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Abstract—Believable NonPlayer Characters in video games are
one of the most challenging problems in the game industry over
the last years. Players demand to expect to perceive the NPCs as
other human-based player. Modeling NPC behavior manually is
not always a good choice, mainly due to the number of NPCs a
game can have and the difficulty of modeling a large number of
actions that they can take. Our main goal is create a believable
NPC acting like a real player. This work proposes an approach to
training an NPC using Imitation Learning so that it is as similar
as possible to a human player. Through this strategy, NPCs
are trained from various types of players, avoiding predefined
behaviors. Our proposal trains agents with the use of provenance
data sets, tackling cause-effects data mining possibilities, and use
Generative Adversarial Imitation Learning framework to take
actions similar to what a player would take. The model proposed
was create to be generic and applicable to various games. We
validate our presented model with the DodgeBall environment
inside Unity ML-Agents Toolkit for Unity Engine. Some players
was asked to play against our agent and they validated the
believability of our trained NPCs.

Index Terms—NPC, Imitation Learning, Provenance, Games

I. INTRODUCTION

Non-Player Characters (NPCs) are autonomous agents in
video games, which interact with the game environment and
the player. They are therefore an essential element of gameplay
and for the player’s immersive feeling. Traditionally, NPC
behavior creation methods are manual, requiring substantial
effort and mastery of several areas, such as scripting and
testing, in order for it to work properly. In addition, a populous
world that aims to provide a good immersion for the player
has a huge amount of NPCs and for a player, each NPC has
to be more believable, engaging, and human-like as possible.

The imitation of human playing style has been gaining
relevance over the last few years. The goal of these agents is
to deceive real players and be perceived just as other human
player. In recent years, imitation learning has been investigated
as a way to efficiently and intuitively program autonomous
behavior [1]-[6]. Numerous imitation learning methods have

been developed and imitation learning has become a strong
field of research.

The purpose of Imitation Learning (IL) is to efficiently learn
the desired behavior by imitating an expert’s behavior. So this
work propose a model for training a believable NPC using IL
that does not require an expert to teach the NPC. Thus, the
NPC will not behave with perfect mastery as we will not use an
expert to train it. Instead we will use provenance data gathered
from gameplays of multiple matches from many different
players. Provenance has been used for recording documented
history of an object’s life cycle and is generally used in the
context of art, digital data, and science [7]. Its first usages for
game telemetry and analytics are described on [8].

Ho and Ermon [9] proposed a framework called Generative
Adversarial Imitation Learning (GAIL) that explores randomly
to determine which actions bring a policy’s occupancy measure
closer to the trainer’s, rather than methods that interact with
him. The main contribution of this work is that our model
use data collected from real players gathered with provenance
to train believable NPCs using GAIL and this model can be
applied to any game.

We choose the game engine Unity3D1 to train and validate
an NPC, using the DodgeBall2 game environment present in
open source Unity ML-Agents Toolkit3. Fig. 1 shows a picture
of the Dodgeball game, showing a player’s avatar and the
environment with walls and obstacles.

Dodgeball game, which is a team-based game, already has
been used for training NPCs through MultiAgent POsthumous
Credit Assignment (MA-POCA) [10]. Dodgeball allows the
player to adopt different strategies such as being more ag-
gressive or shooting balls from a long distance. An important
point in our model is to reward the agent when it take actions

1https://unity.com. Last accessed: 10 Mar 2022
2https://blog.unity.com/technology/ml-agents-plays-dodgeball. Last

accessed: 15 Apr 2022.
3https://github.com/Unity-Technologies/ml-agents. Last accessed: 10 Mar

2022.
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Fig. 1. DodgeBall game.

that were performed by a player and were recorded in the
provenance, regardless of whether the actions had good or
bad results. This will make the agent not perfect and make
the same mistakes as a real player.

The remaining of the paper is organized as follows: The
second section presents related work and the third section
presents our proposed model. The fourth section bring the
early results and the last section concludes this work, pointing
out future works.

II. RELATED WORK

Machine Learning (ML) techniques can be used to automate
the process of learning how to play a video game either pro-
gressively using players’ game traces as input, through direct
imitation approaches, or using some form of optimization
technique such as Evolutionary Computation or Reinforcement
Learning to develop a fitness function that, for instance,
”measures” the human likeness of an agent’s playing style
[11].

