
OptimizingMARL: Developing
Cooperative Game Environments Based
on Multi-agent Reinforcement Learning

Tháıs Ferreira1(B), Esteban Clua1, Troy Costa Kohwalter1,
and Rodrigo Santos2

1 Universidade Federal Fluminense, Niteroi, Brazil
thais ferreira@id.uff.br, {esteban,troy}@ic.uff.br

2 Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
rps@uniriotec.br

Abstract. Intelligent agents are critical components of the current game
development state of the art. With advances in hardware, many games
can simulate cities and ecosystems full of agents. These environments
are known as multi-agent environments. In this domain, reinforcement
learning has been explored to develop artificial agents in games. In rein-
forcement learning, the agent must discover which actions lead to greater
rewards by experimenting with these actions and defining a search by
trial and error. Specifying when to reward agents is not a simple task
and requires knowledge about the environment and the problem to be
solved. Furthermore, defining the elements of multi-agent reinforcement
learning required for the learning environment can be challenging for
developers who are not domain experts. This paper proposes a frame-
work for developing multi-agent cooperative game environments to facil-
itate the process and improve agent performance during reinforcement
learning. The framework consists of steps for modeling the learning envi-
ronment and designing rewards and knowledge distribution, trying to
achieve the best environment configuration for training. The framework
was applied to the development of three multi-agent environments, and
tests were conducted to analyze the techniques used in reward design.
The results show that the use of frequent rewards favors the emergence
of essential behaviors (necessary for the resolution of tasks), improving
the learning of agents. Although the knowledge distribution can reduce
task complexity, dependency between groups is a decisive factor in its
implementation.

Keywords: Multi-agent reinforcement learning · Cooperative
environments · Games

This work is supported by CAPES and FAPERJ.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
B. Göbl et al. (Eds.): ICEC 2022, LNCS 13477, pp. 89–102, 2022.
https://doi.org/10.1007/978-3-031-20212-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20212-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-20212-4_7


90 T. Ferreira et al.

1 Introduction

The use of Artificial Intelligence (AI) techniques in electronic games has been
notably explored in recent years [15,19]. This trend can be explained by the
constant advances in research, the evolution in hardware and processing, and
the consumer market demands. Reinforcement Learning (RL) [10] is an AI tech-
nique that has been largely applied and tested in games [20]. In RL, agents learn
through rewards. If the agent receives a positive reward, it begins to understand
that this behavior is beneficial. Similarly, if it receives a negative reward, it
understands that something is wrong and looks to avoid this behavior. Through
these rewards, the agent can learn, so the reward design must be carried out effec-
tively, especially in multi-agent environments, where the distribution of rewards
should favor collaboration among agents.

Understanding the whole process of multi-agent reinforcement learning is
not a simple task. Although many works explore the Multi-Agent Reinforcement
Learning (MARL) domain [2,4,5,9,16,18,19,21], the focus is not on game devel-
opment but rather on creating new environments or algorithms. These environ-
ments are scaled for testing in specific domains with a focus on the performance
of the algorithms used [1,8,11,12]. Exploring the MARL domain in game devel-
opment is extremely important and can bring new perspectives and approaches.
Moreover, designing rewards for the best agent learning is not an easy task, and
it is necessary to explore and present methods around this challenge.

In this context, we propose the OptimizingMARL, a framework for cooper-
ative game environments development based on MARL. The framework brings
practices that guide the development and configuration of cooperative multi-
agent environments looking for the best performance in agent training. This
performance is related to the use of dense rewards (frequent rewards) to encour-
age the emergence of essential behaviors - those necessary to solve the tasks and
the problem. It is possible to identify how the reward design influences the agents’
training performance and which strategies are best for each environment devel-
oped through the experiments performed. Furthermore, the framework consists
of steps for modeling the learning environment, enabling macro understanding
of RL and game elements.

This paper is organized as follows: Sect. 2 outlines related work. Section 3
presents the OptimizingMARL. Section 4 describes the conducted experiments,
presenting the development of the environments applying the framework and the
analysis of the results. Finally, Sect. 5 concludes this work, listing contributions,
limitations, and future work.

