
UNIVERSIDADE FEDERAL FLUMINENSE

JOÃO FELIPE NICOLACI PIMENTEL

PROVENANCE FROM SCRIPTS

NITERÓI

2021

UNIVERSIDADE FEDERAL FLUMINENSE

JOÃO FELIPE NICOLACI PIMENTEL

PROVENANCE FROM SCRIPTS

Thesis presented to the Computing Graduate
Program of the Universidade Federal Flumi-
nense in fulfillment of the requirements for the
Ph.D degree. Topic Area: Computer Science.

Advisor:

VANESSA BRAGANHOLO MURTA

Co-advisor:

LEONARDO GRESTA PAULINO MURTA

NITERÓI

2021

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

P644p Pimentel, João Felipe Nicolaci
 Provenance from Scripts / João Felipe Nicolaci Pimentel ;
Vanessa Braganholo, orientadora ; Leonardo Gresta Paulino
Murta, coorientador. Niterói, 2021.
 223 f. : il.

 Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2021.

DOI: http://dx.doi.org/10.22409/PGC.2021.d.14709593728

 1. Proveniência. 2. Scripts. 3. Notebook interativo. 4.
Reprodutibilidade de teste. 5. Produção intelectual. I.
Braganholo, Vanessa, orientadora. II. Murta, Leonardo Gresta
Paulino, coorientador. III. Universidade Federal Fluminense.
Instituto de Computação. IV. Título.

 CDD -

JOÃO FELIPE NICOLACI PIMENTEL

PROVENANCE FROM SCRIPTS

Thesis presented to the Computing Graduate

Program of the Universidade Federal Flumi-

nense in fulfillment of the requirements for the

Ph.D degree. Topic Area: Computer Science.

Approved in April 2021.

APPROVED BY

Prof. D.Sc. Vanessa Braganholo Murta - Advisor / UFF

Prof. D.Sc. Leonardo Gresta Paulino Murta - Co-Advisor / UFF

Prof. D.Sc. Daniel Cardoso Moraes de Oliveira / UFF

Prof. D.Sc. Célio Vinicius Neves de Albuquerque / UFF

Prof. Ph.D. Juliana Freire de Lima e Silva / NYU

Prof. Ph.D. Paolo Missier / Newcastle University

Prof. D.Sc. Marta Lima de Queirós Mattoso / COPPE/UFRJ

Niterói

2021

Acknowledgements

I want to thank my parents Angela Maria and Rui Alberto, for all the love, care, and support

throughout my life. This work would not be possible without them.

My brothers Marcelo and Carlos Augusto, and my nephew Lucas for their friendship and

distractions in stressful moments.

My advisors Leonardo Murta and Vanessa Braganholo, for the opportunity, guidance, and

great advice. To Juliana Freire for her great contribution to this work since the beginning and

for receiving me at NYU during my Ph.D. sandwich.

The collaborator Paolo Missier for his contributions in the Versioned-PROV extension. The

collaborators Saumen Dey, Timothy McPhillips, Khalid Belhajjame, David Koop, and Bertram

Ludäscher, for their contributions in combining noWorkflow and YesWorkflow. I would like to

thank Vynicius Pontes for his contributions in using Git as a content database.

The collaborators in topics not related to the thesis for the opportunity of working with them

and all the learning from these experiences: Vitor Lemos, Catarina Costa, Jose Jair Figueiredo,

Anita Sarma, Henrique Linhares, Troy Kohwalter, Erica Mourão, Marcos Kalinowski, Emilia

Mendes, Claes Wohlin, José William Menezes, Bruno Trindade, Tayane Moura, and Alexandre

Plastino.

The YARG meetings, for all the valuable discussions, socialization, English practicing, and

welcome environment. UFF, for the excellent academic support for learning and research in the

last 11 years.

CNPq, for the Ph.D. scholarships (GM/GD 134435/2014-1 and GM/GD 160325/2015-3).

Capes, for the sandwich scholarship (PDSE 88881.131563/2016-01).

Resumo

Muitos cientistas usam scripts para projetar os experimentos visto que linguagens de script in-
corporam estruturas de dados sofisticadas, sintaxe simples e facilidade de obter resultados, sem
a necessidade de investir tempo projetando sistemas. Cientistas podem escrever scripts em di-
versas ferramentas, como editores de texto, IDEs ou notebooks interativos. Editores de texto
são leves e podem ser usados em qualquer máquina, mas não possuem muitos recursos para
auxiliar o desenvolvimento. IDEs possuem recursos para melhorar a qualidade do desenvolvi-
mento, mas possuem poucos recursos que auxiliam a análise e o desenvolvimento exploratório
de experimentos. Notebooks permitem combinar códigos de scripts, textos, resultados de ex-
ecuções e visualizações ricas, auxiliando no desenvolvimento exploratório e análise interativa
de resultados. Entretanto, notebooks perdem em qualidade por conta de estados escondidos e
células desordenadas, dificultando o entendimento e reprodutibilidade. Além desses problemas
específicos de ferramentas, scripts falham em garantir a reprodutibilidade de experimentos e
apresentam dificuldades no entendimento e gerenciamento de dados. Por exemplo, assuma que
um cientista realize diversos ensaios (i.e., execuções de scripts de experimentos) com difer-
entes dados de entrada e obtenha uma grande quantidade de dados como resultado. Após a
execução dos ensaios, ele precisará entender cada ensaio, relacionar resultados a dados de en-
trada e garantir a reprodutibilidade do experimento. Essas tarefas podem ser realizadas com a
ajuda da proveniência dos scripts. Proveniência refere-se ao histórico de um objeto e todos os
processos pelos quais ele passou em seu ciclo de vida. Contudo, a captura, gerência e análise de
proveniência de scripts impõem diversos desafios. Primeiramente, é necessário decidir quais in-
formações de proveniência são relevantes para compreensão e reprodutibilidade. Além disso, é
necessário armazenar e compartilhar a proveniência coletada para permitir reproduções. Ainda,
como vários ensaios são feitos no ciclo de vida de experimentos, é desejável obter o histórico
de ensaios com diversas versões de proveniência. Finalmente, proveniência refere-se a diversos
tipos de dados, que suportam diversas formas de análise com visualizações e consultas. Em
notebooks, a proveniência também pode auxiliar a manter a ordem da execução e garantir o en-
tendimento e qualidade de experimentos. Este trabalho tem quatro contribuições principais: um
estudo do estado-da-prática do uso de scripts em experimentos, um estudo do estado-da-arte do
uso de proveniência em scripts com uma proposta de taxonomia, concepção e implementação
de ferramentas para capturar proveniência de scripts com o objetivo de auxiliar a reprodutibil-
idade e entendimento de experimentos, e ferramentas para capturar proveniência de notebooks
interativos com o objetivo de auxiliar a reprodutibilidade e qualidade.

Palavras-chave: proveniência, scripts, notebooks, reprodutibilidade, qualidade, entendimento.

Abstract

Many scientists use scripts for designing experiments, since script languages incorporate so-
phisticated data structures, simple syntax, and easiness to obtain results without spending much
time on designing systems. Scientists write scripts in many tools, such as text editors, IDEs, or
interactive notebooks. Text editors are lightweight and can be used in any machine, but they do
not have many features to assist the development. IDEs have features to improve the quality of
the scripts, but lack features to assist in experiment analyses and exploratory research. Note-
books combine script code, text, execution results and rich media, assisting in exploratory re-
search and interactive analyses of results. However, notebooks lack in the quality of scripts due
to hidden-states and unordered cells, hindering the understanding and reproducibility. Besides
the issues associated with tools, scripts also fail to guarantee the reproducibility of experiments,
and they present challenges for data management and understanding. For instance, assume that
a scientist performs many trials (i.e., executions of experiment’s scripts) with different input
data and obtains a big amount of data as results. After executing these trials, she will need to
understand each trial, relate results to input data, and guarantee the experiment reproducibility.
Such tasks can be performed with the help of provenance, which refers to the history of an
object and all processes it has been through in its life cycle. Nonetheless, collecting, managing,
and analyzing provenance from scripts imposes diverse challenges. First, it requires deciding
which script provenance information is relevant for comprehension and reproducibility. Sec-
ond, after collecting provenance, it is necessary to store and share it to support reproducibility.
Additionally, since many trials occur during the life cycle of experiments, it is desirable to cap-
ture the trial history as well, with multiple versions of provenance. Finally, provenance refers
to a broad set of data types, which allows multiple forms of analysis, with visualizations and
queries. In notebooks, provenance can also help in maintaining the execution order and assist
with the understanding and quality of experiments. This thesis has four main contributions: a
study of the state-of-the-practice usage of scripts in experiments, a study of the state-of-the-art
usage of provenance in scripts with a taxonomy proposal, conception and implementation of
tools to collect provenance from scripts aiming to assist their reproducibility and understand-
ing, and tools to collect provenance from interactive notebooks aiming to assist their quality
and reproducibility.

Keywords: provenance, scripts, notebooks, reproducibility, understanding, quality.

List of Figures

1.1 Life cycle of scientific experiments [adapted from Mattoso et al. (2010)]. 1

1.2 Experiment provenance example. Ellipses represent entities. Rectangles repre-

sent activities. Meaning of labels: use – used; gen – wasGeneratedBy; der –

wasDerivedFrom. 3

1.3 A mix of activities, data, and functions as first class objects. 6

2.1 Number of participants that answered each question. 13

2.2 (a) P1 - Education level (100 participants); (b) P2 - Number of experiments

performed in computational environments (100 participants). 14

2.3 P3 - Scientific domains (100 participants). Answers starting with “O|” were not

predefined in the questionnaire. 14

2.4 P4 - Expertise in years (99 participants). 15

2.5 P5 - Role of participants when they performed computational experiments (98

participants). Answers starting with “O|” were not predefined in the questionnaire. 15

2.6 P6 - Country of residence (89 participants). 15

2.7 RQ.Q1 – (a) preferred/more often used tools (95 participants) grouped by cate-

gories, (b) word cloud, and (c) Venn Diagram. 17

2.8 RQ.Q2 - favorite tool (92 participants). Answers starting with “O|” were not

predefined in the questionnaire. 18

2.9 RQ.Q3 - reasons for tool preference (68 participants). 18

2.10 Distribution of Python constructs in scripts. This figure groups constructs into

categories. The constructs of a category appear on the right of the category bar.

A category corresponds to the union of its constructs. 24

List of Figures vi

2.11 Regions of scripts. Numbers in region descriptions refer to the number of scripts

that have the feature in the specified region unless stated otherwise. Note that a

script may have multiple features in the same region. 26

2.12 Modules – (a) Top 20 used modules, (b) All modules grouped by domains, and

(c) All modules grouped by definition type. 29

2.13 Frequent module domains used together. 31

2.14 Strategies for processing data: (a) during input, (b) during output, (c) in the

middle, (d) interweaving both input and output. 33

3.1 An example of an executed notebook with Markdown, code, and output. 39

3.2 Original notebook and two executions that follow different orders. 43

3.3 Three types of Hidden States: (a) Re-execution; (b) edited cell; (c) removed

cell. 43

3.4 Top 15 most declared programming languages. Notebooks axis in logarithmic

scale. 50

3.5 Distribution of code cells and maximum execution counter for overall group (a)

and popular group (b). 51

3.6 Notebook corpus and its partitions used in the analyses. 52

3.7 Snippet of pythoncode/improvedlm.ipynb from the GitHub repository poorbaby

/Predict-New-York-Taxi-Demand. 55

3.8 Distribution of code cells in executed notebooks (a) and popular notebooks (b). 56

3.9 Distribution of skips in notebooks with unambiguous execution order (a) and

popular notebooks (b). 57

3.10 Snippet of pparker-roach/project_7-SANDBOX.ipynb from the GitHub reposi-

tory mohsseha/DSI-BOS-students. 58

3.11 Failure reasons for the executions in each execution mode. The blue bars rep-

resent the Top 10 exceptions. The “Timeout” orange bar represents executions

that we stopped when they took 5 minutes to run. The “Other” orange bar

groups all the other exceptions that are not part of the Top 10. 63

4.1 Snowballing provenance. 78

4.2 Selected papers in Snowballing. 78

List of Figures vii

4.3 Distribution of work by publishing location. 81

4.4 Main taxonomy of provenance from scripts. 81

4.5 Toy experiment that classifies a yearly precipitation data from Rio de Janeiro. . 82

4.6 Provenance classification systems. 84

4.7 Expanded Collection taxonomy node of Figure 4.4. 84

4.8 Observed and disclosed strategies. 88

4.9 Expanded Management taxonomy node of Figure 4.4. 90

4.10 Expanded Analysis taxonomy node of Figure 4.4. 95

5.1 Intentionally simple implementation of the happy numbers problem. 115

5.2 Transformed script with function definitions and function call. 116

5.3 noWorkflow 1 relational data model. Green represent additions. 122

5.4 noWorkflow 2 relational data model. Green represent additions and semantic

changes. Purple represents renames. It does not show removals. 124

5.5 Subset of Prolog facts from a trial. We reordered lines and added line breaks

when needed to fit the page. 127

5.6 Version model example. 130

5.7 Evolution history. Nodes represent trial versions 131

5.8 SQL query. 135

5.9 Prolog query. 135

5.10 Command that shows the activations of Trial 1. 136

5.11 ORM query. 137

5.12 Python pattern matching query. 137

5.13 now vis web page. 138

5.14 Dataflow graph. 140

5.15 Snippet of brief diff command. 141

5.16 Comparison of activation graphs. 142

6.1 Provenance collection in notebook using noWorkflow extension. 152

List of Figures viii

6.2 Provenance analysis in a notebook. 154

6.3 Notebook cleaning using provenance. 158

6.4 Julynter in action (left pane). By analyzing the notebook on the right pane,

Julynter identified ten issues from four different categories. 159

6.5 Architecture of Julynter. Blue arrows represent input messages that occur be-

fore the cell execution. Red arrows represent output messages that occur after

the kernel executes the cell. 162

6.6 Participants experiment flow. 164

6.7 Participants’ experience. 164

6.8 Solved and unsolved lints. 166

6.9 Satisfaction with the lint groups. 168

6.10 Chosen words in the Microsoft Product Reaction Cards (BENEDEK; MINER,

2002). The colors vary according to the experiment phase in a gradient. Mixed

colors indicate that participants of both phases chose the word and the mixing

intensity indicates the proportion. 169

A.1 Floyd-Warshall implementation (A) and encoded input graph (B). 205

A.2 Plain PROV mapping of disti[j] = ikj. 208

A.3 PROV-Dictionary mapping of disti[j] = ikj. 209

A.4 Versioned-PROV mapping of disti[j] = ikj. 210

A.5 Number of PROV, PROV-Dictionary, and Versioned-PROV PROV-N statements

for list definitions, reference derivations, and part assignments (A) and total

number of statements (B). 213

A.6 Overhead functions of part assignments. 214

A.7 Overhead functions for list definitions (A) and derivations by reference (B). . . 214

B.1 Activations that produce a failing value frequently. 217

A.1 Size of content database directories of all script executions for each content

database type [adapted from Pontes (2018)]. 220

A.2 Duration of all script executions for each content database type version [adapted

from Pontes (2018)]. 222

List of Tables

2.1 Association Rules for Module Usage. Domains abbreviated as follows: I/O –

Input/Output; DS – Data Structure; Pattern – Pattern Recognition; Vis – Visual-

ization. 30

2.2 Ways of defining paths for input and output files. The Input and Output columns

indicate the number of scripts that apply these ways for input and output files,

respectively. 32

3.1 Execution modes for the reproducibility experiments. 44

3.2 Normalization Operations for Comparing Execution Results. 46

3.3 Results of research questions related to prospective data. 53

3.4 Output formats in cells and notebooks. Note that a cell can have multiple output

formats, thus, the percentages add up to more than 100%. 54

3.5 Association rules related to timeout . 62

3.6 Association rules related to skips and NameError 64

3.7 Reproducibility results for all notebooks. 66

3.8 Reproducibility results for the popular group. 67

3.9 Association rules related to executions that generate the same results after the

execution counter normalization. 68

4.1 Selected approaches with provenance support: main and secondary goals. La-

bels in secondary goals column refer to goals: Cache – Caching; Compr –

Comprehension; Frame—Framework; Manag – Management; Repro – Repro-

ducibility. 79

4.2 Selected approaches in the update with provenance support: main and sec-

ondary goals. Labels in secondary goals column refer to goals: Cache – Caching;

Compr – Comprehension; Frame—Framework; Manag – Management; Repro

– Reproducibility. 103

List of Tables x

5.1 Provenance collection strategies. Labels in Annotations columns refer to cate-

gories described in Chapter 4 Exte —External; Inte —Internal; Pars —Parseable;

Exec —Executable; Incl —Inclusive; Excl —Exclusive; Defi —Definition; Prov

—Provenance; Man —Mandatory; Opt —Optional. 118

5.2 Provenance management classification. 133

5.3 Provenance analysis classification, based on Query, Visualization, and Diff. . . 143

6.1 Issues detected by Julynter. The first character of the Code indicates the cat-

egory: C – Confuse Notebook; H – Hidden State; I – Import; P – Path; T –

Invalid Title . 161

6.2 Julynter usage statistics. 165

A.1 Versioned-PROV types. 206

A.2 Versioned-PROV attributes. 207

A.1 Average sizes of the content database after 4 executions for each content database

type and reduction percentage between the Git content database and the baseline

[adapted from Pontes (2018)]. 220

A.2 Size in Megabytes of content database directory for each noWorkflow trial using

the synthetic script and the execution of now gc at the end [adapted from

Pontes (2018)]. 221

A.3 Average execution duration after 4 executions for each content database and

average differences between Git content database and baseline [adapted from

Pontes (2018)]. 222

List of Acronyms and Abbreviations

adapr : Accountable Data Analysis Process in R;

API : Application Programming Interface;

AST : Abstract Syntax Tree;

DAG : Directed Acyclic Graph;

DB-BRAS : Mailing list of Database Researchers in Brazil;

CoRR : Cloud of Reproducible Records;

CPL : Core Provenance Library;

DDG : Data Derivation Graph;

ESSW : Earth System Science Workbench;

HTML : HyperText Markup Language;

IDE : Integrated Development Environment;

IDL : Interactive Data Language;

INRIA : Institut National de Recherche en Informatique et en Automatique;

JSON : JavaScript Object Notation;

LCS : Longest Common Subsequence;

LNCC : Laboratório Nacional de Computação Científica;

MATLAB : Matrix Laboratory;

NIST : National Institute of Standards and Technology;

NYU : New York University;

OPM : Open Provenance Model;

ORM : Object Realtional Mapper;

OS : Operating System;

PDF : Portable Document Format;

PEP : Python Enhancement Proposal;

PNG : Portable Network Graphics;

POSIX : Portable Operating System Interface;

REST : Representational State Transfer;

RQ : Research Question;

SMLD : Secure Machine Learning Debugger;

List of Acronyms and Abbreviations xii

SQL : Structured Query Language;

SVG : Scalable Vector Graphics;

SWfMS : Scientific Workflow Management System;

Tcl : Tool command language;

UFF : Universidade Federal Fluminense;

UFRJ : Universidade Federal do Rio de Janeiro;

UPenn : University of Pennsylvania;

USP : Universidade de São Paulo;

UTF : Unicode Transformation Format;

VCS : Version Control System;

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 4

1.3 Problem . 5

1.4 Hypothesis and Goals . 8

1.5 Organization . 9

2 State-of-the-Practice: Scripts 11

2.1 Introduction . 11

2.2 Questionnaire . 11

2.2.1 Materials and Methods . 12

2.2.1.1 Distribution . 12

2.2.1.2 Population . 13

2.2.2 Results . 16

2.2.2.1 RQ.Q1. What are the scientists’ preferred/more often used

tools to run experiments? 16

2.2.2.2 RQ.Q2. Which tool is their favorite? 16

2.2.2.3 RQ.Q3. What are the reasons for your preference? 17

2.2.3 Threats to Validity . 19

2.3 Script Analysis . 20

2.3.1 Materials and Methods . 21

2.3.1.1 Analyses . 21

Contents xiv

2.3.1.2 Data Collection . 23

2.3.2 Results . 24

2.3.2.1 RQ.S1. How do scientists structure scripts? 24

2.3.2.2 RQ.S2. How do scientists use modules and external tools? . . 27

2.3.2.3 RQ.S3. How do scientists process data in scripts? 31

2.3.3 Threats to Validity . 34

2.4 Discussion . 35

3 State-of-the-Practice: Notebooks 36

3.1 Introduction . 36

3.2 Background . 38

3.3 Materials and Methods . 40

3.3.1 Research Questions and Analyses . 40

3.3.2 Data Acquisition and Preprocessing 47

3.3.3 Popular Notebooks Selection . 48

3.3.4 Sampling . 48

3.3.5 Corpus . 49

3.4 Results . 52

3.4.1 RQ.N5. Do users store notebooks with retrospective data? 52

3.4.2 RQ.N6. How are notebooks executed? 56

3.4.3 RQ.N7. How reproducible are notebooks? 59

3.5 Threats to Validity . 69

3.6 Discussion . 72

4 State-of-the-Art on Provenance from Scripts 73

4.1 Introduction . 73

4.2 Related Work . 74

Contents xv

4.3 Taxonomy . 80

4.3.1 Provenance Collection . 82

4.3.1.1 Annotations . 84

4.3.1.2 Definition Provenance . 85

4.3.1.3 Deployment Provenance . 86

4.3.1.4 Execution Provenance . 87

4.3.2 Provenance Management . 90

4.3.2.1 Storage . 90

4.3.2.2 Sharing . 92

4.3.2.3 Reproducibility . 93

4.3.2.4 Versioning . 94

4.3.3 Provenance Analysis . 95

4.3.3.1 Query . 95

4.3.3.2 Visualization . 96

4.3.3.3 Comparison . 98

4.3.4 Applicability to Other Provenance Systems 98

4.4 Threats to Validity . 100

4.5 Update . 101

4.6 Discussion . 105

5 Provenance in Scripts 108

5.1 Introduction . 108

5.2 Provenance Collection . 110

5.2.1 Definition Provenance . 110

5.2.2 Deployment Provenance . 112

5.2.3 Execution Provenance . 113

5.2.4 Summary . 118

Contents xvi

5.3 Provenance Management . 121

5.3.1 Storage . 122

5.3.2 Sharing . 126

5.3.3 Reproducibility . 127

5.3.4 Versioning . 128

5.3.5 Summary . 132

5.4 Provenance Analysis . 134

5.4.1 Query . 134

5.4.2 Visualization . 138

5.4.3 Comparison . 140

5.4.4 Summary . 142

5.5 Limitations . 144

5.6 Discussion . 147

6 Provenance in Notebooks 148

6.1 Introduction . 148

6.2 Best Practices . 149

6.3 noWorkflow for Notebooks . 150

6.3.1 Extension . 150

6.3.1.1 Collection . 151

6.3.1.2 Analysis . 152

6.3.2 Kernel . 155

6.3.2.1 Collection . 155

6.3.2.2 Cleaning . 156

6.4 Julynter . 158

6.4.1 Approach . 159

6.4.2 Experiment Design . 162

Contents xvii

6.4.3 Data Collection . 163

6.4.4 Results and Discussion . 165

6.4.5 Threats to Validity . 171

6.5 Discussion . 172

7 Conclusion 173

7.1 Contributions . 173

7.2 Future Work . 175

7.3 Publications and Awards . 177

References 179

Appendix A -- Versioned-PROV 203

A.1 Introduction . 203

A.2 Running Example . 205

A.3 Versioned-PROV . 206

A.3.1 Concepts . 206

A.3.2 Mapping Example . 207

A.4 Evaluation . 211

A.5 Final Remarks . 214

Appendix B -- Version Model Evaluation 216

Annex A -- Git Integration Evaluation 218

A.1 Introduction . 218

A.1.1 Materials and Methods . 218

A.1.1.1 Research Questions . 218

A.1.1.2 Corpus . 219

A.1.2 Results . 220

Contents xviii

A.1.2.1 RQ.G1. Is there any reduction in the size of the content

database? . 220

A.1.2.2 RQ.G2. Is there any performance overhead with the integra-

tion? . 222

A.2 Conclusion . 223

Chapter 1

Introduction

1.1 Context

In the past decades, scientists started to run experiments in silico for reducing their costs, in-

creasing their productivity, and understanding the functioning of complex systems (HOBAN;

BERTORELLE; GAGGIOTTI, 2012; TRAVASSOS; BARROS, 2003). Many experiments use

many existing computational tools to process data and obtain results. Thus, scientists need to

orchestrate these tools according to their necessities (HOBAN; BERTORELLE; GAGGIOTTI,

2012).

Mattoso et al. (2010) define the life cycle of scientific experiments as a loop composed

of three main phases: composition, execution, and analysis (Figure 1.1). Each phase has a

sub-cycle of activities. During the life cycle of experiments, scientists navigate multiple times

through the sub-cycles and through the main cycle.

Composition

ExecutionAnalysis

Distribution

Monitoring

Conception Reuse

Querying

Visualizing

Discovering

Experiment

Figure 1.1: Life cycle of scientific experiments [adapted from Mattoso et al. (2010)].

1.1 Context 2

During the composition phase, scientists formulate hypotheses and compose execution

plans that enact the programs and data involved in the experiment. During the execution phase,

they run the execution plans over input data, which represent a specific context or population for

the experiment. Each execution of a computational experiment is called a trial. Finally, during

the analysis phase, scientists query and visualize the results, seeking to elaborate conclusions

to confirm or refute the hypotheses of the experiment. Depending on the analysis result, the

scientists repeat the cycle using different input data and parameters, or refining the execution

plan with the obtained knowledge.

For composing execution plans, scientists can use system programming languages (e.g.,

C, C++, Fortran, or Java), scripts (e.g., JavaScript, Perl, Python, or R), or Scientific Workflow

Management Systems (SWfMS – e.g., Kepler, SciCumulus, Taverna, or VisTrails). Each one

of these platforms presents advantages and disadvantages, as discussed in the following.

Ousterhout (1998) envisioned the importance of scripting languages for the 21st century. He

indicated that the usage of scripts for gluing components could result in applications developed

5 to 10 times faster than using system programming languages. However, system programming

languages would not cease to exist, because components written in these languages could run

10 to 20 times faster than with scripts.

Loui (2008) vindicated Ousterhout’s vision by discussing the growth of script usage and

identifying the power of scripts. Due to the lack of type declaration and structural require-

ments of system programming languages, scripts usually result in short and more expressive

source code. Short source code allows programmers to turn ideas into code quickly, support-

ing rapid development and rapid prototyping. Additionally, scripts provide a kind of high-level

programming that shields programmers against concerns related to performance and memory

management. Finally, the flexibility of scripts is well suited for working with heterogeneous

data and performing data transformations.

The power of scripts in gluing components and dealing with heterogeneous data motivated

their use by the scientific community. Dubois (1999) advocates using scripting languages such

as IDL, Matlab, Perl, Python, and Tcl for scientific programming instead of compiled pro-

grams. According to Dubois (1999), these scripting languages incorporate sophisticated data

structures and give immediate feedback on algorithms. Similarly, Langtangen (2006) identifies

the growth of script usage in scientific experiments because of their simple syntax, easiness to

visualize results, and easiness to combine different tools. Jackson (2002) states the importance

of Python for applications in science and engineering, due its support for high-level object-

oriented programming with automatic memory management, dynamic typing and binding in an

1.1 Context 3

easy-to-learn syntax, its wide variety of built-in data structures and algorithms, and its easiness

to integrate to native C/C++/Fortran code, among other reasons.

While many people have been using and advocating the usage of scripts for scientific experi-

ments, scientific workflow management systems (SWfMS) were proposed with a similar goal of

gluing components and supporting scientists (ALTINTAS; BARNEY; JAEGER-FRANK, 2006;

BOWERS; MCPHILLIPS, T. M.; LUDÄSCHER, 2008; CALLAHAN et al., 2006; KIM et al.,

2008; OLIVEIRA et al., 2010; SIMMHAN; PLALE; GANNON, 2008; WOLSTENCROFT

et al., 2013; ZHAO et al., 2007). Scientific workflows are essentially directed acyclic graphs

(DAG) representing a computation (CHENEY; AHMED; ACAR, 2011).They often implement

execution engines that schedule and distribute parallel execution to environments like clusters,

clouds, and HPC. Some SWfMS have huge communities and impact: Galaxy has a huge com-

munity of bioinformatics users; Pegasus has important results with complex workflows, such as

the awarded Ligo experiment (RAMAKRISHNAN et al., 2007).

Some SWfMS, such as Swift/T (ZHAO et al., 2007), dispel4py (FILGUIERA et al., 2017),

and Snakemake (KÖSTER; RAHMANN, 2012), propose scripting languages for defining the

workflow but restrict the language to a syntax that supports the creation of a DAG. Different

from general-purpose scripts, many SWfMS not only support gluing components together but

also collect their provenance.

According to Moreau et al. (2008b), provenance refers to the documented history of pro-

cesses in the life cycle of a computational object. Figure 1.2 presents a simple experiment

provenance. This experiment was composed of two activities (i.e., processes): simulation

and plot. The simulation activity used the entities data1.dat and data2.dat for

generating the entity result. Hence, the provenance suggests that result was derived from

both data1.dat and data2.dat. Similarly, plot used result and generates fig-

ure.svg. It is possible to navigate the provenance graph to find the documented activities and

entities that contributed to the generation of figure.svg.

data1.dat

data2.dat

result
der

dersimulation gen figure.svg
der

plot
gen

use

use use

Figure 1.2: Experiment provenance example. Ellipses represent entities. Rectangles represent
activities. Meaning of labels: use – used; gen – wasGeneratedBy; der – wasDerivedFrom.

1.2 Motivation 4

1.2 Motivation

Provenance plays an important role in scientific experiments. Many analysis results motivate

repetitions in the life cycle of experiments. For instance, when a trial is inconclusive, scientists

may repeat the cycle to adapt hypotheses and tasks. When scientists confirm a hypothesis for a

restricted population, they may repeat the cycle for a broader one. Similarly, when they refute

a hypothesis for a broad population, the may verify it for a restricted one.

Moreover, some scientists design experiments thinking in the cycles and take advantage of

them, by using cycles to alternate the input data and some experimental activities. For instance,

this occurs in simulations with parameter sweeping (WALKER; GUIANG, 2007; DIAS, J. et

al., 2011). In these simulations, each iteration deals with a combination of parameters. In all the

situations that motivate the repetition of the cycle, the knowledge is cumulative, and scientists

can use data from previous trials in further analyses.

When scientists compare data from different trials, some questions urge: (i) “Which parts of

the input data influence a given result in a trial?” and (ii) “How was the execution flow of each

trial?”. Provenance can help to answer these questions. In the context of scientific experiments,

the provenance considers not only input and output data, but also environment characteristics,

processes applied to input data for transforming it into output data, intermediate data of these

processes, and other contextual metadata (e.g., duration, usage of computational resources) of

each process and of the experiment itself.

Besides helping scientists to know which of the many trial-and-error paths produced a

particular result, where the result came from, and which process lead to the result (SILVA;

TOHLINE, 2008), provenance has many other applications. It enables sharing experiment re-

sults with computation and input data (KOSLOW, 2002), allowing others to replicate them

(MILES et al., 2007). Scientists can use provenance to check integrity and authenticity of ex-

periments (LYNCH, 2000), check data quality, audit, and understand experiments (SIMMHAN;

PLALE; GANNON, 2005b). Besides the usage in scientific experiments, provenance also sup-

ports detecting system dependencies (CHIRIGATI et al., 2016), detecting intrusion (MARTIN;

LYLE; NAMILUKO, 2012), debugging (LINHARES et al., 2019), detecting system changes

(MUNISWAMY-REDDY et al., 2006), and can be used in education (DAVIDSON; FREIRE,

2008).

Despite the ability to define experiments and the support for provenance in SWfMS, many

scientists still prefer to use scripts and notebooks in their experiments when they do not have to

parallelize executions or use existing SWfMS components. Some even say that most scientists

1.3 Problem 5

still use scripts instead of SWfMS due to their flexibility in customizations (DEY et al., 2015).

Additionally, some initiatives (e.g., Software Carpentry1) use scripts and interactive notebooks

to teach computing skills for researchers. However, when using scripts or interactive notebooks,

those scientists lose the ability to collect provenance and, consequently, all its benefits.

1.3 Problem

Collecting provenance without an SWfMS is challenging. While SWfMS provide well-defined

and separate concepts of activities and data, enforcing their structuring as a DAG in a controlled

environment, scripts can contain a chaotic combination of control flows, cycles, and functions

as first-class objects (STRACHEY, 2000), in an uncontrolled environment. These differences

create challenges for provenance collection in scripts (MURTA et al., 2014), as presented next.

First, the presence of control flow and cycles in scripts makes it hard to identify which

functions contributed to the generation of a given data product. This occurs because the only

identifications of a function are its name and its definition, but scripts can call a single function

multiple times with different parameters during the program execution. On the other hand, the

DAG structure of workflow makes it easier to identify activities uniquely.

Second, the lack of well-defined concepts for activities and data in scripts makes it hard

to determine what should be captured and at what level of granularity. If we collect coarse-

grained provenance, such as the script or process as an activity, and its arguments as data,

users may lose important details of the script (TARIQ; ALI; GEHANI, 2012). In contrast,

if we collect very fine-grained provenance, such as expressions as activities, and variables as

data, users may get overwhelmed with a large volume of data to analyze. Even when using an

intermediate granularity of provenance, such as function calls as activities and parameters as

data, users may have difficulties to identify what is an activity and what is data. For instance,

in Figure 1.3 we call polish_eval passing a deque of operations and numbers in polish

notation. When the value at the beginning of the deque is a number, the function polish_-

eval just returns it, as a data, but when the value is an operation, the function evaluates it as if

it were an activity. Note that the effect of this code is composing an invocation tree as follows:

add(sub(2, 1), add(3, 4)), which evaluates to add(1, 7), and then to 8.

Another challenge in collecting provenance from scripts is determining who should do the

collection. Letting the users instrument their scripts to collect the provenance by themselves

imposes a lot of effort, which is not desirable nor appreciated (HUQ; APERS; WOMBACHER,

1http://software-carpentry.org/

1.3 Problem 6

1 from operator import add, sub
2 from collections import deque
3
4 def polish_eval(operation):
5 first = operation.popleft()
6 if isinstance(first, int):
7 return first
8 return first(polish_eval(operation), polish_eval(operation))
9
10 op = deque([add, sub, 2, 1, add, 3, 4])
11 print(op)
12 print(polish_eval(op))

Figure 1.3: A mix of activities, data, and functions as first class objects.

2013b). Additionally, it is error-prone since the instrumentation defined by the user may not

represent the script definition after the evolution of experiments in the exploratory analysis.

However, automatic collection imposes scalability challenges in scripts. Does the user want to

know what happens inside polish_eval in Figure 1.3? Does she just want to know that the

printed result (i.e., 8) is the result of polish_eval applied to op? Collecting provenance

with the full depth of function calls when the user just wants a shallow vision of the execution

may result in unnecessary overhead and impair the usage of the provenance (STAMATOGIAN-

NAKIS; GROTH; BOS, 2014).

Additionally, depending on the way an approach handles automatic collection, it may intro-

duce false positives and false negatives (TARIQ; ALI; GEHANI, 2012). For instance, if it uses

temporal information to collect provenance in Figure 1.3, it may say that the polish_eval

call in line 12 depends on the print call in line 11, which is a false positive since both calls are

independent. On the other hand, if it does not look at what happens inside the recursive calls

to polish_eval, it may not identify that the second polish_eval(operation) in line

8 depends on the first one due its popleft operations in line 5. This would represent a false

negative.

Moreover, scripts run outside of controlled environments. Different from SWfMS,

which bundles a set of tools to manage the workflow executions, one cannot make assump-

tions beyond the existence of the script interpreter. Thus, one cannot assume that there is a

version of the script in a version control system, or that a user is executing a script with the very

same dependencies and environment variables the developer used to implement it.

Scientists use different types of tools to write scripts, such as text editors, IDEs, and inter-

active notebooks. Each one of these tools present advantages and disadvantages. Text editors

are simple and generic tools that work with most programming languages. Usually, they are

lightweight and can run at most machines, from personal computers to remote servers. While

these editors are good enough for writing code, they lack features to improve the development

1.3 Problem 7

quality. IDEs build on top of text editors and fill this gap by introducing features to support

development tasks and ensuring quality for specific programming languages. However, despite

supporting the development of scripts by programmers, most IDEs lack features to support sci-

entists in experiment analyses and exploratory research. For this reason, many scientists use

interactive notebooks to assist in these tasks. In fact, the traffic to the Jupyter Notebook website

suggests that more than 500,000 people actively use it (SHEN et al., 2014).

Interactive notebooks are computational environments based on literate programming

(KNUTH, 1984) that allow users to write documents containing script code, text, plots, and

other rich media. Users can use interactive notebooks to run computations and visualize their

results interactively. Users can share interactive notebooks and convert them into other for-

mats, such as HTML or PDF. Two well-known interactive notebook environments are Jupyter

Notebook2 and knitr3. Kluyver et al. (2016) advocate the usage of notebooks4 for publishing

reproducible research due to their ability to combine reporting text with the executable research

code.

However, the format of interactive notebooks has been increasingly criticized for encour-

aging bad habits that lead to unexpected behavior and are not conducive to reproducibil-

ity (POMOGAJKO, 2015; GRUS, 2018; MUELLER, 2018; PIMENTEL et al., 2019b). Among

the main criticisms are hidden states, unexpected execution order with fragmented code, and bad

practices in naming, versioning, testing, and modularizing code. In addition, the notebook for-

mat does not encode library dependencies with pinned versions, making it difficult (and some-

times impossible) to reproduce the notebook. These criticisms reinforce prior work, which has

emphasized the negative impact of the lack of Software Engineering best practices in scien-

tific computing software (WILSON et al., 2014), regarding separation of concerns (HÜRSCH;

LOPES, 1995), tests (MYERS et al., 2004), and maintenance (HORWITZ; REPS, 1992). Fi-

nally, since interactive notebooks use scripts, they also face the challenges of collecting prove-

nance without an SWfMs. However, they have the additional challenge of unordered execution.

Cells in interactive notebooks can be executed at any other and each execution order may lead

to different results.

Due to the specific challenges of collecting provenance from scripts, analyzing and man-

aging the collected provenance also impose distinct challenges. First, analyzing graphs from

scripts require summarizing and querying techniques that consider different aspects of scripts,

such as cycles. Second, reproducing a script requires a storage and restore system that not only

2http://jupyter.org/
3http://yihui.name/knitr/
4We use the terms “interactive notebooks” and “notebooks” interchangeably throughout this work

1.4 Hypothesis and Goals 8

considers the script definition, but also the used libraries and input data. Finally, scripts evolve

over time. Managing and analyzing the evolution require techniques to deal with the storage

overhead and the comparison of complex graphs.

1.4 Hypothesis and Goals

Given the aforementioned motivation, the hypothesis of this work is that scripts and interactive

notebooks can also be supported by an infrastructure for collecting, managing, and analyz-

ing provenance from experiments. More specifically, we target scientific scripts whose main

purpose is gluing components but that also contain control flows, loops, other complex pro-

gramming features. Hence, this work has four main goals:

1. Understand how scientists use scripts and interactive notebooks (state-of-the-practice as-

sessment). For this goal, we ran a questionnaire with 120 scientists, identifying their

favorite tools for running experiments and their reasoning. We also analyzed 172 experi-

ments from a scientific repository to understand how they use scripts in practice. Finally,

we analyzed 1.4 million notebooks from GitHub, extracting characteristics that impact

their quality and reproducibility. We observed that scripts are widely used with almost no

evidence of provenance usage.

2. Identify approaches that have been proposed to support provenance from scripts (state-

of-the-art assessment). For this goal, we performed a systematic literature review through

snowballing, in which we visited 1,345 references, and we ended up with 53 papers re-

ferring to 27 different approaches. Based on the snowballing results, we proposed a

taxonomy for provenance from scripts. Among the existing related work, we noticed that

very few approaches collect fine-grained provenance that includes variable dependencies,

and none of them work with Python, which is a highly used language by scientists, and,

except for approaches that rely on Git, no approaches provide mechanisms for analyzing

the evolution of the collected provenance and comparing trials.

3. Conceive and implement a tool (noWorkflow5) that collects, manages, and analyzes prove-

nance from scripts for supporting understanding and reproducibility. Regarding the col-

lection, the approach requires no changes in the users’ scripts, and it does not change the

script’s outcome. Additionally, it collects provenance at fine-grain and supports specify-

ing the collection depth for avoiding the collection of data that is not interesting for the

5https://github.com/gems-uff/noworkflow

1.5 Organization 9

user, such as the intermediate results of simple add operations in a function that returns

the sum of all elements of a collection. Thus, it collects provenance from scripts in a

transparent and automatic way, with configurable granularities to meet the expectations

of different users.

For management, the approach provides mechanisms for working with multiple versions

of provenance that appear in the life cycle of experiments. For efficiency, it applies tech-

niques to reduce the storage overhead.

For analysis, the approach provides distinct querying and visualization mechanisms that

allow users to find the desired results.

4. Conceive and implement tools (noWorkflow extension and kernel, Julynter6) that col-

lect and analyze provenance from interactive notebooks for supporting quality and re-

producibility. For this goal, we adapt noWorkflow to collect and analyze provenance

on Jupyter Notebooks and to use the provenance for cleaning the notebooks. We also

propose a set of best practices for working on notebooks and propose a standalone tool

(Julynter) to assist in the application of these best practices. We evaluated Julynter in a

remote experiment with users to assess its recommendations, usability, and improved it

accordingly.

Thus, the main contributions of this thesis reside in providing an understanding of how

scientific scripts and notebooks are used; and proposing an infrastructure for collecting and

using provenance in scripts and notebooks.

1.5 Organization

Besides this introduction, this document is organized into six chapters.

Chapter 2 studies the state-of-the-practice on the usage of scripts for experiments. It at-

tempts to understand how scientists use scripts. Similarly, Chapter 3 studies the state-of-the-

practice on the usage of notebooks.

Chapter 4 presents the state-of-the-art of provenance from scripts. It categorizes provenance

into a taxonomy and presents the available techniques for collecting each type of provenance.

After presenting how to capture provenance, it presents techniques for storing and versioning

provenance and using provenance for reproducibility. Finally, the chapter concludes by describ-

ing provenance querying and visualization.
6https://github.com/dew-uff/julynter

1.5 Organization 10

Chapter 5 discusses provenance from scripts and proposes extensions for a tool that col-

lects provenance from scripts (noWorkflow), introducing many features aligned with our afore-

mentioned goals. For provenance collection, we propose performing fine-grained provenance

collection, in addition to the existent coarse-grained collection (MURTA et al., 2014). For

provenance management, we propose reducing the storage overhead, providing versioning and

using provenance for reproducibility. Finally, for provenance analysis, we propose visualizing

the fine-grained provenance, filtering it and querying it, visualizing the provenance evolution,

and comparing trials.

Chapter 6 discusses provenance from notebooks. It describes the integration of noWorkflow

to Jupyter Notebooks, proposes best practices for ensuring the quality and reproducibility of

notebooks, and conceives and implements a new tool (Julynter) to assist the application of these

best practices.

Finally, Chapter 7 concludes this document presenting the contributions, future work, and

publications.

Chapter 2

State-of-the-Practice: Scripts

2.1 Introduction

In Chapter 1, we introduced that scientists use scripts for designing experiments since script

languages incorporate sophisticated data structures, simple syntax, and easiness to obtain re-

sults without spending much time on designing systems (OUSTERHOUT, 1998; LOUI, 2008;

DUBOIS, 1999; LANGTANGEN, 2006). In this chapter, we attempt to understand why and

how some scientists use scripts in experiments by analyzing the state-of-the-practice.

This chapter is organized as follows: Section 2.2 runs a questionnaire with scientists for

understanding what their most preferred tool is and what are their reasons for the preference.

Section 2.3 analyzes real experiment scripts from the scientific repository DataOne to under-

stand how scientists use scripts. Finally, Section 2.4 discusses the results and presents the final

remarks.

2.2 Questionnaire

While many tools exist to support scientists, we have little insight on which scientists frequently

adopt and how do they use them. This information could help in the development of new tools

and processes, focusing on who would use them. Previous work has tried to shed some light on

this subject before. Hannay et al. (2009) ran a questionnaire with nearly 2,000 scientists to un-

derstand how do they develop and use scientific software. While they present relevant findings

regarding the importance of scientific software, the usage of software engineering practices, the

size of scientific software, and the lack of formal training, they do not analyze which tools sci-

entists use and why do they use these tools. Pinto, Wiese, and Dias (2018) recently replicated

2.2 Questionnaire 12

this questionnaire with more than 1,500 responses from a population of R developers. Most

results were consistent with the original study. In addition to R, the respondents also indicated

that they use C/C++, Python, or Shell Script to develop scientific software. Finally, Prabhu

et al. (2011) ran a questionnaire with 114 researchers and identified a high usage of MATLAB

and Fortran, with scientists combining both and other programming languages to achieve better

performance. They also identified that scientists run experiments that take days in desktops and

that they need tools to analyze and enhance the performance of experiments.

These previous work indicate that scientists use and combine different computational tools

to achieve their goals, but do not analyze why do they prefer these tools and which features do

they use. Thus, the goal of this section is to answer the following research questions:

• RQ.Q1 – What are the scientists’ preferred/more often used tools to run experiments?

• RQ.Q2 – Which tool is their favorite?

• RQ.Q3 – What are the reasons for the preference?

We ran a questionnaire to answer these questions. We obtained 120 answers in the ques-

tionnaire, and from these answers, we discovered that these scientists prefer to use scripting

languages due to their easiness to set up and run, flexible development, and previous experience

of the scientists. More specifically, the most used language is Python.

In the following subsections, we present the material and methods used for the analyses,

followed by their results. We also discuss threats to the validity of this work.

2.2.1 Materials and Methods

In this section, we discuss the methodology we used to design a questionnaire for understanding

which computational tools scientists use to run experiments and what is the reason for their

preference.

2.2.1.1 Distribution

For answering the research questions, we designed a questionnaire and made it available online

with a custom implementation that allowed us to obtain partial answers and use answers from

people who dropped out in the middle of the questionnaire (PIMENTEL, 2017).

In the questionnaire design, we aimed at reducing at maximum the dropouts by reducing the

participant effort. Thus, our questions presented prefilled choices and included an extra option

2.2 Questionnaire 13

to write other answers. Some of the questions allowed participants to select multiple answers,

while others were restricted to only one. Additionally, the participants could skip any question

that they did not feel comfortable answering.