Previous works addressed the problem of imitating human
players using different supervised learning approaches. Neu-
roevolution [12] was used in Ms. Pac-Man and in other game
domains [13], and more recently case-based reasoning [14]
has been proposed due to its capacity for imitating spatially-
aware autonomous agents in a real-time setting [15]. None of
these works are based on real players gameplays logs.

Kohwalter et al. [8] proposed a novel approach named
PinGU1 for capturing and storing provenance data from a
game session based on the Provenance in Games conceptual
framework. The wealth of provenance data collected during a
game session is fundamental for understanding the mistakes
made as well as reproducing the same results at a later mo-
ment. Causal relationships between game elements are mapped
as edges connecting their respective nodes, resulting in a game
provenance graph. Causality indicates a relationship between
two events, where the former event affects the later. The
provenance approach capture causal relationships explicitly
defined by the game developer. Each edge captured through
the provenance approach represents a type of relationship (that
can also be causal) between game objects’ actions and/or

1https://github.com/gems-uff/ping

TABLE I
FEATURES FROM RELATED WORK AND OUR WORK.

Use IL Use log? Type of log Focus on...
Kohwalter et al. No Yes Provenance Provenance
Karpov et al. Yes Yes Raw data Controllers
Cruz and Uresti No Yes Raw data Agents
Pelling and Gardner Yes Yes Raw data Agents
Miranda et al. No Yes Raw data Agents
Cavadas et al. Yes Yes Provenance Agents

states. The most important advantages of provenance graphs
are the modeling of causal relationships, which structures the
provenance elements into a graph, and its richness of detail.

Karpov et al. [16] presented a component of the UTˆ2 bot,
inspired by the idea of direct imitation of human behavior.
The controller draws upon a previously collected database
of recorded human games, which is indexed and stored for
efficient retrieval. The controller works by quickly retrieving
relevant traces of human behavior, translating them into the
action space of the bot and executing the resulting actions.
The main difference between this work and our proposal is
that the controller search for an previous recorded situation.
In the case this is not found, the agent will stuck in the same
position. Our model uses GAIL framework in order to prevent
this situation.

Cruz and Uresti [17] stated two main challenges on their
work: The first challenge was exploring domains with high-
dimensional state–action spaces, while satisfying constraints
imposed by traits that characterize human-like behavior. To
approach this problem, the proposed framework learns the
model of a game by observing how humans play that game.
The second challenge found was generating varied behaviors,
which also adapt to the opponent’s playing style. The main dif-
ference compared to our model is the learning method. While
in the framework is used RL in real-time to obtain player’s
actions, in our model we recreate games from provenance files
and train the agent with IL.

Pelling and Gardner [18] discussed two designs for
imitation-learning bots. Both were based on support vector
techniques and include a novel probabilistic model for in-
combat jumping. One bot also includes a application of prob-
ability estimation trees to in combat movement. Both designs
appeared viable when tested under laboratory conditions and
in the competition format of the 2009 2K BotPrize. Table I
compares some features from related works and from our
work.

III. PROVENANCE BASED IMITATION LEARNING MODEL

In this paper, we propose an Imitation Learning approach,
based on provenance data, for training NPCs with believable
behaviors instead of manually programming them. We differ
from all existing approaches since our model uses provenance
data instead of a regular log and the rewards given to the brain
during training is not based on give rewards/penalties when the
NPC act correctly/incorrectly, instead we give rewards when

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on March 22,2023 at 18:37:05 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Presented model.

he does the actions provided by the provenance from players
game sessions.

The model proposed was created to generate NPCs that can
be applied to a variety of game types where the NPC and
player has the same actions, like in a racing game or a First
Person Shooter game. Note that the model described in this
section doesn’t need specific configuration of the game, we
only use DodgeBall game as a case of use.

Our solution is composed of four stages: (1) choose the
parameters required for recreating player actions, (2) Gath-
ering player provenance data sets, (3) Remake and training
of players’ gaming sessions based on provenance data, and
(4) training with GAIL framework. As a result, we produce a
brain generated with Ml-Agents and provenance data that can
be used on the NPC agents, mimicking a human-like behavior.
The model is illustrated in Fig. 2.