2 Related Work

In the context of MARL, many works explore the use of new algorithms to
improve agent learning performance [1,8,11,12]. Foerster et al. [5] present the
COMA algorithm that uses the same centralized network for all agents, with the
agents’ shared observations and actions as input. COMA uses the centralized



OptimizingMARL 91

network to estimate how much each agent influenced the expected value. Each
agent learns via a modeled reward that compares the overall reward to the
received when that agent’s action is replaced by a default action [5].

Cohen et al. [3] introduce MA-POCA (Multi-Agent Posthumous Credit
Assignment), a new algorithm that is very similar to COMA, but is capable
of training groups of agents to solve tasks in which individual agents can be
removed or introduced during the episode. Iqbal and Sha [7] present the MAAC
algorithm that trains decentralized policies in multi-agent settings using a cen-
tralized network capable of sharing and selecting relevant information for each
agent at every instant. While these works test the algorithms in environments
that simulate games, the focus is not on game development. This works does not
specify how the reward design was performed, as the focus is on the results and
performance of each algorithm.

Through the literature review, we found only one study by Zhao et al. [22]
that most closely resembles our proposal. Zhao et al. [22] present a hierarchical
approach for training agents by breaking complex problems into a hierarchy of
easy learning tasks to achieve near-human behavior and a high level of skill in
team sports games. The authors first train the agents against other easy-level
agents and then make the level more difficult once the agent has learned the
basics. For the training, they use a proprietary tool they call Simple Team Sports
Simulator (STS2). It simulates a 2D soccer environment, in which the state space
consists of the coordinates of the players, their speeds, and an indicator of who
has the ball.

The authors run tests with agents in 1 vs 1 and 2 vs 2 matches using the
PPO [14], DQN [13], and Rainbow [6] algorithms. Through the analysis of the
results, the authors concluded that sparse score-based rewards are not sufficient
to train the agents even at a high level, which requires the application of a more
refined reward design.

Following the proposal of Zhao et al. [22], we seek to improve agent perfor-
mance in MARL. However, our focus is on modeling the elements of MARL and
on reward design. We propose an easy and more practical way to create multi-
agent environments that enables a macro understanding of RL elements in the
context of a cooperative multi-agent game environment.

3 The Framework OptimizingMARL

Training intelligent agents in cooperative game environments may not be a sim-
ple task. The process requires a series of steps and procedures such as specify-
ing the agents, designing rewards, and developing the environment. Moreover,
designing rewards that enable faster learning is not trivial, making the pro-
cess of creating a multi-agent environment optimized for training difficult. To
simplify and optimize the process of building and training intelligent agents in
cooperative game environments, we propose the OptimizingMARL, which com-
prises three macro-steps: (1) conceptual modeling of the learning environment;



92 T. Ferreira et al.

(2) reward design and knowledge distribution; and (3) the creation of the envi-
ronment. Figure 1 illustrates the macro-steps of OptimizingMARL and the next
subsections explain them in detail.

Fig. 1. Overview of the macro steps of the OptimizingMARL.

3.1 Model the Multi-agent Learning Environment

In this step, we conceptually specify game and RL elements (e.g., agents, environ-
ment). The concept of the game/environment provides critical information
about the goals and tasks that the agents must accomplish and about the objects
that will be present in the environment (e.g., objects that the agents can interact
with, obstacles, enemies). The environment consists of the place where agents
will interact and make decisions. The environment must have the necessary char-
acteristics and objects for the agents to interact and solve their tasks. We can
create a document specifying all the objects (and their properties) that must
be present in the environment. We define the scenario objects - those that
are part of the game, such as items, enemies, and obstacles, that the agents will
interact with - and the objects’ characteristics - each object of the scenario
has its properties such as colliders, texture, physics, among others.

