understanding the mistakes
made as well as reproducing the same results at a later moment. However, up to
this point, Kohwalter et al. only focused only on analyzing a single provenance
graph at a time, not comparing different game sessions to understand why some
paths taken by players lead to failure while others succeeded in reaching their
goals. Thus, this led to an opportunity to further explore the applications of this
promising approach for game provenance data due to its wealth of information,
resulting in the following research question:

RQ:Does the use of provenance obtained from multiple game sessions support
predictions and understanding of events for future game sessions?

Therefore, in this work, we propose a stochastic approach for game analytics
based on the tracked provenance data. This approach merges the tracked prove-
nance data from multiple game sessions into a stochastic graph. This stochastic
graph, represented as Markov chains [8], determines the sequence of possible
events, taking advantage of the graph nature of the provenance data to navi-
gate this stochastic model for both prediction and understanding causes for the
events.

Our solution is compatible with an existing open source provenance visu-
alization tool and provide a case study using real game provenance data. We
believe that our stochastic graph supports a variety of usages for game analytics
since it is based on an well-known and vastly used model of Markov Chains.

1 https://github.com/gems-uff/ping



Provchastic: Understanding and predicting game events using provenance 3

Applications can include: AI behavior, human assistant, a decision process for
interactive storytelling, among other possibilities.

This paper is organized as follows: Section 2 presents the existing work in the
literature. Section 3 presents our proposed approach for generating a stochastic
graph based on provenance data. Section 4 presents our case of study. Finally,
Section 5 concludes this work.

2 Related Work

There are many studies related to predicting outcome or strategies in digital
games. Most of these studies are focused on competitive games, such as RTS
or MOBAs. For example, Erickson and Buro [7] proposed a model for predict-
ing the winning player in StarCraft using logistic regression from replay data.
Stanescu and Čertický [15] proposed a prediction system based on the Answer
Set Programming paradigm to predict the number and type of units a StarCraft
or WarCraft III player trains in a given amount of time. Rioult et al. [13] pro-
posed an approach to predict wins and losses based on topological information
using player locations. Synnaeve and Bessière [17] employed Bayesian model to
predict the likely strategies Starcraft players would employ in the beginning of
a game. Summerville et al. [16] used machine learning techniques to predict the
selection of heroes in Dota 2. Below we cite in more details some of the many
related works.

Cleghern, Zach, et al. [3] introduced an approach to forecast changes in the
hero’s health in the MOBA game Dota 2 by observing past game session data
(i.e., replay logs) and splitting the data related to health values into two time
series: one for small changes in health and another for large changes. They used
this splitting approach to predict both types (small and large) of changes using
statistical models. The authors used an auto-regressive moving-average model
for small changes and a combination of statistical models for large changes.
They combined both methods to create a forecasting system to forecast changes
in heath in a game session. However, their approach considers only health data
and not other information of the game session (e.g., events). Furthermore, their
prediction model is constrained by the match duration, lacks contextual infor-
mation, and is only focused on MOBAs.

Yang et al. [19] proposed a data-driven approach to discover combat strategies
of winning teams in MOBA games. The authors modelled each combat as a
sequence of graphs, where each vertex represent a player associated to a role in
the game, resulting in 10 vertices (five for each team). They also created another
special vertex to represent the death state. The edges in the graph represent the
interactions between players, which can be either doing damage on the adversary
or healing a partner, or the death of a player (which connects to the death
vertex). The authors use these combat graphs to train a decision tree based
on the best features using five graph metrics (in-degree, out-degree, closeness,
betweenness, and eigenvector centrality). This tree is then used to mine patterns
that are predictive for winning the game. However, their approach generates



4 T. Kohwalter et al.

Fig. 1. The Provchastic approach overview.

generic high-level rules that does not consider important contextual information
such as heroes, level differences, equipment, abilities used, and positioning. As
such, it cannot reveal the dynamics of each combat, only high level factors that
tends to determine the outcome of the game.

Dereszynski et al. [4] presented a probabilistic framework for RTS games
based on hidden Markov models. Their approach is focused on predicting the
base building order by observing the timing of the current state to predict fu-
ture states based on probabilistic inference. The authors limit the states to the
number of units and buildings. Each state is measured at every 30 seconds of
the game. Their strategy, which is similar to our own, allows to capture the like-
lihood of different choices and the probability of producing particular units in
each state based on the observed events. However, their model is not sufficient
to capture other aspects of the game StarCraft, such as tactical decisions, and
is limited to only the first seven minutes of the game because players tend to
execute their first minutes in isolation and not reactive to the other player’s
tactics and unit composition.

