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Regardless of whether the focus is on algebraic structures, elaborating role structures or the simple delin-
eation of concrete social structures, generalized blockmodeling faces a pair of vulnerabilities. One is
sensitivity to poor quality of the relational data and the other is a risk of over fitting blockmodels to
the details of specific networks. Over fitting blockmodels can lead to multiple equally well fitting parti-
tions where choices cannot be made between them on a principled basis. This paper presents a method
of tackling these problems by viewing (when possible) observed social relations as multiple indicators
of an underlying affect dimension. Quadratic assignment methods using matching coefficients, product
moment correlations and Goodman and Kruskal’s gamma are used to assess the appropriateness of using
the sum of observed relations as input for applying generalized blockmodeling. Data for four groups are
used to show the value of this approach within which multiple equally well fitting blockmodels for single
relations are replaced by unique (or near-unique) partitions of the summed data. This strategy is located
also within a broader problem of blockmodeling three-dimensional networks data and suggestions are

made for future work.
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Following the introduction of blockmodeling by Lorrain and
White (1971), an explosion of work followed (Hummon and
Carley, 1993) that: (i) explored its mathematical foundations (e.g.
Schwartz, 1977; White and Reitz, 1983; Batagelj, 1997; Doreian
et al., 2005); (ii) provided practical computer algorithms to per-
form blockmodeling (e.g. Breiger et al., 1975; Burt, 1976; Batagelj
et al., 1992); (iii) explored detailed role structures (e.g. White et
al., 1976); (iv) provided algebraic interpretations of role structures
(e.g. Bonacich, 1979; Winship and Mandel, 1983; Mandel, 1983)
and (v) provided many empirical applications of blockmodeling.
Generalized blockmodeling was presented as a general framework
permitting many different block types with new types of blockmod-
els and direct fitting of blockmodels to social relational data that
included blockmodels for signed relations (Doreian et al., 2005).

Regardless of whether the focus is on algebraic structures, elab-
orating role structures or the simple delineation of concrete social
structures, there are at least two vulnerabilities for this approach:
(1) possible poor quality of the relational data analyzed and (2) the
risk of over fitting a blockmodel to the details of a specific network.
This paper presents one way of tackling both problems through
the use of multiple indicators for signed social relations. Section
1 introduces the problem more fully. The methods and the data
are described in Section 2. These methods are applied to the data
and the results are interpreted in Section 3. The final section dis-
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cusses the empirical results, presents some suggestions concerning
blockmodeling both signed and unsigned social relations and three-
dimensional blockmodeling.

1. Signed social relations and blockmodeling

When studying sociometric structure, the modal strategy uses
positive social relations. Yet, many social relations carry both pos-
itive and negative affect and the dynamics of signed affect ties
between people are different to those of positive relations alone.
Fortunately, there are signed network data sets available to explore
these issues. For signed relations, one focus - informed by the work
of Cartwright and Harary (1956) and of Davis (1967) - is on delineat-
ing the group structure in the sense of identifying mutually hostile
subgroups where each subgroup is held together by positive ties.

Structural balance theory has its origins! in the work of Heider
(1946). Cartwright and Harary (1956) generalized structural bal-
ance theory in three ways by: (a) removing the distinction between
signed social relations and signed unit formation relations to study,
simply, signed relations; (b) moving from studying signed triples (in
the minds of actors) to studying signed social networks (of actors)
(Doreian, 2004); (c) providing a compelling statement of the global

1 While there are many variants of ‘consistency theories’, for example, Newcomb
(1961, 1968), Festinger (1957) and Osgood and Tannenbaum (1955), Heider’s formu-
lation is used here as the point of departure.
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structure of a group based on the microdynamics of signed rela-
tions among people. A signed network (Doreian et al., 2005, p. 298)
is an ordered pair (G, o) for which the following hold:

(1) G=(V,A) is a digraph, without loops, where V is a set of vertices
and A is a set of arcs such that AC V x V, the Cartesian product
of V with itself and

(2) 0:A— {p,n} is a sign function. The arcs with sign p are positive
and arcs with sign n are negative. If the relation is binary then
an equivalent representation is 0:A — {+1,—1}.

The second part can be extended to valued networks where the
arcs have both sign and magnitude. A finite sequences of vertices
and arcs, s=vg, ay, V1, 4z, Vo, ..., Gm, Vm is a walk from vg to vy,
in G if and only if for each value of i (1 <i<m), q; is (v;_1, V), an
arc from v;_; to v;. If s satisfies a weaker condition that every g; is
either (v;j_1, v;) or (v;, vi_1) then s is a semi-walk. If vg =v,, then s
is a closed semi-walk. A semi-walk is positive if the product of the
signs of its arcs is positive and a signed network is balanced if every
closed semi-walk is positive. The basic theorem of Cartwright and
Harary (1956) states: a signed network is balanced if and only if the
set of vertices can be partitioned into two subsets such that every
positive arc? joins vertices within the same subset and all nega-
tive arcs join vertices of different subsets. Davis (1967) proposed
labeling the clusters as plus-sets (their only internal sign is posi-
tive) and established a generalization of Cartwright and Harary’s
result: a signed network is exactly partitionable into two or more
plus-sets if and only if it has no closed semi-walks with exactly one
negative arc.

Doreian and Mrvar’s (1996) partitioning method, for signed net-
works, identify the partitions of these ‘structure theorems’. More
importantly, it can be used to delineate empirical partitions as close
to these ideal forms as possible given empirical signed networks
that are neither balanced nor exactly partitionable. Their method
was located later within the generalized blockmodeling framework
by defining new block types and a new blockmodel for signed
networks, together with a criterion function (see below) to be min-
imized across all possible partitions to establish partitions that best
fit the data directly (Doreian et al., 2005, Chapter 10).