The agent is the actor that observes and performs actions in the environ-
ment. An agent must have a observation space - the agent collects its observa-
tions about the state of the world before making decisions - and actions. Finally,
there is the reward signal. The reward signal should not be given all the time,
but only when the agent performs an action that is good or bad for solving the
problem. The reward signal is how the goals are communicated to the agent, so it
needs to be configured so that maximizing the reward generates the desired opti-
mal behavior. The next subsection presents the OptimizingMARL step related to
reward design and the possibility of knowledge distribution based on this design.



OptimizingMARL 93

3.2 Design Rewards and Distributing Knowledge

The reward is primal in RL and it works as an incentive mechanism, telling the
agent what is correct or not. The RL agent’s goal is to maximize the total reward
received during an execution episode. The reward is immediate and defines the
characteristics of the problem to be faced by the agent [17]. To know at what
times to reward agents, it is essential that developers have mastery of the problem
to be solved in the environment. It is common to have the necessary knowledge
about the environment in games. However, depending on the complexity of the
environment and the tasks, the projection of rewards may not be trivial or easy
to visualize. Therefore, the OptimizingMARL comprises a set of activities for
understanding the problem to be solved in the environment and for designing
rewards. The steps consist of understanding the agents’ goals as well as the tasks
required to solve the problem. Figure 2 presents the flow of activities.

Fig. 2. Activity flow of the reward project/knowledge distribution of the Optimizing-
MARL.

Simple Reward Design. It starts by identifying the primary goals (activity
A) through the conceptual modeling of the environment. The primary goals are
directly related to the main problem that the group of agents needs to solve.
After their identification it specifies a reward for each of these primary goals



94 T. Ferreira et al.

(activity B). The reward design is complete, and the environment can begin
to be modeled if the group gains rewards so that they can learn the behaviors
essential to solving the problem. However, if the goals are still complex and the
rewards are still sparse, this can hinder the agents’ learning, causing training to
take longer. Therefore, it is necessary to design dense rewards so that the group
gains rewards more frequently to encourage the emergence of essential behaviors.
We define these behaviors as those indispensable to solving the task.

Dense Reward Design. To define dense rewards, it is first necessary to identify
the sub-goals derived from the primary goals (activity C). A reward is specified
for each of these sub-goals (activity D). Therefore, the group gains rewards more
frequently, learning essential behaviors more immediately. If the agents still need
to do many tasks to achieve these sub-goals, it is interesting to identify these
tasks (activity E) and reward the group for each task performed (activity F).
Rewards for primary goals, sub-goals, and tasks should follow a value hierarchy.
The group should be rewarded discretely for completing tasks while completing
sub-goals will be rewarded more heavily until they complete the primary goal
(higher reward value). Therefore, it prevents agents from getting “stuck” just
completing tasks instead of progressing and solving the main problem of the
environment. After step D (or F), if the knowledge distribution is not suitable
for the situation, we end the process and generate a conceptual environment
with dense rewards. Otherwise, we proceed to activity (G) and specify a group
for each sub-goal following the dense reward design.

Knowledge Distribution. It is necessary to analyze whether the distribution
of knowledge will favor training in the environment after specifying the rewards
for sub-goals (and optionally the tasks). This step consists in creating a group
for each sub-goal. Since each group has a specific goal, the agents may have
fewer insights into the environment. After creating a group for each sub-goal, we
generate the distributed conceptual environment.

3.3 Create the Learning Environment

The environment development step is the last step of the process. The devel-
opment consists of creating the necessary elements in the scenario, the agents,
programming their behaviors, indicating what to do when an agent is restarted,
specifying its sensors, configuring the algorithms and the neural network param-
eters, and providing the rewards when necessary, among other activities. Unlike
the previous two stages, the environment creation step is more specific, as it
depends on the platform being used for agent development and training.

4 Experiments

The experiments were developed using the Unity ML-Agents Toolkit [20]. The
flexibility of Unity enables the creation of tasks to complex 3D strategy games,



OptimizingMARL 95

physics-based puzzles, or multi-agent competitive games. Unlike other research
platforms, Unity is not restricted to any specific gameplay genre or simula-
tion, making it a general platform. We use the MA-POCA [3], a new algorithm
designed to train groups of agents to solve tasks.

