
Entertainment Computing 48 (2024) 100603

Available online 16 August 2023
1875-9521/© 2023 Elsevier B.V. All rights reserved.

Using provenance data and imitation learning to train human-like bots

Lauro Víctor Ramos Cavadas *, Sidney Melo, Troy Costa Kohwalter, Esteban Clua
Instituto de Computação, Niterói, RJ, Brazil

A R T I C L E I N F O

Keywords:
Non-player character
Imitation learning
Provenance
Games

A B S T R A C T

Nonplayer Characters are becoming more realistic in their actions and behav- iors because of the development of
gaming technology and gamers’ increased demand for enhancements. While this progress is an exciting devel
opment, it has also become a major concern for game developers over the years, since players demand that NPCs
look alike to other human players. Our major objective in this work is to make an NPC that satisfactorily mimics a
player. This work proposes a method for training an NPC using imitation learning with the Generative Adver
sarial Imitation Learning framework to become similar to a human player. To simulate player behavior, our
proposal trains agents using provenance data sets, cause-and-effect data mining, and the GAIL framework. The
proposed model was developed to be universal and adaptable to different games. We validate our model using
the DodgeBall game environment inside the Unity ML-Agents Toolkit for Unity Engine. Some players competed
against our agent and found that our NPC was credible by observing his actions and behaviors. In this work, we
present a new way of giving rewards compared to the model presented in the previous work. The tests and results
found were also expanded, improving the validation of our model.

1. Introduction

Artificial Intelligence (AI) occupies an important place in games of
any genre and is used by developers to create a world with a high degree
of immersiveness in their virtual world. AI allows the developer to
discover peculiar properties of a game world, such as the player’s ac
tions. The AI also makes it easier to improve the behavior of non-player
characters (NPCs), allowing the developers to model the desired
behavior more easily. The NPCs also may have more complex rules of
behavior applied to them. The game industry is increasingly looking for
non-player characters to have greater credibility in their games. This
increases the immersion of the player and directly influences their
enjoyment. NPCs are autonomous agents communicating with the
player and the game world. As a result, they are crucial to the gameplay
and the player’s immersion. It takes a lot of domain expertise, knowl
edge engineering, scripting, intuition, and testing to create them using
the conventional hand-crafting approaches.

In the meantime, the scale and depth of the criteria for the NPCs are
growing. The scale requires various character types to be featured in the
game to provide the impression of a well-populated virtual environment,
and the depth is about making these NPCs more engaging. The existing
approach to hand-crafting behaviors of NPCs is hard to scale in both
dimensions, calling for alternative approaches [1]. Furthermore,

empirical evidence indicates that players prefer to play with or against
“human” NPCs [2].

In recent years, Imitation Learning (IL) has been investigated as a
way to efficiently and intuitively program autonomous behavior
[3,4,5,6,7,8]. IL is a technique for quickly picking up desired behavior
by imitating it from an expert. IL is not only applicable to physical
systems but is more commonly employed in robotics and can be useful
for any system that needs autonomous behavior that resembles human
experts. Inside IL, we decide to use the framework Generative Adver
sarial Imitation Learning (GAIL) [9] to train our NPC.

There have been many efforts to create believable NPCs in different
game genres [10,11,12]. These works are classified into direct and in
direct behavior imitation [11]. The direct imitation approach uses su
pervised learning algorithms that take human play as input traces. In
contrast, the indirect imitation approach tackles this problem by maxi
mizing a fitness function that evaluates the human likeness of an NPC’s
behavior.

Building NPCs that act like humans requires solutions to many
challenging problems, including observing player activities, discovering
player strategy models, developing practical AI technology, testing their
believability, etc. In addition, it is difficult to discover which player’s
behaviors should be reproduced, and it is also very laborious and diffi
cult to manually program all the actions that the NPC can perform,

* Corresponding author.
E-mail addresses: laurovrc@id.uff.br (L.V.R. Cavadas), sidneymelo@id.uff.br (S. Melo), troy@ic.uff.br (T.C. Kohwalter), esteban@ic.uff.br (E. Clua).

Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: www.elsevier.com/locate/entcom

https://doi.org/10.1016/j.entcom.2023.100603
Received 10 April 2023; Received in revised form 2 August 2023; Accepted 14 August 2023

mailto:laurovrc@id.uff.br
mailto:sidneymelo@id.uff.br
mailto:troy@ic.uff.br
mailto:esteban@ic.uff.br
www.sciencedirect.com/science/journal/18759521
https://www.elsevier.com/locate/entcom
https://doi.org/10.1016/j.entcom.2023.100603
https://doi.org/10.1016/j.entcom.2023.100603
https://doi.org/10.1016/j.entcom.2023.100603
http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2023.100603&domain=pdf

Entertainment Computing 48 (2024) 100603

2

especially when unpredictable situations may arise during the game
play. Our proposal was built to help to facilitate the creation of believ
able NPCs. The game industry is also increasingly looking for NPCs to
have greater believability. This increases the player’s immersion and
directly influences the provided fun for the players. Having a good
reception from the players makes it easier to sell more game copies.

The main goal of this paper is to create a believable human-like NPC
using real players’ data. To reach this goal, we propose a model
described by a sequence of steps for training a believable NPC using IL
that does not require an expert to teach the NPC. Instead of the expert
usage, we will use players’ data from previous game sessions gathered
by provenance. This way, the NPC will not behave with perfect mastery,
which increases the believability to be a real player with their own
correct and incorrect actions. As far as we know, provenance strategies
for training IL was not used yet. Compared to a regular log, provenance
may bring important features to this field due to these cause-and-effect
relationships, which can bring more info about how the players play the
game and build NPCs based on this. This can facilitate the visualization
of the cause and effect of game elements’ actions and help developers
identify important gameplay elements. We also expect the presented
model to be generic enough to be applied to any games with NPCs that
can do the same actions as the player, like racing games, fighting games,
puzzle games, shooter games, etc.

The rewards policy used in our model also differs from the rewards
policy traditionally used to train the NPC. Our training is not based on
giving rewards when the agent acts correctly or giving penalties when
the NPC acts incorrectly. Instead, we reward the NPC when it reproduces
the actions provided by the provenance data from players’ game ses
sions. This model did not work very well as there was still a need to give
rewards to the NPC according to the results of his actions because
without them, he would not know the objective of the game. We name
this reward “objective’s rewards” and it is small if compared to the
reward when performing a read action from the provenance file.

