
Information Systems 94 (2020) 101610

V
a

b

c

t
e
f
l
p
a
i
t
X
D
l
e
F
i
m
1

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

XChange: A semantic diff approach for XML documents
Alessandreia Oliveira a,b, Troy Kohwalter a,∗, Marcos Kalinowski c, Leonardo Murta a,
anessa Braganholo a

Instituto de Computação, Universidade Federal Fluminense, Niterói – RJ, Brazil
Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil
Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil

a r t i c l e i n f o

Article history:
Received 12 February 2020
Received in revised form 27 June 2020
Accepted 27 July 2020
Available online 1 August 2020
Recommended by Marlon Dumas

Keywords:
Semantic diff
Match
Similarity
Evolution of XML documents

a b s t r a c t

XML documents are extensively used in several applications and evolve over time. Identifying the
semantics of these changes becomes a fundamental process to understand their evolution. Existing
approaches related to understanding changes (diff) in XML documents focus only on syntactic
changes. These approaches compare XML documents based on their structure, without considering
the associated semantics. However, for large XML documents, which have undergone many changes
from a version to the next, a large number of syntactic changes in the document may correspond to
fewer semantic changes, which are then easier to analyze and understand. For instance, increasing the
annual salary and the gross pay, and changing the job title of an employee (three syntactic changes)
may mean that this employee was promoted (one semantic change). In this paper, we explore this
idea and present the XChange approach. XChange considers the semantics of the changes to calculate
the diff of different versions of XML documents. For such, our approach analyzes the granular syntactic
changes in XML attributes and elements using inference rules to combine them into semantic changes.
Thus, differently from existing approaches, XChange proposes the use of syntactic changes in versions
of an XML document to infer the real reason for the change and support the process of semantic diff.
Results of an experimental study indicate that XChange can provide higher effectiveness and efficiency
when used to understand changes between versions of XML documents when compared with the
(syntactic) state-of-the-art approaches.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Several systems adopt XML (eXtensible Markup Language) [1]
o represent semi-structured data. Many industries and the sci-
ntific communities have adopted XML documents as a standard
or representing, storing, and exchanging data. Consequently, a
arge amount of XML documents is generated every day. Exam-
les include applications in Web Science [2], in the health care
rea [3,4], and the legislative branch [5]. Moreover, the Brazil-
an National Research Council (CNPq) requires every researcher
o store their curricula in the Lattes platform [6], which uses
ML as an exchange format. Additionally, the Brazilian Open
ata Portal contains data published by government agencies re-
ated to supplementary health, transportation system, security,
ducation, government expenditures, electoral process, etc. [7].
inally, Wikipedia periodically generates dump files of the data
t manages: articles, images, categories, constraints, and other
etadata [8]. DBLP does the same for publication data it stores [9,
0].

∗ Corresponding author.
E-mail address: troy@ic.uff.br (T. Kohwalter).
https://doi.org/10.1016/j.is.2020.101610
0306-4379/© 2020 Elsevier Ltd. All rights reserved.
All this data, however, is not static. Similar to data stored
in relational databases, semi-structured data also evolves over
time. The usage of hierarchical structure and user-defined tags [1]
allows for flexibility in data representation. However, this also
introduces challenges to compare XML documents, especially in
large repositories. This problem has been studied in the litera-
ture [11–29]. Unlike traditional textual diff approaches, which
consider lines of text files as atomic elements during the com-
parison of two versions, these approaches are aware of the XML
syntax. Thus, they can compare the elements and attributes of an
XML document, even if they are all on the same line of the file.

Some of these approaches use similarity calculations [30–
34] to compare and identify the corresponding elements across
versions, while others use context keys [35,36], which can be
expressed in the document’s schema [37]. For example, XyD-
iff [14] uses an ID attribute to match elements across versions
of the document. A potential problem, in this case, is that the
keys may not be maintained in all situations. Depending on how
users manage the XML documents, there is no guarantee that the
key values remain the same as the document evolves into new
versions. Also, schemas (which is where IDs are defined) are not
mandatory, so most XML documents do not use them [38–40].

https://doi.org/10.1016/j.is.2020.101610
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2020.101610&domain=pdf
mailto:troy@ic.uff.br
https://doi.org/10.1016/j.is.2020.101610

2 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610

i
d
c
t
m
o
m
s
t
s
(
i
c
p
t
p
(
t

d
p
s
a
i
v
v
p
o
s
b
k
v
d

d
T
d

w
m
i
X
t
t
s
f
s

e
t
c
d
s

i
a
e
S
c

(

Even in the cases where there is a unique and stable ID,
f a large XML document undergoes many modifications, un-
erstanding the underlying meaning of fine-grained syntactic
hanges is difficult. That is, knowing the reasons behind mul-
iple pseudo-aleatory insertions, removals, and updates of ele-
ents and attributes in a large document are not trivial. A key
bservation that motivated our work is that several granular
odifications may together refer to a single modification at the
emantic level. For instance, increasing the annual salary and
he gross pay, and changing the job title of an employee (three
yntactic changes) may mean that this employee was promoted
one semantic change). The existing XML diff-related approaches,
ncluding XyDiff [14] and X-Diff [27], which are the two most
ited approaches in the literature1 and the basis for several other
roposals, only identify syntactic changes. They do not consider
he coarse-grained semantic change that motivated these multi-
le fine-grained syntactic changes, which varies according to the
knowledge) domain. Given this fact, they are not able to identify
he intention behind the changes.

In this work, we propose a semantic diff approach for XML
ocuments, named XChange. The purpose of XChange is to sup-
ort the understanding of the evolution of two sequential ver-
ions (from now on, called v1 and v2) of the same XML document,
s far as the semantic diff is concerned. Thus, Xchange aims at
dentifying the real reason for the modifications that transformed
1 into v2. XChange starts by analyzing the syntax of v1 and
2 to find corresponding elements (matches). In this matching
hase, the user can choose a matching strategy: matching by key
r matching by similarity. The result of this phase is a set of
yntactic differences that XChange incorporates into a knowledge
ase. XChange then uses a set of rules, previously inserted in the
nowledge base, to infer the semantic differences between v1 and
2. The domain expert creates this set of rules, which can vary
epending on the domain.
Our approach was designed to work with data-centric XML

ocuments [41], which have a well-defined, regular structure.
hese documents are usually shallow and wide, and represent
ata instead of formatting or other syntax-related information.
We evaluate XChange through an experimental study where

e compare XChange with X-Diff [27] since X-Diff produces
ore precise results than XyDiff [20]. The goal of this study

s to answer the following research questions (RQ): (RQ1) Is
Change’s semantic change identification more effective in providing
he means for users to understand the XML document evolution
han X-Diff’s syntactic changes identification? (RQ2) Is XChange’s
emantic change identification more efficient in providing the means
or users to understand the XML document evolution than X-Diff’s
yntactic changes identification?

The results of our evaluation indicate that XChange is more
ffective and more efficient when compared with X-Diff. Even
hough our proposed approach produces a larger delta file when
omparing to X-Diff, the summary and structure of XChange’s
elta allowed the participants to find the correct answers in a
horter time without having to go through the entire document.
We organize this paper as follows: Section 2 provides a guid-

ng example that we use throughout the paper to explain our
pproach. Section 3 describes our approach. Section 4 provides an
valuation of our approach and discussion of the obtained results.
ection 5 presents the related work. Finally, Section 6 provides
onclusions and future work.

1 According to Google Scholar, XyDiff has 614 citations, while X-Diff has 525
citations collected on August 29th, 2019).
2. Motivational example

Consider an XML document related to employee registration,
obtained from the Baltimore City Hall [42]. This XML docu-
ment has the following data: employee name (⟨name⟩), job title
(⟨jobtitle⟩), agency code (⟨agencyid⟩), agency name (⟨agency⟩), hire
date (⟨hiredate⟩), annual salary (⟨annualsalary⟩), and gross pay
(⟨grosspay⟩). The XML document is also organized in three depth
layers: ⟨government⟩, ⟨employee⟩, and the employee data. Fig. 1
illustrates a small but didactic fragment from this XML document
with four employees. This fragment represents the first version of
the document (v1). Another XML fragment of the same document,
presented in Fig. 2, shows the second version (v2) of the XML
document, which is a revision of v1 containing changes in three
of the original employees, a removed employee registry, and a
new employee registry.

Fig. 2 shows three employees that appear in both versions of
the document (v1 and v2) marked in yellow. This yellow marking
represents changes made in some elements of the document. For
example, employee Aaron, Pat had changes in her name to Aaron,
Patricia G, as well as her gross salary and annual salary. Fig. 2 also
has green, gray, and red markings. Green markings, as illustrated
in the employee named Aaron, Petra L, represent new additions
that are present only in the current version (v2) and not in the
previous one (v1). Red markings represent deleted elements in
the current version (v2), such as employee Adams, Diane. Version
v2 is, therefore, a consequence of the evolution of the data of the
employees in the document.

We can easily identify these changes after an analysis of the
two versions of this small XML document fragment, even without
the color notations used in Fig. 2. However, in the case of a
company with a considerable number of employees, this analysis
is not trivial. For example, the original document of the City
of Baltimore (version v1) contains 13,966 employees. To keep
up with changes made in XML documents, we need a method
that detects the exact differences between two versions of the
document, that is, what has been changed from one version to an-
other in terms of the structures that compose an XML document
(i.e., elements and attributes).

Additionally, in documents with large amounts of data, such
as this sample document from the City of Baltimore, the identi-
fication of syntactic differences may not be enough to help users
understand what changed, since the number of changes may be
overwhelming. Instead, a semantic diff would be more helpful to
identify, for example, that Aaron, Petra L was hired, that Adams,
Diane was fired, and Aaron, Patricia G had a salary raise, among
other changes.

3. XChange: Semantic DIFF of XML documents

This section provides an overview of XChange, an approach to
support the understanding of XML document evolution based on
inference. The purpose of XChange is to enable the user to identify
and understand semantic changes when analyzing versions of
an XML document. Unlike existing approaches, XChange uses
syntactic changes and a set of rules to infer the reason for the
changes and support semantic diff.

