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Abstract—This article presents an innovative approach for
training an agent to reach a specific and predetermined target
in an unknown environment. It uses reinforcement learning
for an agent with a Lidar sensor and a camera. Given the
difficulty of using raw high-dimensional information to train
any reinforcement learning agent, the Lidar sensor data was
processed using Simultaneous Localization and Mapping to
provide the agent’s location in space. To identify the agent’s
target of interest, the camera image was processed using the YoLo
object detection model to provide the coordinates of the target
in the image. In addition to processing the agent’s state, the two
technologies were used as a composition of the reward obtained
by the agent, causing it to develop the behavior of exploring
an unknown environment and, after locating the target, moving
towards it until the agent collides with the target. The proposed
approach differs from the state of the art because it unites the
two technologies as a composition of the agent’s state and reward.

Index Terms—SLAM, YoLo, Deep Reinforcement Learning

I. INTRODUCTION

Using techniques based on Artificial Intelligence is increas-
ingly present in developing solutions for various robotics prob-
lems, making it possible to highlight the field of autonomous
robotics, which has several problems related to movement,
navigation, and interaction with the environment.

Numerous advancements in technology have led to signifi-
cant progress in enabling robots to navigate and interact seam-
lessly within intricate environments. One particularly crucial
development is the availability of Digital Twins, which has
spurred the growth of various other technologies through the
virtual simulation of real agents. Since the cost of training this
type of solution in a real environment is very high, researchers
use virtual training environments instead [1], highlighting the
Reinforcement Learning approach [2], mainly using a target-
driven approach [3].

Reinforcement learning is presented as an AI technique
where an agent interacts with an environment and collects
information, using trial-and-error experience [4] that benefits
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from the use of computer simulation to build solutions in
robotics. However, this strategy requires a very large amount of
interactions with the environment, which becomes unfeasible
in a real environment.

The use of reinforcement learning, despite representing an
important advance in problem-solving in the field of robotics
[4], still presents some difficulties in the interpretation of raw
data, such as data coming from sensors and information about
the environment where the robot is inserted. It is possible to
use different techniques for processing raw and pre-processed
information together with reinforcement learning. Among the
existing technologies that can interpret the raw data coming
from sensors in a robot, solutions for mapping and localization,
and identification of objects in images can be highlighted.

Target-driven Reinforcement Learning is remarked in the
work of Ruan et. al. [5] as a type of machine learning that is
based on the training of an agent to reach a certain target
or specific objective, where this behavior can be achieved
based on specified targets and corresponding rewards in the
environment. For the mapping and localization problem, it
is possible to use SLAM (Simultaneous Localization and
Mapping) [6] [7] to allow the robot to build a map of the
surrounding environment while maintaining its bearing within
this map. Once the problem of localization and mapping is
solved, it is still necessary for the robot to be able to identify
and locate the target to be reached, a task that can be solved
using the YoLo deep learning model [8] [9], a solution for
detecting and identifying objects in images, which enables the
robot to identify its target in the environment.

The combination of these technologies has the potential to
result in the construction of an improved control solution for
autonomous robotics since SLAM provides location coordi-
nates on the created map and YoLo provides target identifi-
cation in the environment. Both provide high-level informa-
tion, which, combined and used in training the reinforcement
learning agent, can make it learn to move through a simulated
environment, enabling training in various interactions with the
environment. Despite the possibilities obtained through this
integration, the works related to reinforcement learning enable
the integration of only one of these technologies with the agent



training process.
Motivated by these questions, our proposed work integrates

target-directed reinforcement learning with information from
SLAM and YoLo for the task of locating a target in an
unfamiliar environment It explores the potential benefits of
this approach for autonomous robotics. As a result, we present
an approach for integrating these technologies in training a
reinforcement learning agent to control a simulated robot.
We demonstrate the results by separately comparing scenarios
using SLAM and YoLo with our integrated approach in agent
training. Our main contribution is to present an integrated
solution to the problem of locating a target in an unknown
environment using reinforcement learning and taking advan-
tage of SLAM mapping and YoLo object detection.