We choose the game engine Unity3D1 to train and validate an NPC,
using the DodgeBall2 game environment present in open source Unity
ML-Agents Toolkit3. Fig. 1 shows a picture of the DodgeBall game from
the player’s vision, showing the characters and the elements of the
environment. The scenery elements are the walls, the bushes, and the
balls distributed randomly at the beginning of the game. In the Dodge
Ball game, the character can move to the left, right, forwards, or back
ward. He can also perform a dash with cooldown time and throw a ball.

To collect a ball, the player has to pass over a ball on the ground.
After the players faced the trained NPC using the described model,

they rated our NPC’s credibility and, compared to the trained NPC’s
believability using the traditional rewards model, our NPC was consid
ered more “human”. This result was important for us to verify that we
were on the right path and to continue deepening the experiments using
our model.

This paper extends our previous contribution [13], where we pro
posed a first set of policies. In the present paper, we improve the rewards
policy to make the NPC even more believable. We also validated it with a
larger group of people and brought new promising results with a more
detailed analysis. The remainder of the paper is organized as follows:
The following section presents the theoretical foundation, the third
section presents the related work, and the fourth section presents our
proposed model. The fifth section brings the results, and the last section
concludes this work, pointing out conclusions about the proposal and
future works.

2. Theoretical foundation

In this section, we will present the knowledge that formed the basis
for our work. Provenance is well understood in the context of art or
digital libraries. It refers to the documented history of an art object or
the documentation of processes in a digital object’s life cycle [14]. In
2006, at the International Provenance and Annotation Workshop, the
participants were interested in the issues of data provenance, docu
mentation, derivation, and annotation. As a result, the Open Provenance
Model (OPM) [14] was created from the Provenance Challenge that was
held in that workshop [15].

The OPM is a proposed model of provenance that was designed to
meet the following requirements [14]:

• Allow provenance information to be exchanged between systems;
• Allow developers to build and share tools to operate on such prov

enance model;
• Define provenance in a precise, technology-agnostic manner;
• Support digital representation of provenance;
• Allow multiple levels of description to coexist;
• Define a core set of rules that identify the valid inferences that can be

made on provenance representation.

The causality graph comprises nodes representing Artifacts, Pro
cesses, and Agents. Artifacts are immutable pieces of state that can
represent a physical object or a digital representation in a computer
system. Processes are actions or a sequence of actions performed or
caused by artifacts, resulting in new artifacts. Agents are contextual
entities acting as a catalyst of a process that can enable, facilitate,
control or affect its execution. The graph’s edges represent a causal
dependency between its source, denoting the effect, and its destination
that denotes the cause [15].

Belhajjame et al. [16] created a conceptual data model that forms a
ba- sis for the W3C provenance (PROV) family of specifications,
formalizing and replacing what was presented in [14]. PROV-DM dis
tinguishes core structures, forming the essence of provenance informa
tion, from extended structures catering to more specific uses of
provenance.

For capturing and storing provenance data from a game session
based on the Provenance in Games conceptual framework. Kohwalter
et al. [15] proposed a novel approach named PinGU4. The wealth of
provenance data collected during a game session is fundamental for
understanding the mistakes made and reproducing the same results
later. Causal relationships between game elements are mapped as edges
connecting their respective nodes, resulting in a game provenance

Fig. 1. Elements of DodgeBall game environment.

1 https://unity.com. Last accessed: 10 Feb 2023.
2 https://blog.unity.com/technology/ml-agents-plays-dodgeball. Last

accessed: 10 Feb 2023.
3 https://github.com/Unity-Technologies/ml-agents. Last accessed: 20 Jan

2023. 4 https://github.com/gems-uff/ping.

L.V.R. Cavadas et al.

Entertainment Computing 48 (2024) 100603

3

graph. Causality indicates a relationship between two events, where the
former event affects the latter. The provenance approach captures causal
relationships explicitly defined by the game developer. Each edge
captured through the provenance approach represents a type of rela
tionship (that can also be causal) between game objects’ actions and/or
states. The most important advantages of provenance graphs are the
modeling of causal relationships, which structures the provenance ele
ments into a graph, and its richness of detail.

Machine Learning (ML) techniques can be used to automate the
process of learning how to play a video game either progressively using
players’ game traces as input, through direct imitation approaches or
using some form of optimization technique such as Evolutionary
Computation or Reinforcement Learning to develop a fitness function
that, for instance, “measures” the human likeness of an agent’s playing
style [11].

The principle behind Imitation Learning is to allow an agent to act
and exhibit human behavior by implicitly giving the learner information
about the world. In IL tasks, the agent seeks the best way to use a
training set (pair of inputs and outputs) demonstrated by an expert to
learn a policy and achieve an action as similar as possible to the expert’s
one [17].

Imitation is often needed to automate actions when the agent is
human, and it is too expensive to run its actions in real time. Appren
ticeship learning [18], on the contrary, executes pure greedy/exploit
ative policies and uses all (state/action) trajectories to learn a near-
optimal policy using Reinforcement Learning (RL) approaches. It re
quires difficult maneuvers and is nearly impossible to recover from
unobserved states. IL can often deal with those unexplored states, so it
offers a more reliable framework for many tasks, such as self-driving cars
[17].

Training NPCs using AI techniques can make them very efficient.
When using RL to train NPCs in situations where they are the player’s
opponents in a game, the NPC can become unbeatable, making the NPC
look like a professional player. When using IL, the NPC can behave like a
real player, but they usually behave similarly to their trainer and don’t
have many variations of actions. Fig. 2 shows the classification of IL.

Ho and Ermon [9] were interested in a specific setting of IL: the
problem of learning to perform a task from expert demonstrations, in
which the learner is given only samples of trajectories from the expert, is
not allowed to query the expert for more data. At the same time, training
is not provided reinforcement signal of any kind [9].

At that moment, there were two main approaches suitable for this
setting: Behavioral Cloning (BC) [20], which learns a policy as a su
pervised learning problem over state-action pairs from expert trajec
tories; and Inverse Reinforcement Learning (IRL) [21,22], which finds a
cost function under which the expert is uniquely optimal.

