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Resumo

Com a grande adoção da automação para a segurança das cidades, a reidentificação de
pessoas (Re-ID) vem sendo amplamente estudada recentemente. Nesta dissertação, ar-
gumentamos que a forma atual de estudar a reidentificação de pessoas, ou seja, tentando
reidentificar uma pessoa dentro de imagens já detectadas e pré-recortadas de pessoas, não
é suficiente para implementar aplicações práticas de segurança, onde as entradas para o
sistema são os quadros completos das transmissões de vídeo. Para apoiar esta afirmação,
apresentamos a configuração Full Frame Person Re-ID (FF-PRID) e definimos métricas
específicas para avaliar as implementações de FF-PRID. Para melhorar a robustez, tam-
bém formalizamos a estrutura de colaboração híbrida homem-máquina, que é inerente a
qualquer aplicativo de segurança Re-ID. Para demostrar a importância de considerar a
configuração FF-PRID, construímos um experimento que mostra-nos que combinar uma
boa técnica de detecção de pessoas com um bom método Re-ID não produz necessaria-
mente bons resultados para a aplicação final. Isso sublinha uma falha da formulação atual
na avaliação da qualidade de um modelo Re-ID e justifica o uso de diferentes métricas.
Esperamos que este trabalho motive a comunidade de pesquisa a considerar o problema
completo, a fim de desenvolver algoritmos que sejam mais adequados a cenários do mundo
real.

Palavras-chave: Aplicação de Segurança, Re-identificação de Pessoas, Detecção de
Pedestres.



Abstract

With the major adoption of automation for cities security, person re-identification (Re-
ID) has been extensively studied. In this dissertation, we argue that the current way
of studying person re-identification, i.e. by trying to re-identify a person within already
detected and pre-cropped images of people, is not sufficient to implement practical security
applications, where the inputs to the system are the full frames of the video streams. To
support this claim, we introduce the Full Frame Person Re-ID setting (FF-PRID) and
define specific metrics to evaluate FF-PRID implementations. To improve robustness, we
also formalize the hybrid human-machine collaboration framework, which is inherent to
any Re-ID security applications. To demonstrate the importance of considering the FF-
PRID setting, we build an experiment showing that combining a good people detection
network with a good Re-ID model does not necessarily produce good results for the final
application. This underlines a failure of the current formulation in assessing the quality
of a Re-ID model and justifies the use of different metrics. We hope that this work
will motivate the research community to consider the full problem in order to develop
algorithms that are better suited to real-world scenarios.

Keywords: Security application, Person re-identification, Pedestrian detection.
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Chapter 1

Introduction

1.1 Context and Motivation

In recent years, many security cameras were deployed in public places such as streets, malls

or airports. Today, most of these video streams are monitored in real-time by security

agents, which is expensive and rather inefficient as the amount of videos to analyze is

tremendous. In contrast, automated video analysis [29] can process large amounts of

videos simultaneously but is more prone to errors for complex tasks such as person re-

identification [135]. In addition, even for automated video analysis systems, the final

decision often rests with a human security agent, who triggers the appropriate actions.

Hence, in practice it seems good to adopt hybrid approaches, where artificial intelligence

models can screen the whole network in real time and select only relevant sequences for

the monitoring agents.

There are many automated video analysis jobs that are part of an inquiry area called

Computer Vision, where there are investigations such as Pedestrian Tracking, Detection

of anomalous actions, and Person Re-Identification. This work addresses the Person

Re-Identification (Re-ID) task, which has various definitions in different research areas

such as metaphysics [80], psychology [87], and logic [12]. Person Re-Identification (Re-ID)

problem aims at searching a given person (query) in a network of non-overlapping cameras

and raising an alert when this person appears in one of the video streams. It seeks to

reproduce and enhance the human ability to recognize people in different scenarios, e.g.

wearing different clothes, in a different pose, different illumination conditions, etc.

The current formulation to address Re-ID is based on large databases of images repre-

senting human beings in a real-world environment [148, 157, 54, 26, 36]. These images are

usually extracted using pedestrian detection models [4] and filtered manually to meet cer-
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tain standards: each image should contain the entire body of exactly one person, centered

and occupying most of the image(examples are shown on Fig. 1.1). From these datasets,

a given image is selected as the query and the others constitute the search gallery. Then,

the objective is to look for the query person within the gallery [135].

Figure 1.1: Illustration of the Classic Person Re-ID (C-PRID) setting (Source: author).

This approach is illustrated in Fig.1.1 where the output of a C-PRID model is an or-

dered list with the most similar person on top. Sometimes, individual images are replaced

by sequences of successive cropped images and the problem is called video-based Re-

ID [79, 52]. From now on, the Re-ID setting considering pre-cropped images of persons

as input is referred to as Classic Person Re-Identification (C-PRID). Recent successful

methods to address C-PRID are mostly based on deep learning [17, 109, 156, 129, 74].

In practical, tasks of person re-ID system in video surveillance can be divided into

three sub-modules[150]; (1)person detection ,(2)person tracking and (3)person retrieval.

In general, the first two steps are investigated independently, so C-PRID works are focused

on the last module in state of the art. Therefore, our motivation is to discuss the three

modules as one task and solve the practical application problems.
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1.2 Definition of the Problem

Current research by focusing only on the third module for the recovery of a person limits

its performance somehow, causing that in practical scenarios, the application of Re-ID

presents failures. However, when thinking about addressing the three modules as a whole,

it is a complex problem that as result we call a practical person re-identification system.

Here are some problems encountered if we consider C-PRID for resolve our problem:

1. C-PRID methods do not consider the full frames of the video stream as input.

Therefore, they rely on pre-processing using manual human trimming or detection

methods.

2. Re-ID is to find if a person is present in a camera network in the real-world prac-

tical use case. In this sense, the C-PRID formulation does not satisfy the need to

previously extract and crop the people’s images to recover the person from being

found.

3. In this way, the C-PRID can be leveraged to build a new configuration that would

be part of a complete task to solve the practical Re-ID problem but is not sufficient

on its own.

In this work, our hypothesis is a system that is deployed in a network of non-over-

positioned cameras, where the system receives several stream video inputs. Therefore,

the system will automatically process the videos generating images of people. The system

user will decide which person(query) he wants to search in the camera network. Finally,

the system will find the query using re-identification algorithms, alerting the user of the

system. Therefore, a new configuration is needed that considers what has been previously

reported to create and investigate complete methods in practical terms.

Besides security applications [89, 107, 59, 7], C-PRID is a useful building block for

other practical applications such as 3D Multi Object-Tracking [91] or executing visual

tasks for drones [105]. This work focuses on the practical security application, which

consists of identifying in a network of non-overlapping cameras, a specific person being

followed by human surveillance activity. To improve the clarity of this work, from now on

this practical application is referred to as Full Frame Person Re-Identification (FF-PRID).
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1.3 Justification

This research introduces a new setting of the person Re-ID problem, called FF-PRID,

which is better suited to implement and evaluate security applications. However, the

inquiry does not claim to solve the FF-PRID setting but rather to demonstrate that the

current way of approaching Re-ID is not suited for practical scenarios. By proposing

an alternative framework and evaluation method, we hope that this work will motivate

the community to consider the FF-PRID setting in order to develop algorithms that are

better adapted for real-world scenarios.

1.4 Objectives

1.4.1 Main objective

The main objective is to implement and evaluate real-world security applications based

on our Re-ID problem setting, called FF-PRID.

1.4.2 Secondary objectives

• Formalize the natural collaboration between an automated Re-ID system and the

monitoring agents like a hybrid framework to address the FF-PRID problem.

• Formulate complementary metrics to assess the quality of any FF-PRID pipeline.

• Reformulate a dataset of C-PRID that satisfying our new setting.

• Elaborate experiments are conducted to demonstrate the importance of considering

the FF-PRID problem in its entirety.

1.4.3 Contributions

Our results were published in Pattern Recognition Letters [99], where the main con-

tributions of our work is the proposal of a new pipeline of the person Re-ID problem,

called FF-PRID, which is better suited to implement and evaluate real-world security

applications. By formalizing the natural collaboration occurring between an automated

Re-ID system and the human monitoring agents, a hybrid and robust framework to ad-

dress the FF-PRID problem is proposed, as well as two complementary metrics to assess
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the quality of any FF-PRID pipeline. Then, experiments are conducted to demonstrate

the importance of considering the FF-PRID problem in its entirety. The most natural

pipeline for FF-PRID is implemented within the proposed framework, which consists in

using a pedestrian detection model and a C-PRID model sequentially, with both models

performing well on standard datasets for their respective tasks. This FF-PRID pipeline

is then tested on a modified version of the PRID-2011 dataset [36], using the metrics

introduced in our paper[99]. Our experimental results demonstrate that this combination

struggles to produce good results for the FF-PRID problem, despite the apparent success

of its two independent components. This shows the importance of considering the person

Re-ID problem in its Full Frame setting, using adapted metrics. This research does not

claim to have solved the FF-PRID setting but rather to demonstrate that the current way

of approaching Re-ID is not suited for practical scenarios. By proposing an alternative

framework and evaluation method, we hope that this work will motivate the community

to consider the FF-PRID setting, in order to develop algorithms that are better adapted

for real-world scenarios.

1.5 Thesis organization

This research is organized as follows: in Chapter 2, a literature review about person Re-ID

and object detection is presented. The Chapter 3 explain many topics for understanding

person Re-ID progressively. In Chapter 4, our reformulation is introduced together with

the proposed metric to evaluate a model following this framework. Chapter 5 presents the

dataset and practical implementation of the FF-PRID pipeline used for our experimental

validation. These experiments consist in demonstrating the use of our new metrics to

evaluate a pretrained Re-ID model, coupled with a pretrained object detection model.