We distributed the questionnaire to the following scientific companies and communities:

Fiocruz, LNCC, INRIA-Montpellier, SciPy, DataOne, Software Carpentry, e-Science Oxford,

and DB-BRAS. We also distributed to Universities: UFF, UFRJ, USP, NYU, UPenn, University

of Southampton, Newcastle University, and University of Amsterdam. Finally, we asked every-

one to share it with other colleagues. In total, 120 respondents answered at least one question of

the questionnaire from March 13, 2017, until December 13, 2017, but only 64 people answered

all questions. It occurred not only because some people dropped out of the questionnaire, but

also because some answers skipped other questions. Figure 2.1 presents the number of partic-

ipants that answered each question. Note that we divided the questionnaire into two parts: the

“P” part characterizes the participants, and the “R” part answers the research questions.

P1 P2 P3 P4 P5 P6 R1 R2 R3
Question

0

50

100

An
sw

er
s

Figure 2.1: Number of participants that answered each question.

2.2.1.2 Population

In the first part of the questionnaire, we had the goal of characterizing the participants and use

this information to characterize the scientists who perform computational experiments. With

this goal in mind, we elaborated the following questions:

• P1 — What is your education level?

• P2 — How many scientific experiments have you ever performed on computational envi-

ronments?

• P3 — What are your scientific domains?

• P4 — How much experience do you have in running scientific experiments on computa-

tional environments?

• P5 — In which roles have you performed computational experiments?

• P6 — What is your country of residence?

2.2 Questionnaire 14

Initially, we had 120 participants that answered at least one question. However, we removed

19 participants that indicated that they have never performed computational experiments. We

detected these participants by checking whether they answered zero or skipped P2 (How many

scientific experiments have you ever performed on computational environments?). We also

preemptively stopped the questionnaire for all people who answered zero in P2. In addition to

these removals, we removed one participant that asked for a clarification of what we meant by

“experiment” in the questionnaire. Hence, we consider only the answers of 100 participants.

Figure 2.2 presents the answers to P1 (What is your education level?) and P2 (How many

scientific experiments have you ever performed on computational environments?). Note in Fig-

ure 2.2a that most participants either have a Ph.D. degree or are pursuing one. Figure 2.2b

indicates that most participants have performed more than ten computational experiments.

0 10 20 30 40 50
Count

PhD degree
PhD degree in progress

Master s degree
Master s degree in progress

Undergraduate degree
Undergraduate degree in progress

An
sw

er

(a)

0 25 50
Count

More than 10
2 to 5

5 to 10
0
1

An
sw

er

(b)

Figure 2.2: (a) P1 - Education level (100 participants); (b) P2 - Number of experiments per-
formed in computational environments (100 participants).

Figure 2.3 presents the results of P3 (What are your scientific domains?). As expected,

most participants that perform computational experiments are in the computer and information

science domain. However, this figure indicates that this domain is not the only one that per-

forms computational experiments. It also shows that a significant number of biological sciences

researchers, engineers, and geoscientists run computational experiments.

0 10 20 30 40 50 60
Count

Computer and Information Science
Biological Sciences

Engineering
Geosciences

Mathematical Sciences
Education

O| Physical Sciences
O| Astronomy

Social, Behavioral and Economic Sciences
O| Materials science

O| Medicinal chemistry
O| Meteorology

O| Sport science

An
sw

er

Figure 2.3: P3 - Scientific domains (100 participants). Answers starting with “O|” were not
predefined in the questionnaire.

2.2 Questionnaire 15

Figure 2.4 presents the results of P4 (How much experience do you have in running scien-

tific experiments on computational environments?). Most participants have more than two years

of experience. It was not surprising, since most participants have a Ph.D. degree, according to

P1, and Ph.D. degrees usually take more than three years to pursue. In fact, by analyzing P5

(In which roles have you performed computational experiments?) in Figure 2.5, we can see that

many participants performed computational experiments during their Ph.D. and Master courses.

Figure 2.5 indicates that we received more answers from academic roles than company roles.

Like P3, P5 accepted multiple answers. Finally, Figure 2.6 presents P6 results (What is your

country of residence?). We received answers from 12 countries. The participants mainly reside

in Brazil or the United States of America.

0 5 10 15 20 25
Count

Between 2 and 5 years
Between 5 and 7 years

More than 12 years
Between 7 and 12 years

Between 1 and 2 years
Less than 1 year

An
sw

er

Figure 2.4: P4 - Expertise in years (99 participants).

0 10 20 30 40 50 60
Count

Ph.D. Student/Candidate
Master s Student

Postdoctoral Researcher
University Researcher

Industry Researcher
Undergraduate Student in a Undergraduate Research

Undergraduate Student in a Course
Principal Investigator

Other
O| Technical staff

O| Consultancy
O| Bioinformatics engineer

O| Research engineer
O| Software engineer providing support to researchers

An
sw

er

Figure 2.5: P5 - Role of participants when they performed computational experiments (98 par-
ticipants). Answers starting with “O|” were not predefined in the questionnaire.

0 5 10 15 20 25 30
Count

Brazil
United States

France
United Kingdom

Australia
Netherlands

Spain
Germany

Mexico
Kazakhstan

Norway
Italy

An
sw

er

Figure 2.6: P6 - Country of residence (89 participants).

2.2 Questionnaire 16

2.2.2 Results

In the second part of the questionnaire, we had the goals of understanding which tools scientists

use and prefer to use and why, to answer the research questions RQ.Q1, RQ.Q2, and RQ.Q3.

2.2.2.1 RQ.Q1. What are the scientists’ preferred/more often used tools to
run experiments?

We asked participants to select up to 3 tools in a list of 25 tools or write different ones to answer

RQ.Q1 (What are the scientists‘ preferred/more often used tools to run experiments?). We

divided these 25 tools into three categories: SWfMS1, scripting languages (script)2, and system

programming languages (prog)3.

We received 95 answers to RQ.Q1 with 36 tool indications4. Figure 2.7a presents these

tools grouped according to the three categories (SWfMS, Script, and Prog). The category other

has tools that do not fit into those categories5. Note that scripting languages are the most often

used tools. Figure 2.7b presents a word cloud of the answers. Python, shell script, and R appear

to be the preferred tools. These tools are all scripting languages.

While RQ.Q1 answers the most often used tools, it is possible to see in Figure 2.7a that

there are more answers to scripting languages than participants. It indicates that the participants

use more than one scripting tool in their experiments. Finally, Figure 2.7c indicates that most

participants combine different types of tools in their experiments. All participants that use sys-

tem programming languages also use scripting languages. One participant uses only SWfMS.

Thirty participants use only scripting languages. It may indicate an advantage of using scripts

instead of other types of tools for a variety of experiments. Nonetheless, 67% of the partici-

pants that use scripts also use SWfMS or system programming languages. Thus, computational

experiments can benefit from a combination of multiple tools.

2.2.2.2 RQ.Q2. Which tool is their favorite?

In the questionnaire, we presented the participant’s RQ.Q1 answers as options for RQ.Q2

(Which tool is their favorite?). We skipped RQ.Q2 and RQ.Q3 should the participant select

1Askalon, Chiron, e-Science Central, Galaxy, Kepler, Pegasus, SciCumulus, Swift/T, Taverna, and VisTrails.
2IDL, Javascript, Julia, Matlab, Perl, Python, R, S, Shell Script, and Wolfram Language.
3C, C++, Fortran, Java, and Object Pascal.
4Other SWfMS: Tavaxy, CWL, Snakemake, Dispel4py, HTCondor, WS-PGRADE, Wings, Girder, Girder-

worker, and Luigi.
Other script language: GNU Octave.

5make, miniconda, and orgmode.

2.2 Questionnaire 17

0 50 100 150
Count

Script
Prog

SWfMS
OtherAn

sw
er

(a) (b)

30

0
37

1

15

9

Script
Prog

SWfMS
(c)

Figure 2.7: RQ.Q1 – (a) preferred/more often used tools (95 participants) grouped by categories,
(b) word cloud, and (c) Venn Diagram.

a single tool in RQ.Q1. However, in this case, we used the RQ.Q1 answer as an answer for

RQ.Q2. Figure 2.8 presents the RQ.Q2 results. Once again, Python is the favorite tool of the

participants. By selecting participants that use Python as their main tool, we found that 94%

of them also use other tools. This percentage is more significant than the one we found for

scripting languages in Figure 2.7c. Hence, participants that prefer Python seem to use multiple

tools in their experiments.

2.2.2.3 RQ.Q3. What are the reasons for your preference?

Figure 2.9 presents the answers to RQ.Q3 (What are the reasons for your preference?) nor-

malized by the number of participants that choose each tool. We had 68 respondents to this

question: 9 of them chose a SWfMS as their favorite tool; 42 chose scripting languages; 14

2.2 Questionnaire 18

0 5 10 15 20 25 30 35
Count

Python
R

I do not have preferences
Fortran

Java
Shell script

O| Make
C++

Swift/T
C

O| Ws-pgrade
Taverna
Pegasus

O| Snakemake
O| Wings

O| Tavaxy
O| Octave gnu

O| Htcondor
Other

Matlab
e-Science Central

An
sw

er

Figure 2.8: RQ.Q2 - favorite tool (92 participants). Answers starting with “O|” were not prede-
fined in the questionnaire.

chose system programming languages; and the remaining 3 chose other tools, such as make.

Scallability

Provenance

Reproducibility

Shareability

Flexibility

Expertise

Availability

Learnability

SWfMS

25%50%75%100%

Scallability

Provenance

Reproducibility

Shareability

Flexibility

Expertise

Availability

Learnability

Script

25%50%75%100%

Scallability

Provenance

Reproducibility

Shareability

Flexibility

Expertise

Availability

Learnability

Prog

25%50%75%100%

Figure 2.9: RQ.Q3 - reasons for tool preference (68 participants).

In the questionnaire, we provided a set of predefined descriptive answers and allowed the

users to write their own. However, in Figure 2.9, we grouped the answers into eight categories:

• Reproducibility – easiness to reproduce the execution.

• Provenance – the ability to collect and analyze provenance.

• Learnability – easiness to learn and the existence of documentation and supporting facil-

ities.

• Availability – easiness to set up and run in different systems and the availability of

domain-specific libraries.

• Expertise – previous experience of the respondent.

2.2 Questionnaire 19

• Flexibility – possibility of modifying experiments in a flexible way.

• Shareability – easiness to share.

• Scalability – the ability to use with vast amounts of data and processing. In the predefined

answers, we did not write any scalability option. Thus, the participants wrote the answers

that appear for SWfMS and System Programming Languages in Figure 2.9.

The four main reasons for choosing scripting languages were learnability, availability, flex-

ibility, and expertise. System programming language had similar traits, with an indication of

more flexibility and less learnability. However, while scripting languages also presented a high

number of answers related to shareability and reproducibility, system programming languages

fail in these aspects but succeed in scalability. While scripts are arguably worse for scalabil-

ity, they may be integrated with system programming languages to improve their scalability.

This happens for libraries that demand high performance, such as NumPy in Python. NumPy

implements its core functionalities in Fortran for performance.

In comparison to SWfMS, scripting languages are more flexible, shareable, and learnable

but less reproducible, scalable, available, and with less provenance support. SWfMS are more

available than scripts because they are easy to set up and run, and are cloud friendly. The built-in

cloud support also makes them more scalable than general scripting languages. Provenance and

reproducibility features are more associated with SWfMS, as these systems have been offering

this kind of support for a decade. On the other hand, scripts are more flexible than SWfMS.

Since scripts exist for a longer time and have a user base beyond the scientific community, they

have more learning material and received more investment in libraries, debuggers, and IDEs,

and other features (BARKER; VAN HEMERT, 2007). Moreover, scripts do not impose lock-

in restrictions, such as custom file formats that prevent you from moving to SWfMS. Hence,

scripts are more shareable.

2.2.3 Threats to Validity

Our results have some threats to validity, which we discuss next.

Internal. The main threat to internal validity is the possibility of selection bias. In our

effort to have the maximum number of answers, we shared the questionnaire with groups that

are close to the authors. It may have biased the results towards the tools that we use. We asked

people to forward the questionnaire to other groups in their institutions to mitigate this threat.

2.3 Script Analysis 20

Construct. Confounding constructs is the main threat to construct validity. At the end of

the questionnaire, we included an optional question for comments from the participants. One

of the participants asked for clarifications on what do we mean by “experiments”. We removed

this participant from the analyses. In addition to the optional question for comments, we made

our emails available at the beginning and at the footer of the questionnaire for clarifications,

but we did not receive any inquiries. In addition to confounding constructs, there is no way to

guarantee that participants give the correct answers to questionnaires, which affects the relia-

bility of measures. Finally, another threat to construct validity is the lack of scalability options

in RQ.Q3. Even though we allowed respondents to write answers to this question, their choices

may be biased towards the predefined options.

External. Representativeness of subjects is the main threat to external validity. Even

though we shared the questionnaire with different groups, we did not attempt to share evenly to

all the scientific communities. It is evident by the higher number of respondents from Brazil.

2.3 Script Analysis

As presented in Figure 2.7c, scripts are pervasive in the automation of scientific experiments, be-

ing used even by scientists that adopt system programming languages or workflow management

systems. However, the actual use of scripts is largely unknown by the developers of tools and

processes to support the automation of such experiments. More specifically, many participants

of the questionnaire use and have Python as their favorite tool for computational experiments.

While the previous section explains why they use Python, in this section, we seek to understand

how they use it to improve our answer to RQ.Q3 and answer the following research questions:

• RQ.S1 – How do scientists structure scripts?

• RQ.S2 – How do scientists use modules and external tools?

• RQ.S3 – How do scientists process data in scripts?

Python is a general-purpose scripting language that has many distinct applications, such

as web development (PIMENTEL, 2017), game development (MCGUGAN, 2007), and scien-

tific experiments (SHEN et al., 2014; MCKINNEY, 2011). We obtained Python scripts from

DataOne (MICHENER et al., 2011), intending to limit our analysis to scientific Python scripts,

due to its relation to science.

2.3 Script Analysis 21

DataOne is a cyberinfrastructure that provides open access to Earth observational data

(MICHENER et al., 2011). Scientists from many domains use DataOne. In our analysis, we

identified scripts that relate paralogs to the proportion of heterozygous individuals, analyze the

social activities of dolphins, study how people create vocal communication systems, report the

location of specific DOIs within the full text of papers, among many others. We performed a

static analysis over these scripts to understand which language constructs do scientists use and

which libraries do they choose for their experiments. Our analysis suggests that scientists do not

use many complex programming language constructs. Instead, they use simple constructs such

as variable assignments, imports, loops, and conditional control flows, in addition to built-in

data-structures. Built-in modules play an important role in Python, but scientists also use other

modules such as NumPy, Bio, Pandas, and Matplotlib. These modules take advantage of Python

integration with C and Fortran to obtain a better performance.

2.3.1 Materials and Methods

In this section, we discuss the methodology we used to collect, prepare, and analyze scripts

from DataOne to understand how scientists use Python for scientific experiments.

2.3.1.1 Analyses

For analyzing how scientists use Python for scientific experiments, we define the following

research questions:

RQ.S1. How do scientists structure scripts? Python supports writing scripts with many

constructs and does not enforce the usage of them all. While a script might use only built-

in functions in a procedural way, another script might define functions and classes, use them

as first-class objects, and use functional and object-oriented paradigms. Moreover, some con-

structs can appear at different positions in the script and follow different styling guides. For

instance, the position of imports and function definitions can be either at the top of the script or

mixed with other statements. Similarly, users can write the main execution code within the main

function; write directly on the body; or write directly on the body within a guard that prevents

it from being executed when it is only meant to be imported by other scripts. Finally, users can

use comments on scripts to provide metadata for other programs (e.g., a shebang on top of the

script specifies which interpreter should run it), to disable the execution of some statements, or

to describe their experiments.

In this analysis, we use both the built-in ast module and the astroid (AUTHORITY,

2.3 Script Analysis 22

2017) module to identify which constructs scientists use in scripts. Additionally, we carefully

inspect the scripts to identify where and how scientists define imports, functions, classes, and

comments, and whether they use functions as first-class objects. Finally, we check how scientists

use comments in scripts.

RQ.S2. How do scientists use modules and external tools? Python has “batteries included”

(DUBOIS, 2007). It provides many functions and modules for users to use without any external

module or tool. However, these functions and modules are often not complete enough for

scientific experiments, and scientists need to import external modules or use external tools.

Additionally, scientists can also define their own modules with helper functions. In this analysis,

we check which modules scientists use, identifying whether they are built-in, user-defined, or

external. We also identify whether or not scientists use external tools.

Mining Relationships between modules. We analyze which modules are used together by

mining association rules (AGRAWAL; SRIKANT, 1994). Association rules have the goal of

finding probabilistic associations or correlations. They are expressed as X→Y, where X is the

antecedent set, and Y is the consequence set. Their interpretation is based on the amount of

evidence determined by three metrics: support, confidence, and lift (AGRAWAL; SRIKANT,

1994; HAN; PEI; KAMBER, 2011). These metrics can be calculated as follows:

support(X → Y) = P (X ∪ Y) (2.1)

confidence(X → Y) = P (Y |X) =
P (X ∩ Y)

P (X)
(2.2)

lift(X → Y) =
P (X ∩ Y)

P (X)× P (Y)
(2.3)

The lift metric indicates how much the occurrence of X increases the probability of Y

occurring. When lift > 1, X increases the probability of Y; when lift = 1, X does not

interfere with Y; and when lift < 1, X decreases the occurrence of Y (HAN; PEI; KAMBER,

2011).

RQ.S3. How do scientists process data in scripts? There are many ways to load input data

for processing in a script. Scientists can use variables or arguments to define the data, read data

from the standard input, or read data from files. The path of these files can also be defined

2.3 Script Analysis 23

through variables or arguments or be passed directly to open functions as literals. All these

methods of loading the input data can be combined into a single script. Similarly, there are

multiple ways to save or present the results of experiments. Scientists can write into files using

the Python open function or an external library function, use external tools, or just print or plot

the results. In addition to these aspects, scripts might produce single or multiple results. They

might apply the same operations individually to a set of input files, producing distinct results

for each input file, or they might combine input files into a single result. Finally, the moment

of processing also varies across scripts. Some scripts process data while they read the input

data, others process data while they write the output data. Some scripts read all the input data,

process it, and write the output data. Finally, some scripts read, process, and write the output at

the same time (i.e., at the loop that reads the input data). In this analysis, we identify all these

characteristics of scripts.

2.3.1.2 Data Collection

Using the DataOne RESTful API, we could query all files with mimetype application/x-python.

This query returned 199 results on December 4th, 2017, but 3 of them had the wrong mimetype

and were not Python scripts. Among these scripts, we found 17 duplicated scripts and removed

them from our analyses. Finally, we found that 7 scripts were user-defined libraries through

manual inspection of the scripts. Since our goal is to understand scripts that define scientific

experiments, we also removed the libraries. Hence, we analyze 172 valid scripts in this section.

The scripts belong to datasets with authorship data. Half of these datasets have at least 4

authors. Some authors worked on many datasets and collaborated with others. By clustering the

authors that worked together, we found 67 groups. Most groups submitted at most one script.

However, some groups submitted up to 15 scrips. In total, 32 groups submitted 137 scripts to

DataOne.

Some scripts in DataOne have syntax issues: 36 (20.93%) scripts mix tabs and spaces,

which is problematic in Python since it uses the indentation to define the scope; 5 scripts have

comments that do not use the Python syntax for comments; and 5 scripts have wrong indenta-

tions. Before our analysis, we manually fixed these issues.

For analyzing the scripts, we used Python modules that require to match their Python ver-

sion with the Python version of the scripts (i.e., we could not run the ast module in Python

2 with a Python 3 script). However, only 11 scripts declare the Python version using shebang

expressions or comments. Among these, seven scripts indicate Python 3, one indicates both

Python 2 and 3, and the other 3 scripts indicate Python 2. Through an analysis of language con-

2.3 Script Analysis 24

structs, we found that 87 scripts have language constructs that are only valid for Python 2, such

as print and exec statements without parenthesis, parameter unpacking in function defini-

tions, except statements with a comma, and “<>” as inequality operator. Additionally, a single

script is only syntactically valid for Python 3, due to the presence of assignment unpacking.

This script properly declared Python 3 in the shebang. The syntax of the 84 remaining scripts

is valid for both Python versions. In the analyses of this section, we only used Python 3 for

scripts that declared only Python 3 as their version. We used Python 2 for all the other scripts

that had a syntax valid for both versions or for Python 2 only. Note that it does not guarantee

that all of these scripts run in Python 2, as some semantics also changed between these versions.

However, since we only performed static analyses, choosing one over the other does not change

the results.

2.3.2 Results

In this section, we present the results we collected to answer each question.

2.3.2.1 RQ.S1. How do scientists structure scripts?

Python supports many constructs, and the analyzed scripts do not use all of them. Using both

the built-in ast and the astroid (AUTHORITY, 2017) modules, we obtained the syntactic

constructs used in each script, and we produced the histogram of Figure 2.10. This figure groups

constructs into categories. Thus, when we talk about the definitions category, we refer not only

to function definitions, but also to generators, lambda (anonymous functions), decorators, and

class definitions.

Va
ria

ble
As

sig
n

Au
gA

ssi
gn

Dele
te

Mod
ule

 Im
po

rt
Im

po
rt

Im
po

rtF
rom

Lo

op Fo
r

Whil
e

Bre
ak

Co
nti

nu
e

Data
 St

ruc
tur

e
Lis

t
Tu

ple Dict Se
t

Co
nd

itio
n If

IfE
xp

Defi
nit

ion
Fu

nc
tio

nD
ef

Cla
ssD

ef
La

mbd
a

Gen
era

tor
Dec

ora
tor

Co
mpre

he
ns

ion
Lis

tCo
mp

Gen
Ex

pr
Dict

Co
mp

Se
tCo

mp

Ex

ce
pti

on TryWith
Ra

ise
As

se
rt

Construct

0

50

100

150

Sc
rip

ts

100.00% 97.09% 96.51% 94.19% 93.02%

54.65%
44.19%

37.79%

Category
Construct

Figure 2.10: Distribution of Python constructs in scripts. This figure groups constructs into
categories. The constructs of a category appear on the right of the category bar. A category
corresponds to the union of its constructs.

2.3 Script Analysis 25

Simple constructs, such as variables assignments, imports, built-in data structures, loops,

and if conditions appear in almost all scripts. For loops represent most loops, but some scripts

use while loops and do not use for loops. Most scripts use built-in data structures. Lists and

tuples are more common than dictionaries, and we could not identify any script that uses the

syntax for defining sets. However, the syntax for defining sets requires the users to create the

set with at least one element, and it was added to Python syntax more recently. Nonetheless, we

found 9 (5.23%) scripts that invoke the set function to create an empty set.

Some constructs, such as augmented assignments, function definitions, list comprehensions,

and exception handling appear in about half of the scripts. The lack of function definitions in the

other half of scripts may indicate that the scripts are simple enough, some scientists do not care

much about abstractions and code reuse, or that functions from external modules are sufficient

for data analyses.

Finally, complex constructs such as anonymous functions (lambda), generator definitions,

decorators, classes, dictionary comprehensions, and if expressions barely appear in scientific

scripts. Among complex constructs, we found 50 scripts (29.07%) that use callable objects (e.g.,

functions, classes) as first-class objects. Most of them (46 scripts) pass the callable objects as

arguments to other functions, but we also found 10 scripts that invoke callable objects directly.

In general, functions that receive the callable objects are either built-in functions or functions

defined by external modules. We only found one script that defined a function that expects a

callable as parameter. As for the type of the callables, we found 33 scripts that use existing type

objects (e.g., int, float, str) and pass them as arguments to other functions; 11 scripts that

obtain the callable from an operation, such as an attribute access to a method or a function call

that returns a function object; 7 scripts that define their own callable objects using lambda; and

9 scripts that define functions and pass them as parameters to other functions. In this latter case,

3.49% scripts define parallel functions and pass them to functions that manage the parallelism.

Only knowing which constructs scientists use is not enough to answer how they structure

the scripts. It is also important to know where they use these constructs. Through careful inspec-

tion of scripts, we identified four consecutive conceptual regions in the structure of scientific

scripts: header, top, definitions, and bottom. Figure 2.11 presents these regions. The header

is the region at the beginning of the scripts where they have imports, comments describing the

experiment, and comments with metadata. This region usually starts with comments with meta-

data for the operating system or the interpreter. For the operating system, 89 scripts include

shebang expressions that indicate the path of the Python interpreter that should run the script

(line 1 of Figure 2.11). For the interpreter, 20 scripts indicate the encoding of the file (line 2 of

2.3 Script Analysis 26

Figure 2.11). After the comments with metadata, most scripts include a description of the script

in the header region. For the description, 70 scripts use the comment syntax of Python (line 3

of Figure 2.11), and 42 use docstrings (see line 10 of Figure 2.11). In Python, docstrings are

the recommended way of documenting blocks of code, as the parser is aware of them while it

ignores comments. Finally, after the comments, 143 scripts have imports in this region (line 5

of Figure 2.11). Most scripts use only this region for imports, but we found 7 scripts that also

have imports in other regions and 24 scripts that only have imports in other regions (i.e., they

do not use the header region for imports).

 1 #!/shebang/python

 2 # encoding: utf-8

 3 # This script analyzes...

 4

 5 import module

 6

 7 PARAM = 1

 8

 9 def func(args):

10 '''This function...'''

11 return f(args)

12

13 # Do something

14 operation()

15 #do_not_execute()

16 # Do something else

17 other_operations()

Header - 170 scripts (98.84%)

143 scripts have imports in the header
 7 of these also have imports in other regions
 5 scripts do not have imports at all
111 scripts describe the experiment
 70 scripts use comments
 42 scripts use docstrings
89 scripts have shebang metadata
20 scripts indicate the encoding

Top - 52 scripts (30.23%)

25 scripts define parameters
 But 55 scripts define parameters in other regions
14 scripts read arguments
 But 74 scripts read arguments in other regions
10 scripts describe the experiment
 But 111 describe it in the top region
8 scripts check the number of arguments
 But only read them in other regions
8 scripts read input files
 But 144 read them in other regions Definitions - 91 scripts (52.91%)

91 scripts define functions in this region
 Only 3 scripts define functions outside it
8 scripts define classes
 All in this region

Bottom - 172 scripts (100%)

144 scripts have code directly in this region
 Without guards for importing it
 6 of them invoke a single main-like function
28 scripts have main-guards
 `if __name__ == '__main__':`
 11 scripts have the processing code inside them
 10 scripts only invoke a main function
 7 scripts read the arguments and invoke a main

Figure 2.11: Regions of scripts. Numbers in region descriptions refer to the number of scripts
that have the feature in the specified region unless stated otherwise. Note that a script may have
multiple features in the same region.

The second region is the top region. We define this region as the region that starts after

the last import statement, ends at the first function or class definition, and does not contain

any data processing code. This region appears in 52 (30.23%) scripts, but each one of them has

a different usage for the region. Additionally, the different usages of this region appear more

often in other regions. For instance, while 25 scripts define parameters using variables in this

region (see line 7 of Figure 2.11), 55 scripts use variables to define parameters at the beginning

of the bottom region or in main functions. Similarly, while 14 scripts read arguments in this

region, 74 scripts read arguments in the other regions. This region is also used by few scripts

to read input files (8 scripts) and describe the experiment after the last import statement (10

scripts). Once again, these features appear more in other regions (144 scripts and 20 scripts,

respectively). Finally, 8 scripts also use this region to check the number of arguments and halt

the execution at the beginning, but they only read the arguments in the other regions.

The third region is the definitions region. In this region, the scripts define all of their func-

tions and classes together (see line 9 of Figure 2.11). We only found 3 scripts that had function

2.3 Script Analysis 27

definitions outside this region. These scripts had function definitions mixed with the processing

code of the bottom region instead. Note, however, that many scripts do not have function nor

class definitions. Instead, they only use predefined modules or built-in functions. In total, 91

scripts have function definitions in this region, and 8 scripts have class definitions. All class

definitions occur in this region. Also, note that we do not consider lambda as constructs that

characterize this region since they are expected to be used dynamically in the middle of the

processing code.

Finally, the bottom region is where the experiment processing starts to occur. In Python,

there is no concept of main function, but users can use an if statement (if __name__ ==

‘__main__’) as a main-guard to distinguish which code the interpreter should run when it

runs from the command-line, and which code should it run when other scripts import the file

as a module. We found only 28 scripts that use this if statement as a main-guard: 11 of them

have the main processing code inside it, 10 of them only invokes a single main function inside

the main-guard, and 7 scripts read the arguments inside the main-guard and invokes a function

with them as parameters. In addition to these scripts, we found 6 scripts that do not have a

main-guard, but that only invokes a single function in the bottom region that acts as a main

function. Finally, the remainder 138 scripts have all the main processing code directly on the

bottom region. They do not define a main function nor use main-guards.

During the inspection of the regions, we also observed how the scripts use comments and

docstrings. Without counting the comments in the header region, we found that 150 scripts

have comments. Among these, 127 scripts use comments (line 13 of Figure 2.11) and 29 scripts

use docstrings (line 10 of Figure 2.11) to explain parts of the experiments. Additionally, we

observed that 72 scripts use comments to disable the execution of Python lines. These numbers

indicate that DataOne scripts use many more comments for explaining the experiments than to

manipulate the code execution.

2.3.2.2 RQ.S2. How do scientists use modules and external tools?

We found that 167 scripts import modules. Using the built-in ast module of Python, we ob-

tained the names of the modules these scripts import. We got a total of 612 imports, referring

to 102 distinct sub-modules from 82 distinct top-level modules. A top-level module may have

multiple sub-modules. For instance, some scripts import the following sub-modules from the

Bio module: Bio.SeqRecord, Bio.Seq, Bio.Align.Application, Bio.Align,

Bio.Alphabet.IUPAC. The same situation occurs with Matplotlib regarding its mat-

plotlib.pyplot sub-module, and with SciPy regarding its scipy.stats sub-module.

2.3 Script Analysis 28

While scripts import all these modules, they often do not use all of them. On average, scripts

import 3.37 distinct top-level modules. However, they only use 2.89 distinct top-level modules

on average.

We classified the used modules according to their definition type and domain. We consid-

ered three definition types: built-in, external, and user-defined. Built-in modules come with the

Python interpreter. External modules are provided through publicly available packages. Finally,

user-defined modules are local modules that users define for themselves and only share them

among the experiment files. Regarding the domain, we identified nine domains for the modules,

as follows:

• System – communicates with the operating system to invoke external tools, manipulates

paths, and extracts other OS data, such as date and time (e.g., sys and os);

• Math – provides functions to perform math operations (e.g., numpy and math);

• Input/Output – reads input data or writes output data. In this category, we considered

modules for building command-line interfaces (e.g., argparse), reading files (e.g., csv),

outputing messages (e.g., logging), and creating graphical interfaces (e.g., pygame);

• Data Structure – performs operations on data structures (e.g., pandas and networkx);

• Biology – provides functions for bioinformatics analyses (e.g., Bio and dadi);

• Pattern Recognition – recognizes patterns in data (e.g., re and cv2);

• Visualization – plots data (e.g., matplotlib and pylab);

• Interpreter – extends the interpreter capabilities and provides helper functions (e.g., __-

future__ and IPython);

• Concurrency – supports concurrency or parallelism (e.g., concurrent and multiprocess-

ing).

Figure 2.12a presents the top 20 used top-level modules classified according to their do-

mains and definition type. Note that the most used modules are the built-in system modules

sys and os. We found that the scripts use the os module to create directories, manipulate

paths, and invoke programs. They use the sys module mostly to obtain the arguments from the

command-line or to halt the execution of the script. Following these modules, the most used

module was numpy, a module that provides many efficient math operations to work on arrays

or matrices.

2.3 Script Analysis 29

system
math
input/output

data structure
biology
pattern recognition

visualization
concurrency
interpreter

built-in
external
user

sy
s os

nu
mpy re

ran
do

m
math

arg
pa

rse Biosci
py csv

pa
nd

as
ite

rto
ols

sh
uti

l
matp

lot
libtim
e

glo
b

su
bp

roc
es

s
cS

trin
gIO

co
lle

cti
on

s
gz

ip
Modules

(a)

0%

25%

50%

75%

100%

Sc
rip

ts

73
57

36 29 27 24 24 20 12 12 12 12 10 9 9 9 8 7 7 6

sy
ste

m
math

inp
ut/

ou
tpu

t

da
ta

str
uc

tur
e

bio
log

y

pa
tte

rn
rec

og
nit

ion

vis
ua

liza
tio

n
int

erp
ret

er

co
nc

urr
en

cy

Domains
(b)

107

71
55

38 35 29
13 8 7

bu
ilt-

in
ex

ter
na

l
us

er

Types
(c)

146

77

12

Figure 2.12: Modules – (a) Top 20 used modules, (b) All modules grouped by domains, and (c)
All modules grouped by definition type.

Figure 2.12b groups all the modules into domains and presents the usage of each domain

by the scripts. As expected, the system and the math domains are the most used ones. They are

followed by the input/output domain, which consists of many modules used by few scripts to

read and write distinct types of input and output data. Another domain with this characteristic

of being composed of a high number of smaller modules is the Biology domain. The only big

Biology module that appears in the top 20 of Figure 2.12a is the Bio module. However, many

other distinct Biology modules appear in less than 5 scripts. These modules contribute to the

position of the Biology domain in Figure 2.12b.

Figure 2.12c presents the usage of all modules grouped by definition type. Note that most

scripts use built-in modules, which reinforces the “battery included” advantage of Python. Note

also that about half of the scripts use external modules, which may indicate that only the built-in

modules are not enough. User-defined modules appear in very few scripts.

Next, we identified which modules are frequently used together. Figure 2.13 presents the

results classified by domain. Note that many system modules are also used together with other

system modules. In fact, the most frequent set is composed of os and sys, with 28 scripts

importing both these modules. However, using either of these modules is not a high indicative

that the script will use the other: the lift of their association rule is only 1.16. On the other hand,

other system modules that appear less frequently seem to have a strong dependency, such as the

shutil that increases the chance of using os in 202% (lift 3.02), as presented in Table 2.1.

2.3 Script Analysis 30

We constructed Table 2.1 by first selecting rules with only one antecedent and one conse-

quent for simplicity. Then, sorting by lift in descending order and selecting the first 30 rules.

Half of these rules represented the same rules as the other half in the opposite direction. Hence,

we selected the ones with the biggest confidence and combined the others adding the column

“Opposite Confidence”.

Table 2.1 also presents association rules with positive dependencies related to math mod-

ules that are used together with other math modules (e.g., scipy and numpy) and input/output

modules used together with other input/output modules (e.g., csv and argparse). In the in-

put/output domain, we found that using StringIO increases the chance of using cStringIO.

It occurs because many scripts attempt to import the faster implementation (cStringIO) and

fallback to StringIO when they fail. Within the other domains, we found very few modules

being used together.

In the second part of Table 2.1, we found association rules between modules of different

domains. We found that scripts that import pandas have more chance of importing numpy. It

probably occurs because pandas use numpy underneath to perform fast math operations and

allows users also to use it. Related to this reason, we found that importing time also increases

in 219% (lift 3.19) the chance of importing numpy. Scientists that measure the time of their

experiments may try to use faster modules to improve the speed. Finally, we found association

rules related to other modules, but we could not identify a reason.

Table 2.1: Association Rules for Module Usage. Domains abbreviated as follows: I/O – In-
put/Output; DS – Data Structure; Pattern – Pattern Recognition; Vis – Visualization.

Antecedent Antecedent
Domain Consequent Consequent

Domain
Support
#Scripts

Confi-
dence

Opposite
Confidence Lift

StringIO I/O cStringIO I/O 6 100% 86% 24.56
scipy Math numpy Math 10 83% 28% 3.98
csv I/O argparse I/O 6 50% 25% 3.58

math Math random Math 13 54% 48% 3.45
shutil System os System 10 100% 18% 3.02
glob System os System 8 89% 14% 2.68

StringIO I/O math Math 6 100% 25% 7.17
cStringIO I/O math Math 6 86% 25% 6.14
collections DS argparse I/O 6 86% 25% 6.14

itertools DS argparse System 7 58% 29% 4.18
shutil System re Pattern 7 70% 24% 4.15

pandas DS numpy Math 8 67% 22% 3.19
time System numpy Math 6 67% 17% 3.19

matplotlib Vis numpy Math 6 67% 17% 3.19
Bio Biology sys System 16 80% 22% 1.88

In addition to modules, we found 27 scripts that use 35 distinct external tools. Each script

that uses external tools invokes three distinct tools, on average. For invoking these tools, 15

2.3 Script Analysis 31

system
interpreter

m
at

h
co

nc
ur

re
nc

y

input/output
visualization data stru

cture pa
tte

rn
rec

og
nit

ion
bi

ol
og

y

Figure 2.13: Frequent module domains used together.

scripts use the os module, 8 scripts use the subprocess module, and 5 scripts use other

external modules that provide direct interfaces with the tools. We also classified the external

tools according to their domains in three categories: 21 scripts use biology tools (i.e., tools

that perform bioinformatics analyses, such as Blastn); 15 scripts use system tools (i.e., tools

that come with the operating system, such as mv and mkdir); and 10 scripts invoke external

interpreters (e.g., R, perl, and even Python).

2.3.2.3 RQ.S3. How do scientists process data in scripts?

In general, a scientific script loads the input data, processes it, and generates the output results.

However, scripts vastly change in the way they perform these operations. For instance, while

some scripts read input data from files and only process the existing data, other scripts define

parameters using variables and generate new data through simulations. Additionally, the process

is not always as straightforward as inputting, processing, and outputting sequentially. Some

scripts combine the processing step with other steps. For this question, we analyzed these

aspects of scripts.

Regarding the input step, we found that 152 scripts read data from files and 119 scripts use

other types of input, such as arguments (54 scripts), variables with pre-defined data (70 scripts),

2.3 Script Analysis 32

asking the user through the standard input (4 scripts), and even reading real-time camera data

(0.58% script). Most scripts use more than one type of input. In fact, 99 scripts use both files

and other types of input. For reading input files, scientists must specify their paths, and we

identified five ways of doing so, as presented in Table 2.2. Note in this table that most scripts

receive files as arguments. It indicates that some scientists develop the scripts to apply and

obtain results from distinct files. Note also that the 4 scripts that read paths from the standard

input are the scripts that read other types of arguments from the standard input. Similarly, 48

scripts that read paths from arguments also read other input data.

Table 2.2: Ways of defining paths for input and output files. The Input and Output columns
indicate the number of scripts that apply these ways for input and output files, respectively.

Way Input Input (%) Output Output
(%) Description

Argument 81 47.09% 44 25.58% Receive file paths as arguments.

Literal 40 23.26% 48 27.91%
Pass the file paths to functions that read
the files (e.g., open) directly as a
string literal.

Variable 22 12.79% 12 6.98%
Pre-define variables with the paths,
usually at the Top region or at the
beginning of the Bottom region.

Operation 19 11.05% 65 37.79%
Perform operations to define the paths,
such as combining an input argument to
a string.

Stdin 4 2.33% 2 1.16% Read the paths from the standard input.
Total 152 88.37% 147 85.47%

The same ways that scientists use to define paths of input files are also used to define paths

of output files in the output step. Table 2.2 also presents the number of scripts that define

output paths using each one of these ways. Note in this table that 147 scripts save results to

output files. For writing the output files, 115 scripts use the Python open function, 32 scripts

use module functions, 24 scripts use external tools, and 3 scripts use the built-in argparse

module. This module builds a command-line interface for scripts and allows users to specify the

type of arguments. When users specify the argument as a file, the module already invokes the

open function for opening it for writing. Instead of generating outputs to files, 4 scripts open

windows with plots, one script uses the analyzed data to define the state of a circuit pin, and

20 scripts only print results to the standard output. Note, however, that 73.26% of the scripts

use the standard output. Some use it in conjunction with files and plot more results to output.

Others use it for displaying error messages, and few use it for asking for the standard input data.

Finally, we found 2 scripts that did not produce output at all. These scripts had their bottom

with many lines of code commented out.

Note also in Table 2.2 that more scripts use operations to define the path of output files

2.3 Script Analysis 33

than they use for input files. It occurs because many scripts generate multiple output files, and

defining the name of all output files through arguments would be exhausting in many cases. In

total, we found 81 scripts that generate multiple results. We count multiple results as multiple

files or combining a file with prints or plots. Nonetheless, not all of these scripts generate

multiple results for single input or by combining data of a set of inputs. We found 39 scripts

that apply the same set of operations for independent sets of inputs in a loop to generate an

independent set of outputs.

Finally, we observed how the scripts process the data, and we identified four strategies:

during input (22 scripts), during output (49 scripts), in the middle (71 scripts), and interweaving

both input and output (54 scripts). Figure 2.14 presents examples of these strategies. With

the input strategy, the scripts process the data while they iterate through parts of the input

data (e.g., rows of table files) and store the results into a variable (result in Figure 2.14a).

Later, they only output the already processed results (lines 6 and 7 of Figure 2.14a). With

the output strategy, the scripts read all the data into variables without processing it (except for

occasional data type conversions or data structure building). Later, they iterate through the data

for processing it and outputting it at the same time. With the middle strategy, scripts also read

all the data without processing it. Then, they process the data as its own step and store the

processed data into a variable. In the end, they only output the already processed data. This

strategy is hugely employed by scripts that use external modules for reading or writing data into

specific formats since these modules provide single-purpose functions for the input and output

steps. Finally, with the interweaving strategy, the scripts do not read all the data at once for

processing. Instead, while they read the input data, they already process and output the results.

Many scripts designed to filter data from input files use this strategy.

In addition to these strategies, we found that 18 scripts combine strategies. Some of them

use the input strategy to read and process some data at once but also perform another processing

in the middle or during the output. Others apply the middle strategy for a file and the interweav-

ing strategy for another. Finally, some scripts apply the interweaving strategy for a main input

1 for value in read():
2 result.append(
3 process(value)
4)
5
6 for value in result:
7 write(value)

(a)

for value in read():
data.append(value)

for value in data:
write(

process(value)
)

(b)

for value in read():
data.append(value)

result = process(data)

for value in result:
write(value)

(c)

for value in read():
result = process(

value
)
write(

result
)

(d)

Figure 2.14: Strategies for processing data: (a) during input, (b) during output, (c) in the middle,
(d) interweaving both input and output.

2.3 Script Analysis 34

file. However, while they are processing and generating outputs for each row of this file, they

also open other files and employ the input and the middle strategies for them.

2.3.3 Threats to Validity

External. For restricting our analyses to scientific scripts, we limited our search to DataOne

scripts. Even though we obtained all scripts available at DataOne, only 172 scripts are not

sufficient to understand all the specifics of scripts that represent experiments. Considering we

could group authors into 67 groups, the variability of the scripts is further reduced. Additionally,

most scripts belong to the biology domain, which restricts more the variability. Hence, the

variety of scripts may not represent the usage of Python scripts by the scientific community in

general.

Internal. Similarly, using only DataOne as a source for scientific scripts possible results

in a selection bias. Scripts shared at DataOne may not represent the scripts that scientists write

and use in the wild. Instead, they may organize it to look more shareable in a scientific repos-

itory. While obtaining scripts from other general-purpose repositories could result in a wider

variability of scripts, it could also lead to the analysis of false positives (i.e., scripts that are not

part of experiments nor written by scientists). Choosing DataOne reduces the number of false

positives. We could also have asked scientists to provide scripts. However, this approach would

lead to scripts from groups close to the authors with no guarantee that the received scripts rep-

resent the scripts scientists use in the wild. Choosing an independent service such as DataOne

mitigates this threat.

Additionally, we obtained most characteristics of the scripts by reading and analyzing the

scripts carefully in an iterative way. Once we noticed a pattern in some scripts, we went back to

previous ones to check if the pattern existed or not. Hence, the amount of data that we observed

for each script at the beginning of the experiment was different from the amount of data that we

observed at the end. It could result in an internal threat to validity caused by instrumentality.

We attempt to reduce this threat by re-validating the collected data.

Construct. Some constructs were confounding when we analyzed the scripts. For instance,

when we looked at print statements to understand how scientists output results, we found print

statements that were not used with this purpose. We also found other methods of printing to

standard output that do not involve print statements, such as writing into sys.stdout or

using external libraries. We attempted to reduce this threat by defining rules for what we were

looking for. In the case of print statements, we separated the statements into categories and also

observed other known methods that print to the standard output.

2.4 Discussion 35

2.4 Discussion

In Section 2.2, we found that most people that answered our questionnaire have high education

levels. Such education levels are associated with the roles in which they run experiments.

While we received answers from many scientific domains that run computational experiments,

the domains with more answers are computer and information sciences, and biological sciences.

In the questionnaire, we also observed that the most preferred tools of our participants

for computational experiments are scripting languages. More specifically, we concluded that

Python is the favorite tool among the participants of our questionnaire. It occurs due to the

availability of built-in collections and modules and the flexibility for development that supports

integration with other tools. Additionally, we observed that scripting languages have almost

no role in provenance and reproducibility when compared to workflow management systems.

It may indicate the lack of tools that aim at guaranteeing the reproducibility of experiments

composed using scripting languages.

By analyzing scientific Python scripts in Section 2.3, we observed that most scientists usu-

ally adopt only simple language constructs. However, some of them deviate from that and use

other complex constructs, such as functions as first-class objects. We also observed that scien-

tists internally divide the scripts into four regions with some types of constructs appearing only

in two of them: imports and comments with metadata appear all together at the beginning of

the script, and functions and class definitions also appear all together in the middle of scripts.

These regions help to minimize the drawbacks of flexible environments and help to organize

and understand the implementation. Having a better understanding of experiments may also

help in the learning process. Learning was the most selected reason for script preference.

Despite having these regions for constructs, Python scripts allow scientists to read, process,

and write data using distinct strategies in a very flexible way. Moreover, the high number

of distinct modules used by scripts is another indicator of the high flexibility of Python and

its power in gluing solutions, which may also contribute to the preference for Python among

those scientists. The capability of flexible development was the third most selected option for

choosing scripts in RQ.Q3.

Additionally, many scripts use built-in modules (see Figure 2.12) and built-in collections

(see Figure 2.10). All these built-in features of Python contribute to its availability, which was

the second most selected option for choosing scripts in RQ.Q3.

In the script analyses, we could not find evidence of the usage of provenance in scripts.

Chapter 3

State-of-the-Practice: Notebooks

3.1 Introduction

In Chapter 2, we found that many scripts use comments to explain parts of the experiment.

This characteristic of experiment scripts is related to the literate programming paradigm. This

paradigm seeks to help in the communication of programs (KNUTH, 1984) by interleaving

formatted natural language text, executable code snippets, and computation results. Code snip-

pets generate the computation results, and natural language text explains both the code and the

results.