While appealingly simple, BC only tends to succeed with large
amounts of data due to compounding error caused by covariate shift
[23,24]. IRL, on the other hand, learns a cost function that prioritizes
entire trajectories over others. Hence, compounding error, a problem for
methods that fit single- timestep decisions, is not an issue. Accordingly,
IRL has succeeded in a wide range of problems, from predicting be
haviors of taxi drivers [25] to planning footsteps for quadruped robots
[26]. Unfortunately, many IRL algorithms are extremely expensive,
requiring RL in an inner loop [9].

Based on this, Ho and Ermon described a new framework called
Generative Adversarial Imitation Learning (GAIL). They show that a
certain instantiation of the GAIL framework draws an analogy between
IL and generative adversarial networks, which derives a model-free IL
algorithm that obtains significant performance gains over existing
model-free methods in imitating complex behaviors in large, high-
dimensional environments. GAIL explores randomly to determine
which actions bring a policy’s occupancy measure closer to the expert’s,
rather than methods that interact with the trainer [9].

Inside IL, our work uses the GAIL framework to train our models,
directly extracting a policy from data. GAIL is interested in a specific set
of imitation learning: the problem of learning to perform a task from
expert demonstrations in which the learner is given only demonstrations
from the expert, so he is not allowed to query the expert for more data.
At the same time, training is not provided with a reinforcement signal.
We chose to use GAIL instead of BC because the space of states we can
have in an environment could be very large, and if the agent trained with
BC didn’t “see” a state before, the agent could not act as desired. GAIL
focuses on learning a policy observed from the expert that is more
approximate to a previous state and acts based on this without problems.
It is important to remember that the “expert” that will train our NPC is
not a skilled professional, but we will use casual players’ data instead.

3. Related work

Previous works addressed the problem of imitating human players
using different supervised learning approaches. [27] was used in Ms.
Pac-Man and other game domains [12], and more recently, case-based
reasoning [28] has been proposed due to its capacity for imitating
spatially-aware autonomous agents in a real-time setting [29]. None of
these works are based on real players’ gameplay logs.

To build a system for learning and predicting individual player
strategies by mining a series of actions from replays, Hsieh and Sun [30]
adopted Aha et al.’s [31] Case-Based Reasoning (CBR) approach. Instead
of constructing a new rule-based system, the main idea of CBR is to solve
new problems based on the decision or solution of similar past experi
ences or problems. Although this work shows that the proposed system

Fig. 2. Classification of Imitation Learning.
Source: [19]

L.V.R. Cavadas et al.

Entertainment Computing 48 (2024) 100603

4

can learn individual player strategies, it managed to learn the strategies
of a player based on numerous replays of this human user. Our work
differs from theirs since we propose using several gameplays from
different players, and we are looking for action in the players’ prove
nance file. When there is no similar action, we will take the closest
possible actions to the existing ones.

Inspired by the idea of directly imitating human behavior, Karpov
et al. [32] presented a component of the UT̂2 bot. The controller draws
upon a previously collected database of recorded human games, which is
indexed and stored for efficient retrieval. The controller works by
quickly retrieving relevant traces of human behavior, translating them
into the action space of the bot, and executing the resulting actions. The
main difference between their work and ours is that the controller
searches for a previously recorded situation. The agent will be stuck in
the same position when this is not found. Our model uses the GAIL
framework to prevent this situation.

Two designs for imitation-learning bots were discussed on Pelling
and Gardner [33]. Both were based on support vector techniques and
included a novel probabilistic model for in-combat jumping. One bot
also includes an application of probability estimation trees to combat
movement. Both designs appeared viable when tested under laboratory
conditions and in the 2009 2K BotPrize competition format.

A model that enables the development of intricate behavior rules for
artificially intelligently controlled video game characters was presented
by Simonov et al. [34]. These rules allow the creation of characters with
believable behavior that satisfies contemporary standards for artificial
intelligence in video games. The model combines the Behavior Roles and
Behavior Characteristics components to achieve believable situations.
They enable characters to make more unique decisions and modify their
behavior in response to the environment of a game. Unique sets of
Behavior Characteristics are generated to create many agents with
diverse and realistic behavior to in- habit vast game worlds. The dif
ference between their work and ours is that our NPC knows how to act
even if it does not know the current state of the environment. In their
work, the NPC can get stuck if it is in an unknown state.

Finally, we discovered the most relevant work related to our
research, conducted by Cruz and Uresti [35]. In their study, the authors
addressed two primary challenges in their approach. The first challenge
involved exploring domains with high-dimensional state-action spaces
while adhering to constraints dictated by characteristics associated with
human-like behavior. The proposed framework learns the model from a
game by observing how humans play it to approach this. This procedure
aimed to induce human-like behaviors in the bot that uses the learned
model. Additionally, they proposed an exploration process—based on
safe RL methods [36] indenting to refine the game model while main
taining induced human-like strategies. The second challenge was
generating varied behaviors adapted to the opponent’s playing style.
They approached this problem by including a reward shaping mecha
nism [37,38]. The main difference compared to our model is the
learning method. While their framework used RL in real-time to obtain
the player’s actions, we recreated games from provenance files and
trained the agent with IL in our approach.

4. Framework for training NPCs using IL and provenance data

In this paper, we propose an Imitation Learning approach, based on
provenance data, for training NPCs with believable behaviors instead of
manually programming them. We differ from existing approaches since
our model uses provenance data instead of a regular log. Besides this,
while in most approaches, the training process is mostly based on re
wards/penalties when the NPC acts correctly/incorrectly, we give re
wards when it makes actions provided by the provenance dataset
available from players’ game sessions. We also give little rewards when
it completes the correct tasks needed to turn an NPC competitive. Our
reward system will be explained in detail later in this chapter.

In this section, we describe our proposed model, designed to be

applied to various game types where the player and the NPC intended to
be modeled can do the same actions, such as in fighting or racing games.
We validate our proposal through the DodgeBall game, but the model
can be applied to various games. DodgeBall game, a team-based game,
has already been used for training NPCs through MultiAgent POst
humous Credit Assignment (MA- POCA) [39]. DodgeBall game allows
the player to adopt different strategies, such as being more aggressive or
carefully shooting balls from a long distance. In our model, we decide to
train an NPC using GAIL. GAIL’s goal consists of randomly exploring the
action possibilities to determine which actions bring a policy’s occu
pancy measure closer to the trainer’s rather than strategies based on
interacting with him. In our approach, we also will use provenance data
gathered by the PinGU framework through different game-plays due to
the richness and detailed data and feed it to the GAIL to train believable
NPCs.