The form of a blockmodel image, based on these structure the-
orems is simple: blocks on the main diagonal have only 1s or Os
while, off the main diagonal, all the block elements are either —1 or
0. Put differently, only ‘positive blocks’ appear on the diagonal and
only ‘negative blocks’ are off the diagonal. This can be extended to
include positive values and negative values for valued signed net-
works. The criterion function is based on the line indexes defined
by Harary et al. (1965, pp. 348-351). One is the smallest num-
ber of lines for which a sign reversal leads to a balanced network.
Another is the smallest number of lines whose removal leads to a
balanced network. Harary et al. (1965) proved they are identical for
all signed networks. Letting P be the number of positive ties where
they should not be (between plus-sets), A’ the number of negative
ties where they should not be (within plus-sets) and C a partition
into k clusters, a simple criterion function, &(C), is shown in Eq.
(1) (where 0 < <1). The parameter « allows an analyst to differ-
entially weight the two types of inconsistencies when one type is
thought to be more consequential than the other. Usually, however,
o is set to 0.5 to weight P and N equally.

D(C)=aP+(1-a)N (1)

2 If the signed network contains both arcs (directed lines) and edges (undirected
lines) then the structure theorems can be restated using lines instead of arcs.

Doreian and Mrvar’s (1996) algorithm is a local optimization
procedure3 that minimizes @(C) to get the partition(s) closest to
a balanced partition (for which @(C) would be 0). For binary net-
works, P and N are counts of the number of arcs where they should
not be according to balance. For valued signed networks they are the
sums of the values of the ties that are inconsistent with structural
balance.

Some of the early work on blockmodeling used multiple rela-
tions by ‘stacking’ them, computing measures of (dis)similarity
across them and using clustering algorithms. When signed data
were used by Breiger et al. (1975) and White et al. (1976), using
the indirect approach, the positive and negative ties were sepa-
rated into different matrices that were then stacked. Doreian et al.
(2005, pp. 312-317) used signed network data from Bales (1970)
and partitioned them in two ways: (i) using the above algorithm
with the criterion function in Eq. (1) and (ii) separating the posi-
tive and negative ties into two relations, stacking them and then
partitioning according to structural equivalence. The results were
dramatically different and favored treating the signed ties together
rather than treating them as separate, stacked, relations.

Doreian et al. (2005) focused on developing their generalized
blockmodeling approach and most of their examples featured sin-
gle relations. Marsden (2006) noted this and observed the earlier
blockmodels used multi-relational data. The obvious inference is
that the generalized blockmodeling approach can be - indeed, must
be - extended to consider multiple relations. Yet how to do this is
less than obvious, especially when the relations are different, for
example, organizational hierarchies and informal social relations.
Further, stacking signed networks to use indirect methods is not
appropriate.* One response is to pursue three-dimensional block-
modeling of multiple relations (Baker, 1986; Batagelj et al., 2007).
In cases where the multiple relations can be viewed as indica-
tors of some underlying relational dimension, a multiple indicator
approach could prove useful. This is adopted here for signed rela-
tions to deal with the potentially serious pair of problems outlined
above when blockmodeling is used for one social relation.

Doreian et al. (2005) note that for any social relation, their meth-
ods could lead to multiple equally well fitting partitions. This can
be viewed as interesting substantively (their view) or as a problem
created by sensitivity to measurement errors in one social relation.
More precisely, having multiple equally well fitting partitions may
be a result of measurement errors in the indicators when they are
used as measured relations rather than as indicators. When there
are equally well fitting partitions - partitions with the same mini-
mized value of &(C) for one or more values of k — these partitions
cannot be distinguished in terms of fit. The companion problem is
that blockmodels of a single relation run the risk of being over fit-
ted. Over fitting models of any sort — be they formal, empirically
estimated equations or even rich ethnographic descriptions - is a
major problem for the social sciences (de Marchi, 2005). A multiple
indicator approach to blockmodeling, as proposed here, can help
solve these problems by identifying unique best fitting partitions
and not having blockmodels over fitted to idiosyncratic features of
a particular relation.

3 A network is partitioned randomly into k clusters and the criterion function is
computed. The neighborhood of a clustering is defined by two types of transitions:
(a) moving a vertex from one cluster to another and (b) interchanging two vertices
between clusters. If a transition leads to a lower value of the criterion function, the
new partition is chosen and the procedure is repeated until no further improvement
is possible. This is repeated many times to avoid a local minimum for the criterion
function.

4 There is no (dis)similarity measure for the extent to which actors belong together
in plus-sets, and how the network ties are distributed into positive or negative
blocks, which rules out the usual stacking for signed networks.
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Fig. 1. Plot of the optimal values of the criterion function for each relation: House
A.

2. Data and methods

Data used here come from Lemann and Solomon (1952) and
Sampson (1968). Lemann and Solomon (1952) collected data from
female students living in three “off campus dormitories” at an East-
ern college. These residences were labeled Houses A, B and C, a
usage continued here. They write (1952, p. 14) “sociometric criteria
refer to different areas of choice” and, wanting to measure signed
relations adequately, they add “multiple criteria broaden the base
for acceptance or rejection.” In their view, multiple criteria make
it more likely that signed relations are measured adequately. This
is consistent with measuring of an underlying affect dimension
with multiple indicators. Four indicators were created by asking
the women to name three others with whom they would like to
do something and three others with whom that person would not
like to do these things.? The activities were going on a double date,
wanting another woman as a friend after college, having someone
as aroommate and taking someone for a weekend visit with family.