However, while scripts can use comments with natural language text to support the literate

programming paradigm, they are not the most appropriate tools for generating and re-using

intermediate computation results. Hence, Interactive Notebooks that use scripts come into play.

Interactive Notebooks are tools based on the literate programming paradigm.

Jupyter Notebook is the most widely-used system for interactive literate programming

(SHEN et al., 2014). It was designed to make data analysis easier to document, share, and

reproduce. The system was released in 2013, and today there are over 9 million notebooks

in GitHub (PARENTE, 2020). Jupyter originated from IPython (PÉREZ; GRANGER, 2007)

and, in addition to Python, it supports a variety of programming languages, such as Julia, R,

JavaScript, and even system programming languages, such as C. It also allows the interleaving

of not only code and text, but also different kinds of rich media, including image, video, and

even interactive widgets combining HTML and JavaScript.

Kluyver et al. (2016) advocate the usage of notebooks for publishing reproducible re-

search due to their ability to combine reporting text with the executable research code. How-

ever, the format has been increasingly criticized for encouraging bad habits that lead to unex-

3.1 Introduction 37

pected behavior and are not conducive to reproducibility (POMOGAJKO, 2015; GRUS, 2018;

MUELLER, 2018). Among the main criticisms are hidden states, unexpected execution order

with fragmented code, and bad practices in naming, versioning, testing, and modularizing code.

In addition, the notebook format does not encode library dependencies with pinned versions,

making it difficult (and sometimes impossible) to reproduce the notebook. These criticisms

reinforce prior work, which has emphasized the negative impact of the lack of best practices

of Software Engineering in scientific computing software (WILSON et al., 2014), regarding

separation of concerns (HÜRSCH; LOPES, 1995), tests (MYERS et al., 2004), and mainte-

nance (HORWITZ; REPS, 1992).

Studies have been carried out to better understand how notebooks are used (KERY et al.,

2018; NEGLECTOS, 2018; RULE; TABARD; HOLLAN, 2018; WANG; LI; ZELLER, 2020;

KOENZEN; ERNST; STOREY, 2020). While these studies have been carried out to under-

stand better how notebooks are used, they did not attempt to execute the notebooks and assess

characteristics related to reproducibility. Hence, unlike prior work, we analyze not only the

quality, but also the reproducibility of Jupyter Notebooks, and try to identify (and quantify the

use of) practices that hinder reproducibility.

In this chapter, we analyze a large corpus of notebooks to obtain insights into what con-

tributes to their reproducibility or lack thereof. We used the aforementioned criticisms as a

guide to define metrics that reflect the extent of the adoption of both good and bad practices. To

get more insight into the context in which good and bad practices are applied, we select a subset

of popular notebooks (based on the number of stars and forks of the repositories they belong

to) and compare their results with the overall results. We select this subset with the expectation

that notebooks that receive more stars and forks are likely to be of higher quality.

Having the same goal of getting insight into the context of notebooks, we perform a sys-

tematic sampling of real notebooks. We perform an in-depth analysis of the notebooks in the

sample, looking either for characteristics that are hard to extract automatically from the dataset

or qualitative characteristics that are impracticable to manually analyze in a set of over a million

notebooks. We also use notebooks from the samples to illustrate good and bad practices.

To assess the reproducibility rate, we attempt to execute the notebooks using different

execution orders, isolating dependencies, and exploring strategies to compare notebook re-

sults. Finally, to gain insights into factors that influence reproducibility, we mine association

rules (RUGGIERI; PEDRESCHI; TURINI, 2010) that relate specific notebook features to both

success and failure of reproductions.

This chapter is organized as follows. Section 3.2 provides some background about literate

3.2 Background 38

programming and Jupyter Notebooks. Section 3.3 presents the methodology of our analysis.

We present the analysis results in Section 3.4. Section 3.5 presents threats to the validity of our

study. Finally, Section 3.6 discusses the results.

This chapter was published in the International Conference on Mining Software Reposito-

ries (PIMENTEL et al., 2019b), and an extended version was accepted in the Empirical Software

Engineering (PIMENTEL et al., 2021).

3.2 Background

Knuth (1984) introduced the literate programming paradigm that, by combining code and nat-

ural language, allows programmers to document a program’s logic. This paradigm enables the

programmers themselves and others to more easily understand the code. The original system

was designed for static documents and required two compilation processes (KNUTH, 1984):

tangling and weaving. The tangling process executes the code snippets in the document and

produces the results. Then, the weaving combines the text, code snippets, and results to deliver

a human-readable document. Nowadays, literate programming is used in interactive compu-

tational notebook environments (SHEN et al., 2014). These environments allow parts of a

notebook to be executed with immediate visualization of results and formatted text, avoiding

the need for tangling and weaving.

A Jupyter Notebook (SHEN et al., 2014) is both an interactive literate programming docu-

ment and an application that executes the document. In this work, to avoid the ambiguity, we

use the term Jupyter to refer to the application that executes notebooks, such as Jupyter Note-

book and Jupyter Lab. We use the terms Notebook or Jupyter Notebook interchangeably to refer

to the literate programming document.

A notebook is composed of cells, which can be of three types: code, Markdown, and raw. A

code cell contains executable code used to produce results. A Markdown cell contains formatted

text. Finally, a raw cell contains text that is neither code nor formatted text – tools that convert

notebooks into other formats use raw cells for configuration.

Jupyter uses a kernel to execute code cells. During the execution of a cell, the kernel

communicates with Jupyter to display partial and final results. By default, Jupyter displays

text, images (PNG, JPG, and SVG), HTML with JavaScript, and Markdown. Additionally, it

supports extensions to display other formats. The notebook format uses JSON to store all of

its contents in “.ipynb” files. When Jupyter sends a code cell for execution, it marks the cell

as executing by assigning “*” to the cell execution counter. After the execution, the kernel

3.2 Background 39

55

In [3]:

Out[3]:

Fibonacci

Let’s plot the numbers

def fib(x):
if x <= 1:

return x
return fib(x-1) + fib(x-2)

fib(10)

from matplotlib import pyplot
%matplotlib inline
x = range(15)
y = [fib(n) for n in x]
pyplot.plot(x, y);

In [8]:

0 2 4 6 8 10 12 14

0

50

100

150

200

250

300

350

Markdown
Cells

Code
Cells

Execution
Counter

Output 2

Output 1

Figure 3.1: An example of an executed notebook with Markdown, code, and output.

allocates a number to the counter, which indicates the execution order. Users can execute the

cells in any order, and a given cell can be executed multiple times.

Storing either executed or non-executed notebooks is possible. A non-executed notebook

contains only prospective data (FREIRE et al., 2008), i.e., the notebook title and definition

of its cells. An executed notebook contains prospective data plus retrospective data (FREIRE

et al., 2008) derived by the execution of the notebook cells – the output of code cells and

their execution counters. The execution of a notebook does not require cleaning the outputs of

previous executions. Thus, an executed notebook may contain retrospective data from multiple

executions.

Figure 3.1 shows an executed Jupyter notebook, which contains two Markdown cells and

two code cells. On the left of code cells, Jupyter displays an execution counter that indicates

the order in which the cells were executed. Below the code cells, Jupyter displays their outputs.

Note that the first code cell returns a number, identified by Out[3], and the second code

cell displays an image without returning it. This figure also illustrates skips on the execution

counters. A skip represents cell executions that do not have explicit definitions in the notebooks.

In this case, the two executions before the execution counter 3 represent one skip, and the four

executions between 3 and 8 represent another.

3.3 Materials and Methods 40

When initially released, IPython (PÉREZ; GRANGER, 2007) notebooks supported only

Python. The system has evolved into Jupyter, which is language agnostic. Today IPython is the

kernel that Jupyter uses for executing Python code. IPython supports a superset of Python. In

addition to all Python constructs, it supports line magics to execute IPython related commands;

cell magics to modify the semantics of code cells; bang expressions to execute system com-

mands; cell referencing to reference the code and output of other code cells; and help queries to

access the documentation and source code of functions and classes. Note that the second code

cell of Figure 3.1 uses the line magic %matplotlib inline to enable the visualization of

matplotlib figures.

3.3 Materials and Methods

As discussed before, Jupyter has recently been the target of substantial criticism for encouraging

bad coding habits and practices that hinder reproducibility (GRUS, 2018; MUELLER, 2018;

POMOGAJKO, 2015). In what follows, we discuss these criticisms and propose analyses to

quantify their impact on notebooks available in GitHub (Section 3.3.1). Section 3.3.2 describes

the collection and preprocessing of the GitHub data. Section 3.3.3 discusses the selection of a

popular set of notebooks that we obtained to use as a baseline and compare it with the overall

results. Section 3.3.4 presents the sampling process we used to gain more insights about the

data. Finally, Section 3.6 discusses the corpus we use in this chapter.

3.3.1 Research Questions and Analyses

The notebook criticisms relate to both prospective (i.e., code definition) and retrospective (i.e.,

code execution) components of notebooks (FREIRE et al., 2008). We thus frame our analyses

in terms of seven research questions (RQ.N1, RQ.N2, RQ.N3, RQ.N4, RQ.N5, RQ.N6, and

RQ.N7), which we organize into two categories: Analysis of Prospective Data, which covers

RQ.N1-RQ.N4, and Analysis of Retrospective Data, which covers the remaining questions.

Analysis of Prospective Data Notebooks store cell definitions and the notebook title as prospec-

tive data. In our analyses, we used this information to answer the following questions:

RQ.N1. How do notebooks use literate programming features? According to Wilson et al.

(2014), scientists should write programs for people and not for computers. Being a literate pro-

gramming tool, Jupyter can fulfill this goal. Jupyter allows users to write Markdown cells with

3.3 Materials and Methods 41

text describing the logic behind their programs, followed by direct visualizations of the results.

However, the ability to do it does not imply that users will write descriptions or whether these

descriptions are meaningful. Grus (2018) pointed out that among the officially recommended

tutorials written in Jupyter, there are tutorials with descriptive text that does not correctly ex-

plain what the code does. We analyze whether Jupyter is used as a literate programming tool

by looking at the number of Markdown cells and their positions in the notebooks. Investigating

the presence of linguistic anti-patterns (ARNAOUDOVA; DI PENTA; ANTONIOL, 2016) or

whether the Markdown descriptions are meaningful for the notebooks is outside the scope of

this work.

RQ.N2. How are notebooks named? By default, Jupyter creates notebooks titled “Untitled”.

It discourages users from choosing meaningful names (GRUS, 2018). Also, the title is used as

the name of the file which stores the contents of the notebook. Using the title as a filename

creates OS-based restrictions in the size of titles and the allowed characters (e.g., in Windows,

it is impossible to create or use a notebook that has “?” in the title (MICROSOFT, 2018)).

Moreover, the choice of notebook title is restricted by the filename conventions adopted by

different OS (e.g., not using space characters (TIM; DOORKNOB, 2014)). We analyze the

number of untitled notebooks, the number of notebooks with “-Copy” in the title, the size of

notebook titles, and the presence of characters not recommended by the POSIX fully portable

filenames guide (the guide recommends A-Z a-z 0-9 . _ -) (LEWINE, 1991).

RQ.N3. How do notebooks use modules, functions, and classes? In traditional programming

languages, modules, functions, and classes are essential constructs to maintain the separation

of concerns in software (HÜRSCH; LOPES, 1995). In literate programming environments,

Markdown cells could be used to separate the concerns. However, this would lead from the

lack of referencing and reusability. Moreover, Python treats every script as a module and allows

users to import functions and classes from them, which improves the reusability across scripts.

However, importing notebooks is hard and unusual (GRUS, 2018). We extract the Python

Abstract Syntax Tree (AST) from cells to analyze the presence of local module imports, and

function and class definitions as evidence of separation of concerns.

RQ.N4. How are notebooks tested? Testing is a good practice to verify that a given program

meets its requirements and keeps working after changes are applied (MYERS et al., 2004).

Since notebooks are not modules, testing code in a notebook is challenging as it requires mix-

ing test code with the notebook narrative code (GRUS, 2018; MUELLER, 2018). To search

3.3 Materials and Methods 42

for evidence of testing in notebooks, we analyze the imported modules names that contain

“test”, “Test”, “TEST”, “mock”, “Mock”, or “MOCK” as a sub-string. We also checked for

known Python testing tools that do not have these sub-strings (i.e., antiparser, aspectlib, be-

have, doublex, fit, fudge, fusil, hypothesis, lettuce, ludibrio, mox, nose, peckcheck, pester, pry,

pythoscope, reahl.tofu, reahl.stubble, sancho, subunit, taof, twisted.trial). We obtained this list

of modules from the categories unit testing tools, mock testing tools, fuzz testing tools, and

acceptance testing tools of the Python testing tools taxonomy page (PYTHON-WIKI, 2019).

Analysis of Retrospective Data

Notebooks store cell outputs and execution counters as retrospective data. We use the fol-

lowing questions to explore the retrospective data.

RQ.N5. Do users store notebooks with retrospective data? Displaying execution results is

part of the literate programming aspect of notebooks. The support for rich media enhances the

narratives and the writing of programs for people. Moreover, having partial cell results helps in

checking the reproduction of a notebook by allowing the comparison of the cell outputs upon re-

execution. However, some advocate that the results of notebook execution should be removed

before committing to avoid noise in diffs (STALEY, 2017). Furthermore, Jupyter is also used

as an IDE for general-purpose software development with the goal of extracting the produced

code to scripts afterwards (KERY et al., 2018). We analyze the number of notebooks that have

retrospective data and whether Jupyter is used as a literate programming tool by looking at the

output formats (i.e., MIME types of cells’ outputs) in executed notebooks.

RQ.N6. How are notebooks executed? Jupyter allows users to execute cells in any order.

While notebooks present the cells in a linear top-bottom narrative, a user may choose to execute

the cells in a non-linear, arbitrary order. This ability departs from how most people expect

to run code (GRUS, 2018; MUELLER, 2018; POMOGAJKO, 2015). Moreover, cells that

appear at the beginning of notebooks may depend on cells that appear later, leading to additional

issues for users that run them in the default top-down order (KOOP; PATEL, 2017). Figure 3.2

presents an unordered notebook and two re-executions of it following distinct execution orders:

cell execution counter order and top-down order. In this example, the order that produces the

same results is the one that follows the cell execution order. To quantify the prevalence of this

practice, we identify notebooks that have cells in a non-linear order.

In addition to out-of-order cells, when Jupyter executes a code cell, the execution may

change a state in the environment. It does not cause problems when users run cells only once and

3.3 Materials and Methods 43

Out[7]:

a = 2

2

In [5]:

b = 3In [4]:

b + aIn [7]:

a = 1

b = 1

In [6]:

Original

Out[4]:

a = 2

2

In [2]:

b = 3In [1]:

b + aIn [4]:

a = 1

b = 1

In [3]:

Exec. Counter

Out[3]:

a = 2

5

In [1]:

b = 3In [2]:

b + aIn [3]:

a = 1

b = 1

In [4]:

Top-down

Figure 3.2: Original notebook and two executions that follow different orders.

Out[4]:

co = 0

2

In [1]:

co += 1In [3]:

coIn [4]:

(a)

Out[3]:

co = 0

1

In [1]:

co += 2In [2]:

coIn [3]:

(b)

Out[3]:

co = 0

1

In [1]:

coIn [3]:

(c)

The user
executed this

cell twice

The user
edited this
code from

+= 1 to += 2
after its

execution

The user
removed the
second cell

after its
execution

Figure 3.3: Three types of Hidden States: (a) Re-execution; (b) edited cell; (c) removed cell.

do not change previously executed cells. However, when the user runs the same cell multiple

times, edits, or removes the cell code after executing it, the environment state may no longer

represent the code definition, and this can lead to bugs and make debugging harder (GRUS,

2018; POMOGAJKO, 2015).

Figure 3.3 presents three examples of hidden states caused by these situations. Having a

hidden state may make it impossible to reproduce the same results upon the re-execution of

the notebook. In fact, the re-execution of these notebooks would produce results that differ

from the ones in the output cell. Note that hidden states caused by cell re-execution or removal

make the notebooks skip numbers in the execution counter sequence. Thus, in our analyses,

we count how many execution counters skips there exist in the notebooks. Also, note that a

removed or re-executed cell that causes a skip number does not necessarily produce a hidden

state when it has code that does not change the environment. Hence, our measurement states

the susceptibility of notebooks to have hidden states rather than confirming that they have them.

Additionally, our analysis does not consider hidden states caused by edited cells that were not

executed.

3.3 Materials and Methods 44

Table 3.1: Execution modes for the reproducibility experiments.
Mode Environment Execution order

1 Shared + Exec. Counter Shared OS with conda and anaconda
environments

Cell Execution
Counter

2 Isolated + Exec. Counter Isolated docker container with an
anaconda environment

Cell Execution
Counter

3 Isolated + Top-Down Isolated docker container with an
anaconda environment Top-Down

4 Bloated + Exec. Counter Bloated docker container with many
dependencies installed

Cell Execution
Counter

5 Bloated + Top-Down Bloated docker container with many
dependencies installed Top-Down

We can only analyze the presence of skips and out-of-order cells in unambiguous execution

order notebooks. We define unambiguous execution order notebooks as notebooks that have

only one valid execution sequence. That is, they neither have cells with repeated execution

counters, nor cells whose counter indicates that they are being executed. Note that this definition

does not guarantee that the notebook outputs represent a single execution, but it is a close

approximation with practical implications in our analyses.

Finally, the presence of non-executed code cells in the middle of the notebooks also hinders

the reasoning about the execution. We analyze this issue by counting how many non-executed

cells are in the notebooks and by comparing their positions with the position of executed ones.

RQ.N7. How reproducible are notebooks? Notebooks do not declare the versions of imported

libraries (GRUS, 2018). The lack of version information may cause incompatibilities and pre-

vent the execution of the notebook in environments that are different from the one in which

the notebook was created. In Python, this issue can be addressed by defining dependencies in

standard files: setup.py, requirements.txt, and Pipfile. We analyze how many

notebooks belong to repositories with such files.

The existence of hidden states, out-of-order cells, hard-coded paths, and other bad practices

also prevent the reproduction of notebooks. To assess the rate of reproducibility, we perform a

reproducibility analysis of all unambiguous execution order Python notebooks. An unambigu-

ous execution order notebook can have non-executed code cells in the middle. We ignore these

cells since they do not have outputs.

Execution modes. In this analysis, we try to execute notebooks in five different modes to

assess their reproducibility rate, as summarized in Table 3.1. We assess the rate by identifying

notebooks that, when executed, lead to results that are the same as the results stored within the

notebooks.

3.3 Materials and Methods 45

In the first execution mode, we executed the notebooks following the cell execution counter

order in a shared OS environment with conda and anaconda environments to manage multi-

ple Python installations and kernels. Conda is a package and environment management sys-

tem that installs and manages the dependencies of packages. It allows multiple versions of

Python to be installed with different dependencies. Conda was originally designed as part of

anaconda (ANACONDA, 2018), which is a Python and R distribution that includes over 100

Scientific Packages, such as numpy, scipy, matplotlib, and other packages. Today, anaconda

is a conda package that includes all these dependencies. In this work, we refer both to conda

environment and anaconda environment. When we refer to conda environment, we consider an

environment with only Python and Jupyter installed. When we refer to anaconda environment,

we consider the environment that bundles the anaconda package and all of its dependencies. The

decision on which environment to use was based on the availability of dependency declarations

in the repositories. For repositories that declared dependencies, we used a conda environment

and attempted to install the dependencies. For the other repositories, we used an anaconda

environment with multiple pre-installed packages.

Since the first execution mode uses a shared OS environment, one execution can change

system dependencies and affect the execution of other notebooks. Hence, we define four ad-

ditional execution modes as an attempt to reduce the number of false negatives. In the second

execution mode, we use docker containers to isolate the executions, and we run cells following

the existing cell execution counter. In the third execution mode, we also use docker containers,

but we run cells following the top-down order. In both these modes, we have anaconda environ-

ments installed in the containers. In the fourth and fifth execution modes, we also use docker

containers, but we created bloated containers by attempting to install the maximum number of

packages that we could install. The goal was to prevent notebooks from failing to reproduce

due to the lack of dependencies. In the fourth execution mode, we executed notebooks follow-

ing the existing cell execution counter, and in the fifth execution mode, we executed notebooks

following the top-down order. Table 3.1 presents all the execution modes that we use in this

chapter. We set a time limit of 5 minutes for the execution of each notebook.

Normalizations. In the first execution mode, we performed a direct character-by-character

comparison of the output of a re-execution with the saved result to check the reproducibility

results. However, this comparison can lead to false negatives due to small differences. For in-

stance, the cell execution counter is part of the cell output. In the first analysis, every notebook

with a skip would lead to a non-reproducible notebook. Similarly, insignificant deviations in

number, date, and other object formats would lead to a non-reproducible notebook despite the

3.3 Materials and Methods 46

Table 3.2: Normalization Operations for Comparing Execution Results.
Operation How Reason

Encode Encodes outputs into UTF-8. Some notebooks were stored in a different encoding,
leading to mismatches.

Execution
Counter

Removes the execution
counter from outputs. Skips in the execution counter lead to mismatches.

Stream Combines print sequences
into a single output element.

Different versions of Jupyter/IPython behave differently,
leading to mismatches on print statements.

Dictionary
Alphabetically sorts
dictionary keys and set
elements.

The order of these elements does not matter, but the
textual comparison fails for unordered objects.

Dataframe

Removes HTML
representation of pandas
dataframes, keeping only
textual representations.

Pandas outputs both text representations and HTML
representations of the same dataframes, but the HTML
representation has changed over time for styling reasons,
leading to mismatches.

Exception
Path

Removes paths from
exceptions.

Python exceptions show the file path, leading to
mismatches in different machines.

Deprecation Removes deprecation
warnings.

Deprecation warnings in new versions of libraries lead to
mismatches.

White space Transforms all kinds of white
spaces into a single space.

The representation of line breaks and other white space
characters changes from system to system, leading to
mismatches.

Decimal Cuts numbers at the second
decimal place. Small variations in float precision lead to mismatches.

Date Replaces dates by
1970-01-01T.

Running a notebook that outputs the current date at two
different dates would result in a mismatch.

Time Replaces time by 00:00:00. Running a notebook that outputs the current time at two
different times would result in a mismatch.

Memory Replaces numbers that start
with 0x by 0x0000000.

Python objects often indicate their position in the
memory on print statements. Since every execution puts
the object in a different position, keeping the original
number leads to a mismatch.

Image Removes images from
outputs.

It is hard to compare images, and very small changes in
image generation lead to different results.

notebook producing a similar result that is semantically the same. To avoid this problem, we

normalize the notebook outputs in the latter four execution modes. The normalization opera-

tions we applied are presented in Table 3.2. We apply these operations in the same sequence

they appear in Table 3.2. Hence, before we apply the stream normalization, we apply both the

encode normalization and the execution counter normalization. Thus, having skips in the execu-

tion counter or insignificant deviations in formats does not lead to non-reproducible notebooks,

reducing the number of false negatives. We indicate the reproducibility rate for each normal-

ization. Note that the Image normalization is expected to have the highest rate, as it includes all

the previous normalization operations. On the other hand, the image normalization is expected

to cause false positives, as it strips images out of the notebooks.

Mining Relationships between Notebook Features and Reproducibility. To gain deeper

insights into factors that influence reproducibility, we mined association rules (AGRAWAL;

3.3 Materials and Methods 47

SRIKANT, 1994) that relate specific notebook features to both success and failure to reproduce

notebooks.

Our data mining strategy was conservative by nature – we used a low absolute support

threshold of 100 transactions and did not use a confidence threshold. This is important to avoid

hindering infrequent but relevant rules. Then, we mined for rules with size two (one feature in

the antecedent and one in the consequent) using the Apriori algorithm (AGRAWAL; SRIKANT,

1994) provided by package arules in R. Next, we sorted the obtained rules descending by lift

and fixed features related to reproducibility in the consequent. Finally, we observed which

features appeared in the antecedent with lift significantly higher or lower than one.

3.3.2 Data Acquisition and Preprocessing

We used the GitHub API to find repositories created between January 1st, 2013 and April

16th, 2018 that had a file with “Jupyter Notebook” as identified language. This query returned

265,888 repositories with 1,450,071 notebooks. We did not collect checkpoint notebooks stored

in .ipynb_checkpoints directories. Most repositories (60.09%) have 2 or fewer note-

books. Only 12.42% of the repositories have 10 or more notebooks. However, 61.45% of the

notebooks belong to repositories with 10 or more notebooks.

On July 22nd, 2020, we queried GitHub again to obtain the number of stars and forks

of these repositories. Some repositories were removed from GitHub in this interval. Thus,

we removed them from our analyses as well, resulting in 1,274,872 notebooks from 235,643

repositories.

After collecting the repositories, we excluded invalid notebook files, empty notebooks,

empty repositories, and repositories that we lost access between the query moment and the

analysis moment, resulting in 1,251,074 valid notebooks from 234,729 repositories. From this

result, we also excluded 226,805 (18.13%) duplicated notebooks. The goal was to reduce the

bias towards forks and notebook copies (KALLIAMVAKOU et al., 2014). We detected these

notebooks by calculating the SHA1 hashes from cell sources and output formats. We did not

use the output results or other metadata when we calculated the hashes to be able to detect note-

books that only had distinct prospective data as duplicates. This resulted in 1,024,269 unique

notebooks for the analyses.

3.3 Materials and Methods 48

3.3.3 Popular Notebooks Selection

From the set of unique notebooks, we extracted a set of popular notebooks representing mature

notebooks to use it as a baseline for the analyses. This selection reasoning is that those mature

notebooks should condense the most quality and reproducibility characteristics as they have

received the most attention from users. In fact, we observed that popular notebooks attain more

quality features, such as having more Markdown cells, fewer issues with titles, and less out-of-

order cells and skips. As we discuss in Section 3.4.3, popular notebooks are more reproducible

than the overall group as well. They are 31.04% more likely to execute until the end, 84.83%

more likely to reproduce the same results without normalizations, and 41.34% more likely to

reproduce the same results after all normalizations.

For selecting the set of popular notebooks, we approximated the popularity of the notebooks

based on the popularity of their repositories. Hence, we first assigned to each notebook the

number of stars and forks of the repositories containing them. We then computed a popularity

score (s) that consists of the harmonic mean of stars and forks of the notebooks. From this, we

removed notebooks with zero as the popularity score and obtained top outliers of the remaining

notebooks as follows:

s ≥ 1.5× IQR

≥ 1.5× (Q3−Q1)

≥ 33.331

(3.1)

This selection resulted in a popular set of 38,063 notebooks, which corresponds to 3.72%

of the unique notebooks.

3.3.4 Sampling

To get more insight into the context in which good and bad practices are applied, we systemati-

cally extracted a sample of real notebooks from the complete set of unique notebooks. With this

sample, we can observe characteristics that we could not extract automatically from the note-

books and use real notebooks as examples. We used Cochran’s sample size formula (ISRAEL,

1992) to calculate our population’s sample size. Assuming a maximum variability (p = 0.5),

and desiring a confidence level of 90% and ±10% precision range, we calculated the sample

size as 68.05 notebooks. Hence, we randomly selected 69 notebooks as our sample.

3.3 Materials and Methods 49

As a sanity check, we compared 75 metrics with percentages related to the broad set of

unique notebooks that we report throughout this chapter with their sample counterparts. We

found that only 11 metrics deviate from the ±10% range when using sub-group selections.

However, all of them are calculated based on sub-groups that are not representative enough in

the sample (e.g., a percentage over the number of “Untitled” notebooks, which corresponds to

only 1.93% of the notebooks). When we do not consider sub-group selections (i.e., we compare

the percentages over the total number of unique notebooks or sampled notebooks), all analyzed

metrics are within the ±10% range.

In the sample, we found 31 notebooks associated with courses, such as tutorials, class

assignments, or course exercises. We also found ten academic notebooks related to papers,

dissertations, theses, and capstone projects. Ten notebooks had analysis for tasks not related

to education – although some are related to writing blog posts. Nine notebooks were related

to personal practicing, such as solving book exercises or exploring new things. Five notebooks

described how to use other tools and libraries. Three notebooks are related to books. A notebook

is part of a presentation. Given the number of notebooks related to education, understanding

and supporting notebooks may greatly impact educational projects.

Given that most notebooks belong to educational projects, we analyzed to which area they

belong the most. We counted 28 notebooks related to data exploration, using simple pandas

functions and plots. Ten notebooks were related to machine learning, with libraries such as

keras, sklearn, and lasagne. Additionally, six notebooks were related to data mining, with algo-

rithms for clustering and building decision trees. Five notebooks were related to data cleaning,

to transform a data format into another. While most notebooks were data-centric, we also found

notebooks related to other areas: programming (four notebooks), databases (three notebooks),

math problems (three notebooks), algorithms (three notebooks), computer vision (two note-

books), games (one notebook), computer graphics (one notebook), and physics (one notebook).

The last two notebooks only had markdown cells with tasks for students. These results indicate

that most notebooks are data-centric analyses.

Despite most notebooks sharing areas and being data-centric, most of them use different

datasets for their analyses. Some of them use toy datasets available in existing libraries – others

use real data from many different contexts.

3.3.5 Corpus

We analyzed the declared programming languages of all unique notebooks. Figure 3.4 presents,

in the log scale, the 15 most declared programming languages we found. Python is by far the

3.3 Materials and Methods 50

py
tho

n
un

kn
ow

n R
jul

ia
sca

la
ba

sh
rub

y lua
sca

la2
11 c+
+

oc
tav

e
jav

as
cri

pt
matl

ab
ha

ske
ll

oc
am

l

Programming Language

1,000

10,000

100,000

1,000,000

No
te

bo
ok

s

953,654

39,636

13,6039,833

1,195 845 624 578 492 474 468 426 364 347
155

Figure 3.4: Top 15 most declared programming languages. Notebooks axis in logarithmic scale.

most used programming language, corresponding to 93.11% of the notebooks. It is followed by

R (1.33%) and Julia (0.96%). The popular group has slightly more Julia notebooks (1.05%) than

R notebooks (0.99%), but Python still represents most of the notebooks. All notebooks in the

sample declare Python as their programming language. However, two notebooks could declare

any or no programming language, as they do not have code cells. Moreover, two notebooks are

composed mostly of cell magics with SQL queries. We also found five Python notebooks in the

sample that used bang expressions to invoke shell commands.

Due to the interactive nature of notebooks, most programming languages are scripting lan-

guages. Nonetheless, Jupyter is also used for compiled languages such as C++ and Haskell. A

total of 39,636 unique notebooks do not declare a programming language, and 30,953 of them

use nbformat lower than 4, which predates the release of the language-agnostic Jupyter. Al-

though this is a strong indication that these notebooks also use Python, we opted for removing

them from Python-specific analyses.

Since most notebooks contain Python code (953,654) and questions RQ.N3, RQ.N4, and

RQ.N7 require language-specific analyses, we focus on Python notebooks to answer these ques-

tions. We extracted declared versions and cells with metadata from Python notebooks, and we

used the Python AST to extract Python constructs and imported modules. The most used version

is Python 2.7, which corresponds to 36.38% of the Python notebooks. However, by combining

minor releases, Python 3 surpassed Python 2. In fact, 63.53% of the Python notebooks use

Python 3. The remaining did not declare a version. For RQ.N3 and RQ.N4, we used only valid

Python notebooks (i.e., notebooks with a valid Python syntax in all code cells). Valid Python

notebooks correspond to 886,668 (92.98%) notebooks. For RQ.N7, we did not have this re-

3.3 Materials and Methods 51

Code cells
1

8

14

25

50
max: 797

0

10,000

20,000

30,000

40,000

No
te

bo
ok

s

Maximum value in execution counters
Code cells

25 0 25 50 75 100 125 150 175 200 225 250 275
1

13

29

70

155
max: 11037

(a)

Code cells
1

6

11

21

43
max: 602

0

500

1,000

1,500

No
te

bo
ok

s

Maximum value in execution counters
Code cells

25 0 25 50 75 100 125 150 175 200 225 250 275
1

8

17

39

85
max: 2705

(b)

Figure 3.5: Distribution of code cells and maximum execution counter for overall group (a) and
popular group (b).

striction, because we ran only executed cells of Python notebooks with unambiguous execution

order, which correspond to 753,405 (79.00%) notebooks.

In addition to these restrictions, we analyzed only executed notebooks for RQ.N5 and

RQ.N6, corresponding to 932,382 (91.03%) notebooks. Figure 3.5 presents the distributions of

code cells and maximum execution counter value by executed notebooks for the overall group

(a) and popular group (b). Both distributions concentrate at the beginning of their histograms,

indicating that notebooks are relatively small both in the number of code cells and in the num-

ber of maximum execution counter, compared to the size they can get. However, the mismatch

between the number of code cells and the maximum execution counter number – which can be

observed both by comparing the median or the visual representation – indicate that notebooks

have more executions than cells (i.e., they necessarily have skips). Popular notebooks are even

smaller (shorter medians), and the difference between the maximum execution counter and the

number of code cells is smaller than that of the overall group as well. It indicates that they have

fewer skips. Their execution counter is closer to the code definition.

Figure 3.6 summarizes the corpus of this chapter. The percentages reported in each research

question’s analysis refer to the number presented in this corpus unless stated otherwise. While

we indicate the number of samples in each group in this figure, we still discuss all the samples in

the analyses, since some restrictions do not hold for manual qualitative analyses. For instance,

to assess the execution order (RQ.N6), we do not need to attain to notebooks with unambiguous

execution order, since we are not using automatic analyses. Instead, we can try to understand

the order in ambiguous notebooks based on the context.

3.4 Results 52

Valid Syntax
886,668 notebooks
RQ.N3 (modularization), RQ.N4 (tests)

28,145 popular notebooks 65

Python Unambiguous
Execution Order

753,405 notebooks
RQ.N7 (reproducibility)

22,332 notebooks 53

Unambiguous
Execution Order

802,474 notebooks
RQ.N6 (execution order)

28,059 53

Python Notebooks
953,654 notebooks
Python 2.7: 36.38%
Python 3: 63.53%
Unknown: 0.08%

29,845 69

Executed
Notebooks

932,382 notebooks
RQ.N5 (executed data)
RQ.N6 (execution order)

32,821 64

Unique
Notebooks

1,024,269 notebooks
RQ.N1 (literate programming), RQ.N2 (name)

Python: 93.11%
R: 1.33%
Julia: 0.96%
Unknown: 3.87%

Popular: 38,063 notebooks
Sampling: 69 notebooks

Valid
Format

1,251,074 notebooks
234,729 repositories

Data Acquisition
July 22nd, 2020
1,274,872 notebooks
235,643 repositories

Data Acquisition
April 16th, 2018
1,450,071 notebooks
265,888 repositories

Figure 3.6: Notebook corpus and its partitions used in the analyses.

3.4 Results

In this section, we present the results we collected to answer the research questions of this

chapter. We opted to remove the full discussions of the research questions related to prospec-

tive data (RQ.N1– RQ.N4) to keep the chapter more concise and closer to the scope of the

thesis. Table 3.3 presents a summary of the findings for these questions. A brief discussion of

all research questions can be found in the paper we published in the International Conference

on Mining Software Repositories (PIMENTEL et al., 2019b), and the complete discussion can

be found in the extended paper that was accepted in the Empirical Software Engineering (PI-

MENTEL et al., 2021). The following subsections discuss the research questions related to

retrospective data (RQ.N5– RQ.N7).

3.4.1 RQ.N5. Do users store notebooks with retrospective data?

Outputs. As stated in Section 3.3.2, we collected 932,382 executed notebooks, which corre-

sponds to 91.03% of the unique notebooks. These notebooks have retrospective data.

3.4 Results 53

Table 3.3: Results of research questions related to prospective data.
RQ Results

RQ.N1.
How do
notebooks use
literate
programming
features?

Answer: Most notebooks have Markdown cells. Moreover, Markdown cells
correspond to almost one-fourth of the cells. On the other hand, the text is often
short, and the most used elements are simple headers and paragraphs, despite the
possibility of displaying lists, images, links, and other formatted elements. Their
position indicates that users give more attention to the beginning of notebooks.
In the sample, we observed that notebooks use headers to separate sections and
describe code cells. In addition to describing code cells, notebooks also use
Markdown to describe the problem/goal they are tackling, describe tasks, and
conclude the document.
Implications: The small size and usage of few Markdown elements potentially
compromise the understandability of the notebook. Additionally, Markdown
could provide descriptions on how to reproduce the notebook, such as indicating
libraries to install or the execution order. Hence, reproducing the last cells of an
average notebook that does not have Markdown cells may represent a challenge.

RQ.N2.
How are
notebooks
named?

Answer: Most users seem to change the default name in the titles of their
committed notebooks and use meaningful but short names. On the other hand,
many users do not seem to be concerned about OS-based restrictions and
conventions in naming files. In the sample, we observed that some repositories
define a sequence of execution for the notebooks.
Implications: Disregarding OS-based naming constraints may hamper the
reproducibility when using other operating systems. The sequencing in the
naming scheme is important both for the reproducibility (e.g., executing a
notebook that depends on data generated by a previous notebook in the
sequence) and for the literate aspect of the notebooks (e.g., executing a notebook
that deepens on the explanation of a concept that was introduced in previous
notebooks).

RQ.N3.
How do
notebooks use
modules,
functions, and
classes?

Answer: On the one hand, users seem to create functions in notebooks that have
more complex code with control flow constructs. On the other hand, users do not
seem to extract functions to local modules, given the fewer number of notebooks
with local modules. Class definitions are indeed rare, but it may be a
consequence of the multi-paradigm design of Python.
Implications: While defining functions and classes inside notebooks achieves
the benefits of reusability and abstraction, these benefits are limited to internal
use of the notebook. Local modules could be better explored to extend the
reusability to other notebooks and scripts, and reduce the size of code cells in
notebooks. However, keeping the code inside the notebook can be good for
reproducibility, as it allows users to share only the notebook file with all code.

RQ.N4.
How are
notebooks
tested?

Answer: Very few notebooks import testing modules. However, we observed in
the sampled notebooks that some repositories attempt to test code related to the
notebook outside the notebook environment.
Implications: There is an opportunity for improving tests on notebooks. An
appropriate test suite is important for assuring the reproducibility in other
environments. However, for notebook code that is based on data exploration, the
existing tools are not sufficient and too intrusive. It also opens the opportunity
for proposing testing approaches for notebooks.

3.4 Results 54

Table 3.4: Output formats in cells and notebooks. Note that a cell can have multiple output
formats, thus, the percentages add up to more than 100%.

Overall Popular
% of cells % of executed % of cells % of executed

Format with output notebooks with output notebooks

Text 68.11% 82.00% 58.48% 67.21%
Stream 36.08% 70.47% 44.32% 65.28%
Image 22.67% 51.69% 19.84% 43.61%
HTML/JS 16.23% 36.92% 12.08% 26.98%
Error 2.28% 14.86% 1.15% 6.92%
Formatted 1.22% 1.91% 1.31% 1.75%
Extension 0.44% 1.56% 0.32% 0.97%
PDF 0.08% 0.12% 0.08% 0.11%

Among the executed notebooks, 54.31% of the code cells had an output, and 96.20% of

the notebooks had at least one cell with an output. Despite having fewer code cells, popular

notebooks have more code cells with an output, proportionally (59.66%).

Table 3.4 presents the percentage of cells and notebooks with each output format for both

the set of executed notebooks and executed popular notebooks. Note that a cell can have mul-

tiple output formats. Thus, the percentages add up to more than 100%. The same happens for

notebooks. In this table, Text represents the textual output of cells, and Stream represents the

output of print statements and exceptions. Image represents PNG, JPEG, and SVG formats,

which are the default image formats supported by Jupyter. Formatted represents Markdown and

LATEX formats. Finally, Extension combines all extension-specific formats. The most common

extension formats are Jupyter Widgets, plotly, and bokeh formats. Very few notebooks use the

extension formats. Note in this table that most executed notebooks have outputs in cells. Note

also that despite having proportionally more executed cells with outputs, the popular group has

a smaller percentage of all output formats. It might indicate that cells in the overall group tend

to have multiple outputs at once, while cells in the popular group tend to be more focused on a

smaller number of outputs.

Sampled Notebooks. In the 69 sampled notebooks, only five notebooks (7.25%) do not have

execution data. Two of them are the notebooks mentioned before that only have tasks descrip-

tions in the Markdown. In the notebooks with retrospective data, we found eight types of output

data: 53.62% of the notebooks with results on cell outputs, 5.80% with accidental results on

cell outputs (e.g., functions that configure matplotlib plots returning objects at the end of cells

whose main goal is to display plots), 72.46% with stream outputs, 46.38% with images, 43.48%

with tables, 21.74% with warnings, 14.49% with exceptions, and 7.25% with interactive com-

ponents that did not load without re-executing the notebooks. Some of these components use

3.4 Results 55

[15]: just_dummies2 = pd.get_dummies(nycmodel1['zipcodeHour1'])

[16]: just_dummies2.shape

[16]: (613548, 4673)

[17]: just_dummies2.head()

[17]: 10001_0 10001_1 10001_10 ... 11451_7 11451_8 11451_9
0 1.0 0.0 0.0 ... 0.0 0.0 0.0
1 0.0 0.0 0.0 ... 0.0 0.0 0.0
2 0.0 0.0 0.0 ... 0.0 0.0 0.0
3 0.0 0.0 0.0 ... 0.0 0.0 0.0
4 0.0 0.0 0.0 ... 0.0 0.0 0.0

[5 rows x 4673 columns]

[19]: just_dummies2.to_csv('just_dummies2.csv', sep='\t',␣
↪→encoding='utf-8')

KeyboardInterrupt Traceback (most recent call last)
<ipython-input-19-8a564964362c> in <module>()

1 os.chdir("/Users/binfang/Documents/NYCDSA/project/Project_5/
↪→data/processed_data")

----> 2 just_dummies2.to_csv('just_dummies2.csv', sep='\t',␣
↪→encoding='utf-8')

1

Available at:

Figure 3.7: Snippet of pythoncode/improvedlm.ipynb from the GitHub repository poorbaby/
Predict-New-York-Taxi-Demand.

HTML and JS in the output, while others use extensions. Finally, we also identified that 27.54%

of the notebooks write files in addition to the usual notebook output.

Note that these categories are somewhat different than the ones we reported in Table 3.4.

This mainly happens because we analyzed the outputs in the sampled notebooks using the

Jupyter Lab interface instead of reading their JSON representations. It leads to two major

consequences. First, as humans, it is easier for us to visually identify that a cell has a table than

to identify that a cell outputs HTML to display the table – everything is HTML in the Jupyter

Lab interface. Similarly, we can easily identify whether a stream output is a warning message

or just the result of a print statement. Second, in some situations, we are only able to identify

one output type, despite a given cell generating at the same time multiple outputs (e.g., a pan-

das table has both an HTML representation and a text representation). This happens because

Jupyter only displays the most appropriate for the application in such situations but stores both

results in the notebook file.

Figure 3.7 presents a snippet of one of the sampled notebooks that has a cell with no output

(In [15]), and cells that output a text string at Out[16], an HTML table at Out[17], and

an error at Out[19]. It is common to find notebooks containing multiple output formats.

3.4 Results 56

RQ.N5. Do users store notebooks with retrospective data?

Answer: Most notebooks store cells with outputs.

Implications: This result fosters reproducibility. Knowing the expected output allows users

to re-run notebooks and check if they reproduce the results.

3.4.2 RQ.N6. How are notebooks executed?

Executed Notebooks. Among the 932,382 executed notebooks, 21.11% had non-executed

code cells, and 62.14% had empty cells. Figure 3.8 presents the distribution of code cells in

the notebooks. Note that the percentage of executed code cells drops towards the bottom of

notebooks, while the percentage of non-executed and empty cells grows. While 59.15% of

executed notebooks finish with empty cells, only 11.35% of executed notebooks have empty

cells among non-empty ones. Popular notebooks are 38.43% less likely to have non-executed

cells, 38.80% less likely to have empty cells in the end, and 56.14% less likely to have empty

cells among non-empty ones.

Unambiguous Execution Order. We collected 802,474 notebooks with unambiguous execu-

tion order (i.e., the ones that neither have repeated values in execution counters nor executing

cells, marked with an asterisk). This number corresponds to 86.07% of the executed notebooks.

Among the notebooks with unambiguous execution order, 36.45% have out-of-order cells. The

percentage of unambiguous notebooks in the popular group is very close (85.49%), but only

22.37% of them have out-of-order cells.

By following the execution counters’ sequence in unambiguous execution order notebooks,

we counted how many skips occurred. Since skips represent cell executions without explicit

Executed cell Non-executed cell Empty cell

Beginning Middle End

%
 o

f C
el

ls

(a)

Beginning Middle End

%
 o

f C
el

ls

(b)

Figure 3.8: Distribution of code cells in executed notebooks (a) and popular notebooks (b).

3.4 Results 57

0

50,000

100,000

150,000

No
te

bo
ok

s

0 3 6 9 12 15 18 21
Skips

0

1

2

4

8
max: 220

(a)

0

2,000

4,000

6,000

8,000

10,000

12,000

No
te

bo
ok

s

0 3 6 9 12 15 18 21
Skips

0

1

3

7
max: 157

(b)

Figure 3.9: Distribution of skips in notebooks with unambiguous execution order (a) and popu-
lar notebooks (b).

definitions, they may indicate the presence of hidden states. Figure 3.9 presents the distribution

of skips by notebooks. 76.88% of unambiguous execution order notebooks have at least one

skip. A skip contains 12.83 executions on average. By considering only skips in the middle

(i.e., excluding skips in the first cell), the percentage of notebooks with skips drops to 66.15%.

Additionally, the average of skipped executions drops to 10.33. As expected, all these numbers

drop as well for popular notebooks: 57.54% of them have skips, and 47.84% of them have skips

in the middle. A skip contains 9.84 executions on average, or 8.31 executions when we only

consider skips in the middle.

Sampled Notebooks. Among the 69 sampled notebooks, we found 28 unordered notebooks for

exploratory reasons (40.58%), such as updating plots, reloading data, or changing the algorithm.

Among them, 19 notebooks had cells defining names (i.e., variables and functions) executed

after the cells that use them, leading to non-reproducible notebooks. Moreover, 15.94% of the

notebooks had ambiguous execution order due to the repetition of cell numbers, making it hard

to execute them. In some cases, the repetition occurred following the top-down order, indicating

an attempt to re-execute the notebook in a new session that did not run all cells. In other cases,

the notebook had results from two separate sessions, with one of them executing cells at the

beginning and the other executing cells at the end. Some unordered notebooks had repeated cell

numbers spread throughout the notebook, making it hard to understand the desired execution

intention.

