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A B S T R A C T   

Nonplayer Characters are becoming more realistic in their actions and behav- iors because of the development of 
gaming technology and gamers’ increased demand for enhancements. While this progress is an exciting devel
opment, it has also become a major concern for game developers over the years, since players demand that NPCs 
look alike to other human players. Our major objective in this work is to make an NPC that satisfactorily mimics a 
player. This work proposes a method for training an NPC using imitation learning with the Generative Adver
sarial Imitation Learning framework to become similar to a human player. To simulate player behavior, our 
proposal trains agents using provenance data sets, cause-and-effect data mining, and the GAIL framework. The 
proposed model was developed to be universal and adaptable to different games. We validate our model using 
the DodgeBall game environment inside the Unity ML-Agents Toolkit for Unity Engine. Some players competed 
against our agent and found that our NPC was credible by observing his actions and behaviors. In this work, we 
present a new way of giving rewards compared to the model presented in the previous work. The tests and results 
found were also expanded, improving the validation of our model.   

1. Introduction 

Artificial Intelligence (AI) occupies an important place in games of 
any genre and is used by developers to create a world with a high degree 
of immersiveness in their virtual world. AI allows the developer to 
discover peculiar properties of a game world, such as the player’s ac
tions. The AI also makes it easier to improve the behavior of non-player 
characters (NPCs), allowing the developers to model the desired 
behavior more easily. The NPCs also may have more complex rules of 
behavior applied to them. The game industry is increasingly looking for 
non-player characters to have greater credibility in their games. This 
increases the immersion of the player and directly influences their 
enjoyment. NPCs are autonomous agents communicating with the 
player and the game world. As a result, they are crucial to the gameplay 
and the player’s immersion. It takes a lot of domain expertise, knowl
edge engineering, scripting, intuition, and testing to create them using 
the conventional hand-crafting approaches. 

In the meantime, the scale and depth of the criteria for the NPCs are 
growing. The scale requires various character types to be featured in the 
game to provide the impression of a well-populated virtual environment, 
and the depth is about making these NPCs more engaging. The existing 
approach to hand-crafting behaviors of NPCs is hard to scale in both 
dimensions, calling for alternative approaches [1]. Furthermore, 

empirical evidence indicates that players prefer to play with or against 
“human” NPCs [2]. 

In recent years, Imitation Learning (IL) has been investigated as a 
way to efficiently and intuitively program autonomous behavior 
[3,4,5,6,7,8]. IL is a technique for quickly picking up desired behavior 
by imitating it from an expert. IL is not only applicable to physical 
systems but is more commonly employed in robotics and can be useful 
for any system that needs autonomous behavior that resembles human 
experts. Inside IL, we decide to use the framework Generative Adver
sarial Imitation Learning (GAIL) [9] to train our NPC. 

There have been many efforts to create believable NPCs in different 
game genres [10,11,12]. These works are classified into direct and in
direct behavior imitation [11]. The direct imitation approach uses su
pervised learning algorithms that take human play as input traces. In 
contrast, the indirect imitation approach tackles this problem by maxi
mizing a fitness function that evaluates the human likeness of an NPC’s 
behavior. 

Building NPCs that act like humans requires solutions to many 
challenging problems, including observing player activities, discovering 
player strategy models, developing practical AI technology, testing their 
believability, etc. In addition, it is difficult to discover which player’s 
behaviors should be reproduced, and it is also very laborious and diffi
cult to manually program all the actions that the NPC can perform, 
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especially when unpredictable situations may arise during the game
play. Our proposal was built to help to facilitate the creation of believ
able NPCs. The game industry is also increasingly looking for NPCs to 
have greater believability. This increases the player’s immersion and 
directly influences the provided fun for the players. Having a good 
reception from the players makes it easier to sell more game copies. 

The main goal of this paper is to create a believable human-like NPC 
using real players’ data. To reach this goal, we propose a model 
described by a sequence of steps for training a believable NPC using IL 
that does not require an expert to teach the NPC. Instead of the expert 
usage, we will use players’ data from previous game sessions gathered 
by provenance. This way, the NPC will not behave with perfect mastery, 
which increases the believability to be a real player with their own 
correct and incorrect actions. As far as we know, provenance strategies 
for training IL was not used yet. Compared to a regular log, provenance 
may bring important features to this field due to these cause-and-effect 
relationships, which can bring more info about how the players play the 
game and build NPCs based on this. This can facilitate the visualization 
of the cause and effect of game elements’ actions and help developers 
identify important gameplay elements. We also expect the presented 
model to be generic enough to be applied to any games with NPCs that 
can do the same actions as the player, like racing games, fighting games, 
puzzle games, shooter games, etc. 

The rewards policy used in our model also differs from the rewards 
policy traditionally used to train the NPC. Our training is not based on 
giving rewards when the agent acts correctly or giving penalties when 
the NPC acts incorrectly. Instead, we reward the NPC when it reproduces 
the actions provided by the provenance data from players’ game ses
sions. This model did not work very well as there was still a need to give 
rewards to the NPC according to the results of his actions because 
without them, he would not know the objective of the game. We name 
this reward “objective’s rewards” and it is small if compared to the 
reward when performing a read action from the provenance file. 