3 Provchastic

Our proposed approach, named Provchastic (Provenance for generating stochastic
models), is a probabilistic approach for game analytics that takes advantage of
a recent approach for tracking and storing game provenance data developed by
Kohwalter et al. [10]. Our stochastic model was inspired by the work of Lins
et al. [11], where they proposed the Timed Word Tree visualization, which is a
variation of Word Tree displays [18].

The idea is to explore the structured nature of provenance graphs to generate
a stochastic model using the commonly known Markov Chains [8]. The stochastic
model is derived from a set of provenance graphs from captured game sessions,
resulting in a unified provenance graph that contains the probabilities to change
states. Our proposed Provchastic approach is divided in two major phases: (1)
provenance unification and (2) stochastic model creation. Figure 1 gives
an overview of these phases and how they are related, which we describe in more
details in the following sections.



Provchastic: Understanding and predicting game events using provenance 5

3.1 Provenance unification

The first major phase is responsible for the creation of the unified graph, which
is used to generate the stochastic graph. The process of creating a unified graph
requires four procedures, as illustrated by Figure 2: (1) a matching heuristic to
match vertices from different graphs, (2) the definition of vertex similarity, (3)
vertex merge, and (4) a graph merge. The merge process occurs by merging
two graphs at a time and, consequently, the matching heuristic uses only two
graphs at a time as well.

Fig. 2. Provenance unification process.

A matching heuristic for vertex selection is used to restrict the search space
for vertex matching and avoid making a Cartesian product between vertices from
both graphs. One solution for graph matching is graph isomorphism. However,
this is a NP-Complete problem and thus we look for heuristics to make the
problem resolvable in a reasonable time. Furthermore, the heuristic decides how
the comparison between vertices from different graphs is made. It always chooses
two vertices (one from each graph) to pass to the Vertex Similarity algorithm
for comparison.

Currently, we use a heuristic that employs temporal information to define
the order to compare vertices from provenance graphs generated from the same
game (e.g., different players playing the game or multiple game sessions from
the same player). This matching heuristic takes advantage of the chronological
nature of provenance graphs to prune the search space. Once a corresponding
vertex from the second graph is found for the matching, then both vertices that
were matched are never again revisited. Figure 3 provides an overview of the
matching process used by our Matching Heuristic.

The Vertex Similarity algorithm, also known as the distance metric func-
tion, always compares two vertices (e.g., v1x and v2y) for the (similarity) eval-
uation to establish the similarity between them. The similarity value between
two vertices ranges from 0 to 1, where 0 represents total mismatch (0%) and 1
represents a total match (100%). Consider G1 = (V 1, E1) as a directed graph
where V 1 = v11 , v

1
2 , . . . , v

1
n and consider G2 = (V 2, E2) as a directed graph where

V 2 = v21 , v
2
2 , . . . , v

2
m. The comparison algorithm always compares vertices v1x and

v2y at a time, where v1x ∈ V 1 and v2y ∈ V 2 and V 1 6= V 2.
This Vertex Similarity process has three steps: (1) vertex type verifica-

tion, (2) attribute evaluation, and (3) similarity evaluation. Furthermore,



6 T. Kohwalter et al.

Fig. 3. Matching Heuristic process.

the comparison algorithm uses user-defined parameters for the merge process
that are associated with each attribute. The user needs to inform the value that
represents the acceptable error margin for each specific attribute and the weight
of that attribute for the similarity calculation.

The first step from the Vertex Similarity algorithm is the vertex type
verification. This step receives two vertices (v1x and v2y) from the matching
heuristic and checks the type of v1x and v2y to verify if they match. If they belong
to the same vertex type (i.e., Agent, Activity, or Entity) then it proceeds to the
second step (attribute evaluation), which evaluates the attributes from both
vertices. In the case where the types are mismatched, then the vertices are not
considered similar and the comparison is halted, setting a similarity factor of
0%, skipping the second step (attribute evaluation), and going directly to the
third step (similarity evaluation).