For NPC agents to mimic a human-like behavior, we must train an AI,
producing a “brain”, a trained AI inserted in an agent. To achieve this,
we build the model’s workflow that is illustrated in Fig. 3 that has four
phases:

1. choice of game features needed to recreate player actions;
2. collect provenance data from gameplay sessions;
3. recreate players’ game sessions based on collected provenance data;
4. use the recreated game session to train the NPC with the GAIL frame-

work.

Before explaining the first phase of the model’s workflow, we have to
configure the game environment. When preparing the game, we pref
erably change the number of players so that it becomes one versus-one
dispute, and, if necessary, we also change the victory condition.

After the game’s environment configuration is important to note that
when the player produces input data, the agent’s control behavior
checks which input was triggered and, according to it, fills the variable
created to represent each action. At the end of each frame, the values
contained in these variables are passed to a function, which checks the
values of the variables and performs the correct actions. As an illustra
tion, the corresponding variable is assigned a positive value when the
player presses the key responsible for character movement in a forward
direction. At the frame’s conclusion, the variable is examined, and since
it holds a positive value, the character moves forward accordingly.

4.1. Feature selection

The first stage of the method consists of verifying and choosing
which gameplay’s information and which inputs are required to be
saved on the provenance file. It is necessary to save all inputs referring to
the actions that the NPC will be able to do.

Saving the corresponding inputs that trigger the selected actions is
crucial, as these actions are mapped to the repertoire of actions the NPC
can perform. For example, one of the inputs to an action will be saved.
The player must, however, be capable of doing this action. Provenance
will also compile any data that is associated with an action. To collect
provenance information, we use PinGU, which steps are described in
more detail in the next sections.

4.2. Gathering player session data via provenance

In this stage, we include all the gathered provenance data at the
playerś action, represented in a graph containing vertices representing
player actions during the game session. The edges are the relationships
between actions, agents, and events, and the game state information
during each moment an action was recorded. Using PinGU, we can
obtain data after four phases.

To initiate the process, a game object is introduced in the scene,
functioning as a centralized server for managing provenance data. Two
classes, namely ProvenanceController and InfluenceController, are then

L.V.R. Cavadas et al.

Entertainment Computing 48 (2024) 100603

5

linked to this game object. These classes work collaboratively to handle
all aspects of provenance data management and construct the necessary
graph for the game.

In the second phase, the ExtractProvenance class needs to be asso
ciated with the object created in the previous phase. Subsequently, it
will be attached to the player’s agent in the game. This class generates
all provenance nodes related to the game entity. Once the nodes are
created, the ProvenanceController class takes over and inserts these
generated nodes into the graph.

In the third phase, we identify the various activities within the game
and establish their relationships with other actions that require map
ping. For instance, in our implementation, we differentiate between
walking, rotating, throwing the ball, and being hit. However, it’s
important to note that provenance is not limited to actions alone; it also
encompasses all other game-related activities, such as automatically
picking up a ball from the ground (without requiring input from the
player) or determining whether the player wins or loses.

During the fourth phase, we focus on creating domain-specific
provenance tracking components and integrating them with the
player’s agent. We implement a corresponding provenance function
within the object for each relevant action that requires tracking. This
ensures that the provenance of every significant action the player takes
is properly recorded and monitored throughout the game. As an
example, when the player receives damage in the game, we create a new
entry in the provenance file to document crucial details like the exact
time of the event, the player’s position, the number of remaining lives,
the current health status, and the specific event labeled as“Being Hit”.
Fig. 4 shows the function called when an agent takes damage. This
function generates a new vertex in the provenance graph, capturing all
the relevant information selected in subsection 4.1.

For every mapped action executed, we record the corresponding
input. For example, if the player moves along the x-axis during the game,
this information is logged in the provenance file. This can be observed in
Fig. 5, which presents a snippet of the provenance file containing a
description of the player’s action (Walking) and the associated saved
input values.

Finally, it is necessary to add a provenance data export function to an
event to save the current provenance graph to an external XML file.
Fig. 6 shows a small snippet of the provenance file containing some

activities collected during the game.
For all the identified events that are important for the NPC training,

we need to create a code that will create a new node on the provenance
graph at the moment that the event occurs. For example, when a player
loses the match, we call a function on the code that creates a new vertex
on the provenance file. As the graph is very important to the developer
because the information on it shows cause-effect relationships, the effort
pays off.

Once this configuration is complete, it’s time to collect the players’
data on the game. We set up an agent to gather provenance data asso
ciated with it for validation reasons. The player will use this agent to
face an enemy trained with the existing standard AI. The human player
will play some matches, and the data generated by each match will be
saved in the provenance file. Ultimately, we will have several game
sessions with the player(s). In the provenance, it is possible to collect
and merge data from a large set of players in different matches and save
it in the same provenance file. Using every match as a training tool is

Fig. 3. Workflow composed of the phases of our proposed model.

Fig. 4. Snippet of code to create a new vertex “Being Hit” on the prove
nance graph.

Fig. 5. Snippet of provenance file with mapped inputs made in the
player’s session.

L.V.R. Cavadas et al.

Entertainment Computing 48 (2024) 100603

6

also feasible by saving it in a separate file. This data will be examined in
the next steps.

4.3. Recreating players’ sessions based on provenance data for training

Every event or input is saved via provenance resulting in the creation
of a node that is recorded on the provenance file. We can save one or
more nodes on the provenance file at each frame.

We begin by reading the provenance file to reproduce the player’s
activities during the game. We must read and understand each node
from the provenance file in XML format, one at a time. At this moment,
public properties and fields of an object are converted to a serial format
for storage or data transmission. Based on the results, a deserialization
stage recreates the object in its initial state. It is feasible to think about
serialization as storing an object’s state in a stream or buffer.

Through a script interpretation stage, we get the values for each
input at each node of the source file. We must transform the data from its
string format, which is in XML format, to a numerical representation of
the variables that control the character’s actions. As a result, we pass
each value to the variables in Unity Engine that represent the actions
from the corresponding entries in the provenance file. During each
frame, the function responsible for reading the character’s actions up
dates the values of these variables based on the information retrieved
from the provenance file’s corresponding node. All the process steps to
recreate the player’s actions from provenance data are represented in
Fig. 7. The process will be executed during the agent’s training,
described in the next stage.