We choose the game engine Unity3D1 to train and validate an NPC, 
using the DodgeBall2 game environment present in open source Unity 
ML-Agents Toolkit3. Fig. 1 shows a picture of the DodgeBall game from 
the player’s vision, showing the characters and the elements of the 
environment. The scenery elements are the walls, the bushes, and the 
balls distributed randomly at the beginning of the game. In the Dodge
Ball game, the character can move to the left, right, forwards, or back
ward. He can also perform a dash with cooldown time and throw a ball. 

To collect a ball, the player has to pass over a ball on the ground. 
After the players faced the trained NPC using the described model, 

they rated our NPC’s credibility and, compared to the trained NPC’s 
believability using the traditional rewards model, our NPC was consid
ered more “human”. This result was important for us to verify that we 
were on the right path and to continue deepening the experiments using 
our model. 

This paper extends our previous contribution [13], where we pro
posed a first set of policies. In the present paper, we improve the rewards 
policy to make the NPC even more believable. We also validated it with a 
larger group of people and brought new promising results with a more 
detailed analysis. The remainder of the paper is organized as follows: 
The following section presents the theoretical foundation, the third 
section presents the related work, and the fourth section presents our 
proposed model. The fifth section brings the results, and the last section 
concludes this work, pointing out conclusions about the proposal and 
future works. 

2. Theoretical foundation 

In this section, we will present the knowledge that formed the basis 
for our work. Provenance is well understood in the context of art or 
digital libraries. It refers to the documented history of an art object or 
the documentation of processes in a digital object’s life cycle [14]. In 
2006, at the International Provenance and Annotation Workshop, the 
participants were interested in the issues of data provenance, docu
mentation, derivation, and annotation. As a result, the Open Provenance 
Model (OPM) [14] was created from the Provenance Challenge that was 
held in that workshop [15]. 

The OPM is a proposed model of provenance that was designed to 
meet the following requirements [14]:  

• Allow provenance information to be exchanged between systems; 
• Allow developers to build and share tools to operate on such prov

enance model;  
• Define provenance in a precise, technology-agnostic manner;  
• Support digital representation of provenance;  
• Allow multiple levels of description to coexist;  
• Define a core set of rules that identify the valid inferences that can be 

made on provenance representation. 

The causality graph comprises nodes representing Artifacts, Pro
cesses, and Agents. Artifacts are immutable pieces of state that can 
represent a physical object or a digital representation in a computer 
system. Processes are actions or a sequence of actions performed or 
caused by artifacts, resulting in new artifacts. Agents are contextual 
entities acting as a catalyst of a process that can enable, facilitate, 
control or affect its execution. The graph’s edges represent a causal 
dependency between its source, denoting the effect, and its destination 
that denotes the cause [15]. 

Belhajjame et al. [16] created a conceptual data model that forms a 
ba- sis for the W3C provenance (PROV) family of specifications, 
formalizing and replacing what was presented in [14]. PROV-DM dis
tinguishes core structures, forming the essence of provenance informa
tion, from extended structures catering to more specific uses of 
provenance. 

For capturing and storing provenance data from a game session 
based on the Provenance in Games conceptual framework. Kohwalter 
et al. [15] proposed a novel approach named PinGU4. The wealth of 
provenance data collected during a game session is fundamental for 
understanding the mistakes made and reproducing the same results 
later. Causal relationships between game elements are mapped as edges 
connecting their respective nodes, resulting in a game provenance 

Fig. 1. Elements of DodgeBall game environment.  

1 https://unity.com. Last accessed: 10 Feb 2023.  
2 https://blog.unity.com/technology/ml-agents-plays-dodgeball. Last 

accessed: 10 Feb 2023.  
3 https://github.com/Unity-Technologies/ml-agents. Last accessed: 20 Jan 

2023. 4 https://github.com/gems-uff/ping. 
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graph. Causality indicates a relationship between two events, where the 
former event affects the latter. The provenance approach captures causal 
relationships explicitly defined by the game developer. Each edge 
captured through the provenance approach represents a type of rela
tionship (that can also be causal) between game objects’ actions and/or 
states. The most important advantages of provenance graphs are the 
modeling of causal relationships, which structures the provenance ele
ments into a graph, and its richness of detail. 

Machine Learning (ML) techniques can be used to automate the 
process of learning how to play a video game either progressively using 
players’ game traces as input, through direct imitation approaches or 
using some form of optimization technique such as Evolutionary 
Computation or Reinforcement Learning to develop a fitness function 
that, for instance, “measures” the human likeness of an agent’s playing 
style [11]. 

The principle behind Imitation Learning is to allow an agent to act 
and exhibit human behavior by implicitly giving the learner information 
about the world. In IL tasks, the agent seeks the best way to use a 
training set (pair of inputs and outputs) demonstrated by an expert to 
learn a policy and achieve an action as similar as possible to the expert’s 
one [17]. 