Our implementation was based on the construction of a
simulated environment using the Unity3D [10] development
environment, a game development tool that, through the ML-
Agents library [11] enables integration with a reinforcement
learning agent from the library itself or an external one,
through communication through Python tools, alternative cho-
sen in the development of the present work. For the con-
struction and training of the agent, the Stable-Baselines 3
library [12] was chosen because, in initial tests with other
libraries, it was the one that presented the best results. For the
implementation of SLAM, the BreezySlam library [13] was
used due to its ability to integrate with real sensors. For the
object detection task, the YoLov5 library [14] was adopted.

This article is organized as follows: Section 2 presents
works related to the research problem addressed in this work
and the gaps that reside when using SLAM mapping and object
detection to solve a single problem. Section 3 presents our
proposal. Section 4 presents details of the implementation of
our solution and the experiment results. Section 5 presents the
conclusion of the present work.

II. RELATED WORK

SLAM mapping is used in several published works related
to robotics. However, this method has only recently been
successful in integrating with reinforcement learning, largely
due to computational advances and deep learning techniques
[4]. Among the existing works, it is possible to highlight
Zheng et. al. [15] that implements a hierarchical exploration
strategy for completing autonomous exploration tasks in en-
vironments with crowds. The exploration strategy includes a
global planner based on a Travel-Salesman-Problem (TSP)-
based solution, a local planner based on NBV selection, and
a robot navigation module based on RL, using an occupancy
grid-based SLAM algorithm. An agent that uses the SLAM
output and the measurements obtained by a Lidar sensor for
the navigation task was implemented by Lu et. al. [16]. Chen
et. al. [17] use SLAM to compose the observation and the
map reward value, indicating the map growing throughout the
agent training. The slam map exploration was also explored
by Botteghi et. al. [18], that proposes an RL and SLAM-based
framework for exploring and building a map of an unknown
indoor environment using the SLAM map information in the

reward function and observation for the RL training. The
SLAM completeness also was used by Alcalde et. al. [19]
and Mustafa et. al. [20], where it is calculated at each step
by obtaining the percentage of cells that are not -1 in the
occupancy grid map and used for the reward function.

In addition to slam mapping, it is necessary to high-
light works using deep learning models for processing high-
dimensional information. Lee and Yusuf [7] used a Single
Shot MultiBox Detector (SSD) MobileNet V2 model for target
detection and composed an observation for the reinforcement
learning agent. Yu et. al. [1] uses a preprocessing convolutional
neural network that receives the environment information and
sends this preprocessed data to the RL training, allowing
changes in the environment do not require new retraining
stages but only the preprocessing step. Other works that use
a Deep Learning Model for processing high-level information
from the environment were done by Chen et. al. [21] and
Andriyanov [22], which uses the YoLo model to detect the
objects of interest of RL training. The work of Zieliński and
Markowska-Kaczmar [23] combines the vision module output,
responsible for the feature extraction from an image and
dimensionality reduction, with the other sensors on the robot.
The integration between RL and Object Detection models can
still be used for unrelated fields to robotics, such as the work
of Li et. al. [24], which proposes a method to match traffic
signals using the YoLo object detection model output with
the decision-making of reinforcement learning to carry out
intelligent traffic scheduling more efficiently.

Using techniques for preprocessing information from the en-
vironment allows reinforcement learning solutions to achieve
better problem-solving results, making it possible to solve
previously unfeasible problems only through reinforcement
learning approaches. This integration uses SLAM for local-
ization and mapping or YoLo for object detection, which
extracts characteristics and high-level information with lower
dimensionality from the environment.

Related works present reinforcement learning solutions that
focus only on the task of exploring an unknown environment
using SLAM or locating targets of interest using detection
of objects that are already in the visual field of a camera.
In this context, our proposal outlines an approach integrating
SLAM and object detection for the task of exploring an
unknown environment in search of a target. These techniques
are utilized to amalgamate environmental observations, which
subsequently train a reinforcement learning agent.

