
 

Introduction

 

For over a decade, we have enjoyed explosive growth in the performance and capa-
bility of computer systems. The theme of this dramatic success story is the advance
of the underlying VLSI technology, which allows clock rates to increase and larger
numbers of components to fit on a chip. The plot of this story centers on computer
architecture, which translates the raw potential of the technology into greater per-
formance and expanded capability of the computer system. The story’s leading char-
acter is parallelism. A larger volume of resources means that more operations can be
performed at once, in parallel. Parallel computer architecture is about organizing
these resources so that they work well together. Computers of all types have har-
nessed parallelism more and more effectively to gain performance from the raw tech-
nology, and the level at which parallelism is exploited continues to rise. Another key
character is storage. The data that is operated on at an ever faster rate must be held
somewhere in the machine. Thus, the story of parallel processing is deeply inter-
twined with data locality and communication. The computer architect must sort out
these changing relationships to design the various levels of a computer system so as
to maximize performance and programmability within the limits imposed by tech-
nology and cost at any particular time.

Parallelism is a fascinating perspective from which to understand computer archi-
tecture because it applies at all levels of design, it interacts with essentially all other
architectural concepts, and it presents a unique dependence on the underlying tech-
nology. In particular, the basic issues of locality, bandwidth, latency, and synchroni-
zation arise at many levels of the design of parallel computer systems. The trade-offs
must be resolved in the context of real application workloads. 

Parallel computer architecture, like any other aspect of design, involves elements
of form and function. These elements are captured nicely in the following definition
(Almasi and Gottlieb 1989):

 

A 

 

parallel computer

 

 is a “collection of processing elements that communicate and cooper-
ate to solve large problems fast.”

 

However, this simple definition raises many questions. How large a collection are
we talking about? How powerful are the individual processing elements, and can the
number be increased in a straightforward manner? How do these elements commu-
nicate and cooperate? How is data transmitted between processors, what sort of
interconnection is provided, and what operations are available to sequence the
actions carried out on different processors? What are the primitive abstractions that
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the hardware and software provide to the programmer? And finally, how does it all
translate into performance? In answering these questions, we will see that small,
moderate, and very large collections of processing elements each have important
roles to fill in modern computing. Thus, it is important to understand parallel
machine design across the scale, from the small to the very large. Some design issues
apply throughout the scale of parallelism; others are most germane to a particular
regime, such as within a chip, within a box, or on a very large machine. It is safe to
say that parallel machines occupy a rich and diverse design space. This diversity
makes the area exciting, but it also means that it is important that we develop a clear
framework in which to understand the many design alternatives.

Parallel architecture is itself changing rapidly. Historically, parallel machines have
demonstrated innovative organizational structures, often tied to specific program-
ming models, as architects sought to obtain the ultimate in performance out of a
given technology. In many cases, radical organizations were justified on the grounds
that advances in the base technology would eventually run out of steam. These dire
predictions appear to have been overstated, as logic densities and switching speeds
have continued to improve and more modest parallelism has been employed at
lower levels to sustain continued improvement in processor performance. Nonethe-
less, application demand for computational performance continues to outpace what
individual processors can deliver, and multiprocessor systems occupy an increas-
ingly important place in mainstream computing. What has changed is the novelty of
these parallel architectures. Even large-scale parallel machines today are built out of
the same basic components as workstations and personal computers. They are sub-
ject to the same engineering principles and cost-performance trade-offs. Moreover,
to yield the utmost in performance, a parallel machine must extract the full perfor-
mance potential of its individual components. Thus, an understanding of modern
parallel architectures must include an in-depth treatment of engineering trade-offs,
not just a descriptive taxonomy of possible machine structures.

Parallel architectures will play an increasingly central role in information process-
ing. This view is based not so much on the assumption that individual processor
performance will soon reach a plateau but rather on the estimation that the next
level of system design, the multiprocessor level, will become increasingly attractive
with increases in chip density. 

 

The goal of this book is to articulate the principles of
computer design at the multiprocessor level.

 

 It examines the design issues present for
each of the system components—processors, memory systems, and networks—and
the relationships between these components. A key aspect is understanding the divi-
sion of responsibilities between hardware and software in evolving parallel
machines. Understanding this division requires familiarity with the requirements
that parallel programs place on the machine and the interaction of machine design
and the practice of parallel programming.

The process of learning computer architecture is frequently likened to peeling an
onion, and this analogy is even more appropriate for parallel computer architecture.
At each level of understanding we find a complete whole with many interacting
facets, including the structure of the machine, the abstractions it presents, the tech-



 

Introduction

 

3

 

nology it rests upon, the software that exercises it, and the models that describe its
performance. However, if we dig deeper into any of these facets, we discover another
layer of design and a new set of interactions. The holistic, multilevel nature of paral-
lel computer architecture makes the field challenging to learn and challenging to
present. Some sense of the layer-by-layer structure is unavoidable.

This introductory chapter presents the “outer skin” of parallel computer architec-
ture. It first outlines the reasons why parallel machine design may become pervasive,
from desktop machines to supercomputers. It also examines the technological,
architectural, and economic trends that have led to the current state of computer
architecture and that provide the basis for anticipating future parallel architectures.
Section 1.1 focuses on the forces that have brought about the dramatic advance of
processor performance and the restructuring of the entire computing industry
around commodity microprocessors. These forces include the insatiable application
demand for computing power, the continued improvements in the density and level
of integration in VLSI chips, and the utilization of parallelism at higher and higher
levels of the architecture. 

Next is a quick look at the spectrum of important architectural styles, which give
the field such a rich history and contribute to the modern understanding of parallel
machines. Within this diversity of design, a common set of design principles and
trade-offs arise, driven by the same advances in the underlying technology. These
forces are rapidly leading to a convergence in the field, which forms the emphasis of
this book. Section 1.2 surveys traditional parallel machines, including shared mem-
ory, message passing, data parallel, systolic arrays, and dataflow, and illustrates the
different ways that they address common architectural issues. The discussion shows
the dependence of parallel architecture on the underlying technology and, more
importantly, demonstrates the convergence that has come about with the dominance
of microprocessors. 

Building on this convergence, Section 1.3 examines the fundamental design
issues that cut across parallel machines: what can be named at the machine level as a
basis for communication and coordination, what is the latency or time required to
perform these operations, and what is the bandwidth or overall rate at which they
can be performed? This shift from conceptual structure to performance components
provides a framework for quantitative, rather than merely qualitative, study of paral-
lel computer architecture.

With this initial broad understanding of parallel computer architecture in place,
the following chapters dig deeper into its technical substance. Chapters 2 and 3
delve into the structure and requirements of parallel programs to provide a basis for
understanding the interaction between parallel architecture and applications.
Chapter 4 builds a framework for evaluating design decisions in terms of application
requirements and performance measurements. Chapters 5 and 6 are a complete
study of parallel computer architecture at the limited scale employed widely in
commercial multiprocessors—from a few processors to a few tens of processors. The
concepts and structures introduced here form the building blocks for more aggres-
sive large-scale designs presented over the final five chapters.
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Computer architecture, technology, and applications evolve together and have very
strong interactions. Parallel computer architecture is no exception. A new dimen-
sion is added to the design space—the number of processors—and the design is
even more strongly driven by the demand for performance at acceptable cost. What-
ever the performance of a single processor at a given time, higher performance can,
in principle, be achieved by utilizing many such processors. How much additional
performance is gained and at what additional cost depends on a number of factors,
which we will explore throughout the book.

To better understand this interaction, let us consider the performance characteris-
tics of the processor building blocks. Figure 1.1
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 illustrates the growth in processor
performance over time for several classes of computers (Hennessy and Jouppi
1991). The dashed extensions of the trend lines represent a naive extrapolation of
the trends. Although we should be careful in drawing sharp quantitative conclusions
from such limited data, the figure suggests several valuable observations.

First, the performance of the highly integrated, single-chip CMOS microproces-
sor is steadily increasing and is surpassing the larger, more expensive alternatives.
Microprocessor performance has been improving at a rate of about 50% per year.
The advantages of using small, inexpensive, low-power, mass-produced processors
as the building blocks for computer systems with many processors are intuitively
clear. However, until recently the performance of the processor best suited to paral-
lel architecture was far behind that of the fastest single-processor system. This is no
longer true. Although parallel machines have been built at various scales since the
earliest days of computing, the approach is more viable today than ever before
because the basic processor building block is better suited to the job. 

The second and perhaps more fundamental observation is that change, even
dramatic change, is the norm in computer architecture. The continuing process of
change has profound implications for the study of computer architecture because we
need to understand not only how things are but how they might evolve and why.
Change is one of the key challenges in writing this book—and one of the key moti-
vations. Parallel computer architecture has matured to the point where it needs to be
studied from a basis of engineering principles and quantitative evaluation of perfor-
mance and cost. These are rooted in a body of facts, measurements, and designs of
real machines. Unfortunately, existing data and designs are necessarily frozen in time

 

1.  The figure is drawn from an influential paper that sought to explain the dramatic changes taking place in
the computing industry (Hennessy and Jouppi 1991). The metric of performance is a bit tricky because it
reaches across such a range of time and market segment. The study draws data from general-purpose
benchmarks, such as the SPEC benchmark, which is widely used to assess performance on technical
computing applications (Hennessy and Patterson 1996). After publication, microprocessors continued to
track the prediction while mainframes and supercomputers went through tremendous crises and
emerged using multiple CMOS microprocessors in their market niche.
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and will become dated as the field progresses. This book presents hard data and
examines real machines in the form of a late 1990s technological snapshot in order
to retain a clear grounding. However, the methods of evaluation underlying the anal-
ysis of concrete design trade-offs transcend the chronological and technological ref-
erence point of the book.

The late 1990s happens to be a particularly interesting snapshot because we are
in the midst of a dramatic technological realignment as the single-chip microproces-
sor is poised to dominate every sector of computing and as parallel computing takes
hold in many areas of mainstream computing. Of course, the prevalence of change
suggests being cautious about extrapolating into the future. The remainder of this
section examines more deeply the forces and trends that are giving parallel architec-
tures an increasingly important role throughout the computing field and pushing
parallel computing into the mainstream. It looks first at the application demand for
increased performance and then at the underlying technological and architectural
trends that strive to meet these demands. We see that parallelism is inherently
attractive as computers become more highly integrated and that it is being exploited
at increasingly high levels of the design. Finally, this section closes with a look at the
role of parallelism in the machines at the very high end of the performance
spectrum.

 

FIGURE 1.1  Performance trends over time of micros, minicomputers, mainframes,
and supercomputers.

 

 Performance of microprocessors has been increasing at a rate of
about 50% per year since the mid-1980s. More traditional mainframe and supercomputer
performance has been increasing at a rate of roughly 25% per year. As a result, we are see-
ing the processor that is best suited to parallel architecture become the performance leader
as well. 

 

Source: 

 

Hennessy and Jouppi (1991).
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1.1.1 Application Trends

 

The demand for ever greater application performance is a familiar feature of every
aspect of computing. Advances in hardware capability enable new application func-
tionality, which grows in significance and places even greater demands on the archi-
tecture. This cycle drives the tremendous ongoing design, engineering, and
manufacturing effort underlying the sustained exponential performance increase in
microprocessor performance. It drives parallel architecture even harder since paral-
lel architecture focuses on the most demanding of these applications. With a 50%
annual improvement in processor performance, a parallel machine of a hundred pro-
cessors can be viewed as providing to applications the computing power that will be
widely available 10 years in the future, whereas a thousand processors reflects nearly
a 20-year horizon.

Application demand also leads computer vendors to provide a range of models
with increasing performance and capacity at progressively increasing cost. The
largest volume of machines and the greatest number of users are at the low end,
whereas the most demanding applications are served by the high end. One effect of
this “platform pyramid” is that the pressure for increased performance is greatest at
the high end and is exerted by an important minority of the applications. Prior to
the microprocessor era, greater performance was obtained through exotic circuit
technologies and machine organizations. Today, to obtain performance significantly
greater than the state-of-the-art microprocessor, the primary option is multiple
processors, and the most demanding applications are written as parallel programs.
Thus, parallel architectures and parallel applications are subject to the most acute
demands for greater performance. 

A key reference point for both the architect and the application developer is how
the use of parallelism improves the performance of the application. We may define
the 

 

speedup

 

 on 

 

p

 

 processors as

(1.1)

For a single, fixed problem, the performance of the machine on the problem is
simply the reciprocal of the time to complete the problem, so we have the following
important special case:

(1.2)

 

Scientific and Engineering Computing

 

The direct reliance on increasing levels of performance is well established in a num-
ber of endeavors but is perhaps most apparent in the fields of computational science
and engineering. Basically, in these fields computers are used to simulate physical
phenomena that are impossible or very costly to observe through empirical means.

Speedup p processors( ) Performance p processors( )
Performance 1 processor( )--------------------------------------------------------------------≡

Speedupfixed problem p processors( ) Time 1 processor( )
Time p processors( )
-------------------------------------------------=
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Typical examples include modeling global climate change over long periods, the
evolution of galaxies, the atomic structure of materials, the efficiency of combustion
with an engine, the flow of air over surfaces of vehicles, the damage due to impacts,
and the behavior of microscopic electronic devices. Computational modeling allows
in-depth analyses to be performed cheaply on hypothetical designs through com-
puter simulation. A direct correspondence can be drawn between levels of computa-
tional performance and the problems that can be studied through simulation.
Figure 1.2 summarizes the 1993 findings of the Committee on Physical, Mathemati-
cal, and Engineering Sciences of the federal Office of Science and Technology Policy
(1993). It indicates the computational rate and storage capacity required to tackle a
number of important science and engineering problems. Even with dramatic
increases in processor performance, very large parallel architectures are needed to
address these problems in the near future. Some years further down the road, new
grand challenges will be in view.

 

FIGURE 1.2  Grand Challenge application requirements.

 

 A collection of important scientific and
engineering problems is positioned in a space defined by computational performance and storage
capacity. Given the exponential growth rate of performance and capacity, both of these axes map
directly to time. In the upper right corner appear some of the Grand Challenge applications identified by
the U.S. High Performance Computing and Communications program.
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Parallel architectures have become the mainstay of scientific computing, includ-
ing physics, chemistry, material science, biology, astronomy, earth sciences, and oth-
ers. The engineering application of these tools for modeling physical phenomena is
now essential to many industries, including petroleum (reservoir modeling), auto-
motive (crash simulation, drag analysis, combustion efficiency), aeronautics (airflow
analysis, engine efficiency, structural mechanics, electromagnetism), pharmaceutical
(molecular modeling), and others. In almost all of these applications, there is a large
demand for visualization of the results, which is itself a demanding application ame-
nable to parallel computing.

The visualization component has brought the traditional areas of scientific and
engineering computing closer to the entertainment industry. In 1995, the first full-
length, computer-animated motion picture, 

 

Toy Story,

 

 was produced on a parallel
computer system composed of hundreds of Sun workstations. This application was
finally possible because the underlying technology and architecture crossed three
key thresholds: the decreased cost of computing allowed the rendering to be accom-
plished within the budget typically associated with a feature film, and the increase in
both the performance of individual processors and the scale of parallelism made it
possible to complete the task in a reasonable amount of time (several months on
several hundred processors). Each science and engineering application has an analo-
gous threshold of computing capacity and cost at which it becomes viable.

Let us take an example from the Grand Challenge program to help understand
the strong interaction between applications, architecture, and technology in the con-
text of parallel machines. A 1995 study (Pfeiffer et al. 1995) examined the effective-
ness of a wide range of parallel machines on a variety of applications, including a
molecular dynamics package, known as AMBER (Assisted Model Building through
Energy Refinement). AMBER is widely used to simulate the motion of large biologi-
cal models such as proteins and DNA, which consist of sequences of residues
(amino acids and nucleic acids, respectively) each composed of individual atoms.
The code was developed on CRAY vector supercomputers, which employ custom
processors, large and expensive SRAM memories (instead of caches), and machine
instructions that perform arithmetic or data movement on a sequence, or 

 

vector

 

, of
data values. Figure 1.3 shows the speedup obtained on three versions of this code on
a 128-processor microprocessor-based machine—the Intel Paragon, described later.
The particular test problem involved the simulation of a protein solvated by water.
This test consisted of 99 amino acids and 3,375 water molecules for approximately
11,000 atoms.

The initial parallelization of the code (version 8/94) resulted in good speedup for
small configurations but poor speedup on larger configurations. A modest effort to
improve the balance of work done by each processor, using techniques discussed in
Chapter 2, improved the scaling of the application significantly (version 9/94). An
additional effort to optimize communication produced a highly scalable code (ver-
sion 12/94). This 128-processor version achieved a performance of 406 MFLOPS;
the best previously achieved was 145 MFLOPS on a CRAY C90 vector processor. The
same application on a more efficient parallel architecture, the CRAY T3D, achieved
891 MFLOPS on 128 processors. This sort of learning curve is quite typical in the
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parallelization of important applications, as is the interaction between application
and architecture. The application writer typically studies the application to under-
stand the demands it places on the available architectures and how to improve its
performance on a given set of machines. The architect may study these demands as
well in order to understand how to make the machine more effective on a given set
of applications. Ideally, the end user of the application enjoys the benefits of both
efforts.

The demand for ever increasing performance is a natural consequence of the
modeling activity. For example, in electronic CAD there is obviously more to simu-
late as the number of devices on the chip increases. In addition, the increasing com-
plexity of the design requires that more test vectors be used and, because higher-
level functionality is incorporated into the chip, each of these tests must run for a
larger number of clock cycles. Furthermore, an increasing level of confidence is
required because the cost of fabrication is so great. The cumulative effect is that the
computational demand for the design verification of each new generation is increas-
ing at an even faster rate than the performance of the microprocessors themselves. 

 

Commercial Computing

 

Commercial computing has also come to rely on parallel architectures for its high
end. Although the scale of parallelism is typically not as large as in scientific com-
puting, the use of parallelism is even more widespread. Multiprocessors have pro-
vided the high end of the commercial computing market since the mid-1960s. In

 

FIGURE 1.3  Speedup on three versions of a parallel program.

 

 The parallelization
learning curve is illustrated by the speedup obtained on three successive versions of this
molecular dynamics code on the Intel Paragon.
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this arena, computer system speed and capacity translate directly into the scale of
business that can be supported by the system. The relationship between perfor-
mance and scale of business enterprise is clearly articulated in the on-line transac-
tion processing (OLTP) benchmarks sponsored by the Transaction Processing
Performance Council (TPC). These benchmarks rate the performance of a system in
terms of its throughput in 

 

transactions per minute

 

 (tpm) on a typical workload. The
TPC-C benchmark is an order entry application with a mix of interactive and batch
transactions, including realistic features like queued transactions, aborting transac-
tions, and elaborate presentation features (Gray 1991). The benchmark includes
explicit scaling criteria to make the problem more realistic: the size of the database
and the number of terminals in the system increase as the tpmC (the tpm on TPC-C)
rating rises. Thus, a faster system must operate on a larger database and service a
larger number of users.