These data can be examined in two ways: (i) analyzing each
relation separately and (ii) using a multiple indicator approach
for measuring an underlying affect dimension. To consider this we
need the following result (Doreian et al., 2005, pp. 305-306) regard-
ing the values of the criterion function in Eq. (1), where k is the
number of plus-sets in a partition (2 < k <n), and partitions with k
and (k — 1) plus-sets are adjacent:

Theorem 1. For any signed network, (G, «), there is a unique
lowest value of the criterion function. This value will occur for par-
titions with a single number of (one value of k) plus-sets or for
adjacent partitions (and more than one value of k).

The basic problem of delineating multiple partitions is described
in Fig. 1 (for House A) and in Table 1 (for all houses). They demon-
strate the realization of the potential problem when the four
relations for House A are analyzed separately. The curve of the crite-
rion function plotted against k is concave upwards, consistent with
Theorem 1, and is shown in Fig. 1 for each relation fitted separately
in House A. (Given Theorem 1, it is not necessary to establish par-
titions for every possible value of k.) For double date, friend after
college and preferred choice for a roommate, the minimum values

5 Adebate on the appropriateness (or not) of asking for a fixed number of choices
was triggered by Holland and Leinhardt (1973). While fixed choice instruments are
still used, the consensus now appears to be that it is better to have a free number
of nominated others in a sociometric instrument. However, Lemann and Solomon
(1952) provide a quite sophisticated argument for their use of a fixed choice design.

Table 1
Details on the ambiguity of separate partitions of the observed relations

Signed relation k Optimal criterion Number of optimal
function partitions
House A
Double date 4 8.5 2
5 8.5 2
Friend after college 4 7.5 1
5 7.5 1
Roommate 4 6.5 4
5 6.5 3
Weekend visit 5 7.0 5
6 7.0 5
House B
Double date 4 9.0 2
Friend after college 4 9.0 1
Roommate 4 8.5 1
Weekend visit 3 9.5 1
4 9.5 9
House C
Double date 3 6.5 3
4 6.5 1
Friend after college 3 7.0 3
4 7.0 2
Roommate 3 9.0 1
4 9.0 2
5 9.0 1
Weekend visit 3 7.0 3

occur for k=4 and k=5. The minimum value of @(C) for the week-
end visit relation occurs for k=5 and k=6. This ambiguity is bad
enough (even though a case can be made for choosing k=5 as a
compromise). A deeper problem revealed in Table 1 is the presence
of multiple equally well fitting partitions for all of the relations. The
columns list the relations, the values of k for which @(C) is mini-
mized, the optimized values of &(C), one for each value of k, and
the number of optimal partitions are in the last column. Within
each house, there is no unique optimal partition across all rela-
tions. Moreover, there is no agreement over the best k across the
four relations. Both features are undesirable. The second two pan-
els of Table 1 show that the problem of multiple equally well fitting
partitions applies to the other houses, albeit in a less acute form for
House B for two of the four relations.

When viewing the measured ties as indicators of an underly-
ing signed affect tie, there are options for proceeding. One simple
tactic is to sum the four relations to get a valued signed network.
Moreover, the values of the summed relation have a simple inter-
pretation. If v is the summed value of the separate ij ties, across all
relations, it is a valued tie from actor i to actor j. If vij =v then actor
i has chosen actor j for v of the four possible activities. Similarly, if
vjj =—v thenihas reported that she would not like doing v activities
withj. The range of ties values is given by —4 < v;; <4 and the values
form a ratio scale over this range.

Fig. 2 provides a plot of the optimized value of &(C) for House A
against k for the summed relation. There is a unique value of k for
the minimized criterion function this partition is unique (for k=4).
Using multiple indicators permitted a unique optimal partition for
House A.

There are two potential complications to consider. One occurs
if an individual, i, wants to do some activities with j and wants
to not do other activities with j. The value of the summed tie, vy,
is then the net number of activities that i wants to do with j and
can be interpreted as such. But if there are many such instances
then the utility of the multiple indicator approach suggested here
may be compromised. Fortunately, this never happens for House A
and happens only once (over 162 non-zero choices) in House B. For
House C this happens 6 times out of the 208 non-zero choices. The
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Fig. 2. Optimal values of the criterion function for the summed relation: House A.

incidence of these conflicting choices is minimal to non-existent in
the House data.

A second potential problem is that the multiple indicators might
not ‘scale’ in the sense that the observed relations are not indicators
of an underlying dimension. Put differently, it is necessary to see if
the 1s and —1 s appear generally in the same places in the multi-
ple ‘observed’ relations. To check this, a direct approach was taken
by using quadratic assignment procedures (QAP), as implemented
in Ucinet (Borgatti et al., 2002) with a focus on the simple match-
ing coefficient (Sokal and Michener, 1958), Goodman and Kruskal’s
(1954) gamma and also product moment correlations. The QAP
results are robust in the face of interdependence (Krackhardt, 1987).
Given the significance of the correlations, a secondary check was
done using the first principal component of the observed indica-
tors, constructing the underlying factor, and examining the loadings
for consistency.® The summed variable and the constructed vari-
able (from a principal components analysis) ought to be close to
each other if the overall strategy has merit. When this criterion or
constraint is met, it makes sense to use generalized blockmodeling
with the summed relation alone rather than use it for each relation
separately.

3. Applications

The above strategy is applied first for the House data to provide
separate assessments of the multiple indicator approach. These
analyses were performed using Ucinet and Stata (StataCorp., 2003).
With adequacy of the underlying single model established, the gen-
eralized blockmodeling results for the summed relation are then
presented.