This agent can explore unfamiliar surroundings until it
identifies a target of interest. The agent can successfully
navigate and interact within a simulated environment upon
observing the target.

III. PROPOSED FRAMEWORK

In this section, we present our proposed approach for a
reinforcement learning agent that can explore an unknown
environment. At the beginning of the execution, the agent
is challenged to explore an unknown environment. For this,
SLAM mapping is used, which allows the construction of



a two-dimensional occupancy map of the environment using
information obtained through a simulated Lidar sensor, in
addition to the robot’s location. The map built by SLAM
consists of a matrix of pixels, where each pixel is worth from
0 to 255, with all values reset to zero at the beginning of
each training episode. During training, the agent acquires new
observations, the map is updated, and the pixels representing
the explored spaces are incremented, increasing gradually to
the value of 255. Figure 1 shows an overview of our proposed
solution.

Fig. 1. Presentation of the proposal

This incremental characteristic of the map built with SLAM
enables its use in monitoring the exploration of the environ-
ment, where the higher the values of the pixels, the more
explored it is until it stops increasing. The incremental nature
of the SLAM map was used as one of the agent’s reward
components during training, where at each agent training step,
the weighted sum of all pixels in the map at the current

instant and their difference to the map at the previous instant
is performed. This increments the degree of map exploration
between each map update, which is controlled by the reward
Rexp

The mapping process allows the agent to obtain its relative
position x, y, and rotation θ in the environment-mapped space
without needing any extra information, but only with the
mapping provided by the SLAM. This high-level and low-
dimensional information will be used as the agent’s state
components.

To obtain the image used during training, a camera was
installed in the agent that captures images of the front of the
simulated robot, which provides a visual perception of the
environment immediately in front of the robot. The obtained
image will then be processed by the YoLo model, which
returns the bounding box (Xmin, Ymin, Xmax, Ymax) of each
detection of objects present in the image which, for this work,
will have the possibility of having only one object of interest.
Therefore, just one possible detection may happen. If there
is no object of interest, each component of the bounding box
will have the value 0. The bounding box resulting from image
processing indicates the position of the target in the image,
which, given the camera’s position, indicates the target’s
position to the agent. This was used as a component of the
agent’s reward Ryolo, where the closer the agent, the greater
the reward.

In addition to the information obtained through SLAM
mapping and image processing with YoLo, the agent needs
to be able to perceive the environment around it and the
distance from walls, doors, and obstacles. In this way, in
addition to the Lidar sensor readings for mapping SLAM,
this was used as the agent’s raw input, with some adaptations
for dimensionality reduction. For this, two Lidar sensor data
were captured: frontal and backward. The work by Alcalde et.
al. [19] proposes five frontal Lidar readings distributed at an
angle of 180º in its agent, which can only walk forwards and
sideways. In our case, for a better detailing of the environment,
we use a set of ten readings at an angle of 120 degrees forward
and three readings at an angle of 180 degrees behind, since
the agent also can go backward. In addition to these inputs,
the robot V ’s current speed and the variation of its rotation
angle ∆R are sent to the agent between each step.

The primary objective of the agent training proposed in this
study is to successfully reach the target following exploration
of the environment and identification of the target’s location.
In this way, the reward obtained by the agent when performing
this task is as great as possible, and the other rewards are used
as partial rewards to guide the agent during training. By doing
so, the agent obtains the reward Rhit when reaching the target.

We concatenated the outputs of the YoLo model, the SLAM
mapping, the Lidar sensor, and the robot’s linear velocity and
angular velocity information to compose each state of the
agent. Regarding the agent’s reward, this is composed of the
sum of the partial reward Rexp, Ryolo, and Rhit. Following
we detail the agent’s rewards composition process.

The reward component that reinforces the agent’s initial



exploration behavior is the Rexp, which is based on the
difference between the exploration obtained in the SLAM map
between different time instants, as can be seen in Figure 2.

(a) t1 (b) t2 (c) t3

Fig. 2. SLAM Map Increment. The time instants were extrapolated for better
visualization of the map growth.

