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Resumo

Com o crescente tamanho das redes locais sem fio, em inglês Wireless Local Area Net-
works (WLANs), para prover amplo acesso aos seus usuários, cresce também o seu con-
sumo energético. Economia de energia em redes Wi-Fi de larga escala, sem impactar
o serviço aos usuários, é indubitavelmente desejável. Este trabalho propõe e avalia o
mecanismo de economia de energia para WLANS chamado de eSCIFI. O eSCIFI é um
mecanismo de economia de energia que usa algoritmos de aprendizado de máquina como
modelos de predição de demanda de ocupação. O eSCIFI foi desenvolvido para funcionar
em um maior número de redes loocais sem fio, o que inclui redes Wi-Fi como a rede SCIFI
da Universidade Federal Fluminense (UFF). O eSCIFI pode funcionar em WLANs que
não possam coletar dados em tempo real e/ou que possuam um poder de processamento
limitado. O eSCIFI também inclui os algoritmos de agrupamento, o cSCIFI e o cSCIFI+,
que auxiliam na garantia de cobertura da rede. O eSCIFI usa estes algoritmos de agru-
mamento e predições fornecidas pelos modelos de aprendizado de máquina como entradas
do seu algoritmo de decisão de estado de energia, que é o responsável por decidir que
pontos de acesso devem ou não ser desligados durante o dia. Para avaliar o mecanismo e
SCIFI para o cenário motivador, criaram-se dois datasets usando os dados coletados da
rede SCIFI UFF no bloco H durante um período de 6 meses. Primeiro conduziu-se uma
análise experimental usando a metodologia unificada proposta para determinar quais são
os melhores modelos de aprendizado de máquina. Os resultados mostraram que o mod-
elo COL/DT/SL/ADHDWD alcançou 86.69% de acurácia para as previsões de ocupação
usando técnicas de classificação e um RMSPE (Root Mean Squared Percentage Error) de
0.29 para as previsões de ocupação usando técnicas de regressão. Por fim, foram con-
duzidas diversas simulações de rede comparando o mecanismo eSCIFI, utilizando ambos
algoritmos de agrupamento, contra outros mecanismos presentes na literatura usando os
traces de redes obtidos da rede UFF SCIFI. Os resultados mostram que o mecanismo
eSCIFI usando o algoritmo de agrupamento cSCIFI+ obteve os melhores resultados e
poderia economizar até 64.32% da energia consumida pela rede UFF SCIFI sem afetar a
cobertura dos seus usuários.

Palavras-chave: Mecanismo de Economia de Energia para WLANs, Aprendizado de
Máquina, Prédios Inteligentes, Redes Wi-Fi.



Abstract

As wireless local area networks grow in size to provide access to users, so does their
power consumption. Power savings in a large-scale Wi-Fi network, with low impact to
user service, is undoubtedly desired. In this work, we propose and evaluate the eSCIFI
energy saving mechanism for WLANs. eSCIFI is an energy saving mechanism that uses
machine learning algorithms as occupancy demand estimators. The eSCIFI mechanism
was designed to cope with a broader range of WLANs, which includes Wi-Fi networks
such as the Fluminense Federal University (UFF) SCIFI network. The eSCIFI can cope
with WLANs that can not acquire data in a real time manner and/or possess a limited
CPU power. The eSCIFI design also includes two clustering algorithms, named cSCIFI
and cSCIFI+, that help to guarantee the network’s coverage. eSCIFI uses those network
clusters and machine learning predictions as input features to an energy state decision
algorithm that then decides which Access Points (APs) can be switched off during the day.
To evaluate the eSCIFI mechanism for our scenario, we created two dataset using the data
collected from the Fluminense Federal University (UFF) SCIFI Wi-Fi network on the H
building over a period of 6 months. We first conducted an experimental analysis using our
proposed unified methodology to determine which machine learning models provide the
best performance results. The results showed that the COL/DT/SL/ADHDWD model
achieved 86.69% accuracy for occupancy prediction using classification techniques and
RMSPE (Root Mean Squared Percentage Error) of 0.29 for occupancy count prediction
using regression techniques. Later we conducted several trace-driven simulations com-
paring the eSCIFI mechanism using both clustering algorithms with other energy saving
mechanism in the literature using the UFF SCIFI network traces. The results showed
that eSCIFI mechanism using the cSCIFI+ clustering algorithm got the best results and
that it could save up to 64.32% of the UFF SCIFI network without affecting the user’s
coverage.

Keywords: WLAN Energy Saving Mechanism, Machine Learning, Smart Buildings,
Wi-Fi Networks.
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Chapter 1

Introduction

Buildings play an important role in our lives. People usually spend in average 20 hours

per day inside buildings [61]. Also, the number of inhabitants in urban areas is quickly

increasing [48]. Since buildings are heavily occupied, they require great amounts of en-

ergy and resources to operate. As a consequence, there are numerous studies about smart

buildings [60, 21, 4], specially on the creation of low cost, efficient smart building man-

agement systems.

The key concept behind smart building management systems is the preemptive control

of building infrastructure in order to save resources such as lighting, Heating, Ventilating

and Air Conditioning (HVAC), elevators and even network infrastructure [4, 60, 18]. Au-

tomatic control of the building elements creates an ambient intelligent building once it

increases people’s quality of life by saving resources through the introduction of technol-

ogy [8]. Some building management systems do not require precise occupancy information

to be functional and capable of saving energy, especially HVAC systems, by using fixed

building control schedules [12]. Several studies have demonstrated that occupancy infor-

mation could help to reduce energy consumption in buildings, specially in non-residential

buildings [60, 54], which operate under more predictable schedules [60].

The presence of WLANs on shopping centers, conventions centers, commercial and

universities buildings is increasing daily [15]. Because of that, the use of Wi-Fi networks

has attracted a lot of attention for the provisioning of occupancy predictions for areas

inside buildings. There are several papers on the literature that uses Wi-Fi infrastructure

to gather information about the building areas occupancy history and current state in

combination with different machine learning approaches to predict occupancy of building

areas, offices and rooms [54, 60, 21, 4].
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Wi-Fi networks can be used to conduct occupancy detection or occupancy counting

for buildings. The ubiquity of large-scale Wi-Fi networks on non-residential buildings

turns them into an excellent source of information with no additional cost [21, 45, 60].

There are several studies that use Wi-Fi infrastructure and machine learning techniques

to create prediction models for smart building management. Some of them collect infor-

mation on the building areas occupancy history to predict if they are occupied or not

(occupancy detection) [54, 60, 4, 51]. Others use Wi-Fi information to predict the oc-

cupancy count of some building areas [61, 18, 21, 45]. In this scenario, several studies

use Wi-Fi infrastructure combined with machine learning methods to predict occupancy

of building areas, floors and rooms [54, 60, 21, 4, 61, 51, 27]. They do not necessarily

use the association history information from the Wi-Fi network to build their dataset

and create prediction systems, but rather other information such as channel utilization or

bandwidth [54, 60, 21, 4, 61, 51, 27, 37, 62]. Those studies used single-label or multi-label

machine learning classification models and Artificial Neural Networks (ANNs) to address

the occupancy detection problem using Wi-Fi association history and developed mecha-

nisms that decide whether an AP should be turned on or off [15, 61, 22, 29, 37, 18, 45].

There are others that use Wi-Fi association data to create single-target machine learning

regression models to estimate the occupancy count that can also be used on Wi-Fi AP

energy saving mechanisms [60, 36]. However, those models are mostly used to develop

HVAC scheduling systems [4, 51, 53, 27]. On the other hand, none of them has used

multi-target regression methods for occupancy count or compared and evaluated single-

label and the multi-label methods to classification models to determine which would have

greater accuracy on occupancy detection. Thus, we fill this gap with our work.

According to Cui et al [13], energy consumption in a Wi-Fi network is considerable.

University wireless networks display a bimodal periodic behavior with daily and weekly

cycles, and Wi-Fi APs may stay unused for extensive periods of time [18, 50, 19]. These

long idle periods represent a considerable energy waste that presents an excellent opti-

mization opportunity. That scenario allows the use of machine learning prediction models

capable of delivering occupancy demand predictions for network APs throughout the day

[18]. The Wi-Fi network controller can switch off the network interface of unused APs

during idle time slots using Resource On Demand (RoD) strategy mechanisms based on

those predictions.

Wi-Fi RoD strategy management systems, or simply RoD strategy mechanisms, im-

plement algorithms and policies that decide which APs should be switched off to save

energy and which APs must stay switched on to cope with the traffic demands [15]. Some
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of those mechanism use real time data acquisition or sophisticated RoD strategies to cre-

ate their energy saving mechanisms [56, 57]. However some wireless network controllers

have limited Central Processing Unit (CPU) power, what makes it unfeasible to collect

and predict occupancy in real time, therefore requiring these systems to make predictions

based exclusively on past information. But even such networks could benefit from RoD

strategy mechanisms and few to no adjustments would be required. Those mechanisms

can aid both wireless network energy savings and also other building systems such as

elevator scheduling. Therefore our scenario requires an analysis on how machine learning

algorithms are capable of looking at the future based on previous information and giving

accurate predictions about the Wi-Fi network demand in both occupancy detection and

count methods.

1.1 Goals and Contributions

This work proposes eSCIFI, an energy saving mechanism for WLANs. eSCIFI uses ma-

chine learning models to predict the wireless network future demand, therefore it can

work in wireless networks where the controller’s CPU power does not allow real time data

acquisition to estimate this demand. eSCIFI uses two RoD strategy algorithms to ensure

client’s association and the network minimum coverage: the AP clustering algorithm and

the double threshold algorithm. The eSCIFI mechanism can determine which APs should

be active or turned off during certain moments of the day in order to cope with the actual

network demand and also save energy.

The main contributions of this dissertation are:

• design of an energy saving mechanism for WLANs that can work in scenarios where

real data acquisition is not possible: eSCIFI;

• analysis of how can eSCIFI cope with the network demand while saving energy and

the comparison of its results with other RoD strategy mechanism in the literature;

• proposal of a unified experimental methodology based on machine learning to eval-

uate classification and regression models about their capacity to accurately predict

access point demands for energy-efficient smart buildings;

• an experimental analysis using our unified methodology to determine which models

provide the best results or are the most suitable for an energy-efficient wireless

network RoD strategy management system;
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• construction of a dataset using real user data collected from a subset of the APs

of the Fluminense Federal University (UFF) wireless network located in a specific

building of the Engineering campus;

1.2 Research Methodology

The work presented in this dissertation required the research of distinct papers about

several topics to be completed. We used academic digital libraries to find papers that are

relevant to the topics presented in this dissertation. First, we searched for papers that

present available occupancy history datasets and their creation process. This search gave

us insights and helped on the creation process of our own dataset using the UFF SCIFI

network. Later on, we searched for papers that used machine learning algorithms and

methods to predict occupancy detection and count for smart buildings. Those papers gave

us insights on how distinct algorithms and methods were used in several smart buildings

scenarios. It also helped us to develop a methodology to evaluate and select them. Finally,

we searched papers that develop energy saving mechanism for WLANs. Those papers were

crucial to help us to understand the available energy saving mechanism and to develop

the eSCIFI mechanism. We searched specially for those energy saving mechanisms for

WLANs based on machine learning approaches.

The steps followed in our research methodology were:

1. Search occupancy history datasets creation process for smart building scenarios :

We found some papers that present dataset construction process. In section 4.1.1

we present the papers that served as a basis for our construction process.

2. Construction of a dataset using real user data collected from the UFF SCIFI net-

work: In section 3.1 we present our data collection process and in section 4.1.1 we

present our dataset construction process.

3. Search distinct machine learning approaches and evaluations for smart building

occupancy detection and occupancy count estimations: Those machine learning

approaches and evaluations searched are presented and compared in section 2.2.1

4. Proposal of a unified experimental methodology : In section 4.1 we present a unified

methodology to evaluate and select machine learning classification and regression

models for smart buildings scenarios
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5. An experimental analysis of our unified methodology: In section 4.2 we present an

experimental analysis that can help to determine the most suitable machine learning

model different for our scenario and other smart cities or network scenarios;

6. Search energy saving mechanism for WLANs, specially those energy saving mecha-

nism based on machine learning approaches: In section 2.2.2 we present a taxonomy

to compare those searched mechanism and to classify our proposed approach.

7. Proposal of the eSCIFI: In chapter 5 we present our proposed energy saving mech-

anism for WLANs, its architectural elements and its advantages.

8. A trace driven analysis: In chapter 6 we show of how the eSCIFI can cope with our

experimental scenario and the comparison of its results with other RoD strategy

mechanism in the literature.

1.3 Text Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents the multi-

label classification and multi-target regression methods and performance metrics that

help understanding the proposed solution and evaluations and the related work to this

dissertation. It presents the related work to occupancy detection and count based on

machine learning models and to WLANs energy saving mechanisms.

Chapter 3 presents the UFF SCIFI network and discuss its advantages and limitations.

It also present the data collection process and discuss the UFF SCIFI occupancy.

Chapter 4 explains our proposed methodology. It includes the detailed overview

aspects of it, the dataset set creation process, the evaluation of our unified methodology

for the UFF SCIFI scenario and discussions about the unified methodology results.

Chapter 5 describes the eSCIFI energy saving mechanism solution proposed in this

work. It includes the architectural details of our solution such as the hybrid machine

learning model and the heuristic algorithm.

Chapter 6 covers the evaluation of the proposed eSCIFI energy saving mechanism. It

explain the details if our trace driven analysis and how different architectural components

may affect the energy saving factor and coverage ratio loss.

Finally, Chapter 7 concludes this dissertation. It presents the conclusions of our work.

It also discusses some enhancements and applications that might be explored in future
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work.



Chapter 2

Background and Related Work

In this chapter we first discuss the background that helps on the understanding of our

solutions and evaluation. Later, we discuss the related work to occupancy estimation

based on machine learning models and then we will discuss the related work to energy

saving mechanism.

2.1 Background

This work involves the use and assessment of distinct supervised machine learning meth-

ods. Those models are used for classification and regression problems, therefore distinct

evaluation metrics will be needed for each scenario. It also involves the assessment of

the energy saving factor and coverage ratio of the wireless network while working under

certain network characteristics imposed by our energy saving mechanism. In this section,

we define and explain the machine learning methods, the metrics used to evaluate their

results for distinct scenarios and briefly explain what are ANNs.

2.1.1 Machine Learning Methods and Artificial Neural Networks

In a general supervised learning scenario, a dataset S = {(x1, Y1), ..., (xN , YN)} is given

to the learning method, with fixed and unknown distribution D. Each instance xi is a

vector of the form xi = (x1
i , ..., x

M
i ). Each value (x1

i , ..., x
M
i ) is relative to each feature

(X1, ..., XM). Y is a special feature called class. Yi, i = 1, ..., N , represents a set of labels

associated to each instance xi. If all sets Yi, i = 1, ..., N , have only one value, the problem

is called single-label. So, in single-label problems, machine learning algorithms have only

one possible output prediction. However, some machine learning problems cannot be
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treated as a single-label problem [24]. There are cases, such as movie classification, where

a movie can be classified as action and fiction simultaneously [26]. Multi-label machine

learning classification algorithms and methods are those capable of dealing with more

than one exclusive output. In other words, if the sets Yi contain one or more values,

the problem is called multi-label classification. In a multi-label classification problem or

simply multi-label problem, a set L = {l1, ..., lq} is given, such that all Yi ∈ L. Figure 2.1

shows an example comparison between single-label and multi-label methods. In the single-

label method there is only one possible output while on the multi-label method there are

more than one possible output.

Figure 2.1: Comparison between machine learning single-label and multi-label problems

There are many distinct methods to tackle multi-label problems. Problem transfor-

mation is the simplest and the most often used, converting the multi-label problem with

L labels into L single-label problems, i.e., each label lq ∈ L is turned into a feature,

composing a set of features lq, q = 1, ..., Q. The cardinality of L is denoted by |L|. Thus,
each feature lq is a class associated with the set of instances xi to be given to a single-

label classification algorithm [23]. In our scenario, for modeling occupancy prediction as

a multi-label problem, L represents the time slots for predicting occupancy during a day.

For instance, considering a set of time slots t = {t1, .., tmax}, if each time slot has 10 min,

then tmax = 144 and |L| = 144. Therefore, to each instance xi and label (or time slot) lq,

we can associate a value Y
tj
i that represents a value of the set {0, 1}, indicating absence

or presence of people in an AP for time slot tj, defining a classification problem.

Binary Relevance (BR) is the simplest, and most used, problem transformation ap-

proach. BR approach uses the same input features in all the L prediction models, but each

one is responsible for predicting one specific label lq. Each model is completely indepen-
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dent from others, which transform them in completely independent single-label models.

The BR allows the classifiers to work on parallel since they are independent, however the

classifiers can not benefit from correlations between the labels on the classification task.

Classifier Chain (CC) methods can be used, as they benefit from label correlations.

It is expected that CC achieve more accurate results than Binary Relevance (BR) when

there are dependencies among labels [23]. Like BR, CC also build a unique model for

each label, but the models are sorted in a chain order. Each model input is composed by

the domain features and the labels that precede the label being predicted by the model,

forming a chain structure. Differently from the BR, the CC approach is serialized and

the classifiers can not work independently since they have to provide their predictions to

the next classifier on the chain in order to achieve a final prediction.

There are also regression cases, such as stock price estimation [47], where more than

one single-target prediction using the same set of predictive variables is possible. Multi-

target, also known as multi-output, regression algorithms and methods are those capable

of dealing with more than one exclusive real value output. Therefore we can associate to

each instance xi a value Y
tj
i that represents the number of people associated to an AP

for time slot tj, defining a regression problem. Those multi-target regression problems

can also be tackled by problem transformation approaches. On the Binary Relevance

method for multi-target problems, each regression model uses the same input features to

predict a real output value Y
tj
i . Similarly to the CC method, the Regressor Chain (RC)

method builds a chain of regression models where each model input is composed by the

domain features and the real target value that precede it. Figure 2.2 shows a comparison

between the two problem transformation approaches used in this dissertation: BR and

Classifier/Regressor Chain.

Figure 2.2: Comparison between Binary Relevance (left) and Classifier/Regressor Chain
(right) multi-label/multi-target methods

Artificial Neural Network (ANN) models have proven to be successful in a number

of prediction applications [43]. According to Gardner and Dorling [20], a Multilayer

Perceptron (MLP) is an ANN where the neurons are interconnected and grouped into

layers. Neuron connections are weighted and their output signal is an activation function

of the sum of its weighted inputs [20]. MLP allows a single ANN to have a single or
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multiple output targets easily turning the MLP into a multi-label/multi-target prediction

model. Figure 2.3 shows the architecture of a MLP. The MLP represented in Figure 2.3

has only one hidden layer with t neurons inside it and q output targets.