We also observed that 8.70% of the sampled notebooks have cells that were noticeably

edited after their execution (e.g., cells with output that could not be generated by that cell code),

and 36.23% of the notebooks have non-executed code cells, making it hard to decide which

3.4 Results 58

[10]: engine = create_engine('postgresql://postgres:root@localhost:5432/
↪→'+dbname)

cancellations.to_sql("cancellations", engine, if_exists = "replace")
operations.to_sql("operations", engine, if_exists = "replace")
airports.to_sql("airports", engine, if_exists = "replace")

Join airport_cancellations.csv and airports.csv into one table

[]:

Query the database for our intial data

[38]: cur = conn.cursor()
cur.execute("""SELECT * FROM age""")
ap = cur.fetchall()
print ap

File "<ipython-input-38-d34049c3d36a>", line 4
print ap

ˆ
SyntaxError: Missing parentheses in call to 'print'

1.2 What are the risks and assumptions of our data?

Part 2: Exploratory Data Analysis

2.1 Plot and Describe the Data

[]: ap.head()
ap.describe()

1

Available at:

Figure 3.10: Snippet of pparker-roach/project_7-SANDBOX.ipynb from the GitHub repository
mohsseha/DSI-BOS-students.

cells should be executed. Nonetheless, 32.00% of these notebooks with non-executed cells had

them at the end of the notebook, indicating that the users stopped executing the cells at a given

moment. Additionally, 16.00% of these notebooks have non-executed code cells with only code

comments. We also found that a notebook had an incomplete code cell that was not executed,

and a notebook had non-executed cells after an exception, which might have prevented the user

from running the end of the notebook using the Run all cells option.

Figure 3.10 presents a snippet of one of the sampled notebooks. This notebook has an

empty cell between two Markdown cells, a skip in the execution count, and non-executed code

cells in the end. While the skip in the snippet is from In [10] to In [38], the actual skip in

the notebook is from In [17], as the notebook has the cells in the wrong order. Having cells

in the wrong order is also a source of hidden states in this case: the cell In [12] appears at

the beginning of the notebook, but it redefines the variables cancellations, operations,

and airports used in the In [10], presented in the snippet. Hence, executing this notebook

following the cell execution counter would fail.

3.4 Results 59

RQ.N6. How are notebooks executed?

Answer: Many unambiguous execution order notebooks have non-executed code cells,

out-of-order cells, and skips in the execution counter. All these characteristics hinder the

reasoning about execution states. The number of notebooks with skips and the average size

of skips drop when we exclude skips at the beginning of the notebooks. A possible cause

for these skips happening only at the beginning of a notebook is the re-execution of all of

its cells without restarting the kernel.

Implications: There is an opportunity for proposing approaches that measure non-executed

code cell, out-of-order cells, and skips as code smells in notebooks, i.e., structures in the

code that violate design principles and can negatively impact quality (GAROUSI; KÜÇÜK,

2018). Fortunately, most of these code smells are easily fixable by restarting the kernel and

executing all cells again before committing. Nonetheless, such an approach could detect

out-of-order cells by looking not only to cell numbers but also to variable usages occurring

before their definition.

3.4.3 RQ.N7. How reproducible are notebooks?

Handling Dependencies. To answer RQ.N7, we conducted a reproducibility study in which we

attempted to execute all 753,405 Python notebooks with unambiguous execution order. Among

these, 94,183 (12.50%) belong to repositories that declared module dependencies (which cor-

responds to 8.78% of the repositories that have Python notebooks with unambiguous execution

order). Proportionally, a higher percentage of popular notebooks belong to repositories that

declared dependencies (21.77%), suggesting that popular notebooks have more intention of

providing directions for their reproducibility. These repositories correspond to 24.63% of the

popular repositories that have Python notebooks with unambiguous execution order.

Among repositories with dependencies, 79.85% use requirements.txt, while 45.62%

use setup.py. Many of these repositories (26.09%) have both setup.py files and re-

quirements.txt files. Moreover, some repositories even have more than one of these files.

In addition to these files, we found 865 notebooks that belong to repositories with Pipfile.

Popular notebooks are 7.80% less likely to have requirements.txt files, 22.20% more

likely to have setup.py files, 13.71% more likely to have both, and 50.77% less likely to use

Pipfile. Using more setup.py and less requirements.txt may indicate that popular

3.4 Results 60

notebooks are part of repositories meant to be redistributed and used together with other projects

(e.g., libraries) – in opposite to repositories that define the complete Python environment for

their standalone execution. The reason they use less Pipfile may be related to their age and

the time they needed to become popular, as Pipfile is a much more recent system.

Not all dependency declarations are valid. In the first execution mode (shared + execution

counter), we attempted to install the dependencies for these notebooks in conda environments.

However, the dependencies of 59.30% of the notebooks failed to install. To install the depen-

dencies, we first installed all the setup.py files in the repository. Then, we installed the

requirements.txt files. Finally, we installed the Pipfile files. The failure rates for

these files were 65.53%, 57.21%, and 60.69%, respectively.

The failure rate for the installation of requirements.txt was lower than the other

formats. While the requirements.txt is a declarative format in which the module ver-

sion is pinned, the setup.py is a generic Python script that supports any flexible installation

code. Thus, setup.py is more susceptible to errors. In comparison to Pipfile, require-

ments.txt is a well-established format that has been used for many years. Pipfile, on the

other hand, was introduced less than four years ago, and its specification still goes through

constant revisions.

The failure rate of setup.py was about the same for popular notebooks (64.92%). How-

ever, requirements.txt and Pipfile were less likely to fail: 47.42%, and 40.91%,

respectively. The reason it happened may be related to the intention of the users when creating

these files. Usually, Python developers create setup.py to install libraries and command-line

tools (PYPA, 2020). This intention does not change according to the repository popularity.

However, requirements.txt and Pipfile have the intention of either describing the de-

pendencies of a complete Python environment or describing the dependencies of an application.

We suppose popular repositories may design these files describing only the project dependen-

cies to allow other users to use it, while non-popular repositories may use the pip freeze

command to describe all the environment dependencies for a requirements.txt file and

not face issues from other users.

Among the reasons for installation errors, we identified that 29.17% have files that re-

quire other unavailable files (e.g., sub-requirements and downloads from unavailable servers),

29.17% have malformed files (i.e., wrong syntax or conflicting dependencies), 25.59% have

files that require a previous installation of Python packages (e.g., setup.py requires Cython

to compile and build a package), 19.69% require external tools (e.g., compilers and libraries),

8.43% have files designed for other systems (e.g., Raspberry Pi and Windows), and 0.98% have

3.4 Results 61

dependencies that do not support the declared Python version (e.g., the repository has a Python

2 notebook, but the setup.py requires a module that dropped support to Python 2 and did

not pin the module version). Popular notebooks have fewer errors related to unavailable files

(20.28%), malformed files (20.28%), being designed for other systems (5.94%), or having de-

pendencies that do not support the Python version (0.10%), but more errors related to requiring

a previous installation of a Python dependency (33.87%) or an external tool (25.09%). It is

expected since there was no standard way to define dependencies during the development of

most of these notebooks. The specification for Python build system requirements was proposed

in May 2016 and implemented in March 2017 (CANNON; SMITH; STUFFT, 2016).

We were able to install the dependencies for 40.70% of the notebooks. In addition to these

notebooks, we prepared anaconda environments for the notebooks that did not declare depen-

dencies (87.48% of them). Unlike previous conda environments, an anaconda environment

comes with a comprehensive set of scientific Python packages, such as numpy, matplotlib, and

pandas. Combining both the set of notebooks for which we were able to install the dependencies

and the set of notebooks that did not declare dependencies, we had 697,398 notebooks on our

first execution mode. The installation success rate for popular notebooks was close: 41.38%.

Isolating Executions and Exploring Different Execution Orders. While the first execution

mode used conda environments to isolate the dependency installation, it did not isolate the

interactions between notebooks and the OS. Consequently, one execution could interfere with

another by changing state in the shared OS. To address this limitation, we run notebooks inside

isolated docker containers. Additionally, the first execution mode only executed notebooks by

following the order of cell execution counters, which can lead to false negatives with respect to

reproducibility assessment. In the other modes, we follow both the cell execution counter and

the top-down order.

We also prepared bloated docker images in which we attempted to install all modules im-

ported by all Python notebooks that we collected. As expected, many installations failed and

we left them out of the image. Nonetheless, most popular modules, which were imported by

more than 2,000 notebooks in our corpus, were successfully installed. The only exceptions were

GraphLab (imported by 11,092 notebooks), PyTorch (imported as torch by 7,745 notebooks

and as torchvision by 3,433 notebooks), gensim (imported by 7,174), and GeoPandas (im-

ported by 3,350). GraphLab requires a license to use. PyTorch did not work in our environment.

GeoPandas and gensim had binary dependencies that we could not install. In addition to these

dependencies, we also installed common tools, compilers, and interpreters in all docker con-

tainers to reduce the number of failures due to the absence of external tools.

3.4 Results 62

Table 3.5: Association rules related to timeout
Mode Antecedent Consequent Support Confidence Lift

Isolated +
Exec. Counter unittests timeout 0.09% 28.80% 11.56

Isolated +
Exec. Counter raise timeout 0.17% 6.79% 2.73

Isolated +
Exec. Counter while timeout 0.32% 4.21% 1.69

Isolated +
Top-Down unittests timeout 0.11% 35.26% 9.81

Isolated +
Top-Down raise timeout 0.21% 8.50% 2.37

Isolated +
Top-Down while timeout 0.45% 5.86% 1.63

Notebook Executions. We report five execution modes by alternating both the execution order

and the environment. In the first one (shared + execution counter), we executed notebooks

following the cell execution counter in conda and anaconda environments installed in a shared

system. The second one (isolated + execution counter) uses the anaconda docker image and runs

notebooks following the cell execution counter. The third one (isolated + top-down) also uses

the anaconda docker image, but we execute the cells following the top-down execution order.

In the fourth one (bloated + execution counter), we use the bloated docker image to execute

notebooks following the cell execution counter. Finally, in the fifth mode (bloated + top-down),

we also use the bloated docker image to execute in the top-down order. Due to time constraints,

we could not install the dependencies from the dependency files in the docker containers. Thus,

we restricted the executions in the isolated modes only to notebooks in repositories that did

not have dependency files. Additionally, we executed all notebooks in bloated modes without

installing specific packages from dependency files of each repository.

In our experiments, many notebooks failed to execute all cells. Some failed because their

execution exceeded a time limit of 5 minutes, while others failed due to an exception. Fig-

ure 3.11 presents the percentage of notebooks that failed due to timeout, in addition to the 10

most common exceptions the notebooks presented in each execution mode of our assessment.

By mining association rules related to timeout on the executions of the isolated modes, we

found that importing unittests, defining “raise” and “while” statements increases the frequency

of timeouts by at least 9.81, 2.37 and 1.63 times, respectively, as presented in Table 3.5.

The bloated docker environments failed much less due to ImportError and ModuleNot-

FoundError than the other environments, since these exceptions are related to missing depen-

dencies. On the other hand, these environments failed much more due to AttributeError, Key-

3.4 Results 63

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000

ImportError
NameError

FileNotFoundError
ModuleNotFoundError

<Other>
IOError

<Timeout>
TypeError

ValueError
AttributeError

SyntaxError
StdinNotImplementedError

23.06%
15.92%

9.26%
9.25%

4.73%
4.58%

1.28%
1.27%
1.24%
1.16%
1.12%
1.05% Shared + Exec. Counter (1)

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000

ImportError
NameError

ModuleNotFoundError
FileNotFoundError

<Other>
IOError

<Timeout>
SyntaxError

TypeError
ValueError

StdinNotImplementedError
AttributeError

23.98%
15.22%

11.33%
8.98%

4.85%
4.35%

2.37%
1.26%
1.20%
1.13%
1.09%
1.00% Isolated + Exec. Counter (2)

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000

ImportError
ModuleNotFoundError

FileNotFoundError
<Other>

IOError
NameError

<Timeout>
TypeError

SyntaxError
ValueError

AttributeError
StdinNotImplementedError

26.48%
12.55%

10.29%
5.69%

5.07%
4.16%

3.53%
1.39%
1.35%
1.34%
1.19%
1.13% Isolated + Top-Down (3)

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000

NameError
ImportError

<Other>
FileNotFoundError

AttributeError
IOError

KeyError
<Timeout>

RuntimeError
ModuleNotFoundError

SyntaxError
ValueError

15.27%
11.63%

9.74%
8.50%

8.28%
5.90%

4.84%
3.67%
3.56%

2.31%
2.10%

1.56% Bloated + Exec. Counter (4)

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000
Notebooks

ImportError
<Other>

FileNotFoundError
AttributeError

IOError
KeyError

NameError
<Timeout>

RuntimeError
ModuleNotFoundError

SyntaxError
ValueError

13.07%
11.14%

9.81%
9.05%

6.87%
5.63%

4.52%
4.11%

3.62%
2.56%

2.29%
1.84% Bloated + Top-Down (5)

Figure 3.11: Failure reasons for the executions in each execution mode. The blue bars represent
the Top 10 exceptions. The “Timeout” orange bar represents executions that we stopped when
they took 5 minutes to run. The “Other” orange bar groups all the other exceptions that are not
part of the Top 10.

3.4 Results 64

Table 3.6: Association rules related to skips and NameError
Mode Antecedent Consequent Support Confidence Lift

Isolated +
Exec. Counter Skips in the middle NameError 13.41% 20.32% 1.39

Isolated +
Exec. Counter Skips NameError 14.21% 18.50% 1.27

Isolated +
Top-Down Skips in the middle NameError 3.05% 4.62% 1.18

Isolated +
Top-Down Skips NameError 3.56% 4.63% 1.19

Error, and RuntimeError. The former two exceptions are related to updates on libraries that

deprecate and change APIs, and the latter exception may be related to conflicting versions of

libraries. Hence, simply installing dependencies from imports does not solve all dependency

problems. In fact, with the growth of these other types of exceptions, the percentage of note-

books that run all cells did not improve much. These issues would be better addressed through

the proper definition of dependencies with their versions in dependency files.

Surprisingly, in the first execution mode (in which we tried to install declared dependen-

cies), 44.18% of the notebooks from repositories with declared dependencies failed with one

of these errors. In contrast, only 31.61% of the notebooks from repositories without declared

dependencies failed with these errors. It probably happened because we used anaconda envi-

ronments with more pre-installed dependencies for the latter ones. Still, it indicates that many

dependency files do not declare all the notebook dependencies. Popular notebooks were about

13% more likely to fail in both situations.

Another very common exception in the executions that followed the cell execution counter

was NameError. This exception occurs when Python tries to access a variable that was not

defined. This exception is related to hidden states and out-of-order cells. By mining association

rules over features from executions of the isolated modes, we found that skips raise the chance

of NameError exceptions, as presented in Table 3.6. Skips increase more the likelihood of

exceptions when we run notebooks following the cell execution counter than when we run

them in top-down order (1.27 times vs. 1.19 times). Moreover, having skips in the middle

raises even more the likelihood of exception in the execution counter order (1.39 times). Since

this exception occurred much more on executions that followed the execution counter than on

executions that followed the top-down order, this suggests that even though users can execute

the notebook at any other and define and redefine variables, they still tend to define variables in

the top-down order.

Finally, the other very common exceptions were FileNotFoundError and IOError. These

3.4 Results 65

errors occur when users use absolute paths to access data files or do not include the data in the

repositories.

Reproducibility Results. Table 3.7 presents the reproducibility results for each execution

mode, considering each normalization described in Table 3.2, and Table 3.8 presents the repro-

ducibility results for the popular notebooks. The normalization columns of the first execution

mode (shared + execution counter) are empty because we originally did not apply any normal-

ization. In these tables, the percentages refer to the number of notebooks that we attempt to run

(i.e., we exclude failed installations in the first execution mode and notebooks with dependency

descriptors in isolated modes). Also, we considered notebooks that resulted in a timeout and

notebooks with exceptions as non-reproducible. This last assumption may not be true since

reproducible notebooks could have exceptions in them.

In Table 3.7, we calculated that about 11% of the executed notebooks (or 6% in Table 3.8

for the popular group) originally had exceptions, and about 7% of the notebooks (popular group:

4% in Table 3.8) had cells with outputs after the original exception. While we counted them as

non-reproducible, these exceptions are likely the expected behavior of these notebooks. How-

ever, as we did not compare the exceptions, we cannot indicate whether they are reproducible.

The percentage of executions that run all cells ranged from 22.57% to 26.09%. These

results are very close to the reproducibility rate of 24.9% that Collberg et al. (2014) achieved in

their study of reproducibility in general computer systems research. Their study only attempted

to compile the source code and did not check the execution results. In our case, the shared

+ execution counter mode was able to run more notebooks (26.09%) than the other modes,

probably due to the installation of dependency files. Additionally, the bloated + execution

counter mode had the smallest percentage of notebooks that run all cells (22.57%). However,

these results do not reflect the number of notebooks that produce the same results.

The worst reproducibility rate was observed for the first execution mode (shared + execution

counter) with no normalization (4.90%) and the best rate occurred for the bloated + top-down

mode after the image normalization (15.04%), as expected. The image normalization not only

applies all the previous normalizations shown in Table 3.2, but it is also the most susceptible to

false positives, as it ignores differences in image results by considering that these differences

could be caused by small changes in module updates. The boated + execution counter mode

had the second-best results (14.40%, after the image normalization).

Popular notebooks were more reproducible in all situations. The percentage of executions

that run all cells ranged from 31.84% to 36.27%. In this case, the isolated + top-down mode

3.4 Results 66

Table 3.7: Reproducibility results for all notebooks.

Shared +
Exec.

Counter (1)

Isolated +
Exec.

Counter (2)

Isolated +
Top

Down (3)

Bloated +
Exec.

Counter (4)

Bloated +
Top

Down (5)

Attempted
executions 697,398 590,354 590,358 672,232 672,235

Run all
cells

181,955
(26.09%)

137,208
(23.24%)

152,555
(25.84%)

151,730
(22.57%)

170,949
(25.43%)

Stopped by
timeout

8,903
(1.28%)

13,969
(2.37%)

20,847
(3.53%)

24,690
(3.67%)

27,652
(4.11%)

Stopped by
exception

506,539
(72.63%)

439,177
(74.39%)

416,956
(70.63%)

495,296
(73.68%)

473,324
(70.41%)

Had exception
originally

80,520
(11.55%)

67,762
(11.48%)

66,226
(11.22%)

76,151
(11.33%)

74,816
(11.13%)

Output after
exception

55,138
(7.91%)

46,165
(7.82%)

43,459
(7.36%)

52,042
(7.74%)

49,287
(7.33%)

Same results
No
normalization

34,148
(4.90%)

29,927
(5.07%)

33,555
(5.68%)

58,365
(8.68%)

58,910
(8.76%)

Encode 29,927
(5.07%)

33,555
(5.68%)

58,365
(8.68%)

58,910
(8.76%)

Execution
counter

39,976
(6.77%)

44,618
(7.56%)

70,050
(10.42%)

71,873
(10.69%)

Stream 42,306
(7.17%)

47,274
(8.01%)

72,449
(10.78%)

74,410
(11.07%)

Dictionary 42,306
(7.17%)

47,426
(8.03%)

72,449
(10.78%)

74,410
(11.07%)

Dataframe 45,773
(7.75%)

51,357
(8.70%)

75,708
(11.26%)

77,990
(11.60%)

Exception
path

45,773
(7.75%)

51,415
(8.71%)

75,708
(11.26%)

77,990
(11.60%)

Deprecation 48,138
(8.15%)

54,058
(9.16%)

79,763
(11.87%)

82,370
(12.25%)

White
space

48,138
(8.15%)

54,593
(9.25%)

79,763
(11.87%)

82,370
(12.25%)

Decimal 48,138
(8.15%)

55,161
(9.34%)

79,763
(11.87%)

82,370
(12.25%)

Date 48,138
(8.15%)

55,174
(9.35%)

79,763
(11.87%)

82,370
(12.25%)

Time 48,138
(8.15%)

55,183
(9.35%)

79,763
(11.87%)

82,370
(12.25%)

Memory 48,138
(8.15%)

55,404
(9.38%)

79,763
(11.87%)

82,370
(12.25%)

Image 64,214
(10.88%)

76,745
(13.00%)

96,783
(14.40%)

101,078
(15.04%)

3.4 Results 67

Table 3.8: Reproducibility results for the popular group.

Shared +
Exec.

Counter (1)

Isolated +
Exec.

Counter (2)

Isolated +
Top

Down (3)

Bloated +
Exec.

Counter (4)

Bloated +
Top

Down (5)

Attempted
executions 19,473 13,842 13,842 17,411 17,411

Run all
cells

6,864
(35.25%)

4,806
(34.72%)

5,021
(36.27%)

5,543
(31.84%)

5,858
(33.65%)

Stopped by
timeout

172
(0.88%)

280
(2.02%)

363
(2.62%)

639
(3.67%)

679
(3.90%)

Stopped by
exception

12,437
(63.87%)

8,756
(63.26%)

8,458
(61.10%)

11,224
(64.46%)

10,869
(62.43%)

Had exception
originally

1,201
(6.17%)

861
(6.22%)

843
(6.09%)

1,046
(6.01%)

1,032
(5.93%)

Output after
exception

873
(4.48%)

616
(4.45%)

584
(4.22%)

758
(4.35%)

727
(4.18%)

Same results
No
normalization

2,135
(10.96%)

1,610
(11.63%)

1,652
(11.93%)

2,590
(14.88%)

2,609
(14.98%)

Encode 1,610
(11.63%)

1,652
(11.93%)

2,590
(14.88%)

2,609
(14.98%)

Execution
counter

1,769
(12.78%)

1,821
(13.16%)

2,769
(15.90%)

2,801
(16.09%)

Stream 2,097
(15.15%)

2,142
(15.47%)

2,907
(16.70%)

2,935
(16.86%)

Dictionary 2,097
(15.15%)

2,146
(15.50%)

2,907
(16.70%)

2,935
(16.86%)

Dataframe 2,189
(15.81%)

2,243
(16.20%)

2,999
(17.22%)

3,029
(17.40%)

Exception
path

2,189
(15.81%)

2,243
(16.20%)

2,999
(17.22%)

3,029
(17.40%)

Deprecation 2,249
(16.25%)

2,310
(16.69%)

3,098
(17.79%)

3,134
(18.00%)

White
space

2,249
(16.25%)

2,332
(16.85%)

3,098
(17.79%)

3,134
(18.00%)

Decimal 2,249
(16.25%)

2,343
(16.93%)

3,098
(17.79%)

3,134
(18.00%)

Date 2,249
(16.25%)

2,343
(16.93%)

3,098
(17.79%)

3,134
(18.00%)

Time 2,249
(16.25%)

2,343
(16.93%)

3,098
(17.79%)

3,134
(18.00%)

Memory 2,249
(16.25%)

2,347
(16.96%)

3,098
(17.79%)

3,134
(18.00%)

Image 2,678
(19.35%)

2,846
(20.56%)

3,641
(20.91%)

3,712
(21.32%)

3.4 Results 68

could run more notebooks than the other environments, proportionally (36.27%). However, in

terms of producing the same results, the bloated + top-down mode dominated all the others,

reaching a reproducibility rate of 21.32% after the image normalization.

While the normalizations did not affect the ability to run notebooks, they almost doubled the

reproducibility rate (compared to the scenario when no normalization was applied). However,

not all normalizations were equally effective. The most effective normalizations were image,

execution counter, dataframe, deprecation, and stream. The deprecation normalization had more

effect than the dataframe one on the environments with all dependencies. This is probably due

to the fact that we installed the most recent version of packages in the bloated environments,

increasing the chance of having deprecations in them.

Table 3.9: Association rules related to executions that generate the same results after the execu-
tion counter normalization.

Mode Antecedent Consequent Support Confidence Lift

Isolated +
Exec. Counter

9 or less cells
(1st quartile) Same Results 3.84% 14.47% 2.22

Isolated +
Exec. Counter while Same Results 0.91% 11.95% 1.83

Isolated +
Exec. Counter class Same Results 0.88% 10.94% 1.67

Isolated +
Exec. Counter Skips in the middle Same Results 2.77% 4.19% 0.64

Isolated +
Exec. Counter Imports Same Results 3.66% 4.11% 0.63

Isolated +
Exec. Counter Unordered Same Results 0.80% 2.23% 0.34

Isolated +
Exec. Counter

37 or more cells
(4th quartile) Same Results 0.44% 1.98% 0.30

Isolated +
Top-Down

9 or less cells
(1st quartile) Same Results 4.00% 15.09% 2.07

Isolated +
Top-Down while Same Results 1.00% 13.16% 1.81

Isolated +
Top-Down class Same Results 0.96% 12.02% 1.65

Isolated +
Top-Down Skips in the middle Same Results 3.48% 5.28% 0.73

Isolated +
Top-Down Imports Same Results 4.29% 4.81% 0.66

Isolated +
Top-Down Unordered Same Results 1.55% 4.31% 0.59

Isolated +
Top-Down

37 or more cells
(4th quartile) Same Results 0.59% 2.62% 0.36

Since the execution counter normalization is among the ones that affected the most the

reproducibility rates without adding false positives, we decided to use it when mining associa-

tion rules. The association rules indicate that small notebooks, “while” definitions, and “class”

definitions raise the probability of obtaining the same results by 122%, 83%, and 67% when

3.5 Threats to Validity 69

following the execution counter order, and 107%, 81%, and 65% when following the top-down

order, respectively. On the other hand, we found that skips in the middle, imports, unordered

cells, and big notebooks decrease the chance of obtaining the same results by 36%, 37%, 66%,

and 70% when following the execution counter order, and 27%, 34%, 41%, and 64% when

following the top-down order, respectively, as presented in Table 3.9.

RQ.N7. How reproducible are notebooks?

Answer: We were able to successfully run between 22.57% and 26.09% of the notebooks

that we attempted to run. This number is close to the results of a previous reproducibil-

ity study (COLLBERG et al., 2014) about general computer systems research (24.9%).

However, the rates are way smaller (4.90% – 15.04%) when we count only notebooks that

produce the same results. The most common causes of failures were related to missing

dependencies, the presence of hidden states and out-of-order executions, and data acces-

sibility in all execution sets. In the experiments that we used docker environments with

most pre-installed dependencies, many executions also failed due to incompatible versions

of dependencies and conflicts.

Implications: While the reproducibility rate is comparable to the rate in general computer

systems research (COLLBERG et al., 2014), it is far from ideal. The identification of the

root causes suggests that there is an opportunity to improve the reproducibility rate in note-

books by devising approaches that address these problems. More specifically, managing the

dependencies of notebooks and guaranteeing the linear (top-down) execution order could

improve the reproducibility rate. It is worthy of noting that dependency resolution prob-

lems are also common in other contexts, such as building past snapshots of software (TU-

FANO et al., 2017). Additionally, tools such as ReproZip (CHIRIGATI et al., 2016) can

automatically capture dependencies (both libraries and data) and create packages includ-

ing these dependencies, thus ensuring reproducibility. ReproZip has a plugin for Jupyter

(REPROZIP, 2017).

3.5 Threats to Validity

This study attempts to obtain a picture of quality and reproducibility practices used in the design

of Jupyter Notebooks. As presented in Section 3.3, we have designed measures that capture

different aspects of notebooks that impact their reproducibility. These measures, however, have

some threats to validity that we discuss below.

3.5 Threats to Validity 70

Internal. While we used clean conda environments in the first execution mode (shared + ex-

ecution counter), we did not isolate the executions in the system. It means that a notebook

execution or dependency installation could install or modify system dependencies before the

preparation and execution of another notebook. We attempted to minimize this threat by run-

ning more analyses in isolated docker environments. However, in the additional analyses, we

did not attempt to install the dependencies declared in the repositories, due to time constraints.

Instead, we did try to install all modules imported by the notebooks in separate environments.

Additionally, we examined all notebooks from GitHub as valid subjects in this chapter.

We did not account for all the perils of mining repositories (KALLIAMVAKOU et al., 2014).

Some analyzed notebooks may not be intended to be reproducible and may not value quality.

For instance, students prepare exercises with the goal of studying for a course. These exercises

have a short life-span and are often not classified as engineered software projects (MUNA-

IAH et al., 2017). A basic check for notebooks containing words related to exercises (“as-

signment”, “course”, “exercise”, “homework”, “lesson”) returns 164,463 unique notebooks

(16.06%). Even though this check is very susceptible to false positives and false negatives,

it indicates that exercises are a solid use case for notebooks and deserve investigations. Other

use cases for notebooks (e.g., tutorial notebooks, research notebooks, dashboards, and others)

may also have different goals in terms of quality and reproducibility and also require further

investigations. In the sampled notebooks, we observed that education is a big use case for note-

books. Hence, even though these notebooks may have different goals in terms of quality and

reproducibility, it is still worth it to understand them to improve the support for these aspects.

Moreover, during sampling, we manually analyzed the characteristics of the notebooks.

This analysis is subject to human error. We attempted to mitigate this threat by comparing some

results with proxies on the database. However, these proxies are not complete (i.e., there are

things that we only observed in the sample) nor reliable for qualitative analyses (i.e., they do

not capture nuances that we could interpret by reading the notebook

Construct. The methods we use to answer the research questions aim to attain an approximated

answer since it is not possible to get accurate answers that precisely represent all notebooks

without false positives and false negatives. For instance, a module for statistical tests could

have “test” in its name and appear as an answer to RQ.N4 without being a module for testing

software. Similarly, we may not detect a testing module that does not have “test” or “mock” in

its name, and that does not appear in the testing tools taxonomy (PYTHON-WIKI, 2019).

Moreover, in the reproducibility study, we did not consider the maintainability of notebooks

3.5 Threats to Validity 71

and libraries. Many libraries might have been updated since the notebooks were originally de-

veloped. This should be a threat for the bloated execution modes, which uses arbitrary ver-

sions of the libraries. However, we found that these modes were more reproducible than the

shared environment, which attempted to install pinned versions declared in dependency files

(setup.py, requirements.txt, and Pipfile). Similarly, many repositories may have

been updated to account for library changes since we first collected them. However, when as-

sessing the maintainability of repositories with notebooks, we found that only 12.68% of them

still had some active development six months after the collected commit, and only 2.84% of

them were still active in the six months prior to the moment we queried GitHub again (July

22nd, 2020). Hence, it is reasonable to assume that most repositories are not maintained and

perform the reproducibility study as is.

Additionally, we only checked whether the notebooks generated the same results when

they successfully ran all cells. However, we stopped the executions on exceptions and did not

consider these notebooks as reproducible. An exception may be the expected (although unusual)

behavior of a notebook, and it may have executed code after the exception as well.

To account for small deviations in the notebooks’ results that were leading to false nega-

tives in the analyses of same results, we performed normalizations on the outputs. While some

normalizations reduce the number of false negatives without drawbacks (e.g., encode normal-

ization and execution counter normalization), other normalizations increase false positives. For

instance, after applying the image normalization, two notebooks can generate completely differ-

ent images, but we will consider them as generating the same results. To assess the popularity of

notebooks, we used the number of stars and forks from repositories as a proxy for the notebooks

due to the lack of a better number. Since these numbers are from the repositories, they may not

represent the popularity of a notebook. For instance, a tool repository that uses a notebook as an

example of how to use it may be popular because of the tool and not because of the notebook.

However, in our comparisons, popular notebooks had more quality features and reproducibility

than the overall group, indicating that the proxy was sound.

External. We collected repositories from GitHub for over one year. During this period, many

repositories were updated, and many repositories were removed. Despite having data until

April 16th, 2018, the repository states represent their state during the collection and not their

state on this date. Additionally, we restricted our analysis to committed notebooks. Presumably,

these notebooks receive more attention than the average scratchpad notebook and follow better

practices. For instance, Grus (2018) pointed out the problem of untitled notebooks, but in our

data, these notebooks correspond only to 1.93% of the notebooks.

3.6 Discussion 72

3.6 Discussion

In this chapter, we analyzed evidence of good and bad practices on the development of Jupyter

Notebooks regarding quality and reproducibility by going through the main criticisms that the

format receives (GRUS, 2018; MUELLER, 2018; POMOGAJKO, 2015). In our experimental

results, which we discuss part in this chapter and part in the Mining Software Repositories

paper (PIMENTEL et al., 2019b), we found evidence of both good and bad practices. As good

practices, we found the usage of literate programming aspects of notebooks (e.g., markdown

cells and visualizations), the application of abstractions on notebooks that have more complex

control flows, and the usage of descriptive filenames. As bad practices, we found that most

notebooks do not test their code and that a large number of notebooks has characteristics that

hinder the reasoning and the reproducibility, such as out-of-order cells, non-executed code cells,

and the possibility of hidden states.

In comparison to the scripts analyzed in Chapter 2, Python scripts seem to use more Loop

(96.51% of scripts) and Condition (93.02%) constructs than interactive notebooks with Python

code (47.48% and 63.30%, respectively). Other constructs appear at a similar frequency with a

margin of 15% of difference. Regarding the most used modules, four modules appear in the top

10 of both studies: numpy, pandas, os, and math, but at a different order. Python scripts

seem to use more built-in modules (seven of the top 10), while notebooks seem to use more

external ones (once again, seven of the top 10).

Despite these small differences, notebooks could also benefit from provenance from scripts

to understand the execution order and to minimize the effects of hidden states. Additionally,

notebooks lack guidelines and linting tools to minimize these problems.

Chapter 4

State-of-the-Art on Provenance from
Scripts

4.1 Introduction

Computing has revolutionized science and enabled many important discoveries. At the same

time, the large volumes of data being manipulated, the complex computational process used, and

the ability to run experiments at a high rate create new challenges for reasoning about results as

well as managing the data and computations. Systematic mechanisms to collect provenance for

computational experiments are critical to address these challenges.

As previously discussed, compared to SWfMS (CALLAHAN et al., 2006; LIN et al., 2009;

WOLSTENCROFT et al., 2013; ZHAO et al., 2007; FREIRE et al., 2006; OLIVEIRA et

al., 2010), one drawback of scripts is the lack of support for provenance collection. Rec-

ognizing this limitation, several approaches have been proposed to collect, manage, and ana-

lyze provenance from scripts (MWEBAZE; BOXHOORN; VALENTIJN, 2009; BOCHNER;

GUDE; SCHREIBER, 2008; MURTA et al., 2014; LERNER; BOOSE, 2014b; DAVISON,

2012; MCPHILLIPS et al., 2015b). Each one of these approaches proposes different mech-

anisms for collecting, managing, and analyzing different types of provenance in scrips with

multiple goals. In this chapter, we propose a classification taxonomy for approaches that work

with provenance from scripts.

Multiple surveys have been written about provenance. Some characterize data provenance

in e-Science (SIMMHAN; PLALE; GANNON, 2005a; GLAVIC; DITTRICH, 2007), prove-

nance in computational tasks in general (FREIRE et al., 2008), provenance in databases (TAN

et al., 2007), data-intensive scientific workflow management (LIU et al., 2015), and provenance

in the light of Big Data (WANG, Jianwu et al., 2015). Others focus on more specific aspects,

4.2 Related Work 74

such as dynamic steering (MATTOSO et al., 2015) and provenance analytics (OLIVEIRA;

OLIVEIRA; BRAGANHOLO, 2018). Finally, Herschel, Diestelkämper, and Lahmar (2017)

characterizes provenance in general, considering use cases, types of provenance and system

requirements. However, none of these surveys consider the specific use of provenance from

scripts. In this chapter, we aim to fill this gap by providing a comprehensive survey of existing

techniques that address scripts-related problems.

For preparing the comprehensive list of techniques we discuss in this chapter, we first con-

ducted a systematic mapping (PETERSEN et al., 2008) to identify the state-of-the-art tools

on provenance from scripts, as discussed in Section 4.2. Then, we observed how each one of

these approaches collects, manages, and analyzes provenance from scripts and organized the

techniques into the taxonomy proposed in Section 4.3. We hope that our survey and taxonomy

will serve not only to organize the existing knowledge on provenance for scripts but also as a

guide to help scientists to select tools that best address their specific problems. In this thesis,

we use the taxonomy in Chapter 5 to describe our approach for collecting provenance from

scripts. Section 4.4 presents the threats to validity of the snowballing process and the taxonomy

proposal.

This chapter was published in the ACM Computing Surveys with a more detailed classifi-

cation of the approaches according to the taxonomy (PIMENTEL et al., 2019a). We opted not

to include the categorization here for conciseness. Section 4.5 presents a systematic update on

the list of state-of-the-art tools. Finally, Section 4.6 discusses the obtained results.

4.2 Related Work

For constructing the list of existing techniques, we conducted a systematic mapping

(PETERSEN et al., 2008) to identify the state-of-the-art tools on provenance from scripts. Ac-

cording to Petersen et al. (2008), the main goals of a systematic mapping are producing an

overview of a research area, categorize existing work, and explore tendencies. In our case, the

systematic mapping has the goal of identifying tools that deal with provenance from scripts and

categorize them according to their goals, and how they perform provenance collection, analysis,

and management.

We applied forward and backward snowballing to discover relevant tools (WOHLIN, 2014).

The snowballing method starts with a start set of papers related to the systematic mapping

research questions. Forward snowballing consists in obtaining papers that cite papers in the

current set and including them in the set if they match the inclusion criteria. Similarly, backward

4.2 Related Work 75

snowballing consists in obtaining papers in the references list of papers in the current set and

including them in the set if they match the inclusion criteria.

In our case, we defined the inclusion criteria as peer-reviewed documents (e.g., papers,

theses) in English with approaches that collect, manage, or analyze provenance from scripts di-

rectly. We excluded approaches with indirect support for provenance (e.g., virtual machines for

deployment provenance) and approaches for provenance in non-scripting languages (e.g., Java

(GROTH; MILES; MOREAU, 2005)), generic binary executables (e.g., ReproZip (CHIRI-

GATI; SHASHA; FREIRE, 2013), DataTracker (STAMATOGIANNAKIS; GROTH; BOS,

2014)), or approaches that collect provenance at the operating system (OS) layer (e.g., PASS

(MUNISWAMY-REDDY et al., 2006), Burrito (GUO; SELTZER, 2012)). While binary and

OS-based approaches support collecting script provenance by monitoring interpreters, we left

them out because of their dissociation between script definition and execution.

We also excluded approaches that use scripts for defining workflows but restrict them to

constructs that support the creation of a DAG, such as Swift (ZHAO et al., 2007), Snake-

make (KÖSTER; RAHMANN, 2012), dispel4py (FILGUIERA et al., 2014), signac (RAMA-

SUBRAMANI et al., 2018), PRUNE (IVIE, 2018), W2Share (CARVALHO; BELHAJJAME;

MEDEIROS, 2018), and SoS (WANG; PENG, 2019). While such tools reduce the learning

curve for scientists who are used to programming languages, they lack the flexibility provided

by scripts. Hence, we considered them SWfMS. Similarly, we excluded Vizier (BRACHMANN

et al., 2019; BRACHMANN; SPOTH, 2020), an approach that defines a restricted notebook

system with isolated cells that represent blocks in an SWfMS (VisTrails).

We followed the guidelines proposed by Wohlin (2014) for defining the start set of our

snowballing (i.e., use Google Scholar to avoid bias towards a publisher; and obtain a diverse and

big enough start set). We searched "script provenance" on Google Scholar, and we selected pa-

pers based on our inclusion criteria. We obtained nine papers (DEY et al., 2015; FREW; MET-

ZGER; SLAUGHTER, 2008; FREW; SLAUGHTER, 2008; HUQ; APERS; WOMBACHER,

2013b; LERNER; BOOSE, 2014b; MACKO; SELTZER, 2012; MCPHILLIPS et al., 2015a,b;

MURTA et al., 2014) related to seven approaches, and we stopped on page 5 after the page did

not contribute with new results. These papers were published in two distinct journals and three

distinct conferences.

Then, we exhaustively alternated series of backward and forward snowballing iterations

with the help of a tool1 until no more related papers were obtained. We finished this process on

March 6th, 2017. Figure 4.1 presents the process and the amount of related and found papers in

1https://joaofelipe.github.io/snowballing/

4.2 Related Work 76

each step. Note that this figure does not represent the actual process, but summarizes it satisfac-

torily. The actual process was performed over several months, with many intermediary forward

snowballing steps. For instance, the first forward snowballing on July 24th, 2016 found only

24 papers that cited the first noWorkflow paper (MURTA et al., 2014), according to Google

Scholar. In the latest iteration, there were 34 citations for this paper. Thus, instead of presenting

the whole snowballing process in Figure 4.1, we present only what it would be if we had per-

formed the whole snowballing on March 6th, 2017, with big backward and forward iterations,

as described by Wohlin (2014). Note that the last two iterations were applied over the s4 set,

as they did not include related papers. During this process, we visited 1.345 references and we

ended up with 53 papers referring to 27 approaches. Figure 4.2 presents the work we selected in

the snowballing. The full citation graph with the reasons some work do not match the inclusion

criteria is available at https://dew-uff.github.io/scripts-provenance/.

Table 4.1 presents the final selection of approaches with their papers. In this table, we

categorized the approaches by their usage goals for provenance to understand the purpose of

provenance in these tools. We identified five usage goals by reading the paper's motivations:

caching, comprehension, framework, management, and reproducibility. For approaches that did

not clearly specify the usage goals, we inferred by the proposed features.

The caching category represents approaches that use provenance for cache invalidation

and that support reusing previous results. The comprehension category represents approaches

that use provenance for understanding experiments, debugging scripts, documenting processes,

checking compliance with standards, and auditing processes. The framework category repre-

sents approaches that propose generic mechanisms that allow others to implement their prove-

nance systems. The management category represents approaches that use provenance for man-

aging experiments. Finally, the reproducibility category represents approaches that support

reproducing, repeating, and comparing repetitions of experiments.

The most supported usage goals in the approaches are comprehension, reproducibility, and

management, in this order. Few approaches define frameworks for provenance and fewer ap-

proaches use provenance for caching. Moreover, we could not find any approach that collects

provenance from scripts for security. All of these goals present opportunities for future research.

We also identified the main usage goal described in the papers. In this case, the order is com-

prehension, management, and reproducibility. Colors in Figure 4.2 represent the main usage

goals of the approaches.

We grouped papers according to their publishing place to understand where these tools

were published. We identified 42 papers published in conferences, 14 articles in journals, and 5

4.2 Related Work 77

theses. Figure 4.3 presents the distribution of work by publishing location. International Prove-

nance and Annotation Workshop (IPAW) and Workshop on Theory and Practice of Provenance

(TaPP) seem to be the preferred conferences. Computing in Science & Engineering (CiSE) and

Frontiers in Neuroinformatics (FNINF) seem to be the preferred journals. The first approach

that collects provenance from scripts was published in 1988, but the topic started to get more

attention from 2008 on, due to the provenance challenges, and the number of approaches in-

creased. These results indicate that these venues are interested in the topic and that the topic is

attracting attention from the international community.

In the following section, we propose a taxonomy for provenance from scripts based on

the techniques proposed and applied by each of these approaches. After the proposal of the

taxonomy, we updated the list of related work as we present in Section 4.5.

4.2
R

elated
W

ork
78

start

backward1

s0

use

found: 119
related: 10 forward1

s1

use

found: 360
related: 28 backward2

s2

use

found: 675
related: 3 forward2

s3

use

found: 110
related: 3 backward3

s4

use

found: 68
related: 0

forward3
use

found: 4
related: 0

gen

type: Set
length: 9

gen

der

type: Set
length: 19

gen

der

type: Set
length: 47

gen

der

type: Set
length: 50

gen

der

type: Set
length: 53

Figure 4.1: Snowballing provenance.

Caching Comprehension Framework Management Reproducibility

J.Sci. Stat. Comput.

Becker
and Cha
mbers

SSDBM

ESSW

ESTC

ES3

Thesis

ES3

IPAW
Bochner
, Gude,
and Sch
reiber

CCPE

ES3

IPAW

ES3

NBIS

Astro-
WISE

IPAW

Star
Flow

IPAW

ES3

IPAW

IncPy

IPAW

CXXR

TaPP

Star
Flow

SSDBM

ES3

Procedia

VCR

ISSTA

IncPy

eSoN

Astro-
WISE

JSM

CXXR

Comp. Stat.

CXXR

CiSE

Sumatra

Thesis

Guo's
Thesis

TaPP

CPL

IPAW

CXXR

TaPP

SPADE

EDBT

Prove
nance
Curious

Thesis

Prove
nance
Curious

TGRS

Prove
nance
Curious

FNINF

Lancet

TaPP

RData
Tracker

IPAW

RData
Tracker

IPAW

no
Work
flow

Thesis

CXXR

CLOUD

WISE

Thesis

WISE

JIB

WISE

TaPP

YW*NW

OSR

versuch
ung

AutoML

Sacred

IJDC

Yes
Work
flow

TaPP

Yes
Work
flow

Neuroscience

pypet

TaPP

no
Work
flow

ICSC

WISE

IPAW

SisGExp

eSoN

Datatra
ck

FNINF

pypet

IPAW

Michael
ides et
al.

SciPy

Magni

IPAW

no
Work
flow

IPAW

no
Work
flow

IPAW

YW*NW

CHI

Varioli
te

1988 2001 2004 2005 2008 2009 2010 2011 2011 2012 2013 2014 2015 2015 2016 2016 2017

Figure 4.2: Selected papers in Snowballing.

4.2 Related Work 79

Table 4.1: Selected approaches with provenance support: main and secondary goals. La-

bels in secondary goals column refer to goals: Cache – Caching; Compr – Comprehension;

Frame—Framework; Manag – Management; Repro – Reproducibility.