The results obtained are reported and discussed in Chapter 6. Finally, Chapter 7 shows

some conclusions and possible future work.



Chapter 2

Literature Review

In this chapter, we mention the relevant works related to our research. First, it should

be emphasized that a new re-identification paradigm is proposed in this work. Therefore,

there is not much literature. However, we relate practical approaches and new re-id

approaches to ours. On the other hand, we also mention important works related to

object detection, which is an important part of our hypothesis.

In this work, the literature search was done using Science Direct and Scopus databases.

Then, to obtain knowledge of Re-id we rely on articles and surveys related to Deep

Learning Re-ID, Real Systems Re-ID, Practical Re-ID and Video Re-ID. As a re-

sult of reading surveys, many articles related to new paradigms were investigated.

2.1 Person re-identification

In the past decade, the task of person Re-ID has been widely studied. The most commonly

seen Re-ID pipeline consists of two inputs, a query image representing a well-cropped

person to be re-identified, and a search gallery containing various images of different

people. The goal of a Re-ID model is then to select the image in the gallery that represents

the same person as the query [3]. Some variants of this task have also been proposed, for

example, the open-world Re-ID problem extends the previous definition by allowing the

case where the gallery does not contain the query image, thus adding a level of complexity

[45]. Another alternative definition of person Re-ID is called video Re-ID, or multi-shot

Re-ID, and it consists in using a sequence of images of the cropped persons instead of

a single image [68, 40, 79, 52]. Some approaches at the intersection of single frame and

multi-shot Re-ID have also been proposed, addressing the problem of cross-modality of the

input [127]. We note that this paper does not deal with the problem of face recognition,
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which is useful in many scenarios but not suitable for re-identification cases where the

cameras are far, without very high resolution, or when people are backward.

In the early days of person Re-ID, a typical Re-ID system had two components:

capturing a unique feature representation of each pre-cropped person and then comparing

two descriptors to infer either a match or a non-match case. Early research about Re-

ID relied on extracting low-level features from images, such as color and texture [5, 2].

However, these approaches are only valid over short periods of time. Indeed, on different

days, the person might change his clothes, which would generate many errors. To solve

this problem, early papers treated it as a retrieval or recognition task. In other words, Re-

ID models are computing a similarity score for each image in the gallery and the highest

score is selected as the re-identification of the query.

Recently, many large Re-ID datasets have been released. Relevant examples of these

datasets are Market-1501 [148], CUHK3 [54], DUKE [157], Viper [26] and PRID [36].

Each one of them has a different configuration, quantity and quality of images. These

datasets are composed of cropped images representing entire bodies of people on a real-

world environment. In the rare cases when other people appear in the images, they are

far behind the main character, in the background. Every image inside such a dataset is

labeled with an ID that uniquely represents a given person. In most cases, there are at

least 5 to 8 images of each person in the dataset. These dataset also contain a separated

sub-set for testing. Some of these datasets, such as PRID, contain sequences of such

cropped images and can be used for video Re-ID [79, 127].

More recent approaches leverage Deep Learning to accomplish person Re-ID. The

rapid progress in this field, together with the emergence of these large datasets, made it

possible to train deep convolutional neural networks to solve the Re-ID task. A complete

literature review of Deep Learning methods to solve the classic Re-ID problem is out of

the scope of this paper, however, we mention some different techniques that we judged

relevant. One example of research using deep neural networks to solve Re-ID was proposed

in [17], where six layers are used to extract features, apply cross-input neighborhood

differences, patch summary features and finally a softmax function to yield the final

estimate of whether the input images are of the same person or not. They only trained

and tested over CUHK3 and Viper datasets. In [109], another architecture is proposed,

applying Parameter Free Spatial Attention layer after feature extraction to focus more

on the features extracted over a person’s body. This method obtained very promising

results on Market-1501, DUKE and CUHK3. In [156], a new approach is proposed, using
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appearance and structure space to complement the discriminative module that shares

the appearance encoder with the generative module. By switching the appearance or

structure codes, the generative module is able to generate high-quality cross-id composed

images, which are online fed back to the appearance encoder and used to improve the

discriminative module. This approach is tested over Market-1501, Duke and MSMT [118].

Another approach considers features from different layers of a trained CNN to learn part-

level attention on different local regions [129], obtaining promising results on Market-1501,

DUKE, and CUHK03. Finally, building on the success of ensemble methods, a voting

algorithms was used to choose between the outputs of various trained models in [74].

In the last couple of years, new considerations to deal with practical challenges for

implementation of Re-ID have started to appear. In this way, a new metric to measure the

cost of finding all the correct matches was introduced in [135]. The open-world setting is

starting to gain importance because of its higher real-world relevance [45]. Finally, gait-

based Re-ID is a recent field that aims to identify people by their gait in unconstrained

scenarios, typical of surveillance video systems. This is better in long-term scenarios than

appearance-based Re-ID [77].

The research presented in this thesis is a continuation of these works as it also attempts

to deal with real-world constraints in the practical implementation of Re-ID. In our case,

we claim that it is necessary to consider full video frames as input instead of pre-cropped

images in order to build solutions that can be evaluated and implemented and in practical

scenarios.

2.2 Object detection

Object Detection (OD) has been one of the most studied problems in computer vision in

the last decade. Its objective is to find object instances from several predefined categories

in real-world images. In this regard, Deep Learning approaches have been developed as a

robust strategy for determining feature representations directly from data. For a complete

overview of the literature about OD, we refer the reader to the two following surveys [66,

146]. In short, OD methods can be divided into two main families of approaches: region

proposal based and regression/classification based.

The region proposal based framework presents a two-step process similar to the at-

tentional mechanism of the human brain. It first gives a coarse scan of the scenario

and then focus on the different regions of interest. Conversely, a regression/classification
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based method is a one-step process, mapping directly from image pixels to bounding box

coordinates and class probabilities, adopting a unified framework to reduce significantly

the time complexity.

Most object detectors based on regions of interest are based on the following process.

First, it builds a region proposal framework to generate a large number of potential

bounding boxes. Second, a Convolutional Neural Network (CNN) is used to extract

feature characteristics to classify each proposal among the different categories. As a

result, the time spent handling the different components becomes the bottleneck in real-

time application. Some of the most representative methods of this family of techniques

include R-CNN [23], Fast R-CNN [24], Faster R-CNN [85] and Mask R-CNN [31].

Some of the most representative architectures of regression/classification based meth-

ods include Single Shot Multi-box Detector(SSD) [67] and You Only Look Once (YOLO-

v1, YOLO-v2, YOLO-v3) [82, 83, 84]. The YOLO methods use all high-level features to

predict confidence scores for each category and generate bounding box, with an execution

close to real-time. In short, the basic idea behind YOLO is to divide the image in cells,

so that each cell is responsible for predicting the object in its center. Each cell predicts

bounding boxes that have their respective confidence scores concerning the detected class.



Chapter 3

Theoretical referential

3.1 Computer Vision

3.1.1 Definition

Computer vision is a research area responsible for analyzing and processing images and

videos to understand this information through the computer. In this way, it simulates the

human visual system using one or more digital cameras for tries to perceive and understand

an image or sequence of images to act differently according to a particular situation.

Indeed, it develops different theories and algorithms to understand visual information

automatically. Thus, it seeks to apply its ideas to build computer vision systems and

facilitate our activities.

3.1.2 Applications

This research field has different applications in real life, like in the industrial area where is

used to inspect a production line. Industrial robots control processes, assisting humans in

detecting objects for managing employees. Computer vision was able to learn 3D shapes

with advances in deep learning has made it possible to develop systems that reconstruct

3D objects from depth maps. Many investigations have been applied to real systems such

as:

• Automatic inventory in factories.

• Spice identification system.

• Industrial robots.
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• Video surveillance.

• Human-computer interaction.

• Analysis of medical images.

• Autonomous robot navigation.

• Image indexing.

3.1.3 Research task

3.1.3.1 Recognition

Recognition is a common problem for Computer Vision, which recognizes characteristics

to determine if the image or video contains any activity.

• Object Recognition: Tries to recognize one or more specified or learned object

classes.

• Identification: Recognize a part of the specific image, such as the face or fingerprint.

• Detection: From scanned images, it seeks to detect a specific condition. For example,

detection of damaged cells or tissues.

• Content-based image retrieval: Retrieves images with specific content in a large set

of images.

• Position estimation: Orientation of a specific object concerning the camera.

• Optical Character Recognition: Identify characters in images that contain text.

3.1.3.2 Motion Analysis

Motion estimation is processed from a sequence of images to analyze different events in

the images.

• Egomotion: Determine the rigid 3D movement of the camera from images.

• Tracking: From an initial object, estimate its movement.

• Optical Flow: Determine each point of the image, how the camera moves about the

scene.
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3.2 Person Re-identification

Figure 3.1: Multi-camera surveillance network illustration of Re-ID (Source: Gala [3]).

Person Re-identification (Re-ID) is defined as a process of developing a correspondence

between images of a person taken from non-overlapping fields-of-views(FOVs) [3]. It is

used to determine whether situations captured by different cameras belong to the same

person. In other words, assign a stable ID to several instances of the person. Fig.3.1

gives an example of a surveillance area monitored by many cameras with non-overlapping

FOVs. It shows the top view of a building floor plan and the cameras’ relative placement

concerning the building. Colored points describe different people, and numbers beside the

points are the IDs assigned to the people. The dotted lines with arrows represent how

certain people move within the camera network.

Re-ID is used to establish a correspondence between separate tracks to accomplish

tracking across many cameras. Thus, single-camera tracking and Re-ID across cameras

allow for the reconstruction of a person’s trajectory across the larger scene.



