Instruction-level Parallel Processors

How architectures exploit ILP

Topico 3

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Instruction-level Parallel Processing 2

Instruction-level Parallel Processing

Topico 2 : Exploiting Instruction-level
Parallelism (ILP) — An Overview.

Topico 3 : Instruction-level Parallel Processors
How architectures exploit ILP.

Topico 4 : Processing Control Transfer Instructions.

Topico 5 : Code Scheduling for Instruction-level
Parallel Processors.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Instruction-level Parallel Processors 3

Outline for Tépico 3

e Very Long Instruction Word (VLIW) Processors

e Superscalar Processors
— Parallel Decoding
— Instruction Issue
— Parallel Instruction Execution

— Preserving the sequential consistency of
execution and of exceptions.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Instruction-level Parallel Processors 4

Processor Design Space

CPI

!

20

50

/ , Most likely future

Superpipelined™, processor space

1.0 —

Cycles Per Instruction

02 |

_] ! | | | | l -
0 5 10 20 50 100 200 500 1000 MHz

vinod@ic.uff.br Arquiteturas Paralelas I Clock Rate LOPico 3

Instruction-level Parallel Processors 5%

Very Long Instruction Word Processors

VLIW architectures are closely related to superscalar
processors. Both:

e aim at speeding up computation by exploiting ILP;

e have nearly the same execution core, consisting
basically of multiple execution units operating in
parallel; and,

e employ either a unified register file for all data types
or distinct (split) register files for fixed- and
floating-point data.

But the two main differences between them are how
instructions are formulated and how instruction
scheduling is carried out.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 6

Instructions for VLIW Processors

e VLIW architectures are controlled by long
instruction words comprised of a control field for
each of the execution units available.

e Thus, the length of the VLIW instructions depends
on the number of available execution units and the
code lengths required to control each of them.

e VLIW processors usually incorporate a considerable
number of execution units (possibly 5-30). Each
unit might require a control word of 16-32 bits.

e Trace 7/200, which is capable of executing 7
instructions per cycle, has a word size of 256 bits.
The word length of the Trace 28/200 is 1 Kbits.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 7

Instruction Scheduling for VLIWs

In general, superscalar architectures are assumed to be
scheduled dynamically. In contrast, VLIW architectures
are scheduled statically.
e Static scheduling moves the burden of instruction
scheduling from the processor to the compiler.

e This reduces the complexity of VLIW architectures
considerably. Compared to a superscalar processor,
a large number of tasks are simpler or superfluous,
such as instruction decoding, issuing and reordering.

e The lower complexity can in turn be exploited for
boosting performance, by increasing either the clock
rate or the degree of parallelism, or both.

[If RISC was better than CISC, is VLIW better than superscalar?]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Instruction Scheduling for VLIW Processors 8

Instruction Scheduling — A closer look

In static scheduling, the compiler takes full responsibility

for the detection and removal of dependencies.

Increases compiler complexity.

In order to be able to schedule instructions, the
architecture needs to be exposed to the compiler in
considerable detail.

As well as the semantics and syntax of instructions,
the compiler has to be aware of the technology
dependent parameters like latency and repetition
rates of functional units.

The consequence is that a given compiler cannot be
used for subsequent models of a VLIW line.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 9

Further Problems of VLIW Processors

e The compiler has to take into account worst-case
delay values. Cache latency depends heavily on
whether a cache access hits (perhaps 2 cycles) or
misses (perhaps upto 5 cycles).

e Not all of the fields of an instruction may actually
be used, resulting in wasted memory space and
memory bandwidth. (E.g. Fortran object code is as
much as three times larger for a trace processor
than it is for a VAX architecture.)

e VLIW architecture is totally incompatible with that
of any conventional general-purpose processor.
A superscalar machine can be object-code compatible with a large

family of nonparallel machines.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 10

Further Problems of <HH<<.mA

e The limits on increasing parallelism are similar for

cont)

both VLIWs and superscalar machines, e.g. limited
number of ports on a register file.

e In order to exploit the fact that VLIWs have more
functional units than superscalar ones, better
high-performance parallelising compilers are
required to extract sufficient parallelism from
programs.

e Difficult to program by hand in assembly code.

