Preserving Sequential Consistency 85

Preserving Sequential Consistency of

Instruction Execution

In processors with multiple EUs operating in parallel,
instructions can finish in an out-of-order fashion.
Nevertheless, overall instruction execution should mimic
sequential execution, i.e. it should preserve sequential
consistency. Sequential consistency of instruction
execution relates to two aspects:

1. to the order in which instructions are completed
(Processor Consistency); and

2. to the order in which memory is accessed (Memory
Consistency) due to load and store instructions or
memory references of other instructions.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Preserving Sequential Consistency 86

Processor Consistency

The term Processor Consistency is used to indicate the
consistency of instruction completion with that of
sequential instruction execution. Superscalar processors
preserve either a weak or a strong consistency.

e A weak processor consistency means that
instructions may complete out-of-order, provided
that no data dependencies are violated. In order to
achieve this, data dependencies need to be detected
and resolved during execution.

e Strong processor consistency means instructions are
forced to complete in program order. Usually this
achieved by employing a reorder buffer (ROB).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Preserving Sequential Consistency 87

Memory Consistency
The other aspect of superscalar instruction execution is

whether memory access are performed in the same order
as in a sequential processor.

e Memory consistency is weak if memory access may
be out-of-order compared with a strict sequential
program execution. However, data dependencies
must not be violated. In other words, weak
consistency allows load /store reordering providing
that dependencies, paricularly memory data
dependencies, are detected and resolved.

e In the case of strong memory consistency, where
memory access occurs strictly in program order,
load /store reordering is forbidden.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Iq°BPn-olgpoula

[se[ereIed seinjeymbiry

¢ 001doT,

Sequential cosistency
of instructio(ﬁ execution

|

Processor consistency

Consistency of the sequence
of instruction completions

Waak Strong
processor consistency processor consistency

Inatructions may complete Instructions complete
olt of order, provided that strictly in program
no dependencies are order
adversey affected

l l

Instruction recrdering No instruction reordering
is allowed is allowed

Detection and rasalution
of dependencies ensures
weak processor
gonsistency

RCB ensures strong
processer consistency

Pawert (1390)
Power2 (1393)
MCBET10(1993)

£3/9000 (19520
PowerPC §02-620
FPentiumFro (1295)

PowerPC 601 (1993} LiltraSparc (1995)
« fine AT (1995)
RE000 (1994) Am29000 sup (1995)
K5 (1995)
PA B0OOO (1956)

R10000 (1596)

.

Trend

l

Memeory consistency

Gonsistency of the sequence
of memory accesses

Weak Strony
memaory consistency mamory consistancy

Memory accesses
due to load and store
instructions may be
out of order, provided that
no dependancies are
adversely affected

Mamory is accessed

due to load and stors

instructions strictly in
program ordet

Load/store reordering
iz aliowsd

No lcad/store reordering
is allowed

Detection and resolution
of memory data
depandencias ensures
weak mamory congistency

The ROB may be
used to ensure strong
memory consistency

MC881719 (1693}
PowerPC 602620
UltraSparc (1995)
PM1 (1995)

P4 800 (1996)
710000 {19986}

ES/B000 {1992p)
PowarPC 6071 (1993}

-

Trend, performance

Aoue)sisuo)) [erjuonbog SuIAIesoI]

88

L

Preserving Sequential Consistency 89

Load/Store Reordering

Load and store instructions involve actions affecting
both the processor and the memory. While executing,
both loads and stores must first wait for their addresses
to be computed by an ALU or address unit.

e Then loads can access the data cache to fetch the
requested memory data and the instruction is
completed when the data is written into the
architectural register.

e After receiving the generated address, a store
instruction must wait for its operands before being
considered completed.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Preserving Sequential Consistency 90

Load/Store Reordering

cont)

A processor that supports weak memory consistency
allows the reordering of memory accesses. This is
advantageous for at least three reasons:

1. it permits load/store bypassing,
2. it makes speculative loads or stores feasible, and

3. 1t allows cache misses to be hidden.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Preserving Sequential Consistency 91

Load/Store Bypassing

Load/Store bypassing means that either load can bypass
stores or vice versa, provided that no memory data
dependencies are violated.

e Permitting loads to bypass stores has the advantage
of allowing the runtime overlapping of loops. This is
achieved by allowing loads at the beginning of an
iteration to access memory without having to wait
until stores at the end of the previous iteration are
completed.

e In order to avoid fetching a false data value, a load
can bypass pending stores if none of the preceding
stores have the same target address as the load.

However, certain addresses of pending stores may not be available.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Preserving Sequential Consistency 92

Speculative Loads

Speculative loads avoid delaying memory accesses until
all required addresses have been computed and clashing
addresses can be ruled out.

The correctness of speculative loads must be checked
and, if necessary, be undone. Note that speculative loads are

quite similar to speculative branches.