3.2 Person Re-identification 13

Figure 3.2: Images of the same person taken from different cameras to illustrate the
appearance changes. The top row images were captured on the same day, bottom row
images were captured on different days (Source: Gala [3]).

In general, person Re-ID is challenging to automate for several reasons, which we

will discuss later. Still, Re-ID’s main challenge comes from the variation in a person’s

appearance across different views. Fig.3.2 presents images of a person taken by different

cameras on the same and different days, highlighting the variations in appearance. The

top row demonstrates the changes in the appearance of a person across different cameras.

It is also exciting to note that the appearance changes significantly inside the same camera

view as well.

Figure 3.3: The pipeline for a practical person Re-ID system, including five main steps:
1) Raw Data Collection, 2) Bounding Box Generation, 3) Training Data Annotation, 4)
Model Training and 5) Person Retrieval.

On the other hand, building a person Re-ID system for a practical scenario requires

five main steps (as shown in Fig. 3.3, Source: Mang Ye [135]):
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1. Raw Data Collection: Obtaining raw video data from surveillance cameras is the

principal requirement of practical scenarios. These cameras are usually located in

different places [112]. This raw data includes a large amount of complex and noisy

background issues.

2. Bounding Box Generation: Selecting the bounding boxes which contain the person

images from the raw video data. Frequently, it is impossible to crop all the person

images in real applications manually. The bounding boxes are usually obtained by

the person detection approaches [28], or person tracking algorithms [16], [86].

3. Training Data Annotation: Annotating the cross camera labels. It is usually essen-

tial for discriminative Re-ID model learning due to the large cross-camera variations.

4. Model Training: Training a discriminative and robust Re-ID model with the previ-

ous annotated person images/videos. This step is the nucleus for developing a Re-ID

system, and it is also the most extensively studied paradigm in the literature.

5. Person Retrieval: The testing stage conducts the person retrieval. Given a person

like our target (query) and a gallery set, we extract the feature representations using

the Re-ID model learned in the previous step. A retrieved ranking list is obtained

by ordering the calculated query-to-gallery similarity.

Table 3.1: Close-world vs. Open-world Person Re-ID

Closed-world (Section 3.3) Open-world (Section 3.4)
Single-modality Data Heterogeneous Data
Bounding Boxes Generation Raw Images/Videos
Sufficient Annotated Data Unavailable/Limited Labels
Correct Annotation Noisy Annotation
Query Exists in Gallery Open-set

According to the five steps mentioned before, [135] classifies existing Re-ID methods

into two main trends: closed-world and open-world settings, as shown in Table 3.1. A

comparison is shown in the following five aspects:

1. Single-modality vs. Heterogeneous Data: Respect to Step 1 all the persons are

represented by images/videos captured by single-modality visible cameras in the

closed-world setting [149], [147], [27], [158], [55], [119]. In contrast, in practical

open-world applications, we might also require to process heterogeneous data, like

infrared images [122], [78], sketches [56], depth images [121], or even text descriptions

[53].
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2. Bounding Box Generation vs. Raw Images/Videos : In Step 2, the closed-world

person Re-ID usually makes the training and testing based on the generated bound-

ing boxes manually. In contrast, some practical open-world applications require

end-to-end person search from the raw images or videos [151], [126].

3. Sufficient Annotated Data vs. Unavailable/Limited Labels: For Step 3, the closed-

world person Re-ID usually implies that we have enough annotated training data for

supervised Re-ID model training. However, we might not have enough annotated

data [65] or even without any label information [144].

4. Correct Annotation vs. Noisy Annotation: For Step 4, existing closed-world per-

son Re-ID systems usually assume that all the annotations are correct. However,

annotation noise is typically unavoidable due to annotation error or imperfect de-

tection/tracking results [101]).

5. Query Exists in Gallery vs. Open-set: In the person retrieval stage (Step 5), most

existing closed-world person Re-ID works believe that the query must occur in the

gallery set by calculating the CMC [113] and mAP [149]. However, in several sce-

narios, the query person may not appear in the gallery set [110], [163]. This carries

us to the open-set person Re-ID.

We will discuss these settings in the next sections, besides a detailed review of state-

of-art data-sets and metrics.

3.3 Closed-World Person Re-Identification

This section provides a summary for closed-world person Re-ID. As presented in Section

2.1, this setting ordinarily has the following premises: 1) person appearances are cap-

tured by single-modality visible cameras, either by image or video; 2) The persons are

represented by bounding boxes, where most of the bounding box area belongs the same

identity; 3) The training has enough annotated training data for supervised discrimina-

tive Re-ID model learning; 4) The annotations are generally correct; 5) The query person

must appear in the gallery set.
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(a) Global (b) Local

(c) Auxiliary (d) Video

Figure 3.4: Different feature representation (Source: author).

3.3.1 Feature Representation Learning

Here, we discuss the feature learning approaches in closed-world person Re-ID. There are

four main categories (as shown in Fig. 3.4).

3.3.1.1 Global Feature Representation Learning

Global feature representation learning extracts a global feature vector for each person im-

age, as shown in Fig. 3.4a. Considering that deep neural networks are originally applied

in image classification [93], [32], global feature learning is the initial choice when integrat-

ing advanced deep learning techniques into the person Re-ID field. Then, to capture the

information in global feature learning, a joint learning framework consisting of a single-

image representation (SIR) and cross-image representation (CIR) is developed in [108],

trained with triplet loss using specific sub-networks. The widely-used ID-discriminative

Embedding (IDE) model [151] builds the training process as a multi-class classification

problem by handling each identity as a distinct class.
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3.3.1.2 Local Feature Representation Learning

It learns part/region aggregated features such as shown in Fig 3.4b, making it robust

against misalignment [103], [106]. The body parts are automatically generated by 1)

human parsing/pose estimation or 2) roughly horizontal division.

For 1) automatic body part detection, the standard solution is to join the full-body

representation and local part features [98], [143]. Correctly, the multi-channel aggregation

[11], multi-scale context-aware convolutions [47], multi-stage feature decomposition [142],

and bilinear-pooling [98] are designed to enhance the local feature learning.

For 2) horizontal-divided region features, multiple part level classifiers are learned in

Part-based Convolutional Baseline (PCB) [103], which presently serves as a vital part

feature learning baseline in the current state-of-the-art [95], [100], [160].

3.3.1.3 Auxiliary Feature Representation Learning

Auxiliary feature representation learning usually requires additional annotated informa-

tion (e.g., semantic attributes [96] like Fig 3.4c shows) or generated/augmented training

samples to augment the feature representation [41], [158].

Semantic Attributes. Collective identity and attribute learning baseline are ad-

dressed in [61]. [96] Propose a deep attribute learning framework by incorporating the

predicted semantic attribute information, enhancing the feature representation’s general-

ization and robustness in a semi-supervised learning mode.

Viewpoint Information. The viewpoint information is also leveraged to improve the

feature representation learning [8], [63]. Multi-Level Factorization Net (MLFN) [8] also

proposes to learn the identity-discriminative and view-invariant feature representations

at multiple semantic levels. [63] extract a combination of view-generic and view-specific

learning.

Domain Information. A Domain Guided Dropout (DGD) algorithm [125] is de-

signed to adaptively mine the domain-sharable and domain-specific neurons for multi-

domain deep feature representation learning. Using each camera as a distinct domain,

[60] proposes a multi-camera consistent matching constraint to take a globally optimal

representation in a deep learning framework.

GAN Generation. Here we discuss the use of GAN(Generative Adversarial Net-

work) generated images as the auxiliary information. [158] Start the beginning attempt
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to apply the GAN technique for person Re-ID. It improves the supervised feature rep-

resentation learning with the created person images. Pose constraints are incorporated

in [65] to improve the generated person images’ quality, developing the person images

with new pose variants. A pose-normalized image generation approach is designed in [81],

enhancing the robustness against pose variations.

Data Augmentation. For Re-ID, custom operations are random resize, cropping,

and horizontal flip [72]. Besides, adversarially occluded samples [41] are generated to

augment the variation of training data. A similar random erasing strategy is proposed in

[159], adding random noise to the input images. In [1] generate the virtual humans are

rendered under different illumination conditions. These methods enhance the supervision

with the augmented samples, increasing the generalizability of the testing set.

3.3.1.4 Video Feature Representation Learning

Figure 3.5: Same person in different cameras represented using a multi-shot version that
contains multiple images(called tracklet in other works [51]) per person. (Source: https:
//www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11)

Video-based or Multi-shot Re-ID(3.4d) is becoming a popular topic [37], where each person

is represented by a video sequence (as shown in Fig. 3.5). Due to the rich appearance

and temporal information, it has gained increasing interest in the Re-ID community. This

also produces new challenges in video feature representation learning.

https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11
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The main challenge is to capture the temporal information accurately. A Recurrent

neural network architecture was designed for video-based person Re-ID in [75], which si-

multaneously optimizes the final recurrent layer for temporal information propagation and

the temporal pooling layer. Semantic attributes are also utilized in [145] for video Re-ID

with feature disentangling and frame re-weighting. Combined aggregating the frame-level

feature and spatio-temporal appearance information is crucial for video representation

learning [162], [128], [97].

A different major challenge is the unavoidable outlier tracking frames within the

videos. A diversity regularization [51] is employed to work multiple discriminative body

parts in each video sequence. An affine hull is adopted to handle the outlier frames

within the video sequence [132]. An exciting work [38] utilizes multiple video frames to

auto-complete occluded regions. These works demonstrate that handling noisy frames

can significantly improve video representation learning.

It is also challenging to handle the diverging lengths of video sequences; in [10],

authors divide the long video sequences into multiple short pieces, aggregating the top-

ranked pieces to learn a compact embedding. A clip-level learning strategy [22] exploits

both spatial and temporal dimensional attention cues to produce a robust clip-level repre-

sentation. Both the short and long-term relations [48] are integrated into a self-attention

scheme.