3.1. Assessing the appropriateness of a single factor: House data

Table 2 reports the simple matching coefficients for the posi-
tive and negative ties (separately) in one panel. The second panel
of this table has the correlation coefficients for relations in their
signed form together with the values of Goodman and Kruskal’s
gamma. The QAP generated p-value or every coefficient reported in

6 Using Cronbach’s (1951) Alpha, at face value, is another way of examining the
consistency of the observed indicators, in the sense of seeing if they tap a single
underlying dimension. However, in computing this measure, using the (n(n—1)/2
dyadic elements (for n members of a house) of the sociomatrices implies severe
non-independence of the observations together with the presence of many (0, 0)
data points and makes this measure problematic.

this table is 0.000 (using 2500 permutations) and is not reported in
the table. In general, the matching coefficients for the positive ties
are slightly above those for the negative ties. However, all are large
as well as significant. Similarly, the values of the product moment
correlations between the observed relations, based on an assumed
linear relation, are high with higher correlations with the summed
relation. The values of the Goodman and Kruskal gamma statistic,
treating the observed ties as ordinal, are also very high. For Houses
A and B, the value of this statistic is 1 for the relation between the
summed relation and each of the observed relations.”

The results of a principal components factor analysis of the
observed relations are reported in Table 3. For House A, the eigen-
values are 3.007, 0.425, 0.333 and 0.236. The corresponding values
for House B are 3.114, 0.360, 0.277 and 0.249. Finally, the eigenval-
ues for House C are 2.824, 0.436, 0.394 and 0.346. For each house,
the first far exceeds the remaining eigenvalues and the first factor
accounts for 75%, 78% and 71% of the common variance for Houses
A, B and C, respectively. The factor loadings and uniqueness values
in Table 3 are uniform in each panel.® Using a single underlying
variable in the form of the sum of the relations for generalized
blockmodeling seems appropriate for these data.

3.2. Generalized blockmodeling partitions: House data

Generalized blockmodeling of signed relations delineates the
macro structure of groups in terms of the number of plus-sets, the
membership composition of these plus-sets and the level of imbal-
ance in the group. Fitting these blockmodels requires the use of
a local optimization procedure that is repeated many times (as
described in footnote 4). This is implemented in Pajek (Batagelj
and Mrvar, 1998). For the relevant values of k in each house, the
optimization was repeated 2000 times. The summary of the fitting
processis shown in Table 4. For each house, the following results are
shown: the values of k for which optimal partitions were obtained
(from 2 through 6, recall Theorem 1), the optimal value of &(C) for
each k and the number of optimal partitions for each value of k. The
overall optimal values are bolded. For House A, there is a unique
partition of the women into 4 plus-sets when @(C) is 32 (the mea-
sure of imbalance). For House B, the optimal value of &(C) (40.5) is
found also for partitions into four plus-sets. However, there are two
equally well fitting partitions. There is a unique optimal partition
also for House C, with @(C) taking the value of 31.5, with 3 plus-sets
in the optimal partition.

7 The cross-tabulation of the summed relation for house A and the double date
relation is

Summed relation Double date Total
-1 0 1
-4 20 0 0 20
-3 13 10 0 23
-2 14 13 0 27
-1 16 33 0 49
0 0 209 0 209
1 0 12 11 23
2 0 9 7 16
3 0 8 7 15
4 0 0 38 38
Total 63 294 63 420

with no inversions of order between the two variables, the Goodman Kruskal gamma

measure is at its maximum value of 1. This holds for all relations in Houses A and B.
House C has small numbers of inversions and these coefficients are slightly below 1.

8 Further, tests of a single factor model against the saturated model, show the
single factor model is statistically indistinguishable from the saturated model in all
houses.
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Table 2
Measures of correspondence for the observed relations: House data
Positive ties Negative ties
D F R D F R
Matching coefficients: positive ties and negative ties
House A
Friend 0.929 1.0 0.857 1.0
Roommate 0.900 0.929 1.0 0.867 0.886 1.0
Weekend visit 0.914 0.962 0.943 0.852 0.895 0.871
House B
Friend 0.904 1.0 0.890 1.0
Roommate 0.860 0.912 1.0 0.882 0.860 1.0
Weekend visit 0.868 0.926 0.926 0.912 0.882 0.868
House C
Friend 0.905 1.0 0.853 1.0
Roommate 0.905 0.911 1.0 0.853 0.853 1.0
Weekend visit 0.889 0.921 0.905 0.874 0.863 0.874

Correlations

Goodman and Kruskal’s gamma

D F R \Y D F R \

Product moment correlations and values of Goodman and Kruskal’s gamma
House A

Friend 0.643 1.0 0.818 1.0

Roommate 0.611 0.690 1.0 0.774 0.872 1.0

Weekend visit 0.611 0.762 0.690 1.0 0.774 0.931 0.872 1.0

Relation sum 0.827 0.893 0.863 0.884 1.0 1.0 1.0 1.0
House B

Friend 0.725 1.0 0.861 1.0

Roommate 0.647 0.686 1.0 0.778 0.836 1.0

Weekend visit 0.706 0.745 0.716 1.0 0.836 0.884 0.873 1.0

Relation sum 0.872 0.895 0.864 0.897 1.0 1.0 1.0 1.0
House C

Friend 0.571 1.0 0.822 1.0

Roommate 0.588 0.605 1.0 0.799 0.799 1.0

Weekend visit 0.605 0.647 0.630 1.0 0.799 0.832 0.832 1.0

Relation sum 0.823 0.840 0.840 0.858 0.985 0.985 0.993 0.993

While the problem of obtaining partitions multiple equally well
fitting optimal partitions was apparent for single relations, using
the sum of these relations solved the problem for Houses A and C
while coming very close for House B. The two House B partitions
are very close so that the same macro structure is described in both
partitions.