Figure 1.4 shows the tpmC ratings for the collection of systems appearing in one
edition of the TPC results (March 1996), with the achieved throughput on the verti-
cal axis and the number of processors employed in the server along the horizontal
axis. This data includes a wide range of systems from a variety of hardware and soft-
ware vendors, a few of which are highlighted here. Since the problem solved in the
benchmark run scales with system performance, we cannot simply compare times to

 

FIGURE 1.4  TPC-C throughput versus number of processors on TPC. 

 

The March 1996 TPC report
documents the transaction processing performance for a wide range of systems. The figure shows the
number of processors employed for all of the high-end systems, highlighting five leading vendor
product lines. All of the major database vendors utilize multiple processors for their high-performance
options, although the scale of parallelism varies considerably.
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see the effectiveness of parallelism. Instead, we use the throughput of the system as
the metric of performance in Equation 1.1. The resulting speedup is illustrated in
Example 1.1.

 

EXAMPLE 1.1

 

The tpmC for the Tandem Himalaya and IBM PowerPC systems are
given in the following table. What is the speedup obtained on each?

 

Answer

 

For the IBM system, we may calculate speedup relative to the uniprocessor
system; in the Tandem case, we can only calculate speedup relative to a 16-
processor system. The IBM machine appears to carry a significant penalty in the
parallel database implementation of moving from one to four processors; however,
the scaling is very good (superlinear) from four to eight processors. The Tandem
system achieves good scaling, although the speedup appears to flatten toward the
100-processor regime.

 

■

 

Several important observations can be drawn from the TPC data. First, the use of
parallel architectures is prevalent. Essentially all of the vendors supplying database
hardware or software offer multiprocessor systems that provide performance
substantially beyond their uniprocessor product. Second, it is not only large-scale
parallelism that is important but modest-scale multiprocessor servers with tens of
processors and even small-scale multiprocessors with two or four processors.

 

tpmC

Number of Processors IBM RS6000 PowerPC Himalaya K10000

 

1 735

4 1,438

8 3,119

16 3,043

32 6,067

64 12,021

112 20,918

 

Speedup

 

tpmC

 

Number of Processors IBM RS6000 PowerPC Himalaya K10000

 

1 1

4 1.96

8 4.24

16 1

32 1.99

64 3.95

112 6.87
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Finally, even a set of well-documented measurements of a particular class of system
at a specific point in time cannot provide a true technological snapshot. Technology
evolves rapidly, systems take time to develop and deploy, and real systems have a
useful lifetime. Thus, the best systems available from a collection of vendors will be
at different points in their life cycle at any time. For example, the DEC Alpha and
IBM PowerPC systems in the March 1996 TPC report were much newer than the
Tandem Himalaya system. Furthermore, we cannot conclude, for example, that the
Tandem system is inherently less efficient as a result of its scalable design. We can,
however, conclude that even very large-scale systems must track the technology to
retain their advantage.

The transition to parallel programming, including new algorithms or attention to
communication and synchronization requirements in existing algorithms, has
largely taken place in the high-performance end of computing. The transition is in
progress among the much broader base of commercial engineering software. Typi-
cally, engineering and commercial applications target more modest-scale multipro-
cessors, which dominate the server market. In the commercial world, all of the
major database vendors support parallel machines for their high-end products. Sev-
eral major database vendors also offer “shared-nothing” versions for large parallel
machines and collections of workstations on a fast network, often called 

 

clusters

 

. In
addition, multiprocessor machines are heavily used to improve throughput on mul-
tiprogramming workloads. Even the desktop demonstrates a significant number of
concurrent processes, with a host of active windows and daemons. Quite often a sin-
gle user will have tasks running on many machines within the local area network or
will farm tasks out across the network. All of these trends provide a solid application
demand for parallel architectures of a variety of scales.

 

1.1.2 Technology Trends

 

The importance of parallelism in meeting the application demand for ever greater
performance can be brought into sharper focus by looking more closely at the
advancements in the underlying technology and architecture. These trends suggest
that it may be increasingly difficult to “wait for the single processor to get fast
enough” while parallel architectures become more attractive. Moreover, the exami-
nation shows that the critical issues in parallel computer architecture are fundamen-
tally similar to those that we wrestle with in “sequential” computers, such as how
the resource budget should be divided among functional units that do the work,
caches that exploit locality, and wires that provide communication bandwidth.

The primary technological advance is a steady reduction in the basic VLSI feature
size. This makes transistors, gates, and circuits faster and smaller, so more fit in the
same area. In addition, the useful die size is growing, so there is more area to use.
Intuitively, clock rate improves in proportion to the improvement in feature size
while the number of transistors grows as the square, or even faster, due to increasing
overall die area. Thus, in the long run, the use of many transistors at once (i.e.,
parallelism) can be expected to contribute more than clock rate to the observed per-
formance improvement of the single-chip building block.
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This intuition is borne out by examination of commercial microprocessors.
Figure 1.5 shows the increase in clock frequency and transistor count for several
important microprocessor families. Clock rates for the leading microprocessors
increase by about 30% per year while the number of transistors increases by about
40% per year. Thus, if we look at the raw computing power of a chip (total transis-
tors switching per second), transistor capacity has contributed an order of magni-
tude more than clock rate over the past two decades.

 

2

 

 The performance of
microprocessors on standard benchmarks has been increasing at a much greater rate
than clock frequency. The most widely used benchmark for measuring workstation
performance is the SPEC suite, which includes several realistic integer programs and
floating-point programs (SPEC 1995). Integer performance on SPEC has been
increasing at about 55% per year and floating-point performance at 75% per year.
The LINPACK benchmark (Dongarra 1994) is the most widely used metric of per-
formance on numerical applications. LINPACK floating-point performance has been
increasing at more than 80% per year. Thus, processors are getting faster in large
part by making more effective use of an ever larger volume of computing resources.

The simplest analysis of these technology trends suggests that the basic single-
chip building block will provide increasingly large capacity—in the vicinity of 100
million transistors by the year 2000. This raises the possibility of placing more of the
computer system on the chip, including memory and I/O support, or of placing
multiple processors on the chip (Gwennap 1994a). The former yields a small and

 

2.  There are many reasons why the transistor count does not increase as the square of the clock rate. One is
that much of the area of a processor is consumed by wires, serving to distribute control, data, or clock
(i.e., on-chip communication). We will see that the communication issue reappears at every level of par-
allel computer architecture.

 

FIGURE 1.5  Improvement in logic density and clock frequency of microprocessors.

 

 Improve-
ments in lithographic technique, process technology, circuit design, and datapath design have yielded a
sustained improvement in logic density and clock rate.
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conveniently packaged building block for parallel architectures. The latter brings
parallel architecture into the single-chip regime (Gwennap 1994b). Both possibili-
ties are in evidence commercially, with the system-on-a-chip becoming first estab-
lished in embedded systems, portables, and low-end personal computer products.
The use of multiple processors on a chip is becoming established in digital signal
processing (Feigel 1994). 

The divergence between capacity and speed is much more pronounced in
memory technology. From 1980 to 1995, the capacity of a DRAM chip increased a
thousand-fold, quadrupling every three years, while the memory cycle time improved
by only a factor of two. In the time frame of the 100-million-transistor microproces-
sor, we anticipate gigabit DRAM chips, but the gap between processor cycle time and
memory cycle time will have grown substantially wider. Thus, the memory band-
width demanded by the processor (bytes per memory cycle) is growing rapidly.

The latency of a memory operation is determined by the access time, which is
smaller than the memory cycle time, but still the number of processor cycles per
memory access time is large and increasing. To reduce the average latency experi-
enced by the processor and to increase the bandwidth that can be delivered to the
processor, we must make more effective use of the levels of the memory hierarchy
that lie between the processor and the DRAM memory. Essentially all modern micro-
processors provide one or two levels of caches on chip, and most system designs
provide an additional level of external cache. A fundamental question as we move
into multiprocessor designs is how to organize the collection of caches that lies
between the many processors and the many memory modules. For example, one of
the immediate benefits of parallel architectures is that the total size of each level of
the memory hierarchy can increase with the number of processors without increas-
ing the access time.

Extending these observations to disks, we see a similar divergence. Parallel disk
storage systems, such as RAID, are becoming the norm. Large, multilevel caches for
files or disk blocks are predominant.

 

1.1.3 Architectural Trends

 

Advances in technology determine what is possible; architecture translates the
potential of the technology into performance and capability. Fundamentally, the two
ways in which a larger volume of resources (e.g., more transistors) improves perfor-
mance are parallelism and locality.

 

 

 

Moreover,

 

 

 

these two approaches compete for the
same resources. Whenever multiple operations are performed in parallel, the num-
ber of cycles required to execute the program is reduced. However, resources are
required to support each of the simultaneous activities. Whenever data references
are performed close to the processor, the latency of accessing deeper levels of the
storage hierarchy is avoided and the number of cycles to execute the program is
reduced. However, resources are required to provide this local storage. In general,
the best performance is obtained by an intermediate strategy that devotes resources
to exploiting a degree of parallelism and a degree of locality. Indeed, we will see
throughout the book that parallelism and locality interact in interesting ways in sys-
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tems of all scales, from within a chip to across a large parallel machine. In current
microprocessors, the die area is divided roughly equally between cache storage, pro-
cessing, and off-chip interconnect. Larger-scale systems may exhibit a somewhat dif-
ferent split because of differences in cost and performance trade-offs, but the basic
issues are the same.

 

Microprocessor Design Trends

 

Examining the trends in microprocessor architecture helps build intuition toward
the issues we will be dealing with in parallel machines. It also illustrates how fun-
damental parallelism is to conventional computer architecture and how current
architectural trends are leading toward multiprocessor designs. (The discussion of
processor design techniques in this book is cursory since many readers are expected
to be familiar with those techniques from traditional architecture texts [Hennessy
and Patterson 1996] or the many discussions in the trade literature. It does provide a
unique perspective on those techniques, however, and will serve to refresh your
memory.)

The history of computer architecture has traditionally been divided into four gen-
erations identified by the basic logic technology: tubes, transistors, integrated cir-
cuits, and VLSI. The entire period covered by the figures in this chapter is lumped
into the fourth, or VLSI, generation. Clearly, there has been tremendous architec-
tural advance over this period, but what delineates one era from the next within this
generation? The strongest delineation is the kind of parallelism that is exploited as
indicated in Figure 1.6. 

The period up to about 1986 is dominated by advancements in 

 

bit-level parallel-
ism

 

, with 4-bit microprocessors replaced by 8-bit, 16-bit, and so on. Doubling the
width of the datapath reduces the number of cycles required to perform a full 32-bit
operation. Once a 32-bit word size is reached in the mid-1980s, this trend slows,
with only partial adoption of 64-bit operation obtained a decade later. Further
increases in word width will be driven by demands for improved floating-point rep-
resentation and a larger address space rather than performance. With address space
requirements growing by less than a bit per year, the demand for 128-bit operation
appears to be well in the future. The early microprocessor period was able to reap
the benefits of the easiest form of parallelism: bit-level parallelism in every opera-
tion. The dramatic inflection point in the microprocessor growth curve shown in
Figure 1.1 marks the arrival in 1986 of full 32-bit word operation combined with the
prevalent use of caches.

The period from the mid-1980s to the mid-1990s is dominated by advancements
in 

 

instruction-level parallelism,

 

 performing portions of several machine instructions
concurrently. Full-word operation meant that the basic steps in instruction process-
ing (instruction decode, integer arithmetic, and address calculation) could each be
performed in a single cycle; with caches, the instruction fetch and data access could
also be performed in a single cycle most of the time. The RISC approach demon-
strated that, with care in the instruction set design, it was straightforward to pipeline
the stages of instruction processing so that an instruction is executed almost every
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cycle, on average. Thus, the parallelism inherent in the steps of instruction process-
ing could be exploited across a small number of instructions. While pipelined
instruction processing was not new, it had never before been so well suited to the
underlying technology. In addition, advances in compiler technology made instruc-
tion pipelines more effective.

The mid-1980s microprocessor-based computers consisted of a small constella-
tion of chips: an integer processing unit, a floating-point unit, a cache controller,
and SRAMs for the cache data and tag storage. As chip capacity increased, these
components were coalesced into a single chip, which reduced the cost of communi-
cating among them. Thus, a single chip contained separate hardware for integer

 

FIGURE 1.6  Number of transistors per processor chip over the last 25 years. 

 

The growth essen-
tially follows Moore’s Law, which says that the number of transistors doubles every two years. Forecast-
ing from past trends, we can reasonably expect to be designing for a 50- to 100-million-transistor
budget at the end of the decade. Also indicated are the epochs of design within the fourth, or VLSI,
generation of computer architecture, reflecting the increasing level of parallelism.
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arithmetic, memory operations, branch operations, and floating-point operations. In
addition to pipelining individual instructions, it became very attractive to fetch mul-
tiple instructions at a time and issue them in parallel to distinct function units
whenever possible. This form of instruction-level parallelism came to be called

 

superscalar

 

 execution. It provided a natural way to exploit the ever increasing num-
ber of available chip resources. More function units were added, more instructions
were fetched at a time, and more instructions could be issued in each clock cycle to
the function units.

However, increasing the amount of instruction-level parallelism that the proces-
sor can exploit is only worthwhile if the processor can be supplied with instructions
and data fast enough to keep it busy. In order to satisfy the increasing instruction
and data bandwidth requirement, larger and larger caches were placed on chip with
the processor, further consuming the ever increasing number of transistors. With the
processor and cache on the same chip, the path between the two could be made very
wide to satisfy the bandwidth requirement of multiple instruction and data accesses
per cycle. However, as more instructions are issued each cycle, the performance
impact of each control transfer and each cache miss becomes more significant. A
control transfer may have to wait for the depth, or 

 

latency

 

, of the processor pipeline
until a particular instruction reaches the end of the pipeline and determines which
instruction to execute next. Similarly, instructions that use a value loaded from
memory may cause the processor to wait for the latency of a cache miss.

Processor designs in the 1990s deploy a variety of complex instruction processing
mechanisms in an effort to reduce the performance degradation resulting from
latency in “wide-issue” superscalar processors. Sophisticated branch prediction
techniques are used to avoid pipeline latency by guessing the direction of control
flow before branches are actually resolved. Larger, more sophisticated caches are
used to 

 

avoid

 

 the latency of cache misses. Instructions are scheduled dynamically
and allowed to complete out of order so if one instruction encounters a miss, other
instructions can proceed ahead of it as long as they do not depend on the result of
the instruction. A larger window of instructions that are waiting to issue is main-
tained within the processor and whenever an instruction produces a new result, sev-
eral waiting instructions may be issued to the function units. These complex
mechanisms allow the processor to 

 

tolerate

 

 the latency of a cache miss or pipeline
dependence when it does occur. However, each of these mechanisms places a heavy
demand on chip resources and carries a very heavy design cost.

Given the expected increases in chip density, the natural question to ask is how
far will instruction-level parallelism go within a single thread of control? At what
point will the emphasis shift to supporting the higher levels of parallelism available
as multiple processes or multiple threads of control within a process, that is, 

 

thread-
level parallelism? 

 

Several research studies have sought to answer the first part of the
question, either through simulation of aggressive machine designs (Chang et al.
1991; Horst, Harris, and Jardine 1990; Lee, Kwok, and Briggs 1991; Melvin and Patt
1991) or through analysis of the inherent properties of programs (Butler et al. 1991;
Jouppi and Wall 1989; Johnson 1991; Smith, Johnson, and Horowitz 1989; Wall
1991). The most complete treatment appears in Johnson’s book devoted to the topic



 

18

 

CHAPTER

 

 1 Introduction

 

(1991). Simulation of aggressive machine designs generally shows that two-way
superscalar, that is, issuing two instructions per cycle, is very profitable and four-
way offers substantial additional benefit, but wider issue widths (e.g., eight-way
superscalar) provide little additional gain. The design complexity increases dramati-
cally because control transfers occur roughly once in five instructions, on average. 

To estimate the maximum potential speedup that can be obtained by issuing mul-
tiple instructions per cycle, the execution trace of a program is simulated on an ideal
machine with unlimited instruction fetch bandwidth, as many function units as the
program can use, and perfect branch prediction. (The latter is easy, since the trace
correctly follows each branch.) These generous machine assumptions ensure that no
instruction is held up because a function unit is busy or because the instruction is
beyond the lookahead capability of the processor. Furthermore, to ensure that no
instruction is delayed because it updates a location that is used by logically previous
instructions, storage resource dependences are removed by a technique called

 

renaming

 

. Each update to a register or memory location is treated as introducing a
new “name,” and subsequent uses of the value in the execution trace refer to the
new name. In this way, the execution order of the program is constrained only by
essential data dependences; each instruction is executed as soon as its operands are
available. Figure 1.7 summarizes the result of this ideal machine analysis based on
data presented by Johnson (1991). The histogram on the left shows the fraction of
cycles in which no instruction could issue, only one instruction could issue, and so
on. Johnson’s ideal machine retains realistic function unit latencies, including cache

 

FIGURE 1.7  Distribution of potential instruction-level parallelism and estimated speedup
under ideal superscalar execution. 

 

The figure shows the distribution of available instruction-level
parallelism and maximum potential speedup under idealized superscalar execution, including un-
bounded processing resources and perfect branch prediction. Data is an average of that presented for
several benchmarks by Johnson (1991).
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misses, which accounts for the zero-issue cycles. (Other studies ignore cache effects
or ignore pipeline latencies and thereby obtain more optimistic estimates.) We see
that, even with infinite machine resources, perfect branch prediction, and ideal
renaming, no more than four instructions issue in a cycle 90% of the time. Based on
this distribution, we can estimate the speedup obtained at various issue widths, as
shown in the right portion of the figure. Recent work (Lam and Wilson 1992; Sohi,
Breach, and Vijaykumar 1995) provides empirical evidence that to obtain signifi-
cantly larger amounts of parallelism, multiple threads of control must be pursued
simultaneously. Barring some unforeseen breakthrough in instruction-level parallel-
ism, the leap to the next level of useful parallelism—multiple concurrent threads—
is increasingly compelling as chips increase in capacity.

 

System Design Trends

 

The trend toward thread- or process-level parallelism has been strong at the com-
puter system level for some time. Computers containing multiple state-of-the-art
microprocessors sharing a common memory became prevalent in the mid-1980s,
when the 32-bit microprocessor was first introduced (Bell 1985). As indicated by
Figure 1.8, which shows the number of processors available in commercial multi-
processors over time, this bus-based shared memory multiprocessor approach has
maintained a substantial multiplier to the increasing performance of the individual
processors. Almost every commercial microprocessor introduced since the mid-
1980s provides hardware support for multiprocessor configurations, as discussed in
Chapter 5. Multiprocessors dominate the server and enterprise (or mainframe) mar-
kets and have migrated to the desktop. 