We performed tests for three configurations of the same environment: simple
environment, based on a simple reward design (1), dense environment, which has
a dense reward design (2), and a distributed environment, which has a knowledge
division among different groups (3). In all experiments the agents perceive the
environment through ray cast sensors. These sensors can perceive an element
through a tag every time a ray intersects an object. If the tag of that object is
specified in the sensor, the agent can perceive this object. ML-Agents Toolkit
provides a fully connected neural network model to learn from those observations.

Figure 3 shows the three environments developed and used in the tests. The
first environment (left) was not created entirely by us. This environment comes
with Unity-ML agents, but we made changes to the environment and followed
the steps in the framework to get the three possible configurations. The follow-
ing subsections describes each environment in more details and our respective
findings.

Fig. 3. Dungeon Escape environment (left); Color Balls (center); Wild World (right).

4.1 Dungeon Escape Environment

In the Dungeon Escape environment, the agents cooperate to escape from a
dungeon before the dragon escapes through the portal. The agents need to defeat
the dragon, get a key that was dropped, and open the door. The agents must
collect the sword and hit the dragon to defeat the dragon. From this concept of
the Dungeon Escape environment, we use the framework to model the learning
environment (step 1). It defines the scenario objects (e.g., the agents, the dragon,
the door, the key, the sword) and their properties (e.g., colliders, texture). After
that, we applied step 2 of the OptimizingMARL following the activities to obtain
the three configurations for the environment (simple, dense, and distributed).
Figure 4 shows the designed reward and distributed knowledge activities. Finally,
we create the learning environment (step 3).

In step 2, we first identify the primary goal, which is to escape from the
dungeon. Then we reward the group when they achieve this goal. Since we applied



96 T. Ferreira et al.

Fig. 4. Dungeon Escape environment rewards and knowledge distribution project.

only the steps related to the simple reward design, this environment is the simple
reward environment (1). We continue following the activities to develop the
dense reward environment (2). We identify the sub-goal needed to achieve the
primary goal: defeat the dragon. Now the group gets rewarded when they defeat
the dragon and when they escape from the dungeon. Since the environment is
relatively simple, we decided not to divide the sub-goal into tasks and reward
the group for them. But this is at the discretion of the development team.

We continue following the activities to develop the environment (3). Once we
have identified the sub-goals, we can create an agent type responsible for each of
these sub-goals. So we specify an agent type responsible for picking up the sword
and defeating the enemy, and another agent type responsible for collecting the
key and opening the door. So we will have two groups in this environment.

In both simple (1) and dense (2) environments, there is one group composed
of six agents. All agents have the same behavior. The group gains a reward
only when an agent escapes from the dungeon. In the distributed environment
(3), the agents are divided into two groups, each composed of three agents. The
sword group is responsible for collecting the sword and defeating the dragon. This
group gain a positively reward only when it defeats the dragon. The key group
is responsible for collecting the key that the dragon drops and for opening the
door. This group gain a positively rewarded only when it effectively opens the
door. The sword group does not perceive the key, the door, or who has the key.
The key group does not perceive the sword, nor who has the sword.

Figure 5 presents the results for all environments: (1) simple reward design,
(2) dense reward design, and (3) knowledge distribution. The maximum average
reward that can be obtained by a group in all environments is 1.0. For analysis



OptimizingMARL 97

purposes, we perform knowledge distribution even though it is not suitable for
this environment due to one group’s dependence on the other.

Fig. 5. Results for the three environments in Dungeon Escape experiment.

The cumulative reward group is the mean cumulative episode reward overall
agents and should increase during a successful training session. Observing the
cumulative reward graph, it is evident that the use of dense rewards (2, green
line) improves learning performance if compared to the simple environment (1,
red line). In the distributed environment (3), the sword group (light blue line)
obtained high rewards. From the graph, the dependency between the groups is
clear. The sword group was able to get more rewards because it depends only on
itself. The key group (pink line) got smaller rewards because to complete their
goal they need the sword group to complete theirs first. The key group gets more
rewards as the sword group learns.