3.3.2 Deep Metric Learning

3.3.2.1 Loss Function Design

Here, we only focus on the loss functions designed for deep learning [138]. There are

three widely studied loss functions with their variants in the literature for person Re-

ID, including identity loss, verification loss, and triplet loss. An illustration of three-loss

functions is shown in Fig. 3.6.

Identity Loss. It discusses the training process of person Re-ID as an image classi-

fication task [151], i.e., each identity is a distinct class. In the testing phase, the pooling

layer’s output or embedding layer is adopted as the feature extractor. Given an input im-

age xi with label yi , the predicted probability of xi being recognized as class yi is encoded

with a softmax function, represented by p(yi|xi) . The identity loss is then computed by

the cross-entropy
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(a) Identity Loss

(b) Verification Loss (c) Triplet Loss

Figure 3.6: Three kinds of widely used loss functions in the literature. (Source: Mang Ye
[135]).

Lid = −
1

n

n∑
i=1

log(p(yi|xi)), (3.1)

where n represents the number of training samples within each batch. The identity

loss has been widely used in existing methods [41], [158], [102], [152], [71] . Frequently, it

is easy to train and automatically mine the hard samples during the training process, as

demonstrated in [137]. Several works have also investigated the softmax variants [120],

such as the sphere loss in [21] and AM softmax in [71].

Verification Loss. It optimizes the pairwise correlation, either with a contrastive

loss [106], [120] or binary verification loss [55], [123]. The contrastive loss improves the

relative pairwise distance comparison, expressed by

Lcon = (1− δij){max(0, ρ− dij)}2 + δijd
2
ij, (3.2)

where dij represents the Euclidean distance between the embedding features of two

input samples xi and xj . δij is a binary label indicator ( δij = 1 when xi and xj belong
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to the equivalent identity, and δij = 0, otherwise). ρ is a margin parameter. There

are several variants, e.g., the pairwise comparison with ranking SVM in [108]. Binary

verification [55], [123] discriminates the positive and negative of an input image pair.

Generally, a differential feature fij is obtained by fij = (fj−fj)2 [123], where fi and fj are
the embedding features of two samples xi and xj . The verification network classifies the

differential feature into positive or negative. We use p(δij|fij) to represent the probability

of an input pair (xi and xj) being recognized as δij(0 or 1) . The verification loss with

cross-entropy is

Lveri(i, j) = −δij log(p(δij|fij))− (1− δij) log(1− p(δij|fij)). (3.3)

The verification is often combined with the identity loss to enhance the performance[94][106].

Triplet loss. It uses the Re-ID model training process as a retrieval ranking task.

The basic idea is that the positive pair’s distance should be smaller than the negative

pair by a pre-defined margin [35] (as shown in Fig. 3.6c). Typically, a triplet includes one

anchor sample xi , one positive sample xj with the same identity, and one negative sample

xk from a different identity. The triplet loss with a margin parameter is represented by

Ltri(i, j, k) = max(ρ+ dij − dik, 0), (3.4)

where d() estimates the Euclidean distance between two samples. The large proportion

of easy triplets will dominate the training process if we directly optimize the above loss

function, resulting in limited discriminability. To mitigate this issue, various informative

triplet mining methods have been designed [116], [94], [35], [98]. The basic idea is to select

the informative triplets [35], [92]. Specifically, moderate positive mining with a weight

restriction is introduced in [92], which directly optimizes the feature difference. [35]

demonstrate that the online hardest positive and negative mining within each training

batch is beneficial for discriminative Re-ID model learning. Some methods also studied the

point-to-set similarity strategy for informative triplet mining [161], [139]. This improves

robustness against the outlier samples with a soft hard-mining scheme.

3.3.3 Datasets and Evaluation Metrics

In this work, we review the most common datasets for the closed-world setting, includ-

ing 11 image datasets (VIPeR [27], iLIDS [153], GRID [70], PRID2011 [37], CUHK01-
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03 [55], Market-1501 [149], DukeMTMC [158], Airport [25] and MSMT17 [119]) and 7

video datasets (PRID-2011 [37], iLIDS-VID [111], MARS [147], Duke-Video [124], Duke-

Tracklet [49], LPW [50] and LS-VID [48]). The statistics of these datasets are shown in

Table 2. In this work, we only focus on the general large-scale datasets for deep learning

approaches. We can make several observations in terms of the dataset collection over

recent years:

1. The dataset scale (both #image and #ID) has increased quickly. Commonly, the

deep learning approach can benefit from more training samples. This also increases

the annotation difficulty needed in closed-world person Re-ID.

2. The camera number is also significantly increased over the years to approximate the

large-scale camera network in practical scenarios.

3. The bounding boxes generation is usually done automatically detected/tracked,

rather than manually cropped. This mimics the real-world scenario with track-

ing/detection errors.

Evaluation Metrics. To evaluate a Re-ID system, Cumulative Matching Char-

acteristics (CMC) [113] and mean Average Precision (mAP) [149] are two widely used

measurements. CMC- k (a.k.a, Rank- k matching accuracy) [113] represents the proba-

bility that a correct match appears in the top- k ranked retrieved results. CMC is accurate

when only one ground truth exists for each query since it only considers the first match in

the evaluation process. On the other hand, mean Average Precision (mAP) [149] measures

the average retrieval performance with multiple ground truths. It is originally widely used

in image retrieval.

3.4 Open-World Person Re-Identification

This section reviews open-world person Re-ID as discussed in Section 2.1, including

heterogeneous Re-ID by matching person images across heterogeneous modalities (Sub-

section 3.4.1), end-to-end Re-ID from the raw images/videos (Sub-section 3.4.2), semi/unsupervised

learning with limited/unavailable annotated labels (Sub-section 3.4.3), robust Re-ID model

learning with noisy annotations (Sub-section 3.4.4) and open-set person Re-ID when the

correct match does not occur in the gallery (Sub-section 3.4.5).
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Image Datasets
Dataset Time #ID #image #cam Label Res. Eval.
VIPeR 2007 632 1,264 2 hand fixed CMC
iLIDS 2009 119 476 2 hand vary CMC
GRID 2009 250 1,275 8 hand vary CMC
PRID2011 2011 200 1,134 2 hand fixed CMC
CUHK01 2012 971 3,884 2 hand fixed CMC
CUHK02 2013 1,816 7,264 10 hand fixed CMC
CUHK03 2014 1,467 13,164 2 both vary CMC
Market-1501 2015 1,501 32,668 6 both fixed C&M
DukeMTMC 2017 1,404 36,411 8 both fixed C&M
Airport 2018 9,651 39,902 6 auto fixed C&M
MSMT17 2018 4,101 126,441 15 auto vary C&M

Video datasets
Dataset Time #ID #image #cam Label Res. Eval.
PRID2011 2011 200 400(40k) 2 hand fixed CMC
iLIDS-VID 2014 300 600(44k) 2 hand vary CMC
MARS 2016 1261 20,715(1M) 6 auto fixed C&M
Duke-Video 2018 1,812 4,832(-) 8 auto fixed C&M
Duke-tracklet 2018 1,788 12,647(-) 8 auto fixed C&M
LPW 2018 2,731 7,694(590K) 4 auto fixed C&M
LS-VID 2019 3,772 14,943(3M) 15 auto fixed C&M

Table 3.2: Details about commonly used datasets for closed-world person Re-ID. “both”
means that it contains both hand-cropped and detected bounding boxes. “C&M” means
both CMC and mAP are evaluated.
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3.4.1 Heterogeneous Re-ID

3.4.1.1 Depth-based Re-ID

Depth images capture the body shape and skeleton information. This gives Re-ID the pos-

sibility to work under illumination/clothes changing environments, which is also essential

for personalized human interaction applications.

A recurrent attention-based model is proposed in [30] to address depth-based person

Re-ID. In a reinforcement learning framework, they joint the convolutional and recurrent

neural networks to identify small, discriminative local regions of the human body. [42]

Leverage the large RGB datasets to design a split-rate RGB-to-Depth transfer method,

connecting the gap between the depth images and the RGB images.

3.4.1.2 Text-to-Image Re-ID

Text-to-image Re-ID engages matching between a text description and RGB images [53].

It is imperative when a query person’s visual image cannot be obtained, and only a text

description can be alternatively provided. A gated neural attention model [53] with a

recurrent neural network acquires the shared features between the text description and

the person images. This allows the end-to-end training for text to image pedestrian

retrieval. Cheng et al. [9] propose a global discriminative image-language association

learning method, capturing the identity discriminative information and local reconstruc-

tive image-language association under a reconstruction process.

3.4.1.3 Visible-Infrared Re-ID

Visible-Infrared Re-ID examines the cross-modality matching between the daytime visible

and night-time infrared images. It is vital in low-lighting conditions, where the images

can only be captured by infrared cameras [122], [78], [?].

Wu et al. [122] start the first attempt to address this problem by proposing a deep

zero-padding framework [122] to learn shareable modality features adaptively. A two-

stream network is introduced in [131], [136] to model the modality-sharable and -specific

information, addressing the intra-modality and cross-modality variations concurrently.
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3.4.1.4 Cross-Resolution Re-ID

Cross-Resolution Re-ID handles the matching between low-resolution and high-resolution

images, addressing the large resolution changes [58], [116]. A cascaded SR-GAN [117] pro-

duces the high-resolution person images in a cascaded manner, incorporating the identity

data.

3.4.2 End-to-End Re-ID (Person Search)

End-to-end Re-ID eases the reliance on an additional step for bounding boxes generation.

It includes the person’s Re-ID from raw images or videos and multi-camera tracking.