The second step of the algorithm, which is the attribute evaluation,
tries to match each attribute from one vertex (v1x) with the same attribute from
the other vertex (v2y), comparing their values. This comparison also searches
the parameters inside the merge configuration file to verify the acceptable error
margin for the attribute when dealing with numeric values. Thus, if the difference
between the numeric values is lower than the accepted error margin, then the
attribute values are considered similar.

The third step, which is the similarity evaluation, determines if v1x and
v2y can be considered similar and thus suitable for combining into a single vertex
in the unified graph. The similarity factor, which is used for the evaluation, is
calculated from the number of attributes that were considered similar in both
vertices during the second step. The similarity factor is then compared with
the similarity threshold. If the similarity factor is below the accepted similarity
threshold, then v1x and v2y are not considered similar. However, if the similarity
factor is equal or greater than to the similarity threshold, then both vertices
can be considered similar vertices. Note that these two vertices are the ones
received from a matching heuristic. If two vertices are similar, then the algorithm
merge them into a single vertex with all attributes from both vertices and their
respective values plus a new attribute named GraphFile that shows the origins of



Provchastic: Understanding and predicting game events using provenance 7

this new merged vertex, which is the name of the graphs that were used during
the merge process.

The Graph Merge process is the last process to create a unified graph. This
occurs only after the matching heuristic finishes matching vertices from both
graphs. All the resulting merged vertices and vertices that were not matched are
added in the unified graph. Then, after adding all vertices in the unified graph,
we add all edges.

Finally, an important step is the distance metric configuration. This step
uses the merge configuration file, which contains parameters that are used dur-
ing the merge process, such as error margin, similarity threshold, and attribute
weights for computing the overall similarity of the vertex.

3.2 Stochastic model creation

The proposed stochastic approach is based on the stochastic model of Markov
Chains, which describes a sequence of possible states with the probability of
occurring being dependable of the previous state. We use the unified provenance
graph, which was described in the previous section, to derive statistical informa-
tion about the states that occurred in all of the provenance data and to calculate
the probability of jumping from one state to a neighboring state. The generation
of our Markov stochastic model is composed of two steps.

The first step is to calculate the frequency metric for each vertex and edge
of the unified graph. We define the frequency metric as the number of graphs
inside the GraphFile attribute divided by the number of total graphs used in all
merges that composed the unified graph. This frequency metric is then used to
determine the Markov probability for an state to happen based on the previous
state.

The second step is to calculate the Markov probability for each edge based
on the frequency metric. We calculate two types of Markov probabilities for each
edge: one for navigating to the future state (future probability) and another
when navigating to the past state (past probability). The probability of reaching
a future state is used for predicting the next state. The past probability is useful
for determining common states that happened before the current state, allowing
the analyst to determine the path with the highest probability to reach a desired
state, understanding how this state was reached in the game.

Its important to remember that the edge orientation in provenance graphs
always points from the present to the past, by definition. Thus, if we want to
navigate in the graph to predict future states, then we need to traverse the graph
in the direction of the source of the incoming edge. If we want to analyse the
past states, then we need to traverse the graph in the direction of the target
of the outgoing edge. Therefore, if we want to determine the probability of the
next state, we need to: (1) Look at how many incoming edges the vertex has;
(2) Check each incoming edge frequency ; (3) Divide each edge’s frequency by the
vertex frequency.

It is also important to remember that the sum of all incoming edge’s frequency
will always be equal to the vertex’s frequency. If there is only one incoming edge,



8 T. Kohwalter et al.

Fig. 4. Abstract example of a provenance graph embedded with Markov probabilities
for short predictions. The vertex frequency is represented inside the vertex.

then its frequency is equal to the vertex’s frequency. If there are more than one
incoming edge, then their frequency acts as a weight value when distributing the
probabilities for taking each path.