Entropy is related to how random the decisions of the model are. It should
slowly decrease in a successful training session. It occurred for all environments,
meaning that the models make less random decisions during the sessions training.
The extrinsic value estimate is the mean value approximation for all states visited
by the agent. Once these values have converged to the optimal state values, then
the optimal policy can be achieved, which should increase during a successful
training session. The sword group in environment 3 presented higher values when
compared to the others environments. In this way, this group can obtain the
optimal policy in fewer steps.

Through the analysis, we can conclude that dense sub-goal reward design is
the best option for the Dungeon Escape environment. Although the sword group
in environment 3 shows better learning, the key group was disadvantaged by the
dependency between the groups. In addition, specifying the dense rewards for
this environment takes less time than specifying two different agent types for
each group.

4.2 Color Balls Environment

In the Color Balls environment, the agents need to get all fifteen balls to the goal
(green area). To catch a ball of a specific color, the agent must wear the same



98 T. Ferreira et al.

color uniform. To put on the uniform, the agent needs to get on one of the colored
squares. To change the color of the uniform, only climb the square of the desired
color. When the agent owns a ball, it cannot change its uniform. We applied the
framework to develop the three configurations of the same environment.

In the simple (1) and dense (2) environments, there is one group with ten
agents. In environment 1, the group is positively rewarded when it completes
the primary goal, which is when all fifteen balls are placed into the green area.
In environments 2 and 3, the group is positively rewarded for each ball placed
in the green area. In environment 3, the agents do not need to correlate the ball
color with the uniform color they are wearing because each group has a specific
color. The agents only need to understand that they need to be wearing their
uniforms to collect the ball.

Figure 6 shows the results for the three environments. For better visualiza-
tion, the graph shows the results of red group in environment 3. All groups in
this environment have the same behavior, where the only difference is that each
one perceives the ball and the square in the color of its group. For comparison,
the maximum average reward that can be obtained by the groups is 5.0 in all
environments. As expected, the simple environment (orange line) showed low
group reward value because agents are failing to complete the tasks before time
runs out. The entropy showed a slight decay but less when it is compared to
the other environments. Since agents fail to accumulate rewards, the model con-
tinues to work on bad policies, and the estimated value for all states does not
increase.

Fig. 6. Results for the three environments in color balls experiment.

This environment is challenging because agents need to understand that they
can only pick up a ball if they are wearing the same color uniform. In this case,
the vector of observations has an integer variable that corresponds to the color
of the ball (1 = yellow, 2 = red, 3 = white, 4 = purple, and 5 = blue). Thus, it is
necessary to associate the variable value with the tag in the raycast sensor, mak-
ing learning more difficult. The group’s performance improved greatly with the
design of the dense rewards (blue line). In environment 2, the group is rewarded
for each ball placed in the green area. More immediate reward facilitates the
association between the uniform color (integer variable) and the ball tag (string
in the raycast sensor).



OptimizingMARL 99

In environment 3, we changed the integer variable to boolean, indicating
whether the agent wore the uniform or not. In addition, the agents have decreased
their perceptions and no longer need to associate the colors with the balls. Each
group has a specific color and the agents need to put on their uniform, pick up
the balls, and place them in the goal. This environment showed the best results,
reaching the maximum reward starting at 480k steps. For the value estimate, the
groups in environment 3 presented higher values when compared to environments
1 and 2. As such, the groups can obtain the optimal policy in fewer steps.

The analysis allowed us to conclude that distributing knowledge is the best
option for the Color Balls environment. The groups in this environment have
the same perceptions and behavior, making the knowledge distribution a simple
task. The main change is in the vector of observations that starts working with
a boolean variable instead of an integer.

4.3 Wild World Environment

In this environment, the agents of a village must survive for an “indeterminate”
amount of time in a hostile environment. It means that while the agents keep
reaching the goals, they can accumulate rewards until the maximum number of
steps in the episode is reached. These goals consist of: making food to feed all
the villagers, keeping the fireplaces lit to fight the cold and prevent the villagers
from getting hypothermia, and fighting the ferocious wolves that reside in the
forest near the village and can attack the villagers. We applied the Optimizing-
MARL to develop the three configurations of the environment (simple, dense,
and distributed).