Re-ID in Raw Images/Videos This job demands that the model jointly perform person

detection and re-identification in a single structure(as shown in Fig. 3.7) [151], [126]. It

is stimulating due to the different focuses of two significant components.

Figure 3.7: Person search(End-to-End Re-ID) is about finding a query person (yellow
rectangle) within a gallery image (the target green rectangle).(Source: author)

Zheng et al. [151] present a two-stage framework and systematically evaluate person

detection’s benefits and limitations for the later stage person Re-ID. Xiao et al. [126]

design an end-to-end person search system using a single convolutional neural network

for joint person detection and re-identification. A Neural Person Search Machine (NPSM)

[64] is developed to recursively refine the searching area and locate the target person by

fully exploiting the query’s contextual information and the detected candidate region.

Multi-camera Tracking. End-to-end person Re-ID is also strictly related to multi-

person, multi-camera tracking [86]. A graph-based formulation to link person hypotheses
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is proposed for multi-person tracking [104]. The holistic features of the full human body

and body pose layout are combined as the representation for each person. Ristani et

al. [86] learn the correlation between the multi-target multi-camera tracking and person

Re-ID by hard-identity mining and adaptive weighted triplet learning. Lately, a locality-

aware appearance metric (LAAM) [39] with both intra and inter-camera relation modeling

is proposed.

3.4.3 Semi-supervised and Unsupervised Re-ID

Unsupervised Re-ID mainly studies invariant components, i.e. dictionary [18], metric

[69], or saliency [144], which guides to limited discriminability or scalability. For deeply

unsupervised techniques, cross-camera label estimation is one of the popular approaches

[134], [20]. Dynamic graph matching (DGM) [133] expresses the label estimation as a

bipartite graph matching problem. To further enhance the performance, global camera

network constraints [115] are exploited for consistent matching.

For end-to-end unsupervised Re-ID, an iterative clustering and Re-ID model

learning is presented in [20]. Likewise, the relations among samples are utilized in a

hierarchical clustering framework [141]. Soft multi-label learning [209] mines the soft

label information from a reference set for unsupervised learning. A Tracklet Association

Unsupervised Deep Learning (TAUDL) framework [49] combined conducts the within-

camera tracklet association and models the cross-camera tracklet correlation.

Semi-supervised Re-ID. With limited label information, a one-shot metric learning

method is offered in [213], incorporating a deep texture representation and a color metric.

A stepwise one-shot learning method (EUG) is introduced in [124] for video-based Re-

ID, regularly selecting candidates from unlabeled tracklets to enrich the labeled tracklet

set. A multiple instance attention learning framework [114] uses the video-level labels for

representation learning, alleviating the dependence on full annotation.

3.4.4 Noise-Robust Re-ID

Re-ID usually suffers from unavoidable noise due to data collection and annotation diffi-

culty. We review noise-robust Re-ID from three aspects:

Partial Re-ID. This addresses the Re-ID problem with substantial occlusions, i.e.,

only part of the human body is visible [155]. A fully convolutional network [33] is chosen

to generate fix-sized spatial feature maps for the incomplete person images. Deep Spa-
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tial feature Reconstruction (DSR) is further incorporated to avoid precise alignment by

exploiting the reconstructing failure.

Re-ID with Sample Noise. This refers to the person images or the video sequence

containing outlying regions/frames, either produced by poor detection/inaccurate track-

ing results. To handle the outlying areas or background clutter within the person image,

pose estimation cues [142], [88], or attention cues [94], [144], [44] are exploited. The basic

idea is to suppress the contribution of the noisy regions in the final holistic representation.

For video sequences, set-level feature learning [132] or frame-level re-weighting [10] are

the ordinarily used approaches to reduce noisy frames’ impact.

Re-ID with Label Noise. Label noise is usually inevitable due to annotation errors.

Zheng et al. adopt a label smoothing technique to avoid label overfitting issues [158]. A

Distribution Net (DNet) that models the feature uncertainty is proposed in [140] for

robust Re-ID model learning against label noise, reducing the impact of samples with

high feature uncertainty.

3.4.5 Open-set Re-ID and Beyond

Open-set Re-ID is usually expressed as a person verification problem, i.e., discriminat-

ing whether two-person images belong to the same identity [110], [163]. The verification

usually needs a learned condition τ , i.e., sim(query, gallery) > τ . Early researches design

handcrafted systems [154], [110], [163]. For deep learning methods, an Adversarial Person-

Net (APN) is proposed in [57], which jointly learns a GAN module and the Re-ID feature

extractor. This GAN’s basic idea is to generate realistic target-like images (imposters)

and enforce the feature extractor is robust to the generated image attack.

Group Re-ID. It aims at associating the persons in groups rather than individuals

[153]. Early research focuses on group representation extraction with sparse dictionary

learning [62] or covariance descriptor aggregation [6]. The group similarity is also practiced

in the end-to-end person search [130] and the individual re-identification [76], [90] to

increase the accuracy. Nevertheless, group Re-ID is still challenging since the group

variation is longer complicated than the individuals.

Dynamic Multi-Camera Network. The dynamic updated multi-camera network

is another challenging issue [15], [73], [14], [13], which needs model adaptation for new

cameras or probes. A human-in-the-loop incremental learning method is presented in

[73] to update the Re-ID model, adjusting the representation for different probe galleries.
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Early research also applies active learning [14] for continuous Re-ID in a multi-camera

network. A constant adaptation method based on sparse non-redundant representative

selection is introduced in [15]. Furthermore, how to apply the deep learning technique for

the dynamic multi-camera network is still less investigated.

3.5 Object Detector: You Only Look One (YOLOv3)

Figure 3.8: YOLO flow for object detection. (Source: YOLO [84]).

Object Detection (OD) has been one of the most studied problems in computer vi-

sion in the last decade. Its objective is to find object instances from several predefined

categories in real-world images. In this regard, Deep Learning approaches have been

developed as a robust strategy for determining feature representations directly from data.

In [84] propose a new framework called YOLO, which makes use of all highest level

feature maps to predict multiple categories and bounding boxes. YOLO’s basic idea is to

divide the image from entering S × S cells, so that each cell is responsible for predicting

the object centered in each cell(as shown in Fig. 3.8). Each cell predicts B bounding

boxes that have their respective confidence scores concerning the detected class [66, 146]

.

YOLO formally defines the confidence score as, Pr(Object)∗IOU truth
pred , which indicates

the probability that objects exist, (Pr(Object) ≥ 0), and displays the confidence score
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for its prediction,
(
IOU truth

pred

)
. At the same time, without depending on the number of

bounding boxes, C conditional class probabilities, (Pr (Classi|Object)), should also be

predicted for each cell [84].

3.5.1 Training Details

During training, YOLO optimizes the loss function,
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(3.5)

, where each cell is represented with i, and the coordinates of the midpoint of each

cell is represented by (xi, yi), (wi, hi) are the width and height normalized in relation

to the image size, respectively, Ci represents the confidence score, 1obj
i represents the

existence of objects and 1obj
ij indicates the prediction was driven, by the j − th bounding

box production. Also, it may be noted that, when an object is present in the cell, the

loss function will penalize the classification of errors. Similarly, when the predictor is

responsible for the bounding box of the ground-truth, the bounding box coordinate errors

will be penalized [146, 84].

3.5.2 Test Details

For the tests, there is a specific confidence score for each bounding box that is multiplied

by the prediction confidence score with the conditional class probability, as shown in the

following equation :

Pr(Object) ∗ IOU truth
pred ∗ Pr (Classi|Object)

= Pr (Classi) ∗ IOU truth
pred

(3.6)

,where the real probability of class objects in the bounding box and the correspondence

between the predicted bounding box and the object bounding box are both taken into

consideration [146, 84].
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3.5.3 Architecture

Figure 3.9: Architecture of YOLO V3. (Source: https://plos.figshare.com/
articles/figure/YOLOv3_architecture_/8322632/1).

This network(as shown in Fig. 3.9) uses 53 convolutional layers with 3x3 kernels in the

beginning and 1x1 in the end. The model used was trained on the VOC dataset [19], con-

taining 80 classes. Darknet-53 operates at a level close to state-of-the-art object detectors,

but is faster because it uses less floating-point operations.

YOLO divides the input image in a 13 by 13 cell grid. Each of these cells is responsible

for predicting 5 Bounding Boxes as well as their associated confidence scores. Each

Bounding Box describes a rectangle that encloses an object. For each Bounding Box,

YOLO generates a confidence score that tells us how safe this bounding box contains an

object [84].

https://plos.figshare.com/articles/figure/YOLOv3_architecture_/8322632/1
https://plos.figshare.com/articles/figure/YOLOv3_architecture_/8322632/1
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3.6 Person Re-identifier: Improved Architecture (Siam-
IDL)

Figure 3.10: Architecture of Siam-IDL Re-ID. (Source: Ahmed [17]).

The method used to perform classic person Re-ID in this work is called An Improved

Deep Learning Architecture for Person Re-Identification (SiamIDL) [17]. Because, we

think that is an exciting work that has a considerable influence in literature, where they

obtain better results than the other works presented until that day. They propose a deep

neural network architecture(as shown Fig. 3.10) as follows: two layers of tied convolution

with max pooling, cross-input neighborhood differences, patch summary features, across-

patch features, higher-order relationships, and finally a softmax function to yield the final

estimate of whether the input images are of the same person or not. They achieved

54.74% vs. 20.65% over the CUHK-03 dataset more than double from the previous meth-

ods. This work was compared against KISSME, eSDC, SDALF, ITML, logistic distance

metric learning (LDM), largest margin nearest neighbor (LMNN), metric learning to rank

(RANK), and directly using Euclidean distance to compare features.
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3.6.1 Tied Convolution

In the deep learning literature, convolutional features have proven to provide representa-

tions that are useful for various classification tasks. The first two layers of the network are

convolution layers, which compute higher-order features on each input image separately.