Fig. 3 presents an overview of XChange. At first, a domain
expert must configure the tool for the knowledge domain of the
XML document so that XChange can compute the semantic diff
between two sequential (not necessarily consecutive) versions
of an XML document. However, this configuration is done just
once for each domain. After that, the end-user can use XChange
multiple times to compare versions of different XML documents
that belong to that domain. Fig. 3 shows two distinct roles that
interact with XChange: the domain expert, who does the XChange

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 3

(
d

f
s
(
i
I
e
s
e

Fig. 1. XML document related to Baltimore’s City Hall employee registration at its first version (v1).
Fig. 2. XML document related to Baltimore’s City Hall employee registration at its second version (v2) using color markings to show the differences between v1 and
v2. Green represents new additions, red represents deletions, yellow represents changes, and gray represent unaltered data. . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
f
b
a
S

R
e
m
c
e

configuration for a given knowledge domain, and the end-user
called user from this point on) that compares the versions of the
ocuments belonging to that domain.
The domain expert must perform two main activities to con-

igure XChange: (1) to define matching rules and (2) to define
emantic enrichment rules. The Definition of Matching Rules
Section 3.1) aims at creating rules for identifying the correspond-
ng elements in two sequential versions of an XML document.
n this paper, we consider only two ways to identify matching
lements in XML documents: matching by key and matching by
imilarity. A key matching rule could, for example, indicate that
lements of two versions of an XML document match when one
(or more) of their sub-elements have equal values (e.g., same
Social Security Number). The similarity matching rule uses arti-
icial IDs, which are obtained from the analysis of the similarity
etween the elements of the XML document versions, to indicate
matching. We provide more details of these matching rules in
ection 3.1.
The second activity is the Definition of Semantic Enrichment

ules (Section 3.2). The domain expert can define these rules
ither manually or by using a semiautomatic process. The simpler
anual rules could only indicate whether the document has
hanged or not. However, the domain expert can also define more
laborate manual rules, where several modifications are grouped

4 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610

i
t
i
c

c
a
s
R
o
m
v
w
i
t
e
s

u
t
m
c
W
v
a
a

v
s
r
a
b
t
i
a
t
P
v

Fig. 3. UML activity diagram with an overview of XChange.
s
i
P
a
t

t
t
a
s
a
t
w
t

3

t
u
w
a
s
(
C
t
i
d

b
i
s
d
o

a
o

o
a

nto a single semantic change. For example, a rule might indicate
hat an employee was promoted by considering the syntactic
nformation that she had her salary increased, and her job title
hanged.
Considering that the manual rule-making process can become

omplex even for a domain expert, XChange also provides a semi-
utomatic process for generating semantic enrichment rules. This
emiautomatic process starts by Mining Semantic Enrichment
ules (Section 3.2.2) from a set of XML documents. The purpose
f this mining step is to discover elements of the XML docu-
ent that frequently change together when analyzing sequential
ersions. For example, if a salary increase often occurs together
ith a change in the job title, then the mining process would

dentify this joint occurrence, and the domain expert needs only
o provide a meaningful name for this rule. XChange uses these
nrichment rules, along with matching rules, during the inference
tage to produce the semantic diff.
After the rules are configured for a given domain, an end-

ser can compare two versions of an XML document belonging
o that domain. If the domain expert configures XChange to
atch elements by similarity, then XChange performs the In-
lusion of Similarity ID in the versions of the XML document.
e use the Phoenix approach [20,43] to match elements across

ersions because it is more efficient than the state of the art
pproaches [20]. However, XChange is generic and can work with
ny other similarity algorithm.
Phoenix calculates the similarity between two versions v1 and

2 of an XML document, which ranges from 0 (0% – fully dis-
imilar) to 1 (100% – equal documents). It calculates this value
ecursively by comparing elements with the same parent in v1
nd v2. For each pair of elements, Phoenix considers the similarity
etween their names, their attributes, their textual contents, and
heir sub-elements. Two elements match when their similarity
s greater than a previously configured threshold. XChange then
rtificially inserts a Similarity ID in the elements of v1 and v2
o indicate the match. Then, it occurs the XML translation to
ROLOG (Section 3.3) by transforming each element of the two
ersions of the XML document into Prolog facts [44]. For this
tep, we needed a language that provides the innate capabil-
ty to make inferences, such as Datalog2 [45], RuleML3 [46], or
rolog [47]. We adopted Prolog in XChange. In fact, Prolog has
lready been successfully used to perform queries with inference
o XML documents [44,48].

Finally, XChange does the diff processing via Inference (Sec-
ion 3.4). Our tool constructs the Prolog knowledge base from
he facts and rules generated in the previous steps. XChange then
utomatically queries the knowledge base with the heads of each
emantic enrichment rule. These queries provide as a response
semantic delta containing the elements of the XML document

hat fit into each of the situations modeled by the rules. In other
ords, this delta corresponds to the reason for the evolution of
he XML document, from the former version to the later one.

.1. Definition of matching rules

As mentioned earlier, there are different, XChange provides
wo different ways of identifying matching elements in XML doc-
ments: matching by key and matching by similarity. The simplest
ay to establish the correspondence between elements is the
doption of a key. A key matching rule specified in Prolog is
hown in Fig. 4. This rule uses the ⟨name⟩ element as an identifier
i.e., key) to match the elements of the versions of the Baltimore
ity document introduced in Section 2. This strategy guarantees
he uniqueness of the ⟨employee⟩ element and can also be used
n other scenarios/domains (in this case, with a different key,
epending on the domain).
The user uses the matching rule to identify matching elements

etween two versions, v1 and v2, for example. However, there
s no guarantee that the key value remains the same between
equential versions depending on how users manage the XML
ocuments. For example, a typo might have occurred in the value
f ⟨name⟩ in v1, and someone fixed it in v2. Another related

2 Datalog is a nonprocedural query language based on Prolog that does not
llow complex terms as predicate arguments and have restrictions on the use
f negation and recursion, making it incompatible with XChange.
3 RuleML language was the result of an effort to provide a rule-setting pattern
n the Web and describes both the information and its relationships, thus
llowing inferences. It is a markup language aimed at representing Web-based

inference rules, using Datalog as the inference mechanism.

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 5
Fig. 4. Matching rule by key.
o
a
a
v
m

3

c
p
f

c
q
m
g
c
A
p

i
p
v
c
t
i
a
t
o
i

a
(
v
i
r
i
a
h
p
i

d
i
q
m
a
p

problem is that most XML documents do not have a key element
or an associated schema [38–40]. XChange can use the artificial
similarity ID produced by a preprocessing step that performs
matching by similarity to solve this problem. Thus, the matching
rule presented in Fig. 4 can be used with the artificially generated
identifier as a key, as shown in Fig. 5, to establish the correspond-
ing elements between the two versions of an XML document. For
instance, if two employees have identical names, then the match
by key will still be able to differentiate them. If we instead do
a match by similarity, then Phoenix’s similarity algorithm, which
uses the Hungarian algorithm under the hood, will still be able to
differentiate these employees since they probably have different
attributes, such as mailing address, telephone, etc.

Another possible situation would be name changes due to
marriage or divorce. As discussed before, for this situation the
matching by similarity would still be able to match the employee
before and after the name change due to other unchanged at-
tributes. Similarly, another possible case would be a name change
for one employee (employee_#1) due to a marriage/divorce situ-
ation that results in the same name as another existing employee
(employee_#2). Again, the matching by similarity would correctly
match the employees since employee_#1 and employee_#2 have
other attribute values that would remain unchanged. However,
one way to get an incorrect match would be to change other
attributes, besides the name, in such way that the similarity
between versions for employee_#1 and employee_#2 are tied
or employee_#1 attributes changed so much that employee_#2
now have a greater similarity score with the previous version of
employee_#1. However, this case would probably be exceedingly
rare to happen and the match by key would also prevent this
mismatch.

3.2. Definition of semantic enrichment rules

The domain expert defines the semantic enrichment rules
once for each domain. These rules are later used each time the
user needs to diff two versions of an XML document. The do-
main expert is fundamental in this process of setting the rules,
which he/she can do manually, as described in 3.2.1, or using a
semiautomatic process, as described in Section 3.2.2.

3.2.1. Manually definition of semantic enrichment rules
As an example of a manually defined rule, Fig. 6 presents some

rules defined in the context of the Baltimore City Hall document
introduced in Section 2. The salary_increased rule (lines 1–6) iden-
tifies employees who received a salary increase (⟨annualsalary⟩).
The transferred rule (lines 7–12) identifies employees who have
changed agencies (⟨agencyid⟩) while the fired rule (lines 13–
18) matches to employees who were dismissed. The promoted
rule (lines 19–27) identifies employees who received salary in-
creases (⟨annualsalary⟩) and, also, changed roles (⟨jobtitle⟩), which
means they were promoted. Finally, the promoted_transferred rule
(lines 28–39) identifies employees who were both promoted and
transferred. Note that it is also possible to define rules that are
equivalent to a syntactic diff, which indicates that someone mod-
ified some element, as it is the case of the salary_increased rule.
However, the domain expert can also define more elaborate rules
that groups several syntactic modifications into a single semantic
operation, as is the case of the promoted rule. We say that these
rules produce a semantic diff because they use inference and seek
to understand the meaning (semantics) of these changes.

XChange provides a graphical interface that helps in the cre-
ation of rules, easing the job of the domain expert. Fig. 7 shows
how this interface could be used to create the
promoted_transferred semantic enrichment rule. Initially, the do-
main expert informs the Rule Name, the Output, and the Condi-
tions. For the Conditions, XChange provides combo boxes with all
the element and attribute names that appear in the document.
In this example, the rule name is promoted_transferred, and the
expected output involves the employee’s name (⟨name⟩). The
condition, in this example, is that the job title (⟨job − title⟩)
f the employee in both versions must be different as well
s the agency (⟨agencyid⟩) in which he/she works. Also, the
nnual salary (⟨annualsalary⟩) should be higher in the second
ersion. Using this configuration, XChange generates the pro-
oted_transferred Prolog rule, as shown in Fig. 6 (lines 32–43).

.2.2. Mining semantic enrichment rules
Defining rules manually may be a complex and time-

onsuming task. Therefore, XChange provides semiautomatic sup-
ort for the construction of semantic enrichment rules based on
requent itemsets mining [49].