In the simple (1) and dense (2) environments, there is one group consisting
of fifteen agents. In environment 1, the group is positively rewarded when it
completes the primary goals: prepare food, light fire, and defeat a wolf. In envi-
ronment 2, the group is positively rewarded when it reaches the primary goals
(higher reward) and sub-goals (small reward): plant vegetables, take wood, and
equip the sword.

In environment 3, the agents are distributed into three groups. The food group
is responsible for collecting seed, planting the vegetables, harvesting the vegeta-
bles, and preparing the food (higher reward). This group is positively rewarded
when it plants vegetables (small reward) and prepares the food. The fire group is
responsible for equipping ax, taking wood, and lighting the fire (higher reward).
This group is positively rewarded when it takes the wood (small reward) and
light the fire. The wolf group is responsible for equipping the sword and defeat-
ing a wolf. This group is positively rewarded when it equips the sword (small
reward) and defeats a wolf (higher reward).

Figure 7 shows the results for the three environments. The wolf group in
environment 3 is the only one that has a reward limit. This group gains rewards
when an agent equips a sword and when an agent defeats a wolf. However, the
number of swords and wolves is finite, making the maximum reward 36 per
episode. Regarding the group cumulative reward, the simple environment (dark
blue line) presents the lowest values. This can be easily explained because the



100 T. Ferreira et al.

group is rewarded only when it achieves its primary goals. The problem is that
for an agent to achieve one of these goals, it needs to perform a series of tasks
beforehand.

Fig. 7. Results for the three environments in wild world experiment.

The group in environment 2 shows a huge improvement over the previous
group. The sub-goal reward encourages agents to complete the primary goals in
stages. The food group and fire group groups in environment 3 were also able to
achieve high rewards. However, even with fewer perceptions about the environ-
ment, the cumulative reward did not show much improvement compared to the
group in environment 2. The wolf group kept the accumulated reward around 15
(36 is the maximum value), showing no great improvement or worsening.

The entropy fell for all groups, although it fell more sharply in the food group
in environment 3, indicating less random decisions. For the value estimate, the
group in environment 2 and the food group and fire group in environment 3
presented higher values when compared to the others. In this way, the groups
can obtain the optimal policy in fewer steps.

From the analysis, we can conclude that dense sub-goal reward design is the
best option for the Wild World environment. The wolf group in environment 3
cannot perform well. Also, specifying the dense rewards for this environment
takes less time than specifying three different agent types for each group.

5 Conclusion

In this paper, we introduced a framework to develop multi-agent environments
for cooperative games. The proposed framework addresses the design of dense
rewards for emergence of essential behaviors and the knowledge distribution.
Through the framework it is possible to design environments aiming to improve
the agents’ training performance.

Based on the analysis of the results, we can conclude that: (i) dense rewards
favor the emergence of essential behaviors, improving agent learning; (ii) knowl-
edge distribution can decrease task complexity. The Color Balls environment
showed better results with knowledge distribution. It happened because the



OptimizingMARL 101

task became less complex. Instead of associating the value of the integer vari-
able with the ball tag, the agents now have to understand that if they are in
uniform (boolean variable is true), they can pick up the ball; (iii) the depen-
dency of the groups is an important factor in the knowledge distribution. In
the Dungeon Escape environment, the key group showed lower results compared
to the sword group due to their dependency. In the Survival, Color Balls and
Wild World environments (food group and fire group), the groups showed very
similar results, evidencing the importance of independence; and (iv) the frame-
work allows the development of an environment in order to improve the learning
performance of agents in multi-agent environments.

The main limitation of this work is the number of environments built and
used for testing. At the time this paper was written, we had not yet developed
environments that brought more elaborate challenges and incorporated different
game mechanics. As future work, we intend to: (i) carry out new tests to analyze
the impact of individual rewards (the agent is rewarded and not the group) on
the performance of the group as a whole; (ii) build more complex environments;
and (iii) seek a way to add communication between groups for environments
with distributed knowledge.