Imitation is often needed to automate actions when the agent is 
human, and it is too expensive to run its actions in real time. Appren
ticeship learning [18], on the contrary, executes pure greedy/exploit
ative policies and uses all (state/action) trajectories to learn a near- 
optimal policy using Reinforcement Learning (RL) approaches. It re
quires difficult maneuvers and is nearly impossible to recover from 
unobserved states. IL can often deal with those unexplored states, so it 
offers a more reliable framework for many tasks, such as self-driving cars 
[17]. 

Training NPCs using AI techniques can make them very efficient. 
When using RL to train NPCs in situations where they are the player’s 
opponents in a game, the NPC can become unbeatable, making the NPC 
look like a professional player. When using IL, the NPC can behave like a 
real player, but they usually behave similarly to their trainer and don’t 
have many variations of actions. Fig. 2 shows the classification of IL. 

Ho and Ermon [9] were interested in a specific setting of IL: the 
problem of learning to perform a task from expert demonstrations, in 
which the learner is given only samples of trajectories from the expert, is 
not allowed to query the expert for more data. At the same time, training 
is not provided reinforcement signal of any kind [9]. 

At that moment, there were two main approaches suitable for this 
setting: Behavioral Cloning (BC) [20], which learns a policy as a su
pervised learning problem over state-action pairs from expert trajec
tories; and Inverse Reinforcement Learning (IRL) [21,22], which finds a 
cost function under which the expert is uniquely optimal. 

While appealingly simple, BC only tends to succeed with large 
amounts of data due to compounding error caused by covariate shift 
[23,24]. IRL, on the other hand, learns a cost function that prioritizes 
entire trajectories over others. Hence, compounding error, a problem for 
methods that fit single- timestep decisions, is not an issue. Accordingly, 
IRL has succeeded in a wide range of problems, from predicting be
haviors of taxi drivers [25] to planning footsteps for quadruped robots 
[26]. Unfortunately, many IRL algorithms are extremely expensive, 
requiring RL in an inner loop [9]. 

Based on this, Ho and Ermon described a new framework called 
Generative Adversarial Imitation Learning (GAIL). They show that a 
certain instantiation of the GAIL framework draws an analogy between 
IL and generative adversarial networks, which derives a model-free IL 
algorithm that obtains significant performance gains over existing 
model-free methods in imitating complex behaviors in large, high- 
dimensional environments. GAIL explores randomly to determine 
which actions bring a policy’s occupancy measure closer to the expert’s, 
rather than methods that interact with the trainer [9]. 

Inside IL, our work uses the GAIL framework to train our models, 
directly extracting a policy from data. GAIL is interested in a specific set 
of imitation learning: the problem of learning to perform a task from 
expert demonstrations in which the learner is given only demonstrations 
from the expert, so he is not allowed to query the expert for more data. 
At the same time, training is not provided with a reinforcement signal. 
We chose to use GAIL instead of BC because the space of states we can 
have in an environment could be very large, and if the agent trained with 
BC didn’t “see” a state before, the agent could not act as desired. GAIL 
focuses on learning a policy observed from the expert that is more 
approximate to a previous state and acts based on this without problems. 
It is important to remember that the “expert” that will train our NPC is 
not a skilled professional, but we will use casual players’ data instead. 

3. Related work 

Previous works addressed the problem of imitating human players 
using different supervised learning approaches. [27] was used in Ms. 
Pac-Man and other game domains [12], and more recently, case-based 
reasoning [28] has been proposed due to its capacity for imitating 
spatially-aware autonomous agents in a real-time setting [29]. None of 
these works are based on real players’ gameplay logs. 

To build a system for learning and predicting individual player 
strategies by mining a series of actions from replays, Hsieh and Sun [30] 
adopted Aha et al.’s [31] Case-Based Reasoning (CBR) approach. Instead 
of constructing a new rule-based system, the main idea of CBR is to solve 
new problems based on the decision or solution of similar past experi
ences or problems. Although this work shows that the proposed system 

Fig. 2. Classification of Imitation Learning. 
Source: [19] 
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can learn individual player strategies, it managed to learn the strategies 
of a player based on numerous replays of this human user. Our work 
differs from theirs since we propose using several gameplays from 
different players, and we are looking for action in the players’ prove
nance file. When there is no similar action, we will take the closest 
possible actions to the existing ones. 

Inspired by the idea of directly imitating human behavior, Karpov 
et al. [32] presented a component of the UT̂2 bot. The controller draws 
upon a previously collected database of recorded human games, which is 
indexed and stored for efficient retrieval. The controller works by 
quickly retrieving relevant traces of human behavior, translating them 
into the action space of the bot, and executing the resulting actions. The 
main difference between their work and ours is that the controller 
searches for a previously recorded situation. The agent will be stuck in 
the same position when this is not found. Our model uses the GAIL 
framework to prevent this situation. 