Figure 2.3: Multilayer Perceptron architecture

2.1.2 Machine Learning Metrics

Several metrics can be used for evaluating the classification results. In this work, we

use specific label-based micro averaged metrics [26] for both single-label/single-target

and multi-label/multi-target models. So, we evaluate occupancy predictions for each

time slot and then average those results to get an overall view. Considering a training

set Stj = {(x1, Y1
tj), ..., (xN , YN

tj)} collected in an interval of N days; a test set S ′
tj

=

{(x′
1, Y

′
1
tj), ..., (x′

N ′ , Y ′
N ′

tj)} collected in an interval of N ′ days after N days; time slots in a

day tj ∈ t (if each time slot has 10 min then tmax = 144); and h(x, tj) a model constructed

using S labeled using time stamp tj, tj ∈ t, and to be evaluated with S ′ also labeled using

time stamp tj, tj ∈ t, we can define time slot accuracy Atj for each time slot tj ∈ t as

shown in Equation 2.1, which calculates the accuracy of correctly predicting presence or

absence detection in each time slot in a day, averaged by the number of N ′ days. It is

worth mentioning that this measure is applicable for both single and multi-label models.

Atj =
1

N ′

N ′∑
i=1

h(x, tj) = Y ′
i
tj , tj ∈ t (2.1)

Considering the true positive value TPi
tj of an instance i for a time slot tj as 1 if
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h(x, tj) = Y ′
i
tj and h(x, tj) = 1, or 0 otherwise; the false positive value FPi

tj of an

instance i for a time slot tj as 1 if h(x, tj) 6= Y ′
i
tj and h(x, tj) = 1, or 0 otherwise; true

negative value TNi
tj of a instance i for a time slot tj as 1 if h(x, tj) = Y ′

i
tj and h(x, tj) = 0,

or 0 otherwise; and the false negative value FNi
tj of a instance i for a time slot tj as 1

if h(x, tj) 6= Y ′
i
tj and h(x, tj) = 0, or 0 otherwise, we can define Precision Ptj , Recall Rtj

and F1-score F1tj metrics. Those metrics are calculated for each time slot tj and defined

respectively by Equations 2.2, 2.3 and 2.4.

Ptj =

∑N ′

i=1 TP
tj
i∑N ′

i=1 TP
tj
i + FP

tj
i

, tj ∈ t (2.2)

Rtj =

∑N ′

i=1 TP
tj
i∑N ′

i=1 TP
tj
i + FN

tj
i

, tj ∈ t (2.3)

F1tj =
2× Ptj ×Rtj

Ptj +Rtj

, tj ∈ t (2.4)

We also calculate an overall metric for each of these metrics (Equation 2.5), which

is the mean of the corresponding metric considering all the set t of time slots. This

allows an overview of h prediction performance for the classification problem. Thus, M

in Equation 2.5 can be either A, P , R or F1 metric.

M =
1

tmax

tmax∑
j=1

Mtj (2.5)

Several metrics can be used for evaluating regressors. Consider the same definitions

described before, except that Y ′
i′
tj , i′ = 1, ..., N ′ now represents the number of people

associated to an AP in a time slot tj; and that Ytj is the mean of the real association

count values for a specific time slot tj. So, we can use RMSEtj (Root Mean Square

Error), RMSPEtj (Root Mean Squared Percentage Error) and MAPEtj (Mean Absolute

Percentage Error) metrics, defined respectively by Equations 2.6, 2.7 and 2.8, calculated

for each time slot tj, where Y ′
tj =

1
N ′

∑N ′

i′=1 Y
′
i′
tj .

RMSEtj =

√√√√ 1

N ′

N ′∑
i=1

(Y ′
i
tj − h(x′

i, tj))
2 (2.6)

RMSPEtj =

∑N ′

i=1(Y
′
i
tj − h(x′

i, tj))
2∑N ′

i=1(Y
′
i
tj − Y ′

tj)
2

(2.7)
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MAPEtj =

∑N ′

i=1 |Y ′
i
tj − h(x′

i, tj)|∑N ′

i=1 |Y ′
i
tj − Y ′

tj |2
(2.8)

RMSE (Equation 2.9) is an overall metric, calculated by the mean of RMSEtj using

the entire set t. The overall metric for MAPE or RMSPE can also be calculated by

Equation 2.5, where M can be MAPE or RMSPE.

RMSE =

√√√√ 1

N ′ × tmax

N ′∑
i=1

tmax∑
j=1

(Y ′
i
tj − h(x′

i, tj))
2 (2.9)

2.2 Related Work

There are some papers that propose the use of machine learning occupancy estimation

models using Wi-Fi data to estimate demand. However most of those papers develop RoD

strategies and energy saving mechanisms for other building infrastructure such as HVAC

systems and lighting control. Therefore our related work presents two discussions. First,

we discuss how different papers on the literature constructed their occupancy estimation

models using machine learning algorithms and Wi-Fi data. Later on we discuss several

WLAN energy saving mechanisms proposed in the literature.

2.2.1 Occupancy Estimation based on Machine Learning Models

The information collected from Wi-Fi networks, used to build a dataset and create a

prediction system, is not always the same, as can be observed in [54, 60, 21, 4, 61, 51,

27, 37, 62, 14, 16, 52]. However, the key concept behind those studies is collecting data

about the Wi-Fi network to create a detection or counting system using machine learning

algorithms. Those decision support systems provide information for an energy saving

management mechanism that controls building infrastructure based on its demand, such

as the Wi-Fi network itself or HVAC systems.

Both classifier and regression model are used on Wi-Fi management systems based

on RoD strategies. Those RoD strategies are capable of controlling the energy state

of APs and turn off the unnecessary APs during day periods based on the predicted

occupation [30, 22, 29, 14]. Some studies used classification models to address the Wi-Fi

occupancy detection problem and developed RoD strategy mechanisms [18, 37, 60]. Some

other studies use single-label machine learning classification methods and ANNs using
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Wi-Fi data to control building lights [4, 61]. The work presented in [45] used algorithm

adaptation multi-label methods to deal with the classification problem for HVAC systems.

Regression models using Wi-Fi data to give an estimated users count are mostly used in

HVAC scheduling systems [51, 53, 27], but some studies have also used regression models

to develop RoD strategy mechanisms [52, 16].

Another important difference between those studies is the prediction models construc-

tion. Some studies use collective models [4, 60, 61, 16, 51, 53], while others use individual

models [18, 37, 45, 27]. Collective models are prediction models trained with informa-

tion regarding all APs and responsible for predicting the occupancy detection of all APs.

Individual models are prediction models trained only using information regarding one

specific AP and responsible for that AP occupancy detection prediction. It is worth men-

tioning that while the study of Vallero et al. [52] use and compare both individual and

collective models, it does not compare them using the same machine learning algorithms,

but it rather compares collective and individual models using several machine learning

algorithms.

Table 2.1 compares related work about how they build occupancy prediction models.

We can see in the table that most of the occupancy detection studies use single-label clas-

sifiers and that none of the occupancy count studies use multi-target regressors, but only

single-target ones. Also, those studies did not compare and evaluate single-label/single-

target and multi-label/multi-target methods to determine which would give the best pre-

dictions, as our work does. Moreover, Table 2.1 shows that there was no consensus on

whether to use collective or individual models to give predictions and that no other study

compares them, as our work does.

Finally, there are also some studies where pieces of information related to weather and

season of the year were added to the occupancy information, in order to help on decision

support systems for smart buildings [43, 12, 53, 45]. None of these studies have developed

a methodology where the significance of this information is evaluated though.

Our work presents a unified experimental methodology to evaluate classification mod-

els used for occupancy detection and regression models used for occupancy count where

several machine learning methods, input configurations, types of model construction and

machine learning algorithms are assessed. The main goal of the assessment is to deter-

mine which of these parameter combinations is the most suitable and precise to give oc-

cupancy predictions. Our methodology evaluates and compares multi-label/multi-target

and single-label/single-target methods using several machine learning algorithms, collec-
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Table 2.1: Occupancy prediction related work comparison.

Classification Regression Models

Authors Multi-label Single-label Multi-target Single-target Collective Individual

Balaji et al. [4] X X

Zou et al. [60] X X

Zou et al. [61] X X

Fang et al. [18] X X

Lyu et al. [37] X X

Sangogboye et al. [45] X X

Donevski et al. [16] X X

Trivedi et al. [51] X X

Wang et al. [53] X X

Hobson et al. [27] X X

Vallero et al. [52] X X X

Our Unified Methodology X X X X X X

tive and individual model construction schemes and the significance of input parameters.

Another major contribution of our experimental methodology and analysis is that it does

not require real-time data acquisition for forecasts.

2.2.2 WLAN Energy Saving Mechanisms

Based on the work of Budzisz et al. [6], Jardosh el al. [29] and Lorincz et al [35] we

developed a taxonomy that helped us to compare the distinct RoD strategy mechanisms

for wireless local area networks presented in this section. Our taxonomy consists of seven

non-overlapping categories, corresponding to the main characteristics of the analyzed

related work: (1) network type used, (2) WLAN application scenario, (3) control scheme,

(4) operation strategy, (5) metrics used, (6) type of the algorithm, and (7) evaluation

method.

Most of the analyzed related work develop RoD strategy mechanisms for Wi-Fi

(Institute of Electrical and Electronics Engineers (IEEE) 802.11) networks. However

there are great contributions in the literature that developed RoD strategy mechanisms

for mesh networks [9] and for cellular networks [14, 16, 34, 52]. Those wireless networks

types have distinct characteristics but the strategies and algorithms used on their RoD



2.2 Related Work 15

strategy mechanisms are interchangeable and sometimes even overlapping. It is important

to notice that an RoD strategy mechanism developed and tested for a specific wireless

network can be used in other wireless network types. Therefore the network type category

does not mean any sort of limitation to the RoD strategy mechanism applicability, but

only describes the type of wireless network used as the work motivation and experimental

scenario.

Most of the RoD strategy mechanisms were developed for application scenarios where

they depend on homogeneous WLANs to operate, such as [11, 18, 22, 46, 29]. In these

cases the RoD strategy mechanism is implemented to fully cope with the implemented

WLAN technology without depending on any other wireless networks that might work in

that area to help to implement their energy saving strategies. However there are some RoD

strategy mechanism that were designed to operate in heterogeneous WLAN scenarios such

as [44, 49, 58]. In the heterogeneous WLAN application scenarios the WLAN can rely on

other wireless technologies such as Bluetooth or in a separate wake-up radio transceiver

to detect users activity while the WLAN infrastructure is turned off. The RoD strategy

mechanism developed for heterogeneous WLAN application scenarios can usually achieve

higher energy saving rates without affecting their users Quality of Service (QoS) since

there is always a supportive wireless network to detect new users instantly. However

homogeneous networks are less complex in terms of deployment, control and management,

due to their independent WLAN nature.

The control scheme category expresses how the RoD strategy mechanism implements

its energy saving strategy. The control scheme can be centralized or distributed. RoD

strategy mechanisms with centralized control scheme uses a central controller to supervise

the network and send the commands to rest of the network. Centralized control schemes

are more common for large wireless networks since most of them already have a central

controller and their APs usually are not powerful enough to implement the algorithms

and calculations needed. However the centralized control scheme can be subdivided into

two categories depending whether the central controller is designed for a Software Defined

Networks (SDN) controller or not. Software defined networks (SDNs) separate the control

and data plane by introducing a centralized controller that is responsible to resolve flows

forwarding policies and to assign them to the switches’ forwarding tables [10]. Some

related work [56, 57, 46, 10] develop energy saving mechanisms for SDN based networks

with a centralized SDN controller. The use of SDN controllers allows those energy saving

mechanisms to use some network information collected them such as network topology

and traffic usage easily. However not every large scale WLAN controller is based on the
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SDN paradigm and therefore can not count with all advantages given by it. There are

some proposed energy saving mechanisms in our related work that do not consider the

controller to be SDN [9, 14, 37, 39]. Those energy saving mechanisms also work with

a centralized control scheme, but with non-SDN controller which make them a feasible

solution to WLANs where not all SDN advantages are present. On the other hand, in the

distributed network, the WLAN elements are all responsible for controlling their energy

state and deciding weather they can be turned off or not. However, it is important to

highlight that a distributed control scheme does not necessarily mean that each WLAN

AP works independently from the other. In [32, 31], the Wi-Fi APs implement an energy

saving strategy without a central controller, but they use out of band communication to

communicate between them and decide which APs can be turned off.

RoD strategy mechanism can be classified into two operation strategies: demand

driven or schedule driven. Demand driven strategies collect real-time information from

the WLAN resources to estimate user demand [29]. The advantage of these strategies is

that they can generate an energy saving in the WLAN while satisfying the user demand.

However demand driven strategies have a higher CPU power cost due to the overhead

of assessing user demands continuously [28]. Demand-driven strategies are more suit-

able in scenarios where the user demand may unpredictably vary over time such as in

stadiums [22]. On the other hand, schedule-driven strategies use predefined schedules to

produce its energy saving. These schedules can be obtained with machine learning models

trained with WLAN historical usage data [18, 52, 37] or can be based on the administra-

tor’s experience [46]. The advantage of using schedule-driven strategies is their low CPU

power requirements. Schedule-driven strategies are only suitable for scenarios where user

demand is predictable such as university networks [18, 37, 46].

The RoD strategy mechanisms can be divided into 4 metrics subsets according to

the metrics they use to minimize the energy consumption. The most common and most

intuitive metrics are the traffic metrics subset. The traffic metrics subset comprises any

network traffic related metric such as number of associated users [39, 18, 37], through-

put [14] or more sophisticated ones such as channel utilization [29]. Traffic metrics are

usually used and measured in a network and therefore they are easily accessible, but it

might not be enough to guarantee the QoS or coverage alone. Coverage metrics are used

to ensure that the whole radio area network [28, 29, 46] and users [56, 57, 22] will be

covered. Coverage implies that the RoD energy saving strategies will guarantee that all

users can connect to at least one active radio. QoS metrics are usually used in works

that try to minimize the most the impact on the user’s service [34, 33], but they also
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imply smaller savings or more complex algorithms to work. Energy metrics correspond

to the work [36, 35] where the reducing energy quantitative is taking into the analysis

for the switching on/off strategies. A clear implication is that the user’s traffic or QoS

constraints can not be met. One important thing to highlight is that every metric alone

has its advantages and weaknesses, therefore most of the analyzed related work uses a

combination of metrics to guarantee the user’s demand will be met.

RoD strategy mechanisms can also be divided by the type of algorithms used to make

the energy status decision for the WLAN resources based on the metrics available. Heuris-

tic algorithms can rapidly determine a solution within reasonable time using reasonable

resources [35]. As the name suggests, heuristic algorithms are based on heuristics solu-

tions that are easier to implement and usually based on thresholds [52, 18, 28] or other

metrics combination rules [49]. Heuristic algorithms are usually most suitable for WLAN

scenarios where the CPU power and/or computational time required are low. On the

other hand, optimization algorithms are based on different mathematical problems and

solvers that guarantee the best possible solution to a specified problem [36]. Optimiza-

tion algorithms require more time and resources to provide their solution and therefore are

suitable for WLAN scenarios where the CPU power and/or computational time required

are high. Our analyzed related work shows that optimization algorithms achieve better

results when compare to heuristic ones [56, 57], however Lorincz et al. [35] conclude in

their work that "heuristic algorithms can be valuable alternatives offering good solution

in reasonable amount of time".

Lastly the analyzed related work can be divided according to the experimental test

made to evaluate their RoD strategy mechanism performance. Simulation tests are those

that make use of simulation software such as Matlab [19], Scenargie [41] or NS-3 [46] to

recreate their WLAN scenarios and evaluate performance. Trace Driven tests are those

that use network traces to reproduce a real network scenario comparing how their network

would respond to the changes in that scenario using distinct energy saving mechanism [18,

52, 16, 37]. Testbed experiments are those where a real WLAN infrastructure is used but

a limited set of users and their behavior are simulated [22, 15, 59]. There are authors

in related work that refer to their test as real network scenario tests, however they do

not analyze the real infrastructure in a regular usage scenario with undefined users or

behaviors and therefore we classified them as testbed.

Table 2.2 compares the RoD strategy mechanism analyzed in related work and our

proposed eSCIFI mechanism. It is important to highlight that eSCIFI can be a possible
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solution to a wider range of WLAN networks than most of the mechanisms presented

in related work that have a centralized control scheme. The eSCIFI network can cope

with wireless networks that are not based on the SDN paradigm, does not have a high

CPU power at the controller and can not collect data in a real time manner. Those

characteristics make any energy saving mechanism that presents optimization algorithms

or demand driven strategies unpractical. On the other hand, the opposite is not true and

eSCIFI can work normally in wireless networks that present one or more of the above

mentioned characteristics. However it is worth to mention that, in WLAN scenarios that

present those characteristics, eSCIFI might not be the best practical solution since it

might not take advantage of those characteristics.

The eSCIFI characteristics make it a feasible solution for our motivation and evalua-

tion scenario once it allows the development of an energy saving mechanism that can cope

with the UFF SCIFI pure Wi-Fi network characteristics. eSCIFI presents a centralized

controlling scheme, a scheduling driven operation strategy based on machine learning,

using heuristic algorithms, traffic and coverage metrics.
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Table 2.2: RoD strategy mechanism related work comparison.