Before executing the described steps, it is necessary to
prepare the game environment, in our case the DodgeBall
game. This is made through a special gameplay setup, where
the NPC’s behaviors are substituted by the main player. The
game has 4 players on the first team and 4 players on the
second team. We change the number of players leaving only
1 player at each team. We also change the behavior that control
the victory/defeat conditions so that only one player may give
the victory to the team.

A. Parameters selection

The first stage of the method consists on verifying and
choosing which gameplay’s information and which inputs will
be required to be captured by the provenance. It is necessary
to save all inputs referring to the actions that the bot will be
able to do. The parameters are mapped as the actions that our
NPC can do. As an example, one of the inputs that will be
saved is the input referring to the action of throwing the ball
at an opponent. However, to play a ball the player must be
carrying at least one ball. Any information that is connected
to an action will also be collected by provenance. In order to
capture provenance data from a game, we use PinGU.

Fig. 3. Snippet of some activities that were saved in the provenance file.

B. Gathering player session data via provenance

In this stage we include at the player´s action all the
gathered provenance data, which is represented in a graph
containing vertices representing player actions during the game
session, edges that are the relationships between actions,
agents and events, and the game state information during each
moment an action was recorded. We follow five stages to
get data using PinGU: we first create a game object in the
scene that acts as a centralizing server for the provenance
information. This game object will have two attached classes:
ProvenanceController and InfluenceController. Both classes
are used to manage all provenance information and graph
generation, thus only one instance of each are necessary per
game scene. The second stage is to attach the ExtractProve-
nance class in the player’s agent in the game and link it to
the object created in the first step. This class is responsible
for creating all the provenance nodes for the game entity
and then passing these nodes to the ProvenanceController in
order to be inserted at the graph. The third stage consists on
identifying the actions and their interactions with other actions
that we want to map. For instance, in our implementation, we
identify walk, rotate, throw the ball, being hit, pick a ball
from the ground and win/lose. The fourth stage is creating the
domain-specific provenance tracking functions and attaching
it in the player’s agent. The object should have a provenance
function for each possible action that can be performed and
that we are interested for tracking. Finally, it is necessary
to add a provenance export function to an event so it can
save the current provenance graph to an external xml file. A
small snippet of the provenance file containing some activities
collected during the game can be viewed in the Fig. 3.

After finishing this configuration, it is time to collect the
data of the players who will play the game. For validation
purposes, a player is in control of an NPC agent and will play
against an AI-controlled agent that will be on the opponent
team. The player will play several matches and each match
will generate data that will be saved in the provenance file.
In the end, we will have several game sessions from a single
player. It is possible to collect and merge data from a large
set of different players and users.
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Fig. 4. Steps required for remaking actions saved on provenance.

C. Recreating players’ gaming sessions based on provenance
for training

We include variables responsible for each action of the
character executed by the human trainer in the agent’s control
behavior. For instance, in our implemented scenario they are:
move forward, move back, move left and move right, and
throw the ball.

It is important to note that when the player makes an input,
the agent’s control behavior checks which input was triggered
and, according to it, fills the variable created to represent each
action. At the end of each frame, the values contained in these
variables are passed to a function, which checks the values of
the variables and performs the correct actions. For example,
when the player presses the key responsible for making the
character move forward, the value of the variable responsible
for moving the character forward receives a positive value. At
the end of the frame, this variable is checked, and as it has a
positive value, the character moves forward.

We start this stage by reading the provenance file. We must
read each entry from the XML file, node by node, and interpret
the data. A new node will be read and recorded at each frame.
At this moment the XML serialization is used for converting
an object’s public properties and fields to a serial format (in
this case, XML) for storage or data transport. A Deserialization
re-creates the object in its original state from the XML output.
It is possible to understand the serialization as a way of saving
the state of an object into a stream or buffer.

The interpretation is executed after reading the script. At
each node from the source file we obtain the values referring
to each input. This data is converted to inputs, that are then
converted from a string format within the XML to a float
format, related to the variables responsible for the character’s
actions. Finally, at each frame, the value of these variables
is verified and the function responsible for executing the
character’s actions is executed. This process is represented in
Fig. 4.