The goal of the semiautomatic support in XChange is to dis-
over elements of the XML document that change together fre-
uently when analyzing sequential versions and allow the do-
ain expert to build the rules based on the presented sug-
estions. Thus, the association rules mining technique [50] was
hosen for the identification of frequent itemsets. We selected the
priori algorithm [49] and used the Weka [51] mining tool. The
rocess occurs as described below.
Our approach composes the input (training) data for min-

ng from sequential versions of an XML document. XChange ap-
lies the syntactic diff algorithm to each pair of XML document
ersions to generate deltas, which inform which elements have
hanged from one version to another. Our interest is in identifying
he altered elements and the way they changed (for example,
f a given element has had its value increased or reduced). Our
pproach generates a single consolidated delta from the diff of
hese versions. Next, our approach does a preprocessing of the
utput (consolidated delta) so that the Apriori algorithm can use
t.

The Apriori algorithm returns the identified frequent itemsets,
s exemplified in Table 1. In this table, the value associated with y
yes) indicates that an element of an employee changed from one
ersion to another. The values associated with u (up) and d (down)
ndicate that an element changed to a higher or lower value,
espectively, from one version to another. Row 3, for example,
ndicates that it is common to change jobtitle in conjunction with
nnualsalary, which indicates, for example, that some employees
ave been promoted (promoted rule defined in Fig. 6). The Sup-
ort column shows the number of times the Apriori algorithm
dentified the itemset in a total of 1713 transactions.

After this step, our tool passes these suggestions on to the
omain expert. The suggestions are displayed in the graphical
nterface presented in Fig. 8. The domain expert analyzes the fre-
uent itemsets and verifies if these suggestions have any relevant
eaning. If so, the domain expert names the suggestions, giving
meaning to this joint change, as illustrated in Fig. 8 with the
romoted rule (Fig. 6 lines 22–30).

6 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610
Fig. 5. Matching rule by similarity with the use of an artificial identifier.
Fig. 6. Examples of semantic enrichment rules.
Fig. 7. Interface to support the definition of semantic enrichment rules.
Once the domain expert defines the semantic enrichment

rules, either manually or by using this semiautomatic support,

XChange can use these rules in the semantic diff of any version

pair of an XML document from this knowledge domain.
3.3. XML translation to PROLOG

We use the XML to Prolog translation method proposed by
Lima et al. [44], which translates a single XML document to Prolog
facts, transforming elements into predicates and their contents
into constants. Since XChange deals with two documents at a

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 7

T
E

t
⟨

r
o
p

Fig. 8. Suggestions for the definition of semantic enrichment rules using frequent itemsets.
able 1
xamples of frequent itemsets found through data mining.

Changed elements Support

1 agencyid=y annualsalary=u 173
2 jobtitle=y annualsalary=u grosspay=u 182
3 jobtitle=y annualsalary=u 189
4 agencyid=y grosspay=u 190
5 jobtitle=y grosspay=u 195
6 jobtitle=y 209
7 agency=y grosspay=d 252
8 agencyid=y agency=y 257
9 grosspay=d 269

10 agencyid=y 292
11 agency=y annualsalary=u grosspay=u 796
12 agency=y annualsalary=u 931
13 agency=y grosspay=u 1009
14 annualsalary=u grosspay=u 1125
15 annualsalary=u 1269
16 agency=y 1322
17 grosspay=u 1383

time, XChange extends this translation method to use two ver-
sions of an XML document (in this case, before and after) as input
and generate the corresponding Prolog facts. In the Baltimore
City example, excerpts of the translation of v1 and v2 (Fig. 9) are
shown in Fig. 10 to illustrate this process. Our approach performs
the translation of the example in three steps described below:
(1) root translation, (2) complex elements translation, and (3)
simple elements without attributes translation.

The first step translates the root of v1 ⟨government⟩ (line 1 of
Fig. 9) into a fact with the element name and a unique argument
equal to an automatically generated identifier that is used to
establish the link with its child elements, as shown in Fig. 10(a)
at line 1. Note that this is the only modification we made to the
original translation method [44]. In the original method, the ID
is a sequential number. In our modification, the root ID is the
name of the version (we use before and after as names for the
two versions that are being compared).

The second step is the translation of the complex elements,
hat is, those that have other elements as children, such as
employee⟩ in Fig. 9, line 2. Our tool creates a new identifier to
elate the children to their parent. The result is the generation
f a fact with the name of the element and two arguments: the
arent identifier and a newly generated identifier to reference it,
such as employee(before, 2) in Fig. 10(a), line 2. Note that, in this
case, before is the parent identifier.

The third step translates the simple elements without at-
tributes. We show an example in line 3 of Fig. 9 (⟨name⟩ Berube,
Leslie A ⟨/name⟩). The result is a fact with a name equal to the
element name and arguments equal to the identifier of the parent
element, the identifier of the current element, and the content of
the current element, as shown in line 3 of Fig. 10(a) (name (2, 3,
‘Berube, Leslie A’)).

Documents that have other types of elements (such as mixed
elements or simple elements with attributes) are translated fol-
lowing the method proposed by Lima et al. [44].

3.4. Inference

The Inference step is responsible for the semantic diff process-
ing. Our tool constructs the knowledge base with the generated
Prolog facts that represent the versions of the XML document,
the semantic enrichment rules, and the matching rules generated
in the previous steps. Then, queries are submitted to the knowl-
edge base using the heads of each semantic enrichment rule,
which provides as answer the XML elements that were subject
to semantic changes. These elements are then used to build an
XML-formated semantic delta, as shown in Fig. 11. In other words,
this delta corresponds to the reason for the evolution of the XML
document, from a former version to a later one.

Fig. 11 shows that Berube, Leslie A (line 7), and Bond, Filishia
M (line 10) received a salary increase (line 2). Also, the same
two employees (lines 36 and 40) were promoted (line 30), but
only the employee Berube, Leslie A (line 53) was promoted and
transferred (line 46). Moreover, the delta provides some data
summaries. Line 6, for example, shows the total number of em-
ployees identified by the rule (count = 2), as well as the sum
of the salary increases granted (annualsalary = ‘‘7378’’). Line 8
shows the salary of the employee in the two analyzed versions
and the difference between these values (attribute delta).

4. Experimental study: Comprehension of XML document evo-
lution

We did not find any approaches that focus on the semantic
diff to compare with XChange. However, syntactic diff approaches

8 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610

a
o
c
d
X
e
e
u

t
P
p
W
a
p
o
T
f
R
b
w
R
b
w

4

i

Fig. 9. Two different versions of the Baltimore XML file.
lso aim at providing an understanding of the changes that some-
ne made on an XML document. In previous work [20], we
ompared the quality of the delta produced by state-of-the-art
iff algorithms [14,27]. The best approach in terms of recall was
Diff [27]. We thus chose XDiff and XChange to conduct an
xperimental study, aiming at comparing them concerning the
ffectiveness and efficiency of participants in the analysis and
nderstanding of the evolution of XML documents.
We gave the participants a set of tasks that aimed at checking

heir understanding of the evolution of two XML documents.
articipants conducted each set of tasks using a different tool (we
rovide more details on our experimental setting in Section 4.1).
e calculate the effectiveness in terms of the number of correct

nswers obtained in each task, as discussed in Section 4.2.1. Com-
lementarily, efficiency is calculated in terms of the total number
f correct answers per minute, as discussed in Section 4.2.2.
hus, the objective of this experimental study is to answer the
ollowing research questions:
Q1: Does XChange’s semantic change identification allow users to
e more effective in understanding the XML document evolution
hen compared with using X-Diff’s syntactic changes identification?
Q2: Does XChange’s semantic change identification allow users to
e more efficient in understanding the XML document evolution
hen compared with using X-Diff’s syntactic changes identification?

.1. Materials and methods

We created a fictitious situation to facilitate the participant’s
mmersion in the context of the study: The city of Baltimore hired
Table 2
Baltimore fragment #0 characteristics (size in kB).
Fragment v1 v2 v3 v4 v5

#emp Size #emp Size #emp Size #emp Size #emp Size

0 446 121 513 140 647 180 628 170 471 133

the participant (user with experience in manipulating XML docu-
ments). His/her first task in the new job would be to analyze two
versions (v1 and v2) of the employees from the Baltimore’s City
Hall example, the resulting delta, and answer some questions.

We adopted the mining strategy presented in Section 3.2.2 to
generate the semantic enrichment rules. To do so, we split each
version of the XML document into fifteen fragments (named 0 to
14) using the ⟨name⟩ element as a parameter for the horizontal
fragmentation. We then used the first fragment (Fragment #0) of
each version in the mining step (Table 2), which includes only
employees with names starting with ‘‘A’’. To avoid bias due to
subjective interpretations, we used all the 17 itemsets produced
by the mining step as is (i.e., without being analyzed and labeled
by a domain expert) and derived one rule for each itemset. Next,
we used the rules over the remaining fragments to generate the
semantic delta.

We designed a short course about XML diff of approximately
30 min, aiming at introducing the subject to the participants.
Also, we contextualized the experimental study by using an ex-
ample task, like those that the participants would perform during
the experimental study. We showed the participants how to
accomplish that task using both tools (XChange and X-Diff).

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 9
Fig. 10. Prolog facts generated from versions v1 and v2 of Fig. 9.
We developed six tasks inspired by different types of SQL
queries [52]. Since SQL is a powerful and largely adopted language
to query data, using it as inspiration helped us to cross-examine
the possible types of questions one can ask about two versions
of XML documents. Table 3 presents the classification we used,
and the task associated with each type. The columns of the table
deal with the two possible types of results, analogously to the
projection of a query (SELECT clause). In any query, the user can
enumerate the results, or aggregate them (max, min, count, sum).
The rows of Table 3 include selection types that the user can apply
in a query. The first is existential, which compares two sets by
selecting the results that appear in the first set but do not appear
in the second (minus operator). The second line contemplates
changes occurring in the same instance of the result. To do this,
a union (of the corresponding elements) and selection (WHERE
clause) are applied to matched elements (for example, e1.salary
̸= e2.salary, where e1 corresponds to an employee in the first
version, and e2 is the element that matched to e1 in the second
version). Finally, the third row of the table deals with constraints
on the result set. As for the second row, the corresponding el-
ements are joined, and then a HAVING constraint is applied to
filter only the desired results (e.g., the employee with the highest
annual salary increase).

To answer RQ1, we counted the number of correct answers.
We also recorded the duration of each task of the experimental
study at each stage to support the analysis of RQ2. Table 4
shows the dependent variables of this study. We used two treat-
ments for the independent variable that refers to the diff of
XML documents: (1) the syntactic diff produced by X-Diff and
(2) the semantic diff produced by XChange. The participants of
the experimental study were students and alumni of several
courses offered by the Computer Science department at the Federal
University of Juiz de Fora (UFJF), with experience in manipulating
XML documents. We made sure those students were not taking
any courses with the authors of this paper in the semester when
the study was conducted.