Calculating the probability to go to a previous state is analogous. The dif-
ference is using the outgoing edges instead of incoming edges. The procedure to
calculate those Markov probabilities for each path can be summarized as follows:

for each edge in graph do
sourceVertex ← edge.source
targetVertex ← edge.target
edge.markovFutureProbability ← edge.frequency / targetVertex.frequency
edge.markovPastProbability ← edge.frequency / sourceVertex.frequency

This procedure embeds the Markov probability information to navigate both
ways in the provenance graph in each edge of the graph. Thus, given a game state,
we know the probability to transit to another neighboring state by checking the
edge that connects the given state. Figure 4 illustrates an example of an abstract
provenance graph with the Markov probabilities for short predictions, considering
both ways. Navigation probability to the future is represented by right arrow (→)
and for the past is represented by left arrow (←). This Markov embedding is
related only to short predictions, which is the immediate vicinity of the current
state. Calculating long predictions (multiple states ahead) is achieved by simply
determining a path in the graph that connects the current state with the desired
state and multiplying all the Markov probabilities of the edges that composes that
path. Figure 5 illustrates an example of the same abstract provenance graph with
the Markov probabilities for long predictions originating from the vertex marked
as source.

Another information resulted from the long predictions calculations is the
prediction of a particular outcome or event happening at least once in the near
future. The event type information is embedded in the provenance vertex and
is used in parallel when calculating the probability to reach a specific vertex.
For example, Figure 6 illustrates another (different) graph with embedded long
predictions showing the probability to reach at least one of each of the existing
different events. This type of prediction is achieved by calculating the probability



Provchastic: Understanding and predicting game events using provenance 9

Fig. 5. Same provenance graph from Figure 5 embedded with Markov probabilities for
long predictions originated from the vertex marked as source. The interpretation for
the vertices at the right side of the source (i.e., the future) refers to the probability
of reaching each vertex. On the left side of source (i.e., the past), the interpretation is
related to common states that led to the source.

Fig. 6. Example for predicting possible outcomes for the source vertex. Outcome types
are distinguished by the vertex border color: Red, black, yellow, and purple.

to reach the first event of the desired type for each existing path that leads to
that event type and then sum these probabilities of each path for each event
type.

3.3 Implementation

We implemented an open source module that allows for merging multiple prove-
nance graphs to generate the unified graph. Our module also computes the
Markov probabilities and embeds them in the unified graph as described in the
previous section. The resulting unified graph is compatible with the open source



10 T. Kohwalter et al.

provenance graph visualization tool Prov Viewer2, allowing the user to visually
analyze and explore our stochastic graph.

Our module also generates short predictions when building the unified graph.
Long predictions requires the desired source vertex as an input, which is used
to compute the probabilities to reach all other vertices present in the graph and
to generate a new unified graph with this information embedded in each vertex.
This method allows us to load the generated graph into Prov Viewer in order
to generate a visual representation of the predictions.

4 Case Study

In this section, we validate our proposed approach for provenance graphs through
a case study analysis. The following research question guided our study:
RQ:Does the use of provenance obtained from multiple game sessions support
predictions and understanding of events for future game sessions?

Our case study is based on the adaptation of the Car Tutorial from Unity
asset store 3. This prototype has only one racetrack and focuses on the arcade
style racing game. In addition, there are no opponent cars, only the player’s car
to simulate a practice run. The prototype gathers provenance data related to key
events and actions executed during the game session, along with their effects on
other events, to compose the provenance graph (e.g., crashing the car, pressing
the car’s brake, losing car control, accelerating, coasting, etc.).

We generated a provenance stochastic model for this study using our ap-
proach from 75 provenance graphs of the game that were captured from 75
gaming sessions using PinGU [10]. We used a similarity threshold of 95% and
error margins for each attribute of approximately 20% (some attributes have
slight different error margins due to the observed domain values). Thus, consid-
ering the total number of attributes (eight), a vertex is only considered similar
to another vertex if all their attributes are considered similar.

This unified graph is composed of 2,302 vertices and 8,201 edges extracted
from all game sessions, where each graph represents one complete lap in the
track. In contrast, the sum of all vertices and edges from the original 75 graphs
is 7,840 and 16,494, respectively. Thus, the unified graph had a 70.63% reduction
in the number of vertices and 50.27% reduction for the edges. We then used this
generated unified provenance graph for the analysis described in the following
paragraphs.

In Figure 7 we have a different example that shows two different states that
are almost in the same coordinates in the track, but with a difference: the source’s
speed of the left graph is around 35km/h (Slower Vertex ), while the right graph
is only at 200km/h (Faster Vertex ). We can see that this small difference causes
different possible outcomes, as show in Table 1. Thus, we can observe that, at
this point of the track, being slower increase the probability to crash the car by

2 https://github.com/gems-uff/prov-viewer
3 https://assetstore.unity.com/packages/templates/tutorials/car-tutorial-unity-3-x-

only-10



Provchastic: Understanding and predicting game events using provenance 11

13% due to miss-calculating the necessary turn from the lack of speed, resulting
in tighter turn and crashing at the side-way of the road, as illustrated at the
zoomed section of the figure marked with a red circle. In contrast, going faster
increases the chances of the car losing contact with the ground by 9% due to a
slight decline in that section of the track.