The early multi-microprocessor systems were introduced by small companies
competing for a share of the minicomputer market, including Synapse (Nestle and
Inselberg 1985), Encore (Schanin 1986), Flex (Matelan 1985), Sequent (Rodgers
1985), and Myrias (Savage 1985). They combined 10 to 20 microprocessors to
deliver competitive throughput on time-sharing loads. With the introduction of the
32-bit Intel i80386 as the base processor, these systems obtained substantial com-
mercial success, especially in transaction processing. However, the rapid perfor-
mance advance of RISC microprocessors, exploiting instruction-level parallelism,
sapped the CISC multiprocessor momentum in the late 1980s and all but eliminated
the minicomputer. Shortly thereafter, several large companies began producing RISC
multiprocessor systems, especially as servers and mainframe replacements. These
designs highlight the critical role of bandwidth. In most of these multiprocessor
designs, all the processors plug into a common bus. Since a bus has a fixed band-
width, as the processors become faster, a smaller number can be supported by the
bus. The early 1990s brought a dramatic advance in the shared memory bus technol-
ogy, including faster electrical signaling, wider datapaths, pipelined protocols, and
multiple paths. Each of these provided greater bandwidth, growing with time and
design experience, as indicated in Figure 1.9. This increase in bandwidth allowed
the multiprocessor designs to ramp back up to the 10-to-20 range and beyond while
tracking the microprocessor advances (Alexander et al. 1994; Cekleov et al. 1993;
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Fenwick et al. 1995; Frank, Burkhardt, and Rothnie 1993; Galles and Williams
1993; Godiwala and Maskas 1995).

The picture in the mid-1990s is very interesting. Not only has the bus-based
shared memory multiprocessor approach become ubiquitous in the industry, it is
present at a wide range of scale. Desktop systems and small servers commonly sup-
port two to four processors, larger servers support tens, and large commercial sys-
tems are moving toward one hundred. Indications are that this trend will continue.
As an illustration of the shift in emphasis, in 1994 Intel defined a standard approach
to the design of multiprocessor PC systems around its Pentium microprocessor
(Slater 1994). The follow-on Pentium Pro microprocessor allowed four-processor
configurations to be constructed by wiring the chips together without even any glue
logic; bus drivers, arbitration, and so on are in the microprocessor. This develop-
ment is expected to make small-scale multiprocessors a true commodity. Addition-

 

FIGURE 1.8  Number of processors in fully configured commercial bus-based shared memory
multiprocessors.

 

 After an initial era of 10- to 20-way shared memory processors based on slow CISC
microprocessors, companies such as Sun, HP, DEC, SGI, IBM, and CRI began producing sizable RISC-
based SMPs, as did commercial vendors not shown here, including NCR/ATT, Tandem, and Pyramid.
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ally, a shift in the industry business model has been noted, where multiprocessors
are being pushed by software vendors, especially database companies, rather than
just by the hardware vendors. Combining these trends with the technology trends, it
appears that the question is when, not if, multiple processors per chip will become
prevalent.

 

1.1.4 Supercomputers

We have looked at the forces driving the development of parallel architecture in the
general market. A second, confluent set of forces comes from the quest to achieve
absolute maximum performance, known as supercomputing. Although commercial
and information processing applications are increasingly becoming important driv-
ers of the high end, scientific computing has historically been a kind of proving
ground for innovative architecture. In the mid-1960s, this included pipelined
instruction processing and dynamic instruction scheduling, which are common-
place in microprocessors today. Starting in the mid-1970s, supercomputing was
dominated by vector processors, which perform operations on sequences of data

FIGURE 1.9  Bandwidth of the shared memory bus in commercial multiprocessors. After slow
growth for several years, a new era of memory bus design began in 1991, which supported the use of
substantial numbers of very fast microprocessors.
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elements; that is, a vector rather than individual scalar data. Vector operations per-
mit more parallelism to be obtained within a single thread of control. In addition,
these vector supercomputers were implemented in very fast, expensive, high-power
circuit technologies.

Dense linear algebra is an important component of scientific computing and the
specific emphasis of the LINPACK benchmark. Although this benchmark evaluates a
narrow aspect of system performance, it is one of the few measurements available for
a very wide class of machines over a long period of time.  Figure 1.10 shows the
LINPACK performance trend for one processor of the leading CRAY vector super-
computers (August et al. 1989; Russel 1978) compared with that of the fastest con-
temporary microprocessor-based workstations and servers. For each system two

FIGURE 1.10  Uniprocessor performance of supercomputers and microprocessor-based sys-
tems on the LINPACK benchmark. Performance in MFLOPS for a single processor on solving dense
linear equations is shown for the leading CRAY vector supercomputer and the fastest workstations on a
100 × 100 and 1,000 × 1,000 matrix.
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data points are provided. The lower one is the performance obtained on a 100 × 100
matrix and the higher one on a 1,000 × 1,000 matrix. Within the vector processing
approach, the single-processor performance improvement is dominated by modest
improvements in cycle time and more substantial increases in the vector memory
bandwidth. In the microprocessor systems, we see the combined effect of increasing
clock rate, using on-chip pipelined floating-point units, increasing on-chip cache
size, increasing off-chip second-level cache size, and increasing use of instruction-
level parallelism. The gap in uniprocessor performance is rapidly closing.

Multiprocessor architectures are adopted by both the vector processor and micro-
processor designs, but the scale is quite different. The CRAY Xmp first provided two
and then four processors, the Ymp eight, the C90 sixteen, and the T94 thirty-two.
The microprocessor-based supercomputers initially provided about 100 processors,
increasing to roughly 1,000 from 1990 on. These aggregations of processors, known
as massively parallel processors (MPPs), have tracked the microprocessor advance,
with typically a lag of one to two years behind the leading microprocessor-based
workstation or personal computer. As shown in Figure 1.11, the large number of
slightly slower microprocessors has proved dominant for the LINPACK benchmark.
(Note the change of scale from MFLOPS in Figure 1.10 to GFLOPS here.) The per-
formance advantage of the MPP systems over traditional vector supercomputers is
less substantial on more complete applications (Bailey et al. 1994) owing to the rela-
tive immaturity of the programming languages, compilers, and algorithms; however,
the trend toward MPPs is still very pronounced. The importance of this trend was
apparent enough in 1993 that CRAY Research announced its T3D, based on the DEC
Alpha microprocessor.

 Recently, the LINPACK benchmark has been used to rank the fastest computer
systems in the world. Figure 1.12 shows the number of multiprocessor parallel vec-
tor processors (PVPs), MPPs, and bus-based shared memory multiprocessors
(SMPs) appearing in the list of the top 500 systems. The latter two are both micro-
processor based, and the trend is clear.

1.1.5 Summary

In examining current trends from a variety of perspectives—economics, technology,
architecture, and application demand—we see that parallel architecture is increas-
ingly attractive and increasingly central. The quest for performance is so keen that
parallelism is being exploited at many different levels and at various points in the
computer design space. Instruction-level parallelism is exploited in all modern high-
performance processors. Essentially, all machines beyond the desktop are multipro-
cessors, including servers, mainframes, and supercomputers. The very high end of
the performance curve is dominated by massively parallel processors. The use of
large-scale parallelism in applications is broadening. The focus of this book is the
multiprocessor level of parallelism. We study the design principles embodied in par-
allel machines from the modest scale to the very large, so that we may understand
the spectrum of viable parallel architectures that can be built from well-proven
components.
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FIGURE 1.11  Performance of supercomputers and MPPs on the LINPACK peak performance
benchmark. Peak performance in GFLOPS for solving dense linear equations is shown for the leading
CRAY multiprocessor vector supercomputer and the fastest MPP systems. Note the change in scale from
Figure 1.10 (MFLOPS to GFLOPS).

FIGURE 1.12  Types of systems used in the
500 fastest computer systems in the world.
Parallel vector processors (PVPs) have given way
to microprocessor-based massively parallel pro-
cessors (MPPs) and bus-based symmetric shared
memory multiprocessors (SMPs) at the high end
of computing.
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This discussion of the trends toward parallel computers has been primarily from
the processor perspective, but you may arrive at the same conclusion from the mem-
ory system perspective. Consider briefly the design of a memory system to support a
very large amount of data, that is, the data set of large problems. One of the few
physical laws of computer architecture is that fast memories are small, large memo-
ries are slow. This occurrence is due to many factors, including the increased address
decode time, the delays on increasingly long bit lines, the small drive of increasingly
dense storage cells, and the selector delays. The result is that memory systems are
constructed as a hierarchy of increasingly larger and slower memories: on average, a
large hierarchical memory is fast, as long as the references exhibit good locality. The
other trick we can play to cheat the laws of physics and obtain fast access on a very
large data set is to use multiple processors and have the different processors access
independent smaller memories. Of course, physics is not easily fooled. We pay the
cost when a processor accesses nonlocal data, which we call communication, and
when we need to orchestrate the actions of the many processors (i.e., in synchroni-
zation operations).

Historically, parallel machines have developed within several distinct architectural
camps, and most texts on the subject are organized around a taxonomy of these
designs. However, in looking at the evolution of parallel architecture, it is clear that
the designs are strongly influenced by the same technological forces and similar
application requirements. It is not surprising therefore that a great deal of conver-
gence has occurred in the field. The goal of this section is to construct a framework
for understanding the entire spectrum of parallel computer architectures and to
build intuition as to the nature of the convergence. Along the way comes a quick
overview of the evolution of parallel machines, starting from the traditional camps
and moving toward the point of convergence.

1.2.1 Communication Architecture

Given that a parallel computer is “a collection of processing elements that commu-
nicate and cooperate to solve large problems fast” (Almasi and Gottlieb 1989), we
may reasonably view parallel architecture as the extension of conventional computer
architecture to address issues of communication and cooperation among processing
elements. In essence, parallel architecture extends the usual concepts of a computer
architecture with a communication architecture. Computer architecture has two dis-
tinct facets. One is the definition of critical abstractions, especially the hardware/
software boundary and the user/system boundary. The architecture specifies the set
of operations at the boundary and the data types that these operate on. The other
facet is the organizational structure that realizes these abstractions to deliver high
performance in a cost-effective manner. A communication architecture has these two

1.2 1.2CONVERGENCE OF PARALLEL ARCHITECTURES



26 CHAPTER 1 Introduction

facets as well. It defines the basic communication and synchronization operations,
and it addresses the organizational structures that realize these operations. 

The framework for understanding communication in a parallel machine is illus-
trated in Figure 1.13. The top layer is the programming model, which is the concep-
tualization of the machine that the programmer uses in coding applications. Each
programming model specifies how parts of the program running in parallel commu-
nicate information to one another and what synchronization operations are available
to coordinate their activities. Applications are written in a programming model. In
the simplest case, the model consists of multiprogramming a large number of inde-
pendent sequential programs; no communication or cooperation takes place at the
programming level. The more interesting cases include true parallel programming
models, such as shared address space, message passing, and data parallel program-
ming. We can describe these models intuitively as follows:

■ Shared address programming is like using a bulletin board, where you can com-
municate with one or many colleagues by posting information at known,
shared locations. Individual activities can be orchestrated by taking note of
who is doing what task. 

■ Message passing is akin to telephone calls or letters, which convey information
from a specific sender to a specific receiver. There is a well-defined event when
the information is sent or received, and these events are the basis for orches-
trating individual activities. However, no shared location is accessible to all.

■ Data parallel processing is a more regimented form of cooperation, where sev-
eral agents perform an action on separate elements of a data set simultaneously
and then exchange information globally before continuing en masse. The glo-
bal reorganization of data may be accomplished through accesses to shared
addresses or messages since the programming model only defines the overall
effect of the parallel steps.

A more precise definition of these programming models will be developed later in
the text; at this stage, it is most important to understand the layers of abstraction. 

A programming model is realized in terms of the user-level communication prim-
itives of the system, referred to here as the communication abstraction. Typically, the
programming model is embodied in a parallel language or programming environ-
ment, so a mapping exists from the generic language constructs to the specific prim-
itives of the system. These user-level primitives may be provided directly by the
hardware, by the operating system, or by machine-specific user software that maps
the communication abstractions to the actual hardware primitives. The distance
between the lines in Figure 1.13 is intended to indicate that the mapping from one
layer to the next may be very simple or very involved. For example, access to a
shared location is realized directly by load and store instructions on a machine in
which all processors use the same physical memory; however, passing a message on
such a machine may involve a library or system call to write the message into a
buffer area or to read it out.

The communication architecture defines the set of communication operations
available to the user software, the format of these operations, and the data types they
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operate on, much as an instruction set architecture does for a processor. Note that
even in conventional instruction sets, some operations may be realized by a combi-
nation of hardware and software, such as a load instruction that relies on operating
system intervention in the case of a page fault. The communication architecture also
extends the computer organization with the hardware structures that support com-
munication.

As with conventional computer architecture, a great deal of debate has gone on
over the years about what should be incorporated into each layer of abstraction in
parallel architecture and how large the gap between the layers should be. This
debate has been fueled by differing assumptions about the underlying technology
and more qualitative assessments of “ease of programming.” The hardware/software
boundary in Figure 1.13 is depicted as flat to indicate that the available hardware
primitives in different designs is more or less of uniform complexity. Indeed, this is
becoming more the case as the field matures. In most early designs, the physical
hardware organization was strongly oriented toward a particular programming
model; that is, the communication abstraction supported by the hardware was
essentially identical to the programming model. This “high-level” parallel archi-
tecture approach resulted in tremendous diversity in the hardware organizations.
However, as the programming models have become better understood and imple-
mentation techniques have matured, compilers and run-time libraries have grown to
provide an important bridge between the programming model and the underlying
hardware. Simultaneously, the technological trends discussed in Section 1.1.2 have
exerted a strong influence, regardless of the programming model. The result has

FIGURE 1.13  Layers of abstraction in parallel computer architecture. Critical layers of abstrac-
tions lie between the application program and the actual hardware. The application is written for a pro-
gramming model, which dictates how pieces of the program share information and coordinate their
activities. The specific operations providing communication and synchronization form the communica-
tion abstraction, which is the boundary between the user program and the system implementation. This
abstraction is realized through compiler or library support using the primitives available from the hard-
ware or from the operating system, which uses privileged hardware primitives. The communication
hardware is organized to provide these operations efficiently on the physical wires connecting the
machine together.
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been a convergence in the organizational structure with relatively simple, general-
purpose communication primitives.

Sections 1.2.2–1.2.6 survey the most widely used programming models and the
corresponding styles of machine design in past and current parallel machines. With
the historical orientation to a particular programming model, it was common to
lump the programming model, the communication abstraction, and the machine
organization together as “the architecture,” for example, shared memory architec-
ture, message-passing architecture, and so on. This approach is less appropriate
today since a large commonality exists across parallel machines and since many
machines support several programming models. It is important to see how this con-
vergence has come about, so these sections begin from the traditional perspective,
looking at machine designs associated with particular programming models and
explaining their intended roles and the technological opportunities that influenced
their design. The goal of the survey is not to develop a taxonomy of parallel
machines per se but to identify a set of core concepts that form the basis for assess-
ing design trade-offs across the entire spectrum of potential designs today and in the
future. It also demonstrates the influence that the dominant technological direction
established by microprocessor and DRAM technologies has had on parallel machine
design, which makes a common treatment of the fundamental design issues natural
or even imperative. Specifically, shared address, message-passing, data parallel, data-
flow, and systolic approaches are presented. In each case, the abstraction embodied
in the programming model is explained, and the reasons for the particular style of
design, as well as the intended scale and application, are presented. The technologi-
cal motivations for the approach are also examined, as well as how they have
changed over time. These changes are reflected in the machine organization, which
determines what is fast and what is slow. The performance characteristics ripple up
to influence aspects of the programming model. The outcome of this brief survey is a
clear organizational convergence, which is captured in a generic parallel machine in
Section 1.2.7.

1.2.2 Shared Address Space

One of the most important classes of parallel machines is shared memory multiproces-
sors. The key property of this class is that communication occurs implicitly as a
result of conventional memory access instructions (i.e., loads and stores). This class
has a long history, dating at least to precursors of mainframes in the early 1960s,3

and today it has a role in almost every segment of the computer industry. Shared
memory multiprocessors serve to provide better throughput on multiprogramming
workloads, as well as to support parallel programs. Thus, they are naturally found
across a wide range of scale, from a few processors to perhaps hundreds. This sec-

3.  Some say that BINAC was the first multiprocessor, but it was intended to improve reliability. The two
processors checked each other at every instruction. They seldom agreed, so people eventually turned one
of them off.
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tion examines the communication architecture of shared memory machines and the
key organizational issues for small-scale designs and large configurations.

The primary programming model for these machines is essentially that of time-
sharing on a single processor, except that real parallelism replaces interleaving in
time. Formally, a process is a virtual address space and one or more threads of con-
trol. Processes can be configured so that portions of their address space are shared,
that is, are mapped to a common physical location, as suggested by Figure 1.14.
(Multiple threads within a process, by definition, share portions of the address
space.) Cooperation and coordination among threads is accomplished by reading
and writing shared variables and pointers referring to shared addresses. Writes to a
logically shared address by one thread are visible to reads of the other threads. The com-
munication architecture employs the conventional memory operations to provide
communication through shared addresses as well as special atomic operations for
synchronization. Even completely independent processes typically share the kernel
portion of the address space, although this is only accessed by operating system
code. Nonetheless, the shared address space model is utilized within the operating
system to coordinate the execution of the processes.

Although shared memory can be used for communication among arbitrary collec-
tions of processes, most parallel programs are quite structured in their use of the vir-
tual address space. They typically have a common code image, private segments for
the stack and other private data, and shared segments that are in the same region of
the virtual address space of each process or thread of the program. This simple struc-
ture implies that the private variables in the program are present in each process and
that shared variables have the same address and meaning in each thread. Often,
straightforward parallelization strategies are employed. For example, each process
may perform a subset of the iterations of a common parallel loop or, more generally,
processes may operate as a pool of workers obtaining work from a shared queue.
Chapter 2 discusses the structure of parallel programs more deeply. Here we look at
the basic evolution and development of this important architectural approach.