Authors Network Type WLAN Scenario Control Scheme Operating Strategy Metrics Type of Algorithm Evaluation Method

Capone et al. [9] Mesh Networks Homogeneous Centralized Demand Driven Coverage and QoS Optimization Simulation

Chen et al. [10] IEEE 802.11 Homogeneous Centralized Demand Driven QoS Optimization Testbed

Chin et al. [11] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic and Coverage Optimization Simulation

Dalmasso et al. [14] Cellular Networks Homogeneous Centralized Demand Driven Traffic Heuristic Trace Driven

Debele et al. [15] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic Heuristic Testbed

Donevski et al. [16] Cellular Networks Homogeneous Centralized Schedule Driven Traffic Heuristic Trace Driven

Fang et al. [18] IEEE 802.11 Homogeneous Centralized Schedule Driven Traffic Heuristic Trace Driven

Ganji et al. [19] IEEE 802.11 Homogeneous Centralized Demand Driven Coverage Optimization Simulation

Gomez et al. [22] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic and QoS Heuristic Testbed

Jardosh et al. [28] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic and Coverage Heuristic Simulation

Jardosh et al. [29] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic and Coverage Heuristic Testbed

Kumazoe et al. [32, 31] IEEE 802.11 Homogeneous Distributed Demand Driven Traffic and QoS Heuristic Simulation

Lee et al. [33] IEEE 802.11 Homogeneous Centralized Demand Driven Coverage and QoS Optimization Simulation and Testbed

Liu et al. [34] Cellular Networks Homogeneous Centralized Demand Driven QoS Optimization Simulation

Lorincz et al. [36] IEEE 802.11 Homogeneous Centralized Demand Driven Energy and Traffic Optimization Simulation

Lorincz et al. [35] IEEE 802.11 Homogeneous Centralized Demand Driven Energy and Traffic Heuristic Simulation

Lyu et al. [37] IEEE 802.11 Homogeneous Centralized Schedule Driven Traffic Heuristic Trace Driven

Marsan et al. [39] IEEE 802.11 Homogeneous Centralized Schedule Driven Traffic Heuristic Trace Driven

Nagareda et al. [41] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic and Coverage Heuristic Simulation

Rossi et al. [44] IEEE 802.11 Heterogeneous Distributed Demand Driven Traffic and Coverage Heuristic Simulation and Testbed

Silva et al. [46] IEEE 802.11 Homogeneous Centralized Schedule Driven Traffic and Coverage Heuristic Simulation

Tanaka at al. [49] IEEE 802.11 Heterogeneous Centralized Demand Driven Traffic Heuristic Simulation

Vallero et al. [52] Cellular Networks Homogeneous Centralized Schedule Driven Traffic Heuristic Trace Driven

Wu et al. [55] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic Optimization Simulation

Xu et al. [56, 57] IEEE 802.11 Homogeneous Centralized Demand Driven Traffic Optimization Simulation

Yaodong Zhang et al. [59] IEEE 802.11 Heterogeneous Centralized Demand Driven Traffic Optimization Testbed

Yomo et al. [58] IEEE 802.11 Heterogeneous Distributed Demand Driven Traffic Heuristic Simulation

eSCIFI IEEE 802.11 Homogeneous Centralized Schedule Driven Traffic and Coverage Heuristic Trace Driven



Chapter 3

SCIFI Network Data Collection and
Analysis

Here we present the main components of the UFF SCIFI wireless network, how we col-

lected the data for our work and the occupancy analysis of that data [3, 1]. The UFF

SCIFI wireless network is a large-scale wireless developed by UFF, financed by RNP

(Brazilian National Research and Education Network). It was developed to be a low-cost

open-source option to the deployment, configuration, operation and management of large-

scale wireless network [38]. The SCIFI network is composed of a smart controller, also

named SCIFI controller, and low cost APs, operating under the open source OpenWRT

firmware [17]. SCIFI controller is a non SDN central management and monitoring unit

of UFF’s network. The SCIFI controller coordinates data gathering from system logs,

channel selection and access point’s transmission power level services [38]. SCIFI network

allows an expressive reduction on a large scale wireless network deployment cost, which

eases the deployment of bigger networks, with more APs. SCIFI network is used at UFF,

Ouro Preto Federal University and Brazilian Navy, as well as it was used in many dif-

ferent events. It has been proven to be a stable, low-cost and easy-to-install solution for

controlling wireless APs [38].

Solutions with a centralized controller for configuration, management and monitoring

of wireless networks are often vendor lock-in, which limits the network hardware choice

to equipment from the same vendor. This limitation has a direct impact on the wireless

network flexibility and cost.

The SCIFI controller is extensible and allows the deployment of a great number of APs

in the network. It provides algorithms for channel selection and transmission power control

of the access points to maximize the spectral efficiency of the wireless network. The SCIFI
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network allows an expressive reduction on a large scale wireless network deployment cost,

which eases the deployment of bigger networks, with more APs, with the same budget.

However the SCIFI controller has a limited CPU power when compared to enterprise

controller solutions. This CPU power limitation makes the computational time to execute

some complex tasks unfeasible, such as detailed traffic real-time acquisition or complex

optimization algorithms.

3.1 Data Collection

We selected, for this study, all the APs located at one specific building from one of the

UFF’s campuses, called H building (see Appendix A for APs positioning in the building

details). Differently from the other buildings on campus that have professor’s offices,

laboratories, student unions and other university administration rooms, the H building has

only classrooms. So, its occupation mainly occurs through lectures and exam applications.

SCIFI network has 28 APs distributed over the 5 floors inside H building. Our data

was obtained from the APs event logs. These logs were collected and stored at the

SCIFI controller. Each AP sends a text file with all the management and control events

information from their physical and data link layers. These data are requested and stored

weekly by the controller. We collected data from 6 months, between April and September

2018.

The SCIFI controller is also responsible for the storage of those gathered data and

for the storage of the information needed by the whole system. It provides a graphical

interface that allows the parameter configuration of the SCIFI network such as channel

selection of a specific AP, addition of new APs and the network’s monitoring through cus-

tom dashboards using Simple Network Management Protocol (SNMP) [18] (NAGIOS [5]

and Multi Router Traffic Grapher (MRTG) [42]).

An association event log marks the beginning of the data transmission between the

AP and the mobile station, while the disassociation event marks its end. As we were only

interested on the event logs that show the beginning and end of connection between the

mobile stations and the AP, we had to filter log files that contain only these events. We

observed, however, that the disassociation message log did not always appear on the log

data, although the deauthentication message always occurred in pair to the disassociation

message. We also observed that whenever disassociation and deauthentication of mobile

stations message appeared in the logs, both occurred in very close time intervals, with
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approximately 1 second difference between them. Therefore, we used deauthentication

messages as the end of a connection mark between a mobile station and an AP, when

there was no registered disassociation messages. Only a deep analysis would show the

real reasons behind the absence of those disassociation messages in the logs, but we

can point the user movement to an area with no network coverage as a possible cause.

After that analysis we filtered the text file to contain only information regarding the

association, disassociation and deauthentication of mobile devices communicating with

the access point since they mark the beginning and end of the data transmission between

the AP e the mobile station.

3.2 Occupancy Analysis

Figures 3.1 and 3.2 show the average occupancy SCIFI network behavior in the H building

from April to September 2018. It is possible to observe the daily and weekly average

occupancy. Figure 3.1 shows that APs barely have users associated to it between 0 and

6AM. It also shows a slowly increasing occupation for time slots between 6 and 9AM.

That slow growth can be explained by the lecture time schedules for the H building,

which start at 7AM, but most of them start at 9AM, and the last lectures end at 10PM.

Morning classes start at odd hours, and afternoon classes at even times, with an hour

interval between 1 and 2PM. Figure 3.1 shows that AP’s occupation during university

weekdays is higher than the occupation on holidays and weekends. However we can still

see users associated with the network on holidays and weekends. In fact the average

occupancy for weekends and holidays is very similar. These results were unforeseen, but

can be explained by the H building usage during student vacations for summer/winter

courses or special activities and for exams or other special activities during weekends.

Figure 3.2 shows that the AP demand is higher during weekdays than during weekends.

The average occupancy reaches its highest on Tuesdays, Wednesdays and Thursdays.

Whilst smaller than the other weekdays, Saturday’s average demand is relatively high

when compared to Sunday. One explanation can be that the building is more used on

Saturdays for exams and other special activities than Sundays. For a classroom building

such as the H building, these results were expected. We noticed that some APs remain

with a residual number of devices connected to it during closing hours. One possible

explanation is that the H building still has appliances, such as computers, and university

staff members, such as the campus security, that are still present in the building during

closed hours and days.
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Figure 3.1: Average day occupancy comparing working days, weekends and holidays

Figure 3.2: Average week occupancy

Figures 3.3 and 3.4 show the average daily and weekly AP’s busy state detection

for each 10 minutes time slots. A busy state detection for a specific time slot occurs

when the AP had users associated with it, otherwise a idle state detection occurred. The

visualizations show the total number of busy state detection events divided by the total
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number of state detection events for a giving time slot, in order to allow a better scaling

and visualization of the graph. So, the average busy state detection can vary between all

real values ranging from 0 and 1. An average busy state detection value equals to 1 for a

time slot means that for the whole observed period that specific 10 minutes time slot had

all APs busy. On the other hand an average busy state detection value equals to 0 for a

time slot means that for the whole observed period that specific 10 minutes time slot had

all APs idle.

Based on Figure 3.1, it is possible to say that most of APs stay unused between

0AM and 6AM and mostly used for the rest of the day, after 6AM. It is also possible to

notice a relative balance between the busy and idle state event for the time slots between

6AM and 9AM. That phenomenon can be explained by the lectures time tables for the H

building. Figure 3.3 also shows that it is easier to have idle state periods during holidays

and weekends than during the university working days. The busy state occurrence values

showed for holidays are higher than those showed for weekends. These results when

compared with the results showed in Figure 3.1 show that the slightly bigger average

occupancy on holidays due to the summer/winter courses causes a bigger utilization of

APs when compared to weekends. One explanation can be that exams and other special

events that happened on weekends were more concentrated at some areas (having fewer

APs being effectively used), while the summer/winter courses might happened throughout

the building (causing a bigger number of APs to be used). This difference in the areas of

the building being used might cause the APs usage differences.

Figure 3.4 also shows that the average busy state detection for the APs varies accord-

ing to the day of the week. It is easier to have busy state periods during the weekdays than

during the weekend. The average busy state reaches its highest on Tuesdays, Wednesdays

and Thursdays. Although smaller than the other days of week, Saturday’s average occur-

rence is relatively high when compared to Sunday. For the reasons above mentioned the

results were expected since there is difference on the exam applications frequency between

those days. Most of APs in the H building remain unused for long hours after 11PM until

6AM since the building opens at 7AM and closes at 11PM. However, we can still notice

that some of the APs remain active during closing hours that is mainly because the H

building still has appliances, such as computers, and university staff members, such as the

campus security, that is still present in the building during closed hours and days. That

explains why it is not possible to assume the idle state occurrence on the APs for those

hours.
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Figure 3.3: Average busy state detection of the SCIFI network H’s building APs during
the time slots of a day comparing the differences between working days and holidays

Figure 3.4: Average busy detection state of the SCIFI network H’s building APs during
the time slots of a week

The occupancy analysis shows a clear idleness between 0AM and 6:AM on weekdays

and throughout the whole day on weekends or holidays. Those results indicate that it is
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possible to reduce the number of active APs and reduce the energy consumption without

causing any impact in the few network users connected to it during those periods. However

the occupancy analysis also reveals that even between 6AM and 11PM on weekdays,

where the average number of users is considerable, it is possible to reduce the number of

active APs. Even in the busiest weekdays, there is an average of idle APs that ranges

roughly between 20% and 10% of all APs in the building. Therefore even on busy hours

and days there are APs being over provisioned for the demand. These analysis strongly

suggests that the usage of RoD strategies can help to reduce the SCIFI network energy

consumption.



Chapter 4

Proposed Unified Methodology

In this chapter we present our proposed unified experimental methodology [2] based on

machine learning to evaluate classification and regression models about their capacity

to accurately predict access point demands for energy-efficient smart buildings. Our

proposed experimental methodology considers several machine learning algorithms and

methods for constructing distinct classification and regression models using multiple input

and output configurations.

First, in Section 4.1 we present the major steps and characteristics of our unified

methodology. Section 4.2 presents the experimental analysis with UFF’s SCIFI network

data. In Section 4.3 further discussion on how our proposed unified methodology can help

deciding the most suitable method to be used for several distinct smart buildings scenario

is given.

4.1 Unified Methodology

Figure 4.1 shows a schema of our proposed unified methodology and its major steps, which

are i) data acquisition and dataset construction; ii) input configuration; iii) regression and

classification model configuration; iv) model selection.

The first step, shown in the upper part of the figure, is to prepare four datasets to

be used for the evaluation of classification and regression prediction models. Then, in

the second step, we use several input feature configurations, training set constructions,

distinct single-label and multi-label machine learning methods to build our classifiers or

distinct single-target and multi-target machine learning methods to build our regressors,

in order to evaluate the significance of these characteristics for prediction models.
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In the third step, we build single and multi-label classifiers capable of predicting the

occupancy states for network APs and/or the construction of single and multi-target

regressors capable of predicting the occupancy count for network APs. For multi-label

classification, we propose using BR and CC problem transformation methods and Multi-

layer Perceptron ANN to produce forecasts. For multi-target regression, we propose using

BR and RC problem transformation methods and Multilayer Perceptron ANN to produce

those predictions.

Finally, in the last step shown in Figure 4.1, an evaluation using multi-label/multi-

target and single-label/single-target metrics helps the selection of a model that provides

the best performance results and that can be used in smart building energy-efficient

systems for several purposes.

Figure 4.1: Our Proposed Methodology

Our experiments, dataset transformations, classification and regression model con-
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struction and measurements were developed using Python scikit-learn API [7] and Pan-

das [40].

4.1.1 Dataset Construction

After filtering and preprocessing event logs, our methodology creates a dataset that com-

piles information related to a daily occupancy history for APs during fixed time slots. We

firstly create our occupancy count dataset containing the number of associated devices

(see Table B.2 in Appendix B for an example). The occupancy count dataset creation

idea is based on Sangogboye et al. [45] and Balaji et al [4]. We divided a day into 144 (10

minutes) time slots, where each time tj represents a specific time interval of the day. Time

T0 represents the time slot between 00:00 and 00:10 and the rest follows it in a crescent

order, always adding 10 minutes more when compared to the feature before its own time

window. The exception is the feature T143, the last one, which has only nine minutes

and ranges from 23:50 to 23:59. In this way, the number of mobile stations associated

to an AP at a specific period of time tx is the number of mobile devices that have been

connected before time period x and have not disconnected, plus the number of mobile

devices that have connected to the AP during the time period x. Mobile devices that have

been connected and disconnected during the time period are also counted. Therefore any

mobile device that had been connected to the AP is counted, even if it was just for a few

seconds.

On the occupancy detection dataset (see Table B.1 in Appendix B for an example), we

are only interested in binary classification (whether the AP has some associated station or

not), so we applied a label binarization filter to our dataset outputs, in order to transform

each numeric occupation count into a boolean output feature. To be classified as occupied

(value 1) for a 10 minute time interval, the AP needs to have at least one mobile station

associated to it. If no mobile station tries to associate to that AP during the whole

duration of that time slot, the AP is considered unoccupied (value 0). The datasets1

show occupancy count and detection for each AP over a period of 6 months, from April

to September 2018.

In the single-label/single-target datasets, each instance has only one output feature

representing a specific date and time interval occupation. The single-label/single-target

dataset contains the following input features: Month, Day, Day of the Week, Holiday,

AP Identification (APid), Hour, Minute. The multi-label/multi-target datasets have each
1The datasets are available at https://github.com/midiacom/UFF-SCIFI-Datasets
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instance representing one specific date and 144 output features representing the time

intervals of a day occupation. The multi-label/multi-target dataset contains the following

input features: Month, Day, Day of the Week, Holiday, APid.

Month and Day are numeric and show the instance date. Day of the week is categorical

and indicates one of the 7 week days. Holiday is boolean and indicates if the day is a

normal semester day with lectures (False) or a public holiday or university vacation day

(True). APid carries the access point identification number and it informs to which specific

AP the occupancy history belongs. Hour and Minutes are also numerical and are only

present in the single-label/single-target datasets. The Hour input feature ranges from

0 to 23 representing day hours. The Minute feature ranges from 0 to 50 in 10 minutes

steps. Although we could have combined Hour and Minute features to create a time

interval feature ranging from 0 to 144, we decided to keep semantic information given by

the hour/minute tuple.

4.1.2 Single-label and Multi-label Classification Analysis

We evaluated multiple types of classification model constructions, with varying training

and testing sets. We trained collective models where only one classifier was trained with

information regarding all APs and responsible for predicting the occupancy detection of

all APs. We also trained individual classification models where multiple classifiers were

trained only using information regarding one specific AP and responsible for that AP

occupancy detection prediction. We built collective MLP ANN Multi-Label (ML) and

Single-Label (SL) classifiers for our tests. Our goal with these distinct single and multi-

label model construction was to evaluate if the occupancy detection of one AP could

benefit from information from other APs, to determine if an AP individual information

is capable of giving satisfactory detection predictions and which method has the best

performance among those tested.

These collective and individual multi and single-label classifiers were also tested using

multiple input feature configurations. We decided to evaluate if Month and Day features

were significant to our model predictions. Month and Day features give date information

to the classification models, which could benefit their predictions giving seasonal insights.

On the other hand, more features can also represent more noise and increase the size of

the classification data, which can consequently turn into waste of space and insignificant

accuracy enhancement. Therefore, all classifiers were trained with and without Month

and Day features.
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Our label features are used respecting the time interval order for constructing the chain

in the CC method. Therefore, our feature chain goes in crescent order from T0 to T143. Our

time sequenced output features helped chain selection order in CC, because finding label

order can be challenging [23]. We used Decision Tree (DT), K-Nearest Neighbors (K-NN)

and Random Forest (RF) machine learning algorithms for our SL classification models,

as they present the best single-label Wi-Fi occupancy detection results according to Fang

et al [18]. Sangogboye, Imamovic and Kjærgaard [45] also stated that these algorithms

were among the best algorithms in their ML method. We used default parameters values

for DT and RF and we used K = 5 for K-NN.

We also built ANN MLPs. Table 4.1 shows the MLP hyper parameters selected for

both SL and ML classification models after a search over a list of possible values for

hyper parameters. We used the grid search algorithm GridSearchCV present in scikit-

learn API [7]. Other non-listed parameters kept their default values.

Table 4.1: MLP ANN parameter values.

MLP Parameter Best SL/ST Parameter Best ML/MT Parameter

Hidden layer size 400 900

Alpha 0.0001 0.001

Learning rate invscaling invscaling

Activation logistic relu

Max iteration 1000 1000

Random state 1 1

To evaluate the performance of these models, we apply a train/test split on our

datasets. The order of the collected data must be respected both for training and testing.

So, dataset instances from April to August were used for training, and September dataset

instances were used for testing the models. We used 4 metrics to evaluate our classification

models: Atj , Ptj , Rtj and F1tj , as well as their overall versions, as discussed in Section

2.1.2.

4.1.3 Single-target and Multi-target Regression Analysis

For occupancy count, we also tested multiple types of regression model construction, with

various training and testing sets. We trained collective and individual regressors using
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distinct training sets. These collective and individual Multi-Target (MT) and Single-

Target (ST) regressors also were tested having several input feature configurations. Con-

sequently those MT and ST collective and individual regressors were trained with and

without the Month and Day features. Those regression model constructions evaluate if

the occupancy count system could benefit from information from other APs, determine

if an AP individual information is capable of giving satisfactory results and evaluate if

Month and Day features were significant for predictions.