Approach Main goal Secondary goals

Cache Compr Frame Manag Repro

Astro-WISE (MWEBAZE;

BOXHOORN; VALENTIJN,

2009, 2011)

Framework 3 3 3 7 3

Becker and Chambers (1988) Comprehension 7 3 7 7 3

Bochner, Gude, and Schreiber

(2008)
Comprehension 7 3 3 7 7

CPL (MACKO; SELTZER, 2012) Framework 7 7 3 7 7

CXXR (SILLES; RUNNALLS,

2010; RUNNALLS, A.;

SILLES, C., 2012; SILLES,

2014; RUNNALLS, A. R.;

SILLES, C. A., 2011;

RUNNALLS, 2011)

Comprehension 7 3 7 7 7

Datatrack (EICHINSKI; ROE,

2016)
Management 7 3 7 3 7

ES3 (FREW; METZGER;

SLAUGHTER, 2008; FREW,

2004; FREW; SLAUGHTER,

2008; VALEUR, 2005; FREW;

JANÉE; SLAUGHTER, 2010,

2011)

Comprehension 7 3 7 7 7

ESSW (FREW; BOSE, 2001) Management 7 3 7 3 7

IncPy (GUO; ENGLER, D. R.,

2010; GUO; ENGLER, D., 2011;

GUO, 2012)

Caching 3 7 7 7 7

Lancet (STEVENS; ELVER;

BEDNAR, 2013)
Reproducibility 7 3 7 3 3

Magni (OXVIG; ARILDSEN;

LARSEN, 2016)
Reproducibility 7 7 3 7 3

Michaelides et al. (2016) Reproducibility 7 3 7 7 3

noWorkflow (MURTA et al.,

2014; PIMENTEL et al., 2015,

2016b,c)

Comprehension 7 3 7 3 3

Continued on next page

4.3 Taxonomy 80

Approach Main goal Secondary goals

Cache Compr Frame Manag Repro

Provenance Curious (HUQ;

APERS; WOMBACHER,

2013a,b; HUQ, 2013)

Comprehension 7 3 7 7 7

pypet (MEYER; OBERMAYER,

2015, 2016)
Management 7 7 7 3 7

RDataTracker (LERNER;

BOOSE, 2014a,b)
Comprehension 7 3 7 7 7

Sacred (GREFF;

SCHMIDHUBER, 2015)
Management 7 3 7 3 7

RFlow (CRUZ; NASCIMENTO,

2016)
Management 7 3 7 3 3

SPADE (TARIQ; ALI; GEHANI,

2012)
Comprehension 7 3 7 7 3

StarFlow (ANGELINO;

YAMINS; SELTZER, 2010;

ANGELINO et al., 2011)

Management 3 3 7 3 3

Sumatra (DAVISON, 2012) Reproducibility 7 3 7 3 3

Variolite (KERY; HORVATH;

MYERS, 2017)
Management 7 3 7 3 3

VCR (GAVISH; DONOHO,

2011)
Reproducibility 7 3 7 7 3

versuchung (DIETRICH;

LOHMANN, 2015)
Reproducibility 7 3 3 7 3

WISE (ACUÑA; LACROIX;

BAZZI, 2015; ACUÑA, 2015;

ACUÑA; CHOMILIER;

LACROIX, 2015; ACUÑA;

LACROIX, 2016)

Comprehension 7 3 7 7 7

YesWorkflow (MCPHILLIPS

et al., 2015a,b)
Comprehension 7 3 7 7 7

YW*NW (DEY et al., 2015;

PIMENTEL et al., 2016a)
Comprehension 7 3 7 3 3

Main Goal / Total 1 / 3 11 / 23 2 / 5 7 / 11 6 / 14

4.3 Taxonomy

Many approaches have been proposed to collect provenance from binary executions (e.g., Re-

proZip (CHIRIGATI; SHASHA; FREIRE, 2013), PASS (MUNISWAMY-REDDY et al., 2006),

4.3 Taxonomy 81

IPAW
TaP

P
The

sis

SSDBM
eS

oN
CiSE

FNIN
F

Auto
ML

CHI

CLO
UD

EDBT
ESTC

IC
SC

ISSTA
JS

M
NBIS

POLIC
Y

SciP
y

VLD
B

VLH
CC

us
eR

CCPE
Com

p.

Stat
. IJD

C

Inf
orm

ati
cs

J.S
ci.

Stat
.

Com
pu

t.
JIB

Neu
ros

cie
nc

e
OSR

Proc
ed

ia
TGRS

Place

0

5

10

C
ou

nt
Conference
Journal
Thesis

Figure 4.3: Distribution of work by publishing location.

Collection Management Analysis

Scripts Provenance

Figure 4.4: Main taxonomy of provenance from scripts.

CDE (GUO; ENGLER, D. R., 2011), DataTracker (STAMATOGIANNAKIS; GROTH; BOS,

2014), and others). They collect information about operating system processes, system calls,

file objects, and network packets as provenance. Since scripts run in binary interpreters, these

approaches can also be used to collect provenance for the execution of scripts. However, as they

do not take the structure of scripts into account, it can be challenging to link the provenance they

collect back to the steps in the script.

Besides using provenance tools, some benefits of provenance for scripts (e.g., reproducibil-

ity and comprehension) can be achieved by other tools. Version control systems can store, ver-

sion, and share experiment definitions through repositories. For simple experiments that do not

use environment information nor external tools, this may be sufficient for reproducibility and for

managing multiple executions. For more complex experiments, virtual machines can provide

isolated environments and improve their reproducibility. While these tools allow scientists to

reproduce experiments, they neither connect the output to the input nor help users to understand

the experiments. On the other hand, the literate programming paradigm (KNUTH, 1984) may

help understanding experiments by encouraging users to describe what their code does. This

paradigm encourages the writing of documents that combine human-readable code descriptions

and computation results. However, this paradigm does not guarantee the reproducibility, since

it does not keep track of the environment and input data, as we discuss in Chapter 3. Some tools

that use scripting languages and support literate programming, such as Jupyter (SHEN et al.,

2014), may also benefit from additional provenance collected from scripts (PIMENTEL et al.,

2015).

4.3 Taxonomy 82

1 import numpy as np
2 from provtool import where
3 # Precipitation input from Rio de Janeiro
4 input_file = where("p13.dat", "BDMEP-Rio-2013")
5 year = 2013
6 # Classification
7 data = np.genfromtxt(input_file, delimiter=";")
8 total = sum(data[:,3]) # provenance: skip-details
9 classification = "above" if total > 1172.9 else "below"
10 # classification.csv is generated from multiple executions of
11 # this experiment with different inputs. It depends on the input_file
12 with open("classification.csv", "a") as file:
13 file.write("{},{},{}\n".format(year, total, classification))

Figure 4.5: Toy experiment that classifies a yearly precipitation data from Rio de Janeiro.

4.3.1 Provenance Collection

Provenance can be described according to different aspects and each aspect requires different

collection mechanisms. Over the past two decades, some classifications for provenance have

been proposed for describing such mechanisms. Before discussing the collection techniques

in scripts, we use Figure 4.5 as an example to compare the previously proposed classification

systems and establish one for this document. This example presents a toy experiment that

classifies the yearly precipitation data from Rio de Janeiro as above average or below average.

Note that we use this example to discuss not only its definition but also its trials.

Cheney, Chiticariu, and Tan (2007) classify provenance in why, how, and where. Why-

provenance identifies the data that were transformed into a new data object. The why-

provenance of “classification.csv” in Figure 4.5 includes “classification” in line 9, “total” in line

8, “year” in line 5, and the file “p13.dat” in line 7 (variable “input_file”). How-provenance iden-

tifies the process (i.e., all the transformations that occurred). In Figure 4.5, the how-provenance

includes the “np.genfromtxt” in line 7, “sum” in line 8, the if expression in line 9, and “format”

in line 13. Where-provenance identifies the location from which the data object was extracted.

Figure 4.5 identifies that “p13.dat” was obtained from BDMEP 2 in line 4.

While this classification system is relevant for database provenance, it may not be appropri-

ate for scripts. First, the separation between why-provenance and how-provenance is not always

clear. The number “1172.9” in line 9 of Figure 4.5 could be perceived either as why-provenance,

as it is the data that determines whether the result will be “above” or “below”, or perceived as

how-provenance, as it determines how to classify the data. Second, most scripts do not indicate

the where-provenance of data. One could classify file locations as where-provenance. However,

2BDMEP is a meteorological database for teaching and research.

4.3 Taxonomy 83

the file location is also encoded in the why-provenance of variables. Finally, this classification

system lacks other types of provenance related to the structural and environment information of

the experiment.

The most common classification for computational tasks distinguishes provenance as prospec-

tive and retrospective (LIM et al., 2010; ZHAO; WILDE; FOSTER, 2006). Retrospective

provenance combines why-provenance and how-provenance to provide an understanding of

the execution process, identifying what really happened during the execution. On the other

hand, prospective provenance refers to the structure of the experiment (workflow, script, input

files), and what is necessary to reproduce it (dependencies, environment). While the prospective

provenance of Figure 4.5 includes the script itself and the modules “numpy” and “provtool”,

the retrospective provenance includes the execution flow and the parts of the script that were

executed. In this case, the retrospective provenance indicates that the value of “classification”

is “above”. For the purpose of this chapter, this classification system encodes too much infor-

mation in the prospective provenance, and lack a different type of provenance.

Clifford et al. (2008) propose a similar classification with three categories: program struc-

ture, runtime logs, and annotations. In this system, runtime logs correspond to retrospective

provenance and program structure corresponds to the structural part of the prospective prove-

nance. This system does not consider environment information. The third category in this

system, annotations, refer to user-made annotations in the provenance or structure, which allow

users to explain the program. In Figure 4.5, lines 10 and 11 present a provenance annotation

in the form of a commentary that describes the origin of “classification.csv”. Moreover, the

“where” function call in line 4 is also an annotation, as it does not influence program execution

and describes the origin of “p13.dat”.

Murta et al. (2014) borrows terms from software engineering (VAN DER HOEK, 2004)

and classifies provenance for scripts in three categories: definition, deployment, and execution.

Definition provenance represents the structure of the experiment, such as scripts and input files.

Thus, it is equivalent to the program structure category proposed by Clifford et al. (2008).

In Figure 4.5, definition provenance represents the script itself and “p13.dat”. Deployment

provenance represents the execution environment, with information about the operating system,

dependencies, and environment variables. In Figure 4.5, deployment provenance represents the

modules “numpy” and “provtool”. Definition provenance together with deployment provenance

corresponds to prospective provenance. Finally, execution provenance corresponds to runtime

logs and retrospective provenance.

Figure 4.6 presents the aforementioned classification systems for provenance. Note that

4.3 Taxonomy 84

Why How WhereFor databases >Cheney et al. (2007)

RetrospectiveProspectiveZhao et al. (2006)

Runtime LogsStructureAnnotationsClifford et al. (2008)

Definition Deployment ExecutionMurta et al. (2014)

Annotations Definition Deployment ExecutionThis document

Figure 4.6: Provenance classification systems.

Collection

Placement

Internal

External

Extraction

Parseable

Executable

Target

Definition

Provenance

Inclusiveness

Inclusive

Exclusive

Necessity

Optional

Mandatory

Annotations

How

Definition

Reading

Parsing

When

Static

Dynamic

Execution

Passive Monitoring

Overriding

Post-Mortem

Instrumenting

Deployment

Snapshot

Continuous

Figure 4.7: Expanded Collection taxonomy node of Figure 4.4.

for the proposed taxonomy, we use the classification proposed by Murta et al. (2014) due to

its explicit separation of definition and deployment provenance, together with the annotations

provenance proposed by Clifford et al. (2008).

Each provenance type requires different collection mechanisms. While collecting annota-

tions requires a way to parse annotations, collecting deployment provenance requires obtaining

environment information with a completely different mechanism. However, collection mech-

anisms are not restricted to a single provenance type. Some mechanisms combine different

provenance types. For instance, it is possible to use annotations to identify when and how to

collect execution provenance (ANGELINO; YAMINS; SELTZER, 2010; MCPHILLIPS et al.,

2015a). In this section, we present different collection mechanisms for each provenance type.

Figure 4.7 presents the collection taxonomy.

4.3.1.1 Annotations

According to Clifford et al. (2008), users can make annotations either on procedures or on

data. Additionally, we identify that some approaches also support annotations on provenance

itself (DAVISON, 2012). Annotations provide additional information about objects and users

can use them to point interesting things, understand datasets and programs, and enrich data

or provenance with more information (DAVISON, 2012). Additionally, annotations can facil-

itate collecting other provenance types (ANGELINO; YAMINS; SELTZER, 2010; LERNER;

BOOSE, 2014b; MCPHILLIPS et al., 2015a). We classify annotations in five axes, as presented

4.3 Taxonomy 85

in Figure 4.7: placement, extraction, target, inclusiveness, and necessity.

The placement axis classifies annotations according to their placement as internal or exter-

nal. Internal annotations occur inside scripts or data and require some sort of extraction. That

is the case of the annotations that appear in Figure 4.5. On the other hand, external annotations

occur outside scripts and require a system that supports identifying data elements, through URI,

provenance queries, or temporal information (e.g., annotating the last produced provenance).

The extraction axis classifies annotations according to their extraction mode as executable

or parseable. Provenance systems can extract parseable annotations statically. However, exe-

cutable annotations require their execution. In Figure 4.5, “where” in line 4 is an executable

annotation, as it is necessary to execute it to get its result. However, the commentaries on lines

10-11 are parseable.

The inclusiveness axis classifies annotations as inclusive or exclusive. Inclusive annotations

point things of interest and enrich data with more information. Exclusive annotations filter out

uninteresting data or provenance. The annotations in Figure 4.5 are inclusive, but the commen-

tary annotation in line 8 is exclusive, as it indicates that the details of the line are not relevant.

The target axis classifies annotations according to what they describe. Annotations can

describe the program definition, including data and structure, or enrich the provenance itself.

All annotations in Figure 4.5 describe the program. An example of annotation on provenance

would be a tag on the trial indicating what it did.

Finally, the necessity axis classifies provenance according to the requirement of using them.

Annotations can be either mandatory or optional for the systems that collect them. If the prove-

nance system relies on annotations to collect provenance, the annotations are mandatory. Oth-

erwise, if it only uses annotations to enrich or filter the provenance collection, annotations are

optional.

4.3.1.2 Definition Provenance

Definition provenance refers to the project structure with scripts and input data. Collecting def-

inition provenance can be as coarse-grained as collecting whole files (CRUZ; NASCIMENTO,

2016; DAVISON, 2012) or as fine-grained as extracting structure information from scripts to

describe them (MCPHILLIPS et al., 2015b; HUQ; APERS; WOMBACHER, 2013b; MURTA

et al., 2014).

The easiest way to collect coarse-grained definition provenance is to collect whole files

as the definition of experiments. In this sense, version control systems (ESTUBLIER, 2000)

4.3 Taxonomy 86

can help with definition provenance collection (DAVISON, 2012). Besides the script and input

file content collection, version control systems also provide authorship, creation timestamp,

and script evolution as metadata for files. Instead of using version control systems, it is also

possible to collect whole files during execution by applying execution provenance strategies

as we discuss in Section 4.3.1.4 and collecting the files as soon as the execution tries to access

it (CRUZ; NASCIMENTO, 2016; MURTA et al., 2014). This is especially valid for scripts since

interpreters read their definitions before running them. However, this strategy may generate only

a partial definition provenance of the project according to the execution path (GUO; ENGLER,

D. R., 2011).

For finer-grained collection, it is necessary to statically analyze the structure (HUQ; APERS;

WOMBACHER, 2013b). Due to the unpredictability of dynamic languages (XU et al., 2013),

performing static analysis over scripts may not be enough to describe them. An alternative to

cope with this challenge is to use annotations to describe the structure (ANGELINO; YAMINS;

SELTZER, 2010; MCPHILLIPS et al., 2015b). However, this alternative is error-prone and

may not represent the script definition. Using static analysis without user input reduces the

possibility of errors, but also limits the extraction of relevant information.

We classify definition provenance according to how and when it is collected, as presented in

Figure 4.7. Definition provenance can be collected by reading whole files or parsing files and

extracting information from them. In Figure 4.5, if we collect the whole script file, we will have

definition provenance by reading. On the other hand, if we parse the file and extract information

from it, we will have definition provenance by parsing. Additionally, definition provenance can

be collected statically, before or after the execution, or dynamically, during the execution. In

Figure 4.5, it is possible to collect the script definition statically, before the execution, and the

definition of “p13.dat” dynamically, when the program executes line 7.

4.3.1.3 Deployment Provenance

Deployment provenance represents the execution environment. It refers to the operating system

version, interpreter version, environment variables, dependencies to programs and modules, and

all the remaining deployment information that describes the environment. Most deployment in-

formation, such as operating system version, interpreter version, and machine specification,

does not change during execution. Thus, it is safe to collect a single snapshot of such infor-

mation. However, other deployment information may not be available at a given time for a

snapshot or may change during execution. It is the case for module and program dependencies

and environment variables. Hence, the strategies we describe in Section 4.3.1.4 for execution

4.3 Taxonomy 87

provenance also apply for continuously collecting such deployment provenance during execu-

tion (CHIRIGATI; SHASHA; FREIRE, 2013). However, since this information rarely changes

during execution and some scripting environments support discovering dependencies without

executing the script (e.g., Python’s modulefinder discovers all imported modules), it is of-

ten worth to collect deployment provenance once, in a snapshot (DAVISON, 2012; MURTA

et al., 2014) to avoid the overhead of dynamic provenance collection (CHENEY; AHMED;

ACAR, 2011).

As presented in Figure 4.7, we classify deployment provenance according to its collection

frequency, as snapshot or continuous. In Figure 4.5, we could collect the modules “numpy”

and “provtool” as deployment provenance continuously during the execution of lines 1 and

2, respectively, or we could parse the script, extract the import information and collect a

snapshot of the modules.

4.3.1.4 Execution Provenance

Execution provenance refers to the origin of data and its derivation process during execution.

Different approaches collect both data provenance and process provenance at different granular-

ities. Data objects can range from memory bytes to system objects, passing through arguments,

variables, and network packets. On the other hand, the process can range from individual data

operations to operating system processes, passing through variables operations and function

calls. Due to the benefits of keeping the data for analysis and reproducibility (KOOP et al.,

2010), some collection mechanisms presented in this section support collecting not only meta-

data but also data itself.

Even though execution provenance appears in different granularities, it is possible to col-

lect all granularities with similar strategies. According to Frew, Metzger, and Slaughter (2008),

there are three strategies for collecting execution provenance: passive monitoring, overriding,

and instrumentation. The passive monitoring strategy traces the process execution to collect

provenance without requiring any modifications to the code. The overriding strategy replaces

portions of the executed code with instrumented versions. Finally, the instrumentation strategy

requires users to instrument their code explicitly with annotations or function calls. We identify

a fourth strategy: post-mortem, which infers execution provenance after the execution (DAVI-

SON, 2012; HUQ; APERS; WOMBACHER, 2013a; MCPHILLIPS et al., 2015a).

Each one of these strategies has advantages and disadvantages. Passive monitoring and

overriding are highly automated strategies but produce too much provenance, which affects

the performance and overwhelms users. Instrumentation and post-mortem, on the other hand,

4.3 Taxonomy 88

Passive
Monitoring

Overriding
Post-

Mortem
Instrumenting

Observed DisclosedAutomation
Overwhelming

User Intrusion
Errors

Figure 4.8: Observed and disclosed strategies.

require users to specify what they want to collect, being error-prone and producing less prove-

nance. Braun et al. (2006) separate provenance systems into observed and disclosed. Systems

that apply passive monitoring or overriding are observed systems since they observe the exe-

cution and collect provenance. Systems that apply post-mortem or instrumentation strategies

are disclosed systems since the users need to specify what they want to collect with annota-

tions. Figure 4.8 presents an axis with all strategies. In the axis, the higher the automation, the

more overwhelming its provenance will be. Note that the post-mortem strategy requires more

automation than instrumentations. It occurs because post-mortem systems automatically infer

provenance from results instead of having to specify each provenance collection.

The passive monitoring strategy uses a tracer to observe the execution and log all low-

level events during the execution. Since tracers log all low-level events, this strategy imposes

the biggest performance overhead, but it is also able to collect more provenance data. For

scripts, it is either possible to trace interpreters’ binaries (GUO; ENGLER, D. R., 2011) or to

use language-specific tracers to collect provenance (ANGELINO; YAMINS; SELTZER, 2010;

MURTA et al., 2014). This chapter focuses on the latter. In Figure 4.5, the passive monitoring

could trace all executed lines and collect the provenance in each one of them.

The overriding strategy automatically instruments the code to collect provenance. Prove-

nance tools that employ this strategy define code patterns to find (e.g., function calls, file open-

ings, variable assignments, and others) in the interpreter’s binary or script and replace the orig-

inal code with an instrumented one that collects provenance. In Figure 4.5, the overriding strat-

egy could replace the functions that open files (e.g., “genfromtxt” and “open”) by instrumented

versions that collect provenance.

After overriding the code or tracing events, it is desirable to build a provenance DAG,

which allows answering lineage queries. It can be accomplished by observing simple relation-

ships, such as caller-callee function and parent-child process, and observing input and output

data in each process. Another way to build a provenance DAG is to use a more robust technique

such as dynamic program slicing or dynamic taint tracking to follow the actual data derivations

that occur during executions. While the former approaches produce more false positives (i.e.,

find “provenance” that does not influence the results), the latter approaches produce more false

negatives (i.e., do not find all the provenance that could influence the results). It occurs because

4.3 Taxonomy 89

dynamic program slicing and dynamic taint tracking just observe what occurred and not what

could occur in other conditions (GUO; ENGLER, D. R., 2011). Note that these robust tech-

niques are also more expensive due to the necessity of following all dependencies at fine-grain.

The post-mortem strategy infers provenance from execution results after the executions. In

order to collect this type of provenance, users need to specify the locations of output data and

how it relates to input data. One way to apply the post-mortem strategy is to store all data

files in a specific directory and collect all files before and after the execution. This method

considers new or changed files as output files and unchanged files as input files (DAVISON,

2012). Alternatively, it is possible to read all files in a directory after the execution and infer file

provenance (i.e., which file derived from which files) through semantic similarities and timing

information (HUQ; APERS; WOMBACHER, 2013a). Another way to apply the post-mortem

strategy is to use annotations (MCPHILLIPS et al., 2015a) to collect the relationship between

input data and output files. In both cases, users need to change their scripts to comply with the

post-mortem rules, by using only the data directory or the annotation syntax.

The post-mortem strategy can also be joined to other strategies to collect provenance. For

instance, it is possible to track process openings with the overriding strategy and collect files be-

fore and after each process execution, comparing them with the post-mortem strategy (ACUÑA,

2015). In Figure 4.5, the post-mortem strategy could be used to collect the resulting “classifica-

tion.csv” after the script execution and associate it with the input file “p13.dat”. Note that this

strategy could also be used to collect implicit provenance (i.e., provenance data that is not ex-

plicitly referenced by the script (MARINHO et al., 2011)). In Figure 4.5, suppose the “where”

function in line 4 extracts and reads “p13.dat” from a zip file, “precipitation.zip”. The post-

mortem strategy would be able to collect it and indicate that “classication.csv” derives from

it.

Finally, the instrumentation strategy requires users to change their code, specifying what

they want to collect. Users can either annotate their code with special structures, such as dec-

orators (ANGELINO; YAMINS; SELTZER, 2010) or invoke library functions (BOCHNER;

GUDE; SCHREIBER, 2008; FREW; BOSE, 2001). This strategy not only imposes an extra

effort for users but can also result in instrumentations that do not represent the scripts after code

maintenance or due to human error (ANGELINO; YAMINS; SELTZER, 2010; MCPHILLIPS

et al., 2015b). For this reason, PrIMe (MILES et al., 2011) has been proposed as a methodology

for analyzing applications and determining which points should be instrumented, minimizing

errors. Alternatively, the instrumentation strategy can also be used together with the aforemen-

tioned overriding and passive monitoring strategies to specify when to start collecting prove-

4.3 Taxonomy 90

SequenceTrial ID Intention

Management

Sharing Reproducibility VersioningStorage

MemoryDatabase

Relational

Graph

NoSQL

File

Interoperable

Log

Logic

Graph

Content DB

RemoteLocal

Interoperable

Log

Logic

Graph

Content DB

Proprietary Proprietary

Repository

Web

Figure 4.9: Expanded Management taxonomy node of Figure 4.4.

nance and how to enrich the collected provenance (LERNER; BOOSE, 2014b). In Figure 4.5,

the “where” call in line 4 is an application of the instrumentation strategy.

4.3.2 Provenance Management

Collecting provenance data is not enough for provenance tools. It is desirable to provide man-

agement features related to storage, sharing, versioning, and reproducibility. In this section, we

present provenance management requirements and approaches. Figure 4.9 presents the man-

agement taxonomy.

4.3.2.1 Storage

Provenance can be stored in database systems, transient memory, or files. However, the storage

choice deeply relates to provenance collection and usage goals. File systems (e.g., archives,

version control systems) are usually employed for reproducibility and definition provenance

storage (DAVISON, 2012). On the other hand, database systems work better for provenance

comprehension and for storing other types of provenance due to the possibility of querying and

the capability of storing non-file artifacts, such as function calls, variables, and environment

variables (MURTA et al., 2014; HUQ; APERS; WOMBACHER, 2013b). Although file systems

are also viable for such non-file data, they require the provenance tools to implement their own

serialization mechanisms (GUO; ENGLER, D., 2011; STEVENS; ELVER; BEDNAR, 2013;

OXVIG; ARILDSEN; LARSEN, 2016).

Storing files in file systems and archives is straightforward. It just requires copying files

from original paths to adjusted ones inside the storage system. However, since some scripts

write in the same files more than once during its execution, it is often desirable to avoid colli-

sions and collect more than one version of each file. One way to accomplish this is to define

naming rules based on hashes of files content, and store files in a content database. In this case,

part of the hash is used to define the name of the directory and another part to define the file-

4.3 Taxonomy 91

name, with an external index to relate the original file name and version to its hash (DAVISON,

2012; GUO; ENGLER, D., 2011; MURTA et al., 2014). It is necessary to split the hash into

different parts for directories and filenames to avoid OS limitations on the number of files that

can be stored in a directory (MURTA et al., 2014). Such collision avoidance approaches are

not necessary, should the collection keep only the most recent versions (MICHAELIDES et al.,

2016).

As mentioned before, database systems have advantages over file systems for supporting

non-file artifacts and supporting queries. The chosen database system for each provenance tool

also varies according to the necessities. Tools that intend to support simple queries use embed-

ded relational databases such as SQLite (DAVISON, 2012; HUQ; APERS; WOMBACHER,

2013b; MURTA et al., 2014). However, due to the necessity of transitive closure queries and

the unintuitive support for recursive queries in SQL, some of these tools also support exporting

provenance to other formats, such as Prolog/Datalog (MURTA et al., 2014). This necessity of

transitive closures also motivated some tools to use graph databases and other NoSQL databases

right away (BOCHNER; GUDE; SCHREIBER, 2008; CHEBOTKO et al., 2013; FREW; MET-

ZGER; SLAUGHTER, 2008; GREFF; SCHMIDHUBER, 2015; MACKO; SELTZER, 2012).

The different nature of provenance artifacts indicates the need for combining different stor-

age systems into a single tool. For instance, it is possible to store actual files in the disk or ver-

sion control system and their relationships in a relational database (DAVISON, 2012; MURTA

et al., 2014).

Using a storage system for provenance is not mandatory. Provenance tools can store prove-

nance in a small set of documents, such as RDF, XML, JSON, Prolog/Datalog, non-structured

log, among others (ANGELINO; YAMINS; SELTZER, 2010; FREW; METZGER; SLAUGH-

TER, 2008; LERNER; BOOSE, 2014b; MCPHILLIPS et al., 2015b; MICHAELIDES et al.,

2016; STEVENS; ELVER; BEDNAR, 2013). Other tools (or the same tool) might open these

documents for analysis (LERNER; BOOSE, 2014b; STAMATOGIANNAKIS; GROTH; BOS,

2014; MCPHILLIPS et al., 2015b) or reproducibility (STEVENS; ELVER; BEDNAR, 2013).

Additionally, provenance might not be stored at all, should the application consume it at run-

time (SILLES; RUNNALLS, 2010). In this case, provenance stays in transient memory. More-

over, instead of providing a storage system, an approach might output provenance in the stan-

dard output or share it through remote network connections and expect other applications to deal

with the storage (TARIQ; ALI; GEHANI, 2012; BOCHNER; GUDE; SCHREIBER, 2008).

4.3 Taxonomy 92

4.3.2.2 Sharing

Besides storing provenance data, another provenance management issue is on sharing prove-

nance to other people or systems for analysis and reproducibility. Sharing provenance for anal-

ysis allows tools to implement standalone collection mechanisms (TARIQ; ALI; GEHANI,

2012) and transfer the analysis responsibility to specialized tools. Sharing provenance for re-

producibility reduces the burdens of making computation experiments reproducible across plat-

forms (CHIRIGATI; SHASHA; FREIRE, 2013).

Provenance tools that store provenance at a small set of files (ANGELINO; YAMINS;

SELTZER, 2010; MCPHILLIPS et al., 2015b; FREW; METZGER; SLAUGHTER, 2008;

LERNER; BOOSE, 2014b; MICHAELIDES et al., 2016; STEVENS; ELVER; BEDNAR,

2013) support sharing by simply sending the files to someone else. Other tools need to pro-

cess provenance data and produce the desirable file format (MURTA et al., 2014). However,

the desirable file format depends on its application. Logic programming formats (e.g., Prolog

and Datalog files) support running queries with transitive closures (MCPHILLIPS et al., 2015b;

MURTA et al., 2014). Graph formats (e.g., GraphViz files) allow visual analysis (ACUÑA,

2015; PIMENTEL et al., 2016a). Provenance-specific formats (e.g., OPM and PROV files)

support interoperability among provenance tools and usage of other tools specialized in prove-

nance querying and visualization (MICHAELIDES et al., 2016). Finally, it is also possible to

share provenance as executable logs (MICHAELIDES et al., 2016), which are representations

of experiments without loops, conditions, and other control flows.

The Open Provenance Model (OPM) was proposed as the result of Provenance Challenges

with the goals of supporting digital provenance representation of anything, with coexisting mul-

tiple levels of description, and a format that could be exchanged among systems (MOREAU et

al., 2011). The OPM specification heavily influenced the W3C PROV standard (MOREAU;

MISSIER, 2012). Both models are extensible and provide similar concepts and relationships

for entities, activities, and agents. The relationships indicate whether an activity used or gener-

ated an entity; whether an entity derived another entity; whether an activity was associated with

an agent; among others (COSTA et al., 2013; MISSIER et al., 2013a).

All these formats provide sharable provenance but do not deal with the problem of prove-

nance transferring. Thus, we define them as local sharing. RDFa (ADIDA et al., 2008) supports

embedding some of these formats (e.g., PROV) in web pages. A user interested in embedded

provenance can use RDFa parser to extract it. However, not all sharable provenance can be

embedded. In order to support provenance transferring, some approaches propose sending the

provenance to remote servers. These servers appear both as web servers designed to receive and

4.3 Taxonomy 93

store provenance data (BOCHNER; GUDE; SCHREIBER, 2008; GROTH; MILES; MOREAU,

2005) and as repositories designed to share provenance and experiment definitions, encouraging

the reuse of experiments of other people (JONES et al., 2016). Version control system reposi-

tories (ESTUBLIER, 2000) play a similar role in sharing experiments. However, they usually

only share script definitions, and they make it hard to search for other types of provenance. On

the other hand, such systems provide versioning for the experiments.

4.3.2.3 Reproducibility

Reproducible research is essential for science. In the scientific method, scientists confirm or

refute hypotheses based on testable and reproducible predictions. The lack of reproducibil-

ity prevents other scientists from validating research findings and expanding their horizons with

new data (BAGGERLY; COOMBES, 2009). With the advance of computers, the amount of data

used in research got bigger, and it became unfeasible to reproduce research just with the data

reported in papers (DONOHO et al., 2009). This situation leads to a credibility crisis (IOAN-

NIDIS, 2005).

In response to the credibility crisis, scientists proposed sharing not only findings but also

data, programs, and environments (CLAERBOUT; KARRENBACH, 1992), making data as

transparent and available as possible (HANSON; SUGDEN; ALBERTS, 2011). Provenance

comes to play in these proposals due to its capability of representing data, data processing with

intermediate transformations, and environment information.

Scientists can use provenance to comprehend third-party experiments and reproduce behav-

iors in new implementations and even compare different executions to check if a new trial could

replicate the results of the previous one (DAVISON, 2012; GUO; SELTZER, 2012).

According to Drummond (2009), just replicating experiments results is not good science,

as it just reports the same result originally reported and is only able to detect frauds. However,

replicating experiments could be an important step towards reproducibility, since it allows sci-

entists to check whether they are using the same proposed data transformations and tools before

trying new data.

In this document, we do not propose a classification for reproducibility. Thus we consider

all approaches that aim at supporting replication, reproduction, or repetition of experiments as

tools that support reproducibility.

4.3 Taxonomy 94

4.3.2.4 Versioning

Many experiment results motivate repetitions in their life cycle (MATTOSO et al., 2010). For

instance, when a trial is inconclusive, scientists may repeat the cycle to adapt hypotheses and

tasks. When scientists confirm a hypothesis for a restricted population, they may repeat the

experiment for a broader one. Similarly, when they refute a hypothesis for a broad population,

they may verify it for a restricted one. Moreover, some scientists design experiments to run

iteratively, alternating the input data and some experimental activities. For instance, this oc-

curs in simulations with parameter sweeping. In these simulations, each iteration deals with a

combination of input parameters. In all the situations that motivate repetition, the knowledge

is cumulative and scientists can use data from previous trials in further analyses. Some exper-

iments may even use the output of a trial as another trial's input. Finally, some scientist may

desire to rollback to previous versions of the experiment with interesting results.

While collection mechanisms presented in Section 4.3.1 collect provenance of a single trial,

these mechanisms leave the experiment evolution out. However, as the experiment evolves, its

trial provenance evolves as well. Thus, in order to keep all trial provenance, it is necessary to

version it for different executions.

In its essence, versioning provenance requires just to provide a way for separating prove-

nance storage for each execution. Using a trial identification for collected provenance (MURTA

et al., 2014; STEVENS; ELVER; BEDNAR, 2013) is sufficient to identify each execution. Ide-

ally, such systems should apply optimizations to reduce storage overhead and facilitate analyses.

However, just specifying trial versions is not enough to understand the evolution. Suppose

that a trial uses a file created by a previous trial as input. In this situation, the provenance tool

should consider the provenance of the file in the previous trial for the new trial. Having just

unordered versions does not allow one to identify which version was the previous one. Thus,

in addition to versions, it is necessary to track provenance evolution in the form of version

relationships (DAVISON, 2012; PIMENTEL et al., 2016b).

Trial relationships represent how the experiment evolves by indicating situations such as se-

quential trial executions or re-executing previous trial versions. This way, they improve prove-

nance across trials and, consequently, help during analysis. Hence, provenance evolution allows

users to not only analyze the latest script provenance but also to compare it to previous moments

and improve their understanding of the whole experiment. Note that the trial relationships can

be as simple as the trial sequence (MURTA et al., 2014), or as complete as indicating the evo-

lution intention (PIMENTEL et al., 2016b).

4.3 Taxonomy 95

Analysis

Visualization ComparisonQuery

Place ProvenanceDataType

Process Graph

Data Graph

Combined Graph

Completeness

Complete

Clustering

Filtering

Log

SpecificGeneric

Internal

External

Figure 4.10: Expanded Analysis taxonomy node of Figure 4.4.

While provenance evolution has been applied to SWfMS (CALLAHAN et al., 2006), it has

not received much attention for scripts. A possible reason is the wide usage of version control

systems to track the evolution of script definitions (ESTUBLIER, 2000), which fills part of the

necessity of evolution tracking. Note that provenance tools that use version control systems for

storage also support trial provenance evolution tracking (DAVISON, 2012; STEVENS; ELVER;

BEDNAR, 2013).

4.3.3 Provenance Analysis

Provenance analysis aims at supporting the comprehension of data and processes. Analyzing

provenance involves visualizing and querying provenance data. Provenance visualizations pro-

vide an overview of what happened in a trial and what data derivations occurred. Provenance

queries obtain lineage and other metadata from data objects. This section presents different ap-

proaches for querying, visualizing and comparing provenance. Figure 4.10 presents the analysis

taxonomy.

4.3.3.1 Query

Many approaches use generic languages for querying provenance, such as SQL (DAVISON,

2012; MURTA et al., 2014), SPARQL (MACKO; SELTZER, 2012; CHEBOTKO et al., 2010),

XQuery (BOCHNER; GUDE; SCHREIBER, 2008), Prolog (MURTA et al., 2014), and Data-

log (MCPHILLIPS et al., 2015b; ZHAO; LU, 2008). Even though these logic programming

languages (i.e., Prolog and Datalog) are not proper query languages, deductive databases use

these languages as query languages due to their increased power in comparison to conven-

tional SQL (RAMAKRISHNAN; ULLMAN, 1995). In the context of provenance, this in-

creased power helps with recursive queries and transitive closures. While SQL supports re-

cursive queries with transitive closures, those queries are known to be inefficient and hard to

write (MURTA et al., 2014). On the other hand, logic programming languages intuitively handle

recursion.

4.3 Taxonomy 96

Generic query languages are useful to users who know their syntax but can be compli-

cated to deal with structured provenance data (FREIRE et al., 2008). Additionally, the lack

of knowledge about the internal storage structure increases the difficulty of provenance uti-

lization. Thus, some specific query languages have been proposed for provenance, such as

OPQL (LIM et al., 2013), VQuel (CHAVAN et al., 2015), and other proprietary ones for spe-

cific systems (LERNER; BOOSE, 2014b).

OPQL (LIM et al., 2013) was designed to run specialized queries on provenance modeled

with the Open Provenance Model (OPM). Its queries combine basic set operations (union, in-

sert, and minus) and graph navigation constructs that support exploring transitive closures or

single edges of OPM.

VQuel (CHAVAN et al., 2015) was proposed as a generalization of the Quel (STONE-

BRAKER et al., 1976) language with features of GEM (ZANIOLO, 1983) and path-based

query languages. It has the goals of traversing version-level provenance information, querying

data contained in a version, and comparing it to other versions. While VQuel focuses on the

provenance of versions, it can also be used to query provenance evolution, should the content

of each version be trial provenance.

While most existing querying languages focuses on offline analysis (i.e., after execution),

provenance querying can safely occur online (i.e., during execution) to obtain derivations up to

a determined moment (MATTOSO et al., 2015; SOUZA; MATTOSO, 2018). Querying online

provenance externally helps to identify problems as soon as possible in long-running programs

and stop the execution before waiting a long time for their completion (COSTA et al., 2013).

Querying online provenance internally (i.e., by the program that is producing it) improves the

usage of intermediate data. Intermediate provenance data allows caching results and identifying

differences between executions to invalidate caches (GUO; ENGLER, D., 2011).

4.3.3.2 Visualization

As we mentioned before, some approaches export provenance as interoperable files (e.g., OPM,

PROV) for visualization in external tools (MICHAELIDES et al., 2016; TARIQ; ALI; GEHANI,

2012). However, since provenance can be tight to a domain or not exported to interoperable

files, some approaches that collect provenance offer their own internal visualization mecha-

nisms (ACUÑA, 2015; EICHINSKI; ROE, 2016; HUQ; APERS; WOMBACHER, 2013b;

KOHWALTER et al., 2016; LERNER; BOOSE, 2014b; MCPHILLIPS et al., 2015b; MURTA

et al., 2014).

4.3 Taxonomy 97

Most approaches visualize provenance either as logs (GREFF; SCHMIDHUBER, 2015) or

as directed graphs (ACUÑA, 2015; EICHINSKI; ROE, 2016; HUQ; APERS; WOMBACHER,

2013b; KOHWALTER et al., 2016; MCPHILLIPS et al., 2015b; LERNER; BOOSE, 2014b;

MURTA et al., 2014). Such graphs present data transformations, data communication between

activities, or activities sequence. Different graph views can represent the same provenance in-

formation according to the analysis goal (MCPHILLIPS et al., 2015b). Data-centric views

present data as nodes and activities that apply transformations over data as edges. Process-

centric views present activities as nodes and data transference between activities as edges. Fi-

nally, combined views present both data and activities as nodes and their relationships as edges.

Combined views often include authorship as well (MOREAU et al., 2011).

Some complete provenance graphs are overwhelmingly big. Thus, it is necessary to summa-

rize provenance through clustering or filtering to support visualization analysis in such graphs.

Provenance clustering combines similar nodes and edges in the provenance graph. It can be

performed manually (EICHINSKI; ROE, 2016; HUQ; APERS; WOMBACHER, 2013b) or

automatically (KOHWALTER et al., 2016; MURTA et al., 2014). Manual approaches require

users to select which nodes they want to combine into a single node. Automatic approaches

use similarity measures for clustering. The similarity measures might consider the sequence of

provenance nodes (KOHWALTER et al., 2016) or just the information of a single node (MURTA

et al., 2014). Approaches that do not consider sequencing can break acyclic constraints of

provenance during summarizations. These constraints can be purposely broken to represent

script cycles in visualizations (MURTA et al., 2014). Dynamic visualization tools can represent

clusters as collapsible nodes (LERNER; BOOSE, 2014b).

It is possible to use query languages described in Section 4.3.3.1 for provenance filtering.

Some query languages are distributed with provenance browsers that support provenance vi-

sualization (ANAND; BOWERS; LUDÄSCHER, 2010). Alternatively, it is possible to filter

provenance with simple predefined filters, such as temporal filters for selecting provenance data

produced in a specific time range (KOHWALTER et al., 2016).

Graphs are not the only way to visualize provenance. Sankey Diagrams are an alternative

that supports visualizing the magnitude of flows in activities network (HOEKSTRA; GROTH,

2014). Visualizing the magnitude of flows helps to determine important activities based on

dataflow. Among the existing approaches that support provenance visualization, some are cou-

pled with the infrastructure that collects the provenance (ACUÑA, 2015; HUQ; APERS; WOM-

BACHER, 2013b; LERNER; BOOSE, 2014b; MCPHILLIPS et al., 2015b; MURTA et al.,

2014) and others intend to be generic for any provenance application (HOEKSTRA; GROTH,

4.3 Taxonomy 98

2014; KOHWALTER et al., 2016). Generic approaches use interoperable provenance formats

(e.g., OPM, PROV), as discussed in Section 4.3.2.2. They have the advantage of supporting

provenance from different sources. Coupled approaches read provenance directly from the

provenance storage system. They have the advantages of considering collection characteristics

and improving visualization semantics.

4.3.3.3 Comparison

Some provenance approaches support comparing data to present differences between results

(DAVISON, 2012) and for cache invalidation (GUO; ENGLER, D. R., 2010). Others support

comparing provenance graphs to understand differences between executions (BAO et al., 2009;

FREIRE et al., 2006). Since comparing general graphs is equivalent to the sub-graph isomor-

phism problem, which is NP-complete (SORLIN; SOLNON, 2005), some approaches reduce

the complexity of the comparison by using the system context. The system context can indicate

the lack of loops in graphs (FREIRE et al., 2006), the guarantee of well-formed loops for trials

written in SPFL (series-parallel graph overlaid with well-nested forking and looping) (BAO et

al., 2009), and other information that is specific to each provenance system.

4.3.4 Applicability to Other Provenance Systems

We designed the proposed taxonomy for scripts, but some of the described features also ap-

ply to other approaches that collect, manage, or analyze provenance in non-scripting languages

(GROTH; MILES; MOREAU, 2005; CHITTIMALLI; NAIK, 2014), binary program execu-

tions (DEMSKY, 2009; CHIRIGATI; SHASHA; FREIRE, 2013), operating systems (GUO;

SELTZER, 2012; MUNISWAMY-REDDY et al., 2006), scientific workflow management sys-

tems (LIN et al., 2009; WOLSTENCROFT et al., 2013; FREIRE et al., 2006), and database

systems (CHENEY; CHITICARIU; TAN, 2007). In this section, we contrast these systems to

scripts and compare the applicability of the taxonomy.

Usually, Non-Scripting Languages (also known as system programming languages) are

more verbose, with variable declarations, data and code segregation, and well-defined substruc-

tures, procedures, and components (OUSTERHOUT, 1998). Provenance collection in these lan-

guages benefits from more informative static program analysis techniques than scripts (CHIT-

TIMALLI; NAIK, 2014). For instance, since components are known in advance, it is easier

to collect libraries as a deployment provenance snapshot, during the compilation. Similarly,

parsing the source code to collect the definition provenance before the execution provides more

information on types and dependencies than scripts provide. This information can be used to

4.3 Taxonomy 99

ease the execution provenance collection by overriding fewer parts of the program. In con-

trast, scripts are less verbose and designed for gluing distinct components with non-informative

interfaces. Thus, scripts require more dynamic effort in the provenance collection.

When collecting provenance from Binary Program Executions, the program is dissociated

from the source code definition (DEMSKY, 2009; CHIRIGATI; SHASHA; FREIRE, 2013).

On the one hand, it allows users to collect provenance from any executable. On the other hand,

it hinders the understanding and limits the provenance collection. For instance, annotations

can only occur externally, since the collection does not have access to the source code for

extracting internal annotations. As a consequence, the instrumentation strategy cannot be used

for binary execution provenance collection. Additionally, the definition provenance collection

cannot rely on parsing the source code. Thus, binary approaches use the reading strategy to

collect input/output files and executable files.

Operating Systems provenance is very similar to binary provenance and all binary restric-

tions apply. Approaches of this category collect provenance of everything that is running in the

operating system. Thus, associating the execution provenance to source code definitions is even

harder. Moreover, since the collection occurs during the OS execution, both the definition and

the deployment provenance are collected dynamically and continuously during the execution.

Operating systems also impose challenges on provenance storage due to the presence of the

database on the operating system. Hence, the system must avoid collecting provenance of it to

avoid recursive provenance. Additionally, the provenance of all processes imposes scalability

issues on the storage and analysis.

Scientific Workflow Management Systems collect workflow activities as definition prove-

nance by statically parsing the workflow structure (LIN et al., 2009; WOLSTENCROFT et al.,

2013; FREIRE et al., 2006). It allows their annotations to target only the provenance instead

of the definition. Since SWfMS define their own execution machinery, they do not employ

the overriding strategy nor the instrumentation strategy for execution provenance collection.

Instead, they use only the passive monitoring strategy for explicit provenance and the post-

mortem strategy for implicit provenance.

An important distinction between SWfMS and scripts is the granularity of collection. Or-

dinarily, SWfMS collect only activities and data passing between activities. Most of the time,

these activities are black-box operations and the SWfMS must assume that activities outputs

derive from all the inputs. In scripts, activities can be expressions evaluations, function calls,

and even script executions. Scripts express not only these activities invocations but also their

definitions. It allows scripts to treat activities as white-box operations and obtain more preci-

4.4 Threats to Validity 100

sion. Note, however, that not all activities are white-box operations in scripts. Calls to com-

piled or built-in functions are black-box operations. Additionally, some SWfMS support sub-

activities (WOLSTENCROFT et al., 2013), and some approaches propose combining SWfMS

to external tools to fill the black-boxes (CHAPMAN; JAGADISH, 2010) (e.g., using a scripting

approach to collect provenance from a workflow activity that invokes a script).

Another distinction between SWfMS and scripts is the mutability of the data (PIMENTEL

et al., 2018b). Scripts can have mutable complex data structures. The mutability imposes an

additional challenge in the collection. Suppose two activities apparently receive the same data

structure, but only one of them performs changes in the data. In this case, the order in which

the activities are executed influences the results. Additionally, nested data structures in scripts

hinder the understanding of the provenance and require more advanced collection strategies.