D. Training with the GAIL framework

At this stage, the game is ready to recreate the contents
of a provenance file. Before starting the game and recreating
the actions coming from the provenance, it is necessary to
configure how the agent will be trained. For this, we created
a neural network configuration file for training, including
the configuration for using the GAIL framework. Unity ML-

Fig. 5. Snapshot from training configuration file.

Agents Toolkit already has GAIL implemented so we only
configure the network parameters, like strength and learning
rate. 5 shows a snapshot from the training configuration file,
including GAIL configuration. This step can use several game
sessions recorded from the same player or from multiple users.
In case of using multiple users, the process starts with the first
player’s data and the training will be incremented with all the
others player data.

When the game starts we begin to train and we have to
give rewards/penalties to the brain so that it can know if the
generated action had a good or a bad result. Normally we
reward good deeds like defeating the enemy and penalize bad
actions like crashing into a wall. However, if we take this
traditional approach, the bot will be trained to be extremely
efficient, always taking the best actions and becoming a
formidable enemy. This work proposes the creation of a bot
that behaves like a human and for that we will reward the
bot when it takes the actions of the provenance, whether these
actions are good or bad, so it will learn to behave exactly as
the player behaved.

GAIL does not interact with the expert during training.
Instead it GAIL explores randomly to determine which actions
bring a policy’s occupancy measure closer to the expert’s,
without requiring the expert to take the action that must be
taken by the agent at a given moment of uncertainty in the face
of some previously unseen situation. The created brain will act
according with the learned policy and behavior coming from
the human trainer.

IV. RESULTS

For the validation of our model 7 students were invited to
play DodgeBall game in 6 different scenarios. In scenarios A,
B and C we generate brains using the traditional reward, that
is, at the time of training we give rewards for successful tasks
and penalties for unsuccessful tasks. In scenarios D, E and F
we used our training method, rewarding all the actions of the
sessions of real players who were in the provenance.

After training, we upload the brain to the game agents and
run the application. If the NPC’s current situation has been
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TABLE II
RATINGS GIVEN TO THE NPC ACCORDING TO THEIR BELIEVEBILITY.

Scenarios
Traditional

Training
Presented Model

Training
A B C D E F

Player 1 1 3 3 2 3 4
Player 2 1 2 3 2 3 3
Player 3 2 3 3 3 3 4
Player 4 1 3 3 2 3 4
Player 5 1 2 2 2 2 3
Player 6 2 2 3 2 3 4
Player 7 1 2 2 2 3 4

seen before, the brain will perform that action and if the
situation has not been seen previously the brain will look for
the action that most closely resembles the current situation.
We ask the players to rate the NPC according to their level of
perception as to the similarity of their actions compared to a
real player. The rating requested was to give a rating from 1
to 5, with rating 1 being the NPC not acting anything like a
player and rating 5 being very similar to a real human player.
Table II shows the ratings given by each player in the specified
scenarios.

A. Scenario A: NPC trained traditionally with approximately
2400000 steps

The NPC’s moves were quite simple, mostly being executed
without much intelligence. The initial result of the movement
was unsatisfactory, being far from ideal and clearly requiring
improvements. The NPC took the balls to make the throw but
soon after taking the ball they threw it without aiming. The
NPC also did not perform the dash move.

Players found the NPC’s moves very simple and defeated
him extremely easily. The ball shots were executed without
much sense. All seven players did not have the impression
that they were facing a real player.

B. Scenario B: NPC trained traditionally with approximately
3400000 steps

Many improvements were observed in the NPCs’ move-
ments, with the character moving between obstacles and
looking for balls to collect and throw. Compared to scenario
A, the result became more satisfactory, especially related to
the movements, even using the dash movement. Throwing has
improved as well.

Players found the NPC’s moves much more similar to what
a real player would do, being smart when looking for balls.
Players felt that the NPC performed some ball throws for no
reason, far from the direction the player was facing. However,
around 30% of the ball shots were successful, which had not
happened in the previous scenario.

C. Scenario C: NPC trained traditionally with approximately
4500000 steps

Now the NPC’s movement is even more efficient, collecting
balls quickly and moving between barriers without any col-
lisions. Now the throwing of the balls has improved a lot,

Fig. 6. NPC in scenario C.