3.2.1. House A

Fig. 3 shows the unique optimal partition into four clusters
(plus-sets). The valued entries in the table vary from +4 to —4.
Positive ties are represented by squares and negative ties are

Table 3
Principal components factor analysis for the multiple indicator model
Signed social relation Loadings Uniqueness
House A
Double date 0.8199 0.3277
Friend after college 0.8962 0.1967
Room mate 0.8631 0.2550
Weekend visit 0.8868 0.2135
House B
Double date 0.8716 0.2403
Friend after college 0.8960 0.1973
Room mate 0.8621 0.2568
Weekend visit 0.8988 0.1921
House C
Double date 0.8196 0.3283
Friend after college 0.8405 0.2935
Room mate 0.8403 0.2940
Weekend visit 0.8603 0.2600

represented by diamonds. For both, values of the ties are repre-
sented by differential darkness of the shading with the darkest
squares representing +4 and the darkest diamonds are used for
—4. The theoretically driven blockmodel for signed networks
posits positive blocks on the diagonal and negative blocks off the
diagonal. The summary blockmodel is

Positive Negative Negative Negative
Mixed Mixed Negative Negative
Negative Negative Positive Null
Mixed Negative Negative Positive

where the blocks are labeled positive, negative, mixed and null.?
The positive blocks are bolded when they are consistent with the
specified blockmodel either by having no negative elements or very
few (one or two) of them. Blocks where the (inconsistent) negative
elements approach the number of positive elements are labeled
as mixed. Block labels are not bolded when there are additional
negative elements (between three and the number of ties identify-
ing the block type). There is one exact null block. Negative blocks
have been treated in a similar fashion: they are bolded when there
are zero or very few positive elements in them through to being
labeled as ‘mixed’ when the number of (inconsistent) positive ele-
ments approaches the number of negative elements. The label is
used simply to indicate concern that the partition, while being the

9 Normally, the blocks are labeled ‘positive’ or ‘negative’, consistent with struc-
tural balance with the value of the criterion function noted. The additional labeling
is simply a step in the direction of looking at the inconsistencies more closely.
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Table 4

Summary of structural balance partitions for the three houses

House A House B House C

k Optimal criterion Number of k Optimal criterion Number of k Optimal criterion Number of
function partitions function partitions function partitions

2 48.5 1 2 51.5 2 2 34.0 1

3 37.0 1 3 42.0 1 3 315 1

4 32.0 1 4 40.5 2 4 33.0 1

5 325 2 5 41.5 1 5 33.0 1

6 33.0 1 6 435 1 6 375 1

best that can be done with pure structural balance, may point to
additional mechanisms generating signed ties.

The 21 women are partitioned into 4 four plus-sets for the small-
est value of the criterion function: p-s; ={g, h, o, u}; p-s2 ={l, n, t};
p-s3={a, b,d, e f i,j, k m,p, q} and p-s4={c, 1, s}. Of these plus-
sets, p-s; is the most consistent with structural balance ideas. All of
the positive choices, at the maximum possible value of 4, made by
g, h, 0 and u are within their plus-set. All of their negative choices
are to women in two of the other plus-sets. The women of p-sq
recognize none of the women in p-s; leading to the null block in
Fig. 3. Also, they receive only two positive ties from women in other
plus-sets. The plus-set, p-s,, is consistent with balance having only
internal positive ties. Given its size (of 3) and the number of choices
made, some positive ties must go to women in other plus-sets. All
of their negative ties go to women in other plus-sets. As for p-sq,
the women in p-s, receive only two positive ties from women in
other plus-sets.

The largest plus-set is p-s3 with 11 members. All but 3 of their
33 positive valued ties are to other members within their plus-set,

Range of values [-4.00,4.00]

consistent with structural balance. However, there are 10 negative
ties within the plus-set. Again, most of their negative ties are sent
to members of other plus-sets. They do receive positive ties from
women in two other plus-sets, p-s; and p-s4. The small plus-set, p-
sS4, is the least consistent with structural balance. There are almost
as many negative ties within the plus-set as there are positive ties.
The members of p-s4 send positive ties to members of all the other
three plus-sets. However, its members receive only two positive ties
from women in p-s3 and none from women in the remaining plus-
sets. The balance theoretic partition is clear and the departures are
interpretable.

Measures of imbalance, whether constructed from cycles
(Hummon and Fararo, 1995) or line counts (Harary et al. (1965)
are computed for the network as a whole. While the line index is
useful, because it provides the basis for the criterion function used,
the above description of the balance partition of House A makes
it clear that balance holds differentially across the whole network. In
addition to knowing the composition of the plus-sets, this is an
important insight masked by the use of the imbalance measures
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Fig. 4. Unique partition of the summed relations for House C.

alone in characterizing groups. Having balance holding to different
extents across the network is part of the identified macro-structure
of the group.

3.2.2. House C
The unique optimal partition for House C, in terms of structure
balance, is shown in Fig. 4 and the structure of the blockmodel is

Positive Negative Mixed
Negative Positive Negative
Mixed Negative Positive

The three plus-sets are p-s; ={a,b, ¢, g,k 1, p, q, t}; p-s2 ={d, f, I, j, m,
s} and p-s3 ={e, h, n, o, r}. The three plus-sets appear to be roughly
equally consistent with balance theory regarding the absence of
negative ties between the members within a plus-set. The number
ofthese inconsistencies (6, 3 and 1, respectively) varies directly with
the size (9, 6 and 5, respectively) of the plus-sets. The ties between
the plus-sets p-s; and p-s; conform largely to structural balance
with just one positive tie between the two sets of members. This
is less true for p-s; and p-s3 where there are fewer negative ties
between members of the different plus sets and more positive ties
between these two plus-sets. The members of both p-s, and p-s3
send positive ties to each—but they are far fewer than the number of
negative ties between the two plus-sets. Overall, they are the least
consistent with balance on this criterion and there are plenty of null
ties in the corresponding blocks. Again, there are differences with
regard to balance holding across different parts of the structure
albeit in a different form compared to House A.