The output label chain in RC methods is the same used in CC. We used DT, K-NN,

RF and the XG optimized gradient boosting ST learning regression algorithms. Later

on, we decided to construct collective MLP ANN, Support Vector Machine (SVM) and

Stochastic Gradient Descent (SGD) ST and MT regressors. But since the occupancy

count data presents a high variance, these regressors had their input and output data

normalized. We also decided to test the K-NN algorithm with normalized input and

output data. The MLP hyper parameters selected after an extensive search for both ST

and MT regression models are the ones shown in Table 4.1.

Analogously to the classifier evaluation, we also applied a train/test split on our

datasets. Dataset instances from April to August were used for training, and September

dataset instances were used for testing the models. We used three metrics to evaluate our

regression models: RMSEtj , RMSPEtj and MAPEtj , as well as their overall versions,

as discussed in Section 2.1.2.

4.2 Experimental Analysis

This section shows the results of our experimental analysis. We analyze which machine

learning method, algorithm, model construction type and input combinations are more

suitable to scenarios where Wi-Fi data can be used for smart building systems.

4.2.1 Classifier Analysis

In what follows, we show the experimental analysis for the occupancy detection problem.

The models were constructed using a combination of four distinct parameters: the SL

method and 2 distinct ML (BR and CC) machine learning methods; 2 distinct types of

model construction, which can be Collective (Col) or Individual (Ind); 2 distinct input

configurations, one composed by APid, holiday and weekday features (APHDWD) and

other by All Features (ALL), including AP Id, holiday, weekday, day and month features;
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and 3 distinct machine learning algorithms (RF, DT and K-NN) for constructing both

SL models and the base classifiers of the ML methods. We also constructed 2 collective

SL and 2 collective ML MLP ANNs, one using APHDWD features and other using ALL

features. These combinations result in 40 distinct models. In order to guide our analysis,

we firstly compare BR and CC ML methods. Then, we compare the best ML method

against the SL method. We then evaluate types of model construction, algorithms and

inputs. Finally, we evaluate if there is any observable advantage of one combination of

parameters over the others.

4.2.1.1 Multi-label Methods

We selected the best results from the 40 evaluated models. Figure 4.2 depicts the accuracy

Atj of the best machine learning algorithm for each possible BR and CC ML classification

model parameter combinations. We can see that BR models have better accuracy results

than CC, as well as they drastically decrease from 6 to 8AM for both methods.

CC performance can be explained by the unpredictable AP occupancy from 6 to

8AM as seen in Figure 3.1. As the occupancy and idleness occurrence in those time slots

are very alike and the states occur almost randomly, it is harder for classifiers to give

a correct occupancy prediction for them, which leads to worse accuracy. That accuracy

loss introduces a greater error on the label feature prediction and consequently affects the

rest of the chain since the next time slots take the previous results into consideration.

Because BR does not take the previous prediction into account, those prediction errors

do not propagate.

Table 4.2 shows the overall metrics A, P , R and F1 for the best assessed models.

From Table 4.2, it is clear that the BR method got better overall results than the CC

method. Metric evaluation also shows that models using only APHDWD as input features

present better results than using ALL features. Thus, this result indicates that, for our

data, seasonal information is not a significant feature for ML classification models. Metric

evaluation also shows that there is no significant difference between the types of model

constructions (Col vs Ind), which indicates that both collective and individual models are

equally valid model construction types for occupancy detection.



4.2 Experimental Analysis 34

Figure 4.2: Accuracy Atj for several BR and CC ML methods and parameter configura-
tions

4.2.1.2 Multi-label and Single-label Evaluation

From the multiple combinations of parameters for constructing the SL and ML models,

we chose at least one of the best results of 8 combinations for a deeper analysis. Figure 4.3

shows the Atj accuracy of these 8 models, where we can notice that there is no significant

difference between the ML and SL correspondent models. For instance, the Atj curve of

models Col/DT/BR/ADHDWD, Col/DT/SL/ADHDWD, Ind/RF/BR/ADHDWD and

Ind/DT/SL/ADHDWD are quite similar. Also, we could observe that models using only

APHDWD features had better results than models using all features (ALL).

Table 4.3 shows the overall metrics A, P , R and F1 for the best ML and SL models.

It also shows the results for MLP ANN models. Table 4.3 demonstrates that the seasonal

information do not improve the model predictions. Models using only the APHDWD

features had better overall results, which suggest that day and month features carry

no significant information about our occupancy data. Our results and the results in

[51] comprise the same seasons and yet they showed distinct conclusions about seasonal

information. Results reported in [51] showed that seasonal information carries relevant

information about the occupancy data. One explanation for that difference can be the

low influence of tropical climate at latitude -22.9, where UFF is located.

Table 4.3 shows that there is no significant difference between ML and SL methods.
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Table 4.2: Classification performance results for BR and CC ML methods

Constructed Models A P R F1

Col/DT/BR/APHDWD 0.8669 0.8662 0.8960 0.8808

Col/DT/CC/APHDWD 0.8025 0.8683 0.7548 0.8076

Col/RF/BR/APHDWD 0.8631 0.8570 0.9010 0.8784

Col/RF/CC/APHDWD 0.8201 0.8536 0.8115 0.8320

Col/DT/BR/ALL 0.8268 0.8261 0.8671 0.8461

Col/DT/CC/ALL 0.7664 0.7693 0.8207 0.7942

Col/RF/BR/ALL 0.8495 0.8508 0.8804 0.8653

Col/RF/CC/ALL 0.7863 0.9161 0.6724 0.7756

Ind/DT/BR/APHDWD 0.8669 0.8662 0.8960 0.8808

Ind/DT/CC/APHDWD 0.8025 0.8683 0.7548 0.8076

Ind/RF/BR/APHDWD 0.8631 0.8566 0.9015 0.8785

Ind/RF/CC/APHDWD 0.8113 0.8469 0.8013 0.8235

Ind/DT/BR/ALL 0.8155 0.8155 0.8581 0.8363

Ind/DT/CC/ALL 0.7782 0.7797 0.8309 0.8045

Ind/RF/BR/ALL 0.8412 0.8412 0.8762 0.8583

Ind/RF/CC/ALL 0.7770 0.8755 0.6924 0.7733

From Table 4.3, we can also notice that there is no significant difference between collective

and individual models. These conclusions make both machine learning methods and both

model construction types equally valid. It is also possible to observe from Table 4.3

that DT and RF algorithms were the most suited for the occupancy detection problem.

Finally Table 4.3 shows that the ML MLP ANN fails to have comparable results, however

the Col/MLP/SL/APHDWD ANN got comparable results to the Col/DT/SL/APHDWD

model.

We found that DT and RF machine learning algorithms were the most suited for

occupancy detection. Since there was no noticeable difference on the evaluation metrics

for ML and SL individual and collective models using the RF and DT algorithms, we

decided to evaluate their model sizes in order to compare them. Smaller models are not

only simpler to understand, but they also require less memory space to be stored and are

also faster to traverse, which leads to a faster result and smaller CPU requirements to run

them. Table 4.4 shows the mean Number of Leaves (Numb. of Leaves), depth and their
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Figure 4.3: Accuracy Atj of ML and SL methods for several parameter configurations

respective Standard Deviation (Std. Dev.) for all model possible combinations using only

APHDWD input features. In this table, we can observe that SL models have a smaller size

when compared to ML models. This was expected because the ML BR method consists

of a group of individual SL models, each for one specific label. The second conclusion

is that DT algorithms are significantly smaller when compared to RF algorithms. This

result was also expected since random forests are a collection of decision trees. Finally,

we can notice that collective models are larger than individual models. Since individual

models train over a smaller part of the dataset they also present smaller sizes. SL and DT

algorithms form the best combination to be used in scenarios using our data, because they

are simpler and smaller. However, the same cannot be said about individual models over

collective models. Individual models are smaller but they only give information about

one AP. Depending on the scenario characteristics, the collective model can actually be

a better option, such as in our motivation scenario where a central unit is responsible for

the management of the whole AP network.

4.2.2 Regression Analysis

This section shows the experimental analysis for the occupancy count problem. We eval-

uated several regression models using ST and MT machine learning methods. 48 models

were built using a combination of four distinct parameters: the ST method and 2 distinct

MT (BR and RC) methods; 2 distinct types of model construction, which can be Col or
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Table 4.3: Classification performance results for BR ML and SL methods.

Constructed Models A P R F1

Col/DT/BR/APHDWD 0.8669 0.8662 0.8960 0.8808

Col/DT/SL/APHDWD 0.8669 0.8662 0.8960 0.8808

Col/RF/BR/APHDWD 0.8631 0.8570 0.9010 0.8784

Col/RF/SL/APHDWD 0.8634 0.8567 0.9021 0.8788

Col/MLP/ML/APHDWD 0.8201 0.8536 0.8115 0.8320

Col/MLP/SL/APHDWD 0.8669 0.8662 0.8960 0.8808

Col/DT/BR/ALL 0.8268 0.8261 0.8671 0.8461

Col/DT/SL/ALL 0.8277 0.8878 0.8878 0.8498

Col/RF/BR/ALL 0.8495 0.8508 0.8804 0.8653

Col/RF/SL/ALL 0.8388 0.8241 0.8981 0.8595

Col/MLP/ML/ALL 0.7737 0.7359 0.9170 0.8165

Col/MLP/SL/ALL 0.8510 0.8880 0.8339 0.8601

Ind/DT/BR/APHDWD 0.8669 0.8662 0.8960 0.8808

Ind/DT/SL/APHDWD 0.8669 0.8662 0.8960 0.8808

Ind/RF/BR/APHDWD 0.8631 0.8566 0.9015 0.8785

Ind/RF/SL/APHDWD 0.8633 0.8572 0.9011 0.8786

Ind/DT/BR/ALL 0.8155 0.8155 0.8581 0.8363

Ind/DT/SL/ALL 0.8268 0.8214 0.8747 0.8472

Ind/RF/BR/ALL 0.8412 0.8412 0.8762 0.8583

Ind/RF/SL/ALL 0.8511 0.8445 0.8934 0.8683

Ind; 2 distinct input configurations, one composed by APHDWD features and other by

ALL; and 4 distinct machine learning algorithms (RF, DT, K-NN, XG) for constructing

both ST models and the base regressors of the MT methods. We also constructed 2 collec-

tive ST MLP ANNs and 2 collective MT MLP ANNs, using APHDWD features and using

ALL features. Additionally, we constructed 12 more collective regression models using a

combination of three distinct parameters: 3 distinct machine learning algorithms (SVM,

SGD, K-NN); 2 distinct normalized input configurations, one composed by APHDWD

normalized features and other by all normalized features (ALL); and 2 machine learning

methods (ST and BR). These combinations result in 64 distinct models.

We firstly evaluate BR and RC MT methods. Then, we compare the best MT method
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Table 4.4: DT and RF classifier’s mean number of leaves and depth size evaluation.

Constructed Models
Mean Numb.

of Leaves

Numb. of Leaves

Std. Dev.

Mean

Depth

Depth

Std. Dev.

Col/DT/BR/APHDWD 43409 - 2393 -

Col/DT/SL/APHDWD 37756 - 33 -

Col/RF/BR/APHDWD 1918721 - 117475 -

Col/RF/SL/APHDWD 1818221 - 1604 -

Ind/DT/BR/APHDWD 1587 141 601 63

Ind/DT/SL/APHDWD 1346 172 20 2

Ind/RF/BR/APHDWD 71903 6690 30805 3490

Ind/RF/SL/APHDWD 62345 8219 932 22

against ST methods. We evaluate which model construction type, algorithms and inputs

give the best results. Lastly, we evaluate if there is any observable advantage of one

method over the others.

4.2.2.1 Multi-target Methods

As we tested 64 distinct models, the results shown here are the compilation of the best

results found. Figure 4.4 shows the RMSEtj of the best machine learning algorithm for

each possible BR and RC MT regression model parameter combinations. Figure 4.4 shows

that the BR method models have lower RMSEtj values than the RC models and that the

RMSEtj results start to significantly increase after 6AM for both methods.

Another interesting observation when comparing Figures 4.4 and 3.1 is that RMSEtj

increasing behavior is very similar to the occupancy behavior. This means that heavily

occupied hours have higher RMSEtj errors. Therefore, RMSEtj is a numerical error

metric that alone cannot be enough to evaluate how good the occupancy count predictions

are for each time slot individually. Figure 4.5 shows RMSPEtj. We can observe that the

BR method got better results than the RC method. BR better performance over RC can

be explained by the same reasons we have discussed in Section 4.2.1.1.

Comparing Figures 4.4 and 4.5, we can also notice that, even though the RMSEtj

values are higher for predictions after 9AM, their RMSPEtj values are smaller. Even

though the absolute occupancy count error of these time intervals are higher, they are

comparatively smaller than the data variance and therefore we can conclude that model



4.2 Experimental Analysis 39

Figure 4.4: RMSEtj for several BR and RC MT methods and parameter configurations

predictions are acceptable. The RMSPEtj values presented before 9AM are relatively

higher, being almost equal or superior to the variance itself. This happens because these

hours real occupancy is low and presents a small variance. Therefore for late-night and

early-morning hours, RMSEtj values are comparatively higher than the data variance.

However since these hours correspond mostly to closing hours, we can not say that an

occupancy count model would not be applicable. Even if we might being doubling the

occupancy count values due to prediction errors, the total occupancy count would still be

low. So, depending on the scenario and systems, these errors can be easily overcome.

Table 4.5 shows the overall metricsRMSE, RMSPE andMAPE for the best models.

Metric evaluation for the regression problem shows that models using only APHDWD

input features had better results than the models that used ALL features, which indicates

that seasonal information is also not a significant feature for MT regression models. Metric

evaluation also shows that there is no significant difference between the model construction

types, indicating that both models are equally valid for occupancy count prediction.

4.2.2.2 Multi-target and Single-target Evaluation

Figure 4.6 compares RMSPEtj among the best machine learning algorithms for MT and

ST regression model construction combinations. It shows that there is no significant

difference between MT and ST correspondent models. However it is possible to notice
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Figure 4.5: RMSPEtj for several BR and RC MT methods and parameter configurations

that models using only the APHDWD features had better results than the models that

used ALL features.

Figure 4.6: RMSPEtj of MT and ST methods for several parameter configurations

Table 4.6 shows the overall metrics RMSE, RMSPE and MAPE for the best as-

sessed models. It also shows the results for the MLP ANN models. Table 4.6 shows that

regression models using only the APHDWD features had better overall results, which sug-
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Table 4.5: Regression performance results for BR and RC MT methods.

Constructed Models RMSE RMSPE MAPE

Col/DT/BR/APHDWD 8.4161 0.2977 0.4189

Col/DT/RC/APHDWD 13.4306 0.7843 0.6723

Col/RF/BR/APHDWD 8.4223 0.2980 0.4191

Col/RF/RC/APHDWD 11.4110 0.5690 0.5676

Col/DT/BR/ALL 11.2734 0.5379 0.5532

Col/DT/RC/ALL 16.2836 1.1478 0.8887

Col/RF/BR/ALL 9.6314 0.3880 0.4821

Col/RF/RC/ALL 11.6615 0.5896 0.5989

Ind/DT/BR/APHDWD 8.4161 0.2977 0.4189

Ind/DT/RC/APHDWD 12.8850 0.7168 0.6375

Ind/XG/BR/APHDWD 8.4174 0.2978 0.4189

Ind/XG/RC/APHDWD 11.9943 0.6255 0.5803

Ind/DT/BR/ALL 11.0656 0.5151 0.5522

Ind/DT/RC/ALL 15.3127 1.0207 0.8293

Ind/XG/BR/ALL 10.3054 0.4528 0.5841

Ind/XG/RC/ALL 13.2117 0.7667 0.7024

gest that day and month features carry no significant information about our occupancy

data for the regression problem too. Table 4.6 overall metric evaluation shows that there

is no significant difference between MT and ST methods and that there is no significant

difference between collective and individual models, which make both machine learning

methods and both model construction equally possible considering performance. It is also

possible to observe in Table 4.6 that DT and RF algorithms were the best machine learning

algorithms for occupancy count prediction. Table 4.6 shows that MLP ANN fails to have

comparable results. However it is worth mentioning that the Ind/XG/BR/APHDWD

model got comparable results to the DT collective ST model using APHDWD features.

DT and RF machine learning algorithms had better results for occupancy count than

the others. Since there was no noticeable difference on the evaluation metrics for MT and

ST individual and collective models using these algorithms, we also decided to evaluate

their model sizes. The model size impacts on memory space and CPU requirements.

Table 4.7 shows the mean number of leaves, depth and the standard deviation for all
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Table 4.6: Regression performance results for BR MT and ST methods.

Constructed Models RMSE RMSPE MAPE

Col/DT/BR/APHDWD 8.4161 0.2977 0.4189

Col/DT/ST/APHDWD 8.4161 0.2977 0.4189

Col/RF/BR/APHDWD 8.4223 0.2980 0.4191

Col/RF/ST/APHDWD 8.4221 0.2981 0.4192

Col/MLP/MT/APHDWD 10.6320 0.4875 0.6037

Col/MLP/ST/APHDWD 11.2536 0.5489 0.6403

Col/DT/BR/ALL 11.2734 0.5379 0.5532

Col/DT/ST/ALL 10.2350 0.4450 0.4994

Col/RF/BR/ALL 9.6314 0.3880 0.4821

Col/RF/ST/ALL 9.7373 0.3994 0.4718

Col/MLP/MT/ALL 14.3063 0.8955 0.8926

Col/MLP/ST/ALL 14.0249 0.8791 0.8336

Ind/DT/BR/APHDWD 8.4161 0.2977 0.4189

Ind/DT/ST/APHDWD 8.4161 0.2977 0.4189

Ind/XG/BR/APHDWD 8.4174 0.2978 0.4189

Ind/XG/ST/APHDWD 9.0894 0.3625 0.4732

Ind/DT/BR/ALL 11.0656 0.5151 0.5522

Ind/DT/ST/ALL 10.7165 0.4900 0.5231

Ind/XG/BR/ALL 10.3054 0.4528 0.5841

Ind/XG/ST/ALL 10.2894 0.4571 0.5777

model combinations using APHDWD features. This table shows that ST models are

smaller when compared to MT models and that the DT algorithm is significantly smaller

when compared to the RF algorithm. We can also notice that collective models are bigger

than individual models. The reason why these results are expected are the same ones we

have discussed in Section 4.2.1.2. ST method and DT algorithm are a better combination

to be used in our scenario once they are simpler and smaller than MT methods and the

RF algorithm. However, the same cannot be said about individual models over collective

models. As we have discussed in Section 4.2.1.2, the collective model can actually be a

better option depending on the scenario characteristics.
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Table 4.7: DT and RF regressor’s mean number of leaves and depth size evaluation

Constructed Models
Mean Numb.

of Leaves

Numb. of Leaves

Std. Dev.