We increased the hit rate to about 50%. The NPC in this
scenario was considered difficult to defeat and even won 2
matches. In general, players had some impression of being
facing a professional player, due to the difficulty. This scenario
is illustrated in Fig. 6 that shows that the NPC already has a
ball in his hand and is facing the player just before the ball
is thrown and hit the player. Despite the improvements some
players told us that the NPC was very hard and so it was
difficult to believe to be a real player.

D. Scenario D: NPC trained with our model with approxi-
mately 2400000 steps

The NPC moved basic without dash and crashed a few times
against barriers and wall, but tried to collect the balls. The
throwing of the balls was of little precision, with few hits.
Players felt a low difficulty when facing the NPC but felt an
improvement over scenario A.

E. Scenario E: NPC trained with our model with approxi-
mately 3400000 steps

In this scenario the NPC would collect the balls, rarely
hit walls and barriers and throw with improved accuracy, but
throwing carelessly. Players commented that the NPC was
more challenging and appeared to be a player, except when
throwing the ball right after collecting it from the ground.

F. Scenario F: NPC trained with our model with approxi-
mately 4500000 steps

In the last scenario the NPC moved quite well, using dash
to collect the balls and only hit barriers or walls after making
a dash. Serious throwing errors have decreased, leaving only
the shoots that can be understood as mistakes and would be
common for real players to make. Players found this version
very fun to face because despite needing improvements it was
the version that most resembled a real player. The movement
was praised as it moved well but made some small movement
errors and some small shooting errors.

G. Analysis of results

According to Table I, In both training models, the greater
the number of steps, there were some improvements. The
movement became more similar to what a player would do,
and ball shots were executed with greater precision and less
randomness. The NPC was getting harder to face, becoming
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better at moving and throwing the ball. This improvement
made the NPC initially look less like a real player and in
the end look more like a real player.

However, when comparing the ratings of NPC of scenario
B against the ratings NPC of scenario C, both trained in
the traditional model of reward, despite the NPC of scenario
C being more difficult, has better shooting accuracy and
moviment, he became so much more difficult that for the
players he looked like a well-trained machine because he made
almost no mistakes.

Comparing the same amount of steps in the training pro-
posed in our model, the rating given to the NPC of scenario F
had an improvement in the perception of being a real player in
relation to the rating given to the NPC of scenario E because it
became real but continued to make some minor errors that for
the players would be the mistakes a real player would make.
The NPC of the F scenario in general managed to pass the
greatest feeling of being a real player among all the scenarios.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel model, based on provenance
techniques, to create NPCs that would take actions similar
to those that a player would take, making the perception of
immersion of the player who is watching them be increased.

For this, we collect data from different players through
provenance and use this data to train NPCs using the GAIL
framework. Not using a specialist to train NPCs is essential,
so that the NPC does not have optimized performance, but a
performance closer to real players. For the validation of our
model the DodgeBall game was satisfatory as it is not a very
specific game that has complex actions but it is similar to
the most games with simple actions as move and shoot. One
limitation of our model is that we have to configure the game
to train the NPC so we need to have access to the game’s
source code.

Seven students were called to play the DodgeBall game in
six scenarios: on scenarios A, B and C they faced a NPC
trained with the traditional reward model giving rewards for
good actions and penalties for bad actions. On the scenarios
D, E and F they faced a NPC trained with the reward system
from our model giving rewards from the all actions that was
obtained from the provenance. They rated the NPC according
to its behavior during the game. Comparing the ratings that the
players gave in the scenarios we observed a good improvement
in the ratings from scenarios A, B and C to scenario D, E
and F, which means that our methods converge to believable
behaviors. All players gave feedback that our trained NPC
became more like a real player and the ratings given reflected
this. The proposed model give us good impressions and can
be scalable to improve the results, generating an NPC that acts
very much like a real player.

For future work we should enhance the training process
by using more provenance data from more players and see
how the agent behaves. It is also important to train for longer
times and with a greater number of scenarios for comparison.
We want to test our model in a game with more complex

behaviors and check how it performs. We also want to test the
believability of an agent created using the model presented
in this work with more formal believability testing techniques
present in the literature. Another improvement should be create
clusters of profiles of different users, so that the recorded
sessions follow some kind of user profile (kids, experienced
players, casual gamers, etc.). This would make it possible to
choose which type of NPC the player would face. We also
want to validate our model in other games and allow the use
of the feature of influence from provenance to correlate actions
and model more complex behaviors.
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