Two designs for imitation-learning bots were discussed on Pelling 
and Gardner [33]. Both were based on support vector techniques and 
included a novel probabilistic model for in-combat jumping. One bot 
also includes an application of probability estimation trees to combat 
movement. Both designs appeared viable when tested under laboratory 
conditions and in the 2009 2K BotPrize competition format. 

A model that enables the development of intricate behavior rules for 
artificially intelligently controlled video game characters was presented 
by Simonov et al. [34]. These rules allow the creation of characters with 
believable behavior that satisfies contemporary standards for artificial 
intelligence in video games. The model combines the Behavior Roles and 
Behavior Characteristics components to achieve believable situations. 
They enable characters to make more unique decisions and modify their 
behavior in response to the environment of a game. Unique sets of 
Behavior Characteristics are generated to create many agents with 
diverse and realistic behavior to in- habit vast game worlds. The dif
ference between their work and ours is that our NPC knows how to act 
even if it does not know the current state of the environment. In their 
work, the NPC can get stuck if it is in an unknown state. 

Finally, we discovered the most relevant work related to our 
research, conducted by Cruz and Uresti [35]. In their study, the authors 
addressed two primary challenges in their approach. The first challenge 
involved exploring domains with high-dimensional state-action spaces 
while adhering to constraints dictated by characteristics associated with 
human-like behavior. The proposed framework learns the model from a 
game by observing how humans play it to approach this. This procedure 
aimed to induce human-like behaviors in the bot that uses the learned 
model. Additionally, they proposed an exploration process—based on 
safe RL methods [36] indenting to refine the game model while main
taining induced human-like strategies. The second challenge was 
generating varied behaviors adapted to the opponent’s playing style. 
They approached this problem by including a reward shaping mecha
nism [37,38]. The main difference compared to our model is the 
learning method. While their framework used RL in real-time to obtain 
the player’s actions, we recreated games from provenance files and 
trained the agent with IL in our approach. 

4. Framework for training NPCs using IL and provenance data 

In this paper, we propose an Imitation Learning approach, based on 
provenance data, for training NPCs with believable behaviors instead of 
manually programming them. We differ from existing approaches since 
our model uses provenance data instead of a regular log. Besides this, 
while in most approaches, the training process is mostly based on re
wards/penalties when the NPC acts correctly/incorrectly, we give re
wards when it makes actions provided by the provenance dataset 
available from players’ game sessions. We also give little rewards when 
it completes the correct tasks needed to turn an NPC competitive. Our 
reward system will be explained in detail later in this chapter. 

In this section, we describe our proposed model, designed to be 

applied to various game types where the player and the NPC intended to 
be modeled can do the same actions, such as in fighting or racing games. 
We validate our proposal through the DodgeBall game, but the model 
can be applied to various games. DodgeBall game, a team-based game, 
has already been used for training NPCs through MultiAgent POst
humous Credit Assignment (MA- POCA) [39]. DodgeBall game allows 
the player to adopt different strategies, such as being more aggressive or 
carefully shooting balls from a long distance. In our model, we decide to 
train an NPC using GAIL. GAIL’s goal consists of randomly exploring the 
action possibilities to determine which actions bring a policy’s occu
pancy measure closer to the trainer’s rather than strategies based on 
interacting with him. In our approach, we also will use provenance data 
gathered by the PinGU framework through different game-plays due to 
the richness and detailed data and feed it to the GAIL to train believable 
NPCs. 

For NPC agents to mimic a human-like behavior, we must train an AI, 
producing a “brain”, a trained AI inserted in an agent. To achieve this, 
we build the model’s workflow that is illustrated in Fig. 3 that has four 
phases:  

1. choice of game features needed to recreate player actions;  
2. collect provenance data from gameplay sessions;  
3. recreate players’ game sessions based on collected provenance data;  
4. use the recreated game session to train the NPC with the GAIL frame- 

work. 

Before explaining the first phase of the model’s workflow, we have to 
configure the game environment. When preparing the game, we pref
erably change the number of players so that it becomes one versus-one 
dispute, and, if necessary, we also change the victory condition. 

After the game’s environment configuration is important to note that 
when the player produces input data, the agent’s control behavior 
checks which input was triggered and, according to it, fills the variable 
created to represent each action. At the end of each frame, the values 
contained in these variables are passed to a function, which checks the 
values of the variables and performs the correct actions. As an illustra
tion, the corresponding variable is assigned a positive value when the 
player presses the key responsible for character movement in a forward 
direction. At the frame’s conclusion, the variable is examined, and since 
it holds a positive value, the character moves forward accordingly. 

4.1. Feature selection 

The first stage of the method consists of verifying and choosing 
which gameplay’s information and which inputs are required to be 
saved on the provenance file. It is necessary to save all inputs referring to 
the actions that the NPC will be able to do. 

Saving the corresponding inputs that trigger the selected actions is 
crucial, as these actions are mapped to the repertoire of actions the NPC 
can perform. For example, one of the inputs to an action will be saved. 
The player must, however, be capable of doing this action. Provenance 
will also compile any data that is associated with an action. To collect 
provenance information, we use PinGU, which steps are described in 
more detail in the next sections. 