We ran a pilot study with the same structure described in this
planning, which we carried out with only two participants before
the execution of the study. The goal was to detect possible prob-
lems in the study execution. Also, a computational environment
was carefully prepared to isolate tasks and provide only the data
and tools needed by the participant at each stage of the study.
The participants did not have access to the internet during the
study.

We invited approximately 200 students and alumni of the Fed-
eral University of Juiz de Fora (UFJF). Sixty of them participated in
the experimental study. The study was divided into five sessions
to accommodate the availability of the participants and to make
sure we could accurately monitor the participants in each session.
All participants filled a consent form and a characterization form
to participate in the study. Then, we presented the introductory
course related to XML diff and the contextualization with an
example task, as previously discussed.

The study participants, selected by convenience, are at the un-
dergraduate level (mostly), master’s, or doctoral level, as shown
in Fig. 12. All the participants have already studied the Database
and Software Engineering disciplines. Fig. 12 also presents the
experience of the participants. Most of the participants are gradu-
ates or undergraduates, with a small group of participants having
more than six years of industry experience while a significant
group has no more than two years of experience in personal and
academic projects. Most of the participants have industry expe-
rience related to Database and Version Control. Besides, about
25% have industry experience with XML and file diff. Most of the

10 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610

T
C

Fig. 11. Semantic delta generated by XChange from applying the Prolog rules shown in Fig. 6 on the facts shown in Fig. 10.
able 3
lassification of tasks.

Enumeration Aggregation

Existential Task 1: Which employees were dismissed? Task 2: What is the financial impact of hiring and firing based
on the annual salary?

Change Task 3: Who was promoted, that is, had a gross salary increase and
changed their position?

Task 4: How many employees have been transferred, that is,
changed agency?

Content Task 5: Which employee had the highest annual salary increase? Task 6: What is the financial impact of gross wage increases?

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 11
Fig. 12. Participants characterization.
p
n
p
s
s
t
t
l
c
t
r

4

T
=

α

t
o
d

participants have experience in XML and diff only from books or
from the attended courses.

We divided the participants into two groups (G1 and G2) for
each of the five sessions. For that, we used the responses of the
characterization questionnaire (summarized in Fig. 12), aiming
at dividing the participants in homogeneous groups for each
session. We randomly divided the participants within each level
of academic training, followed by the degree of XML experience,
when necessary. We used the Latin square [53] design for both
treatments (XChange and X-Diff). Our experimental study plan
divided each session into two steps: step 1 containing the first
three tasks, and step 2 containing the last three tasks. G1 used
XChange, and G2 used the X-Diff tool to complete the tasks of
step 1. During step 2, we switched the tools of each group. Thus,
G1 used X-Diff, and G2 used XChange to complete the tasks of
step 2. We did not inform the participants of the existence and
purpose of this division of tasks into groups, so as not to influence
the execution of the tasks. We also did not inform the participants
which tool we were proposing.

Participants received version v1 and version v2 so they could
consult the documents during their analysis, if necessary, as well
as the resulting delta from the used tool (X-Diff or XChange) to
use in solving the tasks at each step. We advised the participants
to use only the delta in the resolution of the tasks whenever pos-
sible. Finally, participants completed a follow-up questionnaire.
The goal was to obtain qualitative information about the study,
including the participants’ perception of the XChange and X-Diff
approaches.

4.2. Results and discussion

We started by checking if our results followed a normal dis-
tribution. For this, we used the Shapiro–Wilk test [54] with a
95% confidence interval [55]. Both variables (Number of Correct
Answers and Duration) had their normality assumption violated
Table 4
Design of the experimental study.

Dependent variables Number of correct answers (effectiveness),
Number of correct answers per minute (efficiency)

Independent variable XML document diff

Treatments Syntactic diff produced by X-Diff
Semantic diff produced by XChange

Context Real dataset

Dataset Baltimore

since their p-values were lesser than the α-value. Thus, this sam-
le does not follow a normal distribution. Therefore, we used the
on-parametric Mann–Whitney test for two independent sam-
les [56] for the statistical analysis of the data.4 Additionally,
ince we performed six tests (one for each task) analyzing the
ame hypotheses, we apply the Bonferroni correction to adjust
he 0.05 target α-value accordingly. Compared to other correc-
ions, the Bonferroni correction is the most pessimistic option
eading to the smallest adjusted alpha-value [57], leading us to
onservative significance confirmations. The Bonferroni correc-
ion, in our case, adjusts the alpha-value to 0.05/6 = 0.0083. The
esults are shown in Table 5.

.2.1. Effectiveness
Analyzing the results for the number of Correct Answers from

able 5 after applying the Bonferroni correction (α-value
0.0083), tasks 2 and 6 have p-values lower than the adjusted

-value, which indicates a statistically significant difference be-
ween the scores of these tasks using XChange and X-Diff. For
ther tasks, we could not observe significant differences. In ad-
ition, we used Cliff’s Delta (|d|) [58] effect size measure. Cliff’s

4 Experiment data is available at https://dew-uff.github.io/xchange/.

https://dew-uff.github.io/xchange/

12 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610

d
|

X

Table 5
Cliff delta and p-value for the number of correct answers (effectiveness) and
duration variables.
Task Correct answer Duration

Cliff’s delta p-value Cliff’s delta p-value

1 −0.045 0.6510 0.010 0.9469(negligible) (negligible)

2 0.351 0.0081 −0.692
<0.0001(small) (large)

3 0.036 0.7342 0.219 0.1449(negligible) (small)

4 0.131 0.0182 0.089 0.2768(negligible) (negligible)

5 0.002 0.2733 −0.764
<0.0001(negligible) (large)

6 0.554
<0.0001 −0.911

<0.0001(large) (large)

Delta is a non-parametric measure that allows quantifying the
magnitude of the difference between two groups that do not meet
the normality assumptions. We adopted the following interpre-
tation to the Cliff’s Delta values [59]: |d| < 0.147 as a negligible
ifference, 0.147 ≤ |d| < 0.330 as a small difference, 0.330 ≤

d| < 0.474 as a medium difference, and 0.474 ≤ |d| as a large
difference. We highlighted in bold the values where the Cliff Delta
points to a medium or large difference in Table 5.

The stacked bar graphs presented in Fig. 13 show the number
of correct answers, the mean, and standard deviation obtained
in each task of the study. We considered an answer for task 2
as partially correct if it correctly identified the employees that
were fired and hired but did not include the financial impact
calculations, as requested in this task. Similarly, we considered an
answer for task 3 as partially correct if it missed identifying only
one employee and all the identified ones were correct. It is worth
noting that we considered partially correct answers in tasks 2
and 3. This graph complements the results obtained from the
Mann–Whitney and Cliff Delta tests, as shown in Table 5. Fig. 13
also shows that the XChange approach obtained a larger number
of correct answers in all tasks with a statistically significant
difference. The total number of correct answers of participants
who used X-Diff was only greater than those who used XChange
at task 1 but without a statistically significant difference.

RQ1. Does XChange’s semantic change identification allow users
to be more effective in understanding the XML document
evolution when compared with using X-Diff’s syntactic changes
identification?

Answer: Yes. Participants who performed the tasks using
XChange obtained the highest number of correct answers in
all tasks, but task 1. However, differences in tasks 1, 3, 4, and
5 are not statistically significant. Only tasks 2 and 6 had
statistically significant differences. As such, XChange can be
more effective in understanding the evolution of XML
documents when compared with X-Diff. Complementing the
results, participants considered that the delta produced by
XChange facilitates the analyses since it provides
summarizations even though the overall resulting delta is
larger than X-Diff. They mentioned that since they often
needed to go through the whole document to calculate
summarizations when using X-Diff and thus, they were more
subject to errors or incomplete answers.

4.2.2. Efficiency
The boxplots presented in Fig. 14 summarize the XChange and

-Diff distributions for the duration variable, showing significant
Table 6
Cliff delta and p-value for the number of correct answers per minute
(efficiency).
Task Correct answers per minute

Cliff’s delta p-value

1 0.912 (large) 0.6775
2 −0.912 (large) <0.0001
3 −0.935 (large) 0.9399
4 −0.920 (large) 0.5443
5 −0.822 (large) <0.0001
6 −0.948 (large) <0.0001

duration differences for tasks 2, 5, and 6 (as also shown in Table 5)
even when applying Bonferroni correction (α-value = 0.05/6 =

0.0083). Participants using XChange were faster to complete these
tasks than participants who used X-Diff.

After analyzing the duration variable and the number of correct
answers variable, we contrast the efficiency of both approaches
by considering the total number of correct answers per minute
(true positives per run time) as shown in Fig. 15. X-Diff gets more
correct answers per minute (considering the median) for tasks 1
and 3, while XChange gets the most correct answers per minute
for tasks 2, 4, 5, and 6.

We ran the non-parametric Mann–Whitney hypothesis test
and Cliff’s Delta effect size for the results presented in Fig. 15, ob-
taining p-value <α-value with Bonferroni correction (i.e. α-value
= 0.0083) only for tasks 2, 5, and 6. The Cliff’s Delta result for
those tasks showed that their differences were considered large,
as shown in Table 6. Therefore, there is a statistically significant
difference between the scores for tasks 2, 5, and 6 using XChange
and X-Diff. We can conclude that the identification of semantic
changes used by XChange can make the understanding of the
evolution of XML documents more efficient, based on the number
of correct answers per minute than the identification of syntactic
changes used by X-Diff. It is interesting to note that for task
5, the participants in both groups had similar results related to
correct answers but, due to the aggregation nature of XChange’s
summary, they could quickly check all salary increases, without
needing to run through the entire document, and easily point out
the one that increased the most.

RQ2. Does XChange’s semantic change identification allow users
to be more efficient in understanding the XML document
evolution when compared with using X-Diff’s syntactic changes
identification?