Fig. 7. Contrasting the different probabilities from two states with similar coordinates
in the game. Vertex color is based on the probability of reaching it.

Figure 8 shows an example of different possibilities for outcome due to small
differences in the game state. The left graph’s source vertex is in the process of
decelerating (Decelerating Vertex ), while the right graph is maintaining speed
(Accelerating Vertex ). Table 1 shows the differences in probabilities, which re-
sulted in a 20% chance to crash while decelerating vs 3% while accelerating at
that moment due to increased chances to lose car control to instability while
braking. This can be observed in the figure by analysing the differences in the
marked region inside the yellow rectangle.

Fig. 8. Contrasting the different probabilities from two states with similar coordinates
in the game.

Figure 9 shows an example of our stochastic model being used to understand
the common paths that led to a particular state, or how to reach it. The vertex



12 T. Kohwalter et al.

Table 1. Contrasting long term predictions

Figure 7: Event Probability Faster Vertex Slower Vertex

Lost Contact w/ Ground 86.2% 78.5%

Crash 33.4% 46.3%

Lost Control 44.7% 35.7%

Figure 8: Event Probability Decelerating Vertex Accelerating Vertex

Lost Contact w/ Ground 1.2% 17.5%

Crash 20.1% 3.3%

Lost Control 9.4% 3.5%

Scrapped 17.1% 11.8%

circled in red is the source vertex and represents a crash. Looking at that state’s
past in our stochastic graph we can see the most common pathways that lead to
that outcome. The yellow and blue circles denotes the region with past events
with the most probable cause due to the vertex greenish coloration. The red path
denotes the general path taken that led to that crash. Looking at these vertices,
and comparing to the others nearby, we could see two things that influenced the
crash: the high speed, which in turns decreases the maximum turn rate of the
car, and their positioning that, when maintaining a high speed does not allow
to make that sharp curve without crashing at the side-rails.

Fig. 9. Analysing the most probable causes of a crash.

Our stochastic model, in the form of unified provenance graph, allows to
determine possible outcomes and probable causes of a particular game state.
Thus, answering our research question:

RQ: Does the use of provenance obtained from multiple game sessions sup-
port predictions and understanding of events for future game sessions?
Answer: Provenance graphs indeed can be used to create stochastic models
based on Markov chain, for example, to predict short and long-term out-



Provchastic: Understanding and predicting game events using provenance 13

comes by navigating the graph in the future and to understand how to reach
a specific outcome by navigating to the past.

5 Conclusion

In this paper we presented Provchastic, a novel approach for game analytics
that creates stochastic models using provenance data from previous game ses-
sions. Our approach is the first work to unify multiple game provenance data
from multiple game sessions for multi-session analysis and to create a stochas-
tic provenance graph that determines the sequence of probable events using the
commonly known stochastic model of Markov chains. This stochastic model al-
lows the analyst to find out common outcomes for different game states, how
they were reached, and to explore multiple game session provenance data at the
same time.

Provchastic is compatible with the existing provenance capture framework
PinGU and the open source visualization tool named Prov Viewer. We demon-
strated its usage in conjunction with Prov Viewer by generating the stochastic
model from 75 game sessions that tracked provenance data. We could observe
that it is possible to create stochastic models using provenance graphs for short
and long predictions and to understand probable causes for certain events. A
limitation of the approach is related to unseen traces. Each query find a similar
state in the existing stochastic model through the similarity algorithm. This can
degrade the results if the closest state that was matched is too different from the
current state. Moreover, the predictions are only available for previously known
traces, which is a limitation on learned systems.