Database Systems have three types of provenance: why, how, and where (CHENEY;

CHITICARIU; TAN, 2007). Our taxonomy does not model where-provenance, as this informa-

tion is very rare in non-database systems and appear as part of other provenance types in scripts

(see the discussion in Section 4.3.1). Additionally, we combine both why-provenance and how-

provenance into the execution provenance, since it is harder to dissociate these concepts on

scripts. Usually, database systems do not collect definition nor deployment provenance, since

they are interested in the provenance of the stored data. Annotations are parseable and target

the provenance. Thus, database systems do not use the instrumentation strategy for why and

how provenance collection. Naturally, database systems use their own storage for provenance,

but some approaches also support exporting it to other formats. Finally, versioning is different

in these systems, since the concept of trial does not apply for database systems.

4.4 Threats to Validity

Our systematic mapping has some threats to validity. Although we applied backward and for-

ward snowballing exhaustively, the snowballing process does not guarantee that we discovered

all related work. Additionally, our start set had papers published in only two distinct jour-

nals and three distinct conferences. It could lead to a disconnected component of a citation

graph, which could concentrate only on a small niche. Note, however, that Jalali and Wohlin

(2012) suggest that there are no remarkable differences between database searches and back-

ward snowballing, in the amount of obtained papers. Moreover, the number of papers in distinct

conferences and journals we found indicates that our results did not concentrate in a small niche.

We considered only papers that we had access to their content and that matched our inclu-

4.5 Update 101

sion criteria. Out of 1,345 visited references, we could not access 9 papers, 20 papers were in

different languages, 70 references were technical reports, 65 references were books, and 138

references were websites or email communications. Three papers that we could not access pre-

dates the first related approach (BECKER; CHAMBERS, 1988), and they do not seem to be

related to provenance according to their citation contexts and abstracts. We requested the other

six to their authors, but we did not get a reply.

Another threat lies in the difficulty to identify features and classify papers. We excluded

papers by reading just their abstracts and titles. Some papers could hide the support of prove-

nance from scripts in the middle of the text. We believe we minimized the selection threat by

keeping track and reading the place in which each citation appeared. However, we had some

difficulties to identify whether some approaches were scripting provenance approaches, binary

provenance approaches, or just had the benefits of provenance collection without the intention

of collecting provenance.

4.5 Update

The provenance of the taxonomy we proposed in this chapter can be described by the process

we detailed in Section 4.2. However, after proposing the taxonomy, new approaches have been

proposed. To systematically update the literature review, we followed the guidelines proposed

by Felizardo et al. (2016), which consists of applying an exhaustive forward snowballing. By

February 16th, 2021, we visited 638 papers and selected 33 papers matching the inclusion

criteria.

Six papers extend or describe previously identified approaches. Lerner, Boose, and Perez

(2018) update RDataTracker to collect provenance from R scripts transparently. They use the

overriding strategy to add provenance collection statements in the code. Greff et al. (2017)

update Sacred to add a web visualization tool for monitoring the execution of scripts and other

features that are not related to provenance. Zhang et al. (2017) extend YesWorkflow to integrate

it to DataOne RunManagers and combine its definition provenance with the R and MATLAB

scripts’ execution provenance. The other three papers (DA CRUZ; NASCIMENTO, 2019;

MEYER, 2016; KERY, 2017) describe parts of their respective approaches in more detail. They

do not include anything that changes the categorization we reported in the ACM Computing

Surveys publication (PIMENTEL et al., 2019a).

Table 4.2 presents the selection of new approaches with their papers. In this table, we

categorized the approaches following the same principle of Table 4.1: we attempted to under-

4.5 Update 102

stand the purpose of provenance in these tools. For approaches that did not clearly specify the

usage goals, we inferred by the proposed features. We found 27 papers referring to 17 new

approaches, as we discuss in more detail below.

Collection. Most3 approaches use mandatory executable annotations that target the defini-

tion internally for provenance collection. The adapr (Accountable Data Analysis Process in

R) project (GELFOND et al., 2018), the approach proposed by Chapman et al. (2021), DfAn-

alyzer (SILVA et al., 2018a,b, 2020; DIAS, L. G. et al., 2020), ModelKB (GHARIBI et al.,

2019), and trackr (BECKER; MOORE; LAWRENCE, 2019) use these annotations to instru-

ment the script and collect execution provenance. DfAnalyzer, ModelKB, and trackr also use

these annotations to collect definition provenance. DfAnalyzer lets users declare the definition

provenance. ModelKB and trackr parse the script when the annotations are invoked to collect

it dynamically. These annotations are also used by ModelKB and trackr to collect a snapshot

of deployment provenance. Finally, adapr uses the annotations to collect the deployment prove-

nance continuously.

Flowgraph (PATTERSON et al., 2017a,b, 2018; PATTERSON, 2020), SMLD (SecureMLDe-

bugger) (HAN et al., 2020), and Vamsa (NAMAKI et al., 2020) collect the provenance from

scripts transparently (i.e., they do not require changes on scripts). SMLD uses the passive

monitoring strategy to collect execution provenance. Initially, Flowgraph (PATTERSON et al.,

2017b) also used this strategy, but it was later updated to use the overriding strategy. SMLD and

Vamsa collect definition provenance by parsing the source code statically. SMLD also collects

a snapshot of modules as deployment provenance.

Other IDE-based (TRACTUS (SUBRAMANIAN; MAAS; BORCHERS, 2020)) and

notebook-based approaches (Dataflow Notebook (KOOP; PATEL, 2017), nbgather (HEAD et

al., 2019; HEAD, 2020), JuNEAU (IVES et al., 2019; ZHANG; IVES, 2019, 2020), Prov-

Book (SAMUEL; KÖNIG-RIES, 2018), Verdant (KERY; MYERS, 2018; KERY et al., 2019),

and Wrattler (PETRICEK; GEDDES; SUTTON, 2018)) also collect provenance transparently.

However, instead of using the default overriding or passive monitoring strategies that oper-

ate internally on the script, they use these strategies at a higher level to detect the execution

of code snippets or cells. JuNEAU, nbgather, TRACTUS, Verdant, and Wrattler use the pas-

sive monitoring strategy. JuNEAU also uses the passive monitoring strategy to trace the cell

execution internally. Dataflow Notebook and ProvBook use the overriding strategy. Some

of these approaches also collect definition provenance by parsing dynamically (SUBRAMA-

3In this section, we are considering only the approaches in the update for conciseness. For a discussion of the
approaches we obtained before, check the ACM Computing Surveys publication (PIMENTEL et al., 2019a).

4.5 Update 103

Table 4.2: Selected approaches in the update with provenance support: main and secondary goals.

Labels in secondary goals column refer to goals: Cache – Caching; Compr – Comprehension;

Frame—Framework; Manag – Management; Repro – Reproducibility.

Approach Main goal Secondary goals

Cache Compr Frame Manag Repro

adapr (GELFOND et al., 2018) Reproducibility 7 7 7 7 3

Albireo (WENSKOVITCH et al.,

2019)
Comprehension 7 3 7 7 7

Chapman et al. (2021) Comprehension 7 3 7 7 7

Dataflow Notebook (KOOP;

PATEL, 2017)
Reproducibility 7 7 7 7 3

DFAnalyzer (SILVA et al.,

2018a,b; DIAS, L. G. et al., 2020;

SILVA et al., 2020)

Comprehension 7 3 3 7 7

Flowgraph (PATTERSON et al.,

2017a,b, 2018; PATTERSON,

2020)

Comprehension 7 3 7 7 3

JuNEAU (IVES et al., 2019;

ZHANG; IVES, 2019, 2020)
Management 7 3 7 3 7

ModelKB (GHARIBI et al.,

2019)
Management 7 7 7 3 3

nbgather (HEAD et al., 2019;

HEAD, 2020)
Reproducibility 7 7 7 7 3

Osiris (WANG, Jiawei et al.,

2020)
Reproducibility 7 7 7 7 3

ProvBook (SAMUEL;

KÖNIG-RIES, 2018)
Reproducibility 7 7 7 7 3

SMLD (HAN et al., 2020) Comprehension 7 3 7 3 3

trackr (BECKER; MOORE;

LAWRENCE, 2019)
Management 7 3 7 3 3

TRACTUS (SUBRAMANIAN;

MAAS; BORCHERS, 2020)
Comprehension 7 3 7 7 7

Vamsa (NAMAKI et al., 2020) Comprehension 7 3 7 7 7

Verdant (KERY; MYERS, 2018;

KERY et al., 2019)
Management 7 3 7 3 3

Wrattler (PETRICEK; GEDDES;

SUTTON, 2018)
Reproducibility 7 7 7 7 3

Main Goal / Total 0 / 0 7 / 10 0 / 1 4 / 5 6 / 11

NIAN; MAAS; BORCHERS, 2020; KOOP; PATEL, 2017; KERY; MYERS, 2018; KERY et

al., 2019; IVES et al., 2019; ZHANG; IVES, 2019, 2020; PETRICEK; GEDDES; SUTTON,

4.5 Update 104

2018; HEAD et al., 2019; HEAD, 2020) or reading dynamically (SAMUEL; KÖNIG-RIES,

2018). In addition to the overriding strategy, Dataflow Notebook uses parseable internal anno-

tations that describe the dependencies among cells and identify these dependencies after each

cell execution.

Albireo (WENSKOVITCH et al., 2019) and Osiris (WANG, Jiawei et al., 2020) infer the

execution provenance of notebooks using the post-mortem strategy. They collect the definition

provenance from existing notebooks by parsing statically and attempt to infer relationships

among cells. Albireo reports these relationships for comprehension. Orisis attempts to reorder

the cells to a sensible order for reproducibility.

Flowgraph and Vamsa use external parseable annotations that target provenance. These

annotations are stored as patterns in knowledge databases, and these approaches match the

patterns to the collected provenance.

Management. DfAnalyzer, JuNEAU, and SMLD store the provenance in relational databases.

In addition to relational databases, JuNEAU uses a graph database and an object key-value

store. Chapman et al. (2021) use a NoSQL database. Wrattler stores the provenance in a

content database. The adapr project, Flowgraph, ModelKB, and trackr store the provenance in

proprietary files or content databases. The approaches that store provenance in files use these

files for sharing. DfAnalyzer and Chapman et al. (2021) export the provenance to interoperable

PROV. DfAnalyzer, SMLD, and ModelKB also provide Web servers that can be used to share

the provenance remotely.

Albireo, Dataflow Notebook, TRACTUS, and Vamsa only store the provenance in the tran-

sient memory and do not export it. Despite not exporting the provenance, Dataflow Notebook

provenance is stored within notebooks in the form of parseable annotations. ProvBook and

nbgather also keep the provenance in the transient memory by default, but they support ex-

porting it to other files. ProvBook exports the provenance to RDF files with PROV and other

ontologies. Additionally, it provides operations for converting these files back to notebooks.

The nbgather approach uses program slicing on the provenance and exports clean and ordered

notebook files. Similarly, Osiris shares ordered versions of notebooks that it creates by inferring

dependencies in the provenance.

For versioning, ModelKB and SMLD track the sequence of execution. Verdant and nbgather

track the evolution of cells in notebooks. However, nbgather considers a single execution ses-

sion, while Verdant collects the evolution across sessions. Verdant stores the provenance in Git

repositories and indicate the intention of the evolution. Similarly, adapr supports Git reposi-

4.6 Discussion 105

tories and considers the intention, but instead of using it by default, it provides functions for

committing and merging the provenance.

Analysis. For visualization, approaches that share interoperable files (CHAPMAN et al., 2021;

SILVA et al., 2018a,b, 2020; SAMUEL; KÖNIG-RIES, 2018; DIAS, L. G. et al., 2020) can

open these files in external tools. Dataflow Notebooks, DfAnalyzer, JuNEAU, ModelKB,

nbgather, trackr, and Verdant show textual logs with the provenance. DfAnalyzer also dis-

plays data graphs. Albireo, TRACTUS, SMLD, Flowgraph, and adapr display process graphs.

Vamsa and Flowgraph display combined graphs. DfAnalyzer, Vamsa, and SMLD support fil-

tering the graphs. Albireo and Flowgraph support clustering. nbgather supports comparing the

provenance. ModelKB supports comparing the data of multiple executions.

For querying, approaches that use database systems support their respective generic query-

ing languages (SILVA et al., 2018a,b, 2020; HAN et al., 2020; CHAPMAN et al., 2021; IVES

et al., 2019; ZHANG; IVES, 2019, 2020). As specific queries, Albireo, DfAnalyzer, trackr,

SMLD, and ModelKB provide web interfaces; JuNEAU, nbgather, ProvBook, and Verdant sup-

port queries in the notebook web interface; Chapman et al. (2021), and trackr define functions.

Finally, Wrattler does not have an interface for analyzing the provenance. Still, it analyses

the provenance to detect dependencies among cells in a notebook and uses these dependencies

to automatically re-execute cells when one of their dependencies has changed.

4.6 Discussion

In this chapter, we propose a taxonomy to characterize approaches that collect provenance

from scripts. We constructed the taxonomy through a systematic mapping with approaches

that consider the structure of scripts to collect provenance. In this mapping, we identified five

provenance applications, which these approaches support: caching, comprehension, framework,

management, and reproducibility.

Regarding the taxonomy branches, we identified approaches that employ all mechanisms

of provenance collection. However, few approaches collect fine-grained execution provenance

in a transparent way (i.e., without demanding changes on the script). The only transparent ap-

proaches that collect fine-grained provenance are Albireo (WENSKOVITCH et al., 2019), the

approach proposed by Becker and Chambers (1988), nbgather (HEAD et al., 2019; HEAD,

2020), CXXR (RUNNALLS, A.; SILLES, C., 2012; SILLES; RUNNALLS, 2010), the one

proposed by Michaelides et al. (2016), Osiris (WANG, Jiawei et al., 2020), RDataTracker

4.6 Discussion 106

(LERNER; BOOSE; PEREZ, 2018), Vamsa (NAMAKI et al., 2020), and Wrattler (PETRICEK;

GEDDES; SUTTON, 2018).

Albireo, Osiris, and Vamsa infer dependencies among variables statically by analyzing the

source code structure of scripts and notebooks files (i.e., after their execution). nbgather uses a

similar approach of analyzing dependencies among variables in cells, but it uses the approach

dynamically during the notebook execution. Still, it only considers the code definition but not

the variable values.

Becker and Chambers (1988) collect commands and variables in S (CHAMBERS, 1998),

CXXR collect commands and variables in R. These approaches indicate only the actual depen-

dencies among variables, but they do not collect values.

RDataTracker collects commands, variables, and values in R. Michaelides et al. (2016) col-

lect block variables, values, and block calls in Blockly. Wrattler collects variables, values, data

frames, and operations in Python, R, and javascript. Despite collecting variables and values,

these approaches consider data structures as coarse-grained objects and collect full snapshots

of them, even when only a minimal part changes.

Wrattler also has some support for fine-grained collection of changes in data frames, but it

does not extend the support to other data structures. Chapman et al. (2021) and JuNEAU (IVES

et al., 2019; ZHANG; IVES, 2019, 2020) also support fine-grained collection of changes on

data structures, but they do not consider other types of variables.

Hence, research is needed to develop efficient fine-grained provenance collection that sup-

ports generic complex data structures.

Some approaches use version control systems to store and track the evolution of prove-

nance. While version control systems can track the intention of the experiment evolution, these

systems are not adapted to track the intention according to the life cycle of experiments (MAT-

TOSO et al., 2010). Hence, research is needed to understand the evolution of provenance

considering the exploratory nature of experiments. The closest approaches that try to over-

come these issues are Variolite (KERY; HORVATH; MYERS, 2017; KERY, 2017), and Ver-

dant (KERY; MYERS, 2018; KERY et al., 2019). These approaches define custom version

models for collecting variants in parts of scripts and notebooks.

Regarding provenance analysis, few approaches support provenance clustering (ACUÑA;

CHOMILIER; LACROIX, 2015; EICHINSKI; ROE, 2016; HUQ; APERS; WOMBACHER,

2013a; LERNER; BOOSE, 2014b; TARIQ; ALI; GEHANI, 2012; WENSKOVITCH et al.,

2019; PATTERSON et al., 2017a,b, 2018; PATTERSON, 2020), and fewer of them support

4.6 Discussion 107

graph filtering (LERNER; BOOSE, 2014b; SILVA et al., 2018a,b; TARIQ; ALI; GEHANI,

2012; DIAS, L. G. et al., 2020; SILVA et al., 2020; HAN et al., 2020; NAMAKI et al., 2020). It

indicates an opportunity to propose different summarization techniques. Moreover, the current

provenance graphs are limited to directed graphs representing the provenance as-is. However, in

the context of scripts, distinct graphs that consider the structure of scripts could be considered.

Chapter 5

Provenance in Scripts

5.1 Introduction

Murta et al. (2014) propose noWorkflow as an approach to capture definition, deployment, and

execution provenance from Python scripts transparently (i.e., without requiring users to change

the script). noWorkflow uses provenance for comprehension, reproducibility, and experiment

management.

The initial version of noWorkflow (we call it noWorkflow 0) traverses the AST to collect

functions as definition provenance (i.e., parsing statically). It collects environment variables

and uses the modulefinder module to collect imported modules as a snapshot of deployment

provenance. For execution provenance, noWorkflow 0 applies overriding and passive moni-

toring strategies. It overrides the open function to capture all file accesses, and it traces the

execution with a Profiler to obtain executed functions with parameters and return values. Thus,

it captures provenance at an intermediate-grain. It is not as coarse-grained as approaches that

consider only file derivations (ACUÑA; LACROIX; BAZZI, 2015; MUNISWAMY-REDDY

et al., 2006), nor as fine-grained as approaches that consider variables (LERNER; BOOSE,

2014b) or bytes (DEMSKY, 2009).

noWorkflow 0 stores file definitions in a content database structure using SHA1 hash codes

and it uses their metadata related with execution provenance in a relational SQLite database.

Thus, it supports generic SQL queries for analyses. In addition to SQL queries, noWorkflow

0 provides a series of specific command-line operations for listing and comparing trials, ac-

tivations, modules, and environment variables. It also provides a command to export a trial

provenance to Prolog with predefined rules, allowing users to run Prolog queries. noWorkflow

0 also supports loading provenance in an internal visualization tool that presents an activation

5.1 Introduction 109

graph for visual analysis. The activation graph presents a clustered sequence of activations in a

trial (i.e., it is a process graph).

In addition to collecting, storing, and analyzing provenance from a trial, noWorkflow 0

supports a weak form of provenance evolution. Like CPL (MACKO; SELTZER, 2012) and

ESSW (FREW; BOSE, 2001), it creates a sequential identifier for each trial and supports listing

trials and comparing basic trial information, such as parameters, duration, and file accesses.

This thesis extends and replaces most parts of noWorkflow 0 to introduce fine-grained

provenance collection, provenance collection on interactive notebooks (Chapter 6), content

database packing, full versioning support, provenance sharing, and additional ways to query,

visualize, and filter provenance. These features support not only provenance comprehension,

but can also support applications in other areas. For instance, provenance versioning and sharing

can support reproducibility. Moreover, fine-grained provenance collection supports debugging.

The extensions of noWorkflow resulted in two new versions with distinct features and

provenance collection modes: noWorkflow 1 and noWorkflow 2. Despite refactoring most

code of noWorkflow 0, noWorkflow 1 is a direct evolution of it that uses the existing infras-

tructure to add new features, such as fine-grained provenance collection, graph comparison,

history navigation, Jupyter integration, and others. On the other hand, noWorkflow 2 is a very

different implementation that rethinks many aspects of the previous versions. noWorkflow 2 im-

plements a very different provenance collection that is less intrusive and more precise by using

AST transformations instead of profiling and tracing. It also re-implements graph summarizing

and matching with more efficient algorithms. It has a seamless Jupyter integration that collects

dependencies across cells. Finally, noWorkflow 2 has more space-efficient provenance storage.

This chapter is structured in four sections, besides this introduction, according to the taxon-

omy we proposed in Chapter 4. Section 5.2 presents our approaches for provenance collection.

Section 5.3 presents our approaches for provenance management. Section 5.4 presents our ap-

proaches for analysis. Finally, Section 5.6 concludes this chapter with final remarks.

This chapter describes approaches from papers we published in the International Prove-

nance and Annotation Workshop (PIMENTEL et al., 2016a,b,c, 2018b), and Proceedings of the

VLDB Endowment (PIMENTEL et al., 2017).

5.2 Provenance Collection 110

5.2 Provenance Collection

In this section, we describe how all versions of noWorkflow collect provenance according to the

taxonomy we proposed in Chapter 4. None of the versions use annotations for collecting prove-

nance from Python scripts. They work with general Python scripts. For collecting provenance

with noWorkflow, users just need to install it and invoke their scripts using the noWorkflow

command now run script.py instead of python script.py.

5.2.1 Definition Provenance

All noWorkflow versions use the Python ast module to parse and collect scripts, function def-

initions, global variables, arguments, and function calls as definition provenance, statically.

noWorkflow 1 extends the noWorkflow 0 collections by collecting class definitions and the

compiled script bytecode as well. It does not store the bytecode, as it only uses it to support

fine-grained execution provenance collection, as we explain in Section 5.2.3.

While the original implementation is good enough to describe the scripts’ definitions and

present which definitions they have, it suffers from three problems. First, it only collects the

definition provenance of the main script. Due to the database organization, it does not collect

the definition provenance of local modules that may also be part of the experiment definition.

Instead, these modules appear as deployment provenance, without information about function

definitions and arguments. Second, it does not collect the position of global variables, argu-

ments, and function calls due to Python limitations on the ast1. Finally, it does not relate

definition provenance to execution provenance. Thus, noWorkflow 0 and 1 can only guess that

an activation relates to a function definition based on its name, and they are susceptible to false

positives.

For these reasons, we ditched the original definition provenance collection, and we propose

a new one for noWorkflow 2. The new system’s main goal is to have a generic representation

of the definition provenance with precise locations and connect the definition provenance both

to the execution provenance and the deployment provenance.

We use two concepts to represent the definition provenance in noWorkflow 2: code com-

ponent and code block. A code component is an element that appears in the source. It can rep-

resent the script itself, literals, variables, arguments, function calls, function definitions, class

definitions, or any other expression or statement that appears in the ast. All code components

1Python 3.8 added the position to ast nodes. However, this change is not backward compatible, and noWork-
flow 0 and 1 do not support this Python version.

5.2 Provenance Collection 111

have positions indicating the line and column of its first and last character in the script. A code

component can be composed of other code components. For instance, in the operation x + 1,

we have a code component representing the sum, and this code component is composed of two

code components that represent x and 1.

In addition to the composition, code components belong to code blocks. A code block is

a code component that contains a block of code. We consider scripts, function definitions, and

class definitions as code blocks. Since code blocks are code components, they have all the

information that exists on code components, in addition to the code snippet and the documenta-

tion. However, scripts do not belong to other code blocks and their positions represent the first

character and the last character in the script, respectively.

This model integrates well with both the deployment provenance and the execution prove-

nance. For deployment provenance, instead of collecting module scripts as a separate entity, we

can now collect scripts as code blocks and associate them with the deployment provenance. It

allows us to collect the definition provenance of local modules dynamically during imports. We

associate activations to code blocks and evaluations to code components for execution prove-

nance, as we explain in Section 5.2.3. Hence, we can associate what is being executed with

what appears in the source code.

As stated before, limitations on the Python ast module do not allow noWorkflow 0 and

1 to have precise information on the position of elements in scripts. Thus, we collect defini-

tion provenance in noWorkflow in two steps: first, we read the source code and enrich the ast

with the precise position of the nodes. Then, we visit the ast and create the code components

accordingly.

For enriching the ast, we propose a new library, PyPosAST2. This library uses the Python

tokenize module to parse the source code collecting the position of all strings, attributes, num-

bers, operators, names, and parentheses. Then, it uses the ast module to parse and visit the ast

using both the data that already exists on it (i.e., line information that appear in some nodes),

the collected positions, and the Python syntax to enrich all nodes of the ast and to add special

new nodes to represent textual elements, turning it into a mix of an Abstract and a Concrete

syntax tree.

The new approach for definition provenance collection also has some limitations. First, it

requires defining a visitor function for every ast element that we want to collect as a code com-

ponent. Thus, new Python releases that change the ast require new PyPosAST and noWorkflow

2 releases. On the other hand, noWorkflow 1 suffered this issue in a higher intensity by using

2https://github.com/JoaoFelipe/pyposast

5.2 Provenance Collection 112

the bytecode. Unlike the ast, the bytecode API is not stable, and changes occur not only on

minor releases but also on patch releases.

Additionally, changes on the ast that just add new elements do not break the existing ver-

sion. Instead, the new elements are just ignored by noWorkflow 2. Second, the enrichment of

the ast requires the script to use UTF-8 as encoding. It is not a problem in most situations,

but some scripts use other encodings. Finally, as it operates both with the script and the ast,

it requires the script’s source code. It cannot extract any information from modules that are

imported as bytecode.

In addition to scripts and code elements, all versions of noWorkflow collect input files as

definition provenance by reading. They override the open function for collecting file accesses

dynamically (i.e., during the execution). In noWorkflow 0 and 1, the only overridden function

is the built-in one. In noWorkflow 2, this has been extended to the open functions available at

the modules io, os, and codecs.

5.2.2 Deployment Provenance

All noWorkflow versions collect a snapshot of environment variables at the beginning of the

execution. In addition to the environment variables, they also collect information about the

platform, such as the operating system, the Python version, the processor architecture, the host-

name, and others. Similarly, noWorkflow 0 and 1 collect imported modules at the beginning of

the execution. They use the Python built-in module modulefinder to go through all the declared

modules in a script, importing them and discovering more modules. While it is fine to collect

environment variables as a snapshot, doing it for modules has four major drawbacks.

First, modulefinder attempts to import every import that appears in a script, without con-

sidering conditional imports and imports that should only be executed upon the execution of a

function. For instance, suppose a script that imports Qt if it is installed, or Tkinter, otherwise.

By running modulefinder on this script, it will indicate that the script uses both Qt and Tkinter.

Similarly, suppose a helper function for debugging that imports pdb, but that is not currently

called, as the program does not have a bug. modulefinder will import it and indicate that the

script is using pdb.

Second, once imported by modulefinder, Python keeps the module in the memory and does

not attempt to import it again during the script’s normal execution. This behavior not only

increases memory usage, but can also cause bugs in experiments. For instance, an experiment

that compares Matplotlib graphs before and after using Seaborn could have Matplotlib graph

5.2 Provenance Collection 113

generations before and after importing Seaborn, since just importing it already changes the

graphs aesthetics (YSEARKA, 2016). However, running modulefinder on this script before the

execution would import Seaborn and change the expected behavior.

Third, the modulefinder only considers imports that use the Python syntax for importing.

In addition to the syntax, Python also offers functions for dynamically loading and unloading

imports by passing their names or paths as a string.

Finally, due to the high overhead of discovering and collecting all imported files at the

beginning, the scripts require some time before starting to output any results, which may annoy

some users who want fast results. In a demonstration, a viewer reported that he thought the

script froze when we executed it with noWorkflow.

Thus, for noWorkflow 2, we propose a continuous approach for collecting modules. In

this approach, we implement import hooks that are only called when the script attempts to

import a module. With these hooks, we only collect modules that are in fact imported, we

respect the order of execution, we can collect dynamic modules, and we distribute the collection

overhead across the execution, allowing users to start to see results right after the beginning of

the execution.

Implementing an import hook in Python is not as straightforward as using the modulefinder.

We had to re-implement the Python import machinery that consists of a module finder and a

module loader to collect the provenance and import the module as it normally does. After

defining the finder, we added it to the highest priority of sys.meta_path, which is a variable

designed to allow users to define how to import non Python files in Python.

Thus, while the new approach solves the drawbacks of the previous approach, it also in-

cludes a new one: it is more susceptible to break on Python updates. In fact, the finder API

completely changed from Python 2 to Python 3, and we maintain two implementations of the

import hook to support both versions.

5.2.3 Execution Provenance

As stated in Section 5.2.1, noWorkflow overrides the open functions to collect input files as

definition provenance. We use the same override to collect intermediate and output files as

execution provenance. The only change is the access mode.

In addition to file accesses, all noWorkflow versions collect function calls, parameters, and

return values as execution provenance. noWorkflow 0 and 1 use the passive monitoring strat-

5.2 Provenance Collection 114

egy by defining a Python Profiler that automatically receives CALL and RETURN events from

Python and processing them to create function activations.

An activation follows a tree structure in which the parent activation represents the caller of

its children activations. During the collection of activations, noWorkflow collects their execu-

tion time and their sequence, allowing it to describe how the program runs. It also collects their

arguments and return values.

Since these events are entirely based on the program execution and Python is a dynamic

language, associating the triggered events with the definition provenance is not trivial and may

result in false positives (i.e., it receives an event that appears to match a function definition

in the script, but it matches another function with the same name). For instance, suppose the

intentionally simple implementation of the happy numbers problem (PORGES, 1945) presented

in Figure 5.1. In this code, there are two functions named show (lines 4 and 15) and a call on

line 23. During the definition provenance collection, noWorkflow 0 and 1 collect the function

definitions show, process, and the second show and assign ids to them, such as F1, F2,

F3, respectively. Then, during the execution of the function show on line 24, they only receive

a CALL event indicating that a function named show is being called, but the event does not

specify which one. Thus, noWorkflow 0 and 1 do not associate the executed function with their

definition.

Hence, for noWorkflow 2, we replaced the passive monitoring strategy with an overriding

strategy that transforms the ast during the execution and indicates how to collect the provenance

of each code component and code block. During the transformation, we indicate which code

component is going to execute for each expression.

Figure 5.2 presents parts of the transformed happy numbers script with function defini-

tions and function call to help explaining the provenance collection through ast transforma-

tions. Note, however, that noWorkflow 2 does not export this transformed script, as it compiles

the transformed ast directly to bytecode, and some textual representations may not be faithful

representations of the transformed ast.

In this script, observe the special variables NOW and ACT3. They represent the noWorkflow

collector and the current function activation, respectively. The collector is an object that defines

all the execution provenance collection methods that the transformer invokes. We use the current

activation to build the activation tree by indicating the parent activation of each activation. In

this case, we create the script activation, ACT, in line 2 by invoking start_script. Then,

3In the actual implementation we use the names __noworkflow__ and __now_activation__ for NOW
and ACT to avoid collisions.

5.2 Provenance Collection 115

4 def show(number):
5 pass
6
7 def process(number):
8 while number >= 10:
9 new_number, str_number = 0, str(number)
10 for char in str_number:
11 new_number += int(char) ** 2
12 number = new_number
13 return number
14
15 def show(number):
16 if number not in (1, 7):
17 return "unhappy number"
18 else:
19 return "happy number"
20
21 final = process(n)
22 if DRY_RUN:
23 final = 7
24 print(show(final))

Figure 5.1: Intentionally simple implementation of the happy numbers problem.

in lines 69 and 72, we indicate that both the print and the show activations occur inside the

script activation. Note however that the ACT arguments that appear in lines 12, 16, and 42 are

not the same activation as the script activation. Instead, they are created by each function call

and passed as parameters by the function_def decorator. This decorator is defined by a

double call with two sets of parameters. The first set contains the parent activation and the code

block id of the function definition. The second set contains a list of parameters, with their code

component ids and default values. Both the code block id and the code component id are used

to connect the execution provenance to the definition provenance.

Both the collection approach described for noWorkflow 0 and 1 and the collection approach

depicted in Figure 5.2 for noWorkflow 2 represent coarse-grained execution provenance collec-

tions with activations and arguments. Coarse-grained provenance adopts the function activation

order to infer the dependency among data, potentially leading to false-positive links. For in-

stance, Figure 5.1 calls show after calling process, leading to the inference that the show

result depends on the process result. In fact, this inference happens to be true when DRY_-

RUN is False. However, the same inference would lead to a false-positive result should the

global variable DRY_RUN be True. It occurs because final would be assigned to 7, which

does not depend on the result of process.

For addressing this issue, both noWorkflow 1 and noWorkflow 2 support fine-grained prove-

nance collection through different implementations. noWorkflow 1 extends the provenance col-

lection of noWorkflow 0 by defining a Python Tracer (PIMENTEL et al., 2016c). A Tracer is

usually intended to support the implementation of debuggers. It works like a Profiler, but instead

of receiving only CALL and RETURN events, it also receives LINE events for each executed

5.2 Provenance Collection 116

2 ACT = NOW.start_script(__name__, S1)
3 try:

11 @NOW.function_def(ACT, F1)([('number', P1, None)])
12 def show(ACT, number):

15 @NOW.function_def(ACT, F2)([('number', P2, None)])
16 def process(ACT, number):

41 @NOW.function_def(ACT, F3)([('number', P3, None)])
42 def show(ACT, number):

69 NOW.call(ACT, C4, print)(
70 NOW.argument(ACT, A4)(
71 NOW.call(ACT, C5, show)(
72 NOW.argument(ACT, A5)(final)
73)
74)
75)
76 except:
77 NOW.collect_exception(ACT)
78 raise
79 finally:
80 NOW.close_script(ACT)

Figure 5.2: Transformed script with function definitions and function call.

line. noWorkflow 1 uses these line events together with bytecode analysis to extract variables,

variable usages, and dependencies among variables through program slicing (PIMENTEL et al.,

2016c).

However, using a Tracer in combination with bytecode to collect provenance has many

drawbacks. First, it does not handle operations split into multiple lines due to the nature of line

events. Second, it is imprecise for lines with multiple operations since the analysis occurs line

by line. Consequently, it is hard to collect provenance from collections and structured objects

since accessing collection items and object attributes are independent operations. Third, the

execution of external modules also triggers LINE events, decreasing the provenance collection

performance when the users are only interested in their own execution. Finally, as stated before,

the bytecode API is not stable and causes incompatibilities on Python updates.

Hence, for noWorkflow 2 we use a different approach for collecting fine-grained prove-

nance. As an extension to the overriding strategy applied for coarse-grained collection (as

presented before in Figure 5.2), we modify the AST to add operations to collect evaluations

and dependencies among evaluations. An evaluation is the materialization of a value in a code

component. For instance, a code component that represents an iterator name in a loop may have

multiple evaluations representing each value assumed by the iterator.

A dependency between two evaluations has two main types: reference or derivation. A

reference dependency indicates that an evaluation represents the same object as the object it

was derived from. It is the type of dependency that appear on assignments. For instance, the

5.2 Provenance Collection 117

evaluation of final in line 23 of Figure 5.1 is a reference dependency of the evaluation of 7,

meaning that they represent the same object. A posterior change on the object internal structure

would affect both evaluations4.

On the other hand, a derivation dependency indicates that an evaluation was derived from

another. It occurs on common unary and binary operations. For instance, in line 11 of Fig-

ure 5.1, the evaluation of int(char) ** 2 has a derivation dependency to the evaluation

int(char) and another derivation dependency to 2.

We use reference dependencies together with checkpoints to collect the provenance of col-

lections and structured objects according to the Versioned-PROV model (PIMENTEL et al.,

2018b). In this model, all evaluations connected by reference dependencies share the same

members. A member is another evaluation that can represent an attribute of an object or an item

of a collection. During the analysis phase, we use the checkpoints to reconstruct the state of

each structured object at any given moment and infer the provenance. It allows a fast collection

of the provenance from structured objects without requiring a recursive collection of all of their

members and sub-members. It is also a way of supporting the provenance of recursive data

structures. Versioned-PROV is one of the contributions of this work. We opted not to detail it

in the body of the thesis since it is a very specialized technique for dealing with mutable data

structures. However, it is available and evaluated in Appendix A.

Different from noWorkflow 1 that collects the fine-grained provenance of variables, noWork-

flow 2 represents only evaluations in its data model. Hence, variable definitions and usages

appear as distinct evaluations. For instance, in Figure 5.1, final in lines 21, 23, and 24 en-

acts three different evaluations when they are executed. For indicating that they are the same

variable, during the execution, we keep a scope map on the Activation object that indicates for

each function call, which evaluation represents the variable. Hence, in this example, during the

execution of line 21, noWorkflow 2 creates an evaluation for final and adds it to the scope of

the script activation indicating that the name final was defined by this new activation. Then,

during the execution of line 23, it creates a new evaluation for final and replaces the evalua-

tion on the scope map. Finally, during the execution of line 24, it recognizes it as usage. Instead

of replacing the variable in the scope map, it creates a reference dependency from the evaluation

of final in line 24 to the evaluation of final in line 23, indicating that they represent the

same variable and object. Thus, it is possible to indicate that the result of show (that receives

final) does not depend on the result of process.

4It is not trivial to change the internal structure of numbers in Python, but it is possible to do using C extensions.

5.2 Provenance Collection 118

5.2.4 Summary

Table 5.1 compares provenance collection in noWorkflow versions (in the bottom) with the

approaches we obtained in Chapter 4. Compared to noWorkflow 0, noWorkflow 1 adds the col-

lection of fine-grained variables as execution provenance and extends the collection of definition

provenance to elements that were not covered by the previous version.

noWorkflow 2 replaces the provenance collection mechanisms by exclusively adopting the

overriding strategy for execution provenance collection and using import hooks for collecting

modules as deployment provenance continuously. The move towards the overriding strategy

also occurred in other approaches for achieving more control and transparency. RDataTracker

used to require the instrumentation of scripts, and Flowgraph used to apply the passive moni-

toring strategy.

noWorkflow 2 is the only approach that collects provenance from generic complex data

structures efficiently. Michaelides et al. (2016) and RDataTracker can collect provenance from

structured variables, but they collect a snapshot of the whole structure at every collection. Chap-

man et al. (2021), Wrattler, and JuNEAU support efficient manipulation of data frames, but they

do not support other structured data. noWorkflow 2 identifies changes on individual members of

data structures, keeps references among objects that represent the same data, and uses the check-

point of each member derivation to reconstruct complete states (PIMENTEL et al., 2018b).

Table 5.1: Provenance collection strategies. Labels in Annotations columns refer to categories described in Chap-

ter 4 Exte —External; Inte —Internal; Pars —Parseable; Exec —Executable; Incl —Inclusive; Excl —Exclusive;

Defi —Definition; Prov —Provenance; Man —Mandatory; Opt —Optional.

Approach Granularity Annotations Execution Depl. Definition

Pl
ac

em
en

t

E
xt

ra
ct

io
n

In
cl

us
iv

en
es

s

Ta
rg

et

N
ec

es
si

ty

Pa
ss

iv
e

M
on

ito
ri

ng

O
ve

rr
id

in
g

Po
st

-M
or

te
m

In
st

ru
m

en
ta

tio
n

Sn
ap

sh
ot

C
on

tin
uo

us

R
ea

di
ng

Pa
rs

in
g

St
at

ic

D
yn

am
ic

adapr Modules, Files (I/O) Inte Exec Incl Defi Man 7 7 7 3 7 3 7 7 7 7

Albireo Cells, Variables 7 7 7 7 7 7 7 3 7 7 7 7 3 3 7

Astro-WISE

User defined,

Attributes, Files (I/O),

Parameters, Source

Inte Exec Incl Defi Man 7 7 7 3 7 7 3 7 7 3

Continued on next page

5.2 Provenance Collection 119

Approach Granularity Annotations Execution Depl. Definition

Pl
ac

em
en

t

E
xt

ra
ct

io
n

In
cl

us
iv

en
es

s

Ta
rg

et

N
ec

es
si

ty

Pa
ss

iv
e

M
on

ito
ri

ng

O
ve

rr
id

in
g

Po
st

-M
or

te
m

In
st

ru
m

en
ta

tio
n

Sn
ap

sh
ot

C
on

tin
uo

us

R
ea

di
ng

Pa
rs

in
g

St
at

ic

D
yn

am
ic

Becker and

Chambers

(1988)

Commands, Variables,

Random Seed
7 7 7 7 7 7 3 7 7 7 7 7 7 7 3

Bochner,

Gude, and

Schreiber

(2008)

User defined, Files,

Platform
Inte Exec Incl Defi Man 7 7 7 3 7 3 3 7 7 3

Chapman

et al. (2021)
Data frames Inte Exec Incl Defi Man 7 7 7 3 7 7 7 7 7 7

CPL N/A – – – – – – – – – – – – – – –

CXXR

Commands, Variables,

Random Seed, Files

(I)

7 7 7 7 7 7 3 7 7 7 7 7 7 7 7

Dataflow

Notebook
Cells, Dependencies Inte Pars Incl Defi Man 7 3 7 3 7 7 7 3 7 3

Datatrack

User defined,

Parameters, Platform,

Modules

Inte Exec Incl
Defi

Prov

Man

Opt
7 7 7 3 7 3 7 7 7 7

DFAnalyzer User defined Inte Exec Incl Defi Man 7 7 7 3 7 7 3 7 7 3

ES3 Files (I/O - metadata) 7 7 7 7 7 7 3 7 7 7 7 7 7 7 7

ESSW
User defined,

Processes, Files (I/O)
Inte Exec Incl Defi Man 7 7 7 3 7 7 3 7 7 3

Flowgraph
Functions, Files (I/O),

Stack Trace
Exte Pars Incl Prov Opt 3 3 7 7 7 7 7 7 7 7

IncPy

Functions, Globals,

Stack, Output, Files

(I/O)

Inte Exec
Incl

Excl
Defi Opt 7 3 7 3 7 7 3 3 3 3

JuNEAU Cells, Data frames 7 7 7 7 7 3 7 7 7 7 7 7 3 7 3

Lancet

Arguments,

Commands, Platform,

Env. Var.

Inte Exec Incl Defi Man 7 7 7 3 3 7 7 3 3 7

Magni

User defined, Stack

Trace, Platform,

Source

Inte Exec Incl Defi Man 7 7 7 3 7 3 3 7 3 7

Continued on next page

5.2 Provenance Collection 120

Approach Granularity Annotations Execution Depl. Definition

Pl
ac

em
en

t

E
xt

ra
ct

io
n

In
cl

us
iv

en
es

s

Ta
rg

et

N
ec

es
si

ty

Pa
ss

iv
e

M
on

ito
ri

ng

O
ve

rr
id

in
g

Po
st

-M
or

te
m

In
st

ru
m

en
ta

tio
n

Sn
ap

sh
ot

C
on

tin
uo

us

R
ea

di
ng

Pa
rs

in
g

St
at

ic

D
yn

am
ic

Michaelides

et al. (2016)

Blocks, Calls,

Random Seed, Values,

User Input

7 7 7 7 7 7 3 7 7 7 7 7 7 7 3

ModelKB
Files (I/O),

Arguments, Models
Inte Exec Incl Defi Man 7 7 7 3 3 7 7 3 7 3

nbgather
Cells, Variables,

Dependencies
7 7 7 7 7 3 7 7 7 7 7 7 3 7 3

Osiris Cells, Variables 7 7 7 7 7 7 7 3 7 7 7 7 3 3 7

ProvBook Cells 7 7 7 7 7 7 3 7 7 7 7 3 7 7 3

Provenance

Curious

Language Constructs,

Files (I/O)
Exte Pars Incl Defi Man 7 7 3 7 7 7 7 3 3 7

pypet
Arguments, Output,

Sumatra
Inte Exec Incl

Defi

Prov

Man

Opt
7 7 7 3 3 7 3 7 3 7

RDataTracker

Commands, Variables,

Values, Env. Var.,

Platform, Modules,

Files (I/O)

7 7 7 7 7 3 3 7 7 3 3 3 7 7 3

RFlow
User defined, Files

(I/O), Source
Exte Pars Incl Prov Man 7 7 7 3 7 7 3 7 3 7

Sacred

User defined, Output,

Modules, Host,

Source, Files (I/O)

Inte Exec Incl Defi Opt 7 3 7 3 3 7 3 7 3 3

SMLD
Functions, Platform,

Modules
7 7 7 7 7 3 7 7 7 3 7 7 3 3 7

SPADE

Functions, Returns,

Arguments, Stack

Trace, Env. Var.

Exte Pars Excl Defi Opt 7 3 7 7 3 7 7 7 7 7

StarFlow

Functions, Modules,

Files (I/O), Stack

Trace

Inte
Pars

Exec
Incl Defi Opt 3 3 7 3 3 7 7 3 3 3

Sumatra Modules, Files (I/O) Exte Pars Incl Prov Opt 7 7 3 7 3 7 3 7 3 7

trackr Values, Modules Inte Exec Incl Defi Man 7 7 7 3 3 7 7 3 7 3

TRACTUS Function calls 7 7 7 7 7 3 7 7 7 7 7 7 3 7 3

Vamsa
Language Constructs,

Variables
Exte Pars Incl Prov Opt 7 7 7 7 7 7 7 3 3 7

Continued on next page

5.3 Provenance Management 121

Approach Granularity Annotations Execution Depl. Definition

Pl
ac

em
en

t

E
xt

ra
ct

io
n

In
cl

us
iv

en
es

s

Ta
rg

et

N
ec

es
si

ty

Pa
ss

iv
e

M
on

ito
ri

ng

O
ve

rr
id

in
g

Po
st

-M
or

te
m

In
st

ru
m

en
ta

tio
n

Sn
ap

sh
ot

C
on

tin
uo

us

R
ea

di
ng

Pa
rs

in
g

St
at

ic

D
yn

am
ic

Variolite
Arguments, Output,

Source
Exte Pars Incl Prov Opt 7 7 3 7 7 7 3 7 3 7

VCR
User defined, Values,

Calls, Stack Trace
Inte Exec Incl Defi Man 7 7 7 3 7 7 7 7 7 7

Verdant Cells 7 7 7 7 7 3 7 7 7 7 7 7 3 7 3

versuchung
User defined, Files

(I/O), Source
Inte Exec Incl Defi Man 7 7 7 3 7 7 3 7 3 3

WISE
Processes, Modules,

Files (I/O - metadata)
7 7 7 7 7 7 3 3 7 3 7 3 7 3 7

Wrattler

Variables,

Dependencies, Data

frames

7 7 7 7 7 3 7 7 7 7 7 7 3 7 3

YesWorkflow User defined
Inte

Exte
Pars Incl Defi Man 7 7 3 3 7 7 7 7 7 7

noWorkflow

0

Functions, Env. Var.,

Platform, Modules,

Files (I/O)

7 7 7 7 7 3 3 7 7 3 7 3 3 3 3

noWorkflow

1

Functions, Variables,

Env. Var., Platform,

Modules, Files (I/O)

7 7 7 7 7 3 3 7 7 3 7 3 3 3 3

noWorkflow

2

Functions, Variables,

Complex Data

Structures, Env. Var.,

Platform, Modules,

Files (I/O)

7 7 7 7 7 7 3 7 7 3 3 3 3 3 3

5.3 Provenance Management

In this section, we describe how noWorkflow manages provenance.