For the features to be comparable across the two images in later layers, our first two layers

perform tied convolution, in which weights across the two views, to ensure that both views

use the same filters to compute features. As shown in Figure 2, in the first convolution

layer, we pass input pairs of RGB images of size 60 × 160 × 3 through 20 learned filters of

size 5 × 5 × 3. The resulting feature maps are passed through a max-pooling kernel that

halves the width and height of features. These features are passed through another tied

convolution layer that uses 25 learned filters of size 5 × 5 × 20, followed by a max-pooling

layer that again decreases the width and height of the feature map by a factor of 2. At

the end of these two feature computation layers, each input image is represented by 25

feature maps of size 12 × 37.

3.6.1.1 Cross-Input Neighborhood Differences

The two tied convolution layers give a set of 25 feature maps for each input image,

from which it can learn relationships between the two views. Let fi and gi, respectively,

represent the ith feature map (1 ≤ i ≤ 25) from the first and second views. A cross-

input neighborhood differences layer computes differences in feature values across the two

views around a neighborhood of each feature location, producing a set of 25 neighborhood

difference maps Ki.

Since fi, gi ∈ R12×37 , Ki ∈ R12×37, where 5 × 5 is the size of the square neighborhood.

Each Ki is a 12 × 37 grid of 5 × 5 blocks, in which the block indexed by (x, y) is denoted

Ki(x, y) ∈ R12×37, where x, y are integers (1 ≤ x ≤ 12 and 1 ≤ y ≤ 37). More precisely.

Ki(x, y) = fi(x, y)1(5, 5)−N [gi(x, y)]

where

1 (5,5) ∈ R5×5is a 5× 5 matrix of 1s,

N [gi(x, y)] ∈ R5×5is the 5× 5 neighborhood of gi centered at (x, y).
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(3.7)

In other words, the 5 × 5 matrix Ki(x, y) is the difference of two 5 × 5 matrices, in

the first of which every component is a copy of the scalar fi(x, y), and the second of which

is the 5 × 5 neighborhood of gi centered at (x, y). The impulse behind taking differences

in a neighborhood is to add robustness to positional differences in corresponding features

of the two input images. Following the operation in (1) is asymmetric, it also considers

the neighborhood difference map K ′
i , which is defined just like Ki in (1) except that the

roles of fi and gi are reversed. This yields 50 neighborhood difference maps, {Ki}25i=1 and

{K ′
i}25i=1, each of which has size 12 × 37 × 5 × 5. They pass these neighborhood difference

maps through a rectified linear unit (ReLu).
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Proposed Methodology

In this section, we introduce a new pipeline of the person Re-ID problem, called FF-PRID

[99], which is better suited to implement and evaluate real-world security applications.

Also, by formalizing the natural collaboration between an automated Re-ID system and

the human monitoring agents, a hybrid and robust framework to address the FF-PRID

problem is proposed, and two complementary metrics to assess the quality of any FF-

PRID pipeline.

4.1 Full Frame Person Re-Identification

The C-PRID formulation is a useful building block to implement security application of

Re-ID, i.e. to identify a person sought by the authorities in a network of security cameras.

However it is not sufficient, as for such a practical implementation, the entire image of

the video frames must be used as input, instead of carefully selected pre-cropped images

of persons. From now on, this application-oriented Re-ID setting is referred to as Full

Frame Person Re-ID (FF-PRID).

In short, in the FF-PRID setting, a successful model must analyze full frames to

determine if the query is present in the stream, and if it is, when and where it appeared.

The FF-PRID setting is illustrated in Fig. 4.1.

One can argue that the C-PRID problem can be easily derived from the FF-PRID

setting by applying a pedestrian detection (PD) model [4] on the raw video stream, which

is often done in practice. Indeed, some object detection models have demonstrated strong

results for detecting human beings over the last few years [85, 84]. However, we argue

that not considering the problem as a whole presents several issues:
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Figure 4.1: Full Frame Person Re-ID (FF-PRID) setting. (Source: author)

1. The bounding boxes extracted by PD models may differ from the images in the

reference datasets used for C-PRID training and evaluation, which have been filtered

manually to only select clean images. This domain shift between the galleries used

for training and the data encountered at inference time can decrease the quality of

the model at run time, and thus induces a strong bias for model evaluation.

2. Even if both a good pedestrian detection model and a good Re-ID model are used,

their small prediction errors might add up to produce poor overall results for the

final application.

3. Not considering FF-PRID as an independent problem might dissuade the community

from trying different approaches for the full application. Indeed, the vast availabil-

ity of C-PRID datasets might take researchers away from trying other promising

approaches such as end-to-end methods or video based methods, which have been

shown to work for other computer vision problems [46, 34].

4. When developing a practical application, it is crucial to evaluate the quality of the

entire pipeline before deploying it in production. To the best of our knowledge,

frameworks and metrics to evaluate FF-PRID are missing in the literature.

4.2 A Human-Machine Hybrid Framework for FF-PRID

The classic formulation of person Re-ID consists in comparing a query image with all

the images of a search gallery to output a set of similarity scores representing the Re-

ID predictions. Conversely, this work considers the Full Frame Re-ID setting, which is

better suited to implement and evaluate practical security applications. In this field, we
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introduce a hybrid framework, using human-machine collaboration to address the FF-

PRID problem and we propose two new evaluation metrics to assess the quality of a

FF-PRID model on a given dataset.

4.2.1 Framework

In the FF-PRID setting, the inputs to the system are a query image and a raw video from

a security camera. Studying this setting is important as the conversion from a camera

feed to a C-PRID search gallery is not straightforward and needs to be evaluated to design

reliable applications. Ideally, from a query image and a raw video feed, a FF-PRID model

should find whether or not the query appears in each frame. This way, the system can

raise an alert as soon as the searched person is encountered in any camera. But in practice,

the FF-PRID task is complex and highly prone to errors. Because of the criticality of

the task in many scenarios, the outputs of the model must be cross-checked by a human

operator before triggering any action involving security agents.

Thus, we propose an alternative hybrid framework, which requires validation by a

human operator after automatic predictions are made by an artificial intelligence model,

to address this problem and evaluate it. The proposed pipeline goes as follows: First,

the live video stream is cut into short video segments of τ frames. Then, each of these

segments are processed by a pedestrian detection model to extract bounding boxes of all

the persons present in the video and create a traditional search gallery. The query and the

gallery are then processed by a classic Re-ID model and, if the highest similarity score in

the gallery is higher than a given threshold β, the η members of the gallery with highest

similarity scores are shown to the monitoring agent, who decides if the predictions are

correct triggers actions when necessary. The proposed pipeline is illustrated in Fig. 4.2a.

The threshold for raising an alert β, the number of images shown to the agent η and the

length of the video segments τ are user defined parameters that influence the final results.

We note that the ideal scenario described above can be obtained with this framework if

τ = 1, η = 1, the FF-PRID works perfectly and β is tuned appropriately.

4.2.2 Validation measures

In the case of a perfect FF-PRID model, the operator validation is required in all the cases

where the query is present in the τ frames of video sequence and not in any other case.

Hence, there are two ways for a model to fail: by missing the query when it is present
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(a) Hybrid Human-Machine FF-PRID Framework.

(b) Proposed FF-PRID model.

Figure 4.2: Hybrid Human-Machine Framework and proposed Pipeline for Full Frame
Person Re-Identification.(Source: author)

in the video segment or by calling the operator when the query is not present. Thus, to

evaluate the quality of a model, we define two important indicators that we call Finding

Rate (FR) and True Validation Rate (TVR). They respectively represent the number of

sequences in which the query was found when it appeared and the number of times that

the query was present when the operator was solicited.

To define these two validation measures formally, some other variables must be in-

troduced first. These variables are influenced by the variables to evaluate the classifi-

cation task as True Positive (TP), False Negative(FN), True Negative(TN) and False

Positive(FP). For a given {query, video} pair, we define:

• A True Call (TC), when the query is present in the video, the highest similarity

score is greater than the threshold β and the query is in the top η best candidates.

It corresponds to a successful case of re-identification by the system.

• A True Missed Call (TMC), when the query is present in the video, the highest

similarity score is greater than β and the query is not in the top η best candidates. It
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is the case where the query is present, the system is asking for confirmation but does

not provide the correct images to the operator and the query is missed anyways.

• A False Silence (FS), when the query is present in the video, but the highest

similarity score is smaller than β. It is the case where the query is missed but the

operator is not disturbed.

• A False Call (FC), when the query is not in the video but the highest similarity

score is greater than β. It corresponds to the case where the operator is disturbed

for nothing.

• A True Silence (TS), when the query is not in the video and the highest similarity

score is smaller than β. It is the case where the query is not present and nothing

happens.

Then, the FR and TVR can be defined as follows:

FR =
TC

TC + TMC + FS
, (4.1)

TV R =
TC

TC + TMC + FC
. (4.2)

FR and TVR are comprised between 0 and 1. Hence, FR = 1 means that whenever

the query was present in the video, it was successfully identified by the system (model

+ operator). Likewise, TVR = 1 means that the operator was never called for nothing,

i.e. all the time the model asked for verification, the query was actually present in the

proposed cropped images. In contrast, FR < 1 means that in some sequences the query

was present but it was missed, and TVR < 1 means that in some situations the model

asked for operator validation when the query was not present in the suggestions.



Chapter 5

Experimental Setup: Dataset and
FF-PRID pipeline details

5.1 Dataset used for validation

To test the proposed framework and metrics, we use a modified version of the PRID-2011

dataset [36], considering raw full frame videos as input instead of the pre-cropped images

of the original dataset.