Mean

Depth

Depth

Std. Dev.

Col/DT/BR/APHDWD 48066 - - 2355

Col/DT/ST/APHDWD 46136 - - 29

Col/RF/BR/APHDWD 2300688 - - 115052

Col/RF/ST/APHDWD 2219991 - - 1465

Ind/DT/BR/APHDWD 1735 170 633 69

Ind/DT/ST/APHDWD 1647 205 18 1

Ind/RF/BR/APHDWD 83215 8995 30949 3556

Ind/RF/ST/APHDWD 887 10593 887 17

4.3 Further Discussion on Our Methodology and Re-
sults

While other authors have analyzed how multiple machine learning algorithms may change

the model prediction results, all studies we have seen in literature did that using only a

specific ML or SL/ST method with a specific model construction type and input configu-

ration, as discussed in Section 2.2.1. Therefore, they were able to evaluate which machine

learning algorithm they should chose for their model. However, our experimental analysis

showed that the model construction type, machine learning method and input configura-

tion shall also be taken into consideration depending on the scenario. As we have seen in

our experimental analysis, our proposed methodology allowed us to draw numerous con-

clusions about the types of model constructions, input configurations, machine learning

methods and algorithms and helped on the decision of a best combination choice for our

experimental scenario.

However, this analysis also shows that not always the best combination will remain

the same for all possible scenarios. In this section we discuss how distinct scenarios may

affect the model best combination choice.

4.3.1 Seasonal Information

In our scenario, where we used Wi-Fi association information to build a wireless network

energy efficient management system without real time data acquisition, month and day
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input features should not be used once these features showed no enhancement on the

prediction model results. On the other hand, although data used in [51] and [45] present

the same seasons of our experimental analysis, they showed seasonal information as a

relevant input feature. Those studies were made in northern hemisphere countries in

temperate regions, such as the ones found in Europe and North America, while our data

were collected in a tropical country in South America. Therefore, we can conclude that

seasonal information must be analyzed in these types of systems since is not always

significant and depending on your building’s location it should or should not be used as

an input.

4.3.2 Individual and Collective Comparison

Another important question to answer is which type of model construction, individual

or collective, should be used. Individual and collective models can have distinct results

as they are trained with distinct dataset information. Our experimental analysis showed

that there was no difference between the individual and collective models except for their

sizes, where individual models were much smaller than the collective ones. However, it

is not always true that information regarding various sensors can benefit other sensor’s

predictions. Also, further examination based on the scenario is required since model sizes

can be relative. In our motivation scenario, for example, individual models would be

actually bigger, once the collection of individual models stored at the central unit would

be bigger than one single collective model capable of giving predictions for all APs. In

scenarios where each individual model is deployed in its respective sensor or actuator,

they would be smaller than the collective model.



Chapter 5

Proposed eSCIFI Mechanism

As previously discussed in Section 3.2, we have seen that most of UFF SCIFI network

APs at the H building are switched on despite being idle. Those active idleness causes

an unnecessary waste of energy. Therefore an energy saving WLAN mechanism based

on RoD strategies, or simply RoD strategy mechanisms, that effectively control WLAN

resources can help to prevent those energy waste while coping with the users demand.

This dissertation proposes the eSCIFI energy saving mechanism for WLANs. eSCIFI uses

machine learning prediction models and other RoD strategies to create an energy saving

mechanism. The eSCIFI mechanism can also work with non SDN large wireless networks

and/or large wireless networks where real-time data acquisition is not possible. Those

possibilities make the eSCIFI a feasible solution for a greater number of wireless networks

in use, especially university networks, such as the UFF’s SCIFI network, which was used

for evaluating our proposal.

5.1 eScifi Mechanism

Figure 5.1 shows eSCIFI main architectural components and its major steps, which are

i) the unified methodology ; ii) the hybrid model; iii) heuristic algorithm.

The first step, shown in the left upper part of the figure, is to use our unified method-

ology to create the datasets and select the best regression and classification model configu-

ration parameters. Later on, in the hybrid model, we combine the best trained regression

and classification models selected in our unified methodology to give the future access

points (APs) occupancy estimation. Those occupancy estimation is used by our heuristic

algorithm to define which APs should be turned on or off.
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In the heuristic mechanism, we first extract the APs statistics from the generated

dataset. Later on, the heuristic network clusters formation uses the APs neighborhood

list and the APs statistics to create the network clusters that can guarantee a minimum

coverage to the network. Finally, the energy state decision algorithm uses the defined net-

work clusters and the APs occupancy estimation to decide which APs should be switched

on/off to cope with the network users demand. At the end of this process, our heuristic

mechanism provides an energy scheduling of all APs in the network for an entire day that

can guarantee a minimum coverage to the network while coping with the network users

demand. That way the eSCIFI mechanism needs to run only once in the day to generate

the energy scheduling of all APs in the network. Therefore the eSCIFI mechanism can

run at any moment of low activity in the network such as late night hours after midnight

in our case. This functioning scheme guarantees that the eSCIFI can run at any network

controller without burdening its processing capacity.

Figure 5.1: eSCIFI architecture
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5.1.1 Unified Methodology and Model Selection

The unified methodology proposed in Chapter 4 explains how the occupancy count and

occupancy detection dataset were created. Those datasets are crucial to extract the

APs statistics and later on to select the special APs that are necessary for the net-

work clusters formation. The model selection process in our unified methodology com-

pares several model configuration and hyper parameters in order to determine the best

classification and regression models for our evaluation scenario. Results show that the

Col/DT/SL/APHDWD machine learning model is the best classification model while

Col/DT/ST/APHDWD is the best regression model for our scenario. Therefore the

Col/DT/SL/APHDWD machine learning classification and Col/DT/ST/APHDWD re-

gression model will be used on the hybrid model to provide future usage predictions for

the H building UFF SCIFI Wi-Fi network.

5.1.2 Hybrid Model

Observing Figure 4.6, it is possible to notice that even the best regression model has

significant RMSPEtj values during night and morning time slots, but the RMSPEtj

values for time slots after midday decrease. Figure 4.3, on the other hand, shows that Atj

values for night and morning time slots are relatively higher than the time slots for the

rest of the day. Therefore we propose a hybrid model. The hybrid model combines the

accuracy results given by the classification models with the regression results given by the

regression models in order to create a better occupancy count estimation. Considering

CMR as the classification results matrix that shows the occupancy detection estimations

provided by the classifier for the APs and RMR as the regression results matrix that shows

the occupancy count estimations provides by the regressor, we can define that the hybrid

model estimation HMR is the Hadamard product result between both CMR and RMR

matrices. Equation 5.1 shows the Hadamard product that produce the hybrid model

results matrix that is used as the demand estimation by our mechanisms. Figure 5.2 also

shows an example of how the hybrid model result is created. The hybrid model results

use the occupancy detection given by the classification model to determine whether or

not a time slot prediction has users associate with the AP and the occupancy count given

by the regression model to estimate the number of users associated to the AP for a time

slot that has been classified as occupied.

HMR = CMR ◦RMR (5.1)
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Figure 5.2: Hybrid model result creation example

Figure 5.3 shows how the hybrid model demand prediction results are closer to the

real demand than the regression model demand predictions for the month of September

2018. In fact, Figure 5.3 shows that the hybrid model results can reduce the over demand

prediction that happened on the weekends (September 1,2,8,9,15,16,22,23,29,30) and on

the Brazil’s Independence day public holiday (September 7). It is important to highlight

that the difference between the results is not significant enough to prove that the hybrid

model is a better regression prediction model than the pure regression model for all

scenarios. Depending on the scenario, the pure regression model can be a better option

and used without imposing any change to the eSCIFI operation, but since it has shown

better results in our case scenario, we decided to use the hybrid model instead.

The Hybrid model created only uses the APid, day of the week and holiday attributes

as input features. Consequently there are only 14 possible demand estimations for a

specific AP (one for each regular day of the week and one for each holiday on these

days). Therefore we decided to compare the results of our hybrid model with a mean

estimator. The occupancy count prediction provided by the mean estimator for a specific

set of input features (APid, day of the week and holiday) is the average occupancy count

of that specific set of input features in the association history. We compared the results

of this mean estimator with the results of our hybrid model. Table 5.1 shows that the

hybrid model had better RMSE, RMSPE and MAPE results when compared to the

mean estimator model. Those better results shown in Table 5.1 can be explained by the

fact that the hybrid model results have reduced the error predictions that happened on

weekends and on public holidays when compared to the mean estimation model results.

Those reduced demands on weekend and on public holidays were more significant than the
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errors caused in night time slots by the hybrid models results and therefore the RMSE,

RMSPE and MAPE results were lower in the hybrid model results.

As we have already previously explained in 4.2.2.1, those worse results during night

time slots can be easily overcome because the occupancy prediction would still be low

and would not impact much on the AP’s energy state decision made by our heuristic

algorithm. Therefore we decided to use the hybrid model results once it has reduced the

overall RMSE, RMSPE and MAPE metrics.

The mean estimator results in our case scenario are very close to those achieved by the

hybrid model. However those results achieved by the mean estimator for our case scenario

were only possible due the H building occupancy characteristics. The H building has only

classrooms, so its occupation mainly occurs through lectures and exam applications. The

lecture’s schedule did not change drastically throughout the entire dataset which makes

the occupancy behavior periodical and well behaved in our case. This behavior might not

be common for other buildings in the university that have other rooms inside them (such

as professor’s offices or laboratories) or even other scenarios (such as parks or shopping

centers). Therefore those results are not significant enough to prove that the hybrid

model is not a better prediction model than the mean estimator for all scenarios. On

other scenarios similar to ours, the mean estimator can be a viable option due to its

Figure 5.3: Hybrid model results compared with the real demand and the demand given
by the regression results for the whole month of September
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simplicity. The use of the mean estimator does not impose any change to the eSCIFI

operation. However we decided to use the hybrid model since it has shown better results

in our case scenario, specifically on weekends and holidays.

Table 5.1: Mean Estimator and Hybrid models performance results.

Metrics Mean Hybrid

RMSE 8.4161 8.3996

RMSPE 0.2977 0.2968

MAPE 0.4189 0.4096

5.1.3 Heuristic Mechanism

The heuristic mechanism is responsible for providing the SCIFI APs energy state (on or

off) schedule for a date. It is important to highlight that we only control the APs wireless

interface energy state due to UFF SCIFFI existing infrastructure that only allows us to

control its energy state. However in WLANs where the APs are connect to Power over

Ethernet (PoE) switches, eSCIFI could normally control the energy state of the AP and

not only its wireless interface.

Our heuristic mechanism has two main components: the heuristic cluster formation

algorithm and the energy state decision algorithm. The clustering algorithm creates the

AP clusters based on their neighborhood in order to guarantee the network coverage area

to the clients. The energy state decision algorithm provides the energy state of all APs

for a specific time slot and date based on the machine learning occupancy predictions

and clusters. In next sections, we detail the heuristic cluster formation algorithm and the

energy state decision algorithm and its challenges.

5.1.3.1 Heuristic Cluster Formation: cSCIFI and cSCIFI+

Jardsoh et al. [29] proposed a clustering algorithm called green clustering. The idea behind

the green clustering algorithm is to create clusters of APs that are in proximity of each

other. Several APs in large wireless network have overlapping coverage areas in order to

cope with higher users demand. Those APs are in a spatially neighboring condition that

allows one of them to provide coverage to the users of all APs in its vicinity. Therefore it is

possible to create clusters of neighboring APs where any user within the cluster coverage
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is able to connect to the network as long as at least one AP in the cluster is turned

on. We proposed two heuristic cluster formation algorithms, cSCIFI (cluster SCIFI) and

cSCIFI+ (cluster SCIFI +). Those clustering algorithms are based on the green clustering

algorithm of Jardsoh et al. [29]. However we introduced some basic changes to improve

the cSCIFI and cSCIFI+ clustering formation process such as the special AP set.

Our clustering algorithms need two input features to work: the neighborhood list

and the special AP set. To create a neighborhood list, we need to define the vicinity

criteria. Only APs that are considered neighbors can belong to the same cluster. Jardsoh

et al. [28, 29] have used the spatial distance between APs and the median number of

beacon messages and the median signal strength of the beacons as vicinity criteria. In

our cSCIFI and cSCIFI+ algorithms, we are going to use the APs’ signal quality scan to

define our vicinity criterion. The SCIFI network periodically runs a signal quality scan

that informs the different signal quality values received from the other APs that a certain

AP has scanned. The signal quality is a measurement that takes into consideration the

Received Signal Strength Indication (RSSI) and other network parameters. We considered

APs with a measured signal quality above 50 to be neighbors. The available quality scan

for the H building was incomplete and only half of the APs were scanned. For this limited

set of APs present in the signal quality scan and their location on the building (H building

blueprints with APs’ location in Appendix A) we could observe that could be considered

neighbors of an AP: (i) the APs on the same side of the building and floor; (ii) the APs

that are directly above and below that AP. Therefore we extended this condition to all

other APs in the network and defined that for one specific AP their neighbors will be all

the APs in the same side and floor of the building as well as the APs that are directly

above and below it in adjacent floors. Figure C.1 in Appendix C shows the UFF SCIFI

network topology and the APs’ neighbors using our defined vicinity criteria.

With the established vicinity criteria, we can determine which APs are neighbors

and create a neighborhood set list for each AP. Another important input feature of our

clustering algorithms is the special AP set. The special AP set comprises a set of APs

that show some traffic statistics that differentiate them from the rest of the APs. Special

APs show higher traffic statistics and therefore they are usually busier or they present

a higher traffic demand than the rest of the APs in the network. In our case, we are

only using the number of association as our traffic metric to calculate the user demand.

Therefore, for the special AP selection, we defined the following AP statistics to be taken

into consideration:



5.1 eScifi Mechanism 52

• Month Association Average

• Day Association Average

• Hour Association Average

• Time slot Association Average

• Total Number of Associations

• Maximum Number of Associations

We created an overall rank considering the APs position in each of those statistics

using a weighted average. Equation 5.2 shows the weighted average WAp of a specific

AP p where NTjth
p represent the number of times that a specific AP p appears in the

jth position in the statistics and n represents the number of APs in the network. Our

work has only used 6 traffic statistics but more or distinct ones can be used in other

eSCIFI implementation depending on the traffic metric used and network scenario. The

special APs are then selected from the best positioned APs in the overall rank. Later

on Section 6.1 we will discuss how the special AP set and its size can affect the cluster

formation.

WAp =

∑n
j=1NTjth

p(n+ 1− j)∑n
i=1 i

(5.2)

Now that we have the neighborhood set and the special AP set, we can describe our

cluster formation algorithms. Figure 5.4(a) shows a wireless network example where the

APs carry their number of neighbors and the dashed lines between two APs represent that

those APs are present in each other neighborhood sets. Consider Vi as the neighborhood

set of AP i, C as our cluster set, and Ci as the cluster formed starting from the AP i.

In our cSCFIFI clustering algorithm, we first start by selecting the special APs. Special

APs have the highest traffic demand rates when compared to the rest of the APs and

therefore are a better starting point for our clusters formation. For that reason those APs

should not be put together in the same cluster. If special APs are neighbors, putting them

together in a same cluster could mean a potential waste in the clustering formation, since

they are very likely to always be turned on. For that reason, special APs should not be

put together in a cluster but instead be separated from each other in order to guarantee

that each special AP will form a cluster.
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Figure 5.4(b) shows that each special AP initiates a cluster and it is added to it.

When the special APs are added to their clusters, the cSCIFI algorithm also removes

those APs from all other APs neighborhood sets and update their number of neighbors.

Now our cSCFIFI clustering algorithm starts the cluster formation by selecting the cluster

where the special AP with the biggest neighborhood set is. Once the special AP s with

the highest number of neighbors is chosen, the algorithm steps through all the APs in its

Vs neighborhood set and adds the AP h that has the biggest neighborhood set as long as

every new AP h added to Cs is in the neighborhood set of all other APs in Cs. We call

this the neighboring condition. As long as the AP s has APs on its neighborhood set Vs

that APs satisfy the neighboring condition, those APs are added to the cluster Cs and

removed from the other APs neighborhood sets, as shown in Figure 5.4(c).

When there are no more APs in the AP s neighborhood set or there are no more APs

that satisfies the neighboring condition, the algorithm steps to the next special AP with

the biggest neighbor set and continues the cluster formation as shown in Figure 5.4(d).

When there are no more special APs, the cSCIFI algorithm steps to the next normal AP

with the biggest neighborhood set until there are no more APs left and the cluster set C

is finished as shown in Figure 5.4(e).

Algorithm 1 shows the cSCIFI implementation where we can see that the cSCIFI

guarantees that every AP will be only in one cluster and that every AP is on the vicinity

of all other APs inside its cluster. The neighboring condition (line 4) allows any user in

the cluster coverage area to connect to any of the powered on APs, since they are all each

other’s neighbors.

The cSCIFI+ is a simpler and more aggressive clustering strategy than cSCIFI. Fig-

ure 5.5 shows that the cSCIFI+ clustering algorithm works like the cSCIFI, but now the

APs added to a certain cluster Ci do not need to cope with the neighboring condition.

As we can see in Figure 5.5(c), all neighbors in the AP A neighborhood AP set VA are

added to cluster CA.

As shown in Figure 5.5(e), cSCIFI+ guarantees that the size of the cluster set C will

be the smallest possible. However users from a switched off AP in the cluster can only

connect to the AP A that initiated that cluster. Considering the clusters formed with the

cSCIFI, users from any AP can connect with other APs in the cluster which might balance

the load between the switched on APs. Algorithm 2 shows the cSCIFI+ implementation

where we can see that considering the clusters formed with cSCIFI+, only the AP that

initiated the cluster formation can assure connection to all users from switched off APs



5.1 eScifi Mechanism 54

Algorithm 1 cSCIFI

1 : function Create_Cluster(Cluster_Head,Cluster_head_list_of_neighbors):

2 : Cluster_auxiliary_list =[ Cluster_Head ]

3 : for AP in Cluster_head_list_of_neighbors:

4 : if AP in neighborhood list of all Cluster_auxiliary_list elements:

5 : add AP to Cluster_auxiliary_list

6 : remove AP from neighborhood list of all APs

7 : remove AP from Regular APs list

8 : return Cluster_auxiliary_list

9 : function Cluster_Formation(Position_list):

10 : Cluster_Set = [ ]

11: while Special APs in Special APs list do:

12: chead = from Special APs with highest number of neighbors select the one in Position

13: add Create_Cluster (chead, chead neighborhood list) to Cluster_Set

14: remove chead from Special APs list

15: while APs in Regular APs list do:

16: regular_chead = from APs with highest number of neighbors select the one in Position

17: add Create_Cluster(regular_chead, regular_chead neighborhood list) to Cluster_Set

18: remove regular_chead from Regular Aps list

19: return Cluster_Set

20: Possible_Sets=[]

21: for all possible ties in cluster heads selection do:

22: selection = create a possible and unused position list for cluster head selection ties

23: add Cluster_Formation(selection) to Possible_Sets

24: Cluster_Set_Selected = cluster set with the smallest number of clusters present in Possible_Sets

which may cause congestion.