Answer: Yes. The execution of the tasks by the participants
using XChange generated more correct answers per minute,
with a significant difference for tasks 2, 5, and 6. In other
tasks, the differences are not statistically significant.
Therefore, XChange is more efficient than X-Diff in
understanding the evolution of XML documents.
Furthermore, the participants mentioned in the follow-up
questionnaire that the size of the delta resulting from the
X-Diff was a positive point since it was smaller than
XChange’s. However, the participants had to go through the
entire document to find the desired answers. The summary
and format of the delta used by XChange, which aggregates
data by semantic changes, helped participants to find the
correct answers in a shorter time, without having to go
through the entire document. Therefore, the participants
could quickly do a search to find the desired semantic
change and see all the changes that belong to that category
in an aggregated list.

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 13

f
c
w
a
e
s
i

Fig. 13. Analysis of the ‘‘Number of Correct Answers’’.
Fig. 14. Analysis of the variable ‘‘duration’’.
c

4.2.3. Intuitive analysis of the results
Task 1 required the participants to find all the employees that

were fired. This is translated, in versioning, as finding all instances
that were present at v1 and absented at v2. For XChange, this
was simply finding the fragment in the delta corresponding to
attr=‘‘name’’ type=‘‘deleted’’ and check all the listed employees.
For X-Diff, the participants were required to look in the entire
delta to locate all employees with ‘‘deleted’’ instances or ‘‘updated
rom’’ in the employee name (i.e., changed name). The second
ase (‘‘updated from’’) is due to X-Diff matching, which can match
rong employees between versions when hiring and firing occur
t the same time (e.g., fired some employees and hired other
mployees) and mark them as an update. For example, in a
ituation where employee Valeria is fired and employee Carlos
s hired and no other changes (no additional hiring or firing)
 s
happened, X-Diff matches employee Valeria from the previous
version with employee Carlos from the new version and marks
that Carlos was ‘‘updated from’’ Valeria. In both tools, this can be
accomplished with the search operation, so there was no clear
difference in efficiency and effectiveness.

Task 2 required the participants to determine the financial
impact based on annual salary due to all the hiring and firing of
employees between document versions. This task was similar to
task 1, with the addition of also finding all new employees and
calculating the sum of the annual salary of all employees that
were hired minus the sum of the annual salary of all employees
that were fired. In XChange, this was accomplished by finding
the fragments related to change attr=name type=‘‘inserted’’ and
hange attr=‘‘name’’ type=‘‘deleted’’ and adding the listed annual
alary from each fragment, which was already a sum of the annual

14 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610

s
D
i
s
h
w
D
e
e
i
p
p
p
t

e
j
t
‘
d
a
i
f
a
s
r

t
a
(
a
S
c

i
t
o
t
‘
r
g

Fig. 15. Total number of correct answers per minute.
a
T
X

w
b
i
a
T
w
l

a
c
r
t
f
i
a
i
t
i

4

v
e
o
i

d
p
p
e
c

w
p
t

alary of all employees that were inside that fragment. The X-
iff process is similar to the one from Task 1, but needed to
nclude the ‘‘INSERTION ’’ elements and the employees at the left
ide of the ‘‘updated from’’, since these were the ones that were
ired. Then, manually computing the difference in annual salary
hen hiring and firing all those listed employees. Therefore, X-
iff required more steps than XChange to find all hired and fired
mployees and needed to read the entire diff file, which is more
rror-prone, and probably this is the reason for having more
ncorrect answers. Furthermore, this is an aggregation task, as
ointed out in Table 3, and the grouped answer of XChange was
robably the reason for being more efficient than X-Diff, since the
articipants needed to find all instances across the document and
hen do the math instead of having them all grouped together.

Task 3 concerned the participants identifying all the employ-
es that had an increase in gross salary and also changed their
ob title. XChange has a single fragment for {change attr=jobtitle
ype=‘‘different’’ AND change attr=annualsalary type=
‘increased’’}. Thus, the participant only needed to look at the
iff file until finding this fragment and list the employees that
ppeared in that fragment. Solving this task in X-Diff was done
n a similar way: the participant needed to search the diff file
or all instances that had ‘‘updated from’’ in both jobtitle and
nnualsalary. Like task 1, this could be accomplished with simple
earch operations and that is probably why it yielded similar
esults in both tools.

Task 4 asked participants to count all employees that were
ransferred. This is translated to finding employees that had
gency change. This is like task 3, but instead of two arguments
jobtitle and annualsalary), we only have one argument change
nd need to count the number of instances instead of listing.
ame as before, this task could be solved with simple search and
ount in the diff file from either approach.
Task 5 required finding the employee that had the highest

ncrease in gross pay. Therefore, the participants were expected
o find all employees that had changes in gross pay and get the
ne that had the biggest variation. XChange provides a fragment
hat lists all employees that had change attr=grosspay type=
‘different’’. Thus, the participant only needed to compare the
esults, that were closed together, and pick the one with the
reatest positive change. X-Diff is done similarly, but the changes
re scattered across the entire diff file instead of being grouped.
his is probably the reason for XChange being more efficient than
-Diff in this task for finding the maximum gross pay change.
Task 6 required to determine the financial impact of gross

age increase. This is like the previous task with the difference
eing summing up all the instances that gross pay was increased
nstead of only finding the max. Furthermore, this is also an
ggregation task, similar to task 2, as pointed out in Table 3.
hus, XChange nature of grouping semantically related changes
as probably the reason for being more efficient than X-Diff and

ess error-prone.
All in all, the probable cause for wrong answers in XChange

cross all tasks could be because the participants found the in-
orrect fragment due to stopping at the first fragment that closely
esembled what was asked. This would be analogous to stopping
he search when finding the local maximum instead of trying to
ind the global maximum. The probable cause for wrong answers
n X-Diff, on the other hand, could be the necessity of looking
t the entire diff file to find all the requested instances, making
t more error-prone due to missing or forgetting one instance or
aking longer to do a mathematical computation when everything
s scattered across the diff file.

.3. Threats to validity

We sought to avoid threats that could impact or limit the
alidity of the results [60] during the planning of this study. How-
ver, we cannot guarantee that such threats have not affected
ur results. Therefore, we describe in this section the threats
dentified in the context of this study.

Our study did not occur in a single day, but in five sessions
istributed in four days, depending on the availability of the
articipants. This might have impacted the results since it is not
ossible to confirm that the circumstances were the same at
ach session. However, we used the same script and the same
omputational environment to minimize this threat.
The execution of the study consisted of two steps. Although

e designed the study to avoid participants’ learning effects,
roviding different tasks at each step, it is not possible to confirm
hat we have completely eliminated this side-effect.

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 15
Another threat to the study is related to the diff generation
from XChange, which requires to use the rules defined manually
by the domain expert or rules from the automatic mining-based
method previously described. In the study, we only used rules
generated from the semantic enrichment process through the
automatic mining procedure to avoid external interference from
domain experts. We used the minimum support of 0.03 to iden-
tify the frequent itemsets to generate these rules. This decision
might negatively affect the XChange results due to the absence of
the domain expert since he/she would provide meaningful names
to the generated rules from the mining process.

The participants’ understanding of the tasks during the study
is related to how we elaborated the tasks. We tried to minimize
this threat by analyzing all the supporting material in a pilot
study to reduce this interference.

Since this is not an observation study, due to the reasonable
number of participants, we assumed that the participants fol-
lowed the instructions and the order of the activities in each task.
However, to minimize this threat, we only presented the second
step of each session after the participant completed the first
step. In addition, another similar threat is related to the duration
of each task. We did not monitor it due to the high number
of participants in each session and expected the participant to
correctly provide the amount of time taken to complete each task
(task duration).

Another threat is related to the nature of using people during
any study that requires the completion of several tasks since
each participant has different problem-solving capabilities. We
minimized this threat by using the characterization questionnaire
answers for dividing the participants into a more homogeneous
group in each session. Furthermore, the participants in this study
are, for the most part, undergraduate students, which limits the
representativeness of the people who could benefit from the ap-
proach. However, some of the students attended or are attending
graduate courses, or have to experience in the industry, which
serves to reduce this type of threat.

Some could argue that the sample size used in this experimen-
tal study is small and limited, making it a threat to the results,
leading in some statistically inconclusive answers. However, 30
participants are considered as a sufficiently large sample for a
controlled experiment [53]. Since we have 60 participants in our
study, this increases the statistical validity of the conclusions we
obtained.

Finally, the grouping of tasks by type tends to assist the
analysis process of the data. However, although some of these
tasks may have a higher degree of difficulty than others, we
assigned the same weight to all tasks, which could influence
the results. Due to the subjectivity in evaluating the degree of
difficulty (which would introduce bias in the data analysis), we
decided to maintain this setup.

5. Related work

Several approaches in the literature [15,16,61,62] compare
XML documents. However, such approaches focus on the syn-
tactic diff, which is related to syntactic modifications in the
documents. Hence, in the Baltimore’s City Hall example, these
approaches can detect, for example, changes in the value of an
employee’s salary. However, they do not convey the meaning of
this change.

Some approaches to detect changes in web pages written
in XML and HTML are also related to our proposed approach.
WebVigiL [61] is a change tracking system for Web pages written
in XML and HTML. The change detection module of this approach
consists of two algorithms: CH-Diff and CX-Diff. CH-Diff is an
algorithm for detecting changes in HTML documents. CX-Diff [15,
16], on the other hand, is a specific algorithm for detecting XML
document changes. The user can specify, for example, the page
he/she wants to monitor, the type of change, and how the tool
notifies the changes. However, this approach can overload the
servers while computing the delta due to the highly expensive
computational cost of the algorithms.

Some diff approaches [12,14,20,21,25,27] are based on a struc-
tural analysis of XML documents. Their main strategy is to find
and match fragments of data in both versions of an XML docu-
ment. After that, they focus on identifying the correct order of
operations that transforms one version of the XML document into
another, independently of the domain. XyDiff [14] is one such
approach that detects the differences between the versions of an
XML document from a hierarchical tree-based approach. XyDiff
uses the XyDelta format [19], a single XML file containing all the
detected differences. By using hashes, XyDiff removes identical
subtrees from the comparison, thus reducing the amount of data
to compare, which provides better performance when compared
with others. XyDiff presents the delta as a list of operations
(insert, delete, update, and move). This output format also easy the
mapping of the delta to another format. Conversely, from the user
perspective, it is more difficult to identify the differences between
the versions.