The communication hardware for shared memory multiprocessors is a natural
extension of the memory system found in most computers. Essentially all computer
systems allow a processor and a set of I/O controllers to access a collection of
memory modules through some kind of hardware interconnect, as illustrated in
Figure 1.15. The memory capacity is increased simply by adding memory modules.
Additional capacity may or may not increase the available memory bandwidth,
depending on the specific system organization. I/O capacity is increased by adding
devices to I/O controllers or by inserting additional I/O controllers. There are two
possible ways to increase the processing capacity: wait for a faster processor to
become available or add more processors. On a time-sharing workload, increasing
processing capacity should increase the throughput of the system. With more pro-
cessors, more processes can run at once and throughput is increased. If a single
application is programmed to make use of multiple threads, more processors should
speed up the application. The hardware primitives are essentially one to one with
the communication abstraction, and these operations are available in the program-
ming model.
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Within the general framework of Figure 1.15, a great deal of evolution of shared
memory machines has taken place as the underlying technology has advanced. The
early machines were “high-end” mainframe configurations (Lonergan and King
1961; Padegs 1981). On the technology side, memory in early mainframes was slow
compared to the processor, so it was necessary to interleave data across several mem-
ory banks to obtain adequate bandwidth for even a single processor; this required an
interconnect between the processor and each of the banks. On the application side,
these systems were primarily designed for throughput on a large number of jobs.
Thus, to meet the I/O demands of a workload, several I/O channels and devices were
attached. The I/O channels also required direct access to each of the memory banks.
Therefore, these systems were typically organized with a crossbar switch connecting
the CPU and several I/O channels to several memory banks, as indicated by Figure
1.16a. Adding processors was primarily a matter of expanding the switch; the hard-
ware structure to access a memory location from a port on the processor and I/O
side of the switch was unchanged. The size and cost of the processor limited these
early systems to a small number of processors, but as the hardware density and cost
improved, larger systems could be contemplated. The cost of scaling the crossbar
became the limiting factor, and in many cases it was replaced by a multistage inter-
connect, suggested by Figure 1.16b, for which the cost increases more slowly with

FIGURE 1.14  Typical memory model for shared memory parallel programs. Collec-
tions of processes have a common region of physical addresses mapped into their virtual
address space, in addition to the private region, which typically contains the stack and pri-
vate data.
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the number of ports. These savings come at the expense of increased latency and
decreased bandwidth per port if all are used at once. The ability to access all memory
directly from each processor has several advantages: any processor can run any pro-
cess or handle any I/O event, and data structures can be shared within the operating
system.

The widespread use of shared memory multiprocessor designs came about with
the 32-bit microprocessor revolution in the mid-1980s because the processor, cache,
floating-point, and memory management unit fit on a single board (Bell 1985) or
even two to a board. Most mid-range machines, including minicomputers, servers,
workstations, and personal computers, are organized around a central memory bus,
as illustrated in Figure 1.16c, and the bus could be adapted to support multiple

FIGURE 1.15  Extending a system into a shared memory multiprocessor by adding processor
modules. Most systems consist of one or more memory modules accessible by a processor and I/O con-
trollers through a hardware interconnect, typically a bus, crossbar, or multistage interconnect. Memory
and I/O capacity are increased by attaching memory and I/O modules. Shared memory machines allow
processing capacity to be increased by adding processor modules (shown as shaded).

FIGURE 1.16  Typical shared memory multiprocessor interconnection schemes. The intercon-
nection of multiple processors, with their local caches (indicated by $), and I/O controllers to multiple
memory modules may be via crossbar, multistage interconnection network, or bus.
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processors. The standard bus access mechanism allows any processor to access any
physical address in the system. Like the switch-based designs, all memory locations
are equidistant to all processors, so all processors experience the same access time,
or latency, on a memory reference. This configuration is usually called a symmetric
multiprocessor (SMP).4 SMPs are heavily used for execution of parallel programs as
well as multiprogramming. The typical organization of the bus-based symmetric
multiprocessor is illustrated in more detail by Figure 1.17, which describes the first

4.  The term SMP is widely used but causes a bit of confusion. What exactly needs to be symmetric? Many
designs are symmetric in some respect. The more precise description of what is intended by SMP is a
shared memory multiprocessor where the cost of accessing a memory location is the same for all proces-
sors; that is, it has uniform access costs when the access actually is to memory. If the location is cached,
the access will be faster, but cache access times and memory access times are the same on all processors.

FIGURE 1.17(a) Physical and logical organization of the Intel Pentium Pro four-
processor “quad pack.” The Intel quad-processor Pentium Pro motherboard employed in
many multiprocessor servers illustrates the major design elements of most small-scale
shared memory multiprocessors. Its logical block diagram (a) shows that it can accommo-
date up to four processor modules, each containing a Pentium Pro processor, first-level
caches, translation lookaside buffer, a 256-KB second-level cache, an interrupt controller,
and a bus interface in a single chip connecting directly to a 64-bit memory bus. The bus
operates at 66 MHz, and memory transactions are pipelined to give a peak bandwidth of
528 MB/s. A two-chip memory controller and four-chip memory interleave unit (MIU) con-
nect the bus to multiple banks of DRAM. Bridges connect the memory bus to two indepen-
dent PCI buses, which host display, network, SCSI, and lower-speed I/O connections. The
Pentium Pro module contains all the logic necessary to support the multiprocessor commu-
nication architecture, including that required for memory and cache consistency. The struc-
ture of the Pentium Pro “quad pack” is similar to a large number of earlier SMP designs but
has a much higher degree of integration and is targeted at a much larger volume. (b)
shows an expanded view of a typical Pentium Pro SMP, an HP NetServer in the LX series.
Source: Reproduced with permission of Hewlett-Packard Company.

P-Pro bus (64-bit data, 36-bit address, 66 MHz)

CPU

Bus interface

MIU

P-Pro
module

P-Pro
module

P-Pro
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-way
interleaved 

DRAM

PC
I b

us

PC
I b

usPCI
I/O

cards



1.2 Convergence of Parallel Architectures 33

FIGURE 1.17(b) Physical organization of the Intel Pentium Pro four-processor “quad pack” 
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highly integrated SMP for the commodity market. Figure 1.18 illustrates a high-end
server organization that distributes the physical memory over the processor mod-
ules, but retains symmetric access.

The factors limiting the number of processors that can be supported with a bus-
based organization are quite different from those in the switch-based approach. Add-
ing processors to the switch is expensive; however, the aggregate bandwidth
increases with the number of ports. The cost of adding a processor to the bus is
small, but the aggregate bandwidth is fixed. Dividing this fixed bandwidth among
the larger number of processors limits the practical scalability of the approach. (It is
this critical bus bandwidth that is depicted in Figure 1.9.) Fortunately, caches
reduce the bandwidth demand of each processor since many references are satisfied
by the cache rather than by the memory. However, with data replicated in local
caches, there is the potentially challenging problem of keeping the caches “consis-
tent,” which will be examined in detail in Chapters 5, 6, and 8.

Starting from a baseline of small-scale shared memory machines, illustrated in
Figures 1.16–1.18, we may ask what is required to scale the design to a large number
of processors. The basic processor component is well suited to the task since it is
small and economical, but a problem clearly exists with the interconnect. The bus
does not scale because it has a fixed aggregate bandwidth. The crossbar does not
scale well because the cost increases as the square of the number of ports. Many
alternative scalable interconnection networks exist, such that the aggregate band-
width increases as more processors are added, but the cost does not become exces-
sive. We need to be careful about the resulting increase in latency because the
processor may stall while a memory operation moves from the processor to the
memory module and back. If the latency of access becomes too large, the processors
will spend much of their time waiting, and the advantages of more processors may
be offset by poor utilization.

One natural approach to building scalable shared memory machines is to main-
tain the uniform memory access (or “dancehall”) approach of Figure 1.15 and pro-
vide a scalable interconnect between the processors and the memories. Every
memory access is translated into a message transaction over the network, much as it
might be translated to a bus transaction in the SMP designs. The primary disadvan-
tage of this approach is that the round-trip network latency is experienced on every
memory access and a large bandwidth must be supplied to every processor.

An alternative approach is to interconnect complete processors, each with a local
memory, as illustrated in Figure 1.19. In this nonuniform memory access (NUMA)
approach, the local memory controller determines whether to perform a local mem-
ory access or a message transaction with a remote memory controller. Accessing
local memory is faster than accessing remote memory. (The I/O system may either be
a part of every node or consolidated into special I/O nodes, not shown.) Accesses to
private data, such as code and stack, can often be performed locally, as can accesses
to shared data that, by accident or intent, are stored on the local node. The ability to
access the local memory quickly does not increase the time to access remote data
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FIGURE 1.18  Physical and logical organization of the Sun Enterprise Server. A larger-scale
design is illustrated by the Sun UltraSparc-based Enterprise multiprocessor server. The diagram shows its
physical structure and logical organization. A wide (256-bit), highly pipelined memory bus delivers 2.5
GB/s of memory bandwidth. This design uses a hierarchical structure, where each card is either a com-
plete dual processor with memory or a complete I/O system. The full configuration supports 16 cards of
either type, with at least one of each. The CPU/mem card contains two UltraSparc processor modules,
each with 16-KB level 1 and 512-KB level 2 caches, plus two 512-bit-wide memory banks and an inter-
nal switch. Thus, adding processors adds memory capacity and memory interleaving. The I/O card pro-
vides three SBUS slots for I/O extensions, a SCSI connector, a 100bT Ethernet port, and two
FiberChannel interfaces. A typical complete configuration would be 24 processors and 6 I/O cards.
Although memory banks are physically packaged with pairs of processors, all memory is equidistant
from all processors and accessed over the common bus, preserving the SMP characteristics. Data may be
placed anywhere in the machine with no performance impact. Source: The copyright for this photo-
graph is owned by Sun Microsystems, Inc. and is used herein by permission.

FIGURE 1.19  Nonuniform memory access (NUMA) scalable shared memory multiprocessor
organization. Processor and memory modules are closely integrated such that access to local memory
is faster than access to remote memories.
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appreciably, so it reduces the average access time, especially when a large fraction of
the accesses are to local data. The bandwidth demand placed on the network is also
reduced. Although some conceptual simplicity arises from having all shared data
equidistant from any processor, the NUMA approach has become far more prevalent
at a large scale because of its inherent performance advantages and because it har-
nesses more of the mainstream processor memory system technology. One example
of this style of design is the CRAY T3E, illustrated in Figure 1.20. This machine
reflects the viewpoint that, although all memory is accessible to every processor, the
distribution of memory across processors is exposed to the programmer. Caches are
used only to hold data (and instructions) from local memory. It is the programmer’s
job to avoid frequent remote references. The SGI Origin is an example of a machine
with a similar organizational structure, but it allows data from any memory to be
replicated into any of the caches and provides hardware support to keep the caches
consistent without relying on a bus connecting all the modules with a common set

FIGURE 1.20  CRAY T3E scalable shared address space machine. The CRAY T3E is designed to
scale up to a thousand processors supporting a global shared address space. Each node contains a DEC
Alpha processor, local memory, a network interface integrated with the memory controller, and a net-
work switch. The machine is organized as a three-dimensional cube, with each node connected to its six
neighbors through 650-MB/s point-to-point links. Any processor can read or write any memory location;
however, the NUMA characteristic of the machine is exposed in the communication architecture as well
as in its performance characteristics. A short sequence of instructions is required to establish address-
ability to remote memory, which can then be accessed by conventional loads and stores. The memory
controller captures the access to a remote memory and conducts a message transaction with the mem-
ory controller of the remote node on the local processor’s behalf. The message transaction is automati-
cally routed through intermediate nodes to the desired destination, with a small delay per “hop.” The
remote data is not cached since there is no hardware mechanism to keep it consistent. (We will look at
other design points that allow shared data to be replicated throughout the processor caches.) The CRAY
T3E I/O system is distributed over a collection of nodes on the surface of the cube, which are connected
to the external world through an additional I/O network. Source: Photo courtesy of CRAY Research.

Switch

P

$

X Y

Z

External I/O

Mem
ctrl

and NI

Mem



1.2 Convergence of Parallel Architectures 37

of wires. While this book was being written, these two designs literally converged
following the merger of the two companies.

To summarize, communication and cooperation in the shared address space pro-
gramming model consists of reads and writes to shared variables; these operations
are mapped directly to a communication abstraction consisting of load and store
instructions accessing a global, shared address space, which is supported directly in
hardware through access to shared physical memory locations. The programming
model and communication abstraction are very close to the actual hardware. Each
processor can name every physical location in the machine; a process can name all
data it shares with others within its virtual address space. Data is transferred either
as primitive types in the instruction set (bytes, words, etc.) or as cache blocks. Each
process performs memory operations on addresses in its virtual address space; the
address translation process identifies a physical location, which may be local or
remote to the processor and may be shared with other processes. In either case, the
hardware accesses it directly, without user or operating system software interven-
tion. The address translation realizes protection within the shared address space,
just as it does for uniprocessors, since a process can only access the data in its virtual
address space. 

The effectiveness of the shared memory approach depends on the latency incurred
on memory accesses as well as the bandwidth of data transfer that can be supported.
Just as a memory storage hierarchy allows data that is bound to an address to be
migrated toward the processor, expressing communication in terms of the storage
address space allows shared data to be migrated toward the processor that accesses it.
However, migrating and replicating data across a general-purpose interconnect pre-
sents a unique set of challenges. We will see that to achieve scalability in such a
design, the entire solution, including the hardware interconnect mechanisms used
for maintaining the consistent shared memory abstractions, must scale well.

1.2.3 Message Passing

A second important class of parallel machines, called message-passing architectures,
employs complete computers as building blocks—including the microprocessor,
memory, and I/O system—and provides communication between processors as
explicit I/O operations. The high-level block diagram for a message-passing machine
is essentially the same as the NUMA shared memory approach shown in Figure 1.19.
The primary difference is that communication is integrated at the I/O level rather
than into the memory system. This style of design also has much in common with
networks of workstations, or clusters, except that the packaging of the nodes is typi-
cally much tighter, there is no monitor or keyboard per node, and the network is of
much higher capability than a standard local area network. The integration between
the processor and the network tends to be much tighter than in traditional I/O struc-
tures, which support connection to devices that are much slower than the processor,
since message passing is fundamentally processor-to-processor communication. 
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In message passing, a substantial distance exists between the programming model
and the actual hardware primitives, with user communication performed through
operating system or library calls that perform many lower-level actions, including
the actual communication operation. Thus, our discussion of message passing begins
with a look at the communication abstraction and then briefly surveys the evolution
of hardware organizations supporting this abstraction.

The most common user-level communication operations on message-passing
systems are variants of send and receive. In its simplest form, send specifies a local
data buffer that is to be transmitted and a receiving process (typically on a remote
processor). Receive specifies a sending process and a local data buffer into which the
transmitted data is to be placed. Together, the matching send and receive cause a
data transfer from one process to another, as indicated in Figure 1.21. In most
message-passing systems, the send operation also allows an identifier or tag to be
attached to the message, and the receiving operation specifies a matching rule (such
as a specific tag from a specific processor, or any tag from any processor). Thus, the
user program names local addresses and entries in an abstract process-tag space. The
combination of a send and a matching receive accomplishes a pairwise synchronization
event and a memory-to-memory copy, where each end specifies its local data address.
There are several possible variants of this synchronization event, depending upon
whether the send completes when the receive has been executed, when the send
buffer is available for reuse, or when the request has been accepted. Similarly, the
receive can potentially wait until a matching send occurs or simply post the receive.
Each of these variants has somewhat different semantics and different implementa-
tion requirements.

Message passing has long been used as a means of communication and synchro-
nization among arbitrary collections of cooperating sequential processes, even on a
single processor. Important examples include programming languages, such as CSP
and Occam, and common operating systems functions, such as sockets. Parallel pro-
grams using message passing are typically quite structured. Most often, all nodes
execute identical copies of a program, with the same code and private variables.
Usually, processes can name each other using a simple linear ordering of the pro-
cesses comprising a program.

Early message-passing machines provided hardware primitives that were very
close to the simple send/receive user-level communication abstraction, with some
additional restrictions. A node was connected to a fixed set of neighbors in a regular
pattern by point-to-point links that behaved as simple FIFOs (Seitz 1985). This sort
of design is illustrated in Figure 1.22 for a small 3D cube. Many early machines were
hypercubes, where each node is connected to n other nodes differing by one bit in the
binary address, for a total of 2n nodes. Others were meshes, where the nodes are con-
nected to neighbors on two or three dimensions. The network topology was espe-
cially important in the early message-passing machines because only the
neighboring processors could be named in a send or receive operation. The data
transfer involved the sender writing to a link and the receiver reading from the link.
The FIFOs were small and so the sender would not be able to finish writing the mes-



1.2 Convergence of Parallel Architectures 39

sage until the receiver started reading it, so the send would block until the receive
occurred. (In modern terms, this is called synchronous message passing because the
two events coincide in time.) The details of moving data were hidden from the

FIGURE 1.21  User-level send/receive message-passing abstraction. A data transfer from one
local address space to another occurs when a send to a particular process is matched with a receive
posted by that process.

FIGURE 1.22   Typical structure of an early message-passing machine. Each node is connected to
neighbors in three dimensions via FIFOs.
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programmer in a message-passing library, forming a layer of software between send
and receive calls and the actual hardware.5

The direct FIFO design was soon replaced by more versatile and more robust
designs that provided direct memory access (DMA) transfers on either end of the
communication event. A DMA device is a special-purpose controller that transfers
data between memory and an I/O device without engaging the processor until the
transfer is complete. The use of DMA allowed nonblocking sends, where the sender is
able to initiate a send and continue with useful computation (or even perform a
receive) while the send completes. On the receiving end, the transfer is accepted via
a DMA transfer by the message layer into a buffer and queued until the target pro-
cess performs a matching receive, at which point the data is copying into the address
space of the receiving process.

The physical topology of the communication network so dominated the program-
ming model of these early machines that parallel algorithms were often stated in
terms of a specific interconnection topology, for example, a ring, a grid, or a hyper-
cube (Fox et al. 1988). However, to make the machines more generally useful, the
designers of the message layers provided support for communication between arbi-
trary processors rather than only between physical neighbors. This was originally
supported by forwarding the data within the message layer along links in the net-
work. Soon this routing function was moved into the hardware (as discussed in
Chapter 10), so each node consisted of a processor with memory and a switch that
could forward messages. However, in this approach, known as store-and-forward, the
time to transfer a message is proportional to the number of hops it takes through the
network, so an emphasis remained on interconnection topology. (See Exercise 1.7
for a brief store-and-forward example.) 

The emphasis on network topology was significantly reduced with the introduc-
tion of more general-purpose networks, which pipelined the message transfer
through each of the routers forming the interconnection network (Barton, Crownie,
and McLaren 1994; Bomans and Roose 1989; Dunigan 1988; Homewood and
McLaren 1993; Leiserson et al. 1996; Pierce and Regnier 1994; von Eicken et al.
1992). In most modern message-passing machines, the incremental delay intro-
duced by each hop is small enough that the transfer time is dominated by the time to
simply move that data between the processor and the network, not how far it travels
(Groscup 1992; Homewood and McLaren 1993; Horiw et al. 1993; Pierce and Reg-
nier 1994). This greatly simplifies the programming model; typically, the processors
are viewed as simply forming a linear sequence with uniform communication costs.
In other words, the communication abstraction reflects an organizational structure
much as in Figure 1.19. One important example of such a machine is the IBM SP-2,
illustrated in Figure 1.23, which is constructed from RS6000 workstation nodes, a
scalable network, and a network interface containing a dedicated processor. Another

5.  The motivation for synchronous message passing was not just from the machine structure; it was also
present in important programming languages, especially CSP (Hoare 1978), because of its clean theoreti-
cal properties. Early in the microprocessor era, the approach was captured in a single-chip building
block, the Transputer, which was widely touted during its development by INMOS as a revolution in
computing.
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is the Intel Paragon, illustrated in Figure 1.24, which integrates the network inter-
face more tightly to the processors in SMP nodes, where one of the processors is
dedicated to supporting message passing.