As we can see in Figure 5.4 and Figure 5.5, the cSCIFI and cSCIFI+ greedy algorithms

alone can not guarantee that the best cluster set is formed in cases where there is a

tie between APs. A solution would be creating all cluster possibilities, choosing each

one of the tied APs as the first choice. After creating all possible sets C, we would

select the one that has the minimum number of clusters. Those multiple cluster sets
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Figure 5.4: cSCIFI cluster formation algorithm

creation can cause a exponential growth in the execution time. Trying to minimize those

problems, we simplified the cSCIFI and cSCIFI+ selection in cases of ties. The cSCIFI

and cSCIFI+ will only create multiple cluster sets when there are ties between APs that

will be selected to initiate a cluster formation. This selection criteria will guarantee that

only different clusters initiation will be taking into relevance and not all possible cluster

internal formations, which will minimize the possible solution set.

In the cSCIFI algorithm, we also added another selection criterion for cases where

there are ties between APs to be added to cluster Ci where an AP i has already initiated it.

In those cases, the AP j with the highest number of neighbors in the AP i neighborhood

set Vi is selected. APs with the same number of neighbors in their sets can generate

different clusters, since some of their neighbors might not be in the AP i neighborhood

set Vi. Therefore in cases of ties, it is the best option to select the AP j that has the

biggest number of matching neighbors to the APs in the neighborhood set Vi. This change

on the internal cluster formation process guarantees that the next APs to be added will
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Algorithm 2 cSCIFI+

1 : function Create_Cluster(Cluster_Head,Cluster_head_list_of_neighbors):

2 : Cluster_auxiliary_list =[ Cluster_Head ]

3 : for AP in Cluster_head_list_of_neighbors:

4 : add AP to Cluster_auxiliary_list

5 : remove AP from neighborhood list of all APs

6 : remove AP from Regular APs list

7 : return Cluster_auxiliary_list

8 : function Cluster_Formation(Position_list):

9 : Cluster_Set = [ ]

10: while Special APs in Special APs list do:

11: chead = from Special APs with highest number of neighbors select the one in Position

12: add Create_Cluster (chead, chead neighborhood list) to Cluster_Set

13: remove chead from Special APs list

14: while APs in Regular APs list do:

15: regular_chead = from APs with highest number of neighbors select the one in Position

16: add Create_Cluster(regular_chead, regular_chead neighborhood list) to Cluster_Set

17: remove regular_chead from Regular Aps list

18: return Cluster_Set

19: Possible_Sets=[]

20: for all possible ties in cluster heads selection do:

21: selection = create a possible and unused position list for cluster head selection ties

22: add Cluster_Formation(selection) to Possible_Sets

23: Cluster_Set_Selected = cluster set with the smallest number of clusters present in Possible_Sets

be the one that will contribute to a bigger cluster size.

Those characteristics cited previously minimizes the execution time and guarantee

that a possible cluster set C will be selected independent of their appearances on the

clusters neighborhood list. This is an important advantage to our clustering algorithms

when compared to the green clustering algorithm proposed by Jardosh et al. [29] since we

do not need to worry about the APs order of appearance in neighborhood list construction

process. Figure 5.6 compares the cSCIFI and cSCIFI+ cluster set formed after those
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Figure 5.5: cSCIFI+ cluster formation algorithm

selection criterion have been implemented. From Figure 5.6 it is possible to notice that

those changes applied to the cSCIFI clustering algorithm had generated a better cluster

formation than the previous one made by the algorithm where those selection criterion

were not implemented. Figure 5.6 also shows that the cSCIFI had achieved a cluster set

with the same number of clusters of the cSCIFI+ for this example scenario. In this case,

cSCIFI might be a better solution than the cSCIFI+, because the cSCIFI cluster is better

balanced and may provide a better load balance for the reasons discussed previously.

The last characteristic of our clustering algorithms is the cluster head election. The

cluster head is the AP that will be always switched on and will be responsible for guar-

anteeing the cluster coverage area. In cSCIFI+, the cluster head will always be the one

that initiated the cluster formation. This AP is the only AP that can be the cluster head,

since this is the only AP that has a guaranteed neighboring condition to all other APs in

the cluster. On the other hand, the election of the clusters head in the cSCIFI algorithm

can be more sophisticated since all APs in the clusters obey the neighboring condition.
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Figure 5.6: cSCIFI and cSCIFI+ cluster formation comparison

cSCIFI also has two types of clusters: clusters that have a special AP and clusters that

do not have one. The cluster head in clusters with a special AP will be the special AP,

once its special condition already guarantees that they are the AP with the highest traffic

demand from all the other APs and therefore are more likely to be switched on due to its

users’ demand. In clusters without a special AP, the cluster head will change throughout

the day. In those clusters, the average association of each AP is calculated for the night

(0AM - 7AM), morning (7AM - 1PM) and afternoon/evening (1PM - 11PM 59’) periods.

The AP with the highest night average will be selected to be the cluster head for the

night period and so on.

5.1.3.2 Energy State Decision Algorithm

The energy state decision algorithm is responsible for providing the energy scheduling of all

APs for a date. The energy state decision algorithm runs once a day and it uses the traffic

demand estimated by the hybrid machine learning model (the user association number

in our SCIFI network scenario) to calculate the cluster demand for specific moments of a

date and then decide which APs in a cluster can be switched off. The energy state decision

algorithm is the last step on the eSCIFI energy saving mechanism and it is responsible for

actively deciding which APs will be switched on or off and to provide the energy scheduling

to the SCIFI controller. The SCIFI controller, based on this energy scheduling, will then
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control the AP wireless interface switching on and off for the specified periods.

Our energy state decision algorithm uses the RoD policy proposed in the work of

Dalmasso et al. [14]. However our energy state decision algorithm works using machine

learning occupancy estimations instead of real traffic data and therefore presents some

modification in the RoD policy design. This RoD policy has two main components: the

time window and the double threshold criteria. The time window defines how long it

will take before the algorithm reconfigure the AP’s energy state. The time window size

tw informs on which frequency the network will be reconfigured and also the demand

estimation resolution. A small time window will allow the energy state decision algorithm

to perceive short bursts in the traffic demand variations. A large time window on the

other hand will only perceive the average traffic where instant or momentarily bursts in

the traffic demand will fade. At first a smaller time window size seems always the best

choice, however a smaller time window size means more rounds of energy state decisions

will have to be made by the algorithm and that the controller will have to reconfigure the

network more frequently. Related work [18, 46, 14, 16, 37] state that small time window

sizes are not necessary. In fact, depending on the network traffic profile, those changes in

the traffic demand can take hours to happen. Therefore the selection of the time window

size is a parameter that needs to be decided based on the network scenario. Later on

Section 6.2, we will deeply discuss the selection of the time window size.

The main concept behind our energy saving strategy is moving the traffic demand

from switched off APs to the cluster head AP or other switched on APs in the cluster

that can handle them. On the work of Damalso et al. [14], the APs in a cluster can be

switched off based on the actual traffic demand (real time traffic data) at the beginning

of each time window. However the eSCIFI mechanism uses machine learning models to

estimate demand. Therefore in our energy decision algorithm, the decisions made for each

time window will take into consideration the demand estimated for its whole duration and

not just the demand at the beginning of the time window.

All APs in the network have the same maximum user threshold Tmax for a time

window. This maximum user threshold Tmax defines how much traffic (or how much

associations in our case) the APs can handle for the duration of the time window. The

cluster head of every cluster will always be switched on guaranteeing a traffic capacity of

Tmax for the cluster. In our energy state decision algorithm, the double threshold criteria

defines which APs in a cluster can be switched off based on the traffic demand estimated

by the machine learning hybrid model for the assessed time window. However this energy
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state decision algorithm varies depending whether the cSCIFI or the cSCIFI+ algorithm

is used.

In the cSCIFI algorithm, all APs in a cluster are neighbors between themselves. There-

fore in the cSCIFI case, the double threshold criteria defines that APs with estimated

traffic demand below a minimum threshold Tmin for the whole time window are switched

off as long as the available traffic capacity provided by all APs that are switched on

can handle their estimated traffic. Considering DMi as the traffic demand of AP i for

a time window, d as the number of switched on APs, o as the number of switched off

APs, sumd
a=1DMa as the traffic demand of all d switched on APs and sumo

a=1DMa as

the traffic demand of all o switched off APs, we can define how our energy state decision

algorithm decides if an AP i will be switched off based on the double threshold criteria

if the cSCIFI algorithm is used. Equation 5.3 shows the double threshold criteria, where

the first criterion defines if the traffic demand is too low for the AP i to be switched on

and the second criterion defines if the cluster switched on APs can handle the AP i traffic.

If there are more d switched on APs in the cluster, the cluster maximum traffic capacity

CCA increases to Tmax(d + 1) because cSCIFI guarantees that all APs inside a cluster

can provide connection to any mobile station trying to connect to any AP in the cluster.

DMi < Tmin

CCA− (
∑d

a=1DMa +
∑o

b=1DMb) > DMi, where CCA = Tmax(d+ 1)
(5.3)

On the other hand, in the cSCIFI+ algorithm, all APs in a cluster are neighbors only

to the cluster head. Therefore in the cSCIFI+ case, APs with estimated traffic demand

below a minimum threshold Tmin for the whole time window are switched off as long as the

available traffic capacity provided by the cluster head can handle their estimated traffic.

Equation 5.4 shows the double threshold criteria if the cSCIFI+ algorithm is used, where

the first criterion defines if the traffic demand is too low for the AP i to be switched

on and the second criterion defines if the cluster head can handle the AP i traffic. In

the cSCIFI+ case, the cluster maximum traffic capacity CCA is fixed to Tmax because

the cSCIFI+ guarantees that only the cluster head can provide connection to any mobile

station trying to connect to any AP in the cluster except the AP itself.

DMi < Tmin

CCA− (
∑d

a=1 DMa +
∑o

b=1DMb) > DMi, where CCA = Tmax

(5.4)
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Figure 5.7: eSCIFI energy state decision algorithm flowchart

Figure 5.7 shows our energy state decision algorithm flowchart. At the beginning of

a time window, our hybrid model provides the traffic demands for all APs in the clusters

for the whole time window. Each cluster is individually evaluated and the decisions of

switching off or switching on APs within the cluster are taken. Then the algorithm iterates

through all APs in a cluster. The cluster head and APs that have a traffic demand higher

than Tmin are or remain switched on. For those APs that obey the first threshold criterion,

our energy state decision algorithm keeps evaluating if their summed demand with the

demand of the APs that were already schedule to be switched off is lower than the cluster

maximum capacity CAA. If it is lower than the CAA, the AP is scheduled to be switched

off and, if it is not, the AP is switched on and the maximum capacity is recalculated.
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The eSCIFI mechanism has several parameters that must be configured and that may

depend on the network usage profile such as the selection of the time window size and

Tmin value. On the next chapter we evaluate how the different components in the eSCIFI

architecture affects the mechanism energy saving capacity and the network coverage to

its users. We also compare the eSCIFI to other energy saving mechanisms present in our

related work that are applicable in our evaluation scenario.



Chapter 6

eSCIFI Evaluation

To evaluate the eSCIFI impacts on the network performance, we performed trace-driven

simulations using the real association trace data collected from the UFF SCIFI network.

Using real association traces, it is possible to evaluate if eSCIFI can cope with users

demand while saving energy. To perform our simulations, we are going to use the as-

sociation data collected for one week on September 2018 from the H building at UFF.

The week used in our collected data is formed by a weekend (September 1 and 2, 2018)

and 5 weekdays (September 24,25,26,27,28, 2018). The weekend used are apart from the

weekdays dates because there was not complete association history for the weekend before

or after those weekdays. This might have happened for several reasons such as energy

outages or network failures for example. However the weekend (September 1 and 2, 2018)

contains the association data for all APs in the H building and therefore we will use them

to represent Saturday and Sunday in our trace-driven simulations. We are also going to

use the Brazil’s Independence day public holiday (September 7) to compare and evaluate

how eSCIFI impacts the network on holidays.

The work of [25] presents a mathematical formula, indicated in Equation 6.1, that

allows us to determine the energy saving factor ESF achieved with the AP wireless

network interface shut down during periods of time. The formula gives the percentage of

energy that could be saved by shutting down the AP wireless network interface compared

to the total energy that would be consumed if the AP wireless network interface stayed

working the whole time.

Terms Pext_on and Pext_off of Equation 6.1 represent the measured power values in

Watts, in the AP external power source, for the cases where the wireless network interface

is switched on and off respectively. Terms ton and ttotal represent the period of time that

the AP stayed with its wireless interface switched on and total period of time that is taken
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into analysis respectively. The result given by Equation 6.1 gives the percentage of energy

that could have been saved from the total of the energy used, by switching off the wireless

interfaces of the AP during the idle time slots. This formula can be easily extended to

also provide the network’s energy saving factor. To do so, the terms ton and ttotal must

change in order to represent the sum of time that all APs on the network stayed with its

wireless interface switched on and total time that is taken into analysis multiplied by the

number of APs in the network respectively.

ESF =
Pext_on − Pext_off

Pext_on

(1− ton
ttotal

) (6.1)

From Equation 6.1 it is possible to notice that the energy saving factor (ESF ) reaches

its maximum power saving factor value ,ESFmax, when ton = ttotal. This condition rep-

resents the scenario where the wireless interface of all APs in the network are switched

off during the whole time. However it is also possible to notice that depending on the

scenario and switching off scheme the ESFmax can assume several values. Therefore the

normalized energy saving factor, ESF given by Equation 6.2 can better indicate the per-

formance of the mechanism in different scenarios. The normalized energy saving factor

ESF is limited between 0% and 100% and represents the percentage of the maximum

energy saving factor that could be saved.

ESF (%) =
ESF (%)

ESFmax(%)
(6.2)

The work of [18] defines the coverage ratio loss CR formula, indicated in Equation 6.3.

The coverage ratio loss is the number of uncovered clients Ul by the energy saving mecha-

nism over the total clients in the network U within a certain period of time. The coverage

ratio loss gives the percentage of clients that could not successfully access the network

under the evaluated period.

CR(%) = (
Ul

U
∗ 100) (6.3)

The analysis in this section will evaluate the normalized energy saving factor (Equa-

tion 6.2) and the coverage ratio (Equation 6.3) to compare how the eSCIFI mechanism

impacts on the network performance. To calculate the coverage ratio, we must know the

parameter Tmax that indicates the maximum number of association an AP might support

in a time slot. Based on Table D.1, we defined Tmax = 300 which is roughly the maximum
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number of APs associated in a time slot registered plus 10%. In our experimental scenario

only the wireless network interface will be switched off. Table 6.1 shows the consumed

power measured for the AP model present in the UFF SCIFI network when the wireless

interface is switched on and off (Pext_on and Pext_off ). Table 6.1 also shows what would

be the maximum power saving factor, ESFmax, which represents the power saving factor

percentage if the wireless interface of all APs were switched off the whole time. Therefore

in our evaluation scenario the maximum energy saving factor percentage that could be

reached by switching off the wireless interface of the entire network during the whole eval-

uation period is 23,93%.Those information are required by the normalized energy saving

factor calculations.

Table 6.1: AP’s consumed power and maximum power saving factor percentage

Pext_on (W) Pext_off (W) ESFmax (%)

1,111 0,845 23,93

We are going to evaluate how several components from the eSCIFI architecture im-

pact on the network performance. eSCFI using the cSCIFI and the cSCIFI+ clustering

algorithms will also be compared with other mechanisms proposed in the literature. The

eSCIFI energy saving mechanisms will be compared with SEAR, ACE and ECMA mech-

anisms proposed by Jardosh et al. [29], Fang et al.[18] and Silva et al.[46] respectively.

The SEAR mechanism uses the green clustering algorithms and a single threshold where

only the Tmin parameter is used as the RoD strategy. In the SEAR mechanism, the net-

work APs are grouped into clusters, the cluster head is always switched on and the other

APs in the clusters remain switched off as long as their traffic demand is lower than the

Tmin. The ACE mechanism uses an inactivity time window based on machine learning

occupancy detection results as its RoD strategy and does not have a coverage guarantee.

APs that remain unused by a whole time window size are switched off the whole time win-

dow duration period. The ECMA mechanism uses the SEAR mechanism for night hours

(between 0AM - 6:59AM) and keeps the whole network switched on the rest of the day.

The Baseline mechanism where all the APs in the network remain switched on between

7AM - 11:59PM and switched off between 0AM - 6:59AM is also used for comparison.

We will evaluate how the size of the special AP set, the time window size and the min-

imum threshold value affect the network performance. We will also compare the eSCIFI

mechanism performance on regular weekday with its performance on a public holiday. We

are going to compare eSCIFI using the demand estimation hybrid model and using the
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real demand to evaluate how the hybrid model inaccuracies may affect the mechanism

performance. After that, we will compare the SEAR green clustering, eSCIFI cSCIFI

and cSCIFI+ clustering algorithms performances using different neighborhood lists. Our

last analysis will compare how day periods may affect the mechanism performance. Our

trace-driven simulations script is developed in Python.

6.1 Number of Special APs Analysis

In Section 5.1.3.1, we have defined how the special AP set is formed and how it is used in

our cluster formation algorithm. Table D.1 shows the statistics taken into consideration

for our experimental scenario as defined in Section 5.1.3.1. From these statistics, it is

possible to calculate the overall rank as defined in Equation 5.2 and extract the special

AP set. Table E.1 in Appendix E shows the overall rank for our UFF SCIFI evaluation

scenario. A special AP set of size s will select the first s APs from the overall rank. We

will select different special AP set sizes ranging from 3 (∼ 10%) to 9 (∼ 30%). We will

compare the performance of these special AP sets with an empty special AP set (size

0). The idea is to evaluate how the special AP set size will affect the network cluster

formation and to verify the validity of using a special AP set in our scenario.