The question is whether VLIWs can convert the benefits
they gain from reduced complexity into a higher degree of
utilised parallelism.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 11

The Trace 200 Family

e A commercial product based on the results of
research work done at Yale with VLIW machines
and trace compilers in the early 1980s.

e Consists of three families, the Trace 7/200, 14/200
and 28/200, capable of executing 7, 14 or 28 parallel
operations respectively. The higher numbered
models consisted of two or four linked 7/200s.

e The 7/200 fetches 256-bit VLIW instructions. Each
instruction word consists of 8 subwords to control
the execution of seven operations (4 integer, 2 FP
and a conditional branch).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 12

The Trace 200 ﬂmgmux

e Supports multiway branching. ALU operations can
used as conditional branches. If more than one

cont)

exists per instruction they are prioritised by the
compiler.

e To save memory space, a 32bit mask is used to
identify empty and non-empty 32bit subwords in
1Kbit VLIW word. Only non-empty subwords are
actually stored in memory. This was at the expence
of complex cache fill circuitry.

e Performance was quite impressive at its launch.

Machine Issue Rate (nS) | Linpack (MFLOPS))
Trace 7/200 130 6
Trace 14/200 130 10
DEC 8700 45 0.97
Cray XMP 8 24

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 13

VLIWs — Where are they now?

e While the term “VLIW” was only coined in 1983,
these architectures appeared as early as 1985.
Floating Point Systems FPS-120B has two floating
point units operating in parallel.

e ELI-512 together with Bulldog compiler based on
trace scheduling designed at Yale (1983).

e Trace family developed by Multiflow (1987)

e CYDRA-5 from Cydrome (1990). Unfortunately,
both Multiflow and Cydrome have gone bankrupt.

e While a number of academic machines exists (e.g.
iWarp at CMU, StaCs), there are fewer commercial
ones (TM-1 from Philips). HP, IBM and Intel have
each revealed plans to develop a VLIW machine.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Very Long Instruction Word Processors 14

The Future of VLIW Processors

Although the idea is academically sound, the
dependence on trace-scheduling compilation, code
compaction, and the lack of compatibility with
conventional hardware and software has prevented
VLIW architectures from gaining acceptance in the
commercial world.

Currently, the comercial future of VLIWs is not yet clear!
Also their fiercest competitor, superscalar processors, have
achieved tremendous progress in increasing performance.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Superscalar Processors 15

Superscalar Processors

e Currently dominate the processor market.
e The idea was first proposed as early as 1970.

e During the 1980s a number of architectural research
proposals and prototype machines appeared. IBM
was the first with the Cheetah and America projects
which later spawned the Powerl. The term
“superscalar” first appeared in an internal IBM
technical report in 1987.

e The first commerical superscalar processor was
introduced by Intel in 1989 (Intel 960).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Superscalar Processors 16

Superscalar ﬁwoommmoH.mA cont)
e Superscalar RISC machines appeared as a result of
two different approaches:

1. converting an existing scalar RISC line into a
superscalar one, e.g. MC88000, MIPS; or

2. conceiving a new architecture, e.g. Powerl
(RS/6000), DEC Alpha, PowerPC.

e Superscalar CISC machines appeared much later
(1993) owing to their higher complexity, e.g.
Pentium, MC68060.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Superscalar Processors 17

- FadEr
..._..._,..._.“__. "

Superscalar Processing

Specific tasks of superscalar processing

o
Q , .
Parallel Superscalar Parallel Preserving the Preserving the
decoding instruction issus instruction sequential consistency sequential consistency
execution of execution of exception

pracessing

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Superscalar Processing 18

Parallel Decoding

e Considerably more complex than in the case of
scalar processors and becomes even more
sophisticated as the issue rate increases.

e Higher issue rates can lengthen the decoding cycle
or give rise to multiple decoding cycles unless
decoding is enchanced.

e A scalar processor has to decode only a single
instruction in each cycle, checking for dependencies
in order to decide whether this instruction can be
issued or not.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Superscalar Processing 19

Parallel UmooambmA

cont)
e A superscalar processor has to decode multiple

instructions in a single clock cycle. It also has to
check for dependencies from two perspectives:
1. with respect to all of the instruction currently

executing; and
2. among the instructions which are candidates for

the next issue.

e Since the processor has more execute units than a
scalar one, the number of instructions in execution
will be higher. Therefore, more comparisons have to
be performed, making the decode-issue path a much

more critical issue in achieving a high clock rate.
[Superscalar processors tend to require two or more pipeline cycles for

decoding and issuing.]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Superscalar Processing 20

Parallel UmooambmA

cont)

Predecoding shifts part of the decoding task to the
loading phase of the on-chip instruction cache.
While the I-cache is being loaded, a predecode unit
performs partial decoding — appending the number
of decode bits to each instruction.

Typically, between 4 and 7 bits are attached
indicating the instruction class, or type of resources
required or even that the branch target addresses
have been calculated.

Predecoding either shortens the overall cycle time or
reduces the number of cycles needed for decoding
and issue.

Most commercial processor now use predecoding.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