FIGURE 1.23 IBM SP-2 message-passing machine. The IBM SP-2 is a scalable parallel machine con-
structed essentially out of complete RS6000 workstations. Modest modifications are made to package
the workstations into standing racks. A network interface card (NIC) is inserted at the MicroChannel I/O
bus. The NIC contains the drivers for the actual link into the network, a substantial amount of memory
to buffer message data, a direct memory access (DMA) engine, and a complete i860 microprocessor to
move data between host memory and the network. The network itself is a butterfly-like structure, con-
structed by cascading 8 × 8 crossbar switches. The links operate at 40 MB/s in each direction, which is
the full capability of the I/O bus. Several other machines employ a similar network interface design but
connect directly to the memory bus rather than at the I/O bus. Source: Ray Mains Photography. 
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A processor in a message-passing machine can name only the locations in its local
memory and each of the processors, perhaps by number or by route. A user process
can only name private addresses and other processes; it can transfer data using the
send/receive calls.

1.2.4 Convergence

Evolution of the hardware and software has blurred the once clear boundary
between the shared memory and message-passing camps. First, consider the com-
munication operations available to the user process.

FIGURE 1.24 Intel Paragon. The Intel Paragon illustrates a much tighter packaging of nodes. Each
card is an SMP with two or more i860 processors and a network interface chip connected to the cache-
coherent memory bus. One of the processors is dedicated to servicing the network. In addition, the
node has a DMA engine to transfer contiguous chunks of data to and from the network at a high rate.
The network is a 3D grid, much like the CRAY T3E, with links operating at 175 MB/s in each direction.
Source: Photo courtesy of Intel Corporation. 
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■ Traditional message-passing operations (send/receive) are supported on most
shared memory machines through shared buffer storage. Send involves writing
data, or a pointer to data, into the buffer; receive involves reading the data
from shared storage. Flags or locks are used to control access to the buffer and
to indicate events such as message arrival.

■ On a message-passing machine, a user process may construct a global address
space of sorts by carrying along pointers specifying the process and local vir-
tual address in that process. Access to such a global address can be performed
in software through an explicit message transaction. Most message-passing
libraries allow a process to accept a message for any process, so each process
can serve data requests from the others. A logical read is realized by sending a
request to the process containing the object and receiving a response. The
actual message transaction may be hidden from the user; it may be carried out
by compiler-generated code for access to a shared variable.

■ A shared virtual address space can be established on a message-passing
machine at the page level. A collection of processes has a region of shared
addresses but, for each process, only the pages that are local to it are accessi-
ble. Upon access to a missing (i.e., remote) page, a page fault occurs and the
operating system engages the remote node in a message transaction to transfer
the page and map it into the user address space.

At the level of machine organization, substantial convergence has occurred as
well. Modern message-passing architectures appear essentially identical at the block
diagram level to the scalable NUMA design illustrated in Figure 1.19. In the shared
memory case, the network interface was integrated with the cache controller or
memory controller in order for that device to observe cache misses and to conduct a
message transaction to access memory in a remote node. In the message-passing
approach, the network interface is essentially an I/O device. However, the trend has
been to integrate this device more deeply into the memory system as well and to
transfer data directly from and to the user address space. Some designs provide DMA
transfers across the network, from memory on one machine to memory on the other
machine, so the network interface is integrated fairly deeply with the memory sys-
tem. Message passing is implemented on top of these remote memory copies (Bar-
ton, Crownie, and McLaren 1994). In some designs, a complete processor assists in
communication, sharing a cache-coherent memory bus with the main processor
(Groscup 1992; Pierce and Regnier 1994). Viewing the convergence from the other
side, clearly all large-scale shared memory operations are ultimately implemented as
message transactions at some level.

In addition to the convergence of scalable message-passing and shared memory
machines, switch-based local area networks, including fast Ethernet, ATM, Fiber-
Channel, and several proprietary designs (Boden et al. 1995; Gillett 1996) have
emerged, providing scalable interconnects that are approaching what traditional par-
allel machines offer. These new networks are being used to connect collections of
machines (which may be shared memory multiprocessors in their own right) into
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clusters, which may operate as a parallel machine on individual large problems or as
many individual machines on a multiprogramming load. Essentially all SMP vendors
provide some form of network clustering to obtain better reliability.

In summary, message passing and a shared address space represent two clearly
distinct programming models, each providing a well-defined paradigm for sharing,
communication, and synchronization. However, the underlying machine structures
have converged toward a common organization, represented by a collection of com-
plete computers, augmented by a “communication assist” connecting each node to a
scalable communication network. Thus, it is natural to consider supporting aspects
of both in a common framework. Integrating the communication assist more tightly
into the memory system tends to reduce the latency of network transactions and
improve the bandwidth that can be supplied to or accepted from the network. We
will want to look much more carefully at the precise nature of this integration and
understand how it interacts with cache design, address translation, protection, and
other traditional aspects of computer architecture.

1.2.5 Data Parallel Processing

A third important class of parallel machines has been variously called processor
arrays, single-instruction-multiple-data machines, and data parallel architectures.
The changing names reflect a gradual separation of the user-level abstraction from
the machine operation. The key characteristic of the data parallel programming model
is that operations can be performed in parallel on each element of a large regular data
structure, such as an array or matrix. The program is logically a single thread of
control, carrying out a sequence of either sequential or parallel steps. Within this
general paradigm have been many novel designs, exploiting various technological
opportunities, and considerable evolution as microprocessor technology has become
such a dominant force.

An influential paper in the early 1970s (Flynn 1972) developed a taxonomy of
computers, known as Flynn’s taxonomy, which characterizes designs in terms of the
number of distinct instructions issued at a time and the number of data elements
they operate on: conventional sequential computers being single-instruction-single-
data (SISD) and parallel machines built from multiple conventional processors being
multiple-instruction-multiple-data (MIMD). The revolutionary alternative was single-
instruction-multiple-data (SIMD). Its history is rooted in the mid-1960s when an
individual processor was a cabinet full of equipment and an instruction fetch cost as
much in time and hardware as performing the actual instruction. The idea was that
all the instruction sequencing could be consolidated in the control processor. The
data processors included only the ALU, memory, and a simple connection to nearest
neighbors. 

In the SIMD machines, the data parallel programming model was rendered
directly in the physical hardware (Ball et al. 1962; Bouknight et al. 1972; Cornell
1972; Reddaway 1973; Slotnick, Borck, and McReynolds 1962; Slotnick 1967; Vick
and Cornell 1978). Typically, a control processor broadcasts each instruction to an
array of data processing elements (PEs), which are connected to form a regular grid,
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as suggested by Figure 1.25. It was observed that many important scientific compu-
tations involved uniform calculation on every element of an array or matrix, often
involving neighboring elements in the row or column. Thus, the parallel problem
data was distributed over the memories of the data processors, and scalar data was
retained in the control processor’s memory. The control processor instructed the
data processors to each perform an operation on local data elements or to all per-
form a communication operation. For example, to average each element of a matrix
with its four neighbors, a copy of the matrix would be shifted across the PEs in each
of the four directions and a local accumulation performed in each PE. Data PEs typ-
ically included a condition flag, allowing some to abstain from an operation. In some
designs, the local address could be specified with an indirect addressing mode,
allowing all processors to do the same operation but with different local data
addresses.

The development of arrays of processors was almost completely eclipsed in the
mid-1970s with the development of vector processors. In these machines, a scalar
processor is integrated with a collection of function units that operate on vectors of
data out of one memory in a pipelined fashion. The ability to operate on vectors any-
where in memory eliminated the need to map application data structures onto a
rigid interconnection structure and greatly simplified the problem of getting data
aligned so that local operations could be performed. The first vector processor, the
CDC Star-100, provided vector operations in its instruction set that combined two
source vectors from memory and produced a result vector in memory. The machine
only operated at full speed if the vectors were contiguous, and hence a large fraction
of the execution time was spent simply transposing matrices. A dramatic change
occurred in 1976 with the introduction of the CRAY-1, which extended the concept
of a load-store architecture employed in the CDC 6600 and CDC 7600 (and redis-
covered in modern RISC machines) to apply to vectors. Vectors in memory, of any
fixed stride, were transferred to or from contiguous vector registers by vector load
and store instructions. Arithmetic was performed on the vector registers. The use of
a very fast scalar processor (operating at the unprecedented rate of 80 MHz), tightly

FIGURE 1.25  Typical organization of a data
parallel (SIMD) machine. Individual processing
elements (PEs) operate in lockstep under the di-
rection of a single control processor. Traditionally,
SIMD machines have provided a limited, regular
interconnect among the PEs, although this was
generalized in later machines, such as the Think-
ing Machines Corporation Connection Machine
and the MasPar.
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integrated with the vector operations and utilizing a large semiconductor memory
rather than core, took over the world of supercomputing. Over the next twenty
years, CRAY Research led the supercomputing market by increasing the bandwidth
for vector memory transfers, the number of processors, the number of vector pipe-
lines, and the length of the vector registers, resulting in the performance growth
indicated in Figures 1.10 and 1.11.

The SIMD data parallel machine experienced a renaissance in the mid-1980s, as
VLSI advances made simple 32-bit processors just barely practical (Batcher 1974,
1980; Hillis 1985; Nickolls 1990; Tucker and Robertson 1988). The unique twist in
the data parallel regime was to place 32 very simple 1-bit processing elements on
each chip, along with serial connections to neighboring processors, while consoli-
dating the instruction sequencing capability in the control processor. In this way,
systems with several thousand bit-serial processing elements could be constructed at
reasonable cost. In addition, it was recognized that the utility of such a system could
be increased dramatically with the provision of a general interconnect allowing an
arbitrary communication pattern to take place in a single, rather long step, in addi-
tion to the regular grid neighbor connections (Hillis 1985; Hillis and Steele 1986;
Nickolls 1990). The sequencing mechanism that expanded conventional integer and
floating-point operations into a sequence of bit-serial operations also provided a
means of “virtualizing” the processing elements, so that a few thousand processing
elements could give the illusion of operating in parallel on millions of data elements
with one virtual PE per data element.

The technological factors that made this bit-serial design attractive also provided
fast, inexpensive, single-chip floating-point units and rapidly gave way to very fast
microprocessors with integrated floating point and caches. This eliminated the cost
advantage of consolidating the sequencing logic and provided equal peak perfor-
mance on a much smaller number of complete processors. The simple, regular cal-
culations on large matrices that motivated the data parallel approach also have
tremendous spatial and temporal locality (if the computation is properly mapped
onto a smaller number of complete processors), with each processor responsible for
a large number of logically contiguous data points. Caches and local memory can be
brought to bear on the set of data points local to each node while communication
occurs across the boundaries or as a global rearrangement of data.

Thus, while the user-level abstraction of parallel operations on large regular data
structures continued to offer an attractive solution to an important class of prob-
lems, the machine organization employed with data parallel programming models
evolved toward a more generic parallel architecture of multiple cooperating micro-
processors, much like scalable shared memory and message-passing machines,
although several designs maintain specialized network support for global synchroni-
zation. One such example of network support is for a barrier, which causes each pro-
cess to wait at a particular point in the program until all other processes have
reached that point (Horiw et al. 1993; Leiserson et al. 1996; Kumar 1992; Kessler
and Schwarzmeier 1993; Koeninger, Furtney, and Walker 1994). Indeed, the SIMD
approach evolved into the SPMD (single-program-multiple-data) approach, in
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which all processors execute copies of the same program, and has thus largely
converged with the more structured forms of shared memory and message-passing
programming. 

Data parallel programming languages are usually implemented by viewing the
local address spaces of a collection of processes, one per processor, as forming an
explicit global address space. Data structures are laid out across this global address
space with a simple mapping from indexes to processor and local offset. The compu-
tation is organized as a sequence of “bulk synchronous” phases of either local com-
putation or global communication, separated by a global barrier (Valiant 1990).
Because all processors perform communication together and share a global view of
what is going on, either a shared address space or message passing can be employed.
For example, if a phase involved every processor doing a write to an address in the
processor “to the left,” it could be realized by each doing a send to the left and a
receive “from the right” into the destination address. Similarly, every processor
doing a read can be realized by every processor sending the address and then every
processor sending back the data. In fact, the code that is produced by compilers for
modern data parallel languages is essentially the same as for the structured control-
parallel programs that are most common in shared memory and message-passing
programming models. The convergence in machine structure has been accompanied
by a convergence in how the machines are actually used.

1.2.6 Other Parallel Architectures

The mid-1980s renaissance gave rise to several other architectural directions that
received considerable investigation by academia and industry, but enjoyed less com-
mercial success than the three classes just discussed and therefore experienced less
use as a vehicle for parallel programming. Two approaches that were developed into
complete programming systems were dataflow architectures and systolic architec-
tures. Both represent important conceptual developments of continuing value as the
field evolves.

Dataflow Architecture

Dataflow models of computation sought to make the essential aspects of a parallel
computation explicit at the machine level, without imposing artificial constraints
that would limit the available parallelism in the program. The idea is that the pro-
gram is represented by a graph of essential data dependences, as illustrated in
Figure 1.26, rather than as a fixed collection of explicitly sequenced threads of con-
trol. An instruction may execute whenever its data operands are available. The graph
may be spread arbitrarily over a collection of processors. Each node specifies an
operation to perform and the address of each of the nodes that need the result. In the
original form, a processor in a dataflow machine operates as a simple circular pipe-
line. A message, or token, from the network consists of data and an address, or tag, of
its destination node. The tag is compared against those in a matching store. If
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present, the matching token is extracted and the instruction is issued for execution.
If not, the token is placed in the store to await its partner. When a result is com-
puted, a new message or token containing the result data is sent to each of the
destinations specified in the instruction. The same mechanism can be used whether
the successor instructions are local or on a remote processor. 

The primary division within dataflow architectures is whether the graph is static,
with each node representing a primitive operation, or dynamic, in which case a node
can represent the invocation of an arbitrary function, itself represented by a graph.
In dynamic, or tagged-token, architectures, the effect of dynamically expanding the
graph on function invocation is usually achieved by carrying additional context
information in the tag, rather than actually modifying the program graph.

The key characteristics of dataflow architectures are the ability to name opera-
tions performed anywhere in the machine, the support for synchronization of inde-
pendent operations, and dynamic scheduling at the machine level. As the dataflow
machine designs matured into real systems programmed in high-level parallel

FIGURE 1.26  Dataflow graph and basic execution pipeline. A node in the graph
fires when operands are present on its input. It produces results on its outputs that are
delivered to adjacent nodes in the graph. The execution pipeline implements this firing rule
by detecting when matching data tokens are present, fetching the corresponding instruc-
tion, performing the operation, and forming result tokens.
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languages, a more conventional structure emerged. Typically, parallelism was gener-
ated in the program as a result of parallel function calls and parallel loops, so it was
attractive to allocate these larger chunks of work to processors. This led to a family
of designs organized essentially like the NUMA design of Figure 1.19, the key differ-
entiating features being direct support for a large, dynamic set of threads of control
and the integration of communication with thread generation. The network is
closely integrated with the processor; in many designs, the “current message” is
available in special registers, and hardware support is available for dispatching to a
thread identified in the message. In addition, many designs provide extra state bits
on memory locations in order to provide fine-grained synchronization (i.e., synchro-
nization on an element-by-element basis) rather than using locks to synchronize
accesses to an entire data structure. In particular, each message could schedule a
chunk of computation that could make use of local registers and memory. 

By contrast, in shared memory machines, the generally adopted view is that a
static or slowly varying set of processes operates within a shared address space, so
the compiler or program maps the logical parallelism in the program to a set of pro-
cesses by assigning loop iterations, maintaining a shared work queue, or the like.
Similarly, message-passing programs involve a static, or nearly static, collection of
processes that can name one another in order to communicate. In data parallel archi-
tectures, the compiler or sequencer maps a large set of “virtual processor” operations
onto processors by assigning iterations of a regular loop nest. In the dataflow case,
the machine provides the ability to name a very large and dynamic set of threads that
can be mapped arbitrarily to processors. Typically, these machines provide a global
address space as well. As was the case with message-passing and data parallel
machines, dataflow architectures experienced a gradual separation of programming
model and hardware structure as the approach matured.

Systolic Architectures

Another novel approach was systolic architectures, which sought to replace a single
sequential processor by a regular array of simple processing elements and, by care-
fully orchestrating the flow of data between PEs, obtain very high throughput with
modest memory bandwidth requirements. These designs differ from conventional
pipelined function units in that the array structure can be nonlinear (e.g., hexago-
nal), the pathways between PEs may be multidirectional, and each PE may have a
small amount of local instruction and data memory. They differ from SIMD in that
each PE might do a different operation.

The early proposals were driven by the opportunity offered by VLSI to provide
inexpensive special-purpose chips. A given algorithm could be represented directly
as a collection of specialized computational units connected in a regular, space-
efficient pattern. Data would move through the system at regular “heartbeats” as
determined by local state. Figure 1.27 illustrates a design for computing convolu-
tions using a simple linear array. At each beat the input data advances to the right, is
multiplied by a local weight, and is accumulated into the output sequence as it also
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advances to the right. The systolic approach has aspects in common with message-
passing, data parallel, and dataflow models but takes on a unique character for a
specialized class of problems.

Practical realizations of these ideas, such as iWarp (Borkar et al. 1990), provided
quite general programmability in the nodes, so that a variety of algorithms could be
realized on the same hardware. The key differentiation is that the network can be
configured as a collection of dedicated channels, representing the systolic communi-
cation pattern, and data can be transferred directly from processor registers to pro-
cessor registers across a channel. The global knowledge of the communication
pattern is exploited to reduce contention and even to avoid deadlock. The key char-
acteristic of systolic architectures is the ability to integrate highly specialized com-
putation under simple, regular, and highly localized communication patterns.

Systolic algorithms have also been generally amenable to solutions on generic
machines, using the fast barrier to delineate coarser-grained phases. The regular,
local communication pattern of these algorithms yields good locality when large
portions of the logical systolic array are executed on each process, the communica-
tion bandwidth needed is low, and the synchronization requirements are simple.
Thus, these algorithms have proved effective on the entire spectrum of parallel
machines.