The address checks are usually carried out by writing
the computed target address of loads and stores into the
ROB (or DRIS) and performing the address comparison
there.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Iq°BPn-olgpoula

[se[ereIed seinjeymbiry

¢ 001doT,

Reordering of memory accesses
of load/store instructions

l

Recrdering due to
load/store bypassing

N

Loads bypass Stores bypass
stores loads
Non-speculative Speculative
axecution execution

of bypasses

IBM 360/91 (1967)

MCE8110 (1993)

of bypasses

l

Speculative
loads

PowerP(C 602 (1995)
PowerPC 603 (1993)
PowerP(C 604 (1995)
PowerPC 620 (1998)
PMT (1995)
UltraSparc (1555)
PA 8000 (1896)
R100GG (1996)

l

Reordering in case of
cache misses

N

Loads bypass Stores bypass
loads stores

UltraSparc (1355)
PowerPC G20 (18896)

Aoue)sisuo)) [erjuonbog SuIAIesoI]

Ne)
w

Preserving Sequential Consistency 94

The Reorder Buffer

The ROB was first described in 1988 to solve the precise
interrupt problem. Today, the ROB is used as a tool
which assures sequential consistency of execution in the

case of multiple EUs operating in parallel.
The ROB is a circular buffer with head and tail

pointers. Instructions enter the buffer in program order
and retire only if they have finished and all of their
previous instructions have retired. Thus, sequential
consistency is preserved by only allowing instructions to
complete, i.e. to update the program state by writing
their result into the referenced architectural register(s)

or memory, in strict program order.
The ROB can effectively support both speculative execution and

interrupt handling.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Principle of the ROB 95

L

Head
{first free entry)

e

In4k+3

Allocate subsequently
issued instructions

to subsequent entries
in arder

_:+r+m

Free entries Active entries

Instruction states:

i Issued An instruction may retire

x: In execution - In if it has finished and
f: Finished all prior instructions

have already retired

Tail
(next instruction to be
retired)

vinod@ic.uff.br Arquiteturas Paralelas I

Topico 3

Preserving Sequential Consistency 96

The Reorder Buffer for Speculation

In speculative execution, the processor carries on
executing instructions in spite of an unresolved condition
such as an unresolved conditional branch or a memory
check. Later, when the condition is resolved, it becomes
clear whether the speculatively executed instructions
can be affirmed; if not, they have to be cancelled and
the correct instructions executed. Each ROB entry can
be extended to include a speculative status field which
indicates if the corresponding instruction has been
executed speculatively. Finished instruction are not
allowed to retire while in a speculative state.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Preserving Sequential Consistency 97
Reorder buffer
(ROB)

Basic layout ROB Retire
of the ROB size rate
Basic layout of ROBs
Reordering Reordering Reordering,
alone and renaming renaming and

shelving
{DRIS)
ES/9000 Am28000 sup {1995) Lightning (1991p)

PowerPC 603 (1993}
PowerPC 604 (1995)
PowerPC 620 (1596)
PM1 (1995)
R10000 (1996)

K5 (1995)
PentiumPro (1995)

vinod@ic.uff.br

Arquiteturas Paralelas I

Topico 3

Preserving Sequential Consistency 98

Preserving Sequential Consistency of

Exception Processing

When instruction execute in parallel, interrupt requests,
which are caused by exceptions arising during
instruction execution, are also generated out of order. It
these requests are acted upon imediately, interrupts
occur out of order, that is, in a order that is different on
a sequential processors. In this case, the sequential
consistency of the interrupts is weak.

When imprecise interrupts occur, the processor is
unable to reconstruct the correct state unless addition
mechanisms are employed.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Preserving Sequential Consistency

Weak consistency

Impracise interrupts

Powari {1990}
Power2 {1983)
(L PFOCesSsSOrs

Sequential consistency
of exception processing

99

Strong consistency

Precise interrupis

MCE8110 (1933)
Pentium (1993) and
usvally processors
making use of an ROB,
such as:

ES/9000 (1992p)
PowerP(C line
PA 8000 (1936)
R10000 (1996]

vinod@ic.uff.br

Arquiteturas Paralelas I

Topico 3

Superscalar CISC using Superscalar RISC 100

l-cache

CISC-part

CISC/RISC conversion
Decoder/
CISC/RISC converter

: RISC-part
m Superscalar : P

RISC-core
.m for execution

Data cache

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

Instruction-level Parallel Processors 101

Summary

e Very Long Instruction Word (VLIW) Processors

e Superscalar Processors
— Parallel Decoding
— Instruction Issue

x Shelving

* Register Renaming

— Parallel Instruction Execution

— Preserving the sequential consistency of
execution and of exceptions.

* The Reorder Buffer

vinod@ic.uff.br Arquiteturas Paralelas I Topico 3