X-Diff [27] uses unordered trees to detect differences between
versions of an XML document. It focuses on guaranteeing the
minimum delta. The algorithm detects the minimum mapping
between the children of two subtrees, reducing the problem to
a maximum flow problem with minimal cost. When it comes to
large XML documents, its execution time is long because X-Diff
finds the minimal delta in quadratic time. Unlike XyDiff, X-Diff
does not use a list of operations to represent the delta. X-Diff uses
its own version of the XML document to record the differences.
Furthermore, this strategy of representing differences hardens the
reconstruction of the former version from the later version and
the delta. X-Diff only considers the standard operations (insert,
delete, and update).

XRel_Change_SQL [25] detects differences between versions of
an XML document stored in a relational database. This approach
uses SQL queries to calculate the diff. Like X-Diff, it is based on
an unordered tree model. However, it considers the standard
operations (insert, delete, and update) in addition to the move
operation, which detects changes in the order of the subtrees, the
same way XyDiff does.

The DOCTREEDIFF [21] approach considers that an XML docu-
ment is an ordered tree. The algorithm considers all the standard
operations in addition to the move operation. The authors intro-
duce a model that considers the neighboring nodes to achieve
algorithm efficiency to generate good deltas. Their delta model
allows the reconstruction of the previous version from the newer
one. The key idea of the algorithm for detecting differences,
matching and, generating the delta is based on the LCS (Longest
Common Subsequence) algorithm [63] and hash functions.

Tekli and Chbeir [31] also proposed a tree-based approach for
XML grammar matching using edit distances. Their approach uses
a tree representation model for the XML grammar, which consid-
ers the hierarchical aspect and constraints for XML elements. This
hierarchical tree is used for calculating the tree edit distance [64]
to determine structural matches. Similarly, they also proposed
another approach [33] to consider sub-tree structural similarities
when comparing XML documents. This other approach targets
only the XML structure and disregards the content, making it use-
ful for applications that query the document structure. Like the
previous approach, this one also uses the tree edit distance to cap-
ture structure similarities between documents. However, unlike
the former approach, they also use information retrieval semantic
assessment to capture semantic changes in the structure of the

16 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610
documents. This semantic similarity algorithm uses a weighted
semantic network as an input, which acts similarly to a dictionary
for defining semantically similar words, to determine similar-
ities between element names. Tekli et al. [34] also proposed
the Differential SOAP Multicasting (DSM) approach for improv-
ing SOAP protocol for XML documents. DSM identifies common
patterns between SOAP messages, using their previously estab-
lished tree edit distance, to multicast similar parts of the message
to minimize network traffic. These approaches mainly focus on
comparing XML schema, and not content changes from different
versions of the same document, which is complementary to our
approach.

The diffi approach [12] compares two files to calculate their
differences and return a delta file describing the modifications
needed to transform the former file into the later. One interesting
aspect of diffi is that it compares multiple levels of abstractions
instead of only one level, as is common in most diff tools. This
allows for the diffi approach to compare files of different for-
mats, including XML documents. The diffi approach can detect
operations such as addition, deletion, moving, wrapping, and split-
ting. The diffi approach first decodes both files to identify the
abstraction level that they match and then compares the files
by computing the deltas for each comparable abstraction level.
Lastly, it serializes the produced deltas for each abstraction level
to generate the final delta file (or as the authors call it, the ‘‘patch
file’’). However, the authors do not show experimental results nor
evaluate the complexity of the proposed algorithm.

The XSDF approach [32] produces a semantic XML tree using
lexical knowledge bases to identify semantic relationships. This
approach selects ambiguous elements using an ambiguity degree
measure for the disambiguation of XML nodes from different
documents. The user can customize the disambiguation based on
context and/or concept according to her needs. This allows iden-
tifying documents that convey the same data but use different
tags and structure. SemIndex+ [65] is another graph-based index
approach, which maps two textual documents and a semantic
knowledge base to create a semantic aware indexing system to
provide a general keyword query model with broader semantic
coverage. This allows the query to be more semantically flexible.
Differently from XChange, which focuses on content changes
with the same structure, these approaches focus on document
structure with semantically similar tags.

Phoenix [20] calculates the similarity of two versions of a
given XML document with the same schema. It tries to match ele-
ments from one version to the other. For that, it uses the element
name, its content, its attributes, and its children. The matches
produced by the similarity calculation are then used to produce
the optimum delta, which maximizes the global similarity among
elements. This delta is then visually shown to the user. XChange
uses Phoenix to match elements from one version to the other
before calculating the semantic diff.

Lastly, some approaches focus on mining changes in XML
documents. The work developed by Rusu et al. [22] aims at
mining association rules from XML documents. The work focuses
on the mining of dynamic XML documents, that is, documents
that may suffer changes one their structure or content over time,
such as the registration of employees of a company or products
of a supermarket. The approach proposes the construction of a
generic algorithm for extracting association rules in XML docu-
ments, based on Apriori [49]. The proposal uses X-Diff [27] to
generate the consolidated delta with the history of changes that
occurred in the versions of the XML document. The extracted
rules can detect relations between the changes in different parts
of documents – that is, it can detect relationships among the
modifications, deletions, or insertions of elements.

Another work in this line deals with the problem of dis-
covering structures that frequently change according to certain
patterns, considering their dynamic nature [29]. This approach
focuses on mining dynamic structures based on version patterns
of unordered versions of XML documents. The authors use a mod-
ified version of the X-Diff algorithm [27] in the mining process to
support the diff process and propose an algorithm to identify the
changing structures.

Our work is a pioneer in the sense that it can detect the
meaning of the changes of two versions of an XML document,
unlike existing work in the literature.

6. Conclusion

This paper presents XChange, an approach to help to identify
the reason behind modifications in XML document versions. The
identification process is based on the analysis of the syntactic
modifications in attributes and elements of the document. For
this, XChange uses an inference mechanism based on Prolog.
XChange can perform the analysis of sequential versions that are
not necessarily consecutive. XChange works on the identification
of corresponding elements in two versions in two ways: using
matching by key or matching by similarity. In the key matching
approach, the user must indicate a key attribute. Depending on
how the user manages the XML documents, there is no guarantee
that the key-attribute value remains the same between versions
(for example, a typing error may occur in the value of the key
attribute, and later someone fixes that error in a future version).
To mitigate this problem, we also provided an approach based on
similarity analysis.

Although XChange uses Prolog to represent the document and
the inference rules, it does not require the user to be a Prolog
expert since it uses an interface that automatically generates
Prolog rules from a selection of options at a higher abstraction
level. Finally, the generated rules are valid for all documents in
the same domain so that the rule configuration step may occur
only once for a given domain. Note that the domain expert may
revise the rules at any time for a given domain.

Another feature offered by XChange is the semiautomatic con-
struction of semantic enrichment rules based on the mining of el-
ements that were frequently modified together. The Apriori algo-
rithm identifies itemsets of elements that are frequently changed
together and suggests semantic enrichment rules. Then, the do-
main expert validates and name these rules. Rules produced by
the mining process may also be discarded by the domain expert,
as he/she may see fit.

We evaluated our approach through an experimental study
aiming at answering two research questions related to the effec-
tiveness and efficiency of users supported by XChange in under-
standing the evolution of XML documents. We contrasted the use
of our tool with the use of the state-of-the-art approach (X-Diff)
in producing syntactic diffs. XChange allowed users to be more
effective and more efficient when compared with users supported
by X-Diff. Participants indicated that the resulting diff file from
X-Diff is much smaller than that of XChange. However, the par-
ticipants had to go through the entire diff document to complete
the tasks since X-Diff does not summarize the answers. Therefore,
according to the participants, tasks completed with X-Diff was
more time consuming, less intuitive, and more error-prone even
though the resulting delta was smaller.

Conversely, the summarization offered by XChange makes the
resulting delta very large, depending on the original XML docu-
ment. It also does not show the delta information embedded in
the original document – a distinguishing feature of X-Diff. Mean-
while, X-Diff uses the original document to present the diff and
shows the complete document. Moreover, the current version of
our approach assumes that both XML documents follow the same
schema. In situations where documents follow different schemas

A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610 17
(or different versions of the same schema), we suggest applying a
preprocessing step using XSLT or another equivalent technology
to first unify the schemas before running our approach.

As future work, we plan to support other languages, such
as JSON, due to its increase in popularity in recent years. We
also plan to extend XChange, which considers only the evolu-
tion of the data, so that versions with different schemas can
be used in semantic diff. Another possibility would be to allow
users to identify XML element tags that are equivalent in similar
schemas. That is, schemas that have attributes with different
names but the same meaning. Furthermore, we intend to adapt
XChange to provide semantic information from merges. Another
interesting future work would be adding an ontology to con-
sider semantically similar words when identifying the rules using
Apriori.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We would like to thank CNPq, FAPERJ, and CAPES for financial
support.

References

[1] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, Extensible
Markup Language (XML) 1.0, fifth ed., W3C Recommendation, 2008, http:
//www.w3.org/TR/xml/ (accessed November 22, 2018).

[2] V. Getov, E-science: The added value for modern discovery, Computer 41
(2008) 30–31.

[3] M. Argüello, J. Des, M.J. Fernandez-Prieto, R. Perez, H. Paniagua, Executing
medical guidelines on the web: Towards next generation healthcare, in:
T.A.B. MSc, R.E.Bs. MSc, M.P.D. AMBA MBA, MBCS (Eds.), Appl. Innov. Intell.
Syst. XVI, Springer, London, 2009, pp. 197–210, http://link.springer.com/
chapter/10.1007/978-1-84882-215-3_15 (accessed August 17, 2014).

[4] P.T.T. Thuy, Y.-K. Lee, S. Lee, Semantic and structural similarities between
XML schemas for integration of ubiquitous healthcare data, Pers. Ubiqui-
tous Comput. 17 (2013) 1331–1339, http://dx.doi.org/10.1007/s00779-012-
0567-5.

[5] M. Hallo Carrasco, M.M. Martínez-González, P. De La Fuente Redondo, Data
models for version management of legislative documents, J. Inf. Sci. 39
(2013) 557–572, http://dx.doi.org/10.1177/0165551512473723.

[6] CNPQ, CNPQ, Plataforma Lattes, 2017, http://lattes.cnpq.br/ (accessed
August 15, 2012).

[7] Portal Brasileiro de Dados Abertos, Dados Abertos, 2017, http://dados.gov.
br/ (accessed January 2, 2017).

[8] Wikimedia, Wikimedia, 2017, https://dumps.wikimedia.org/ (accessed
January 2, 2017), 2017.

