Register Renaming 67

Register Renaming

Register renaming is a standard technique for removing
tfalse data dependencies among register data. It was first
suggested by Tjaden and Flynn in 1970, although they

did not use the term “renaming”. Keller introduced the
term in 1975 and described one possible implementation.

Register renaming may be implemented either statically
or dynamacally. Partial dynamic renaming has been
used in superscalar processor since 1990, with full
renaming emerging around 1992.

[Register renaming presumes the three-operand instruction format.]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 68

Implementation of register renaming

Static Dynamic
implementation implementation
Performed during Pertormed during
compilation, i.e. execution, i.e.

statically, in paralle dynamically, in
aptimizing compilers superscalar procassors

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 69

Design Space of Register Renaming

The design space of register renaming resembles that of

shelving.
Register renaming
Scope of Layout Operand Rename rate
register of the rename fetch
renaming buffers palicy

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Iq°BPn-olgpoula

[se[ereIed seinjeymbiry

¢ 001doT,

Scope of register renaming

Partial renaming Full renaming
Renaming is restricted Renaming comprises
to particular all eligible
instruction types instruction types

Power1" (RS/B000, 1993} PowerPC 603 {1953}

Power 2° (1993) PowerPC 504 (1995)
PowerPC 60713{1933) PowerPC 620 (1996)
Nx5867 (1994) R1000¢ (1396)
and
most recent
Superscalar processors

axcent the a-line and
Sun’'s UltraSparc (1995)

o

Trend

"The Power1 renames cnly FP locads
’The Power? extends renaming to all FP instructions
*The PowerPC 601 renames only the Link and
Count registers
4Since the Nx586 is an FX processor, it renames only
FX instructions

surmeusy] I93S139Y]

N
(=)

Register Renaming 71

The Layout of Rename Buffers

The layout of the rename buffers establishes the actual
framework for renaming.

Layout of the rename buffers

[
o %

Type of the NMumber of Basic
rename buffers rename buffers mechanism used

for accessing
rename buffers

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 72

The Types of Rename Buffers

The chosen type of rename buffer has the largest impact
on renaming since it determines where the intermediate
results of instructions are written into or read from.

Intermediate results are those which have already been
generated but are not yet qualified to modify the actual
program state by writing them into the architectural
registers. They have to wait until it is sure that the
modification of the program state does not violate the
sequential consistency of the execution.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 73

Type of rename buffers
(The basic approach to how rename buffers are implemented]

Merged Separate rename Holding renamed Helding renamed
architectural and and architectural values in the values in the
rename register file register files ROB DRIS

Method Merged
of architectural Architectural Architectural Architectural
fetching and rename req. file reg. file reg. file

operands req. file

= =
¥ y L ¥ L h
Fower? {1890) PowerP(603 (1893) PentiumPro (1995] Lightning {19910}
FPower? {(1933) PowerPC 804 {1385) Arrr 29000 sup (1995)
ES/9000 (1992p) PowerPC 620 (1296) K5 (1995)
Nx58E (1994) M1 (1385)

PAT (SparcB4, 1995)
R10000 (1996}

Rename
buffers

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 74

Merged Register File Approach

Rename buffers and the architectural registers are
implemented within the same physical register file.

The register file obviously needs to provide a large
enough number of physical registers to implement
both the architectural and rename registers.

A free physical register is allocated for the
destination architectural register of each instruction.

The actual allocation of registers is tracked in a
mapping table.

Need a scheme to reclaim the physical registers no
longer in use.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 75

adr, ..., ...
Architectural Physical
req. numbers reqg. numbers
Entry | RB-
valid index
0 1 10
1 1 11
P — 2 frio 3 1% Salis
: . Allocat
5 2 03 ocated
a 1) tore
9 0
__ Mapping _
: tahle _ Physical register file
31 0 !

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 76

ad, r2, r0, r1:
Entry RB- m_
valid index 5
: — 0 1 10 31
r; ———3= 1 } 11 1
M = % ______ru_.__. _
3 0 _
4 0 a0 pio
5 11 | p11
_ Mapping “
_ table o . . _
11+ Physical register file
< 0 1|

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 7

Separate Rename Buffers
In the other types of renaming, the rename buffers are
implemented separately from the architectural registers

either as a rename register file, as an extension of the
reorder buffer (ROB), or as part of the DRIS.

e Each time a destination register is referred to, a new
rename register is allocated to it. This allocation
remains valid until either:

1. a subsequent instruction refers/writes to the
same destination register, when the architectural
register will then be reallocated; or until

2. the instruction which uses that particular
destination register completes (retires) and the
allocation becomes invalid.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 78