Table F.1 in Appendix F shows how the special AP set size using the cSCIFI affects

the number of clusters present in the network’s cluster set. However a bigger special AP

set does not always create a bigger number of clusters and sometimes it does not even

change the cluster set formed. There are two main explanations for that. One explanation

is that imposing them a special AP characteristic does not change the cluster set formed

because those APs have already been selected by the algorithm to form clusters. Other

explanation is that selecting more APs to be in the special AP set creates clusters of

different sizes but in such way that the number of cluster does not change.

Table F.2 in Appendix F shows how the special AP set size using the cSCIFI+ affects

the number of clusters present in the network’s cluster set. We can see that the more

aggressive clustering cSCIFI+ nature generates the same behavior already discussed for

cSCIFI, but with smaller cluster set sizes. However in the cSCIFI+ algorithm, we can see

that the absence of special APs has actually lead to an increase in the number of clusters

when compared to the cluster set formed using a special AP set of size 3. Therefore

different special AP sizes might generate different clusters and/or different number of

clusters. At first we see that smaller special AP set sizes generate smaller clusters which
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can be an advantage. However a smaller cluster set may not be enough to guarantee a

better performance in our energy saving mechanism proposal.

Next we evaluate the normalized energy saving factor of those different clusters set

formed using different special AP set sizes. To do so, we selected a fixed combination

of Tmin and tw values that guarantees the highest normalized energy saving factor ESF

and no coverage ratio CR loss for all special AP set sizes. Therefore the results showed

in Figure 6.1 show the normalized energy saving factor of the eSCIFI mechanism where

Tmin = 72 and tw = 120 (120 minutes or 12 time slots) using the cSCIFI and the cSCIFI+

cluster set formed with different special AP set sizes. As we can see from Figure 6.1, the

special AP set sizes impacts on the normalized energy saving factor. Smaller special AP

set sizes generate bigger energy savings. This energy saving differences are related to the

cluster set size. A smaller number of clusters may generate bigger savings since less APs

will be required to be switched on during idle periods. However Figure 6.1 shows that

the number of clusters is not enough to define which cluster set configuration will lead

to bigger energy saving. For the cSCIFI algorithm for example, special AP sets of size 7

and 8 form cluster sets of equal size, but they present different energy saving percentages.

The cSCIFI+ cluster set formed without any AP in the special AP set is bigger than the

cluster set formed with 3 APs in the special set, but it still had bigger energy savings.

Figure 6.1: Normalized Energy saving factor for different special APs set sizes

The number of clusters and the APs that are gathered inside them are equally impor-

tant to determine which configuration will generate the biggest energy saving. Another

important thing is that the cluster formed by the cSCIFI and cSCIFI+ algorithms with-

out using the special APs criteria (special AP of size 0) got better results. The special

AP set had not improved the cluster formation process in our scenario. The results shows
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that using the special APs criteria in our cluster formation algorithm may not generate

better clusters which may lead to energy saving losses. The clusters formation is inti-

mately related with the neighborhood of the APs. Special APs are on the other hand

selected only based in their statistics. This may lead to the selection of APs with smaller

neighborhoods which generate smaller clusters and consequentially changes the clusters

set size or even the distribution of APs inside clusters. That happened on our scenario

where APs 21, 519 and 419 were selected as special APs but have fewer neighbors than

other APs in the network such as APs 224 and 288. Therefore the selection of special

APs without taking the neighboring condition into account may create a network cluster

formation that is not the best one.

The special AP set has clear connection with the cluster formation process since

heavily used APs are not good to be put together with each other since they may always

be switched on. However the special APs as defined in this work was not enough to

guarantee better cluster formation and energy savings. Therefore further analysis would

be required to improve the special APs selection criteria to improve its results when

compared to the clustering algorithm that does not differentiate APs.

6.2 Time Window Size Analysis

In Section 5.1.3.2 we have seen that the time window tw defines how long it takes before

reconfiguring the network APs energy state. A bigger time window is desired since it will

minimize the number of times the controller will need to change the APs working status,

which will minimize the controller tasks over a day. On the other side, a bigger time

window may not notice small traffic demand bursts, which may lead to network coverage

losses during these bursts due to unnoticed behaviors. Therefore we need to evaluate how

the eSCIFI time window size may affect the network energy saving and coverage loss.

We tested the eSCIFI mechanisms using 5 different time window values (10 minutes, 30

minutes, 1 hour, 1:30 hours and 2 hours). Those time window values were selected based

on our time slots size and correspond to 1, 3, 6, 9 and 12 time slots respectively. Those

time window were selected based on the lecture duration time at UFF that usually takes

2 hours. The real and predicted association values for time windows bigger than one time

slot (10 minutes) is the sum of the devices connected during the corresponding amount

of time slots. We evaluated the eSCIFI mechanisms using the cSCIFI and cSCIFI+

algorithms without a special AP set (size 0) and Tmin = 72 with different time windows

to evaluate the normalized energy saving factor and coverage loss. Those fixed parameters
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were used because they delivered the best normalized energy saving factor percentage and

coverage ratio loss to all possible time windows. We will also evaluate the time window

size effect in the SEAR, ACE, ECMA and Baseline mechanisms.

Figure 6.2: Normalized Energy saving factor for different time window sizes

As we can see in Figure 6.2, the selected time window sizes have not affected the nor-

malized energy saving factor ESF for the SEAR mechanism and the eSCIFI mechanisms

using the cSCIFI and the CSCIFI+ clustering algorithms. Only ECMA and ACE mech-

anisms had their normalized energy saving factor negatively affected by the time window

size. The baseline estimator does not depend on the time window (its scheduling presents

fixed switching on/off periods) and therefore we can see that its normalized energy saving

factor does not change. This result means that for our evaluation scenario it is possible

to use a 2-hour time window resolution without affecting the normalized energy saving

factor for our eSCIFI mechanism. This would allow the eSCIFI mechanism to compute

less energy state changes in the APs and consequently less tasks to be execute by the

network controller.

Figure 6.3 shows how the different time window sizes affects the coverage ratio. As

we can see only the Baseline and ACE mechanism presented coverage ratio losses in

this evaluation scenario. The baseline estimator has a fixed coverage loss that does not

depend on the time window size. The Baseline loss occurs due to unattended users in the

night hours where all APs are switched off. However the ACE mechanism shows a small

decrease in the coverage loss as the time window grows. That result was expected because

the ACE mechanism uses the time window size as an inactivity criteria to switch off APs

and therefore a large time window would require a longer period of inactivity which would

be harder to achieve and consequently would lower the chances of mistakenly switching
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off APs that should not.

Figure 6.3: Coverage loss for different time window sizes

6.3 Minimum Threshold Analysis

The last parameter on our eSCIFI mechanism that needs to be evaluated is the Tmin value

selection. The Tmin defines the minimum number of associations that an AP must have

during the time window duration to be switched on. If the number of associations is below

Tmin, the AP will be evaluated to be switched off by the energy state decision algorithm.

In this section we evaluate how the Tmin value affects the normalized energy saving factor

and the coverage ratio. To do so we varied the value assumed by Tmin during one time

slot including all multiples of 9 ranging from 9 to 90. Therefore the Tmin value will be

proportional to the time window size used. So if the time window has a size w of time

slots, the Tmin values assumed will be w x Tmin. We fixed the special AP set size to 0 (no

special APs selected) and the time window size to 12 time slots (2 hours or 120 minutes).

Figure 6.4 shows the normalized energy saving factor achieved by the eSCIFI mech-

anism using the cSCFI and cSCIFI+ clustering algorithms, SEAR, ACE and ECMA

mechanisms. As it can be seen in Figure 6.4, SEAR and eSCIFI mechanism using the

cSCIFI+ clustering algorithm got the best energy saving percentages on our evaluation

scenario. The eSCIFI mechanism using the cSCIFI cluster formation had a smaller en-

ergy saving percentage because it has a different cluster set that is bigger than the ones

formed by the SEAR and eSCIFI mechanism using the cSCIFI+ clustering algorithm.

From Figure 6.4 we can also see that the normalized energy factor ESF grows as Tmin

value grows until it reaches Tmin = 54, after that the energy factor stays the same for all
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mechanisms. This result was expected and it is the same result achieved by Dalmasso et

al. [14] in his work. This asymptotic characteristic in the normalized energy saving factor

curve happens because, for higher values of Tmin than 54, the cluster maximum capacity

CAA threshold is reached requiring those same APs to be turned on anyway.

Figure 6.4: Normalized Energy saving factor for different Tmin values

Higher Tmin values mean that the APs will require a higher number of associations

in a time window to be switched on according to the first criteria which means it will be

harder to them to be switched on. However those APs will have their demand transferred

to the cluster head (or other switched on AP in the case where the cSCIFI algorithm

has been used). That will mean that the cluster maximum capacity CAA threshold

will be reached sooner and the APs will have to be turned on anyway. Therefore the

normalized energy saving factor is limited and there is a Tmin value that reaches it.

Increasing Tmin after its optimum value will not change the normalized energy saving

factor. The SEAR mechanism does not have this second threshold criteria and still it has

its normalized energy saving factor capped. The possible explanations behind that may

be that after Tmin = 54, the SEAR mechanism already reaches the minimum required

APs to guarantee coverage (only the cluster heads may be switched on) or the switched

on APs after that value present traffic demands much higher than the maximum value of

Tmin = 90. Figure 6.4 shows that the ECMA mechanism has a steady normalized energy

saving factor that does not depend on the Tmin value. This might happen because the

ECMA mechanism apply the SEAR mechanism in night hours (between 0AM - 6:59AM)

and keeps the whole network switched on the rest of the day. The network has very little

traffic demands in night hours, therefore few APs are required to be turned on or will have

enough traffic to trigger the cluster maximum capacity threshold. That way, the ECMA
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already reaches its highest energy saving factor with a Tmin = 9. The ACE and Baseline

mechanism do not present a Tmin parameter for energy state decision and therefore their

normalized energy saving factors do not change according to it.

Now we evaluate how different Tmin values affect the coverage ratio. As we can

see in Figure 6.5, the eSCIFI mechanism using both clustering algorithms (cSCIFI and

cSCIFI+), SEAR and ECMA strategy had no coverage ratio loss at all for any value of

Tmin. This results showed that none of the mechanisms had overpassed the maximum

cluster capacity at any moment. Only the Baseline and ACE mechanism present coverage

losses. However as we have already mentioned previously, those mechanisms do not change

their energy state decisions based on a minimum threshold Tmin parameter. Therefore

their coverage ratio results are the same showed in Figure 6.3 where the time window size

is tw = 120 minutes.

Figure 6.5: Coverage ratio for different Tmin values

As we have seen there is an optimum Tmin value that reaches the maximum energy

factor. However this Tmin value is directly related to the time window size tw. Figure 6.6

shows how the optimum Tmin value might change depending on the time window size tw

for the SEAR mechanism and the eSCIFI using both clustering algorithms. As it can be

seen in Figure 6.6, bigger time windows require smaller Tmin values to reach the highest

normalized energy saving factor. This might happened because on bigger time window

resolutions the traffic demand is averaged by a longer period of time and smaller traffic

bursts might disappear into the average demand. Therefore bigger time windows require

smaller Tmin to reach its highest energy saving value.

The results in this section showed that there is an optimum Tmin value that maximizes
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Figure 6.6: Normalized Energy saving factor for different Tmin and tw values

the normalized energy saving factor. It also showed that this optimum Tmin value changes

according the the time window size. For our experimental scenario the eSCIFI mechanism

using both clustering algorithms,a special APs set of size 0 and tw = 120 minutes reached

this optimum value when Tmin = 54. The results showed that a bigger time window can

lower the optimum value. This result is positive because smaller Tmin will trigger the

mechanism to switch on more APs when necessary and that can counterbalance the large

time window size disadvantage of not being sensible to small traffic bursts. That way

we guarantee that the eSCIFI mechanism in our scenario can switch on more APs to a

smaller traffic demand (be more sensible to smaller traffic demands) without affecting the

energy saving.

6.4 Weekday Versus Holiday Analysis

The eSCIFI uses machine learning prediction models to estimate traffic demands. In our

scenario the hybrid model uses holiday input feature that distinguishes normal weekdays

from public holidays and university student holidays. The hybrid model uses this feature

to differentiate the network demand variation that happens between regular day and

holidays as we have seen in Section 3.2. Here we will evaluate if our eSCIFI mechanism

using the hybrid model can better cope with the holiday demand than the SEAR, ACE

and ECMA mechanisms. We compare Brazil’s Independence Day public holiday (Friday,

September 7, 2018) and the Friday used in our regular week. We compared the mechanism

using the parameters that gave the best normalized energy saving factor and smallest

coverage ratio loss (without a special AP set (size 0), Tmin = 54 and tw = 120 minutes).
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Figure 6.7 shows the normalized energy saving factor achieved by the different mech-

anisms. As we can see, the eSCIFI mechanism using both clustering algorithms and the

SEAR mechanism kept the normalized energy saving factor stable. The eSCIFI mecha-

nism using the cSCIFI+ clustering algorithm has the biggest normalized energy saving

factor for holiday and weekdays. The Baseline and ECMA mechanism also remain with

their normalized energy saving factor unchanged. In the Baseline case, this happens be-

cause the Baseline decision is only based on time schedules and not in traffic demand

estimations and therefore is unaffected by it. In the ECMA case, this result happened

because the traffic demand for our holiday or weekday remains unchanged, which did

not change the SEAR APs switching on/off schedule during night hours. Only the ACE

mechanism had a reduction on the normalized energy saving factor in our holiday evalu-

ation.

Figure 6.7: Normalized Energy saving factor comparison between a holiday and a weekday

As we have seen in Figure 5.3, the demand on that holiday (Friday, September 7,

2018) was much smaller than the demand presented for the regular weekday (Friday,

September 28, 2018). Figure 5.3 also shows that the holiday demand predicted by the

hybrid model is much bigger than the real one, differently from the regular Friday where

the hybrid model prediction was very close to the real traffic. Those results would first

suggest that the normalized energy saving factor achieved by the eSCIFI and SEAR

mechanisms for the public holiday should have been smaller as it happened with the ACE

mechanism case. However Figure 5.3 shows that the hybrid model wrong estimations have

not even reached 200 associated devices for the whole network in any moment of the day

on September 7. Figure 5.3 also shows that the regular Friday has not even reached 500

associated devices for the whole network on September 28. Those association values are
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very low considering that Tmax = 300. Therefore we can presume that, for the evaluated

regular and holiday Friday, the network is working with the minimum set of APs switched

on (only the cluster heads) and that is the reason why the SEAR and eSCIFI mechanism

using both clustering algorithms have their normalized energy saving factor unchanged

by it. In fact, we analyzed how the real data would affect the normalized energy saving

factor results in that analysis for the mechanisms and it showed that it would not have

changed much (less than 3.3% for all mechanisms) in the results.

Figure 6.8 shows the mechanisms’ coverage ratio loss for the regular weekday and for

the holiday. Only the ACE and Baseline mechanism present some energy loss since they

are the only mechanisms that do not have a coverage guarantee. The Baseline coverage loss

remains the same, which shows that the traffic demand for night hours (0AM - 6:59AM)

on both our holiday or weekday remains unchanged. The smaller coverage ratio loss for

our holiday when compared to our weekday on the ACE mechanism case can be explained

by the smaller traffic demand estimated for the whole day. Another explanation for the

ACE mechanism reduced coverage ratio can be on the fact that the ACE mechanism has

a smaller normalized energy saving factor on our holiday, which means it has a smaller

number of APs switched off or that they are switched off for a short period of time.

Figure 6.8: Coverage ratio loss comparison between a holiday and a weekday

The results showed in this section can not give us a precise conclusion on whether or

not our algorithm could cope with the holiday demand without sacrificing the normalized

energy saving factor. A large number of holidays in distinct weekdays and with distinct

demand estimations would be necessary to understand it better. However results have

indicated that the mechanism performance on holidays is not related to any change on

its function, but it is in fact intimately related to the correct traffic estimations given by
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the hybrid model when compared to the real traffic data.

6.5 Real Data vs. Model Predictions

Energy saving mechanisms that use scheduling driven approaches usually present smaller

normalized energy saving factor when compared to mechanisms that use demand driven

approaches. That happens because the real traffic demands are not exactly the same

obtained by traffic estimations. However if the traffic estimations are very close to the

real data traffic demands those approaches may give the same result. In this section we

compare the normalized energy saving factor of the eSCIFI mechanism using real traffic

data and model prediction demand estimations. We will compare the eSCIFI mechanism

using both clustering algorithms with the parameters that gave the best normalized energy

saving factor and no coverage ratio loss (without the use of a special AP set, Tmin = 54

and tw = 120 minutes). Figure 6.9 shows the normalized energy saving factor for both

clustering algorithms using real traffic data and the hybrid model’s predictions as demand

estimation. The results shows that there is no difference between the normalized energy

saving factor achieved with them for both clustering algorithms. The explanation behind

these results is that the cluster maximum capacity CAA value is huge when compared to

the hybrid model’s prediction errors. The errors introduced by the hybrid model could

not reach the cluster maximum capacity CAA threshold and change the decisions taken

by the energy state algorithm. Therefore in our evaluation scenario, none of the errors

introduced by the hybrid model on the demand estimations were sufficient to change the

algorithm energy state decisions for APs when compared to the decisions taken by the

algorithm using real demand estimations. The cluster maximum capacity CAA value had

a direct impact on these results however it is not simple to change the CAA value, once

it is directly related to the Tmax value that was based on the maximum value registered

in our history data.

This result shows that for our experimental scenario the eSCIFI energy saving mecha-

nisms can effectively use machine learning models to predict traffic demands without any

impact over the normalized energy saving factor. This result also shows that the eSCIFI

scheduling driven strategy can not only cope with the network real data acquisition con-

straint but also deliver a normalized energy saving factor comparable to scenarios where

it would be possible to use real data acquisition.
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Figure 6.9: Normalized Energy saving factor comparison between the eSCIFI mechanism
using real traffic data and using model prediction demand estimations

6.6 SEAR vs. eSCIFI Clustering Algorithms

As we have seen in Section 6.2, the SEAR mechanism had a better normalized energy

saving factor result than the eSCIFI mechanism using the cSCIFI clustering algorithm.