1.2.7 A Generic Parallel Architecture

In examining the evolution of the major approaches to parallel architecture, we see a
clear convergence for scalable machines toward a generic parallel machine organiza-
tion, illustrated in Figure 1.28. The machine comprises a collection of essentially
complete computers, each with one or more processors and memory, connected
through a scalable communication network via communication assist—a controller

FIGURE 1.27  Systolic array computation of an inner product. Each box represents a
computational unit performing a specific function. Every time the clock beats, all units
accept inputs, compute results, and generate outputs. Data moves through the systolic
array with each beat.
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or auxiliary processing unit that assists in generating outgoing messages or handling
incoming messages. While the consolidation within the field may seem to narrow
the design space, in fact, great diversity and debate remains, centered on what func-
tionality should be provided within the assist and how it interfaces to the processor,
memory system, and network. Recognizing that these are specific differences within
a largely similar organization helps us to understand and evaluate the important
organizational trade-offs. 

Not surprisingly, different programming models place different requirements on
the design of the communication assist and influence which operations are common
and should be optimized. In the shared memory case, the assist is tightly integrated
with the memory system in order to capture the memory events that may require
interaction with other nodes. The assist must also accept messages and perform
memory operations and state transitions on behalf of other nodes. In the message-
passing case, communication is initiated by explicit actions, either at the system or
user level, so it is not required that memory system events be observed. Instead, a
need exists to initiate the messages quickly and to respond to incoming messages.
The response may require that a tag match be performed, that buffers be allocated,
that data transfer commence, or that an event be posted. The data parallel and sys-
tolic approaches place an emphasis on fast global synchronization, which may be
supported directly in the network or in the assist. Dataflow places an emphasis on
fast dynamic scheduling of computation based on an incoming message. Systolic
algorithms present the opportunity to exploit global patterns in local scheduling.
Even with these differences, it is important to observe that all of these approaches
share common aspects; they need to initiate network transactions as a result of spe-
cific processor events, and they need to perform simple operations on the remote
node to carry out the desired event.

FIGURE 1.28  Generic scalable multiprocessor organization. A collection of essen-
tially complete computers, including one or more processors and memory, communicating
through a general-purpose, high-performance, scalable interconnect. Typically, each node
contains a controller that assists in communication operations across the network.
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We also see that a separation has emerged between programming model and
machine organization as parallel programming environments have matured. For
example, Fortran 90 and High Performance Fortran provide a shared address, data
parallel programming model that is implemented on a wide range of machines—
some supporting a shared physical address space, others with only message passing.
The compilation techniques for these machines differ radically, even though the
machines appear organizationally similar, because of differences in communication
and synchronization operations provided in the communication abstraction and vast
differences in the performance characteristics of these operations. As a second exam-
ple, popular message-passing libraries, such as PVM (parallel virtual machine) and
MPI (message-passing interface), are implemented on this same range of machines,
but the implementation of the libraries differs dramatically from one kind of
machine to another. The same observations hold for parallel operating systems. 

Given how the state of the art in parallel architecture has advanced, we need to take
a fresh look at how to organize the body of material in the field. Traditional machine
taxonomies, such as SIMD/MIMD, are of little help since multiple general-purpose
processors are so dominant. We cannot focus entirely on programming models since
in many cases widely differing machine organizations support a common program-
ming model. We cannot just look at hardware structures either, since common ele-
ments are employed in many different ways. Instead, we should focus our attention
on the architectural distinctions that make a difference to the software that is to run
on the machine. In particular, we need to highlight those aspects that influence how
a compiler would generate code from a high-level parallel language, how a library
writer would code a well-optimized library, or how an application would be written
in a low-level parallel language. We can then approach the design problem as one
that is constrained from above by how programs use the machine and from below by
what the basic technology can provide.

The guiding principles presented in this book for understanding modern parallel
architecture are indicated by the layers of abstraction shown in Figure 1.13. Funda-
mentally, we must understand the operations that are provided at the user-level com-
munication abstraction, how various programming models are mapped to these
primitives, and how these primitives are mapped to the actual hardware. Excessive
emphasis on the high-level programming model without attention to how it can be
mapped to the machine would detract from understanding the fundamental archi-
tectural issues, as would excessive emphasis on the specific hardware mechanisms in
each particular machine.

This section looks more closely at the communication abstraction and the basic
requirements of a programming model. It then defines more formally the key con-
cepts that tie the layers together: naming, ordering, and communication and replica-
tion of data. Finally, it introduces the basic performance models required to resolve
design trade-offs.

1.3 1.3FUNDAMENTAL DESIGN ISSUES
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1.3.1 Communication Abstraction

The communication abstraction forms the key interface between the programming
model and the system implementation. It plays a role very much like the instruction
set in conventional sequential computer architecture. Viewed from the software side,
it must have a precise, well-defined meaning so that the same program will run cor-
rectly on many implementations. In addition, the operations provided at this layer
must be simple, composable entities with clear costs, so that the software can be
optimized for performance. Viewed from the hardware side, it must also have a well-
defined meaning so that the machine designer can determine where performance
optimizations can be performed without violating the software assumptions. While
the abstraction needs to be precise, the machine designer would like it not to be
overly specific, so it does not prohibit useful techniques for performance enhance-
ment or frustrate efforts to exploit properties of newer technologies.

The communication abstraction is, in effect, a contract between the hardware and
the software allowing each the flexibility to improve what it does while working cor-
rectly together. To understand the “terms” of this contract, we need to look more
carefully at the basic requirements of a programming model.

1.3.2 Programming Model Requirements

A parallel program consists of one or more threads of control operating on data. A
parallel programming model specifies what data can be named by the threads, what
operations can be performed on the named data, and what ordering exists among
these operations.

To make these issues concrete, consider the programming model for a unipro-
cessor. A thread can name the locations in its virtual address space and can name
machine registers. In some systems, the address space is broken up into distinct
code, stack, and heap segments whereas in others it is flat. Similarly, different pro-
gramming languages provide access to the address space in different ways; for exam-
ple, some allow pointers and dynamic storage allocation, others do not. Regardless of
these variations, the instruction set provides the operations that can be performed on
the named locations. For example, in RISC machines the thread can load data from
or store data to memory but can perform arithmetic and comparisons only on data in
registers. Older instruction sets support arithmetic on either. Compilers typically
mask these differences at the hardware/software boundary, so the user’s programming
model is one of performing operations on variables that hold data. The hardware
translates each virtual address to a physical address on every operation.

The ordering among memory operations is sequential program order. The pro-
grammer’s view is that variables are read and modified in the top-to-bottom, left-to-
right order specified in the program. More precisely, the value returned by a read to
an address is the last value written to the address in the sequential execution order
of the program. This ordering assumption is essential to the logic of the program.
However, the reads and writes may not actually be performed in program order
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because the compiler performs optimizations when translating the program to the
instruction set and the hardware performs optimizations when executing the instruc-
tions. Both make sure the program cannot tell that the order has been changed. The
compiler and hardware preserve the dependence order, that is, if a variable is written
and then read later in the program order, they make sure that the later operation
uses the proper value, but they may avoid actually writing and reading the value to
and from memory or may defer the write until later. Collections of reads with no
intervening writes may be completely reordered and, generally, writes to different
addresses can be reordered as long as dependences from intervening reads are
preserved. This reordering occurs at the compilation level, for example, when the
compiler allocates variables to registers, manipulates expressions to improve pipe-
lining, or transforms loops to reduce overhead and improve the data access pattern.
It occurs at the machine level when instruction execution is pipelined, multiple
instructions are issued per cycle, or write buffers are used to hide memory latency.
We depend on these optimizations for performance. They work because for the pro-
gram to observe the effect of a write, it must read the variable; this creates a depen-
dence, which is preserved. Thus, the illusion of program order is preserved while
actually executing the program in the weaker dependence order.6 We operate in a
world where essentially all programming languages embody a programming model
of sequential order of operations on variables in a virtual address space, and the sys-
tem enforces a weaker order wherever it can do so without changing the results of
the program.

Now let’s return to parallel programming models. The informal discussion earlier
in this chapter indicated the distinct positions adopted on naming, operation set,
and ordering. Naming and operation set are what typically characterize the models;
however, ordering is of key importance. A parallel program must coordinate the
activity of its threads to ensure that the dependences within the program are
enforced; this requires explicit synchronization operations when the ordering implicit in
the basic operations is not sufficient. As architects (and compiler writers), we need to
understand the ordering properties to see what optimization “tricks” we can play for
performance. We can focus on shared address and message-passing programming
models since they are the most widely used; other models, such as data parallel, are
usually implemented in terms of one of them.

The shared address space programming model assumes one or more threads of
control, each operating in an address space that contains a region shared between
threads, and may contain a region that is private to each thread. Typically, the shared
region is shared by all threads. All the operations defined on private addresses are
defined on shared addresses; in particular, the program accesses and updates shared
variables simply by using them in expressions and assignment statements. 

Message-passing models assume a collection of processes each operating in a pri-
vate address space and each able to name the other processes. The normal unipro-

6.  The illusion breaks down a little bit for system programmers, say, if the variable is actually a control reg-
ister on a device. Then the actual program order must be preserved. This is usually accomplished by flag-
ging the variable as special; for example, using the volatile type modifier in C.
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cessor operations are provided on the private address space, in program order. The
additional operations, send and receive, operate on the local address space and the
global process space. Send transfers data from the local address space to a process.
Receive accepts data into the local address space from a process. Each send/receive
pair is a specific point-to-point synchronization operation. Many message-passing
languages offer global, or collective, communication operations as well, such as
broadcast.

Naming

The position adopted on naming in the programming model is presented to the pro-
grammer through the programming language or programming environment. It is
what the logic of the program is based upon. However, the issue of naming is critical
at each level of the communication architecture. Certainly one possible strategy is to
have the operations in the programming model be one to one with the operations in
the communication abstraction at the user/system boundary and to have these be
one to one with the hardware primitives. However, it is also possible for the com-
piler and libraries to provide a level of translation between the programming model
and the communication abstraction, or for the operating system to intervene to han-
dle some of the operations at the user/system boundary. These alternatives allow the
architect to consider implementing the common, simple operations directly in hard-
ware and supporting the more complex operations partly or wholly in software.

Let us consider the ramifications of naming at the layers using the two primary
programming models: shared address and message passing. First, in a shared address
model, accesses to shared variables in the program are usually mapped by the com-
piler to load and store instructions on shared virtual addresses, just like access to
any other variable. This is not the only option, however. The compiler could gener-
ate special code sequences for accesses to shared variables. A machine supports a
global physical address space if any processor is able to generate a physical address for
any location in the machine and access the location in a single memory operation. It
is straightforward to realize a shared virtual address space on a machine providing a
global physical address space: establish the virtual-to-physical mapping so that
shared virtual addresses map to the same physical location (i.e., the processes have
the same entries in their page tables). However, the existence of the level of transla-
tion allows for other approaches. A machine supports independent local physical
address spaces if each processor can only access a distinct set of locations. Even on
such a machine, a shared virtual address space can be provided by mapping virtual
addresses that are local to a process to the corresponding physical address. The non-
local addresses are left unmapped so upon access to a nonlocal shared address a page
fault will occur, allowing the operating system to intervene and access the remote
shared data. Although this approach can provide the same naming, operations, and
ordering to the program, it clearly has different hardware requirements at the
hardware/software boundary. The architect’s job is to resolve these design trade-offs
across layers of the system implementation so that the result is efficient and cost-
effective for the target application workload on available technology.
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Second, message-passing operations could be realized directly in hardware, but
the matching and buffering aspects of the send/receive operations are better suited
to software implementation. More basic data transport primitives are well supported
in hardware. Thus, in essentially all parallel machines, the message-passing pro-
gramming model is realized via a software layer that is built upon a simpler commu-
nication abstraction. At the user/system boundary, one approach is to have all
message operations go through the operating system as if they were I/O operations.
However, the frequency of message operations is much greater than I/O operations,
so it makes sense to use the operating system support to set up resources, privileges,
and so on and allow the frequent, simple data transfer operations to be supported
directly in hardware. On the other hand, we might consider adopting a shared vir-
tual address space as the lower-level communication abstraction, in which case send
and receive operations involve writing and reading shared buffers and posting the
appropriate synchronization events. 

The issue of naming arises at each level of abstraction in a parallel architecture,
not just in the programming model. As architects, we need to design against the fre-
quency and type of operations that occur at the communication abstraction, under-
standing that the trade-offs at this boundary involve what is supported directly in
hardware and in software.

Operations

Each programming model defines a specific set of operations that can be performed
on the data or objects that can be named within the model. For the case of a shared
address model, these include reading and writing shared variables as well as various
atomic read-modify-write operations on shared variables, which are used to syn-
chronize the threads. For message passing, the operations are send and receive on
private (local) addresses and process identifiers, as described previously. Each ele-
ment of data in the program is named by a process number and a local address
within the process. A message-passing model does define a global address space of
sorts. However, no operations are defined on these global addresses. They can be
passed around and interpreted by the program, for example, to emulate a shared
address style of programming on top of message passing, but they cannot be oper-
ated on directly at the communication abstraction. As architects, we need to be
aware of the operations defined at each level of abstraction. In particular, we need to
be very clear on what ordering among operations is assumed to be present at each
level of abstraction, where communication takes place, and how data is replicated. 

Ordering

The properties of the specified order among operations have a profound effect
throughout the layers of parallel architecture. Notice, for example, that the message-
passing model places no assumption on the ordering of operations by distinct pro-
cesses except the explicit program order associated with the send/receive operations,



1.3 Fundamental Design Issues 57

whereas a shared address model must specify aspects of how processes see the order
of operations performed by other processes. Ordering issues are important and
rather subtle. Many of the tricks that we play for performance in the uniprocessor
context involve relaxing the order assumed by the programmer to gain performance,
either through parallelism or improved locality or both. Exploiting parallelism and
locality is even more important in the multiprocessor case. Thus, we need to under-
stand what new tricks can be played. We also need to examine which of the old
tricks are still valid. Can we perform the traditional sequential optimizations at the
compiler and architecture level on each process of a parallel program? Where can
the explicit synchronization operations be used to allow ordering to be relaxed on
the conventional operations? To answer these questions, we need to develop a much
more complete understanding of how programs use the communication abstraction,
what properties they rely upon, and what machine structures we would like to
exploit for performance.

A natural position to adopt on ordering is that operations in a thread are in pro-
gram order. That is what the programmer would assume for the special case of one
thread. However, there remains the question of what ordering can be assumed
among operations performed on shared variables by different threads. The threads
operate independently and, potentially, at different speeds so no clear notion of “lat-
est” is defined. If we have in mind that the machines behave as a collection of simple
processors operating on a common, centralized memory, then it is reasonable to
expect the global order of memory accesses to be some arbitrary interleaving of the
individual program orders. In reality we won’t build the machines this way, but it
establishes what operations are implicitly ordered by the basic operations in the
model. This interleaving is also what we expect of a collection of threads that are
time-shared, perhaps at a very fine level, on a uniprocessor.

Where the implicit ordering is not enough, explicit synchronization operations
are required. Parallel programs require two types of synchronization: 

■ Mutual exclusion ensures that certain operations on certain data are performed
by only one thread or process at a time. We can imagine a room that must be
entered to perform such an operation, and only one process can be in the room
at a time. This is accomplished by locking the door upon entry and unlocking
it on exit. If several processes arrive at the door together, only one will get in
and the others will wait until it leaves. The order in which the processes are
allowed to enter does not matter and may vary from one execution of the pro-
gram to the next; what matters is that they do so one at a time. Mutual exclu-
sion operations tend to serialize the execution of processes.

■ Events are used to inform other processes that some point of execution has
been reached so that they can proceed knowing that certain dependences have
been satisfied. These operations are like passing a baton from one runner to
the next in a relay race or the starter firing a gun to indicate the start of a race.
If one process writes a value that another is supposed to read, an event syn-
chronization operation must take place to indicate that the value is ready to be
read. Events may be point-to-point, involving a pair of processes, or they may
be global, involving all processes or a group of processes.
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1.3.3 Communication and Replication

The final issues that are closely tied to the layers of parallel architecture are commu-
nication and data replication. Communication and replication are inherently related.
Consider first a message-passing operation. The effect of the send/receive pair is to
copy data that is in the sender’s address space into a region of the receiver’s address
space. This transfer is essential for the receiver to access the data. If the data is pro-
duced by the sender, it reflects a true communication of information from one process
to the other. If the data just happens to be stored at the sender, perhaps because that
was the initial configuration of the data or because the data set was simply too large
to fit on any one node, then this transfer merely makes a replica of the data where it
is used. In this case, the processes are not actually communicating information from
one to another via the data transfer. If the data were replicated or positioned prop-
erly over the processes to begin with, there would be no need to communicate it in a
message. More importantly, if the receiver uses the data over and over again, it can
reuse its replica without additional data transfers. The sender can modify the region
of addresses that was previously communicated with no effect on the previous
receiver. If the effect of these later updates is to be communicated, an additional
transfer must occur.

Consider now a conventional data access on a uniprocessor through a cache. If
the cache does not contain the desired address, a miss occurs and the block is trans-
ferred from the memory that serves as a backing store. The data is implicitly repli-
cated into the cache near the processor that accesses it. If the processor reuses the
data while it resides in the cache, further transfers with the memory are avoided. In
the uniprocessor case, the processor produces the data and the processor consumes
it, so the “communication” with the memory occurs only because the data does not
fit in the cache or is being accessed for the first time.

Interprocess communication and data transfer within the storage hierarchy become
melded together in a shared physical address space. Cache misses cause a data trans-
fer across the machine interconnect whenever the physical backing storage for an
address is remote to the node accessing the address, whether the address is private
or shared and whether the transfer is a result of true communication or just a data
access. The natural tendency of the machine is to replicate data into the caches of
the processors that access the data. If the data is reused while it is in the cache, no
data transfers occur; this is a major advantage. However, when a write to shared data
occurs, something must be done to ensure that later reads by other processors get
the new data rather than the old data that was replicated into their caches. This will
involve more than a simple data transfer.

To be clear on the relationship of communication and replication, it is important
to distinguish several concepts that are frequently bundled together. When a pro-
gram performs a write, it binds a data value to an address; a read obtains the data
value bound to an address. The data resides in some physical storage element in the
machine. A data transfer occurs whenever data in one storage element is transferred
into another. This does not necessarily change the bindings of addresses and values.
The same data may reside in multiple physical locations as it does in the uniproces-
sor storage hierarchy, but the one nearest to the processor is the only one that the
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processor can observe. If it is updated, the other hidden replicas, including the
actual memory location, must eventually be updated. Copying data binds a new set
of addresses to the same set of values. Generally, this will cause data transfers. Once
the copy has been made, the two sets of bindings are completely independent
(unlike the implicit replication that occurs within the storage hierarchy), so updates
to one set of addresses do not affect the other. Communication between processes
occurs when data written by one process is read by another. This may cause a data
transfer within the machine, either on the write or the read, or the data transfer may
occur for other reasons. Communication may involve establishing a new binding or
not doing so, depending on the particular communication abstraction.