4.4. Training with the GAIL framework

At this stage, the game is ready to recreate the contents of a prove
nance file already gathered from previous gameplay sessions. Before
starting the game and recreating the actions represented by the prove
nance, it is necessary to configure how the agent will be trained. Since
GAIL does not interact with the expert during training, the NPC won’t
learn from an expert and will not behave like this expert. As stated
before, we chose the framework GAIL to train our NPC because the
policy learning from GAIL can help the NPC avoid unseen situations in
games that can cause undesired behaviors. The created NPC will act
according to the learned policy and behavior from the nodes saved on
the provenance file.

We first created a neural network configuration file for training an
NPC using GAIL with data from many players stored as a provenance
file, including the GAIL framework configuration. Unity ML-Agents
Toolkit already has GAIL implemented, so we need to configure the
network parameters5, such as strength and learning rate (used to update
the discriminator). Fig. 8 shows a snapshot from the training configu
ration file with the GAIL configuration used to implement the training
on the DodgeBall game.

Numerous game sessions from the same player or other users can be
used during this phase. If more than one user is being acquired, the
procedure begins with the data from the first player, and the training is
increased with the data from all the other players.

After loading the training data from the provenance file and finishing
the GAIL configuration, it is possible to start training with our model.
When starting the game, the NPC starts to reproduce the actions
described in each node from the provenance file, as explained in the
previous section. Usually, we reward good deeds like defeating the
enemy and penalize bad actions like crashing into a wall so that it can
know if the action had generated a good or a bad result. However, when
choosing this traditional approach, the bot will be trained to be
extremely efficient, always taking the best actions and becoming a
formidable enemy. This work proposes the creation of an NPC that be
haves like a human, and to reach that goal, we will reward the bot when
it takes the actions described on the provenance file, whether these
actions are good or bad, so it will learn to behave exactly as the human
player.

Training the NPC through several steps does not guarantee that the

Fig. 6. Snippet of provenance graph with some activities saved in the provenance file.

Fig. 7. Required steps to recreate actions saved on provenance file for training
the agent.

5 https://github.com/Unity-Technologies/ml-agents/blob/main/docs/
Training-Configuration-File.md. Last accessed: 30 Jul 2022.

L.V.R. Cavadas et al.

Entertainment Computing 48 (2024) 100603

7

NPC learns the objectives of the game. For example, when we collect the
provenance data of a match, let’s assume the NPC is at coordinate
x1—z1 and the enemy is at coordinate x2—z2. The player then realizes
an action considered correct for winning and receives a positive reward,
like throwing a ball and hitting the opponent. At this moment, the co
ordinates and the information about the result of the action are saved in
a node in the provenance file. In the training step, when we reproduce
this action using the information from this node, the player will do the
same, but there is no guarantee that the opponent in the current game is
not at a coordinate other than x2—z2.

For efficiently teaching the game’s objectives to the NPC is necessary
to change part of the rewards policy, reducing the rewards when it
completes the correct tasks required to turn an NPC competitive. Using
the correct proportion of rewards is necessary to avoid the NPC
becoming invincible. We made several tests with different rewards, and
our NPC became invincible sometimes or didn’t know what was the
game’s objective at other times due to the change in the objective’s
rewards. These tests were made via observation and feedback from users
that were not the users that tested our final model. After these tests, we
found a proportion that can make our NPC acts like a real player.

When the training begins, and the NPC starts to imitate the player’s
actions according to the provenance file, we reward the NPC with a
weight of 1 for every action. When the NPC completes a task needed to
understand the game’s objective, we reward it with a weight of 0.1. This
weight difference makes the NPC focus much more on acting as the
player while still trying to win the game. The weights of the rewards also
work in theory in other games since the important thing is the propor
tion of rewards during training.

5. Results

For validating and testing our proposal, we use a game called Dodge-
Ball. The scenario where the game occurs has walls and obstacles scat
tered throughout the environment. Thrown balls bounce off obstacles or
walls. There are two types of games: capture the flag and elimination. In
both modes, the match has eight characters, 4 per side. We validate
using the elimination mode where the character’s life is 2. The charac
ters must collect the balls on the ground and throw them toward the
enemy. When the ball hits a character, it loses 1 of life. The match ends
when all the characters from the opposite side are defeated.

Considering our test scenario, four players are on each team, as
shown in Fig. 1. We reduced the number of players from the original
game, so each team has just one character left. We also have to change
the win conditions to allow victory when defeating one enemy since
there is only one enemy in the proposed game.

The existing agent in the DodgeBall game was trained using a
traditional reward system, which constantly improves the agent’s ca
pabilities by rewarding good actions and penalizing bad actions. As
such, the agent can be better over time than the human expert that
trained it and is almost unbeatable. Another important point in our
model is to reward the agent when it takes actions performed by a player
and recorded in the provenance, regardless of whether the actions had
good or bad results. This will make the agent not perfect and make the
same mistakes as a real player.

We invited twelve players, ranging in age from 17 to 32, to play the
DodgeBall game in six different scenarios as part of the validation of our
model. Traditional A, B, and C scenarios have agents with brain training
through the traditional reward system. During training, we give positive
rewards for successful tasks and penalties for unsuccessful tasks. In
scenarios named Model A, Model B, and Model C, the agent has a brain
trained with our training methodology, rewarding all the actions read
from the provenance file. The difference between scenarios A, B, and C
in both training methods is the number of steps for training. Table 1
shows the information about each scenario configuration.

After the training process ends, we have the already trained NPC
with the traditional reward system and a trained agent trained with our
model. Using our model, if the NPC has encountered the game’s current
state before, the agent will replicate the same action as previously
observed. However, if the current state is new to the NPC, it will search
for an action that closely resembles the present situation and act
accordingly. We ask the players to play the game facing the agent using
the traditional reward system and the agent trained using our model. We
ask them to rank the NPC based on how similar they believe the NPC’s
moves and act, according to a human player, through a Likert scale
ranging from 1 to 10, with 1 denoting the complete opposite of a player
behavior and 10 designating the close to or perfect as a player behavior.
The following subsections describe the NPC behavior and player’s
feedback in each scenario.