However the clustering algorithm developed by Jardosh et al. [29] does not have the same

optimizations criterion we have implemented on our both algorithms. Therefore the work

of Jardosh et al. [29] is susceptible to the order of appearance of APs in the neighborhood

list of other APs. This order affects which will be the next APs selected by the Jardosh et

al. [29] green clustering algorithm to fill the cluster in case of ties between the number of

neighbors. The order of appearance of APs in the neighborhood list impacts the Jardosh

et al. [29] green clustering algorithm result since it does not have any tie breaker rule in the

selection of the next AP to be put in the cluster in case of a tie in the number of neighbors

between APs. The cSCIFI and cSCIFI+ algorithms do not have this disadvantage and

therefore we can guarantee that the clusters formed will not depend on the order of

appearance. Here we will compare the normalized energy saving factor achieved by the

SEAR and eSCIFI mechanism using both clustering algorithm using 3 different orders of

appearance of APs in the neighborhood lists of the APs. The two first neighborhood lists

present cases where the APs position inside the neighborhood lists are randomized and

the third represent the neighborhood list we have used for all tests we have done before

for the SEAR mechanism. We will compare the SEAR and eSCIFI mechanism using both

clustering algorithms with the parameters that gave the best normalized energy saving

factor and no coverage ratio loss (without the use of a special AP set, Tmin = 54 and
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tw = 120).

As we can see in Figure 6.10, the SEAR mechanism energy saving result is heavily

affected by the order of appearance of APs in the neighborhood list, while the eSCIFI

algorithm using cSCIFI and cSCIFI+ are not affected at all. This result shows that the

changes we have implemented on the cSCIFI and cSCIFI+ have turned our algorithm

unaffected by the order of appearance of AP in the neighborhood list. This is a clear

advantage since it will not require an optimization on the neighborhood list formation

process that in a huge network topology might be unpractical to be done.

Figure 6.10: Normalized Energy saving factor comparison between the SEAR and eSCIFI
mechanism using both clustering algorithm with different neighborhood lists
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Conclusion

We presented the eSCIFI energy saving mechanism and its main architecture. The eS-

CIFI energy saving mechanism used traffic demand estimations given by machine learning

model to manage the energy state of APs and it was designed to cope with a broader va-

riety of wireless network, specially those wireless network that can not collect traffic data

in a real time manner and/or have a limited CPU power. We proposed and used a unified

methodology to find the best machine learning model for our evaluation scenario. We

conducted an experimental analysis using our proposed methodology and two datatsets

we created from the UFF’s SCIFI network APs, belonging to a classroom building, over a

period of 6 months, from April to September 2018. Our results showed that the collective

single-target machine learning model using the the decision tree as a machine learning

algorithm and using only the APs identification number, the holiday and weekday as

input features (Col/DT/ST/APHDWD machine learning model) achieved achieved the

best RMSPE results for the regression problem (with an RMPSE value of 0.29). The

collective single-label machine learning model using the the decision tree as a machine

learning algorithm and using only the APs identification number, the holiday and week-

day as input features (Col/DT/SL/APHDWD machine learning model) achieved the best

A accuracy results for the classification problem (with an A of 86.69%). Our experimental

analysis showed that the proposed methodology could broadly and extensively evaluate

the machine learning models.

eSCIFI uses a hybrid model that combines the classification and regression models

to provide a better occupancy estimation. The hybrid model has proven to be able to

provide very accurate traffic demand estimation and that it can cope with the network

distinct demands. We also proposed two clustering algorithms: cSCIFI and the cSCIFI+.

cSCIFI is a less aggressive clustering strategy that may increase the cluster available
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traffic capacity while cSCIFI+ is a more aggressive one that presents a limited maximum

traffic capacity. After describing the eSCIFI mechanism main components and features,

we conducted a trace-driven analysis to evaluate how well the eSCIFI mechanism would

be in our motivational scenario.

We evaluated how the special AP set size, the time window size, the Tmin value, the

traffic demand estimation and holiday feature would affect the normalized energy saving

factor and the coverage ratio loss of our proposed mechanism. We also reproduced and

compared the eSCIFI mechanism results to the results achieved by the ACE, ECMA and

SEAR mechanism. Those results showed that, for the UFF SCIFI network scenario, the

eSCIFI mechanism produced good results and that the machine learning model produced

results comparable to the ones obtained using real time data. The SEAR mechanism

got comparable results to the eSCIFI mechanism using the cSCIFI clustering algorithm

and therefore, at a first analysis, would be a better solution than the eSCIFI mechanism

using the cSCIFI clustering algorithm. However the SEAR green clustering algorithm

normalized energy saving factor changes depending on the order of appearance of APs

in the neighborhood list, while with the eSCIFI algorithm using cSCIFI and cSCIFI+,

the energy saving factor does not change, which is a clear advantage of our clustering

algorithms. All of those results showed that, for the UFF SCIFI motivation scenario, the

best energy saving mechanism was the eSCIFI using the cSCIFI+ mechanism that can

save up to 64.32% of the total energy consumed in a week without affecting the network

coverage and user’s association capacity.

7.1 Limitations

Our unified methodology evaluates several regression and classification machine learning

models and selects the best ones to the desired usage scenario. However all the evaluations

made and the best regression and classification model selections were manually made.

This manual selection of models took several hours of analysis due to the great number

of distinct models evaluate and metrics used. However this analysis can become even

more challenging if more configuration parameters are used. Therefore the automatic

model selection and comparison between models is required in more complex evaluation

scenarios.

The vicinity criteria defined in Section 5.1.3.2 uses spatial proximity bewteen APs to

determine if two APs are neighbors. However this assumption is not always true. There
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are numerous cases where radio interference caused by obstacles such as thick walls or

doors between two spatially close APs make them practically invisible to each other. A

better vicinity criteria would be using RSSI values measured between APs to create an

interference matrix where the APs’ radio interference above a certain threshold on others

would indicate the proximity between them. However it was not possible to use the UFF

SCIFI network interference matrix to create the neighborhood list because those data

were unavailable.

Another limitation of this work is related to the analysis of our machine learning

model prediction’s horizon. The trained machine learning models can fairly predict the

network traffic demand for a whole month (September) afterwards. However it is expected

that this accuracy would decrease over time. It would be required to have a broad dataset

to evaluate this question and define a model update parameter. Therefore for our case

we simply assumed that the machine learning model predictions would keep the same

accuracy throughout the weeks.

In our tests we used Tmax = 300. This value represents that an AP could handle at

least 300 user devices throughout a 10-minute time slot. This value does not mean that an

AP could handle those 300 devices at once or throughout the whole time slots, but rather

the maximum associations process that could be done in a time slot. This means that

during those 10-minute time slots, there are mobile stations that associate and dissociate

to that specific AP. Some APs located in transit places such as the building entrance

might notice a huge number of association that are just transitory. However assuming

Tmax = 300 might be a practical problem in a real network scenario, since it may affect

the coverage ratio loss. In a real scenario the APs used in the network could handle a

number of associations at the same time considerably smaller than 300. Therefore the

real impacts of assuming Tmax = 300 on the coverage ratio loss might change in real

network scenarios where the instantaneous cluster capacity might be reached. In a real

network scenario the effects of assuming Tmax = 300 might also affect the normalized

energy saving factor. However changing Tmax value is not simple, since it changes the

cluster maximum capacity CAA that affects the energy saving algorithms decisions and

give a complete different energy state schedule to the APs. Therefore this assumption

shows some practical problems in real network scenarios that would need to be further

analyzed.
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7.2 Future Work

We plan to insert the AP location as input features in our constructed dataset. The AP

location inside the building can bring relevant information about its association history

and can therefore enhance the overall performance of our machine learning model.

We have plans to conduct a more complex evaluation and selection of machine learning

models using our proposed unified methodology. We have plans to use the cross validation

method to test our models with different training set sizes. We also have plans to use

additional machine learning algorithms for classification models such as the XGBoost.

We have plans to create an overall assessment rank to evaluate and select machine

learning models using our proposed unified methodology. An automatic selection based

in an overall rank metric can decrease the time and effort required to evaluate and select

those models using our unified methodology. Therefore an automatic assessment can ease

the process and make it a more feasible solution to more complex smart building scenarios.

We have seen that the special AP selection criteria and the special AP set have

not improved the eSCIFI normalized energy saving factor. The cSCIFI and cSCIFI+

clustering algorithms cluster set formed is strongly dependent on the neighborhoods.

Therefore some future changes on its design are required to improve its results such as

the inclusion of a minimum neighborhood criteria.

We also plan to propose new features to the eSCIFI design such as the machine

learning model update scheme and a fail protection scheme. The model update scheme

on our mechanism would allow the eSCIFI machine learning model to be updated with

new training traffic data from time to time. This model update feature would help the

model estimations accuracy to not significantly decrease over time. The implementation

of such feature is required for an energy saving mechanism that would have to work

throughout years and there would be necessary to evaluate strategies to perform this

model update the best way possible. Another important feature that we plan to add to

our energy saving mechanism is a fail protection scheme. Network elements might not be

working temporarily due to some fails such as energy outages. The eSCIFI mechanism

would be extremely sensible if the cluster heads or the controller fails for some reason.

Therefore some protection schemes for that cases would be necessary to increase the

eSCIFI resilience.

The eSCIFI mechanism has not being tested and implemented in real network scenar-

ios. We plan to implement the eSCIFI mechanism on the UFF SCIFI controller and do
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some future experiments using the real network infrastructure. The real network would

give us some real insights about how the eSCIFI would cope with a real scenario and to

properly tune its parameters according to a real implementation. We also plan to use

more sophisticated metrics as the average throughput and delay to evaluate the network

performance and user’s coverage on those real network tests. We hope that those tests

and new features will allow us to fully understand the eSCIFI possibilities and overcome

its limitations.
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APPENDIX A -- UFF SCIFI AP Positions in
the H Building
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Figure A.1: H building ground floor blueprint showing the UFF SCIFI AP positions
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Figure A.2: H building second floor blueprint showing the UFF SCIFI AP positions
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Figure A.3: H building third floor blueprint showing the UFF SCIFI AP positions
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Figure A.4: H building fourth floor blueprint showing the UFF SCIFI AP positions
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Figure A.5: H building fifth floor blueprint showing the UFF SCIFI AP positions
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APPENDIX B -- Datasets Example

Table B.1: A part of the constructed ML dataset, showing the input attributes and the
occupancy detection history for the APs

APid Holiday Day of the Week T0 T1 ... T143

21 F Sunday 0 0 ... 0

164 F Sunday 0 0 ... 0

223 F Sunday 0 0 ... 0

.

.

.

... ... ... ... ... ...

269 T Wednesday 0 0 ... 1

276 T Wednesday 0 0 ... 0

277 T Wednesday 0 0 ... 1
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Table B.2: A part of the constructed SL dataset, showing the input attributes and the
occupancy count history for the APs

APid Holiday Day of the Week Month Day Hour Minute
Occupancy

Counter

21 F Sunday 4 8 0 0 0

164 F Sunday 4 8 6 10 2

223 F Sunday 4 8 15 20 23

.

.

.

... ... ... ... ... ... ...

269 F Wednesday 9 26 0 30 1

276 F Wednesday 9 26 7 40 7

277 F Wednesday 9 26 16 50 50

277 T Friday 9 7 13 0 2
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APPENDIX C -- UFF SCIFI Network
Topology

Figure C.1: H building UFF SCIFI network topology showing the neighbor APs
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APPENDIX D -- APs Statistics
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Table D.1: Access Point statistics from April to August 2018.

Apid Avg. Month Avg. Day Avg. Hour Avg. Timeslot Night Morning Noon Total Max

21 66151.40 2312.99 96.37 16.06 0.33 15.69 25.89 330757 272

164 28797.40 1199.89 50.00 8.33 0.08 7.42 13.88 143987 106

223 20144.60 839.36 34.97 5.83 0.12 5.15 9.69 100723 73

224 27962.00 1306.64 54.44 9.07 0.01 9.62 14.33 139810 87

269 30226.40 1280.78 53.37 8.89 0.01 9.99 13.74 151132 84

275 29384.00 1412.69 58.86 9.81 0.05 9.98 15.69 146920 83

276 39976.80 1417.62 59.07 9.84 0.12 8.33 16.61 199884 115

277 50013.80 1786.21 74.43 12.40 0.11 11.51 20.41 250069 109

288 25658.80 1105.98 46.08 7.68 0.01 7.94 12.23 128294 72

291 43522.00 1532.46 63.85 10.64 0.35 10.23 17.16 217610 98

292 26472.60 938.74 39.11 6.52 0.02 4.67 11.49 132363 79

293 27810.80 1000.39 41.68 6.95 0.04 5.72 11.83 139054 90

294 28812.20 1241.91 51.75 8.62 0.08 7.56 14.43 144061 77

297 24764.20 1049.33 43.72 7.29 0.24 6.93 11.79 123821 71

379 29640.40 1245.39 51.89 8.65 0.08 8.54 13.95 148202 77

380 26750.60 948.60 39.53 6.59 0.46 6.09 10.60 133753 82

382 34064.20 1207.95 50.33 8.39 0.11 7.92 13.70 170321 76

383 27055.20 1156.21 48.18 8.03 0.07 7.48 13.20 135276 86

384 34267.40 1215.16 50.63 8.44 0.54 6.73 14.19 171337 83

385 15401.80 641.74 26.74 4.46 0.03 3.84 7.50 77009 52

386 28956.20 1237.44 51.56 8.59 0.01 9.08 13.58 144781 81

416 37897.00 1353.46 56.39 9.40 0.08 8.18 15.76 189485 97

417 39262.40 1663.66 69.32 11.55 0.04 11.50 18.63 196312 107

418 30582.80 1124.37 46.85 7.81 0.05 7.18 12.89 152914 72

419 42073.60 1546.82 64.45 10.74 0.09 9.27 18.05 210368 128

519 44768.20 1805.17 75.22 12.54 0.13 11.59 20.64 223841 129

590 31248.40 1346.91 56.12 9.35 0.05 9.58 14.92 156242 88

606 24063.80 1037.23 43.22 7.20 0.01 8.08 11.14 120319 78
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APPENDIX E -- Overall APs Rank

Table E.1: Overall Rank of UFF SCIFI H building network

APid WA value APid WA value

21 0.4137 382 0.1970

519 0.3940 386 0.1945

277 0.3842 164 0.1896

419 0.3596 294 0.1896

417 0.3497 418 0.1600

291 0.3448 383 0.1527

276 0.3374 293 0.1280

416 0.3004 380 0.0935

590 0.2733 288 0.0911

275 0.2586 606 0.0812

269 0.2413 292 0.0763

384 0.2266 297 0.0763

224 0.2241 223 0.0369

379 0.2093 385 0.0147
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APPENDIX F -- Clusters Formed With cSFICI
and cSCFI+
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Table F.1: Cluster formation of UFF SCIFI H building network using cSCIFI algorithm

Special APs Set Size Special APs Set Number of Clusters Cluster Set Formed
Clusters Set Identical To

(Cluster Set of Size)

0 - 10

[21, 519], [164, 419], [223, 384, 380],[224, 606, 269],

[275, 417, 294], [277, 276, 418], [288, 590, 382],

[291, 379, 386], [293, 292, 416], [297, 383, 385]

N/A

3 21,519,277 11

[277, 276, 418], [21, 293], [519, 164], [224, 269, 606],

[275, 417, 294], [288, 590, 382], [291, 379, 386],

[223, 384, 380], [292, 416], [297, 383, 385], [419]

4

4 21,519,277,419 11

[277, 276, 418], [21, 293], [519, 164], [419],

[224, 269, 606], [275, 417, 294], [288, 590, 382],

[291, 379, 386], [223, 384, 380], [292, 416], [297, 383, 385]

3

5 21,519,277,419,417 11

[277, 276, 418], [417, 275, 294], [21, 293], [519, 164],

[419], [224, 269, 606], [288, 590, 382],

[291, 379, 386], [223, 384, 380], [292, 416], [297, 383, 385]

6

6
21,519,277,419,

417,291
11

[277, 276, 418], [417, 275, 294], [291, 379, 386], [21, 293],

[519, 164], [419], [224, 269, 606],

[288, 590, 382], [223, 384, 380], [292, 416], [297, 383, 385]

5

7
21,519,277,419,

417,291,276
12

[277, 418], [417, 275, 294], [291, 379, 386], [276],

[21, 293], [519, 164], [419], [224, 269, 606],

[288, 590, 382], [223, 384, 380], [292, 416], [297, 383, 385]

N/A

8
21,519,277,419,

417,291,276,416
12

[277, 418], [417, 275, 294], [291, 379, 386], [276],

[416, 292, 293], [21], [519, 164], [419],

[224, 606, 269], [288, 590, 382], [223, 384, 380], [297, 383, 385]

N/A

9
21,519,277,419,

417,291,276,416,590
12

[277, 418], [417, 275, 294], [291, 379, 386], [590, 288, 382],

[276], [416, 292, 293], [21], [519, 164],

[419], [224, 606, 269], [223, 384, 380], [297, 383, 385]

N/A
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Table F.2: Cluster formation of UFF SCIFI H building network using cSCIFI+ algorithm

Special APs Set Size Special APs Set Number of Clusters Cluster Set Formed
Clusters Set Identical To

(Cluster Set of Size)

0 - 10

[223, 380], [224, 606, 269, 379, 292], [288, 590, 382, 417, 297],

[291, 384, 386] ,[293, 21, 416], [294, 276, 275], [383, 385],

[418, 164, 277],[419], [519]

N/A

3 21,519,277 9

[277, 418, 417, 276, 419], [416], [519, 164], [224, 606, 379, 269, 292],

[275, 590, 294], [288, 297, 382], [291, 384, 386], [223, 380],

[383, 385]

N/A

4 21,519,277,419 10

[277, 418, 417, 276], [416], [519, 164], [419],

[224, 606, 379, 269, 292], [275, 590, 294], [288, 297, 382], [291, 384, 386],

[223, 380], [383, 385]

N/A

5 21,519,277,419,417 10

[277, 418, 276], [417, 288, 275, 294], [416], [519, 164],

[419], [224, 606, 379, 269, 292], [291, 384, 386], [382, 385, 590],

[223, 380], [297, 383]

N/A

6
21,519,277,419,

417,291
10

[277, 418, 276], [417, 288, 275, 294], [291, 379, 386, 606, 384], [416],

[519, 164], [419], [224, 292, 269], [382, 385, 590],

[223, 380], [297, 383]

N/A

7
21,519,277,419,

417,291,276
11

[277, 418], [417, 288, 275, 294], [291, 379, 386, 606, 384], [276],

[416], [519, 164], [419], [224, 292, 269],

[382, 385, 590], [223, 380], [297, 383]

N/A

8
21,519,277,419,

417,291,276,416
12

[277, 418], [417, 288, 275, 294], [291, 379, 386, 384, 606], [276],

[416, 292, 293], [21], [519, 164], [419],

[224, 269], [382, 385, 590], [223, 380], [297, 383]

N/A

9
21,519,277,419,

417,291,276,416,590
12

[277, 418], [417, 294, 288, 275], [291, 379, 386, 384, 606], [590, 383, 382],

[276], [416, 292, 293], [21], [519, 164],

[419], [224, 269], [223, 380], [297, 385]

N/A
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