4.2. Gathering player session data via provenance 

In this stage, we include all the gathered provenance data at the 
playerś action, represented in a graph containing vertices representing 
player actions during the game session. The edges are the relationships 
between actions, agents, and events, and the game state information 
during each moment an action was recorded. Using PinGU, we can 
obtain data after four phases. 

To initiate the process, a game object is introduced in the scene, 
functioning as a centralized server for managing provenance data. Two 
classes, namely ProvenanceController and InfluenceController, are then 
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linked to this game object. These classes work collaboratively to handle 
all aspects of provenance data management and construct the necessary 
graph for the game. 

In the second phase, the ExtractProvenance class needs to be asso
ciated with the object created in the previous phase. Subsequently, it 
will be attached to the player’s agent in the game. This class generates 
all provenance nodes related to the game entity. Once the nodes are 
created, the ProvenanceController class takes over and inserts these 
generated nodes into the graph. 

In the third phase, we identify the various activities within the game 
and establish their relationships with other actions that require map
ping. For instance, in our implementation, we differentiate between 
walking, rotating, throwing the ball, and being hit. However, it’s 
important to note that provenance is not limited to actions alone; it also 
encompasses all other game-related activities, such as automatically 
picking up a ball from the ground (without requiring input from the 
player) or determining whether the player wins or loses. 

During the fourth phase, we focus on creating domain-specific 
provenance tracking components and integrating them with the 
player’s agent. We implement a corresponding provenance function 
within the object for each relevant action that requires tracking. This 
ensures that the provenance of every significant action the player takes 
is properly recorded and monitored throughout the game. As an 
example, when the player receives damage in the game, we create a new 
entry in the provenance file to document crucial details like the exact 
time of the event, the player’s position, the number of remaining lives, 
the current health status, and the specific event labeled as“Being Hit”. 
Fig. 4 shows the function called when an agent takes damage. This 
function generates a new vertex in the provenance graph, capturing all 
the relevant information selected in subsection 4.1. 

For every mapped action executed, we record the corresponding 
input. For example, if the player moves along the x-axis during the game, 
this information is logged in the provenance file. This can be observed in 
Fig. 5, which presents a snippet of the provenance file containing a 
description of the player’s action (Walking) and the associated saved 
input values. 

Finally, it is necessary to add a provenance data export function to an 
event to save the current provenance graph to an external XML file. 
Fig. 6 shows a small snippet of the provenance file containing some 

activities collected during the game. 
For all the identified events that are important for the NPC training, 

we need to create a code that will create a new node on the provenance 
graph at the moment that the event occurs. For example, when a player 
loses the match, we call a function on the code that creates a new vertex 
on the provenance file. As the graph is very important to the developer 
because the information on it shows cause-effect relationships, the effort 
pays off. 

Once this configuration is complete, it’s time to collect the players’ 
data on the game. We set up an agent to gather provenance data asso
ciated with it for validation reasons. The player will use this agent to 
face an enemy trained with the existing standard AI. The human player 
will play some matches, and the data generated by each match will be 
saved in the provenance file. Ultimately, we will have several game 
sessions with the player(s). In the provenance, it is possible to collect 
and merge data from a large set of players in different matches and save 
it in the same provenance file. Using every match as a training tool is 

Fig. 3. Workflow composed of the phases of our proposed model.  

Fig. 4. Snippet of code to create a new vertex “Being Hit” on the prove
nance graph. 

Fig. 5. Snippet of provenance file with mapped inputs made in the 
player’s session. 
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also feasible by saving it in a separate file. This data will be examined in 
the next steps. 

4.3. Recreating players’ sessions based on provenance data for training 

Every event or input is saved via provenance resulting in the creation 
of a node that is recorded on the provenance file. We can save one or 
more nodes on the provenance file at each frame. 

We begin by reading the provenance file to reproduce the player’s 
activities during the game. We must read and understand each node 
from the provenance file in XML format, one at a time. At this moment, 
public properties and fields of an object are converted to a serial format 
for storage or data transmission. Based on the results, a deserialization 
stage recreates the object in its initial state. It is feasible to think about 
serialization as storing an object’s state in a stream or buffer. 

Through a script interpretation stage, we get the values for each 
input at each node of the source file. We must transform the data from its 
string format, which is in XML format, to a numerical representation of 
the variables that control the character’s actions. As a result, we pass 
each value to the variables in Unity Engine that represent the actions 
from the corresponding entries in the provenance file. During each 
frame, the function responsible for reading the character’s actions up
dates the values of these variables based on the information retrieved 
from the provenance file’s corresponding node. All the process steps to 
recreate the player’s actions from provenance data are represented in 
Fig. 7. The process will be executed during the agent’s training, 
described in the next stage. 

4.4. Training with the GAIL framework 

At this stage, the game is ready to recreate the contents of a prove
nance file already gathered from previous gameplay sessions. Before 
starting the game and recreating the actions represented by the prove
nance, it is necessary to configure how the agent will be trained. Since 
GAIL does not interact with the expert during training, the NPC won’t 
learn from an expert and will not behave like this expert. As stated 
before, we chose the framework GAIL to train our NPC because the 
policy learning from GAIL can help the NPC avoid unseen situations in 
games that can cause undesired behaviors. The created NPC will act 
according to the learned policy and behavior from the nodes saved on 
the provenance file. 