5.1. Traditional A

In this scenario, the NPC’s movements were very simple and carried
out without much logic. The logic of collecting balls from the ground
was far from the ideal. The movement’s initial outcome was far from
ideal and needed more training time. The NPC crashed into walls or
obstacles. The NPC did not execute the dash move.

Concerning the shots, the NPC occasionally took balls to make the
throw, but as soon the NPC collected a ball, it threw it in the direction it
was facing without aiming the player.

The NPC’s moves were simple, so players easily beat this NPC. The
ball throws were badly executed. Only four of the twelve human players
thought they were dealing with a real player. When they saw the NPC
throw the ball in the wrong direction, all were certain it was not a real
player.

Fig. 8. Screenshot taken from the neural network configuration file.

Table 1
Scenarios.

Scenario name Trained traditionally Trained using
our model

Number of steps

Traditional A Yes No 3,000,000
Traditional B Yes No 4,500,000
Traditional C Yes No 6,000,000
Model A No Yes 3,000,000
Model B No Yes 4,500,000
Model C No Yes 6,000,000

L.V.R. Cavadas et al.

Entertainment Computing 48 (2024) 100603

8

5.2. Traditional B

In this scenario, some improvements were observed in the NPCs’
movements, with the character moving between obstacles and searching
for balls to collect and throw. Compared to scenario A, the outcome was
improved, particularly regarding the movements, even while using the
dash movement. When the NPC picked up a ball from the ground, it
could stay with it longer before throwing. The aim was not precise, even
with improvements in throwing the ball.

The moves made by the NPC, such as being shrewd when seeking for
balls and holding onto the balls before throwing them, were perceived
by all the players as being more realistic. Human players noticed certain
ball throws made by the NPC as being random. Yet, compared to the
prior situation, about 35% of ball shots succeeded in hitting the player.

5.3. Traditional C

The NPC’s mobility is significantly more effective in this configura
tion, gathering balls swiftly and avoiding collisions with obstructions.
With a hit rate close to 55%, ball throwing has greatly improved. The
NPC was viewed as aggressive and attempting to end the match quickly.

In this scenario, the NPC was considered challenging to beat and
even won some games. Players generally thought they were playing
against a skilled opponent because of the NPC’s movement and effective
throws. Despite the advancements, some players complained that the
NPC was extremely challenging and, because of their efficiency, the NPC
believability was perceived as a real player with some great skills or a
machine.

5.4. Model A

The NPC tried to collect the balls while moving without using the
dash move and colliding with walls and barriers sporadically. Compared
to scenario Traditional A, the NPC holds the balls longer. However, the
throw lacked accuracy. Although the NPC presented little hardship to
the players, they nevertheless thought it was an improvement over
Traditional A.

5.5. Model B

In this case, the NPC gathered balls efficiently, hit walls and barriers
less often, and improved accuracy when throwing balls. However, the
shots were still made with regular errors. The NPC often throws the ball
after picking it up from the ground, as some players use this tactic, but
the NPC does it at the wrong time. Players generally said the NPC was
more believable and appeared to be a player for most of the game.
Comparing this scenario with Traditional B, the participants felt an in
crease in the credibility of the NPC.

5.6. Model C

The NPC navigated the last scenario fairly successfully, collecting the
balls with a dash and only colliding with obstacles after the dash. Only
one type of throwing error remains: when an NPC “saw” the player, but
there were balls on the ground before them or the edge of a barrier to
stop the ball. The majority of shooting errors are ones that genuine
players frequently commit. The players during tests were perceived as
making more errors when throwing rather than moving.

Since this situation closely resembled a real player, human players
believed this version was the most entertaining despite a few small
flaws. The movement was appreciated since it moved well but made
minor shooting and movement mistakes. The faults made by the NPC
were seen by the players similarly to those expected from a human
player.

5.7. Analysis of results

Table 2 shows the ratings given by the players related to the NPC’s
movements for each of the specified scenarios. Table 3 shows the ratings
given by each player in the specified scenarios about the NPC’s ball
throwing. According to Tables 2 and 3, there were some gains in both
training models as the number of steps increased. The ball shots were
executed with higher precision and exhibited less randomness, as the
movement closely resembled the movement performed by a player. The
NPC was getting more difficult to deal with as it improved at moving and
hurling the ball. The NPC originally appeared to be less like a real player
but gradually appeared to be more like one.

Despite its increased difficulty, the Traditional C NPC’s remarkable
shooting accuracy and fluid movement unmistakably conveyed the
impression of facing a machine rather than a human opponent. When
comparing the ratings of NPC’s shots and movements of Traditional B
against the ratings NPC of Traditional C, both trained in the traditional
model of reward, it is possible to notice that some ratings got worse in
the scenario Traditional C.

The rating given to the NPC of scenario Model C improved the
perception of being a real player compared to the scenario results from
Model B. It became real but continued to make some minor errors that
typically human players would make. This was true when comparing the
same number of steps in the training proposed in our model. Among all
the situations, the NPC in scenario Model C generally succeeded in
conveying the strongest sense of being a real player.

Because there were more steps taken during training in scenario
Model C than in Model B and Model A, the NPC got more convincing
results. According to the increase in training steps, the NPC in scenarios
Traditional A, Traditional B, and Traditional C became extremely
effective when rewarding proper behavior and punishing bad behavior.
A machine or a very skilled player could only attain this efficiency,
lowering the NPC’s believability.

These results demonstrated that, despite some enhancements, our
model worked properly and that the NPC perceived by players resembles
a real player more closely than the NPC created using the conventional
training models. The DodgeBall game proved satisfactory for validating
our solution. It is not a highly specific game with complex actions but is
similar to most games with simple elements, such as moving and
shooting.

6. Conclusion and future work

In competitive multiplayer games, players seek experiences that offer
greater immersion and believable behavior. One of the key goals of AI
techniques is to develop agents that behave like humans. Our proposal
offers a novel paradigm built on provenance approaches for producing
NPCs that perform actions close to those performed by human players,
enhancing the player’s sense of immersion as they are observed.

Our approach requires gathering information from many players via
provenance data and using these data to train NPCs with the GAIL
framework. In the literature, these two ideas have not yet been applied
together. As provenance also involves cause-and-effect links, it gives
more specific knowledge about the events that occur while a player acts.
The GAIL framework for imitation learning enables the NPC to learn a
policy and create a roughly accurate action that a player would take.