3.2.3. HouseB
For seeking a unique optimal partition of the underlying signed
relation, the approach proposed here is less successful although

there are only two equally well fitting optimal partitions. One of
these is shown in Fig. 5 for which the summary blockmodel is

Positive Negative Negative Negative
Mixed Positive Negative Mixed
Mixed Negative Positive Mixed
Mixed Negative Negative Positive

As was the case for House A, there are 4 plus-sets (with one of them
much larger that the other three plus-sets). They are p-s; ={g, n, q},
p-s2={i,j}, p-s3={c,0}and p-s4 = {a, b,d, e, h, f, k, 1, m, p}. The only
difference between this partition and a second equally well fitting
partition is that i and f change places in their plus-sets. These par-
titions are very close to each other and qualitative interpretations
of the two are identical.

The three small plus-sets all have only positive ties within
them. However, their small size, especially acute for p-s; and p-
s3, together with the fixed choice design of Lemann and Solomon,
means that at least half of the positive choices for women in these
plus-sets must go to women in other plus-sets. Departures from bal-
ance theory are inevitable. The large plus-set, p-s4, has many more
positive (and stronger) ties than negative ties among its members.
The block of ties from p-s4 to p-s3 is very close to perfect consis-
tency with balance by having only a single positive tie (from b to c)
among the many negative ties in the corresponding negative block.
There are only two positive ties between p-s4 and p-s; — with fewer
negative ties — and there are only three positive ties from p-s4 to
p-s1 with many negative ties in this block. The main departures
for balance are due to the members of the small plus-sets sending
their positive ties to members of the other plus-sets, especially to
P-S4, the largest plus-set. The use of a summed relational variable
constructed from multiple indicators when used for partitioning
networks, based on structural balance, has led to unique optimal
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Fig. 5. One of two optimal partitions of the summed relations for House B.

Table 5
Measures of correspondence for the observed relations: Sampson T4

Positive ties

Negative ties

Affect Esteem Influence Affect Esteem Influence
Matching coefficients: positive ties and negative ties
Esteem 0.843 1.0 0.843 1.0
Influence 0.869 0.882 1.0 0.827 0.833 1.0
Sanction 0.706 0.729 0.729 0.801 0.794 0.791
Correlations Goodman and Kruskal’s gamma
Affect Esteem Influence Sanction Affect Esteem Influence Sanction
Product moment correlations and values of Goodman and Kruskal’s gamma
Esteem 0.706 1.0 0.846 1.0
Influence 0.623 0.752 1.0 0.856 0.858 1.0
Sanction 0.474 0.580 0.562 1.0 0.601 0.695 0.669 1.0
Relation sum (3) 0.869 0.920 0.887 - 0.986 0.995 0.993 -
Relation sum (4) 0.836 0.905 0.874 0.759 0.963 0.986 0.992 0.953

partitions for two of the three houses. For the third house there
were two very close partitions of the actors and signed relation.

3.3. Asecond example: Sampson data

One of the most studied sociometric data sets comes from
Sampson (1968), a usage triggered by the early blockmodeling anal-
yses of Breiger et al. (1975) and White et al. (1976). Doreian and
Mrvar (1996) returned to these data that were defined after part of
a class graduated and a new group of trainees joined the monastic
order for three time points (T2, T3 and T4). They focused on the sin-
gle relation ‘affect’ and found the same unique partition for T2 and
T3. They identified this partition also for T4 together with a second
equally well fitting partition and remarked that examining closely

the second partition could be interesting substantively. Arival inter-
pretation is that the second partition is spurious and resulted from
partitioning a single relation. The relations for which Sampson
(1968) obtained signed data were ‘affect’, ‘esteemy’, ‘influence’ and
‘sanction’. (See Sampson (1968, pp. 316-318 and 457-472) for the
operationalization of the variables and the data, respectively.) He
measured them at the ordinal level. Even so, we sum these rela-
tions also.!? Table 5 shows the results using the same matching
coefficients and correlational measures used in Table 2. Again, the

10 If we retained the operationalization of the summed relation as the count of the
number of occurrences of signed ties, by binarized relational data first, we get the
same partitions.
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p-value for all coefficients in Table 5 is 0.000. The displayed values
in the top panel suggest that sanction is the least consistent with
the other indicators. And when the sanction relation is examined
closely, three rows have only Os for three trainee monks who did not
sanction their brethren. The correlations for summed relation for
three observed relations (affect, esteem and influence) are shown
in the row labeled ‘Relation Sum (3)’ and the corresponding values
for using all four relations are in the row labeled ‘Relation Sum (4)'.
These suggest that using only the three indicators is preferable. The
results for the principal component analyses are shown in Table 6
and point to the same conclusion.

Fig. 6 shows the unique partition when the balance theoretic
signed blockmodel is fitted to the summed data with the three posi-
tions of Young Turks, Outcasts and Loyal Opposition. The names of
the trainee monks are grouped into clusters listed on the left. This
partition is the same as reported by Doreian and Mrvar (1996) for
T2 and T3 as well as one of the partitions they reported for T4. The
partition structure of the blockmodel is:

Positive Negative Negative
Negative Positive Negative
Negative Negative Positive

Note that both White et al. (1976) and Doreian and Mrvar (1996)
cite ethnographic detail in Sampson (1968) justifying the inclusion
of Amand with the Outcasts. The decline in the value of the criterion
function across the three time points follows the same pattern as
described by Doreian and Mrvar (1996). The appealing feature of
the multiple indicator approach is that it produces the same unique
partition for all time points with a declining value of imbalance.

