Code Scheduling for Instruction-level

Parallel Processors

The Hardware-Software Interface

Topico 5

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Instruction-level Parallel Processing 2

Instruction-level Parallel Processing

Topico 2 : Exploiting Instruction-level
Parallelism (ILP) — An Overview.

Topico 3 : Instruction-level Parallel Processors
How architectures exploit ILP.

Topico 4 : Processing Control Transfer Instructions.

Topico 5 : Code Scheduling for Instruction-level
Parallel Processors.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Instruction-level Parallel Processing 3

Code Scheduling for ILP Processors

e Introduction

e Basic block scheduling
— List scheduling

e Loop scheduling
— Loop unrolling

— Software pipelining

e Global scheduling

— Trace scheduling and Finite Resource Global
scheduling

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Code Scheduling for ILP Processors 4

Introduction

Smart code scheduling can boost the performance of
ILP-processors significantly, since they perform, at
most, dependency checking and resolution, but do not
carry code optimisation for parallel execution.

The detecting and resolution of dependencies can be
achieved either statically or dynamically, or in a
concerted way both statically and dynamically.

In the case of static scheduling, the compiler has to
deliver dependency-free and parallel optimised code
(early pipelined processors and VLIWSs). In contrast,
under dynamic scheduling the ILP compiler behaves as
a performance booster (superscalar processors).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Code Scheduling for ILP Processors 5

Intro Qcoﬁof cont)

Performance-greedy ILP processors expect parallel
optimisation from the compiler as well. During parallel
optimisation, the compiler identifies independent
instructions and reorders code such that independent
instructions become executable as early as possible.
Thus hardware resources are better utilised and
program execution is speeded up. Evidently parallel
optimisation can be carried out only if dependencies
among instructions have been previously identified.
Thus, dependency detection and resolution is a
prerequisite for parallel optimisation.

The term code scheduling is used to cover dependency
detection and resolution as well as parallel optimisation.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Introduction 6

Traditional Compilers

e Traditional non-optimising compilers typically
consist of two major parts:

— The front-end performs scanning, parsing and
semantic analysis of the source program and
produces an intermediate representation.

— The back-end, in turn, generates the object code.
e Traditional optimising compilers speed up sequential

execution and reduce the required memory space
mainly by eliminating redundant operations.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Introduction 7

ILP-Compilers

ILP-compilers integrate traditional compilation and
code scheduling in one of two ways:

e Pre-pass scheduling completely integrates scheduling
into the compilation process, following the
traditional sequential optimiser.

e The other approach is to use a traditional
(sequentially) optimising compiler and carry out
code scheduling afterwards (post-pass scheduling).

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Iq°BPn-olgpoula

[se[ereIed seinjeymbiry

G 001doT,

3
Intarmediate masrmecaie
reprasentation raprasentation

Seuree
[rGArant
¥
Fram .]
end bcanlnmg
Parsing
Semantic
analysis
E
ffack
end | Code genaration
Onject
code
i)
Figure |

Sourte Boure
Fectele g 150] pragram
Frawt] Erant]
s SCEE‘!!W‘EQ ard St:awnng
Parsing Farsing
Semantic Sermantic
analysis analysis
Program Program
analysis analysis

Intermeddiate
representation

Back Dack [ims
BnC | code generation | #0d
Cade generation
r
A
{hjsct Cpject
cade cee
e e}

Object
sade

G}

Faraliel optimized
whject gode

Topboal luyowt of 4 o teditions! non-optamizing comspiler. (b) 2 traditional

aptimizing compiler. 00 ap LP-compiler performming pre-pass paratlel optimization. wel
d: un TLP-compiler with post-pass paraliel optirmization,

$10859001J J[I0J SUINpPaydg apo))

L

Introduction 9

Traditional and ILP-compilers

There are two significant differences between traditional
compilers (TCs) and ILP-compilers (ICs):

e During sequential execution, no WAR or WAW
dependency can occur, therefore TCs do not pay
attention to false dependencies during register

allocation.
— TGCs and ICs have contradictory criteria with

respect to register allocation. TCs try to reuse
registers as much as possible to reduce the
number required. |1Cs attempt to avoid register
reuse if it results in a false dependency.

e [Cs do not handle potential data dependencies
associated with memory references.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

Introduction 10

Code Scheduling for ILP Processors

Code scheduling may be performed at three different
levels:

1. The easiest way to code schedule is to do it at basic
block level, separately for each block, one after the
other.

2. At the loop level consecutive iterations of a loop can
usually be overlapped, resulting in considerable
speed-up.

3. The most effective way to schedule is to do it at the
highest possible level using global scheduling
techniques.

vinod@ic.uff.br Arquiteturas Paralelas I Topico 5