The original PRID-2011 dataset is composed of images extracted from multiple person

trajectories recorded from two different static surveillance cameras, named A and B (as

shown in Fig. 5.1). Images from these cameras contain a view point change and a stark

difference in illumination and background. Since images are extracted from trajectories,

several successive poses per person are available in each camera view, with some people

appearing in both views. After filtering out manually some heavily occluded persons, cor-

rupted images induced by tracking and annotation errors, the official PRID-2011 dataset

contains 385 persons in camera view A and 749 in camera view B. The persons with the

first 200 labels appear in both views.

PRID-2011 was created to test classic person Re-ID approaches, as well as video-based

Re-ID [79]. To conduct our experiments, we obtained the raw videos and annotations that

were used to create the PRID-2011 dataset1. From now on, the two raw full frame videos

will be called view A (1:01:53 hours) and view B (1:06:39 hours). Both views were cut

into sub-videos of 2 minutes, to serve as input to the FF-PRID framework (Fig. 4.2a).

This way, view A contains 30 videos and view B, 33. For each video, only a few persons
1We kindly thank the authors of the original PRID-2011 paper for their responsiveness and coopera-

tion.
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Figure 5.1: Example of a building with two different static surveillance cameras called
A and B. (Source: https://www.tugraz.at/institute/icg/research/team-bischof/
lrs/downloads/prid11/).

appear simultaneously, e.g., the first video of view B only contains the persons labeled 16

and 204 (the same labels as in the original dataset are used).

For each 2 minute video sample, a ground truth file is generated2. For each person that

appears in the video, it contains: the person identifier Id; the first frame where it appears

fr; the number of times that it appears in the following frames s; the coordinates of the

bounding box where it first appears (ulx, uly, brx, bry); the timestamp where it appears

sec (calculated from fr); and the number of the sub-sequences where it appears sub. The

number of sub-sequences is computed from τ , a user defined parameter introduced in

Section 4.2.1.
2Our scripts for processing the raw videos and generating the ground truth files, as well as the

implementation of our baseline pipeline, are openly available at: https://github.com/fsumari/
FF-PRID-2020.

https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11/
https://github.com/fsumari/FF-PRID-2020
https://github.com/fsumari/FF-PRID-2020


5.2 Overview of the Full Frame Re-ID pipeline 41

5.2 Overview of the Full Frame Re-ID pipeline

Fig. 4.2 illustrates the proposed FF-PRID approach. In Fig. 4.2a, we show the application

level Re-ID scheme. The original video is split into shorter sequences and passed to a FF-

PRID model. When the model returns a high confidence score that the query is present

in the sequence, an alert is raised and a group of persons’ images are presented to a

monitoring agent for human validation. In Fig. 4.2b, the FF-PRID model is shown in

details. The video is fed to an object detection model in order to detect pedestrians and

generate clippings for the search gallery. After this step, the image of the query person is

searched in the gallery by means of a classic Re-ID model, which outputs a list of images

similar to the query, ordered from most to least similar. Both the pedestrian detection

model and the classic Re-ID model were implemented using TensorFlow 1.14.0 and were

executed on a NVIDIA P5000 GPU. We present the implementation of these models in

the following subsections.

5.3 Object Detection

For this work, we use the You Only Look Once (YOLO-v3) [84] approach for pedestrian

detection. In short, YOLO methods belong to the family of regression/classification based

approaches, mapping directly from image pixels to bounding box coordinates and class

probabilities to reduce significantly the time complexity. A detailed explanation of YOLO

is out of the scope of this sub-section, and for a complete overview of the recent literature

about Object Detection (OD), we refer the reader to the two following surveys [66, 146].

In practice, we use the Darknet-53 architecture and pretrained weights proposed in

tensorflow. This network uses 53 convolutional layers with 3x3 kernels in the beginning

and 1x1 in the end. The model used was trained on the VOC dataset [19], containing 80

classes. Darknet-53 operates at a level close to state-of-the-art object detectors, but is

faster because it uses less floating-point operations. The YOLO-v3 model was prepared

with a threshold of 0.5 for both Intersection over union (IOU) and the loss function.

During our evaluation (Section 6.1), the score threshold to keep a bounding box, as well

as the IOU threshold were both set to 0.5 as well. To generate the search galleries, we

only use the output corresponding to the person class from the object detector.
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5.4 Classic Person Re-ID

The method used to perform classic person Re-ID in this paper is the same as proposed

by Ejaz2015, called An Improved Deep Learning Architecture for Person Re-Identification.

From now on, we refer to this method as SiamIDL. This method used the following deep

neural network architecture: two layers of tied convolution with max pooling, cross-input

neighborhood differences, patch summary features, across-patch features, higher-order

relationships, and finally, a softmax function to yield the final estimate of whether the

input images are of the same person or not (architecture is shown in Fig 3.10). They

achieved 54.74% vs. 20.65% over the CUHK-03 dataset, more than double from the

previous methods. This work was compared against KISSME, eSDC, SDALF, ITML,

logistic distance metric learning (LDM), largest margin nearest neighbor (LMNN), metric

learning to rank (RANK), and directly using Euclidean distance to compare features.

We select this work because the authors provide a base code repository to perform

training and validation. Also, this works fits perfectly in our broad pipeline because it

receives two images as input, and the output is a score of similarity between 0 and 1.

The first step was to validate this method’s results over the same dataset where it

was evaluated(CUHK-03[54]). The dataset provides a folder train where there are 7239

images. The organization is as follows: there are 742 Ids, every Id has between eight and

ten hand-labeled images extracted from different frames, these have different sizes, and

some have missing body parts. Also, we have another folder for validation where there

are 938 images; these images don’t appear in the train folder, and Ids are different from

the train folder. There are 99 Ids, and every Id has between eight and ten images with

different sizes and view positions.

The second step was to evaluate this method over the PRID2011[36](introduced in 5.1)

dataset, our principal data for FF-PRID. For implementation, we used the authors’ source

code and trained the network using the training set of the CUHK-03 dataset [54]. We use

the same parameters as in the original paper: batch_size=50, max_steps=210 000, and

learning_rate=0.01. The Cumulative Matching Characteristics (CMC) are computed on

both the validation folder of CUHK-03 (938 images) and the original PRID dataset to

evaluate the model. Results are presented in Section 6.2. We save final weights to use

them to compute over the validation folder. We didn’t re-train the model for this step.



Chapter 6

Results

To demonstrate the importance of considering the FF-PRID pipeline as a whole, and

thus corroborate the usefulness of the proposed metrics, the evaluation conducted in this

paper is three-fold. First, the Object Detection model is evaluated independently on a

raw video from the PRID-2011 dataset. Then, the classic Re-ID model is tested on both

the CUHK-03 validation set and on the official PRID-2011 dataset. Finally, we evaluate

the full FF-PRID pipeline using our metrics on the modified PRID-2011 dataset.

6.1 Evaluation of the Object Detection model

The PRID-2011 dataset was initially created to evaluate classic Re-ID models. Hence,

occluded persons, persons with less than five confidence frames, as well as distorted images

caused by tracking and annotation errors were removed from the list of bounding boxes

(see Figure 6.3b). To achieve a correct evaluation of YOLO-v3 on the PRID-2011 videos,

it is necessary to manually add the bounding boxes of these people who were ignored

during dataset creation. To do this, the LabelIMG tool was used and we added a total

of 37.772 bounding boxes for the labels of video B. The results obtained for pedestrian

detection with YOLO-v3 on the PRID-2011 videos are presented in Table 6.1. These

results correspond to the model that was used to generate the search gallery for the

classic Re-ID model (see 4.2b).

When analyzing visually the output produced by YOLO-v3, the results on PRID-2011

video B seem almost perfect. In this way, the difference in the results between OBB and

OBB+MBB can be interpreted as the number of entire human bodies which where manu-

ally filtered by the annotators of the original dataset (e.g. partially overlapping persons).
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Table 6.1: Evaluation of the YOLO-v3 model for pedestrian detection on the raw video B
from the PRID-2011 dataset. For the Original Bounding Boxes (OBB) rows, metrics were
computed using only the bounding boxes available from the original dataset as ground
truth. For the OBB + Manually added Bounding Boxes (MBB) rows, the bounding boxes
added using the LabelImg tool were also considered.

Precision Recall F1-score mAP
OBB 0.462 0.866 0.603 45.53%

OBB + MBB 0.761 0.824 0.791 69.50%

On the other hand, the remaining errors for the OBB+MBB case mostly correspond to

incomplete body parts, such as legs, arms or torso, which we did not include in our ground

truth bounding boxes (see Fig. 6.1). An object detector, such as YOLO-v3, is trained to

find the particular characteristics of the object of interest in an image and thus gener-

ates bounding boxes for the cases mentioned above. These cases constitute an important

discrepancy between the domain on which the classic Re-ID model was trained and the

images generated by the OD model. Such domain shift in the inputs of the C-PRID model

can be a major source of errors for the full FF-PRID pipeline.

Figure 6.1: Different possible mistakes for cropping. (Source: author).
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6.2 Evaluation of the Person Re-ID model

To evaluate the SiamIDL model used in our pipeline, we compute the CMC curves for

both the validation set of CUHK-03 and PRID-2011. These results can be seen on Fig. 6.2.

The evaluation on CUHK-03 is used to validate the training of our model by comparing

our results with the ones obtained in the original paper. The blue curve obtained on

Fig. 6.2 is very similar to the experimental results obtained in [17]. The red curve on

Fig. 6.2 shows the results of a test performed on the first 200 Ids from view A of PRID-

2011. We can see that the results obtained were good, with more than 48% on Rank

1 and more than 95% on Rank 20. We note that no additional training was conducted

on the PRID-2011 dataset and only the weights trained on CUHK-03 are used in this

validation. This last experiment corresponds to the practical scenario of deploying Re-ID

in new environments (e.g. new city, new shopping center), where it would be impractical

to create a new custom training dataset for every new implementation.