The calculation formula for finding the degree of exploita-
tion at time t is described in Equation 1. It considers the value
of each pixel about the maximum of its possible value and the
map size so that the fully explored map would return the value
1. To find the Rexp reward value, the difference between map
exploration at the current instant and the immediately previous
instant during training is performed, as described in Equation
2.

Maptexp =

MapSize∑
n=1

Pixel[n]/255/MapSize (1)

Rexp = Maptexp −Mapt−1
exp (2)

Considering the stability of the created map, if the robot
walks through already explored areas, new pixels with in-
creased values will not be added to the SLAM map, and the
agent’s reward will be small, increasing if new pixels have
their values also increased, which only happens when the robot
goes through unexplored areas.

After reinforcing the exploration of the environment, the
agent should be able to reinforce the target’s location by the
camera to hit it. For this, the output coordinates (Xmin, Ymin,
Xmax, Ymax) of the YoLo model were used, which gave the
location of the target in the image obtained by the camera, as
seen in Figure 3(a)

(a) (b) (c)

Fig. 3. YoLo Detection and reward

We consider the detection center to calculate the partial
reward obtained by the agent with the detection of the target,
computed by tracing the diagonal between the points (Xmin,
Ymin) and (Xmax, Ymax) and dividing it by 2, highlighted in
the Figure 3(b). This point was used to calculate the partial

reward Ryolo using its distance to the lower center point of the
image, the point where the robot is located, thus stimulating
the robot to reach the target. The dimension considered for the
image was normalized between 0 and 1, and all calculations
using this information, such as YoLo output, distances, and
rewards, were performed considering this normalization. This
distance was normalized using an inverse Sigmoid function,
where the closer to zero is the distance, the closer to 1 will
be the output of the Inverse Sigmoid, shown in equation 3.
This creates a surrounding for the robot’s position in the
image, increasing the agent’s reward, not just at the specific
point where the robot is located. This is shown in Figure
3(c), with a resolution of 640x640, where the brighter area
represents a greater reward for the agent, which is based on the
position of the central point of object detection, being inversely
proportional to the distance from the agent to the target The
output value of the Inverse Sigmoid function is used for Ryolo

reward, described in equation 4.

f(distance) =
1

(1 + 104distance−2)
(3)

Ryolo = f(distance).10−3 (4)

The opening angle of the Lidar sensor chosen for the SLAM
mapping was close to the horizontal opening angle provided
by the camera. In this way, all environments mapped with
SLAM would be treated and evaluated with the detection of
YoLo objects, promoting a better synergy between the two
solutions, in addition to allowing the agent to perceive the
approach to the target using the distances obtained by the Lidar
sensor. Finally, the Rhit reward is set to 10 when the agent
reaches the goal, hits the target, and the training episode ends.
Each training step was given a penalty of 0.001 to encourage
the agent to obtain better scores in the shortest possible time
since the longer the episode, the greater the penalty.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section will detail the achieved results through our
proposal implementation For training the agent, we used the
PPO algorithm [25], implemented with the Stable Baselines 3
library [12].

For the object detection task, a Yolov5n [14] pre-trained
model was used, retrained with images generated from the
simulated camera in the Unity environment. The images
were manually annotated. For the SLAM mapping task, the
BreezySLAM [13] library was used, with its default settings
and a maximum map size of 12m2.

The environment was designed in a T format, where the
agent, at the beginning of each training episode, was posi-
tioned in opposition to the target to be located in the explored
environment, as shown in Figure 4(a). The map was created
in such a way that the target’s position was chosen randomly
within some possible positions, highlighted in Figure 4(a),

Params: gamma = 0.095; learning rate = 0.0003; batch size = 2048; opti-
mizer class = torch.optim.RMSprop; other parameters were kept by default



to provide a greater generalization for the agent, regardless
of the target’s position within the space. Additionally, targets
were positioned in places where the agent had no direct vision,
forcing the tasks of exploration.