We first created a neural network configuration file for training an 
NPC using GAIL with data from many players stored as a provenance 
file, including the GAIL framework configuration. Unity ML-Agents 
Toolkit already has GAIL implemented, so we need to configure the 
network parameters5, such as strength and learning rate (used to update 
the discriminator). Fig. 8 shows a snapshot from the training configu
ration file with the GAIL configuration used to implement the training 
on the DodgeBall game. 

Numerous game sessions from the same player or other users can be 
used during this phase. If more than one user is being acquired, the 
procedure begins with the data from the first player, and the training is 
increased with the data from all the other players. 

After loading the training data from the provenance file and finishing 
the GAIL configuration, it is possible to start training with our model. 
When starting the game, the NPC starts to reproduce the actions 
described in each node from the provenance file, as explained in the 
previous section. Usually, we reward good deeds like defeating the 
enemy and penalize bad actions like crashing into a wall so that it can 
know if the action had generated a good or a bad result. However, when 
choosing this traditional approach, the bot will be trained to be 
extremely efficient, always taking the best actions and becoming a 
formidable enemy. This work proposes the creation of an NPC that be
haves like a human, and to reach that goal, we will reward the bot when 
it takes the actions described on the provenance file, whether these 
actions are good or bad, so it will learn to behave exactly as the human 
player. 

Training the NPC through several steps does not guarantee that the 

Fig. 6. Snippet of provenance graph with some activities saved in the provenance file.  

Fig. 7. Required steps to recreate actions saved on provenance file for training 
the agent. 

5 https://github.com/Unity-Technologies/ml-agents/blob/main/docs/ 
Training-Configuration-File.md. Last accessed: 30 Jul 2022. 
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NPC learns the objectives of the game. For example, when we collect the 
provenance data of a match, let’s assume the NPC is at coordinate 
x1—z1 and the enemy is at coordinate x2—z2. The player then realizes 
an action considered correct for winning and receives a positive reward, 
like throwing a ball and hitting the opponent. At this moment, the co
ordinates and the information about the result of the action are saved in 
a node in the provenance file. In the training step, when we reproduce 
this action using the information from this node, the player will do the 
same, but there is no guarantee that the opponent in the current game is 
not at a coordinate other than x2—z2. 

For efficiently teaching the game’s objectives to the NPC is necessary 
to change part of the rewards policy, reducing the rewards when it 
completes the correct tasks required to turn an NPC competitive. Using 
the correct proportion of rewards is necessary to avoid the NPC 
becoming invincible. We made several tests with different rewards, and 
our NPC became invincible sometimes or didn’t know what was the 
game’s objective at other times due to the change in the objective’s 
rewards. These tests were made via observation and feedback from users 
that were not the users that tested our final model. After these tests, we 
found a proportion that can make our NPC acts like a real player. 

When the training begins, and the NPC starts to imitate the player’s 
actions according to the provenance file, we reward the NPC with a 
weight of 1 for every action. When the NPC completes a task needed to 
understand the game’s objective, we reward it with a weight of 0.1. This 
weight difference makes the NPC focus much more on acting as the 
player while still trying to win the game. The weights of the rewards also 
work in theory in other games since the important thing is the propor
tion of rewards during training. 

5. Results 

For validating and testing our proposal, we use a game called Dodge- 
Ball. The scenario where the game occurs has walls and obstacles scat
tered throughout the environment. Thrown balls bounce off obstacles or 
walls. There are two types of games: capture the flag and elimination. In 
both modes, the match has eight characters, 4 per side. We validate 
using the elimination mode where the character’s life is 2. The charac
ters must collect the balls on the ground and throw them toward the 
enemy. When the ball hits a character, it loses 1 of life. The match ends 
when all the characters from the opposite side are defeated. 

Considering our test scenario, four players are on each team, as 
shown in Fig. 1. We reduced the number of players from the original 
game, so each team has just one character left. We also have to change 
the win conditions to allow victory when defeating one enemy since 
there is only one enemy in the proposed game. 

The existing agent in the DodgeBall game was trained using a 
traditional reward system, which constantly improves the agent’s ca
pabilities by rewarding good actions and penalizing bad actions. As 
such, the agent can be better over time than the human expert that 
trained it and is almost unbeatable. Another important point in our 
model is to reward the agent when it takes actions performed by a player 
and recorded in the provenance, regardless of whether the actions had 
good or bad results. This will make the agent not perfect and make the 
same mistakes as a real player. 

We invited twelve players, ranging in age from 17 to 32, to play the 
DodgeBall game in six different scenarios as part of the validation of our 
model. Traditional A, B, and C scenarios have agents with brain training 
through the traditional reward system. During training, we give positive 
rewards for successful tasks and penalties for unsuccessful tasks. In 
scenarios named Model A, Model B, and Model C, the agent has a brain 
trained with our training methodology, rewarding all the actions read 
from the provenance file. The difference between scenarios A, B, and C 
in both training methods is the number of steps for training. Table 1 
shows the information about each scenario configuration. 