Range of values [-9.00,9.00]
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Table 6
Principal components factor analysis for the T4 monastery data
Signed social relation Loadings Uniqueness
All four indicators
Affect 0.8293 0.3122
Esteem 0.8705 0.2423
Influence 0.8630 0.2552
Sanction 0.7390 0.4539
For the first three indicators
Affect 0.8678 0.2470
Esteem 0.8897 0.2084
Influence 0.8714 0.2407

Therefore, there is little reason to worry about the second partition
identified by Doreian and Mrvar for T4.

4. Discussion and suggestions for future work

Structural balance theory when coupled with generalized block-
modeling techniques provides an integrated, substantively based,
approach for the analysis of signed data that leads to the delineation
of the macro structure of human groups. Both the Lemann and
Solomon (1952) and the Sampson (1968) data sets provide us with
four measures of signed relational data. When these relations for
the House data are analyzed separately there are multiple equally
well fitting partitions across the different relations. Yet, when the
multiple indicator approach is adopted, with relations viewed as
observed measurements of some unobserved underlying signed
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Fig. 7. The unique partition imposed on the observed relations for House A.

affect relation for the House data, the results are consistent and
interpretable. For two of the Houses (A and C) the approach estab-
lishes a unique optimal partition. The analysis of the data for the
third House (B) leads to two optimal partitions that are extremely
close to each other and have the same qualitative interpretation.
The problems with the Sampson data are far less acute as far as
multiple partitions are concerned where fitting a signed block-
model to the sum of three relations also produces a unique partition
for T4.

The unique partition described above can be imposed on the
separate relations for the House Data. This is shown in Fig. 7 for
House A. (Similar results occur for the other houses and are not
reported here.) Computing the measures of fit for each relation
under the imposed partition reveals that these measures are, in
general, slightly larger than the optimized value of the criterion
function for each relation. They never take a lower value as shown
inTable 7.In fitting blockmodels, in general, two views can be taken:
(i) minimizing the criterion function is most important and (ii)
obtaining a unique partition is preferable to having many equally
well fitting partitions. These views hold for fitting a blockmodel to
one relation or to multiple relations. If unique optimal partitions
are identified, there is no contradiction between the two views.
However, when they do not agree a choice has to be made. Stress-
ing the first view suggests that the partitions with the optimized

values of @(C) in the first column (in Table 7) are preferable while
stressing the second view leads to accepting those in the second
column. There are two arguments supporting the second view. One
is that having a principled reason for selecting a partition is better

Table 7
Comparison of criterion function values for the House data

Value of the criterion
function for the

Value of the optimized
criterion function under

over fitting imposed partition

House A

Double date 8.5 9.5

Friend after college 7.5 8.0

Roommate 6.5 6.5

Weekend visit 7.0 8.0
House B

Double date 9.0 10.0

Friend after college 9.0 9.5

Roommate 8.5 10.5

Weekend visit 9.5 9.5
House C

Double date 6.5 8.5

Friend after college 7.0 7.0

Roommate 9.0 9.0

Weekend visit 7.0 7.0
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than dealing with many partitions and choosing one arbitrarily.!!
The second is that the separate partitions have been responsive
to idiosyncratic features of the single relational matrices. This is
apparent in Fig. 7 where some of the inconsistencies appear in
different places in the separate networks. The partitioning algo-
rithm responded to the different locations so that the blockmodels
were over fitted by being responsive to minor differences in similar
relations.

Using the approach described here, to increase the chances
for delineating a unique partition, presumes that the observed
indicators of the underlying affect relation do conform to a sin-
gle factor model which always requires empirical confirmation.
Another reason for the increased likelihood of a unique partition
is that the valued network has more information (Ziberna, 2007)
and is reflected in the table shown in footnote 6. Valued data pro-
vide more information than binary data. As a thought experiment,
comparing data collected when the permitted values are (-1, O,
1) with data collected with permitted scale values, for example
(-5,-4,...,-1,0,1,..., -4, -5), suggests that the latter has more
discriminating information to exploit in analyzing these data. Any
dichotomization of the valued data loses information. The valued
data considered here came from summing a set of binary-signed
relations and represents another way of obtaining valued data,
albeit with a different foundation. Given that scales with more
values run the risk of having lowered reliability, it is not clear
that summed the binary relations is an inferior approach. This
is a measurement issue to resolve in future work. The ‘increased
information leading to a single optimal partition’ argument may
require qualification because the summed relation using all four
indicators for the T4 Sampson data has two equally well fitting
partitions. This is due more to the sanction variable being suf-
ficiently different from the other three indicators. If all of the
indicators do tap the same underlying relation then the ‘increased
information’ argument for reducing multiple partitions has great
merit and serves as an additional rationale for using multiple
indicators.

While it is clear that ‘stacking’ signed relations, or the separate
positive and negative relations, and computing some (dis)similarity
measure is not a viable option for signed data, it is possible
to simultaneously partition multiple signed relations. Suppose
that there are R relations. If the rth relation were partitioned
by itself then the criterion function is @(C) = aP; + (1 — @)N;
where P; is the number of positive ties where they should not
be for the rth relation and A; is the number of incorrectly
located negative ties for that relation. The R relations could
be partitioned simultaneously by defining the criterion function
@(C)= X' ®(C) and minimizing &(C) across all relations with the
same relocation algorithm. This merits exploration as an alternative
approach.