(a) Environment (b) Environment with pos-
sible target positions

Fig. 4. Environment top-view details

We conducted three training experiments, changing only the
agent’s reward composition. Only the Rexp reward was used
in the first case. In the second, only the Ryolo reward. In the
third case, the combination of the two reward components, as
described in Figure 6 and 5. The three experiments intended to
demonstrate the influence of each of the reward components on
the agent’s evolution during its training, in addition to proving
its convergence when using the Ryolo and Rexp rewards
together, leading the agent to reach its goal. The Rhit reward
was kept the same in all proposed scenarios, adding the value
10 when the agent hits the object of interest.

Figure 5 indicates the reward obtained by the agent during
training, where it is possible to observe the evolution of the
reward of the three tested scenarios. Still, the Ryolo and Ryolo

+ Rexp configurations have similar behavior, but being the
second slightly better. Scenario Rexp, despite presenting an
improvement and reward stability, presents the worst perfor-
mance.

Fig. 5. Reward comparison

For a better analysis, we observed the episode duration
during the training in Figure 6, which ends when the agent
reaches its goal; Thus, the shorter it is, the better. In the
Rexp scenario, the agent practically cannot reach the target
throughout the training. The Ryolo scenario shows a strong

improvement throughout the training, reaching approximately
43 steps duration in each episode after 106 training steps.
However, the Ryolo + Rexp scenario was the one that presented
the shortest duration, due to reaching their goal faster and
having the best combination of rewards for the proposed task.

Fig. 6. Episode length comparison

After training the three agents in the scenarios tested in this
work, the evaluation helper from Stable-Baselines 3 was used
to evaluate the agents trained during twenty episodes. Each
agent’s average reward was obtained, detailed in Figure 7.

With the validation of trained agents, the difference in
performance between agents is evident, with Ryolo + Rexp

having the best average reward.

V. CONCLUSION

This work presents a new approach to the reinforcement
learning agent training problem to target an object of interest
in an unknown environment. The possibility of pre-processing
raw information makes this approach successful since the
SLAM mapping is used to locate the agent in 2D space,
and the YoLo object recognition model is used to locate the
object of interest in the image. The modularity of the proposed
solution makes it possible to change the object of interest

Fig. 7. Evaluation of trained Agents



without retraining the agent, just retraining the Yolo model
to recognize the new object.

It is important to notice that the agent only had convergence
in its training thanks to the integrated processing of raw
information into high-level information and the use of these
technologies for the reward composition. The combination of
the technologies enabled us to achieve better results in training
the agent than when using only one, as we can see in Figure 7.
However, much of the success of the proposed approach can
be attributed to the Ryolo reward, since it showed to be crucial
for the agent’s convergence, by providing robust learning even
when used in isolation.

In addition to reward composition, the high-level infor-
mation extraction process using SLAM mapping and image
processing using YoLo is the main reason for the improvement
and convergence of the trained agent during the construction
of this work.

It is important to point out that the three agents trained in
the proposed scenarios to validate the approach presented in
this work obtained an improvement in the reward obtained
throughout the training, being the agent that combines the
Ryolo and Rexp rewards the one that obtained the best per-
formance, therefore, it will be the combination investigated in
more complex problems in future works.

The difference between this approach and the state of the art
is precisely this integration between two different technologies
for the same objective within reinforcement learning training.
In addition to raw information processing, both were used as
an instrument for composing the agent’s reward, enabling its
convergence in this way. Using these technologies only to pro-
cess the agent’s information would not allow its convergence
and learning.

In future work, we intend to apply the proposed approach
in more complex and larger environments and consider the
impact of Ryolo and Rexp rewards in these environments and
evaluate the application of curricular learning.
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[23] P. Zieliński and U. Markowska-Kaczmar, “3d robotic navigation using
a vision-based deep reinforcement learning model,” Applied Soft Com-
puting, vol. 110, p. 107602, 2021.

[24] Y. Li, Y. Chen, S. Yuan, J. Liu, X. Zhao, Y. Yang, and Y. Liu, “Vehicle
detection from road image sequences for intelligent traffic scheduling,”
Computers and Electrical Engineering, vol. 95, p. 107406, 2021.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.