5.3 Provenance Management 122

Dependency

trial_id

function_def_id

trial_id
trial_id

trial

id: int

inherited_id

start: timestamp

finish: timestamp

script: text

code_hash: text

arguments: text

parent_id

command: text

run: int

docstring: text

function_def

id: int

name: text

code_hash: text

first_line: int

last_line: int

docstring: text

trial_id

function_activation

id: int

name: text

line: int

return_value: text

start: timestamp

finish: timestamp

caller_id

function_activation_id

object_value

id: int

name: text

value: text

type: text

object

id: int

name: text

type: text

function_activation_id
trial_id

file_access

id: int

name: text

mode: text

buffering: text

content_hash_before: text

content_hash_after: text

timestamp: timestamp

trial_id

trial_id

trial_id

variable_id
activation_id

head

id: int

script: text

module

id: int

name: text

version: text

path: text

code_hash: text

environment_attr

id: int

name: text

value: text

tag

type: text

id: int

name: text

timestamp: timestamp

activation_id

graph_cache

id: int

type: text

name: text

attributes: text

content_hash: text

duration: int

timestamp: timestamp

variable_usage

id: int

line: int

context: text

source_id target_id

variable

id: int

name: text

line: int

value: text

time: timestamp

type: text

variable_dependency

id: int

type: text trial_id

trial_id
trial_id

source_activation_id

target_activation_id

Figure 5.3: noWorkflow 1 relational data model. Green represent additions.

5.3.1 Storage

All versions of noWorkflow store provenance in a relational SQLite database and a content

database. When the user runs noWorkflow for the first time in a directory, it creates a .nowork-

flow sub-directory with both databases. In the content database, noWorkflow stores scripts,

function definitions, and read and written files. In the relational database, it stores structured

provenance data and organizes the relationships and metadata of the data stored in the content

database. It uses code hashes to refer to files in the content database.

Relational Database. Figure 5.3 presents the noWorkflow 1 data model in comparison to

noWorkflow 0. As stated before, noWorkflow 1 is a direct evolution of noWorkflow 0. Its data

model is just an extension with the addition of new tables and columns. Elements in green

represent additions.

In this model, a trial represents an execution of an experiment. It stores the code hash

of the main script as definition provenance. Besides the main script in the trial table, it also

stores definition provenance in the tables function_def (function definitions) and object

(global variables, arguments, and function call definitions).

5.3 Provenance Management 123

For deployment provenance, it stores imported libraries in the module table and environ-

ment variables in the environment_attr table.

As execution provenance, noWorkflow 0 and 1 use the tables function_activation

(function activations and main script execution), object_value (actual values of global

variables and arguments), and file_access (accessed files). For fine-grained provenance,

noWorkflow 1 also stores execution provenance in the tables variable (variable bindings),

variable_usage (usage of variables), and variable_dependency (dependencies

among variables).

In addition to these tables, noWorkflow 1 has other changes in the data model to support ver-

sioning and optimizations. For versioning, it includes the table head for navigating the history,

the table tag to assign names to versions, and the attribute parent_id in trial to keep the

history. For optimizations, it transformed global auto-increment id columns into primary keys

composed of the pair trial_id, id, with the id being managed by the execution – in some

tables, it was necessary to add trial_id columns. As a consequence, insertions are faster,

and it is possible to query elements from a trial without many joins. Additionally, noWorkflow

1 uses the table graph_cache to store processed visualizations and speed-up the exhibition

of them.

The data model of noWorkflow 1 has some issues. First, it does not relate execution prove-

nance to definition provenance. Even though functions stored in the function_def table are

activated and stored in the function_activation table, there is no relationship between

these tables beside the function name, which is not a unique identifier. The same issue occurs

between object_value and object. Second, multiple tables (module, function_-

def, and trial) have code hashes referring to similar code elements in the content database.

Ideally, these references could be in a single table. Third, object_value and variable

store similar elements, and some elements are stored twice for compatibility between fine-

grained collection and coarse-grained collection. Finally, some names could be more generic

(e.g., function_activation and function_def) to support other types of elements.

For solving these issues and others, noWorkflow 2 uses a different data model, as presented

in Figure 5.4. In this model, there is a direct relationship between the execution provenance

(activation, evaluation) and the definition provenance (code_block, code_com-

ponent). In the new model, an activation is an evaluation of a function call in most

cases. Still it can also be an evaluation of a class definition or the main script itself. An

evaluation that is not an activation can be any element in the code that produces a value (repr)

at a given moment (checkpoint). Hence, it combines and replaces the variable and

5.3 Provenance Management 124

trial_id

trial_id

container_id

trial_id
trial_id

trial_id

trial

id: int

modules_
inherited_
from_
trial_id

start: timestamp

finish: timestamp

parent_id

command: text

path: text

status: text

code_block

id: int

code_hash: text

docstring: text

trial_idactivation

id: int

name: text

start_checkpoint: float

activation_id

activation_id
trial_id

file_access

id: int

name: text

mode: text

buffering: text

content_hash_before: text

content_hash_after: text

checkpoint: float

trial_id

trial_id

code_block_id

module

id: int

name: text

version: text

path: text

transformed: boolean

environment_attr

id: int

name: text

value: text

tag

type: text

id: int

name: text

timestamp: timestamp

code_block_id

code_ component

id: int

name: text

type: text

mode: text

first_char_line: int

first_char_column: int

last_char_line: int

last_char_column: int

argument

id: int

name: text

value: text

trial_id

composition

id: int

type: text

position: int

extra: text

part_id

whole_id

trial_id

code_component_id

collection_activation_id
member_activation_id

collection_id

member_id
evaluation

id: int

checkpoint: float

repr: text

trial_id

member

id: int

key: text

checkpoint: fl

type: text

dependent_id

dependency_id
collection_id

dependent_activation_id
dependency_activation_id

collection_activation_id

trial_id

dependency

id: int

type: text

reference: boolean

key: text

graph_cache

id: int

type: text

name: text

attributes: text

content_hash: text

duration: int

timestamp: timestamp

main_id

head

id: int

script: text

Figure 5.4: noWorkflow 2 relational data model. Green represent additions and semantic
changes. Purple represents renames. It does not show removals.

object_value tables. The tables dependency and member represent dependencies and

memberships among evaluations as described in Section 5.2.3.

A code_block is a code_component that has a block of code, such as a script defini-

tion, a class definition or a function definition. We store these elements in the content database.

Other types of code_components are any textual element that appears at any position in the

code. Hence it stores the position. We use the table composition to rebuild the AST from

code_component.

Since code_block stores code elements and has a code hash referring to the content

database, we transformed the imported modules and the main script definition into code blocks,

removing the code_hash and docstring columns from trial and module. Addition-

ally, the module table previously had a N*N relationship with trial. For this change, we

replaced it with a 1*N relationship that made the execution faster at the expense of using more

space for repeated modules.

The data model of noWorkflow 2 allows answering some provenance queries that the data

model of noWorkflow 1 does not. Since noWorkflow 2 relates definition provenance to execu-

tion provenance, it is possible to answer where a given value was obtained in the code. While

5.3 Provenance Management 125

in noWorkflow 1 it can be loosely inferred by the name of variables – which may be defined

in multiple locations ambiguously – noWorkflow 2 allows precise identification of the location

of the evaluation that produced a value. Unlike noWorkflow 1, noWorkflow 2 can also identify

function calls and other operations (e.g., sum, collection access, object attribute) as the origin

of a given value.

Similarly, noWorkflow 1 identifies activations by their definition names (i.e., names stored

in their __name__ attributes by the def statement). However, Python uses functions as first-

class citizens and allows the redefinition of function names (e.g., number = int; num-

ber(’3’) are valid statements). The concepts of evaluation and activation in

noWorkflow 2 allows the identification of such situations and querying for which functions

have different invocation names (i.e., it is possible to know that the evaluation number(’3’)

represents the activation of int).

Finally, the definition of members in the noWorkflow 2 data model following the Versioned-

PROV model allows querying components of complex data structures. These components can

answer queries such as "What was the value of the element in the nth position of a list?", "Which

evaluations lead to the generation of sub-components?", and "What was the type of the eval-

uation?". Note for the last question that everything is an object in Python with an attribute

__type__ indicating their classes. We use the Versioned-PROV model for collecting these

attributes.

Content Database. noWorkflow 1 and 2 supports two types of content databases, which users

can select per project. The original one (i.e., from noWorkflow 0) stores copies of the files

without compression. When it collects a file, noWorkflow computes the SHA1 hash of it and

stores it using the same strategy Git uses for storing files: it uses the first two digits of the hash

as the directory name in the content database and the remaining digits as the filename inside

this directory. For reading a file, it uses the SHA1 hash and accesses the file directly.

This strategy is easy to implement and provides fast accesses, but it does not give proper

treatment for big files or files that grow along with several trials. Small changes in a file results

in changes in the SHA1 hashes and separate storage of file revisions.

The other type of content database uses Git itself for storing files (PONTES, 2018). Git

reduces the storage overhead using two techniques. It not only compresses files with zlib

(GAILLY; ADLER, 2017), but also combines objects into packfiles that contain one version

of them and deltas from one version to another (CHACON; STRAUB, 2014). Thus, it can

reconstruct big files that received small modifications over time.

5.3 Provenance Management 126

Using Git commands for interacting with Git would impose a significant performance over-

head due to the excess of system calls. Instead, noWorkflow uses the libraries Dulwich (VER-

NOOJJ, 2018) or PyGit2 (IBÁÑEZ et al., 2018) to perform Git operations. While the former is

a pure Python implementation of Git (i.e., slower but easier to install), the latter is a library that

provides bindings for a C library (i.e., faster but harder to install). Hence, when both libraries

are installed, noWorkflow uses PyGit2.

In our tests (PONTES, 2018) (see Annex A), the Git content database reduces the size over-

head by 65.23% on average with an extra processing time overhead of 1.90%, compared to the

noWorkflow 0 content database. Additionally, the Git content database allows the execution of

a garbage collection to force the creation of packfiles that further reduce the storage over-

head, reaching a reduction of 73.79% when compared to the noWorkflow 0 content database.

5.3.2 Sharing

As stated before, noWorkflow stores both the content database and the relational database in a

.noworkflow sub-directory. Thus, the easiest way to share the collected provenance with all

trials is to share this directory.

Besides the directory, all noWorkflow versions have a command to export Logic Prolog facts

and rules (now export). This command exports rows from the relational database tables as

compound terms composed of a functor based on the table name and arguments representing the

columns. Figure 5.5 presents a subset of exported facts from a trial that represents the execution

of the script depicted in Figure 5.1. In addition to Prolog facts, this command exports Prolog

rules to help querying the data employing transitive closures.

For noWorkflow 1 and 2, we extended the sharing features. In both versions, we included

a command to export a Graph file for the fine-grained dataflow in the GraphViz format (now

dataflow), as we show in Section 5.4.2. In noWorkflow 2, we also added a command to

export interoperable5 Versioned-PROV (PIMENTEL et al., 2018b) files (now prov).

In addition to these local sharing methods, noWorkflow 1 and 2 also include a small web

server (now vis). This web server aims to visualize the trial history, with their activation

graphs, files, environment variables, and parameters, as we present in Section 5.4.2. However,

users can also configure it to allow a remote sharing of the provenance.

5Versioned-PROV is not as interoperable as plain PROV at this moment. We intend to develop an algorithm
for converting it to PROV in the future.

5.3 Provenance Management 127

11 % FACT DEFINITION: trial(Id, Script, Start, Finish, Command,
12 % Status, ModulesInheritedFromTrialId, ParentId, MainId).
13 trial(1, 'script.py', 1610471126.1342, 1610471126.380694, 'run script.py',
14 'finished', nil, nil, 1).

282 % FACT DEFINITION: code_component(TrialId, Id, Name, Type, Mode,
283 % FirstCharLine, FirstCharColumn,
284 % LastCharLine, LastCharColumn, ContainerId).
285 code_component(1, 1, 'script.py', 'script', 'w', 1, 0, 25, 0, nil).
286 code_component(1, 10, 'show', 'function_def', 'w', 4, 0, 5, 8, 1).
287 code_component(1, 17, 'number', 'param', 'w', 4, 9, 4, 15, 10).
288 code_component(1, 19, 'process', 'function_def', 'w', 7, 0, 13, 17, 1).
289 code_component(1, 26, 'number', 'param', 'w', 7, 12, 7, 18, 19).
290 code_component(1, 43, 'str(number)', 'call', 'r', 9, 36, 9, 47, 19).
291 code_component(1, 60, 'int(char)', 'call', 'r', 11, 26, 11, 35, 19).
292 code_component(1, 73, 'show', 'function_def', 'w', 15, 0, 19, 29, 1).
293 code_component(1, 101, 'process(n)', 'call', 'r', 21, 8, 21, 18, 1).
294 code_component(1, 115, 'print(show(final))', 'call', 'r', 24, 0, 24, 18, 1).
295 code_component(1, 119, 'show(final)', 'call', 'r', 24, 6, 24, 17, 1).

433 % FACT DEFINITION: code_block(TrialId, Id, CodeHash, Docstring).
434 code_block(1, 1, 'de77867d4de96c80e17161a9b4da7cafdc091fb0', '').
435 code_block(1, 10, '5fa2287e2051714c9897df7cae2674e5c715bafa', '').
436 code_block(1, 19, '24b8c944a0cb0a418a7ec6c4fe669a47b7c96721', '').
437 code_block(1, 73, '61663f8aa387cc1d3fbb9958bc44a786361c3ae9', '').

447 % FACT DEFINITION: activation(TrialId, Id, Name, StartCheckpoint, CodeBlockId).
448 activation(1, 1, '__main__', 0.17218730000058713, 1).
449 activation(1, 13, 'process', 0.17250679999960994, 19).
450 activation(1, 20, 'str', 0.17266079999899375, nil).
451 activation(1, 29, 'int', 0.172852800000328, nil).
452 activation(1, 36, 'int', 0.17296220000025642, nil).
453 activation(1, 52, 'print', 0.173218399999314, nil).
454 activation(1, 53, 'show', 0.17322749999948428, 73).

464 % FACT DEFINITION: evaluation(TrialId, Id, Checkpoint, CodeComponentId, ActivationId,
465 % Repr, MemberContainerId).
466 evaluation(1, 1, 0.1734820999990916, 1, 0, '<module __main__ from script.py>', 1).
467 evaluation(1, 13, 0.17312279999896418, 101, 1, '1', 29).
468 evaluation(1, 20, 0.17268610000064655, 43, 13, '10', 20).
469 evaluation(1, 29, 0.1728758999997808, 60, 13, '1', 29).
470 evaluation(1, 36, 0.17298379999920144, 60, 13, '0', 36).
471 evaluation(1, 52, 0.17345229999955336, 115, 1, 'None', 52).
472 evaluation(1, 53, 0.17337319999933243, 119, 1, 'happy number', 61).

Figure 5.5: Subset of Prolog facts from a trial. We reordered lines and added line breaks when
needed to fit the page.

5.3.3 Reproducibility

As stated in Chapter 4, provenance is useful for the reproducibility of experiments, as it allows

scientists to share not only the findings but also the data, programs, and environments. For

supporting these operations, noWorkflow provides the sharing features we described in Sec-

tion 5.3.2.

Additionally, scientists can also use provenance for reproducibility by comprehending third-

party experiments, and comparing different executions to check if a new trial could replicate

the results of the previous one. noWorkflow supports both visualizing and comparing trials (see

Section 5.4).

5.3 Provenance Management 128

Finally, another aspect of reproducibility is being able to re-run previous trials under similar

conditions. We added the command now restore to noWorkflow 1 and 2 to restore files of a

previous trial for re-executions (PIMENTEL et al., 2016b). Users can run this command either

passing a trial as the argument or a trial and a file path. When they pass both the trial and the

file path, noWorkflow restores the specified file. However, when they pass only the trial, the

command restores the Python script with its local libraries and all input files. It does not restore

intermediate files, output files, nor external libraries. While not restoring external libraries may

be a problem for an actual reproduction of the trial, we opted not so to avoid breaking the Python

installation. Nonetheless, by running the reproduction with noWorkflow, it is still possible to

compare the libraries for fixing the external dependencies using proper installation methods.

We present an example of this operation in Section 5.3.4.

5.3.4 Versioning

All versions of noWorkflow generate sequential trial ids. These ids allow identifying which trial

occurs before or after the other and support some basic trial comparisons. With the addition of

the now restore command in noWorkflow 1 and 2 (see Section 5.3.3), we also extended

the version model to a more formal definition that encompasses the intention of the trial evo-

lution (PIMENTEL et al., 2016b). Additionally, we added the possibility of creating tags to

reference trials instead of their sequential ids and created automatic semantic tags to describe

the trial’s intention. These automatic tags follow a semantic versioning schema based on three

numbers: X.Y.Z. The semantic versions start as 1.1.1 for Trial 1. If the script is re-executed

with the same code and input, it increments Z (i.e., automatic tag 1.1.2). If it uses the same

code but a different input, it increments Y and resets Z to 1 (i.e., automatic tag 1.2.1). Finally, if

the code changes, it increments X and resets both Y and Z to 1 (i.e., automatic tag 2.1.1). This

versioning schema further describes the intention of the evolution.

Version Model. Conradi and Westfechtel (1998) state that a version model should define the

organization of the version space (i.e., how a product is versioned) and the interrelation of the

product space (i.e., how a product is structured) and the version space. We define our product

space as an experiment, containing its scripts, data, execution traces, etc. The entry point of our

product space is the main script of the experiment. We recursively capture imported modules

from this script, accessed files during execution, and the execution provenance. Thus, we have

scripts (including imports), input files, intermediate files, and output files as file objects. We

identify file objects solely by their path within the experiment directory.

5.3 Provenance Management 129

File objects describe the structure of the experiment: that is, all files needed by the exper-

iment, which includes the script itself (definition provenance), imported modules (deployment

provenance), and accessed (read/write) files (execution provenance). On the other hand, we

also have logical provenance information that is not stored in files: functions called during ex-

ecution, parameters values, variable values, etc. In our product space, we have a special object

called logical object that contains all the aforementioned logical provenance information. This

way, we can say that our product space comprises multiple file objects and one logical object.

Our version space (CONRADI; WESTFECHTEL, 1998) has two versioning levels: trial

version (i.e., the trial id) and file object version. Trial versions represent the state of the exper-

iment in terms of file object versions read or written within each trial, together with the logical

object version produced by the trial. On the other hand, file object versions represent the state

of file objects at each file access during the whole experiment execution (throughout all trials).

File object versions may contain extra attributes (metadata) besides the state of file objects:

modules may have their semantic versions declared by developers (e.g., 3.5.1), files may have

their moment of opening and opening mode (read/write), etc.

We apply this distinction between trial versions and file object versions because scripts can

write to some file objects more than once, generating more than one version of the file object

within a single trial. Due to this distinction, our version space supports restoring trial versions as

a whole, with all input file objects, or specific file object versions (e.g., an intermediate version

of a file object). However, to restore a specific file object version, users should inform which

object they want to restore individually and in which moment (i.e., by indicating a timestamp,

the file content hash code, or its access position in a sequential list ordered by timestamp).

While we associate file objects to both version concepts (trial version and file object ver-

sion), we associate logical objects only to trial versions because they are unique for each trial

and already contain all execution steps (i.e., each function activations, each variable state, etc.)

within a trial. Nonetheless, restoring a trial version does not restore the logical object of that

trial, as it is not a tangible object, even though it is still useful for auditing or reproducing a trial.

Figure 5.6 presents an example of this version model with two trial versions for an exper-

iment, where the user only edited “experiment.py” and added “converter.py” before executing

the second trial. Circles represent object versions, and dotted squares represent trial versions.

Note that the file “warp.warp” has four file object versions in Trial 1, and those versions were

written four times, and read four times. Note also that Trial 1 does not have file object ver-

sions for “converter.py”, “atlas-x.ppm”, and “atlas-x.jpg” because file object versions refer to

the state of files at their access time, and Trial 1 did not access these files. Equivalently, there is

5.3 Provenance Management 130

experiment.py

external.py

anatomy1.img

warp.warp

reslice1.img

atlas-x.pgm

atlas-x.gif

atlas-x.ppm

atlas-x.jpg

Product Space

converter.py

1

Version Space

Trial 1 Trial 2

logical

Object

Read Access
to object
version R

Write Access
to object
version W

R

W

Trial

History

2

1 2

1 1

1

1 1

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 1

1 1

2 2

2 2

1

1 1

1

Figure 5.6: Version model example.

no file object version for “atlas-x.gif” at Trial 2, since Trial 2 did not access it.

Moreover, we can observe that both trials accessed the same file object version of “exter-

nal.py” and “anatomy1.img” and that the user edited “experiment.py” after Trial 1. The logical

object, on the other hand, has a single and unique version on each trial, since it contains runtime

data such as function activations, start and finish times, variable values, etc. This kind of data

is already time-sensitive, not demanding an extra layer of versioning. Since Trial 1 and Trial 2

have different code definitions, they have the automatic tags 1.1.1 and 2.1.1, respectively. For

the remainder of this section, we will use the automatic tags to refer to the trials.

Restore Operation. As mentioned in Section 5.3.3, users can use trial versions to restore

states of the experiment with noWorkflow 1 and 2. The main goal when restoring a trial is

for reproducing it. For this reason, restoring Trial 1.1.1 would only restore the files “experi-

ment.py”, “external.py”, and “anatomy1.img” (all at version 1). In addition, it would remove

“warp.warp”, “reslice1.img”, “atlas-x.pgm”, and “atlas-x.gif”, because these files did not exist

before Trial 1.1.1. However, restoring Trial 2.1.1 would restore “experiment.py” (at version

2), “external.py” (at version 1), “converter.py” (at version 1), “anatomy1.img” (at version 1),

“warp.warp” (at version 4), “reslice1.img” (at version 1), and “atlas-x.pgm” (at version 1); and

it would remove “atlas-x.ppm” and “atlas-x.jpg”. It would not touch “atlas-x.gif”, since Trial

2.1.1 has not accessed it. Note also that it would restore “warp.warp”, “reslice1.img”, “atlas-

x.pgm” because the state of these files before Trial 2.1.1 is equal to the state after Trial 1.1.1.

5.3 Provenance Management 131

1.1.1 2.1.1

3.1.1

2.1.2 5

2.1.3 4.1.1

5.1.1

6.1.1

7.1.1

Figure 5.7: Evolution history. Nodes represent trial versions

Trial versions not only identify the state of an experiment but also track the evolution. In

the example of Figure 5.6, we can see that Trial 2.1.1 is an evolution of Trial 1.1.1, because

it was an execution of “experiment.py” after Trial 1.1.1. If the user executes a new script,

“experiment2.py” (that is in the same directory as “experiment.py”), she would have a new

trial, with version 3.1.1, but it would not be an evolution of Trial 2.1.1. However, if she executes

again “experiment.py”, she would have Trial 2.1.2 based on Trial 2.1.1.

We also provide a special type of trial version to avoid losses on the restore operation. If

a user changes the content of “experiment.py”, but instead of running a new trial using the

modified script, she restores Trial 2.1.1, she would lose all changes. To avoid these losses,

we create a special “backup” trial with the current content of all file objects in the last ver-

sion (i.e., file objects edited after Trial 2.1.2). In this case, we would have the fifth trial as a

backup trial, with contents of “experiment.py”, “external.py”, “converter.py”, “anatomy1.img”,

“warp.warp”, “reslice1.img”, “atlas-x.pgm”, “atras-x.ppm”, and “atlas-x.jpg”. At least one of

these files should be different from the ones of Trial 2.1.2 for the backup trial to be created.

Note that we do not have an automatic tag for backup trials. Hence, we refer to it as Trial 5,

using its id.

After restoring Trial 2.1.1, if a user runs Trial 2.1.3, it would be based on Trial 2.1.1. We

keep track of this information by storing the base version of each trial. Before Trial 2.1.3, we

had the base version restored to 2.1.1. After running Trial 2.1.3, we update the base version

to 2.1.3. This allows our version model to track the evolution in a non-linear way. In fact, by

considering the evolution of “experiment.py”, as presented in Figure 5.7, it is possible to see

two branches of Trial 2.1.1: one that goes from Trial 2.1.1 to Trial 2.1.2, and another that goes

from Trial 2.1.1 to Trial 2.1.3. A branch is a sequence of trials that were executed in parallel to

other sequences of trials. Branches can have either a common ancestor to another branch or no

ancestor at all. In this case, Trial 2.1.1 is the common ancestor of both branches, and Trial 2.1.2

and 5 belong to the same branch.

5.3 Provenance Management 132

Evolution History. Figure 5.7 presents an evolution history longer than what we described so

far. In the figure, Trials 1.1.1, 2.1.1, 2.1.2, 2.1.3, 5, and 4.1.1 are related to “experiment.py”, and

Trials 3.1.1, 5.1.1, 6.1.1, and 7.1.1 are related to “experiment2.py”. We represent trials that did

not finish (i.e., halted due to an error) as red nodes and backup trials as yellow nodes. According

to the figure, Trial 4.1.1 did not finish, and Trial 5 is a backup trial. In addition, after getting

an error on “experiment.py” execution (i.e., Trial 4.1.1), the user executed “experiment2.py”

(Trial 5.1.1). Then she restored Trial 3.1.1 and executed “experiment2.py” again, creating a

new branch for Trial 6.1.1. Finally, she restored Trial 5.1.1 and executed “experiment2.py”,

generating Trial 7.1.1.

Note that we have two branches of “experiment.py” and two branches of “experiment2.py”

in the end. Users can use branches to try different processes for their experiments and execute

their experiment on the same code base, but with different input files or parameters.

Evaluation. Appendix B presents a short evaluation of the version model using it to answer

questions from the first Provenance Challenge and the ProvBench workshops.

5.3.5 Summary

Table 5.2 compares provenance management in noWorkflow versions (in the bottom) with the

approaches we obtained in Chapter 4. Compared to noWorkflow 0, noWorkflow 1 adds a web

tool that allows remote access of the provenance and a version model that allows the identifica-

tion of the intention of the evolution.

Besides noWorkflow, only eight approaches identify the intention of evolution. However,

six of them (adapr, Lancet, Magni, pypet, Sumatra, and versuchung) do so by relying on Git as

their version control system. These approaches have the burden of requiring users to learn how

to use Git. Variolite and Verdant define version models that track the intention of variants in

scripts and notebooks. Unlike these approaches that focus mostly on script definitions, noWork-

flow focuses on tracking the provenance evolution. Hence, we collect not only the definition

provenance but also the execution and the deployment provenance.

Although not represented in the table, noWorkflow 1 also adds an option to store the prove-

nance in a Git repository for space efficiency and a command for restoring previous trials.

noWorkflow 2 does not add many features in comparison to noWorkflow 1, but it changes the

data model to link both the execution and the deployment provenance to the definition prove-

nance.

5.3 Provenance Management 133

Table 5.2: Provenance management classification.

Approach Artifacts Storage Share Versioning

D
at

ab
as

e
M

em
or

y

Fi
le

L
oc

al

R
em

ot
e

adapr Log, Repository, VCS 7 7 3 3 7 Intention

Albireo Memory 7 3 7 7 7 7

Astro-WISE Oracle 3 7 7 7 7 Sequence

Becker and Chambers

(1988)
Proprietary, Source 7 7 3 3 7 7

Bochner, Gude, and

Schreiber (2008)
PReServ 7 7 7 7 3 7

Chapman et al. (2021) MongoDB 3 7 7 3 7 7

CPL MySQL, PostgreSQL, 4store 3 7 7 3 7 Trial ID

CXXR Memory 7 3 7 7 7 7

Dataflow Notebook Memory 7 3 7 7 7 7

Datatrack VCS, Proprietary (CSV) 7 7 3 3 3 Trial ID

DFAnalyzer MonetDB 3 7 7 3 3 7

ES3 XML Server, GraphML, Graphviz 3 7 7 3 7 7

ESSW MySQL, Content DB, Graphviz 3 7 3 3 7 Trial ID

Flowgraph GraphML 7 7 3 3 7 7

IncPy Content DB 7 7 3 3 7 7

JuNEAU PostgreSQL, Neo4j, Minio, S3 3 7 7 7 7 7

Lancet Log, VCS 7 7 3 3 7 Intention

Magni Proprietary (JSON, HDF5), VCS 7 7 3 3 7 Intention

Michaelides et al. (2016) Proprietary (INPWR), PROV, Source 7 7 3 3 7 7

ModelKB Content DB, Proprietary (JSON, H5) 7 7 3 3 3 Sequence

nbgather Memory, Notebook files 7 3 7 3 7 Sequence

Osiris Source 7 7 3 3 7 7

ProvBook Memory, PROV 7 3 7 3 7 7

Provenance Curious SQLite, GraphML 3 7 7 3 7 7

pypet Proprietary (HDF5), VCS 7 7 3 3 7 Intention

RDataTracker PROV-JSON 7 7 3 3 7 Trial ID

RFlow PostgreSQL, Repository 3 7 3 7 3 7

Sacred MongoDB, Relational, JSON 3 7 3 3 7 Trial ID

SMLD SQLite 3 7 7 7 3 Sequence

SPADE
PostgreSQL, MySQL, H2, Neo4j,

Datalog, GraphViz, PROV
3 7 3 3 3 7

StarFlow OPM, Proprietary (CSV) 7 7 3 3 7 7

Sumatra SQLite, VCS 3 7 3 7 3 Intention

trackr JSON 7 7 3 3 7 7

Continued on next page

5.4 Provenance Analysis 134

Approach Artifacts Storage Share Versioning

D
at

ab
as

e
M

em
or

y

Fi
le

L
oc

al

R
em

ot
e

TRACTUS Memory 7 3 7 7 7 7

Vamsa Memory 7 3 7 7 7 7

Variolite Proprietary (JSON), VCS 7 7 3 3 7 Intention

VCR Log, Repository 7 7 3 7 3 7

Verdant VCS 7 7 3 7 3 Intention

versuchung
Content DB, SQLite, Proprietary

(Dict), VCS
3 7 3 3 7 Intention

WISE Graphviz, GraphML 7 7 3 3 7 7

Wrattler Content DB, JSON, Blob 7 7 3 7 7 7

YesWorkflow PROV, Datalog, Graphviz 7 7 3 3 7 7

noWorkflow 0 Content DB, SQLite, Prolog 3 7 3 3 7 Sequence

noWorkflow 1 Content DB, SQLite, Prolog, VCS 3 7 3 3 3 Intention

noWorkflow 2 Content DB, SQLite, Prolog, VCS 3 7 3 3 3 Intention

5.4 Provenance Analysis

Provenance analysis aims at supporting the comprehension of data and processes. noWorkflow

supports analyses focusing on understanding dependencies among evaluations, activations, and

file accesses, comparing trials for understanding differences, and assessing trial evoluation.

5.4.1 Query

As described in Chapter 4, provenance tools may support generic and specific query languages.

noWorkflow supports query languages in both categories. To demonstrate these languages, we

will use an intentionally simple query that obtains both the code hash and the return value of the

show call in line 24 of Figure 5.1 in the first execution of this script (i.e., trial 1). The following

examples assume noWorkflow 2 data model.

Since all versions of noWorkflow use SQLite as their relational database, it is possible to

run queries using SQL. Figure 5.8 presents an SQL query that uses the noWorkflow database.

Note that we join activation with both evaluation and code_block, and we join

evaluation with code_component. The evaluation code component represents the func-

tion call that occurs in line 24, while the activation code block represents the function definition

that occurs in line 15.

5.4 Provenance Analysis 135

1 sqlite> SELECT b.code_hash, e.repr
2 FROM activation a, evaluation e, code_block b, code_component c
3 WHERE a.trial_id = 1
4 AND e.trial_id = 1
5 AND b.trial_id = 1
6 AND c.trial_id = 1
7 AND a.id = e.id
8 AND a.code_block_id = b.id
9 AND e.code_component_id = c.id

10 AND a.name = 'show'
11 AND c.first_char_line = 24;
12
13 61663f8aa387cc1d3fbb9958bc44a786361c3ae9|'happy number'

Figure 5.8: SQL query.

1 ?- activation(1, E, 'show', _, B), evaluation(1, E, _, C, _, Value, _),
2 code_component(1, C, _, _, _, 24, _, _, _, _), code_block(1, B, Hash, _).
3
4 E = 53,
5 B = 73,
6 C = 119,
7 Value = 'happy number',
8 Hash = '61663f8aa387cc1d3fbb9958bc44a786361c3ae9'.

Figure 5.9: Prolog query.

SQL works fine for simple queries, but it struggles with recursive queries and queries that

employ transitive closures, which are common for provenance. For instance, trying to under-

stand whether the result of process in line 21 influences the result of show in line 24 requires

navigating through the dependencies of the evaluations that appear in between. For such queries,

all versions of noWorkflow export the provenance to Prolog facts and rules, as we described in

Section 5.3.2, and support using these facts and rules for queries. Figure 5.9 presents our simple

sample query using Prolog. This query uses the variables E, B, and C for joining the facts and

the variables Value and Hash to obtain the desired results.

In addition to Prolog queries based on the collected noWorkflow provenance, noWorkflow

1 also integrates with YesWorkflow (MCPHILLIPS et al., 2015b) for Datalog queries. Different

from noWorkflow which performs a transparent fine-grained provenance collection, YesWork-

flow collects provenance from annotated code blocks that users must explicitly specify. Since

users design these blocks with provenance in mind, their granularity may be closer to what the

users expect. However, YesWorkflow does not collect actual dependencies and values that oc-

cur during the execution of the script. The integration between noWorkflow 1 and YesWorkflow

allows users to query the fine-grained noWorkflow provenance using the annotated code block

granularity they defined using YesWorkflow (PIMENTEL et al., 2016a). We call this integration

YW*NW.

5.4 Provenance Analysis 136

1 $ now show 1 -a
2 [now] trial information:
3 Id: 1
4 Status: Finished
5 Inherited Id: None
6 Script: script.py
7 Code hash: de77867d4de96c80e17161a9b4da7cafdc091fb0
8 Start: 2021-01-12 17:05:26.134200
9 Finish: 2021-01-12 17:05:26.380694
10 Duration: 0:00:00.246494
11 [now] this trial has the following function activation tree:
12 1: __main__ (2021-01-12 17:05:26.306387 - 2021-01-12 17:05:26.307682)
13 Return value: <module '__main__' from 'script.py'>
14 21: process (2021-01-12 17:05:26.306707 - 2021-01-12 17:05:26.307323)
15 Parameters: number = 10
16 Return value: 1
17 9: str (2021-01-12 17:05:26.306861 - 2021-01-12 17:05:26.306886)
18 Return value: '10'
19 11: int (2021-01-12 17:05:26.307053 - 2021-01-12 17:05:26.307076)
20 Return value: 1
21 11: int (2021-01-12 17:05:26.307162 - 2021-01-12 17:05:26.307184)
22 Return value: 0
23 24: print (2021-01-12 17:05:26.307418 - 2021-01-12 17:05:26.307652)
24 Return value: None
25 24: show (2021-01-12 17:05:26.307427 - 2021-01-12 17:05:26.307573)
26 Parameters: number = 7
27 Return value: 'happy number'

Figure 5.10: Command that shows the activations of Trial 1.

As specific query language, all versions of noWorkflow have commands for showing the

provenance data from the database. These commands are not nearly as complete as the alter-

natives, but they may suffice to answer simple questions. Figure 5.10 shows a command that

shows the activations of trial 1, indicating their line numbers, duration, parameters, and return

value in a tree format. From the results, it is possible to partially answer our original query, as it

does not return the code hash of the function. Nonetheless, users can also obtain the code hash

by running the command now show 1 -d.

noWorkflow 0 interacts with the relational database using plain SQL with a simple con-

nection that does not support parallelism. For noWorkflow 1 and 2, we adopted SQLAlchemy

as ORM (Object Relational Mapper) to have a more robust connection with support to Python

objects. Consequently, it enabled a new type of specific query using the ORM objects derived

from the relational tables. Figure 5.11 shows our example query using the ORM features from

SQLAlchemy. At first glance, the querying logic is not much different from SQL, and it suffers

from the same problems of recursive queries. However, after obtaining the mapped objects, it

has the advantage of supporting helper methods and accessors that simplify the navigation to

adjacent models and implement transitive closures. Note in line 20 of Figure 5.11 that it uses

attributes to obtain the code block and evaluation from the activation instead of including the

projection in the query.

5.4 Provenance Analysis 137

1 >>> from noworkflow.now.persistence import persistence_config, relational
2 ... from noworkflow.now.persistence.models import Activation, Evaluation, CodeComponent
3 ... persistence_config.connect_existing('.')
4 ... activation = (
5 ... relational.session.query(Activation.m)
6join(Evaluation.m,
7 ... (Activation.m.trial_id == Evaluation.m.trial_id)
8 ... & (Activation.m.id == Evaluation.m.id)
9 ...)
10join(CodeComponent.m,
11 ... (Evaluation.m.trial_id == CodeComponent.m.trial_id)
12 ... & (Evaluation.m.code_component_id == CodeComponent.m.id)
13 ...)
14filter(
15 ... (Activation.m.trial_id == 1)
16 ... & (Activation.m.name == 'show')
17 ... & (CodeComponent.m.first_char_line == '24')
18 ...)
19 ...).first()
20 ... print(activation.code_block.code_hash, activation.this_evaluation[0].repr)
21
22 61663f8aa387cc1d3fbb9598bc44a786361c3ae9 'happy number'

Figure 5.11: ORM query.

1 >>> from noworkflow.patterns import activation, code_block, code_component, evaluation, var
2 ... query = (
3 ... activation(1, var.E, 'show', code_block_id=var.B)
4 ... & evaluation(1, var.E, code_component_id=var.C, repr=var.Value)
5 ... & code_component(1, var.C, first_char_line=24) & code_block(1, var.B, var.Hash)
6 ...)
7 ... for _, binds in query:
8 ... print(binds)
9
10 {Hash: '61663f8aa387cc1d3fbb9958bc44a786361c3ae9', C: 119,
11 Value: "'happy number'", E: 53, B: 73}

Figure 5.12: Python pattern matching query.

For noWorkflow 2, we added an additional type of specific query language that combines

the simplicity of pattern matching from Prolog queries with the power of helper methods and

accessors from the ORM queries. Figure 5.12 presents our example query using this domain-

specific language built on top of Python. Note that the query logic is very similar to Prolog,

with similar variables having similar purposes. Still, it also exposes the ORM results to users

allowing them to use attributes and methods.

In comparison to Prolog, our pattern matching also has the advantage of supporting both

positional and named arguments, the advantage of not requiring the installation of external tools

for querying, and the advantage of being faster since it does not require exporting the whole

provenance. However, it has the disadvantage of using a harder procedural way to implement

rules, instead of the declarative one in Prolog. Nonetheless, we have python implementations

for all rules that we export to Prolog.

5.4 Provenance Analysis 138

__main__

main

align
_reslice

softmean slice
_convert

align
_warp

reslice slicerconvert

1

1

1

1

3

1

4

1

1

1

21

3

1

Namespace Match

Ctrl+Shift or ⌘+Shift click to diff trials

History Config

Trial 1.1.1 1.1.1 - Information

1.1 2.1

3.1

4.1

5.1

6.1

7.1

Trial 1.1.1
cd1be11a2308ab217327a7d361138cb7f6c25106

experiment.py
Id:
Script:
Start:
Finish:
Duration:
Arguments:

1

2021-01-21 17:14:55.633513
2021-01-21 17:14:56.066112

0:00:00.432599
run experiment.py

anatomy1.img anatomy2.img anatomy3.img
anatomy4.img reference.img

external
9ec697e6d063105d0c28a0a36e40107b84e843bc

Modules

Figure 5.13: now vis web page.

5.4.2 Visualization

noWorkflow has many visualization features. The now show command output we depicted

in Figure 5.10 presents an internal log visualization of a complete activation tree. noWorkflow

1 and 2 also display the activation tree as a visual process graph in the now vis web server

we briefly described in Section 5.3.2. This web server not only displays activation trees, but

also displays trial evolution graphs (such as the one in Figure 5.7), basic trial information (e.g.,

name, duration, arguments), environment variables, and file accesses. The web server also

supports filtering the trials in the evolution history graph by script name or status (i.e., finished

trial, unfinished trial, or backup trial). It supports summarizing both the evolution history graph

into a summarized history and the activation tree into an activation graph. Figure 5.13 shows

a screenshot of now vis with a summarized history graph on top, a summarized activation

graph on the bottom left, and the trial information on the bottom right.

5.4 Provenance Analysis 139

Summarized history. The summarized history graph in Figure 5.13 represents the same his-

tory as the one we presented in Figure 5.7. For this summarization, we use the two levels of the

automatic tags we described in Section 5.3.4 to combine trials into groups. Since the summa-

rization uses two levels, all trials in a group have the same code and the same input. That is, the

summarization groups re-executions of the trial. The actual trials appear vertically as circles in

the graph. The brightness of the node indicates the moment of execution: bright nodes repre-

sent old trials while dark nodes represent recent ones. This graph also uses colors to indicate

the status of the trial: gray nodes indicate successful executions, and red nodes indicate failures.

Note that the summarization hides backup trials, as they do not have automatic tags.

Activation graph. As stated before, we create the summarized activation graph in Figure 5.13

based on an activation tree. In this graph, nodes represent activations (or groups of activations),

and arrows indicate the execution flow. The activations’ colors indicate their duration in a scale

from white to red, where white represents the fastest and red represents the slowest. Note that

the main program is always red, as it encompasses the whole trial duration.

In the process of generating activation graphs, we remove edges that connect children ac-

tivations to their parent activation and replace them with three types of arrows: call arrow,

sequence arrow, and return arrow. A call arrow (continuous and black) goes from a parent ac-

tivation to its first child to indicate the beginning of a function. Then, sequence arrows (blue)

appear among activations in the same function scope to indicate their sequence. Finally, return

arrows (dashed) indicate the last child activation and the end of a parent activation.

In noWorkflow 1 and 2, we support three types of activation graphs: no match, exact match,

and namespace match. No match activation graphs are simple activation trees visualized as

activation graphs. Exact match activation graphs combine activations in the same level (with

the same parent) as long as they have the same name, in the same line, and have the same sub-

structure. It allows the visualization of loops distinguishing functions that execute differently.

Finally, the namespace match does not consider the sub-structure. If two functions have the

same name, line, and parent, it combines them and their children. noWorkflow 0 had only the

namespace variant generated by an external tool that was removed in favor of now vis.

Dataflow graph. In addition to activation graphs representing a process graph, noWorkflow 1

and 2 also export GraphViz graph formats with graphs that combine processes and data using

the command now dataflow. Figure 5.14 presents a dataflow graph that represents a trial

of Figure 5.1. In this figure, ellipses represent data (evaluations), and rectangles represent pro-

cesses (activations). A rectangle may appear as a solid node, when we do not show its internal

5.4 Provenance Analysis 140

process

show

21 return12 number

9 str(number)

7 number2 n

9 str_number

11 int(char)10 char
11 int(char) ** 2

11 int(char)10 char

11 int(char) ** 2

9 0, str(number)
[1]

[0]

21 final

24 print(show(final))

24 return

24 show(final)

19 "happy number"16 number not in (1, 7)23 final

Figure 5.14: Dataflow graph.

definition or as a clear rectangle cluster with a solid return node when other activations occur

inside of it.

Note in Figure 5.14 that the variable final in line 21 (bottom right) is not connected to

final in line 23 (top left) used by show. It indicates that they are distinct variables that were

created due to DRY_RUN being true. The DRY_RUN variable does not appear on the graph of

Figure 5.14 because we generated it using the prospective mode that filters the dataflow to show

only parameters, calls, and assignments to calls.

In addition to the prospective mode, noWorkflow supports three other dataflow modes with

different filterings: dependency, simulation, and activation. The dependency mode presents

all evaluations and dependencies in a single cluster, matching the relationships in the database

without extra processing. The simulation mode is similar to the prospective mode, but it also

shows relevant evaluations that occur in between calls. Finally, the activation mode is essentially

a process graph that only displays activations. Unlike the now vis activation graphs that use

simple sequences to construct the activation flow, the arrows in an activation dataflow only

appear when data dependencies exist among activation. Hence, while activation graphs work

with coarse-grained provenance, this command only works when the fine-grained provenance

was collected, and it uses it for generating the graphs.

In addition to the mode filtering, dataflow graphs also support filtering by hiding specific

types of nodes (e.g., hiding file accesses or hiding evaluations that represent types) and defining

the maximum depth on the visualization of activations. Additionally, it supports some clustering

by combining evaluations that represent the same variable or the same value.

5.4.3 Comparison

Comparing trials is important for verifying the reproducibility and understanding the differences

among trials. noWorkflow has two features for comparing two trials: the command now diff

that exists since noWorkflow 0 and a visual comparison in now vis that we introduced for

noWorkflow 1 and 2 (PIMENTEL et al., 2016b, 2017).

5.4 Provenance Analysis 141

1 $ now diff 1.1.1 2.1.1 -f --brief
2
3 [now] trial diff:
4 Start changed from 2021-01-08 19:42:49.538203 to 2021-01-08 19:42:50.103022
5 Finish changed from 2021-01-08 19:42:49.777175 to 2021-01-08 19:42:50.335118
6 Duration text changed from 0:00:00.238972 to 0:00:00.232096
7 Command changed from run experiment.py anatomy1.img anatomy2.img anatomy3.img
8 anatomy4.img reference.img
9 to run -b experiment.py anatomy1.img anatomy2.img anatomy3.img
10 anatomy4.img reference.img
11 Modules inherited from trial id changed from <None> to 1
12 Parent id changed from <None> to 1
13
14 [now] Brief file access diff
15 [Additions] | [Removals] | [Changes]
16 (rb) atlax-x.ppm | (w) atlas-x.git (new) |
17 (w) atlax-x.jpg (new) | (w) atlax-x.pgm (new) |
18 (w) atlax-x.pgm | (w) reslice1.hdr (new) |
19 (w) atlax-x.ppm (new) | (wb) warp.warp (new) |
20 (wb) warp.warp | ... |
21 ... | |

Figure 5.15: Snippet of brief diff command.

The command now diff is similar to the command now show that we presented in Fig-

ure 5.10. It compares basic trial information, modules, environment variables, and file accesses.

Hence, it has both provenance and data comparison. In noWorkflow 1 and 2, we introduced the

option -brief to display a concise version of the file diff indicating only the existence of file

additions, removals, and changes, instead of presenting all the detailed changes like the original

command. Figure 5.15 presents a snippet of the diff command with the brief option.

All comparison available in the now diff command is also available as text in now vis

with colors indicating additions (green) and removals (red). Additionally, now vis supports

comparing activation graphs. Figure 5.16 presents a comparison of activation graphs from trials

1.1.1 and 2.1.1. In the graph comparison, nodes and arrows with black borders exist in both

trials; nodes and arrows with red borders exist only on Trial 1.1.1; and nodes and arrows with

green borders exist only on Trial 2.1.1. Note that convert activations exist only on Trial 1.1.1,

while pgmtoppm and pnmtojpeg activations exist only on Trial 2.1.1.