In general, replication avoids unnecessary communication; that is, transferring
data to a consumer that was not produced since the data was previously accessed.
The ability to perform replication automatically at a given level of the communica-
tion architecture depends very strongly on the naming and ordering properties of
the layer. Moreover, replication is not a panacea—it too requires data transfers. It is
disadvantageous to replicate data that is not going to be used. We will see that repli-
cation plays an important role throughout parallel computer architecture.

1.3.4 Performance

In defining the set of operations for communication and cooperation, the data types,
and the addressing modes, the communication abstraction specifies how shared
objects are named, what ordering properties are preserved, and how synchronization
is performed. However, the performance characteristics of the available primitives
determine how they are actually used. Programmers and compiler writers will avoid
costly operations where possible. In evaluating architectural trade-offs, the decision
between feasible alternatives ultimately rests upon the performance they deliver.
Thus, to complete an introduction to the fundamental issues of parallel computer
architecture, we need a framework for understanding performance at many levels of
design.

Fundamentally, there are three important metrics: latency, the time taken for an
operation; bandwidth, the rate at which operations are performed; and cost, the
impact these operations have on the execution time of the program. In a simple
world where processors do only one thing at a time, these metrics are directly
related—the bandwidth (operations per second) is the reciprocal of the latency (sec-
onds per operation), and the cost is simply the latency times the number of opera-
tions performed. However, modern computer systems do many different operations
at once, and the relationship between these performance metrics is much more
complex. Consider the following basic example.

EXAMPLE 1.2 Suppose a component can perform a specific operation in 100 ns.
Clearly, it can support a bandwidth of 10 million operations per second. However, if
the component is pipelined internally as 10 equal stages, it is able to provide a
peak bandwidth of 100 million operations per second. The rate at which operations
can be initiated is determined by how long the slowest stage is occupied, 10 ns,
rather than by the latency of an individual operation. The bandwidth delivered on
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an application depends on how frequently it initiates the operations. If the
application starts an operation every 200 ns, the delivered bandwidth is 5 million
operations per second, regardless of how the component is pipelined. Of course,
usage of resources is usually bursty, so pipelining can be advantageous even when
the average initiation rate is low. If the application performed 100 million
operations on this component, what is the range of cost of these operations? 

Answer Taking the operation count times the operation latency would give an up-
per bound of 10 seconds. Taking the operation count divided by the peak rate gives
a lower bound of 1 second. The former is accurate if the program waited for each
operation to complete before continuing. The latter assumes that the operations
are completely overlapped with other useful work, so the cost is simply the cost to
initiate the operation. Suppose that on average the program can do 50 ns of useful
work after each operation issued to the component before it depends on the opera-
tions result. Then the cost to the application is 50 ns per operation—the 10 ns to
issue the operation and the 40 ns spent waiting for it to complete—so the total cost
is 5 seconds. ■

Since the unique property of parallel computer architecture is communication,
the operations that we are concerned with most often are data transfers. The perfor-
mance of these operations can be understood as a generalization of our basic pipe-
line example. 

Data Transfer Time

The time for a data transfer operation is generally described by a linear model:

(1.3)

where n is the amount of data (e.g., number of bytes), B is the transfer rate of the
component moving the data in compatible units (e.g., bytes per second), and the
constant term, T0, is the start-up cost. This is a very convenient model, and it is used
to describe a diverse collection of operations, including messages, memory accesses,
bus transactions, and vector operations. For message passing, the start-up cost can
be thought of as the time for the first bit to get to the destination. For memory
operations, it is essentially the access time. For bus transactions, it reflects the bus
arbitration and command phases. For any sort of pipelined operation, including
pipelined instruction processing or vector operations, it is the time to fill the
pipeline.

Using this simple model, it is clear that the bandwidth of a data transfer operation
depends on the transfer size. As the transfer size increases, it approaches the asymp-
totic rate of B, which is sometimes referred to as r∞. How quickly it approaches this
rate depends on the start-up cost. It is easily shown that the size at which half of the
peak bandwidth is obtained, the half-power point, is given by

(1.4)
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Unfortunately, this linear model does not give any indication of when the next such
operation can be initiated, nor does it indicate whether other useful work can be
performed during the transfer. These other factors depend on how the transfer is
performed.

 

Overhead and Occupancy

 

The data transfer in which we are most interested is the one that occurs across the
network in parallel machines. It is initiated by the processor through the communi-
cation assist. The essential components of this operation can be described by the fol-
lowing simple model:

(1.5)

The 
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 is the time the processor spends initiating the transfer. This may be
a fixed cost, if the processor simply has to tell the communication assist to start, or it
may be linear in 

 

n,

 

 if the processor has to copy the data into the assist. The key point
is that this is time the processor is busy with the communication event; it cannot do
other useful work or initiate other communication during this time. The remaining
portion of the communication time is considered the 

 

network latency

 

; it is the part
that can be hidden by other processor operations.

The 
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 is the time it takes for the data to pass through the slowest compo-
nent on the communication path. For example, each link that is traversed in the net-
work will be occupied for time 
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 is the bandwidth of the link. The data
will occupy other resources, including buffers, switches, and the communication
assist. Often the communication assist is the bottleneck that determines the occu-
pancy. The occupancy limits how frequently communication operations can be initi-
ated. The next data transfer will have to wait until the critical resource is no longer
occupied before it can use that same resource. If there is buffering between the pro-
cessor and the bottleneck, the processor may be able to issue a burst of transfers at a
frequency greater than 1 ⁄
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ccupancy; however, once this buffer is full, the processor
must slow to the rate set by the occupancy. A new transfer can start only when an
older one finishes.

The remaining communication time is lumped into the 

 

network delay

 

, which
includes the time for a bit to be routed across the actual network as well as many
other factors, such as the time to get through the communication assists. From the
processor’s viewpoint, the specific hardware components contributing to network
delay are indistinguishable. What affects the processor is how long it must wait
before it can use the result of a communication event, how much of this time it can
use for other activities, and how frequently it can communicate data. Of course, the
task of designing the network and its interfaces is very concerned with the specific
components and their contribution to the aspects of performance that the processor
observes.

In the simple case where the processor issues a request and waits for the response,
the breakdown of the communication time into its three components is immaterial.
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All that matters is the total round-trip time. However, in the case where multiple
operations are issued in a pipelined fashion, each of the components has a specific
influence on the delivered performance.

Indeed, every individual component along the communication path can be
described by its delay and its occupancy. The network delay is simply the sum of the
delays along the path. The network occupancy is the maximum of the occupancies
along the path. For interconnection networks, an additional factor arises because
many transfers can take place simultaneously. If two of these transfers attempt to use
the same resource at once (e.g., they use the same wire at the same time), one must
wait. This

 

 contention

 

 for resources increases the average communication time. From
the processor’s viewpoint, contention appears as increased occupancy. Some resource
in the system is occupied for a time determined by the collection of transfers across it.

Equation 1.5 is a very general model. It can be used to describe data transfers in
many places in modern, highly pipelined computer systems. As one example, con-
sider the time to move a block between cache and memory on a miss. The cache
controller spends a period of time inspecting the tag to determine that it is not a hit
and then starting the transfer; this is the overhead. The occupancy is the block size
divided by the bus bandwidth, unless there is some slower component in the system.
The delay includes the normal time to arbitrate and gain access to the bus plus the
time spent delivering data into the memory. Additional time spent waiting to gain
access to the bus or waiting for the memory bank cycle to complete is due to conten-
tion. A second obvious example is the time to transfer a message from one processor
to another. 

 

Communication Cost

 

The bottom line is, of course, the time a program spends performing communica-
tion. A useful model connecting the program characteristics to the hardware perfor-
mance is given by the following:

(1.6)

The 

 

frequency of communication

 

, defined as the number of communication opera-
tions per unit of work in the program, depends on many programming factors (as
we will see in Chapters 2 and 3) and many hardware design factors. In particular,
hardware may limit the transfer size and thereby determine the minimum number of
messages. It may automatically replicate data or migrate it to where it is used. How-
ever, a certain amount of communication is inherent to parallel execution since data
must be shared and processors must coordinate their work. In general, for a machine
to support programs with a high communication frequency, the other parts of the
communication cost equation must be small—low overhead, low network delay, and
small occupancy. The attention paid to communication costs essentially determines
which programming models a machine can realize efficiently and what portion of
the application space it can support. Any parallel computer with good computa-
tional performance can support programs that communicate infrequently, but as the
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frequency or volume of communication increase, greater stress is placed on the com-
munication architecture.

The 

 

overlap

 

 is the portion of the communication operation that is performed con-
currently with other useful work, including computation or other communication.
This reduction of the effective cost is possible because much of the communication
time involves work done by components of the system other than the processor,
such as the communication assist, the bus, the network, or the remote processor or
memory. Overlapping communication with other work is a form of small-scale par-
allelism, as is the instruction-level parallelism exploited by fast microprocessors. In
effect, we may invest some of the available parallelism in a program to hide the
actual cost of communication. 

 

1.3.5 Summary

 

The issues of naming, operation set, and ordering apply at each level of abstraction
in a parallel architecture, not just the programming model. In general, a level of
translation or run-time software may intervene between the programming model
and the communication abstraction, and beneath this abstraction are key hardware
abstractions. At any level, communication and replication are deeply related. When-
ever two processes access the same data, the data either needs to be communicated
between the two or replicated so each can access a copy of it. The ability to have the
same name refer to two distinct physical locations in a meaningful manner at a given
level of abstraction depends on the position adopted on naming and ordering at that
level. Wherever data movement is involved, we need to understand its performance
characteristics in terms of latency and bandwidth and, furthermore, how these are
influenced by overhead and occupancy. As architects, we need to design against the
frequency and type of operations that occur at the communication abstraction,
understanding that trade-offs occur across this boundary, involving what is sup-
ported directly in hardware and what is supported in software. The position adopted
on naming, operation set, and ordering at each of these levels has a qualitative
impact on these trade-offs, as we will see throughout the book.

Parallel computer architecture forms an important thread in the evolution of com-
puter architecture, rooted essentially in the beginnings of computing. For much of
this history it takes on a novel, even exotic role as the avenue for advancement over
and beyond what the base technology can provide. Parallel computer designs have
demonstrated a rich diversity of structure, usually motivated by specific higher-level
parallel programming models. However, the dominant technological forces of the
VLSI generation have pushed parallelism increasingly into the mainstream, making
parallel architecture almost ubiquitous. All modern microprocessors are highly par-
allel internally, executing several bit-parallel instructions in every cycle and even
reordering instructions within the limits of inherent dependences to mitigate the
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costs of communication with hardware components external to the processor itself.
These microprocessors have become the performance and price-performance leaders
of the computer industry. From the most powerful supercomputers to departmental
servers to the desktop, we see systems constructed by utilizing multiples of such
processors integrated into a communications fabric. This technological focus, and
increasing maturity of compiler technology, has brought about a dramatic conver-
gence in the structural organization of modern parallel machines. The key architec-
tural issue is how communication is integrated into the memory and I/O systems
that form the remainder of the computational node. This communications architec-
ture reveals itself functionally in terms of what can be named at the hardware level,
what ordering guarantees are provided, and how synchronization operations are per-
formed whereas, from a performance point of view, we must understand the inherent
latency and bandwidth of the available communication operations. Thus, modern
parallel computer architecture carries with it a strong engineering component, ame-
nable to quantitative analysis of cost and performance trade-offs. 

This book presents the conceptual foundations as well as the engineering issues
of parallel computer architecture across a broad range of potential scales of design,
all of which have an important role in computing today and in the future. Computer
systems, whether parallel or sequential, are designed against the requirements and
characteristics of intended workloads. For conventional computers, we assume that
most practitioners in the field have a good understanding of what sequential pro-
grams look like, how they are compiled, and what level of optimization is reasonable
to assume that the programmer has performed. Thus, we are comfortable taking
popular sequential programs, compiling them for a target architecture, and drawing
conclusions from running the programs or evaluating execution traces. When we
attempt to improve performance through architectural enhancements, we assume
that the program is reasonably good in the first place.

The situation with parallel computers is quite different. Much less general under-
standing exists about the process of parallel programming, and programmer and
compiler optimizations have a wider scope, which can greatly affect the program
characteristics exhibited at the machine level. 

Chapter 2 provides an overview of parallel programs—what they look like and
how they are constructed. Chapter 3 explains the issues that must be addressed by
the programmer and compiler to construct a “good” parallel program, that is, one
that is effective enough in using multiple processors to form a reasonable basis for
architectural evaluation. Ultimately, we design parallel computers against the pro-
gram characteristics at the machine level, so the goal of Chapter 3 is to draw a con-
nection between what appears in the program text and how the machine spends its
time. In effect, Chapters 2 and 3 take us from a general understanding of issues at
the application level to a specific understanding of the character and frequency of
operations at the communication abstraction level.

Chapter 4 establishes a framework for workload-driven evaluation of parallel
computer designs. Two related scenarios are addressed. First, for a parallel machine
that has already been built, we need a sound method of evaluating its performance.
This proceeds by first determining the capability of individual aspects of the
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machine in isolation and then measuring how well they perform collectively. The
understanding of application characteristics is important to ensure that the work-
load run on the machine stresses the various aspects of interest. Second, we need a
process for evaluating hypothetical architectural advancements. New ideas for
which no machine exists need to be evaluated through simulations, which imposes
severe restrictions on what can reasonably be executed. Again, an understanding of
application characteristics and how they scale with problem and machine size is cru-
cial to navigating the design space.

Chapters 5 and 6 study in detail the design of symmetric multiprocessors with a
shared physical address space. Going deeply into the small-scale case before examin-
ing scalable designs is important for several reasons. First, small-scale multiproces-
sors are the most prevalent form of parallel architecture; they are likely to be the
form most students are exposed to, most software developers are targeting, and most
professional designers are dealing with. Second, the issues that arise in the small
scale are indicative of what is critical in the large scale, but the solutions are often
simpler and easier to grasp. Thus, these chapters provide a study in the small of
what the following five chapters address in the large. Third, the small-scale multi-
processor design is a fundamental building block for the larger-scale machines. The
available options for interfacing a scalable interconnect with a processor-memory
node are largely circumscribed by the processor, cache, and memory structure of the
small-scale machines. Finally, the solutions to key design problems in the small-
scale case are elegant in their own right.

The fundamental building block for the designs in Chapters 5 and 6 is the shared
bus between processors and memory. The basic problem that we need to solve is to
keep the contents of the caches coherent and the view of memory provided to the
processors consistent. A bus is a powerful mechanism. It provides any-to-any
communication through a single set of wires; moreover, it can serve as a broadcast
medium, since there is only one set of wires, and even provide global status via
wired-OR signals. The properties of bus transactions are exploited in designing
extensions of conventional cache controllers that solve the coherence problem.
Chapter 5 presents the fundamental techniques for bus-based cache coherence at the
logical level and presents the basic design alternatives. These design alternatives
provide an illustration of how workload-driven evaluation can be brought to bear in
making design decisions. Finally, Chapter 5 examines the parallel programming
issues of the earlier chapters in terms of the aspects of machine design that influence
software level, especially with regard to cache effects on sharing patterns and the
design of robust synchronization routines. Chapter 6 focuses on the organizational
structure and machine implementation of bus-based cache coherence. It examines a
variety of more advanced designs that seek to reduce latency and increase band-
width while preserving a consistent view of memory.

Chapters 7 through 11 form a closely interlocking study of the design of scalable
parallel architectures. Chapter 7 makes the conceptual step from a bus transaction as
a building block for higher-level abstractions to a network transaction as a building
block. To cement this understanding, the communication abstractions that we have
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surveyed in this introductory chapter are constructed from primitive network trans-
actions. Then the chapter studies the design of the node-to-network interface in
depth using a spectrum of case studies. 

Chapters 8 and 9 go deeply into the design of scalable machines supporting a
shared address space, both a shared physical address space and a shared virtual
address space upon independent physical address spaces. The central issue is auto-
matic replication of data while preserving a consistent view of memory and avoiding
performance bottlenecks. The study of a global physical address space emphasizes
hardware organizations that provide efficient, fine-grained sharing. The study of a
global virtual address space provides an understanding of a minimal degree of hard-
ware support required for most workloads. 

Chapter 10 takes up the question of the design of the scalable network itself. As
with processors, caches, and memory systems, the network design space has several
dimensions, and often a design decision involves interactions along these dimen-
sions. The chapter lays out the fundamental design issues for scalable interconnects,
illustrates the common design choices, and evaluates them relative to the require-
ments established in Chapters 8 and 9. Chapter 11 draws together the material from
the previous four chapters in the context of techniques for latency tolerance, includ-
ing bulk transfer, write behind, and read ahead across the spectrum of communica-
tion abstractions. Finally, Chapter 12 looks at the overall concepts of the book in
light of technological, application, and economic trends and forecasts the key ongo-
ing developments in the field of parallel computer architecture. 

Parallel computer architecture has a long, rich, and varied history that is deeply
interwoven with advances in the underlying processor, memory, and network tech-
nologies. The first blossoming of parallel architectures occurs around 1960. This is a
point where transistors have replaced tubes and other complicated and constraining
logic technologies. Processors are smaller and more manageable. A relatively cheap,
inexpensive storage technology exists (core memory), and computer architectures
are settling down into meaningful “families.”

Small-scale shared memory multiprocessors took on an important commercial
role at this point with the inception of what we call mainframes today, including the
Burroughs B5000 (Lonergan and King 1961) and D825 (Anderson et al. 1962) and
the IBM System 360 models 65 and 67 (Padegs 1981). Support for multiprocessor
configurations was one of the key extensions in the evolution of the 360 architecture
to System 370. These included atomic memory operations and interprocessor inter-
rupts. In the scientific computing area, shared memory multiprocessors were also
common. The CDC 6600 provided an asymmetric shared memory organization to
connect multiple peripheral processors with the central processor, and a dual CPU
configuration of this machine was produced. The origins of message-passing
machines come about in the RW400, introduced in 1960 (Porter 1960). Data paral-
lel machines also emerged, with the design of the Solomon computer (Ball et al.
1962; Slotnick, Borck, and McReynolds 1962).
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Through the late 1960s, tremendous innovation occurred in the use of parallel-
ism within the processor using pipelining and replication of function units to obtain
a far greater range of performance within a family than could be obtained by simply
increasing the clock rate. It was argued that these efforts were reaching a point of
diminishing returns, so the University of Illinois and Burroughs undertook a major
research project to design and build a 64-processor SIMD machine, called Illiac IV
(Bouknight et al. 1972), based on the earlier Solomon work (and in spite of
Amdahl’s arguments to the contrary [Amdahl 1967]). This project was very ambi-
tious, involving research in the basic hardware technologies, architecture, I/O
devices, operating systems, programming languages, and applications. By the time a
scaled-down, 16-processor system was working in 1975, the computer industry had
undergone massive structural change.