Acknowledgments. The authors would like to thank NVIDIA, CAPES and FAPERJ
for the financial support.

References

1. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning envi-
ronment: an evaluation platform for general agents. J. Artif. Intell. Res. 47(1),
253–279 (2013)

2. Berner, C., et al.: Dota 2 with large scale deep reinforcement learning (2019)
3. Cohen, A., et al.: On the use and misuse of absorbing states in multi-agent rein-

forcement learning (2021)
4. Foerster, J., Assael, Y., Freitas, N., Whiteson, S.: Learning to communicate with

deep multi-agent reinforcement learning. In: Proceedings of the 30th International
Conference on Neural Information Processing Systems, pp. 2145–2153. NIPS’16,
Curran Associates Inc. (2016)

5. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, pp. 2974–2982. AAAI (2018)

6. Hessel, M., et al.: Rainbow: Combining improvements in deep reinforcement learn-
ing. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, vol.
32, pp. 3215–3222. PKP Publishing Services Network (2018)

7. Iqbal, S., Sha, F.: Actor-attention-critic for multi-agent reinforcement learning.
In: Proceedings of the 36th International Conference on Machine Learning, pp.
2961–2970. PMLR 97, Long Beach, California (2019)

8. Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The malmo platform for arti-
ficial intelligence experimentation. In: Proceedings of the 25th International Joint
Conference on Artificial Intelligence, pp. 4246–4247. IJCAI’16, AAAI Press (2016)

9. Jorge, E., K̊agebäck, M., Johansson, F., Gustavsson, E.: Learning to play guess
who? and inventing a grounded language as a consequence (2016)



102 T. Ferreira et al.

10. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif.
Intell. Res. 4, 237–285 (1996)

11. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: Vizdoom: A
doom-based ai research platform for visual reinforcement learning. In: IEEE Con-
ference on Computational Intelligence and Games (CIG), pp. 1–8 (2016)

12. Mnih, V., et al.: Playing atari with deep reinforcement learning (2013)
13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature

518, 529–533 (2015)
14. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy

optimization algorithms (2017)
15. Summerville, A., et al.: Procedural content generation via machine learning

(pcgml). IEEE Trans. Games 10(3), 257–270 (2018)
16. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent

learning based on team reward. In: Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems. pp. 2085–2087. AAMAS
’18, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2016)

17. Sutton, R., Barto, A.: Reinf. Learn.: Introduction. MIT Press, London, England
(2018)

18. Vidhate, D., Kulkarni, P.: Enhanced cooperative multi-agent learning algorithms
(ecmla) using reinforcement learning. In: 2016 International Conference on Com-
puting, Analytics and Security Trends (CAST), pp. 556–561. IEEE (2016)

19. Vinyals, O., et al.: Grandmaster level in Starcraft II using multi-agent reinforce-
ment learning. Nature 575, 350–354 (2019)

20. Yannakakis, G., Togelius, J.: Artificial Intelligence and Games. Springer (2018).
https://doi.org/10.1007/978-3-319-63519-4

21. Zhang, Q., Zhao, D., Lewis, F.: Model-free reinforcement learning for fully coop-
erative multi-agent graphical games. In: 2018 International Joint Conference on
Neural Networks (IJCNN), pp. 1–6. IEEE (2018)

22. Zhao, Y., Borovikov, I., Rupert, J., Somers, C., Bierami, A.: On multi-agent learn-
ing in team sports games. In: Proceedings of the 36th International Conference on
Machine Learning (ICML) (2019)

https://doi.org/10.1007/978-3-319-63519-4

	OptimizingMARL: Developing Cooperative Game Environments Based on Multi-agent Reinforcement Learning
	1 Introduction
	2 Related Work
	3 The Framework OptimizingMARL
	3.1 Model the Multi-agent Learning Environment
	3.2 Design Rewards and Distributing Knowledge
	3.3 Create the Learning Environment

	4 Experiments
	4.1 Dungeon Escape Environment
	4.2 Color Balls Environment
	4.3 Wild World Environment

	5 Conclusion
	References