Separate Rename Wﬂm.mwmA cont)

e In machines which use a ROB (or the DRIS) for
renaming, each instruction is allocated a separate
entry. Thus it is quite natural to store the generated
result of that instruction in the entry as well.

e In all three cases, results are held in the respective
rename buffer until their retirement. During
retirement the content of the rename buffer (rename
register entry, ROB entry or DRIS entry) is written
back into the architecture register file, and the
bufter is freed for further use.

e If distinct register files are used for FX and FP data
then two separate renaming schemes are used unless
renaming takes place within the ROB or DRIS.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 79

Accessing Renaming Buffers

Rename buffers need to be accessed for several purposes,
such as to fetch operands, to update them or to
deallocate them. Operands are accessed using one of
two different access mechanisms:

e Rename buffers with associative access typically
hold three kinds of information: the destination
register number; their values and necessary status
information. When a register value is to be fetched,
all entries are looked up associatively to find the
particular entry whose destination field matches the
required register.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 80

Accessing Renaming wgmdwmA cont)

e With the indezxed access mechanism, a mapping
table is used to obtain the actual index into the
rename buffer file. The mapping mechanism
provides a unique index to the rename buffer file
which always corresponds to the most recent
instance of the destination register concerned.

Note that a source operand may exist in both the architectural and the
rename register file, if so priority is given to the rename register during

operand access.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Assoc,
ipokup
for r?

Register Renaming

81

Basic mechanism used for accessing rename buffers

Rename buffars
with associative

Rename buffers

with indexed acceass

L

ACCess
Entry Dest Walue Value m_.m;mm: Entry KB Value dm_cm_m
: valid reg.no! i wahd bt i valid } index valid :
EE 50 R 0 a5 T
12 1200 1 1 1 320 LA
123 i i RERL Sl b i S 2 30) 1 i
1 1 1 alfE g oy
; Rename buffers Rename buffers
' i g .
-mgu
vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 82

Further Issues

e In terms of operand fetch policy, the same options
exist as those for shelving — a rename (or issue)
bound or a dispatch bound operand fetch policy.

e The rename rate is the maximum number of
renames per cycle that a processor is able to
perform. In order to avoid bottlenecks the rename
rate usually equals the issue rate.

e A check needs to be carried out for data
dependencies among the instructions issued in the
same cycle.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Register Renaming 83

Basio implemnaniation aHernat vas for renaming
I g

..l.ll.:.ll..l.Lll:-lll. \._.\\\tl\ r.r!.rar,_../ ,Ir.lrs....llrl.r..r.l,.:...l,l.l.
.1|.|,.l|11..11 \...\.1 ,.:..r.f ...f.:..:..lll.....[rr..
..-..l....ll..-...l .\\.\\.. ,.AJ.I. rJlrrrsIJ-.,
QI.I.}.:LLI O d llJl.!O
Mearge] arch tectural Separate Renarnirgg within Fenarirg wihin
and rename register file renames ragister filg e ROB tha DRIS
2 A Q A
AN P 7N PN
A ..,/ ..\\ //_r ..\\ fj .\.H\ /./I
S \ s AN y AN o o
o k) of s o) o X
Access via Assoniative ACCTES VIR Agsaciative AZGess via Assoclative AceRss via Associative
magiing table access mappEnyg table accoss MADRRING akis aceeEs mapping table HOCBSS
a AL \o,,
~ - o ™
.\.\ / s ,.f, / ,ff

Bizpratch Dispmatoh Dispalch Renams

Lrspatch Henams
bound o «— Rerame hoind operand feteh ——— bound bound bound bound
aaerand gparand nparard anorand pperand Oparandg
fetoh foioh fetoh fetch feteh feteh
Froprosats: S e et L
iving (1975) o Sofe and Vajapeyam
Srnitf-Plesstun {1887}
(1988
Precassurs: Jdohnson
ESS000 (194920 P (1055) - Fowear PC 603 (1993 PentiumPro /1885) [1981; Lightoing -
Frwer? (1990 (Sparc 63) Fower PC 804 (1995} AmP0000 sup {19497
Power2 {1805 Fower PG 620 {1995 {1995
N=586 (1984) KS (1995
RT0000 {1996]

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Parallel Execution 84

Parallel Execution

e When instructions are executed in parallel, they will
generally finish out of order.

e The term “finish” indicates that the required
operation of the instruction has been accomplished.
An instruction “completes” when the result is
written to ROB and is “retired” or “committed”
when the result is written back to the architectural
register and the entry removed from the ROB.

e Some processors avoid out-of-order execution by
enforcing in-order issue and forcing all EUs to have
equal execution times, i.e. effectively operating
lock-stepped pipelines.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