First, the concept of storage as a simple linear array of moderately slow physical
devices had been revolutionized, beginning with the idea of virtual memory and
then with the concept of caching. Work on Multics and its predecessors (e.g., Atlas
and CTSS) separated the concept of the user address space from the physical mem-
ory of the machine. This required maintaining a short list of recent translations, a
translation lookaside buffer (TLB), in order to obtain reasonable performance. Mau-
rice Wilkes, the designer of EDSAC, saw this as a powerful technique for organizing
the addressable storage itself, giving rise to what we now call the cache. This proved
an interesting example of locality triumphing over parallelism. The introduction of
caches into the 360/85 yielded higher performance than the 360/91, which had a
faster clock rate, faster memory, and elaborate pipelined instruction execution with
dynamic scheduling. The use of caches was commercialized in the IBM 360/185, but
this raised a serious difficulty for the I/O controllers as well as the additional proces-
sors. If addresses were cached and therefore not bound to a particular memory
location, how was an access from another processor or controller to locate the valid
data? One solution was to maintain a directory of the location of each cache line, an
idea that has regained importance in recent years.

Second, storage technology itself underwent a revolution with semiconductor
memories replacing core memories. Initially, this technology was most applicable to
small cache memories. Other machines, such as the CDC 7600, simply provided a
separate, small, fast, explicitly addressed memory. Third, integrated circuits took
hold. The combined result was that uniprocessor systems enjoyed a dramatic
advance in performance, which mitigated much of the added value of parallelism in
the Illiac IV system, with its inferior technological and architectural base. Pipelined
vector processing in the CDC STAR-100 addressed the class of numerical computa-
tions that Illiac was intended to solve but eliminated the difficult data movement
operations. The final straw was the introduction of the CRAY-1 system, with an
astounding 80-MHz clock rate owing to exquisite circuit design and the use of what
we now call a RISC instruction set, augmented with vector operations using vector
registers and offering high peak rate with very low start-up cost. The use of simple
vector processing coupled with fast, expensive ECL circuits was to dominate high-
performance computing for the next 15 years.
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A fourth dramatic change occurred in the early 1970s, however, with the intro-
duction of microprocessors. Although the performance of the early microprocessors
was quite low, the improvements were dramatic as bit-slice designs gave way to 4-
bit, 8-bit, 16-bit, and full-word designs. The potential of this technology motivated a
major research effort at Carnegie-Mellon University to design a large shared memory
multiprocessor using the LSI-11 version of the popular PDP-11 minicomputer. This
project went through two phases. The first, called C.mmp, connected 16 processors
through a specially designed circuit-switched crossbar to a collection of memories
and I/O devices, much like the dancehall design in Figure 1.15 (Wulf, Levin, and
Person 1975). The second, CM*, sought to build a 100-processor system by con-
necting 14-node clusters with local memory through a packet-switched network in a
NUMA configuration (Swan, Fuller, and Siewiorek 1977; Swan et al. 1977), as in
Figure 1.19.

This trend toward systems constructed from many small microprocessors literally
exploded in the early to mid-1980s, resulting in the emergence of several disparate
factions. On the shared memory side, it was observed that a confluence of caches
and the properties of buses made modest multiprocessors very attractive. Buses have
limited bandwidth but are a broadcast medium. Caches filter bandwidth and provide
an intermediary between the processor and the memory system. Research at the Uni-
versity of California, Berkeley and elsewhere (Goodman 1983; Hill et al. 1986)
introduced extensions of the basic bus protocol that allowed the caches to maintain
a consistent state. This direction was picked up by several small companies, includ-
ing Synapse (Nestle and Inselberg 1985), Sequent (Rodgers 1985), Encore (Bell
1985; Schanin 1986), Flex (Matelan 1985), and others, as the 32-bit microprocessor
made its debut and the vast personal computer industry took off. A decade later, this
general approach dominated the server and high-end workstation market and took
hold in the PC servers and the desktop. The approach experienced a temporary set-
back as very fast RISC microprocessors took away the performance edge of multiple
slower processors. Although the RISC micros were well suited to multiprocessor
design, their bandwidth demands severely limited scaling until a new generation of
shared bus designs emerged in the early 1990s.

Simultaneously, the message-passing direction took off with two major research
efforts. At CalTech, a project was started to construct a 64-processor system using
i8086/8087 microprocessors assembled in a hypercube configuration (Seitz 1985;
Athas and Seitz 1988). From this baseline, several other designs were pursued at
CalTech and JPL (Fox et al. 1988), and at least two companies pushed the approach
into commercialization—Intel, with the iPSC series, and Ametek. A somewhat more
aggressive approach was widely promoted by the INMOS Corporation in England in
the form of the Transputer, which integrated four communication channels directly
onto the microprocessor. This approach was adopted by nCUBE, with a series of
very large-scale message-passing machines. Intel carried the commodity processor
approach forward, replacing the i80386 with the faster i860, then replacing the net-
work with a fast grid-based interconnect in the Delta and adding dedicated message
processors in the Paragon. Meiko moved away from the Transputer to the i860 in
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their computing surface. IBM also investigated an i860-based design in Vulcan
before obtaining commercial success with the SP family, essentially a cluster of
RS6000 workstations.

Data parallel systems also took off in the early 1980s, after a period of relative
quiet. These included Batcher’s MPP system for image processing developed by
Goodyear and the Connection Machine promoted by Hillis for AI applications (Hil-
lis 1985). The key enhancement was the provision of a general-purpose interconnect
for problems demanding other than simple grid-based communication. These ideas
saw commercialization with the emergence of Thinking Machines Corporation, first
with the CM-1, which was close to Hillis’s original conceptions, and then with the
CM-2, which incorporated a large number of bit-parallel floating-point units. In
addition, MasPar and Wavetracer carried the bit-serial or slightly wider organization
forward in cost-effective systems.

A more formal development of highly regular parallel systems emerged in the
early 1980s as systolic arrays, generally under the assumption that a large number of
very simple processing elements would fit on a single chip. It was envisioned that
these arrays would provide cheap, high-performance, special-purpose add-ons to
conventional computer systems. To some extent, these ideas have been employed in
programming data parallel machines. The iWARP project at CMU produced a more
general, smaller-scale building block that has been developed further in conjunction
with Intel. These ideas have also found their way into fast graphics, compression,
and rendering chips.

The technological possibilities of the VLSI revolution also prompted the investi-
gation of more radical architectural concepts, including dataflow architectures (Den-
nis 1980; Gurd, Kerkham, and Watson 1985; Papadopoulos and Culler 1990; Arvind
and Culler 1986), which integrated the network very closely with the instruction
scheduling mechanism of the processor. It was argued that very fast dynamic sched-
uling throughout the machine would hide the long communication latency and syn-
chronization costs of a large machine and thereby vastly simplify programming. The
evolution of these ideas tended to converge with the evolution of message-passing
architectures in the form of message-driven computation (Dally, Keen, and Noakes
1993).

Large-scale shared memory designs took off as well. IBM pursued a high-profile
research effort with the RP-3 (Pfister et al. 1985), which sought to connect a large
number of early RISC processors (the 801) through a butterfly network. This was
based on the NYU Ultracomputer work (Gottlieb et al. 1983), which was particu-
larly novel for its use of combining operations. BBN developed two large-scale
designs, the BBN Butterfly using Motorola 68000 processors and the TC2000 (Bolt
Beranek and Newman 1989) using the 88100s. These efforts prompted a very broad
investigation of the possibility of providing cache-coherent shared memory in a
scalable setting. The DASH project at Stanford University sought to provide a fully
cache-coherent distributed shared memory by maintaining a directory containing
the disposition of every cache block (Lenoski et al. 1993; Lenoski et al. 1992). SCI
represented an effort to standardize an interconnect and cache coherence protocol
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(IEEE 1993). The Alewife project at MIT sought to minimize the hardware support
for shared memory (Agarwal et al. 1995), which was pushed further by researchers
at the University of Wisconsin (Wood et al. 1993). The Kendall Square Research
KSR1 (Frank, Burkhardt, and Rothnie 1993; Saavedra, Gains, and Carlton 1993)
went even further and allowed the home location of data in memory to migrate.
Alternatively, the Denelcor HEP attempted to hide the cost of remote memory
latency by interleaving many independent threads on each processor.

The 1990s have exhibited the beginnings of a dramatic convergence among these
various factions. This convergence is driven by many factors. One is clearly that all
of the approaches have common requirements. They all require a fast, high-quality
interconnect. They all profit from avoiding latency where possible and reducing the
absolute latency when it does occur. They all benefit from hiding as much of the
communication cost as possible. They all must support various forms of synchroni-
zation. We have seen the shared memory work explicitly seek to better integrate
message passing in Alewife (Agarwal et al. 1995) and FLASH (Kuskin et al. 1994) to
obtain better performance where the regularity of the application can provide large
transfers. We have seen data parallel designs incorporate complete commodity pro-
cessors in the CM-5 (Leiserson et al. 1996), allowing very simple processing of mes-
sages at the user level, which provides much better efficiency for message-driven
computing and shared memory (von Eicken et al. 1992; Spertus et al. 1993). There
remains the additional support for fast global synchronization. We have seen fast
global synchronization, message queues, and latency-hiding techniques developed
in a NUMA shared memory context in the CRAY T3D (Kessler and Schwarzmeier
1993; Koeninger, Furtney, and Walker 1994), and the message-passing support in
the Meiko CS-2 (Barton, Crownie, and McLaren 1994; Homewood and McLaren
1993) provides direct virtual-memory-to-virtual-memory transfers within the user
address space. The new element that continues to separate the factions is the use of
complete commodity workstation nodes, as in the SP-1, SP-2, and various work-
station clusters using merging high-bandwidth networks (Anderson, Culler, and
Patterson 1995; Kung et al. 1989; Pfister 1995). The costs of weaker integration into
the memory system, imperfect network reliability, and general-purpose system
requirements have tended to keep these systems more closely aligned with tradi-
tional message passing, although the future developments are far from clear.

1.1  Compute the annual growth rate in number of transistors, die size, and clock rate
by fitting an exponential to the technology leaders using the data in Table 1.1.
Obtain more recent data from the Web, and see how well these trends have held.

1.2  Compute the annual performance growth rates for each of the benchmarks shown
in Table 1.2. Comment on the differences that you observe.
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Table 1.1 Basic Parameters for Several Microprocessors

 

Name Year Die (mm

 

2

 

) Total Transistors Clock (MHz)

 

i4004 1971 9 2,300 0.5

i8008 1972 12.25 3,500 0.8

i8080 1974 20.25 5,000 3

M6800 1974 25 5,000 1

M68000 1979 43.56 68,000 12.5

i80286 1982 64 130,000 10

M68020 1984 84.64 180,000 25

i80386 1985 90.25 275,000 16

i80486 1988 160 1,200,000 50

MIPS R3000 1988 72 125,000 33

Motorola 68040 1989 126.4 1,200,000 25

Alpha 21064 1992 233.5 1,680,000 160

Pentium 66 1993 294 3,100,000 66.7

Alpha 21066 1994 209 1,750,000 133

MIPS R10000 1994 298 5,900,000 200

Alpha 21164 1995 298.7 9,300,000 300

UltracSparc 1995 315 3,800,000 167

 

Table 1.2 Performance of Leading Workstations

 

Machine Year SpecInt SpecFP LINPACK

 

n

 

 = 1,000 Peak FP

 Sun 4/260    1987 9 6 1.1 1.1 3.3

MIPS M/120 1988 13 10.2 2.1 4.8 6.7

MIPS M/2000 1989 18 21 3.9 7.9 10

IBM RS6000/540 1990 24 44 19 50 60

HP 9000/750 1991 51 101 24 47 66

DEC Alpha AXP 1992 80 180 30 107 150

DEC 7000/610 1993 132.6 200.1 44 156 200

AlphaServer 2100 1994 200 291 43 129 190
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1.3  Generally in evaluating performance trade-offs, we evaluate the improvement in
performance, or speedup, due to some enhancement. Formally,

In particular, we will often refer to the speedup as a function of the machine parallel
(e.g., the number of processors).

Suppose you are given a program that does a fixed amount of work, and some
fraction 

 

s

 

 of that work must be done sequentially. The remaining portion of the
work is perfectly parallelizable on 

 

P

 

 processors. Assuming 

 

T

 

1

 

 is the time taken on
one processor, derive a formula for 

 

T

 

p

 

, the time taken on 

 

P

 

 processors. Use this to
get a formula giving an upper bound on the potential speedup on 

 

P

 

 processors.
(This is a variant of what is often called Amdahl’s Law [Amdahl 1967].) Explain
why it is an upper bound.

1.4  Given a histogram of available parallelism such as that shown in Figure 1.7, where

 

f

 

i

 

 is the fraction of cycles on an ideal machine in which i instructions issue, derive a
generalization of Amdahl’s Law to estimate the potential speedup on a k-issue
superscalar machine. Apply your formula to the histogram data in Figure 1.7 to
produce the speedup curve shown in that figure.

1.5  Locate the current TPC performance data on the Web and compare the mix of sys-
tem configurations, performance, and speedups obtained on those machines with
the data presented in Figure 1.4.

1.6  In message-passing models, each process is provided with a special variable or func-
tion that gives its unique number or rank among the set of processes executing a
program. Most shared memory programming systems provide a fetch&inc opera-
tion, which reads the value of a location and atomically increments the location.
Write a little pseudocode to show how to use fetch&add to assign each process a
unique number. Can you determine the number of processes comprising a shared
memory parallel program in a similar way?

1.7  To move an n-byte message along H links in an unloaded store-and-forward net-
work takes time H + (H – 1)R, where W is the raw link bandwidth and R is the
routing delay per hop. In a network with cut-through routing, this takes time +
(H – 1)R. Consider an 8 × 8 grid consisting of 40-MB/s links and routers with 250
ns of delay. What is the minimum, maximum, and average time to move a 64-byte
message through the network? A 256-byte message?

1.8  Consider a simple 2D finite difference scheme where at each step every point in the
matrix is updated by a weighted average of its four neighbors, A[i, j] = A[i, j] –
w(A[i – 1, j] + A[i + 1, j] + A[i, j – 1] + A[i, j + 1]).

All the values are 64-bit floating-point numbers. Assuming one element per pro-
cessor and 1,024 × 1,024 elements, how much data must be communicated per
step? Explain how this computation could be mapped onto 64 processors so as to
minimize the data traffic. Compute how much data must be communicated per
step.

Speedup due to enhancement E
Timewithout E

Timewith E

-----------------------------
Performancewith E

Performancewithout E
------------------------------------------------= =

n
W----- n

W-----
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1.9  Consider the simple pipelined component described in Example 1.2. Suppose that
the application alternates between bursts of m independent operations on the com-
ponent and phases of computation lasting T ns that do not use the component.
Develop an expression describing the execution time of the program based on these
parameters. Compare this with the unpipelined and fully pipelined bounds. At what
points do you get the maximum discrepancy between the models? How large is it as
a fraction of overall execution time?

1.10  Show that Equation 1.4 follows from Equation 1.3.

1.11  What is the x-intercept of the line in Equation 1.3?

1.12  If we consider loading a cache line from memory, the transfer time is the time to
actually transmit the data across the bus. The start-up includes the time to obtain
access to the bus, convey the address, access the memory, and possibly place the
data in the cache before responding to the processor. However, in a modern proces-
sor with dynamic instruction scheduling, the overhead may include only the por-
tion spent accessing the cache to detect the miss and placing the request on the bus.
The memory access portion contributes to latency, which can potentially be hidden
by the overlap with execution of instructions that do not depend on the result of
the load.

Suppose we have a machine with a 64-bit-wide bus running at 40 MHz. It takes
two bus cycles to arbitrate for the bus and present the address. The cache line size is
32 bytes and the memory access time is 100 ns. What is the latency for a read miss?
What bandwidth is obtained on this transfer?

1.13  Suppose this 32-byte line is transferred to another processor and the communica-
tion architecture imposes a start-up cost of 2 µs and a data transfer bandwidth of
20 MB/s. What is the total latency of the remote operation?

1.14  If we consider sending an n-byte message to another processor, we may use the
same model as in Exercise 1.12. The start-up can be thought of as the time for a
zero-length message; it includes the software overhead on the two processors, the
cost of accessing the network interface, and the time to actually cross the network.
The transfer time is usually determined by the point along the path with the least
bandwidth, that is, the bottleneck.

Suppose we have a machine with a message start-up of 100 µs and an asymptotic
peak bandwidth of 80 MB/s. At what size message is half of the peak bandwidth
obtained? 

1.15  In some cases, Equation 1.6 can be used for estimating data transfer performance
based on design parameters. In other cases, it serves as an empirical tool for fitting
measurements to a line to determine the effective start-up and peak bandwidth of a
portion of a system. If data undergoes a series of copies as part of a transfer (assum-
ing that before transmitting a message the data must be copied into a buffer), the
basic message time is as in Exercise 1.14, but the copy is performed at a cost of 5
cycles per 32-bit word on a 100-MHz machine. Given an equation for the expected
user-level message time, how does the cost of a copy compare with a fixed cost of,
say, entering the operating system?
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1.16  Consider a machine running at 100 MIPS on some workload with the following
mix: 50% ALU, 20% loads, 10% stores, and 20% branches. Suppose the instruction
miss rate is 1%, the data miss rate is 5%, and the cache line size is 32 bytes. For the
purpose of this calculation, treat a store miss as requiring two cache line transfers,
one to load the newly updated line and one to replace the dirty line. If the machine
provides a 250-MB/s bus, how many processors can it accommodate at 50% of peak
bus bandwidth? What is the bandwidth demand of each processor?

1.17  Exercise 1.16 looks only at the sum of the average bandwidths, leaving 50% head-
room on the bus to make the calculation reasonable. As the bus approaches satura-
tion, however, it takes longer to obtain access for the bus, so it looks to the
processor as if the memory system is slower. The effect is to slow down all of the
processors in the system, thereby reducing their bandwidth demand. Let’s try an
analogous calculation from the other direction. 

Assume the instruction mix and miss rate as in Exercise 1.16, but ignore the
MIPS since that depends on the performance of the memory system. Assume
instead that the processor runs at 100 MHz and has an ideal CPI (with a perfect
memory system) of one. The unloaded cache miss penalty is 20 cycles. You can
ignore the write back for stores. (As a starter, you might want to compute the MIPS
rate for this new machine.) Assume that the memory system (i.e., the bus and the
memory controller) is utilized throughout the miss. What is the utilization of the
memory system U1 with a single processor? From this result, estimate the number
of processors that could be supported before the processor demand would exceed
the available bus bandwidth.

1.18  Of course, no matter how many processors you place on the bus, they will never
exceed the available bandwidth. Explain what happens to processor performance in
response to bus contention. Can you formalize your observations?