It is crucial to train NPCs without the help of an expert so that their
performance is more similar to real players rather than optimized. Also,
the expert would need much gaming time to train the agent. Our method
can combine the data from various participants into a single brain
through provenance models. Although the model was created to be
general and usable in various games, the environment used was the
DodgeBall game from the Unity Engine ML-Agents package. We changed
the game to a one-against-one format and used the elimination game
mode for validation. Currently, we are simulating player behaviors
based on their input. Future advancements will enable to handle more

L.V.R. Cavadas et al.

Entertainment Computing 48 (2024) 100603

9

complex behaviors by utilizing the influence already available at the
captured provenance.

Twelve users were selected to participate in the game in six different
scenarios. In scenarios Traditional A, Traditional B, and Traditional C,
they were confronted with an NPC trained with the traditional reward
model, which promotes good behavior and penalizes negative behavior.
Following, they faced NPC in Model A, Model B, and Model C, trained
with our model’s reward system, and received rewards for all activities
in the provenance file. In addition, we distribute a small number of re
wards known as objective rewards to NPCs for the discovery of the
game’s goal. The players rated the NPC based on how it behaved in the
game. When we compared the ratings the players gave to the different
scenarios Traditional A, Traditional B, and Traditional C with the sce
narios Model A, Model B, and Model C, we noticed a significant
improvement in the ratings of our model, indicating that our approaches
converge to credible behaviors. The NPC started to behave more like a
genuine player, according to input from all players, which was reflected
in the ratings. The scores for our NPC give us a positive feeling that while
our model still requires work, it is headed in the right direction. The
model can be scaled up to provide better results and an NPC that behaves
almost like a real player.

We should improve the training procedure in the following stage of
our work and observe how the agent acts while using more provenance
data from more players. The impact of the number of graphs on NPC
training should also be examined. Also, practicing for longer periods and
with more circumstances to compare is crucial. With more formal
believability testing methods found in the literature, we also want to
examine the plausibility of an agent developed through the model
described in this work.

Another future task is to group various users’ profiles such that the
recorded sessions adhere to some user profiles (kids, experienced
players, casual gamers, etc.). Allowing players to select the type of NPC
they would face would make the game less frustrating and more
enjoyable.

We also intend to validate our method on other games. The model
was intended to be general in theory; nevertheless, it does need training

using the GAIL framework and preparation of the provenance gathering
step, being this is the only limitation applicable in our work.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] I. Borovikov, J. Harder, M. Sadovsky, A. Beirami, Towards interactive training of
non-player characters in video games, arXiv preprint arXiv:1906.00535 (2019).

[2] R. Arrabales, J. Muñoz, A. Ledezma, G. Gutierrez, A. Sanchis, A machine
consciousness approach to the design of human-like bots, in: Believable Bots,
Springer, 2013, pp. 171–191.

[3] P. De Haan, D. Jayaraman, S. Levine, Causal confusion in imitation learning, Adv.
Neural Informa. Process. Syst. 32 (2019).

[4] S.K.S. Ghasemipour, R. Zemel, S. Gu, A divergence minimization perspective on
imitation learning methods, in: Conference on Robot Learning, PMLR, 2020, pp.
1259–1277.

[5] A. Billard, D. Grollman, Robot learning by demonstration, Scholarpedia 8 (12)
(2013) 3824.

[6] J.A. Bagnell, An Invitation to Imitation, Tech. rep., Carnegie-Mellon Univ
Pittsburgh Pa Robotics Inst, 2015.

[7] T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel, J. Peters, et al., An
algorithmic perspective on imitation learning, Found. Trends® Robotics 7 (1–2)
(2018) 1–179.

[8] A.G. Billard, S. Calinon, R. Dillmann, Learning from Humans, Springer Handbook
of Robotics, 2016, pp. 1995–2014.

[9] J. Ho, S. Ermon, Generative adversarial imitation learning, Adv. Neural Inform.
Process. Syst. 29 (2016).

[10] A. Khalifa, A. Isaksen, J. Togelius, A. Nealen, Modifying mcts for human-like
general video game playing, 2016.

[11] J. Togelius, R. De Nardi, S.M. Lucas, Towards automatic personalised content
creation for racing games, in: 2007 IEEE Symposium on Computational Intelligence
and Games, IEEE, 2007, pp. 252–259.

[12] J. Ortega, N. Shaker, J. Togelius, G.N. Yannakakis, Imitating human playing styles
in super mario bros, Entertain. Comput. 4 (2) (2013) 93–104.

Table 2
NPC’s movement credibility ratings assigned by players.

Players Average
Rating

A B C D E F G H I J K L

Traditional Training
Traditional A 5 3 4 4 4 5 4 5 4 5 3 4 4,16
Traditional B 8 6 9 7 7 7 6 7 8 8 7 9 7,41
Traditional C 7 7 8 7 6 6 7 7 6 7 6 9 6,91

Our Model Training
Model A 6 4 6 5 5 6 4 5 5 6 5 7 5,33
Model B 8 7 9 7 8 8 7 7 8 9 7 10 7,91
Model C 9 8 10 7 8 9 8 9 8 9 8 10 8,58

Table 3
NPC’s shots credibility ratings assigned by players.

Players Average
Rating

A B C D E F G H I J K L

Traditional Training
Traditional A 3 2 3 3 2 4 3 3 4 2 2 3 2,83
Traditional B 6 7 6 7 6 6 7 7 6 5 6 7 6,5
Traditional C 6 8 6 6 7 7 6 7 7 5 6 7 6,5

Our Model Training
Model A 3 3 4 3 2 4 4 5 5 4 5 5 3,91
Model B 5 6 7 5 5 7 6 8 6 6 7 8 6,33
Model C 6 7 8 7 5 9 8 8 8 6 8 9 7,41

L.V.R. Cavadas et al.

http://refhub.elsevier.com/S1875-9521(23)00058-7/h0015
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0015
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0025
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0025
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0030
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0030
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0035
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0035
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0035
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0045
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0045
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0060
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0060

Entertainment Computing 48 (2024) 100603

10

[13] L.V.R. Cavadas, E. Clua, T.C. Kohwalter, S.A. Melo. Traininghuman-like bots with
imitation learning based on provenance data, in:2022, IEEE, 2022, pp. 1–6.