After the training process ends, we have the already trained NPC 
with the traditional reward system and a trained agent trained with our 
model. Using our model, if the NPC has encountered the game’s current 
state before, the agent will replicate the same action as previously 
observed. However, if the current state is new to the NPC, it will search 
for an action that closely resembles the present situation and act 
accordingly. We ask the players to play the game facing the agent using 
the traditional reward system and the agent trained using our model. We 
ask them to rank the NPC based on how similar they believe the NPC’s 
moves and act, according to a human player, through a Likert scale 
ranging from 1 to 10, with 1 denoting the complete opposite of a player 
behavior and 10 designating the close to or perfect as a player behavior. 
The following subsections describe the NPC behavior and player’s 
feedback in each scenario. 

5.1. Traditional A 

In this scenario, the NPC’s movements were very simple and carried 
out without much logic. The logic of collecting balls from the ground 
was far from the ideal. The movement’s initial outcome was far from 
ideal and needed more training time. The NPC crashed into walls or 
obstacles. The NPC did not execute the dash move. 

Concerning the shots, the NPC occasionally took balls to make the 
throw, but as soon the NPC collected a ball, it threw it in the direction it 
was facing without aiming the player. 

The NPC’s moves were simple, so players easily beat this NPC. The 
ball throws were badly executed. Only four of the twelve human players 
thought they were dealing with a real player. When they saw the NPC 
throw the ball in the wrong direction, all were certain it was not a real 
player. 

Fig. 8. Screenshot taken from the neural network configuration file.  

Table 1 
Scenarios.  

Scenario name Trained traditionally Trained using 
our model 

Number of steps 

Traditional A Yes No 3,000,000 
Traditional B Yes No 4,500,000 
Traditional C Yes No 6,000,000 
Model A No Yes 3,000,000 
Model B No Yes 4,500,000 
Model C No Yes 6,000,000  
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5.2. Traditional B 

In this scenario, some improvements were observed in the NPCs’ 
movements, with the character moving between obstacles and searching 
for balls to collect and throw. Compared to scenario A, the outcome was 
improved, particularly regarding the movements, even while using the 
dash movement. When the NPC picked up a ball from the ground, it 
could stay with it longer before throwing. The aim was not precise, even 
with improvements in throwing the ball. 

The moves made by the NPC, such as being shrewd when seeking for 
balls and holding onto the balls before throwing them, were perceived 
by all the players as being more realistic. Human players noticed certain 
ball throws made by the NPC as being random. Yet, compared to the 
prior situation, about 35% of ball shots succeeded in hitting the player. 

5.3. Traditional C 

The NPC’s mobility is significantly more effective in this configura
tion, gathering balls swiftly and avoiding collisions with obstructions. 
With a hit rate close to 55%, ball throwing has greatly improved. The 
NPC was viewed as aggressive and attempting to end the match quickly. 

In this scenario, the NPC was considered challenging to beat and 
even won some games. Players generally thought they were playing 
against a skilled opponent because of the NPC’s movement and effective 
throws. Despite the advancements, some players complained that the 
NPC was extremely challenging and, because of their efficiency, the NPC 
believability was perceived as a real player with some great skills or a 
machine. 

5.4. Model A 

The NPC tried to collect the balls while moving without using the 
dash move and colliding with walls and barriers sporadically. Compared 
to scenario Traditional A, the NPC holds the balls longer. However, the 
throw lacked accuracy. Although the NPC presented little hardship to 
the players, they nevertheless thought it was an improvement over 
Traditional A. 

5.5. Model B 

In this case, the NPC gathered balls efficiently, hit walls and barriers 
less often, and improved accuracy when throwing balls. However, the 
shots were still made with regular errors. The NPC often throws the ball 
after picking it up from the ground, as some players use this tactic, but 
the NPC does it at the wrong time. Players generally said the NPC was 
more believable and appeared to be a player for most of the game. 
Comparing this scenario with Traditional B, the participants felt an in
crease in the credibility of the NPC. 

5.6. Model C 

The NPC navigated the last scenario fairly successfully, collecting the 
balls with a dash and only colliding with obstacles after the dash. Only 
one type of throwing error remains: when an NPC “saw” the player, but 
there were balls on the ground before them or the edge of a barrier to 
stop the ball. The majority of shooting errors are ones that genuine 
players frequently commit. The players during tests were perceived as 
making more errors when throwing rather than moving. 

Since this situation closely resembled a real player, human players 
believed this version was the most entertaining despite a few small 
flaws. The movement was appreciated since it moved well but made 
minor shooting and movement mistakes. The faults made by the NPC 
were seen by the players similarly to those expected from a human 
player. 