[9] M. Ley, DBLP: Some lessons learned, Proc. VLDB Endow. PVLDB 2 (2009)
1493–1500, http://dx.doi.org/10.14778/1687553.1687577.

[10] M. Ley, DBLP in XML, DBLP, 2003, http://dblp.uni-trier.de/xml/ (accessed
November 22, 2018).

[11] R. Al-Ekram, A. Adma, O. Baysal, Diffx: An algorithm to detect changes in
multi-version XML documents, in: Proc. 2005 Conf. Cent. Adv. Stud. Collab.
Res., IBM Press, Toranto, Ontario, Canada, 2005, pp. 1–11, http://dl.acm.org/
citation.cfm?id=1105634.1105635 (accessed November 18, 2016).

[12] G. Barabucci, Diffi: Diff improved; a preview, in: Proc. ACM Symp. Doc.
Eng. 2018, ACM, New York, NY, USA, 2018, pp. 38:1–38:4, http://dx.doi.
org/10.1145/3209280.3229084.

[13] S.S. Chawathe, H. Garcia-Molina, Meaningful change detection in structured
data, in: ACM SIGMOD Int. Conf. Manag. Data, ACM, New York, USA, 1997,
pp. 26–37, http://dx.doi.org/10.1145/253260.253266.

[14] G. Cobena, S. Abiteboul, A. Marian, Detecting changes in XML documents,
in: Int. Conf. Data Eng. ICDE, IEEE Computer Society, San Jose, California,
USA, 2002, pp. 41–52, http://dx.doi.org/10.1109/ICDE.2002.994696.

[15] J. Jacob, A. Sachde, S. Chakravarthy, CX-DIFF: A change detection algorithm
for XML content and change presentation issues for WebVigiL, in: Concept.
Model. Nov. Appl. Domains, Jeusfeld, ManfredA. and Pastor, Óscar, 2003,
pp. 273–284.
[16] J. Jacob, A. Sachde, S. Chakravarthy, CX-DIFF: A change detection algorithm
for XML content and change visualization for WebVigiL, Data Knowl. Eng.
52 (2005) 209–230, http://dx.doi.org/10.1016/j.datak.2004.05.006.

[17] S. Lim, Y.-K. Ng, An automated change detection algorithm for HTML
documents based on semantic hierarchies, in: Int. Conf. Data Eng. ICDE,
IEEE Computer Society, Heidelberg, Germany, 2001, pp. 303–312.

[18] T. Lindholm, A three-way merge for XML documents, in: ACM Symp.
Doc. Eng. DocEng, ACM, Milwaukee, Wisconsin, USA, 2004, pp. 1–10,
http://dx.doi.org/10.1145/1030397.1030399.

[19] A. Marian, S. Abiteboul, G. Cobena, L. Mignet, Change-centric management
of versions in an XML warehouse, in: Int. Conf. Very Large Data Bases
VLDB, Morgan Kaufmann Publishers Inc., Roma, Italy, 2001, pp. 581–590.

[20] A. Oliveira, G. Tessarolli, G. Ghiotto, B. Pinto, F. Campello, M. Marques, C.
Oliveira, I. Rodrigues, M. Kalinowski, U. Souza, L. Murta, V. Braganholo,
An efficient similarity-based approach for comparing XML documents, Inf.
Syst. 78 (2018) 40–57, http://dx.doi.org/10.1016/j.is.2018.07.001.

[21] S. Rönnau, G. Philipp, U.M. Borghoff, Efficient change control of XML
documents, in: ACM Symp. Doc. Eng. DocEng, ACM, Munich, Germany,
2009, pp. 3–12, http://dx.doi.org/10.1145/1600193.1600197.

[22] L.I. Rusu, W. Rahayu, D. Taniar, Mining changes from versions of dy-
namic XML documents, in: Int. Conf. Knowl. Discov. XML Doc. KDXD,
Springer-Verlag, Berlin, Heidelberg, 2006, pp. 3–12, http://dx.doi.org/10.
1007/11730262_3.

[23] R.C. Santos, C.S. Hara, A semantical change detection algorithm for XML,
in: Softw. Eng. Knowl. Eng. SEKE, Knowledge Systems Institute Graduate
School, Boston, Massachusetts, USA, 2007, pp. 438–443.

[24] Y. Song, S.S. Bhowmick, C.F. Dewey Jr., Biodiff: an effective fast change
detection algorithm for biological annotations, in: Int. Conf. Database Syst.
Adv. Appl. DASFAA, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 275–287.

[25] S. Sundaram, S.K. Madria, A change detection system for unordered XML
data using a relational model, Data Knowl. Eng. 72 (2012) 257–284, http:
//dx.doi.org/10.1016/j.datak.2011.11.003.

[26] C. Thao, E.V. Munson, Using versioned tree data structure, change detection
and node identity for three-way XML merging, in: ACM Symp. Doc. Eng.
DocEng, ACM, Manchester, UK, 2010, pp. 77–86, http://dx.doi.org/10.1145/
1860559.1860578.

[27] Y. Wang, D.J. DeWitt, J.-Y. Cai, X-Diff: an effective change detection
algorithm for XML documents, in: Int. Conf. Data Eng. ICDE, IEEE Computer
Society, Bangalore, India, 2003, pp. 519–530, http://dx.doi.org/10.1109/
ICDE.2003.1260818.

[28] H. Xu, Q. Wu, H. Wang, G. Yang, Y. Jia, KF-diff+: Highly efficient change
detection algorithm for XML documents, in: R. Meersman, Z. Tari (Eds.),
Move Meaningful Internet Syst. 2002 CoopIS DOA ODBASE, Springer, Berlin
Heidelberg, 2002, pp. 1273–1286, http://dx.doi.org/10.1007/3-540-36124-
3_80.

[29] Q. Zhao, S.S. Bhowmick, S. Madria, Discovering pattern-based dynamic
structures from versions of unordered XML documents, in: Data Warehous.
Knowl. Discov., Springer Berlin Heidelberg, Zaragoza, Spain, 2004, pp.
77–86.

[30] C.F. Dorneles, M.F. Nunes, C.A. Heuser, V.P. Moreira, A.S. da Silva, (Edleno
S. de) Moura, A strategy for allowing meaningful and comparable scores
in approximate matching, Inf. Syst. 34 (2009) 673–689, http://dx.doi.org/
10.1016/j.is.2009.05.002.

[31] J. Tekli, R. Chbeir, Minimizing user effort in XML grammar matching,
Inform. Sci. 210 (2012) 1–40, http://dx.doi.org/10.1016/j.ins.2012.04.026.

[32] J. Tekli, N. Charbel, R. Chbeir, Building semantic trees from XML documents,
J. Web Semant. 37–38 (2016) 1–24, http://dx.doi.org/10.1016/j.websem.
2016.03.002.

[33] J. Tekli, R. Chbeir, A novel XML document structure comparison framework
based-on sub-tree commonalities and label semantics, J. Web Semant. 11
(2012) 14–40, http://dx.doi.org/10.1016/j.websem.2011.10.002.

[34] J. Tekli, E. Damiani, R. Chbeir, Using XML-based multicasting to improve
web service scalability, Int. J. Web Serv. Res. 9 (2012) 1–29, http://dx.doi.
org/10.4018/jwsr.2012010101.

[35] P. Buneman, S. Davidson, W. Fan, C. Hara, W.-C. Tan, Keys for XML, Com-
put. Netw. 39 (2002) 473–487, http://dx.doi.org/10.1016/S1389-1286(02)
00223-2.

[36] P. Buneman, S. Davidson, W. Fan, C. Hara, W.-C. Tan, Reasoning about keys
for XML, Inf. Syst. 28 (2003) 1037–1063, http://dx.doi.org/10.1016/S0306-
4379(03)00028-0.

[37] D.C. Fallside, P. Walmsley, XML Schema Part 0: Primer, second ed., W3C
Recommendation, 2004, http://www.w3.org/TR/xmlschema-0/ (accessed
March 18, 2015).

[38] M.Y. Maarouf, S.M. Chung, XML integrated environment for service-
oriented data management, in: 2008 20th IEEE Int. Conf. Tools Artif. Intell.,
2008, pp. 361–368, http://dx.doi.org/10.1109/ICTAI.2008.150.

[39] S. Grijzenhout, M. Marx, The quality of the XML web, Web Semant. Sci.
Serv. Agents World Wide Web 19 (2013) 59–68, http://dx.doi.org/10.1016/
j.websem.2012.12.001.