[14] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas- nikowska, S.
Miles, P. Missier, J. Myers et al., The open provenance model core specification
(v1. 1), Future Gen. Comp. Syst. 27(6) (2011) 743–756.

[15] T. Kohwalter, E. Clua, L. Murta, Provenance in games, in: Braz. Symp. Games Digit.
Entertain. SBGAMES, 2012, pp. 162–171.

[16] K. Belhajjame, R. B’Far, J. Cheney, S. Coppens, S. Cresswell, Y. Gil, P. Groth, G.
Klyne, T. Lebo, J. McCusker, et al., Prov-dm: The prov Data Model, W3C
Recommendation 14 (2013) 15–16.

[17] A. Attia, S. Dayan, Global overview of imitation learning, arXiv preprint arXiv:
1801.06503 (2018).

[18] P. Abbeel, A.Y. Ng, Apprenticeship learning via inverse reinforcement learning, in:
Proceedings of the Twenty-first International Conference on Machine Learning,
2004, p. 1.

[19] J. Hua, L. Zeng, G. Li, Z. Ju, Learning for a robot: deep reinforcement learning,
imitation learning, transfer learning, Sensors 21 (4) (2021) 1278.

[20] D. Pomerleau, An autonomous land vehicle in a neural network, Adv. Neural
Inform. Process. Syst. 1 (1998).

[21] S. Russell, Learning agents for uncertain environments, in: Proceedings of the
Eleventh Annual Conference on Computational Learning Theory, 1998,
pp. 101–103.

[22] A.Y. Ng, S. Russell et al., Algorithms for inverse reinforcement learning, in: Icml,
vol. 1, 2000, p. 2.

[23] S. Ross, D. Bagnell, Efficient reductions for imitation learning, in: Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics,
JMLR Workshop and Conference Proceedings, 2010, pp. 661–668.

[24] S. Ross, G. Gordon, D. Bagnell, A reduction of imitation learning and structured
prediction to no-regret online learning, in: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, JMLR Workshop
and Conference Proceedings, 2011, pp. 627–635.

[25] B.D. Ziebart, A.L. Maas, J.A. Bagnell, A.K. Dey et al., Maximum entropy inverse
reinforcement learning, in: Aaai, vol. 8, Chicago, IL, USA, 2008, pp. 1433–1438.

[26] N.D. Ratliff, D. Silver, J.A. Bagnell, Learning to search: functional gradient
techniques for imitation learning, Auton. Robots 27 (1) (2009) 25–53.

[27] M. Miranda, A.A. Sanchez-Ruiz, F. Peinado, A neuroevolution approach to
imitating human-like play in ms. pac-man video game, in: CoSECivi, 2016, pp.
113–124.

[28] M. Miranda, A A. Sánchez-Ruiz, F. Peinado, A cbr approach for imitat- ing human
playing style in ms. pac-man video game, in: International Conference on Case-
Based Reasoning, Springer, 2018, pp. 292–308.

[29] M.W. Floyd, A. Davoust, B. Esfandiari, Considerations for real-time spatially-aware
case-based reasoning: a case study in robotic soccer imitation, in: European
Conference on Case-Based Reasoning, Springer, 2008, pp. 195–209.

[30] J.-L. Hsieh, C.-T. Sun, Building a player strategy model by analyzing replays of real-
time strategy games, in: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008, pp.
3106–3111.

[31] D. W. Aha, M. Molineaux, M. Ponsen, Learning to win: Case-based plan selection in
a real-time strategy game, in: International Conference on Case-based Reasoning,
Springer, 2005, pp. 5–20.

[32] I.V. Karpov, J. Schrum, R. Miikkulainen, Believable bot navigation via playback of
human traces, in: Believable Bots, Springer, 2013, pp. 151–170.

[33] C. Pelling, H. Gardner, Two human-like imitation-learning bots with probabilistic
behaviors, in: 2019 IEEE Conference on Games (CoG), 2019, pp. 1–7.

[34] A. Simonov, A. Zagarskikh, V. Fedorov, Applying behavior character- istics to
decision-making process to create believable game ai, Procedia Comput. Sci. 156
(2019) 404–413.

[35] C. Arzate Cruz, J.A. Ramirez Uresti, Hrlb 2: a reinforcement learning based
framework for believable bots, Appl. Sci. 8 (12) (2018) 2453.

[36] J. Garcıa, F. Ferńandez,, A comprehensive survey on safe reinforcement learning,
J. Mach. Learn. Res. 16 (1) (2015) 1437–1480.

[37] A. Y. Ng, D. Harada, S. Russell, Policy invariance under reward trans- formations:
Theory and application to reward shaping, in: Icml, vol. 99, 1999, pp. 278–287.

[38] E. Wiewiora, G.W. Cottrell, C. Elkan, Principled methods for advising
reinforcement learning agents, in: Proceedings of the 20th International
Conference on Machine Learning (ICML-03), 2003, pp. 792–799.

[39] A. Cohen, E. Teng, V.-P. Berges, R.-P. Dong, H. Henry, M. Mattar, A. Zook, S.
Ganguly, On the use and misuse of absorbing states in multi-agent reinforcement
learning, arXiv preprint arXiv:2111.05992 (2021).

L.V.R. Cavadas et al.

http://refhub.elsevier.com/S1875-9521(23)00058-7/h0065
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0065
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0090
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0090
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0090
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0095
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0095
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0100
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0100
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0105
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0105
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0105
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0130
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0130
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0165
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0165
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0170
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0170
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0170
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0175
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0175
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0180
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0180
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0190
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0190
http://refhub.elsevier.com/S1875-9521(23)00058-7/h0190

	Using provenance data and imitation learning to train human-like bots
	1 Introduction
	2 Theoretical foundation
	3 Related work
	4 Framework for training NPCs using IL and provenance data
	4.1 Feature selection
	4.2 Gathering player session data via provenance
	4.3 Recreating players’ sessions based on provenance data for training
	4.4 Training with the GAIL framework

	5 Results
	5.1 Traditional A
	5.2 Traditional B
	5.3 Traditional C
	5.4 Model A
	5.5 Model B
	5.6 Model C
	5.7 Analysis of results

	6 Conclusion and future work
	Declaration of Competing Interest
	Data availability
	References