5.7. Analysis of results 

Table 2 shows the ratings given by the players related to the NPC’s 
movements for each of the specified scenarios. Table 3 shows the ratings 
given by each player in the specified scenarios about the NPC’s ball 
throwing. According to Tables 2 and 3, there were some gains in both 
training models as the number of steps increased. The ball shots were 
executed with higher precision and exhibited less randomness, as the 
movement closely resembled the movement performed by a player. The 
NPC was getting more difficult to deal with as it improved at moving and 
hurling the ball. The NPC originally appeared to be less like a real player 
but gradually appeared to be more like one. 

Despite its increased difficulty, the Traditional C NPC’s remarkable 
shooting accuracy and fluid movement unmistakably conveyed the 
impression of facing a machine rather than a human opponent. When 
comparing the ratings of NPC’s shots and movements of Traditional B 
against the ratings NPC of Traditional C, both trained in the traditional 
model of reward, it is possible to notice that some ratings got worse in 
the scenario Traditional C. 

The rating given to the NPC of scenario Model C improved the 
perception of being a real player compared to the scenario results from 
Model B. It became real but continued to make some minor errors that 
typically human players would make. This was true when comparing the 
same number of steps in the training proposed in our model. Among all 
the situations, the NPC in scenario Model C generally succeeded in 
conveying the strongest sense of being a real player. 

Because there were more steps taken during training in scenario 
Model C than in Model B and Model A, the NPC got more convincing 
results. According to the increase in training steps, the NPC in scenarios 
Traditional A, Traditional B, and Traditional C became extremely 
effective when rewarding proper behavior and punishing bad behavior. 
A machine or a very skilled player could only attain this efficiency, 
lowering the NPC’s believability. 

These results demonstrated that, despite some enhancements, our 
model worked properly and that the NPC perceived by players resembles 
a real player more closely than the NPC created using the conventional 
training models. The DodgeBall game proved satisfactory for validating 
our solution. It is not a highly specific game with complex actions but is 
similar to most games with simple elements, such as moving and 
shooting. 

6. Conclusion and future work 

In competitive multiplayer games, players seek experiences that offer 
greater immersion and believable behavior. One of the key goals of AI 
techniques is to develop agents that behave like humans. Our proposal 
offers a novel paradigm built on provenance approaches for producing 
NPCs that perform actions close to those performed by human players, 
enhancing the player’s sense of immersion as they are observed. 

Our approach requires gathering information from many players via 
provenance data and using these data to train NPCs with the GAIL 
framework. In the literature, these two ideas have not yet been applied 
together. As provenance also involves cause-and-effect links, it gives 
more specific knowledge about the events that occur while a player acts. 
The GAIL framework for imitation learning enables the NPC to learn a 
policy and create a roughly accurate action that a player would take. 

It is crucial to train NPCs without the help of an expert so that their 
performance is more similar to real players rather than optimized. Also, 
the expert would need much gaming time to train the agent. Our method 
can combine the data from various participants into a single brain 
through provenance models. Although the model was created to be 
general and usable in various games, the environment used was the 
DodgeBall game from the Unity Engine ML-Agents package. We changed 
the game to a one-against-one format and used the elimination game 
mode for validation. Currently, we are simulating player behaviors 
based on their input. Future advancements will enable to handle more 
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complex behaviors by utilizing the influence already available at the 
captured provenance. 

Twelve users were selected to participate in the game in six different 
scenarios. In scenarios Traditional A, Traditional B, and Traditional C, 
they were confronted with an NPC trained with the traditional reward 
model, which promotes good behavior and penalizes negative behavior. 
Following, they faced NPC in Model A, Model B, and Model C, trained 
with our model’s reward system, and received rewards for all activities 
in the provenance file. In addition, we distribute a small number of re
wards known as objective rewards to NPCs for the discovery of the 
game’s goal. The players rated the NPC based on how it behaved in the 
game. When we compared the ratings the players gave to the different 
scenarios Traditional A, Traditional B, and Traditional C with the sce
narios Model A, Model B, and Model C, we noticed a significant 
improvement in the ratings of our model, indicating that our approaches 
converge to credible behaviors. The NPC started to behave more like a 
genuine player, according to input from all players, which was reflected 
in the ratings. The scores for our NPC give us a positive feeling that while 
our model still requires work, it is headed in the right direction. The 
model can be scaled up to provide better results and an NPC that behaves 
almost like a real player. 

We should improve the training procedure in the following stage of 
our work and observe how the agent acts while using more provenance 
data from more players. The impact of the number of graphs on NPC 
training should also be examined. Also, practicing for longer periods and 
with more circumstances to compare is crucial. With more formal 
believability testing methods found in the literature, we also want to 
examine the plausibility of an agent developed through the model 
described in this work. 

Another future task is to group various users’ profiles such that the 
recorded sessions adhere to some user profiles (kids, experienced 
players, casual gamers, etc.). Allowing players to select the type of NPC 
they would face would make the game less frustrating and more 
enjoyable. 

We also intend to validate our method on other games. The model 
was intended to be general in theory; nevertheless, it does need training 

using the GAIL framework and preparation of the provenance gathering 
step, being this is the only limitation applicable in our work. 
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