Figure 6.2: CMC curve on CUHK-03 validation set and on view A of PRID-2011, using
a SiamIDL model trained on CUHK-03 training set. (Source: author).

The fact that a network trained on CUHK-03 can generalize to data from another

dataset shows that the proposed Re-ID model is able to learn cross-domain Re-ID. Indeed,

the kind of images used for training are very different than the images encountered at

inference time (see Fig. 6.3). This property is interesting as the domains encountered

for every new implementation vary a lot depending on the quality of the cameras, the
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distance to the people and the illumination, among other factors.

(a) CUHK-03

(b) PRID 2011

Figure 6.3: Example images from the CUHK-03 and the PRID-2011 datasets. (Source:
CUHK[54] and PRID2011[36])
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6.3 Evaluation of the full pipeline for FF-PRID

For evaluation, we selected 10 sets of two minutes videos from each camera view. For

each short video sequence, approximately 4 query images were selected. In total, our

evaluation consists of 20 videos and 73 queries (36 for view A and 37 for view B). Each

query appears in its associated video at least in one frame, but does not necessarily appear

in each sub-videos after splitting into shorter sequences (see Fig. 4.1). To evaluate the

influence of the different parameters of the FF-PRID pipeline, i.e. the number of frames

for video splitting τ , the threshold for alert generation β and the number of candidates

shown to the monitoring agent η, we use different values for each parameter. Thus, we

test τ ∈ {10, 100, 1000}, η ∈ {1, 10, 20} and the threshold β is computed for various values

in the interval [0.5, 0.98]. The Figures. 6.4, 6.5 and 6.6 shows the Finding Rate (FR) and

True Validation Rate (TVR) curves for different values of τ , β and η.

Figure 6.4: Graphic with τ=10. (Source: author).
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Figure 6.5: Graphic with τ=100. (Source: author).

6.3.1 Influence of the FF-PRID parameters

As we can see in these graphs, for all values of τ and η, the FR curves decrease when

β increases. This behavior can be explained by the fact that a larger β means that

the model will raise less alerts and is more likely to miss the query. However, with

τ = 1000, the decreasing effect is less noticeable. This is because when considering larger

galleries, the model has more chances of finding a similar image and having at least one

high confidence prediction. In contrast, the three TVR curves demonstrate the opposite

behavior and are increasing with β. This also makes sense as increasing β correspond

to reducing the accepted confidence range and thus calling the agent with less frequency.

However, except for the case τ = 1000, we note that the values of the different TVR are all

very low, meaning that the human monitoring agent would be called in many unnecessary

cases.

Furthermore, as expected, η = 10 and η = 20 performed much better than η = 1 for

all configurations of τ and β. Indeed, the C-PRID models are not perfect and training

Re-ID models with very high top 1 accuracy is hard. In contrast, decreasing η, reduces
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Figure 6.6: Graphic with τ=1000. (Source: author).

the amount of work for the monitoring agent as it needs to control less image samples.

Finally, the FR curves present better results for τ = 100 than for the two other tested

values. This is because the raw video is split into sub-videos which are neither too short

nor too long. This way, the query appears on the video for a sufficient amount of time to

be recognize and there are not too many distractors to confuse the network.

6.3.2 Qualitative Evaluation

In Fig. 6.7, an example of the propositions shown to the monitoring agent is presented.

This is the interface that we used for testing the approach and computing the final metrics

scores. The text box present in the interface should be filled with the best ranked image

representing the query, and 0 if the query is not present in the proposals. For example,

in Fig. 6.7 the operator should enter 1.

When we carried out the evaluation, we observed that way too many alert calls oc-

curred. Also, when a sub-video of τ frames contains too many persons, a variety of
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Figure 6.7: Example of the interface for alert validation with η = 6. (Source: author).

cropped images are presented, not always representing the query. We also noted that

the imperfect bounding boxes produced by YOLO-v3 (see Fig. 6.1) had a strong negative

influence on the results.

6.3.3 Further considerations

The results obtained for the FF-PRID problem suggest that careful selection of the tunable

parameters (τ , β and η) is paramount. Indeed, with proper selection we can reach an FR

of almost 80% with a TVR of 26%. Although the score that we managed to reach for

the Finding Rate are satisfactory, we acknowledge that the TVR is still too low for the

method to be used practically, as the operator would be called too many times if dealing

with several cameras at the same time. These mixed results emphasize the importance of
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considering the FF-PRID problem as a whole and suggest that changing the paradigm for

person Re-ID might be the best way to obtain applicable solution for tomorrow’s cities.

As already mentioned, the discrepancy between the training domain of the classic Re-

ID model and the domain generated by OD is a possible reason for the results obtained.

Another possible reason for the low TVR is that SiamIDL is a closed-world method, i.e. it

supposes that the query is always present in the search gallery. Hence, the highest ranked

prediction tend to have very high confidence scores and to raise alerts very frequently. In

the validation example studied here, sometimes the query is not present, thus defining an

open set scenario [45].

6.4 Some Observations

We have been able to observe that our approach to solving the FF-PRID problem has

meager results. The objective of our work is not to develop an optimal model. However,

we analyze the limitations with the following observations:

• An important observation is that we do not have good results for only considering

YOLO as a person detector. The ideal would be to consider other options such as

SSD, RCNN, etc.

• We are not getting by using a tracking algorithm to aid in processing before re-

identification. Therefore, when our approach shows the results to the user, many

repeat people are shown.

• In the same way as using only YOLO, in the case of using a C-PRID model, we

only consider SiamIDL because it is a classic technique, video-based Re-id or other

Re-id approaches are not being considered.

• Another possible reason for the low results is that we use two separate models, the

output of YOLO being the input of SiamIDL. However, they do not work as a unified

network, this causes the process to be slower, and the characteristics obtained by

YOLO are wasted.

• Concerning the characteristics of the images of people, there is a problem with the

C-PRID methods, which is to confuse people with others, either because of their

way of dressing or because of elements outside of people.
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Outside of the proposed model, we believe that it is essential to tune the β, τ , and η

parameters of our Hybrid Framework. On the other hand, our model’s leading cause has

terrible results in the framework because it generates many false alerts. This induces a

decrease in TVR, harming FR. False alerts are caused because our Re-id model is a Close

world Re-ID algorithm, which means that it has only been trained in situations where

the query always exists in the search gallery. Therefore, it cannot differentiate itself from

other people, so the model generates false alerts, believing that it found a similar person.

All those SiamIDL problems cause it to generate false alerts when the target is not found

in our gallery.



Chapter 7

Conclusions

7.1 Conclusion

In the last couple of years, new considerations to deal with practical challenges for im-

plementation of Re-ID have started to appear. In this way, a new metric to measure the

cost of finding all the correct matches was introduced in [135]. The open-world setting is

starting to gain importance because of its higher real-world relevance [45]. Finally, gait-

based Re-ID is a recent field that aims to identify people by their gait in unconstrained

scenarios, typical of surveillance video systems. This is better in long-term scenarios than

appearance-based Re-ID [77]. The research presented in dissertation is a continuation of

these works as it also attempts to deal with real-world constraints in the practical imple-

mentation of Re-ID. In our case, we claim that it is necessary to consider full video frames

as input instead of pre-cropped images in order to build solutions that can be evaluated

and implemented and in practical scenarios.

In this work we claim that the classic approach for person Re-ID is not sufficient to

develop practical implementations of Re-ID for security application, which requires to

process the full frames of the cameras stream (FF-PRID) instead of pre-cropped clean

images of people. To support this claim, we build a two steps FF-PRID pipeline. First,

persons bounding boxes are extracted from the input video using a state of the art object

detection model (YOLO-v3) to generate a search gallery. Then, the query is searched

in the gallery using a good Re-ID model (SiamIDL). A framework embedding these two

sub-modules is presented, including a human monitoring agent in the loop in order to

strengthen the results. We present two new metrics in order to evaluate the proposed

FF-PRID pipeline. The metrics are used to evaluate how many times the query is found

when it is present in the video (Finding Rate) and how many times the query is present
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when the agent is solicited (True Validation Rate). These framework and metrics are, to

the best of our knowledge, the first proposed approaches to evaluate a FF-PRID model,

looking for persons directly in the entire video frames.

Our experimental results were conducted on a modified version of the PRID-2011

dataset. We demonstrated that both the OD model and the classic Re-ID model managed

to perform well on the new dataset without additional training. However, the final results

for FF-PRID, evaluated using FR and TVR, were not sufficient to deploy FF-PRID in

production. Although choosing the right parameters in our framework enabled us to

reach a good FR score (> 80%), we were not able to obtain a TVR much better than

25%, which means that most of the time the operator calls were unnecessary. Some

possible explanations for these results were discussed as well as possible improvements.

However, these mixed results emphasize the importance of considering Re-ID in the FF-

PRID setting if we want to develop methods that can be used in practical scenarios. We

believe that many improvements could be achieved if the community starts investigating

Re-ID solutions for the Full Frame setting instead of focusing only on the classic pre-

cropped image-based setting.

7.2 Future works

After demonstrating the importance of considering the FF-PRID setting, the next step is

to improve the proposed pipeline and get closer to solving FF-PRID. A possible direction

to achieve this is to consider video-based classic Re-ID methods [79, 52]. Another natural

option is to consider the open-world person Re-ID setting instead of closed-world [45]. We

also plan to train more specific pedestrian detection techniques, focusing on recognizing

only full-bodies. Finally, another potential improvement to address the problem would

consist in building a large dataset of annotated videos, which could be used for training an

end-to-end model for the whole FF-PRID application. This approach sound promising in

regards with the success of end-to-end approaches in solving complex tasks lately [46, 43].
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