Given the results in Section 3 some suggestions follow. The first is
that given reliable multiple indicators of an underlying social rela-
tion, it is preferable to analyze the summed variable rather than
analyzing separate indicator relations. It follows that it is desir-
able to collect data for multiple relations as indicators of a common
underlying affect relation. The second suggestion is that the struc-
tural balance state of a network, at a given point of time, need
not hold to the same extent over the whole signed network. At face
value, this is an obvious result even though expressions of a “move-
ment towards balance” for a signed network are usually made for
the whole network. Parts of a signed network may be organized

11" For the two occasions when the separate optimized values are the same as the
measure of fit under the imposed partition, the partition established from using the
summed relation is one of the identified partitions for the relation by itself.

according to structural balance theory while other parts organized
by some other structural principle(s). That the level of balance can
vary across parts of the network can be an important clue for under-
standing how the social processes operate over time to generate
signed networks and can help identify additional mechanisms to
structural balance. Having a well-founded blockmodel allows us
to focus on those other parts of the network to discern possible
alternative organizing principle(s).

Because all of the ‘consistency theories’ posit some movement
towards consistency over time, with structural balance theory one
variant, these theories cannot be tested with cross-sectional data.
This leads to a third suggestion: collecting multiple indicator rela-
tional data over time increases the chances of having adequate tests
of structural balance theory (or any variant of consistency theo-
ries) and identifying additional principles for the organization of
signed relations. While the House data are static, the Sampson data
on relations are temporal. The prior analyses of the Sampson data
by Doreian and Mrvar (1996) showed movement towards balance
over time but left an element of ambiguity with two equally well
fitting partitions at the final time point (T4). It would appear that
the mechanism of change was one of increasing polarization over
an exiting partition into three clusters rather than any restructuring
of the factions.

Few signed relational data sets reveal groups that are perfectly
balanced. This may be due to a mismatch between the data collec-
tion design and the dynamic nature of balance theory. When data
are available only for a single time point, these data were collected
for some unknown stage of a balance process, assuming that one is
operative. For the House data, the women had been living together
for 4 months. Without knowing the time scale of the process these
data cannot speak to testing the process even thoughiitis reasonable
to assume that women knew each other well. A more likely reason
for not observing a perfectly balanced state is that balance is not
the only process that is operative and the (singular) ‘balance pro-
cess’ is really a set of multiple processes (Doreian and Krackhardt,
2001). Variables such as cohesion, solidarity, differential popular-
ity (and dislike) or contentiousness may also be relevant and, if so,
needs to be considered closely. Lemann and Solomon, using their
own measures, argued that House A was the least cohesive of the
three houses. This is consistent with the structural features found
here: having a signed network being closer to balance. Also needed
for a better understanding of the processes involved are data on
the individuals themselves. Lemann and Solomon did collect data
on personality traits of the women in the three houses but did not
report themin detail. Individual characteristics, more generally, and
sociometric structures co-evolve. So a fourth suggestion is that it
will be necessary to collect data for individual level variables as
well as dyadic data for distinct social relations over time in order
to study the co-evolving dynamic change of sociometric structure
and actors.

Marsden (2006) is correct in observing that the early pioneer-
ing blockmodeling work considered multiple relations and that
the generalized blockmodeling approach proposed by Doreian et
al. (2005), for all of its innovations, focused primarily on single
relations while acknowledging the need to consider multiple rela-
tions. A modest step in this direction is taken here for signed
networks where the multiple relations have been viewed as indi-
cators of some underlying affect dimension. For the house data,
a common partition, obtained from the summed variable, can be
imposed on each of the measured variables and these can then
be examined when that has substantive interest in its own right.
Such a representation, as done in Fig. 7, forms a kind of three-
dimensional blockmodel. This data structure differs to the multiple
relational data provided by Roethlisberger and Dickson (1939)
where the relations could not be viewed as being indicators of
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one underlying dimension. Breiger et al. (1975) used these data in
their influential paper on blockmodeling. How to blockmodel such
three-dimensional network structures is less clear even though the
‘stacking approach’ to blockmodeling can be viewed, in retrospect,
as an attempt to work with multiple indicators. Another approach is
to view the set of relations as forming a multi-graph where vertices
have multiple arcs.'? This produces the same results as explicitly
summing the relations for House A because there were no cases of a
woman selecting another positively on one relation and negatively
on another. I suspect that the alternative strategy using &(C)=X
+®:(C) would yield the same results in this case. For the other
houses using the multi-graph approach produces the same parti-
tions only with slightly different values for the criterion function.
This could also be the case when using &(C)= X ®(C) but as the
discrepancies between the observed relations increase, the three
approaches to partitioning could be impacted in different ways—yet
another area requiring further research.

While the data examined here were signed, it will be beneficial
to use a multiple indicator approach for unsigned relations when
the observed variables are genuine indicators of some underlying
dimension. For studying multiple relations within the blockmodel-
ing approach, there appear to be three directions in which we could
head. The most difficult is to replace ‘stacking’ multiple relations by
full three-dimensional blockmodeling. The block types suggested
by Doreian et al. (2005) will become three-dimensional ‘boxes’
rather than ‘blocks’ with the direct fitting of three-dimensional
blockmodels for both signed and unsigned relations.'? For signed
relations, the boxes will be positive or negative. Winship and
Mandel (1983) suggest such an approach, albeit in a different
form, for unsigned relations. A simpler alternative is to fit three-
dimensional blockmodels using an indirect approach. Some steps
in this direction are taken by Batagelj et al. (2007) using struc-
tural equivalence for unsigned relations. Using multiple indicators
for a restricted data structure has the merit of being simple. It
is likely that for the first two approaches, a multiple indicator
approach for the measurement of social relations will be impor-
tant to ensure reliable relational data for blockmodeling efforts for
discerning social structure, describing those structures and under-
standing the structural dynamics generating them. No doubt, this
will include the specification of different blockmodels for signed
networks depending on the location of positive and negative ties
that are treated as inconsistencies within a strict structural balance
approach.
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