Future works includes finding good patterns in the graphs that reached de-
sirable outcomes in order to improve the chances of reaching the same goal in
future iterations. Similarly, another approach could be related to detecting bad
patterns that should be avoided and compare current player performance with
previous executions and point out the decisions that improved or degraded her
overall performance in the game session. Another future work is to create a real-
time prediction ”helper” to aid the player in the decision making process by
using projections of the outcome for each of her decisions. Finally, our approach
depends on the definition the similarity thresholds. A possible future work con-
sists on discretizing the game scene in multiple regions to run Provchastic in
a less fine-grained graph.This might result in more precise predictions since the
evaluation will be in a more coarse grain while also improving visual legibility
due to having less vertices in the stochastic graph.

Acknowledgment

The authors would like to thank CAPES, CNPq, and Faperj for the financial
support.



14 T. Kohwalter et al.

References

1. Burelli, P.: Predicting customer lifetime value in free-to-play games. Data Analytics
Applications in Gaming and Entertainment p. 79 (2019)

2. Clarke, B.S., Clarke, J.L.: Predictive Statistics: Analysis and Inference Beyond
Models, vol. 46. Cambridge University Press (2018)

3. Cleghern, Z., Lahiri, S., Özaltin, O., Roberts, D.L.: Predicting future states in dota
2 using value-split models of time series attribute data. In: Proceedings of the 12th
International Conference on the Foundations of Digital Games. p. 5. ACM (2017)

4. Dereszynski, E., Hostetler, J., Fern, A., Dietterich, T., Hoang, T.T., Udarbe, M.:
Learning probabilistic behavior models in real-time strategy games. In: Seventh
Artificial Intelligence and Interactive Digital Entertainment Conference (2011)

5. Drachen, A., El-Nasr, M.S., Canossa, A.: Game Analytics: Maximizing the Value
of Player Data. Springer (2013)

6. Eckerson, W.W.: Predictive analytics. Extending the Value of Your Data Ware-
housing Investment. TDWI Best Practices Report 1, 1–36 (2007)

7. Erickson, G.K.S., Buro, M.: Global state evaluation in starcraft.
In: Proceedings of the Tenth AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, AIIDE 2014, October 3-
7, 2014, North Carolina State University, Raleigh, NC, USA (2014),
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/8996

8. Kemeny, J.G., Snell, J.L.: Markov Chains. Springer-Verlag, New York (1976)
9. Kohwalter, T., Clua, E., Murta, L.: Provenance in games. In: Braz. Symp. Games

Digit. Entertain. SBGAMES. pp. 162–171 (2012)
10. Kohwalter, T.C., Murta, L.G.P., Clua, E.W.G.: Capturing game telemetry with

provenance. In: 2017 16th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames). pp. 66–75. IEEE (2017)

11. Lins, L., Heilbrun, M., Freire, J., Silva, C.: Viscaretrails: Visualizing trails in the
electronic health record with timed word trees, a pancreas cancer use case. In:
Workshop on Visual Analytics in Healthcare (VAHC) (2011)

12. Ravari, Y.N., Bakkes, S., Spronck, P.: Starcraft winner prediction. In: Twelfth
Artificial Intelligence and Interactive Digital Entertainment Conference (2016)

13. Rioult, F., Métivier, J.P., Helleu, B., Scelles, N., Durand, C.: Mining tracks of
competitive video games. AASRI procedia 8, 82–87 (2014)

14. Schubert, M., Drachen, A., Mahlmann, T.: Esports analytics through encounter
detection. In: Proceedings of the MIT Sloan Sports Analytics Conference. vol. 1,
p. 2016 (2016)

15. Stanescu, M., Čertickỳ, M.: Predicting opponent’s production in real-time strat-
egy games with answer set programming. IEEE Transactions on Computational
Intelligence and AI in Games 8(1), 89–94 (2014)

16. Summerville, A., Cook, M., Steenhuisen, B.: Draft-analysis of the ancients: predict-
ing draft picks in dota 2 using machine learning. In: Twelfth Artificial Intelligence
and Interactive Digital Entertainment Conference (2016)

17. Synnaeve, G., Bessiere, P.: A bayesian model for opening prediction in rts games
with application to starcraft. In: 2011 IEEE Conference on Computational Intelli-
gence and Games (CIG’11). pp. 281–288. IEEE (2011)

18. Wattenberg, M., Viégas, F.B.: The word tree, an interactive visual concordance.
IEEE transactions on visualization and computer graphics 14(6), 1221–1228 (2008)

19. Yang, P., Harrison, B.E., Roberts, D.L.: Identifying patterns in combat that are
predictive of success in moba games. In: FDG (2014)