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb2
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb2
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb2
http://link.springer.com/chapter/10.1007/978-1-84882-215-3_15
http://link.springer.com/chapter/10.1007/978-1-84882-215-3_15
http://link.springer.com/chapter/10.1007/978-1-84882-215-3_15
http://dx.doi.org/10.1007/s00779-012-0567-5
http://dx.doi.org/10.1007/s00779-012-0567-5
http://dx.doi.org/10.1007/s00779-012-0567-5
http://dx.doi.org/10.1177/0165551512473723
http://lattes.cnpq.br/
http://dados.gov.br/
http://dados.gov.br/
http://dados.gov.br/
https://dumps.wikimedia.org/
http://dx.doi.org/10.14778/1687553.1687577
http://dblp.uni-trier.de/xml/
http://dl.acm.org/citation.cfm?id=1105634.1105635
http://dl.acm.org/citation.cfm?id=1105634.1105635
http://dl.acm.org/citation.cfm?id=1105634.1105635
http://dx.doi.org/10.1145/3209280.3229084
http://dx.doi.org/10.1145/3209280.3229084
http://dx.doi.org/10.1145/3209280.3229084
http://dx.doi.org/10.1145/253260.253266
http://dx.doi.org/10.1109/ICDE.2002.994696
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb15
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb15
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb15
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb15
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb15
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb15
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb15
http://dx.doi.org/10.1016/j.datak.2004.05.006
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb17
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb17
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb17
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb17
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb17
http://dx.doi.org/10.1145/1030397.1030399
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb19
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb19
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb19
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb19
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb19
http://dx.doi.org/10.1016/j.is.2018.07.001
http://dx.doi.org/10.1145/1600193.1600197
http://dx.doi.org/10.1007/11730262_3
http://dx.doi.org/10.1007/11730262_3
http://dx.doi.org/10.1007/11730262_3
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb23
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb23
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb23
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb23
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb23
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb24
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb24
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb24
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb24
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb24
http://dx.doi.org/10.1016/j.datak.2011.11.003
http://dx.doi.org/10.1016/j.datak.2011.11.003
http://dx.doi.org/10.1016/j.datak.2011.11.003
http://dx.doi.org/10.1145/1860559.1860578
http://dx.doi.org/10.1145/1860559.1860578
http://dx.doi.org/10.1145/1860559.1860578
http://dx.doi.org/10.1109/ICDE.2003.1260818
http://dx.doi.org/10.1109/ICDE.2003.1260818
http://dx.doi.org/10.1109/ICDE.2003.1260818
http://dx.doi.org/10.1007/3-540-36124-3_80
http://dx.doi.org/10.1007/3-540-36124-3_80
http://dx.doi.org/10.1007/3-540-36124-3_80
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb29
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb29
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb29
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb29
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb29
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb29
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb29
http://dx.doi.org/10.1016/j.is.2009.05.002
http://dx.doi.org/10.1016/j.is.2009.05.002
http://dx.doi.org/10.1016/j.is.2009.05.002
http://dx.doi.org/10.1016/j.ins.2012.04.026
http://dx.doi.org/10.1016/j.websem.2016.03.002
http://dx.doi.org/10.1016/j.websem.2016.03.002
http://dx.doi.org/10.1016/j.websem.2016.03.002
http://dx.doi.org/10.1016/j.websem.2011.10.002
http://dx.doi.org/10.4018/jwsr.2012010101
http://dx.doi.org/10.4018/jwsr.2012010101
http://dx.doi.org/10.4018/jwsr.2012010101
http://dx.doi.org/10.1016/S1389-1286(02)00223-2
http://dx.doi.org/10.1016/S1389-1286(02)00223-2
http://dx.doi.org/10.1016/S1389-1286(02)00223-2
http://dx.doi.org/10.1016/S0306-4379(03)00028-0
http://dx.doi.org/10.1016/S0306-4379(03)00028-0
http://dx.doi.org/10.1016/S0306-4379(03)00028-0
http://www.w3.org/TR/xmlschema-0/
http://dx.doi.org/10.1109/ICTAI.2008.150
http://dx.doi.org/10.1016/j.websem.2012.12.001
http://dx.doi.org/10.1016/j.websem.2012.12.001
http://dx.doi.org/10.1016/j.websem.2012.12.001

18 A. Oliveira, T. Kohwalter, M. Kalinowski et al. / Information Systems 94 (2020) 101610
[40] J. Vyhnanovská, I. Mlýnková, Interactive inference of XML schemas, in:
2010 Fourth Int. Conf. Res. Chall. Inf. Sci. RCIS, 2010, pp. 191–202, http:
//dx.doi.org/10.1109/RCIS.2010.5507523.

[41] T. Grabs, H.-J. Schek, PowerDB-XML: A platform for data–centric and
document–centric XML processing, in: Z. Bellahsène, A.B. Chaudhri, E.
Rahm, M. Rys, R. Unland (Eds.), Database XML Technol., Springer,
Berlin, Heidelberg, 2003, pp. 100–117, http://dx.doi.org/10.1007/978-3-
540-39429-7_7.

[42] Mayor’s Office of Information Technology, OpenBaltimore, 2016, https:
//data.baltimorecity.gov/ (accessed October 14, 2016).

[43] F. Campello, B. Pinto, G. Tessarolli, A. Oliveira, C. Oliveira, M.O. Junior,
L. Murta, V. Braganholo, A similarity-based approach to match elements
across versions of XML documents, in: Simpósio Bras. Banco Dados SBBD,
SBC, Curitiba, PR, Brasil, 2014.

[44] D. Lima, C. Delgado, L. Murta, V. Braganholo, Towards querying implicit
knowledge in XML documents, J. Inf. Data Manag. JIDM 3 (2012) 51–60.

[45] S.S. Huang, T.J. Green, B.T. Loo, Datalog and emerging applications: An
interactive tutorial, in: Int. Conf. Manag. Data SIGMOD, ACM, New York, NY,
USA, 2011, pp. 1213–1216, http://dx.doi.org/10.1145/1989323.1989456.

[46] H. Boley, The rule markup language: RDF-XML data model, XML schema
hierarchy, and XSL transformations, in: Int. Conf. Web Knowl. Manag. De-
cis. Support, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 5–22, http://dl.
acm.org/citation.cfm?id=1767370.1767373 (accessed September 6, 2012).

[47] I. Bratko, Prolog Programming for Artificial Intelligence, Addison Wesley,
Harlow, England; New York, 2001.

[48] Santos, Prolog Versus XQuery Processors: A Performance Evaluation of
XML Queries Processing Methods, Dissertação (Mestrado em Computação),
Universidade Federal Fluminense, 2015.

[49] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Int.
Conf. Very Large Data Bases VLDB, Jorge B. Bocca and Matthias Jarke and
Carlo Zaniolo, Santiago de Chile, Chile, 1994, pp. 487–499.

[50] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets
of items in large databases, in: Proc. 1993 ACM SIGMOD Int. Conf. Manag.
Data, ACM, New York, NY, USA, 1993, pp. 207–216, http://dx.doi.org/10.
1145/170035.170072.

[51] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: An update, ACM SIGKDD Explor. Newsl. 11
(2009) 10–18, http://dx.doi.org/10.1145/1656274.1656278.

[52] R. Elmasri, S. Navathe, Fundamentals of Database Systems, sixth ed.,
Addison-Wesley, 2010.
[53] N. Juristo, A.M. Moreno, Basics of Software Engineering Experimentation,
Kluwer Academic Publishers, 2001.

[54] W.J. Conover, Practical Nonparametric Statistics, third ed., Wiley, New
York, NY, USA, 1999.

[55] P. Royston, Remark {ASR94}: A remark on algorithm {AS181}: The {W}-
test for normality, J. R. Stat. Soc. Ser. C Appl. Stat. 44 (1995) 547–551,
http://dx.doi.org/10.2307/2986146.

[56] F. Wilcoxon, Individual comparisons by ranking methods, Biom. Bull. 1
(1945) 80–83, http://dx.doi.org/10.2307/3001968.

[57] K. Strassburger, F. Bretz, Compatible simultaneous lower confidence
bounds for the holm procedure and other Bonferroni-based closed tests,
Stat. Med. 27 (2008) 4914–4927, http://dx.doi.org/10.1002/sim.3338.

[58] N. Cliff, Ordinal Methods for Behavioral Data Analysis, Psychology Press,
Mahwah, N.J, 1996.

[59] J. Romano, J.D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics
for ordinal level data: Should we really be using t-test and cohen’sd for
evaluating group differences on the NSSE and other surveys, in: Annu.
Meet. Fla. Assoc. Institutional Res., 2006, pp. 1–33.

[60] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-
perimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[61] S. Chamakura, A. Sachde, S. Chakravarthy, A. Arora, WebVigil: Monitoring
multiple web pages and presentation of XML pages, in: Int. Conf. Data
Eng. ICDE - Workshop, IEEE Computer Society, Tokyo, Japan, 2005, p. 1276,
http://dx.doi.org/10.1109/ICDE.2005.306.

[62] J. Tekli, An overview on XML semantic disambiguation from unstructured
text to semi-structured data: Background, applications, and ongoing chal-
lenges, IEEE Trans. Knowl. Data Eng. 28 (2016) 1383–1407, http://dx.doi.
org/10.1109/TKDE.2016.2525768.

[63] D. Maier, The complexity of some problems on subsequences and super-
sequences, J. ACM 25 (1978) 322–336, http://dx.doi.org/10.1145/322063.
322075.

[64] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance be-
tween trees and related problems, SIAM J. Comput. 18 (1989) 1245–1262,
http://dx.doi.org/10.1137/0218082.

[65] J. Tekli, R. Chbeir, A.J.M. Traina, C. Traina, SemIndex+: A semantic indexing
scheme for structured, unstructured, and partly structured data, Knowl.-
Based Syst. 164 (2019) 378–403, http://dx.doi.org/10.1016/j.knosys.2018.
11.010.

http://dx.doi.org/10.1109/RCIS.2010.5507523
http://dx.doi.org/10.1109/RCIS.2010.5507523
http://dx.doi.org/10.1109/RCIS.2010.5507523
http://dx.doi.org/10.1007/978-3-540-39429-7_7
http://dx.doi.org/10.1007/978-3-540-39429-7_7
http://dx.doi.org/10.1007/978-3-540-39429-7_7
https://data.baltimorecity.gov/
https://data.baltimorecity.gov/
https://data.baltimorecity.gov/
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb44
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb44
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb44
http://dx.doi.org/10.1145/1989323.1989456
http://dl.acm.org/citation.cfm?id=1767370.1767373
http://dl.acm.org/citation.cfm?id=1767370.1767373
http://dl.acm.org/citation.cfm?id=1767370.1767373
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb47
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb47
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb47
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb48
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb48
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb48
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb48
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb48
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1145/1656274.1656278
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb52
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb52
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb52
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb53
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb53
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb53
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb54
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb54
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb54
http://dx.doi.org/10.2307/2986146
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1002/sim.3338
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb58
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb58
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb58
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb59
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb59
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb59
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb59
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb59
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb59
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb59
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb60
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb60
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb60
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb60
http://refhub.elsevier.com/S0306-4379(20)30088-0/sb60
http://dx.doi.org/10.1109/ICDE.2005.306
http://dx.doi.org/10.1109/TKDE.2016.2525768
http://dx.doi.org/10.1109/TKDE.2016.2525768
http://dx.doi.org/10.1109/TKDE.2016.2525768
http://dx.doi.org/10.1145/322063.322075
http://dx.doi.org/10.1145/322063.322075
http://dx.doi.org/10.1145/322063.322075
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1016/j.knosys.2018.11.010
http://dx.doi.org/10.1016/j.knosys.2018.11.010
http://dx.doi.org/10.1016/j.knosys.2018.11.010

	XChange: A semantic diff approach for XML documents
	Introduction
	Motivational example
	XChange: Semantic DIFF of XML documents
	Definition of matching rules
	Definition of semantic enrichment rules
	Manually definition of semantic enrichment rules
	Mining semantic enrichment rules

	XML translation to PROLOG
	Inference

	Experimental study: Comprehension of XML document evolution
	Materials and methods
	Results and discussion
	Effectiveness
	Efficiency
	Intuitive analysis of the results

	Threats to validity

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