Moreover, nodes that exist in both trials show colors side-by-side to easy comparison. In

this example, the align_reslice node was slightly faster in Trial 2.1.1. Hence, it shows

a lighter red on the right side of the node. This comparison is also a provenance comparison.

However, by hovering nodes in the resulting graph, it is possible to observe arguments and

return values for comparing the data.

For creating this comparison, we convert the activation graphs back to summarized trees

by removing all arrows and restoring edges that connect children activations with their parents.

Note that in this operation, we keep the summarization of nodes according to the desired type of

5.4 Provenance Analysis 142

__main__

main

align_reslice softmean slice_convert

align_warp reslice slicer

pnmtojpeg pgmtoppm

convert

1
, 1

1, 1

1
,

1

1, 1

3, 3 1, 1

4, 4 1,
 1

1, 1

1, 1

2, 21, 1

3
3

1

3

1

Figure 5.16: Comparison of activation graphs.

activation graph. Then, we run the tree edit distance algorithm APTED (PAWLIK; AUGSTEN,

2016) over the summarized tree to find the best mapping between the nodes in two activation

trees. Finally, we restore the original arrows from both activation graphs observing whether

they exist in both graphs or only in one of them.

5.4.4 Summary

Table 5.3 compares provenance analysis in noWorkflow versions (in the bottom) with the ap-

proaches we obtained in Chapter 4. Compared to noWorkflow 0, noWorkflow 1 adds functions

for querying (ORM), combined graphs to represent fine-grained dataflows with the ability of

filtering, and improves the provenance comparison to include a visual activation graph diff that

compares both the provenance and the data.

The integration with YesWorkflow (YW*NW) has a different set of analyses that are based

on YesWorkflow features. Hence, we present it here as a distinct row. It supports generic

datalog queries, generates combined graphs, and supports filtering the graphs through datalog

queries.

Finally, in comparison to noWorkflow 1, noWorkflow 2 adds pattern matching as specific

queries and adds the ability to analyze the provenance externally by exporting it to Versioned-

PROV. Overall, using our taxonomy as a comparison basis, noWorkflow 2 is the most diverse

approach for provenance analysis. In fact, according to the taxonomy, the only feature it does

not support is generating data-centric graphs.

5.4 Provenance Analysis 143

Table 5.3: Provenance analysis classification, based on Query, Visualization, and Diff.

Approach Query Visualization Diff

Place Type Sum.

Generic Specific

In
te

rn
al

E
xt

er
na

l

L
og

Pr
oc

es
s

D
at

a

C
om

bi
ne

d

C
lu

st
er

in
g

Fi
lte

ri
ng

D
at

a

Pr
ov

en
an

ce

adapr 7 7 3 7 7 3 7 7 7 7 7 7

Albireo 7 Web 3 7 7 3 7 7 3 7 7 7

Astro-WISE SQL Functions, Web 3 7 7 7 3 7 7 7 7 3

Becker and Chambers

(1988)
7 Functions 3 7 7 3 7 7 7 7 7 7

Bochner, Gude, and

Schreiber (2008)
XQuery, XPath Web 7 7 7 7 7 7 7 7 7 7

Chapman et al. (2021) MongoDB
PROV,

Functions
7 3 7 7 7 7 7 7 7 7

CPL SPARQL, SQL Functions 7 7 7 7 7 7 7 7 7 7

CXXR 7 Functions 7 7 7 7 7 7 7 7 7 7

Dataflow Notebook 7 7 3 7 3 7 7 7 7 7 7 7

Datatrack 7 7 3 7 7 7 3 7 3 7 3 7

DFAnalyzer SQL PROV, Web 3 3 7 7 3 7 7 3 7 7

ES3 XQuery 7 3 7 7 7 7 3 7 7 7 7

ESSW SQL Web 3 7 7 7 7 3 7 7 7 7

Flowgraph 7 7 7 3 7 3 7 3 3 7 7 7

IncPy 7 7 7 7 7 7 7 7 7 7 3 3

JuNEAU SQL, Cypher Web 3 7 3 7 7 7 7 7 7 7

Lancet 7 7 7 7 7 7 7 7 7 7 3 7

Magni 7 7 7 7 7 7 7 7 7 7 3 7

Michaelides et al. (2016) 7 PROV 7 3 7 7 7 7 7 7 7 7

ModelKB 7 Web 3 7 3 7 7 7 7 7 3 7

nbgather 7 Web 3 7 3 7 7 7 7 7 7 3

Osiris 7 7 7 7 7 7 7 7 7 7 7 7

ProvBook 7 PROV, Web 7 3 7 7 7 7 7 7 7 7

Provenance Curious SQL Functions 3 7 7 7 7 3 3 7 7 7

pypet 7 7 7 7 7 7 7 7 7 7 3 7

RDataTracker 7
DDG, PROV,

Functions
7 3 7 7 7 3 3 3 7 3

RFlow SQL Web 3 7 3 7 7 7 7 7 7 7

Sacred SQL Web 3 3 3 7 7 7 7 7 7 7

SMLD SQL Web 3 7 7 3 7 7 7 3 7 7

SPADE
SQL, Cypher,

Datalog

PROV,

Functions
3 3 7 7 7 3 3 3 7 3

Continued on next page

5.5 Limitations 144

Approach Query Visualization Diff

Place Type Sum.

Generic Specific

In
te

rn
al

E
xt

er
na

l

L
og

Pr
oc

es
s

D
at

a

C
om

bi
ne

d

C
lu

st
er

in
g

Fi
lte

ri
ng

D
at

a

Pr
ov

en
an

ce

StarFlow 7 Functions, OPM 7 3 7 7 7 7 7 7 3 3

Sumatra SQL Command, Web 3 7 3 7 7 7 7 7 3 3

trackr 7 Functions 3 7 3 7 7 7 7 7 7 7

TRACTUS 7 7 3 7 7 3 7 7 7 7 7 7

Vamsa 7 7 7 7 7 7 7 3 7 3 7 7

Variolite 7 Command 3 7 3 7 7 7 7 7 3 7

VCR 7 Web 3 7 3 7 7 7 7 7 7 7

Verdant 7 Web 3 7 3 7 7 7 7 7 7 7

versuchung SQL Functions 7 7 7 7 7 7 7 7 3 7

WISE 7 7 3 7 7 3 7 7 3 7 7 7

Wrattler 7 7 7 7 7 7 7 7 7 7 7 7

YesWorkflow Datalog PROV 3 3 7 3 3 3 7 7 7 7

noWorkflow 0 SQL, Prolog
Commands,

Web
3 7 3 3 7 7 3 7 7 3

noWorkflow 1 SQL, Prolog
Commands,

Functions, Web
3 7 3 3 7 3 3 3 3 3

YW*NW Datalog 7 3 7 7 7 7 3 7 3 7 7

noWorkflow 2 SQL, Prolog

Commands,

Functions,

Patterns, Web

3 3 3 3 7 3 3 3 3 3

5.5 Limitations

Collection. Provenance collection in noWorkflow has several limitations. Regarding the defi-

nition provenance collection, noWorkflow collects input files as a whole. It cannot indicate the

exact part of a file object that the trial used for deriving a given result in an experiment. For sur-

passing this limitation, it would be necessary to override file accessing operations to integrate it

better with Versioned-PROV.

Concerning the deployment provenance collection, noWorkflow 2 still collects a snapshot

of all environment variables despite moving towards a continuous approach for collecting mod-

ules. It has the drawbacks of collecting unnecessary environment variables that are never used

and not accounting for changes in the variables. On the other side, the continuous approach

5.5 Limitations 145

that noWorkflow 2 employs for collecting modules has the possible drawback of not collect-

ing all the necessary modules for creating variations of the experiment, since it only collects

the modules that are used by a given trial – as opposed to all reachable modules collected by

modulefinder.

Considering the execution provenance, noWorkflow gives few controls for users to indicate

the points of the code that interest them. Users can only choose the granularity (i.e., coarse-

grained activations or fine-grained evaluations), the context of the collection (i.e., main script,

local modules, or all Python modules), and the depth of the collections (i.e., how many activa-

tions in the stack should the collection consider). This limitation was added by design, with the

consideration that users can indicate which parts of the code interest them during the analysis.

Nonetheless, it imposes a high collecting overhead that may impair the usage of noWorkflow in

experiments that implement complex operations in pure Python. A middle-term solution to this

problem could be extending noWorkflow with annotations to indicate which elements should be

stored but keeping the collection and provenance inference at fine-grain for proper derivations.

In addition to this limitation, the fine-grained provenance collection was not designed for

handling black-box operations on mutable data structures. Hence, noWorkflow does not use

the Versioned-PROV modeling for built-in black-box operations, such as the very common

list.append function. It is not a big issue when the added elements are accessed later –

using the square brackets syntax – but it can cause problems to identify the moment of the gen-

eration of members. A solution to this problem could be allowing the definition of provenance

rules for black-box operations. For instance, creating a rule indicating that list.append

adds a member evaluation as the last member of a list evaluation.

Management. Provenance management in noWorkflow has limitations as well. The first limita-

tion is related to the fine-grained provenance collection of complex data structures. By default,

noWorkflow collects a representation of the values of all evaluations. Hence, when executing

expressions such as a[1], noWorkflow 2 collects a representation of the values of a, 1, and

a[1]. If the representation of a contains all of its internal elements, collecting it defeats the

purpose of Versioned-PROV in efficiently representing operations on mutable data structures.

This problem can be reduced by disabling the collection of values or collecting memory ad-

dresses instead of values. Nonetheless, the default behavior is a limitation, and noWorkflow

should be extended to only collect the full representation of mutable data structures upon their

first definition or usage.

In addition to this storage limitation, noWorkflow has a limitation with the storage of huge

5.5 Limitations 146

files in the content database. The old content database stores complete copies of the files, even

after small changes, which may not be suitable for big files that grow over time. The new Git

content database may reduce this problem by compressing and storing packfiles with deltas of

the changes. Nonetheless, Git was designed for working with source code files and may not

behave well with huge files.

Regarding provenance sharing and versioning, noWorkflow currently does not support merg-

ing the provenance history of multiple collaborators. If two people work at the same experiment

and evolve the provenance in a different direction, they will have separate histories. Some work

is underway to support the collaboration of scientists in experiments using noWorkflow.

Finally, concerning reproducibility, noWorkflow only restores the local files of experiments.

It does not restore libraries to avoid breaking the installation nor environment variables. The

lack of these components may prevent the reproduction of experiments. Nonetheless, noWork-

flow allows the identification of the differences in these components in the case of failures. In

addition to these components, noWorkflow does not restore nor collect external tools. Since it

does not collect these tools, it may not help in identifying reproducibility problems when the

tools are the cause.

Analysis. The main limitation of noWorkflow analyses is that most of them were designed for

post-mortem analysis. The Prolog queries and some Python query functions require exporting

the provenance to Prolog facts or in-memory graphs before querying. Even when they can be

used during the execution of trials, the continuation of the execution does not allow for stream

updates of these representations. Hence, it is necessary to generate everything from scratch

again. The Python functions that use in-memory graphs also suffer from scalability problems

should the relationship among evaluations create a huge graph.

The same issues occur for the generation of dataflow graphs and, to some extent, for ac-

tivation graphs. In both cases, noWorkflow generates the graphs in memory before creating

the displayable format. The problem occurs less often with activation graphs because these

graphs are smaller and because noWorkflow employs techniques for reducing the issue, such

as caching the graphs in the database and using the interactiveness of now vis for accessing

graph information on demand. Similar approaches could be designed for dataflow graphs.

5.6 Discussion 147

5.6 Discussion

This chapter introduced noWorkflow, a tool that collects definition, deployment, and execu-

tion provenance from Python scripts transparently. We presented noWorkflow 0, the version

proposed by Murta et al. (2014) and contrasted it with noWorkflow 1 and 2 according to the

taxonomy we proposed in Chapter 4. noWorkflow 1 and 2 are both contributions of this thesis

that use different techniques for provenance collection.

While we did not present evaluations of noWorkflow features in this chapter, parts of it

have been evaluated in other work (PIMENTEL et al., 2016b, 2018b; PONTES, 2018; HU et

al., 2020) and in Appendixes A and B, and Annex A. In a study about provenance evolution (PI-

MENTEL et al., 2016b), we evaluated how the proposed version model for noWorkflow 1 and

2 answer provenance questions from the first Provenance Challenge 6 and ProvBench work-

shops 7. When we proposed the Versioned-PROV representation (PIMENTEL et al., 2018b)

(i.e., the one we adopt to represent complex data structures in noWorkflow 2), we compared

its space overhead with the space overhead of PROV and PROV-Dictionary (see Appendix A).

Pontes (2018) evaluated the performance of using Git in noWorkflow 1 as the content database

storage both in terms of space reduction and time penalty (see Annex A). We also used the

proposed trial version model to answer provenance questions (see Appendix B). Finally, Hu

et al. (2020) evaluated the time penalty of collecting provenance with noWorkflow 1.

In addition to these external evaluations, noWorkflow 1 and 2 have also been successfully

used in other research (HU et al., 2020; LINHARES et al., 2019) and adopted by the Cloud of

Reproducible Records (CoRR)8. Hu et al. (2020) uses noWorkflow 1 to extract dependencies

between inputs, variables, function calls, and outputs and uses this information for identifying

parts of scripts that must be re-executed after a modification for updating results. Linhares et al.

(2019) uses the provenance collected by noWorkflow 2 to enrich algorithmic debugging execu-

tion trees and reduce the number of questions to users that are necessary to find a bug. CoRR

is an infrastructure designed by the National Institute of Standards and Technology (NIST) for

storing and distributing reproducible atoms created by different tools, including noWorkflow 2.

In this chapter we considered only the usage of noWorkflow with Python scripts. However,

noWorkflow 1 and 2 also have integrations to IPython and Jupyter for provenance collection in

notebooks. We discuss these integrations in the next chapter.

6https://openprovenance.org/provenance-challenge/FirstProvenanceChallenge.
html

7https://sites.google.com/site/provbench/home/provbench-provenance-week-2014
8https://corr.nist.gov/

Chapter 6

Provenance in Notebooks

6.1 Introduction

In Chapter 3, we found evidence of good and bad practices in notebooks. Among the bad

practices, many notebooks have characteristics that hinder their reasoning and reproducibility,

such as out-of-order cells, non-executed cells, and the possibility of hidden states. It may oc-

cur because notebooks are new tools in comparison to standard scripts and general-purpose

programming languages. Hence, they lack guidelines and tools to support their development.

Despite the lack of guidelines, these bad practices are essentially related to provenance.

Provenance can identify the correct cell execution order and the hidden states’ presence. Addi-

tionally, provenance allows new operations in notebooks, such as cleaning uninteresting cells,

extracting scripts as modules, and properly reproducing notebooks.

This chapter is organized as follows. Section 6.2 proposes a set of best practices for note-

books. Section 6.3 integrates the provenance collection and analysis of noWorkflow (Chapter 5)

into Jupyter. Section 6.4 proposes a linting tool that identifies potential problems in notebooks

according to the best practices and suggests fixes that aim to improve the notebook quality and

reproducibility.

This chapter contains the best practices we proposed in the paper we published in the Inter-

national Conference on Mining Software Repositories (PIMENTEL et al., 2019b), the IPython

extension we proposed in the Workshop on the Theory and Practice of Provenance (PIMENTEL

et al., 2015), and the linting tool we proposed in the paper accepted for publication in the Em-

pirical Software Engineering (PIMENTEL et al., 2021).

6.2 Best Practices 149

6.2 Best Practices

In Chapter 3, we identified a set of bad practices that hinder the reproducibility and the bene-

fits of the literate programming aspects of notebooks. Based on our findings, we propose the

following best practices for the development of notebooks (PIMENTEL et al., 2019b):

1. Use short titles with a restrict charset (A-Z a-z 0-9 . _ -) for notebook files and mark-

down headings for more detailed ones in the body. Some operating systems may not support

characters that many notebook titles use. Since notebooks support markdown, we recommend

using it to write the complex titles inside the notebooks and leave the notebook title as simple

as possible.

2. Pay attention to the bottom of the notebook. Check whether it can benefit from descrip-

tive markdown cells. Additionally, check whether the bottom cells have been executed. If

not, consider either executing or removing them. Users seem to pay more attention to the

beginning of the notebook (PIMENTEL et al., 2019b). Particularly, the bottom of notebooks

usually has fewer markdown cells and fewer executed code cells, compromising reproducibility.

3. Abstract code into functions, classes, and modules, and test them. Most users do not

extract code into modules (PIMENTEL et al., 2019b), hindering the notebooks’ reuse and test.

This is especially serious because notebooks are not packed together with tests. Thus, we

recommend to abstract and test notebooks.

4. Declare the dependencies in requirement files and pin the versions of all packages. In

Section 3.4.3, we identified that requirements.txt files fail less than other formats. We also

recognized that many failures occur due to the lack of module dependencies. Hence, we recom-

mend defining the dependencies explicitly and pinning the versions on a requirements.txt file or

Pipfile.

5. Use a clean environment for testing the dependencies to check if all of them are de-

clared. In the reproducibility study (Chapter 3), we identified that installing dependencies in

a clean environment failed more due to ImportError than just using an anaconda environment

or a bloated environment. Thus, we recommend setting a clean environment and testing the

notebooks dependencies before releasing them to check whether all of them are declared.

6. Put imports at the beginning of notebooks. This practice is close to the PEP 8 (ROSSUM;

WARSAW; COGHLAN, 2001) recommendation and helps in the verification of imports that

we discussed above.

7. Use relative paths for accessing data in the repository. We identified that accessing files

6.3 noWorkflow for Notebooks 150

was also a common cause of errors in Section 3.4.3. Accessing project files using relative paths

can reduce this issue.

8. Re-run notebooks top to bottom before committing. As presented in Section 3.4.2, many

notebooks have out-of-order cells and skips. Moreover, these issues seem to impact the repro-

ducibility (Section 3.4.3). Thus, we recommend re-running notebooks for restoring the execu-

tion counters and minimizing the impact of hidden states and out-of-order cells.

6.3 noWorkflow for Notebooks

In Chapter 5, we introduced noWorkflow, a tool that transparently collects provenance from

Python scripts and provides mechanisms that allow users to explore this information. This

section presents two integrations of noWorkflow and IPython to allow scientists to collect and

analyze provenance from code executed inside Jupyter notebooks.

The first integration is an IPython extension that we propose for noWorkflow 1 and 2 that

supports collecting provenance from individual cells, visualizing the collected provenance as

graphs, and querying the provenance using SQL, Prolog, Python, and pattern matching (PI-

MENTEL et al., 2015). We present these features in Section 6.3.1 and show that notebooks are

powerful tools for interactively exploring provenance.

The second integration is a Jupyter kernel for noWorkflow 2 that transparently collects all

cells’ provenance in a notebook and supports using the provenance to export a clean notebook

without out-of-order cells, hidden-states, and non-executed cells. We present the kernel in

Section 6.3.2.

6.3.1 Extension

The noWorkflow extension for notebooks is composed of three parts: an IPython extension,

IPython display methods in specific classes for visualizations, and a client-side extension (we

use a nbextension for Jupyter Notebook and a similar labextension for Jupyter Lab).

The IPython extension registers line and cell magics related to provenance collection and anal-

ysis using noWorkflow. The IPython display methods provide rich visualizations for trials,

activations, history, and code blocks by outputting their data as JSON. Finally, the client-side

extension reads the custom JSON formats and displays them accordingly.

6.3 noWorkflow for Notebooks 151

6.3.1.1 Collection

We integrated noWorkflow’s provenance collection and Jupyter Notebook by using the concepts

of line magic and cell magic of IPython. While our line magic collects provenance from external

scripts, our cell magic collects provenance inside notebooks.

Line magic. The easiest way to collect provenance from external scripts is to execute noWork-

flow as is. We propose a line magic, %now_run, to perform that. One could argue that a simple

shell command could perform this. However, to analyze the externally collected provenance in

the notebook, a scientist would have to know the generated trial id and load a trial object that

provides an interface for analysis, as we show in Section 6.3.1.2. Our line magic executes

noWorkflow externally and returns the trial object, which can be used for immediate analysis.

This line magic supports all arguments that the default now run command supports.

Cell magic. While the aforementioned line magic improves the usability for analyzing the

notebook, it is tailored to execute external scripts outside the notebook. This action would

require the script to be previously created and saved into a file before running it in the notebook.

To avoid this step, we propose a cell magic, %%now_run, which runs the script defined in its

body. When this cell magic is executed, it creates a temporary file with the cell content as

file content. Then, it runs noWorkflow with this file as input. Considering that the file runs

externally, it is not possible to use notebook variables directly in the cell. It is only possible to

pass these variables as parameters to the script. In the same way, it is not possible to directly

use the trial result, but it is possible to load the output into a variable.

By default, noWorkflow uses the script name to identify trials, and we use this name in the

history graphs to group trials that are probably similar. Since cells have no name, we added an

optional argument (name) on the magics to indicate the trial family. With this argument, it is

possible to indicate that a given trial from a specific cell belongs to a specific experiment.

Example. Figure 6.1 presents provenance collection using noWorkflow. The first cell loads the

extension, sets the default graph width to 392px and the default graph height to 150px. The

second cell uses a line magic to execute an external script with a custom script name (jupext)

and returns the trial id (11). The third cell assigns a value to a variable. The fourth cell uses

a cell magic to execute an internal script with the same name, defines that the cell output will

be stored on the variable out_var, passes the variable size as argument, and returns a trial

object. Note that the fourth cell result is a trial object, and it is represented as an activation graph

6.3 noWorkflow for Notebooks 152

11Out[2]:

%load_ext noworkflow

%now_set_default graph.width=392 graph.height=150

In [1]:

trial = %now_run experiment2.py --name jupext

Trial.id

In [2]:

size = 5In [3]:

%%now_run --name jupext --out=out_var $size

import sys

l = range(int(sys.argv[1]))

c = sum(l)

print(c)

In [4]:

1 1 1

__main__

int range sum print

'10\n'Out[5]:

out_varIn [5]:

Figure 6.1: Provenance collection in notebook using noWorkflow extension.

like the ones introduced in Chapter 5. Finally, the last cell just returns the value of out_var.

Note that Python’s print appends a \n by default.

6.3.1.2 Analysis

The first step in supporting provenance analysis on notebooks is to connect to the provenance

database. This is accomplished by an init function called by %load_ext noworkflow that

has the purpose of setting the project path on the persistence module. By default, the path is the

current directory, but it is possible to call the function again to specify other directories with a

named argument afterward. With access to the database, it is possible to query the provenance

and use it for analysis. We propose visualizations, querying methods, and objects to perform

analysis using notebooks.

Objects. A usual way to interact with a notebook is using its programming language for anal-

yses. To support this use-case, we extended the SQLAlchemy ORM that maps the database

tables into objects to support custom methods, caching, and specific IPython operations. For

6.3 noWorkflow for Notebooks 153

instance, a trial object represents a single trial. It can be instantiated by specifying only the trial

id or a trial tag. A trial has information about its start time, finish time, environment variables,

imported modules, accessed files, code components, code blocks, activations, and evaluations.

When users want to perform common queries to get the trial information and process the results

using Python, they can access properties and call methods from the trial object. It will connect

to the database to retrieve data ready for immediate analysis. The trial object caches some re-

sults to avoid querying the database every time. In addition, the trial object has properties and

methods to retrieve other derived information, such as the trial duration.

Visualization. The IPython kernel supports special _ipython_display_ methods in ob-

jects for defining how to visualize them. The default visualization of a trial object is an activa-

tion graph that shows the sequence of calls and sub-calls. An example of an activation graph is

shown in Out[4] of Figure 6.1.

These methods support multiple formats. For instance, for dataflow graphs, we indicate

that the method should display either PNG or SVG, which are formats supported by Jupyter.

These methods also allow the output of custom non-supported output formats. We use custom

JSON-based formats to output activation and history graphs.

For displaying custom output formats, it is necessary to implement a renderer in a client-

side extension. Hence, we created both a nbextension for Jupyter Notebook and a labextension

for Jupyter Lab as client-side extensions. In these extensions, we load the graphs using now

vis modules for rich and interactive visualizations.

Query. As we mentioned before, visualization is not the only way to analyze provenance

in noWorkflow. The trial objects have fields that can be explored. For example, the field

script_content returns the main script content, while the field id returns the trial id.

It is also possible to run Prolog and SQL queries. We propose two cell magics to allow

queries: %%now_prolog and %%now_sql. Both cell magics execute queries and may receive a

variable result as a parameter. If they receive a variable result, the magic assigns the result to the

variable as an iterator. If they do not receive it, the result is presented as output. The cell magic

%%now_sql outputs a table where the first row is the header. The cell magic %%now_prolog

outputs a list. Each entry in the list is a match. It is possible to interpolate the content of both

cell magics with python code.

The cell magic %%now_prolog may also receive trial ids as parameters. The ids indicate

that it should export provenance from specified trials as Prolog facts. This way, we avoid eagerly

6.3 noWorkflow for Notebooks 154

import noworkflow.now.ipython as nowip

nowip.init('/home/joao/projects/demo')

[1]:

trial = nowip.Trial('1.1.1')

trial.script_content[15:26]

[2]:

%%now_prolog --result result 1.1.1

duration({trial.id}, slice_convert, X)

[3]:

for match in result:

print(match['X'])

[4]:

[5]:

%%now_sql

SELECT A.name AS act, F.name AS file

FROM file_access F JOIN activation A

ON A.id = F.activation_id

AND A.trial_id = F.trial_id

WHERE F.name like "%.gif"

AND A.trial_id = {trial.id}

[5]:

15 def main():

16 reference = sys.argv[-1]

17 anatomy_images = sys.argv[1:-1]

18 resliced = []

19 for anatomy in anatomy_images:

20 resliced += align_reslice(anatomy,

21 atlas_image, atlas_header = softmean(*

22 for coordinate in ["x", "y", "z"]:

23 atlas = slice_convert(atlas_image,

24

25 main()

0.0008490000036545098

0.0009578000026522204

0.0009693000029074028

act file

convert atlax-x.gif

convert atlax-y.gif

convert atlax-z.gif

from noworkflow.now.persistence import (

relational, models)

from noworkflow.patterns import (

evaluation, var)

evtab = models.Evaluation.m

def wdf(trial, last, first):

Prolog – find last component id

prolog = trial.prolog.query("""

code_name({0}, X, {1})

""".format(trial.id, last))

lcid = max(m['X'] for m in prolog)

SQL – find first component id

sql = relational.query("""

SELECT id FROM code_component

WHERE trial_id={} AND name="{}"

""".format(trial.id, first))

fcid = min(r['id'] for r in sql)

Pattern – find last evaluation

e = var('eid')

pat = evaluation(trial.id, e,

code_component_id=lcid)

leid = max(pat, key=e.key)[0]

SQLAlchemy – find first evaluation

feid = models.proxy((

relational.session.query(evtab)

.filter(

(evtab.code_component_id == fcid)

& (evtab.trial_id == trial.id)

)

.order_by(evtab.id)

).first())

Python method – check derivation

return leid.was_derived_from(feid)

[6]:

[7]: True

wdf(trial, 'resliced', 'reference')[7]:

Figure 6.2: Provenance analysis in a notebook.

loading the whole database and export facts on demand. This magic also loads Prolog rules that

are automatically generated by noWorkflow.

Example. Figure 6.2 presents these possibilities of analysis. In the first cell, we imported the

module ipython and named it nowip, then we called the function init to load the IPython

magics to set the project path to /home/joao/projects/demo. The second cell loads

a trial using the tag 1.1.1, and presents a slice of its code content. The third cell queries the

duration of slice_convert activations using Prolog. Note that this cell loads trial 1.1.1

facts, interpolates the trial.id into the query content, and stores an iterator into the variable

result. The fourth cell iterates through the result and prints the matches. Finally, the fifth

cell performs a SQL query and outputs a table with all the activations in the desired trial that

accessed files with ‘.gif’ extension.

6.3 noWorkflow for Notebooks 155

In addition to these simple analyses, scientists can also integrate different tools and queries

since the queries’ results can be obtained as Python objects and connected through Python code.

The sixth cell of Figure 6.2 presents a function that receives a trial and two code component

names and checks if the last evaluation of the first name argument was derived from the first

evaluation of the second name argument. This function combines Prolog, SQL, pattern match-

ing, and SQLAlchemy to obtain associated evaluation objects. Then, it uses a noWorkflow

method for checking the derivation.

Command line. When scientists collect provenance by running noWorkflow outside a note-

book, they may want to perform the analysis on a notebook due to exploratory characteristics.

To ease this task, we implemented an export command-line option on noWorkflow to export

notebook files related to trial objects (now export -i). The export command receives the

trial id and generates a notebook file with the code used for loading the trial.

6.3.2 Kernel

While the noWorkflow extension is great for interactive provenance analyses on notebooks,

using limited line and cell magics to collect provenance on cells is far from ideal. It requires an

effort from the users to annotate cells and misses the provenance of the flow that connects the

cells. Hence, better integration is desirable.

In Section 6.3.2.1, we propose a kernel that collects provenance from all cells transparently.

Since this kernel also connects the cells with provenance, it enables new types of provenance

applications. Notably, it supports cleaning the notebook, as we show in Section 6.3.2.2.

6.3.2.1 Collection

As explained in Chapter 3, Jupyter uses a kernel to execute code cells. The Jupyter interface

sends a message to the kernel with the code. The kernel receives the message and executes it in

the desired programming language, producing results. Then, it sends the results to the interface

for display.

For designing a noWorkflow kernel, we use the IPython kernel as the foundation, which

is a kernel designed to run Python code in notebooks. To collect the provenance, we override

functions used by the IPython to initialize the kernel and run code cells.

Upon the kernel initialization, we start a new trial with the main code block and associated

activation representing the notebook. Then, for every executed cell, we create a new code block

6.3 noWorkflow for Notebooks 156

and associated activation for the cell, transform the cell code to collect the provenance, execute

it using the original kernel run function, and save the collected provenance in the database.

Usually, activations have different namespace bindings in noWorkflow. However, since

all cells in Jupyter share the same namespace, we restore the previous cell’s bindings in its

activation when a new cell is executed. This restoration allows creating dependencies among

cells.

The IPython kernel uses the last expression in a code cell as the cell output. We keep this

behavior by producing slightly different AST transformations for cells. With these transfor-

mations, we associate the cell activations with their results. In addition to displaying the last

expressions, the IPython kernel stores the results into variables that other cells can access later

(e.g., Out, _, __, _1, _2, ...). After executing a cell, we indicate that all these variables refer

to the evaluation associated with the cell activation. Thus, if a posterior cell attempts to use one

of these variables, we can reconstruct the dependencies.

6.3.2.2 Cleaning

The proposed kernel collects fine-grained provenance from notebooks, which users can analyze

using all the methods presented in Chapter 5 and Section 6.3.1. In addition to these meth-

ods, the fine-grained notebook provenance supports a different type of provenance application:

notebook cleaning.

As identified in Chapter 5, many notebooks have out-of-order cells, non-executed cells,

and the possibility of hidden states. Notebook cleaning uses the provenance collected from

a notebook to create a new notebook with the correct cell execution order, with all relevant

executed cells (i.e., no hidden states), and without non-executed cells – they are not part of the

provenance.

The now clean command in noWorkflow 2 performs this operation. Users can specify

a set of evaluations to indicate the notebooks’ relevant parts or consider the whole notebook

as relevant. Suppose they consider the whole notebook as relevant. In this case, the cleaning

operation just creates a new history notebook with all executed cells in order, which guarantees

that the new notebook has no hidden states nor non-executed cells.

On the other hand, if the user specifies a set of evaluations as relevant, we use these eval-

uation’s provenance to clean the history notebook. To clean the history notebook, we navigate

the dependencies of the relevant evaluations to find all the evaluations that contribute to their

generation. These evaluations belong to code cells that we mark for inclusion in the clean note-

6.3 noWorkflow for Notebooks 157

book. These cells often have evaluations that derive from other cells. Hence, we mark these

evaluations as relevant as well and repeat the process until there is no new relevant cell. We use

the relevant cells with their order of execution to create a valid clean notebook.

While this process works for creating a clean notebook composed of code cells, it does not

work to restore Markdown cells for two reasons. First, Jupyter does not send Markdown cells

to the kernel. Hence, we do not have the provenance of Markdown cells. Second, Markdown

cells do not contribute to the generation of any relevant evaluation. Thus, even if we had the

provenance of Markdown cells, they would not appear in the final result.

To solve this problem, we have an optional extra step in the cleaning operation to restore

Markdown cells in a clean notebook. For this step, the user specifies the original notebook’s

final version (i.e., the dirty notebook with all the Markdown cells). We use the Longest Com-

mon Subsequence (LCS) algorithm (HIRSCHBERG, 1977) to match the cells from the original

notebook with the cells from the clean one.

Knowing the position of matched cells allows us to identify whether a Markdown cell ap-

pears before, after, or between matched cells. We use this information to insert Markdown cells

in the proper positions of a clean notebook. In some hidden-state and out-of-order situations,

the matched cells indicate ambiguous positions for Markdown. Thus, the operation supports

adding the Markdown either before (by default) or after ambiguous code cell positions.

Figure 6.3 depicts the notebook cleaning based on a dirty notebook with out-of-order cells,

non-executed cells, and hidden states (a). Note that this notebook is not reproducible neither

by following the cell execution order nor by following the cell execution order. Figure 6.3(b)

presents a history notebook that uses the provenance to reconstruct the original cell execution

order with all the cells.

We selected the evaluation of co in cell [7] as relevant for cleaning and passed the origi-

nal notebook as the argument to reconstruct the Markdown. The cleaning operation found that

only cells [4]–[7] are relevant to the selection criteria. Then, the Markdown reconstruction

found matches for two cells ([5], [7]) and ambiguities for the other two. In Figure 6.3(c), the

reconstruction operation added the top Markdown cells before the ambiguous cell [4] and the

“View” Markdown cell before the ambiguous cell [6]. In Figure 6.3(d), the reconstruction op-

eration added the top Markdown cells after the ambiguous cell [4] and the “View” Markdown

cell after the ambiguous cell [6].

6.4 Julynter 158

co += 10

co = 1[]:

[7]:

co = 2[1]:

Set initial value

Increment twice

co += 1[6]:

View

co[7]:

2

Reset

co = 0[4]:

Finish notebook

co = 2[1]:

[3]:

co += 1[2]:

co[3]:

3

co = 0[4]:

co += 1[5]:

co += 1[6]:

[7]:

co[7]:

2

co = 0[4]:

[7]:

Set initial value

Increment twice

co += 1[5]:

View

co[7]:

2

Reset

co += 1[6]:

Finish notebook

co += 1

co = 0[4]:

[7]:

Set initial value

Increment twice

co += 1[5]:

View

co[7]:

2

Reset

[6]:

Finish notebook

Original.ipynb now clean
now clean -n 7 –c co

-j Original.ipynb

now clean -n 7 –c co
-j Original.ipynb

--merge-last

(a) (b) (c) (d)

[8]:
co += 10[8]:

Figure 6.3: Notebook cleaning using provenance.

6.4 Julynter

Provenance collection and notebook cleaning can solve the problem of out-of-order cells, hid-

den states, and non-executed cells. However, it has drawbacks as it only operates post-mortem

and requires a heavy provenance collection that might affect the experiments’ performance. In

this section, we propose an approach that aims at minimizing these problems during the live

development of notebooks, using simple provenance information that is readily available in the

IPython kernel.

Based on the results of our analyses in Chapter 3 and the proposed best practices in Sec-

tion 6.2, we propose Julynter1, a tool that performs linting on notebooks. Julynter is a Jupyter

Lab extension that performs many checks on the quality and reproducibility of notebooks in

real-time and produces recommendations.

This section is organized as follows. Section 6.4.1 describes the approach. Section 6.4.2

presents the experiment design we defined to evaluate Julynter. Section 6.4.3 indicates how

we collected the experiment data. Section 6.4.4 presents the experiment results. Finally, Sec-

tion 6.4.5 describes the threats to the validity of the Julynter experiment.

1https://dew-uff.github.io/julynter

6.4 Julynter 159

File Edit View Run Kernel Tabs Settings Help

Title starts with

"Untitled"

Title has "-Copy"

Hidden State

Cell 3 has changed

since its execution, but it

wasn't executed after the

changes

Cell 3 repeats the

execution counter 3

Cell 3 skips the

execution counter

Cell 2 skips the

execution counter

Confuse Notebook

Cell 3 has the execution

counter 3 in the wrong

order

The last cell of the

notebook is not a

markdown cell

Import

Cell 2 has import but it

is not the first cell

Module matplotlib was

imported by Cell 2, but it

is not in the

requirements file

Untitled2-Copy1.ipynbNU TITLED2-COPY1.IPYNB

Code Python 3

Invalid Title

*

?

T
*

*

*

55

[3]:

[3]:

Fibonacci

def fib(x):
if x <= 1:

return x
return fib(x-1) + fib(x-2)

fib(10)

from matplotlib import pyplot
%matplotlib inline
x = range(15)
y = [fib(n) for n in x]
pyplot.plot(x, y);

[8]:

0 2 4 6 8 10 12 14

0

50

100

150

200

250

300

350

[8]: [<matplotlib.lines.Line2D at 0x7fb818874ac8>]

fib(15)

610

[3]:

[3]:

[]:

Figure 6.4: Julynter in action (left pane). By analyzing the notebook on the right pane, Julynter
identified ten issues from four different categories.

6.4.1 Approach

Figure 6.4 presents Julynter in action for the notebook of Figure 3.1. Julynter recommended ten

changes related to four categories: Invalid Title, Hidden State, Confuse Notebook, and Import.

In addition to these categories, Julynter also has an Absolute Path category.

In addition to showing linting recommendations to users, Julynter also has filtering and

display features to provide better readability. Users can filter recommendations by category,

recommendation code, and appearance in a specific cell. Additionally, they can group the rec-

ommendations by category or by cell through the interface. They can store their preferences in

6.4 Julynter 160

the notebook, the project folder (i.e., the working directory of the Jupyter Lab execution), or the

user directory.

The interface also allows users to click on the recommendations to apply actions. In the

Invalid Title recommendations, it opens the rename notebook form. In the Import recommen-

dation related to an import that does not exist in the requirements file, it adds the imported

package to the requirements file, indicating its version. In a recommendation related to a cell

that depends on a variable that was defined in a cell that does not exist anymore, it recreates the

cell. Finally, for the other recommendations, it moves to the cell with the issue to allow users to

fix them.

Julynter currently identifies 21 issues from notebooks. Table 6.1 presents these issues with

their categories and the Julynter recommendations on how to fix them. Note that some recom-

mendations require a kernel restart to really ensure the reproducibility. After some feedback

from user experiments, we added a button to hide these recommendations for development

notebooks. The Julynter extension detection covers six out of the eight best practices proposed

in Section 6.2. To cover the seventh (using a clean environment for testing dependencies), we

added a command-line interface (CLI) to Julynter that allows users to use pyenv environments,

Conda environments, or Docker containers to detect dependency files and install them. Users

can use this CLI to check if the installation is enough to import all modules. They can also

use it to check the reproducibility of the notebooks after installing the modules. Finally, they

can use it to automatically prepare an isolated environment with only the project dependencies.

Hence, the only best practice that Julynter still does not cover is suggesting users to abstract

code. Nonetheless, this suggestion is on our radar for future releases.

For detecting the issues, Julynter has two linting modules: a language-agnostic and a

language-specific one. The language-agnostic module checks for common issues on the note-

book structure that do not depend on the notebook language. This is the case for issues C1, C2,

C3, C4, C5, H3, H4, T1, T2, T3, T4, T5, T6, T7. The language-specific module connects to the

kernel to obtain basic provenance information about the execution history, the cell dependen-

cies, the executed cells with absolute paths, and the status of imported modules on requirement

files (issues H1, H2, H5, I1, I2, P1). This provenance does not require a heavy load on the

collection since the cell execution history and the variable namespace is readily available in the

IPython kernel during the execution. Both modules connect to each other using Jupyter Comm2.

Hence, they do not interfere with the execution.

Figure 6.5 presents the architecture of Julynter and Jupyter communications. When the

2https://jupyter-notebook.readthedocs.io/en/stable/comms.html

6.4 Julynter 161

Jupyter Lab web application sends a cell to the kernel to execute, the Julynter extension triggers

both linting modules. The language-specific module sends an invocation of a query function to

the kernel, which then returns the execution history, the cell dependencies, the imports, and the

absolute paths. Julynter processes this data together with the notebook definition and presents

it back in the Jupyter Lab Application. The language-agnostic module processes only the note-

book definition to report the issues.

Julynter has some limitations. First, the detection is restricted to run as an extension of

Jupyter Lab. Currently, it cannot run as a standalone module nor as a Jupyter Notebook exten-

Table 6.1: Issues detected by Julynter. The first character of the Code indicates the category: C
– Confuse Notebook; H – Hidden State; I – Import; P – Path; T – Invalid Title

Code Message Suggestion

C1 Cell :index is a non-executed cell among
executed ones.

Please consider cleaning it to guarantee the notebook
reproducibility.

C2 Cell :index has the execution counter :ex-
count in the wrong order.

Please consider re-running the notebook to guarantee
its reproducibility.

C3 Cell :index is empty in the middle of the
notebook.

Please consider removing it to improve the notebook
readability.

C4 The first cell of the notebook is not a Mark-
down cell.

Please consider adding a Markdown cell to describe
the notebook.

C5 The last cell of the notebook is not a Mark-
down cell.

Please consider adding a Markdown cell to conclude
the notebook.

H1 Cell :index has execution results, but it was
not executed in this session.

Please consider re-executing it to guarantee the repro-
ducibility of the notebook.

H2 Cell :index has changed since its execution,
but it was not executed after the changes.

Please consider re-executing it to guarantee the repro-
ducibility of the notebook.

H3 Cell :index repeats the execution counter
:excount.

Please consider re-running the notebook to guarantee
its reproducibility.

H4 Cell :index skips the execution counter. Please consider re-running the notebook to guarantee
its reproducibility.

H5 Cell :index uses name “:variable” that was
defined in In [:excount], but it does not ex-
ist anymore.

Please consider restoring the cell and re-running the
notebook to guarantee its reproducibility.

H6 Cell :index has the following undefined
names: :undefined.

Please consider defining them to guarantee the repro-
ducibility of the notebook.

I1 Cell :index has import but it is not in the
first cell.

Please consider moving the import to the first cell of
the notebook.

I2 Module :module was imported by Cell :in-
dex, but it is not in the requirements file.

Please consider adding it to guarantee the repro-
ducibility of the notebook.

P1 Cell :index has the following absolute
paths: :paths.

Please consider using relative paths to guarantee the
reproducibility of the notebook.

T1 Title is empty. Please consider renaming it to a meaningful name.
T2 Title starts with “Untitled”. Please consider renaming it to a meaningful name.
T3 Title has “-Copy”. Please consider renaming it to a meaningful name.
T4 Title has blank spaces. Please consider removing them to support all OS.
T5 Title has special characters. Please consider replacing them to support all OS.
T6 Title is too big. Please consider renaming it to a shorter name and us-

ing a Markdown cell for the full name.
T7 Title is too small. Please consider renaming it to a meaningful name.

6.4 Julynter 162

Julynter

run
cell

query

history
dependencies

imports
absolute paths

output

trigger

H1, H2, H5
I1, I2, P1

C1, C2, C3, C4, C5
H3, H4, T1, T2, T3
T4, T5, T6, T7

Jupyter Lab
Application Kernel

Language
Agnostic

Language
Specific

comm

Figure 6.5: Architecture of Julynter. Blue arrows represent input messages that occur before
the cell execution. Red arrows represent output messages that occur after the kernel executes
the cell.

sion. Second, it must be executed in real-time. Starting Julynter in an existing notebook with a

new kernel results in many warnings related to the presence of results from previous executions,

and no warnings related to imports and absolute paths. This situation can be easily solved by

running the whole notebook again, but it may not be what users expect when they use traditional

linting tools. Finally, the language-specific module currently only supports Python.

6.4.2 Experiment Design

Since Julynter connects to the kernel to get the execution history in real-time, it is more capable

of detecting hidden states and other issues than we were in the reproducibility study of Chap-

ter 3. However, since this detection relies on real-time history, it cannot detect hidden states

in notebooks executed in previous sections. Thus, we could not simply use the notebooks we

collected in Chapter 3 to evaluate Julynter as it would at most produce the results we presented

before.

Hence, for evaluating the usability and capability of Julynter to ensure the quality of note-

books in the wild, we designed an experiment with users using Julynter over their own note-

books. The experiment was composed of three parts: a characterization form, the main experi-

ment, and an exit questionnaire.

In the characterization form, we asked questions about how frequently do they use note-

books, their experience with linting tools, Jupyter Notebook, Jupyter Lab, Python, R, and Julia,

their preference between Jupyter Lab and Jupyter Notebook, and their usage of notebooks.

Due to the COVID-19 pandemic, we had to run the experiment remotely. Hence, for the

main experiment, we adapted Julynter to collect usage data and asked the participants to install

Julynter in their own machines and use it with their own notebooks for a week. For collecting

6.4 Julynter 163

the usage data, we also asked the participants to run a configuration tool to indicate which data

they would like to share. Additionally, we added buttons for each recommendation in the tool

to allow users to send feedback through positive, negative, and textual reports.

In the exit questionnaire, we asked users to send their collected data. We also asked about

their satisfaction with each linting category using a Likert scale, and their overall satisfaction

with the tool using both a System Usability Scale Questionnaire (BROOKE, 1996) and Mi-

crosoft Reaction Cards (BENEDEK; MINER, 2002). Finally, we asked for suggestions to

improve Julynter.

6.4.3 Data Collection

We conducted the experiment in three phases: I, II, and III. Phase I was a pilot and had the goal

of identifying problems in the experiment itself. Two people participated in this phase: one

advisor and one undergrad student, and they identified five minor problems in the experiment.

We do not use their results in the next section.

After fixing the experiment problems, we directly invited ten people for the next phase of the

experiment. We selected these people based on our knowledge that they use notebooks. Only six

of them completed the experiment during Phase II, and all six gave feedback on how to improve

the tool. We implemented the requested features and started the last phase of the experiment.

We shared the experiment in Data Science groups, Graduate Student groups, Python groups,

and Twitter for this phase. Two people that were invited to Phase II but did not have time for

the main experiment decided to participate in Phase III. Fourteen people answered the initial

form, but only six completed the experiment. Figure 6.6 presents the flow of completion of

the experiment for the main phases. Note that one participant did not reply to our invitation

in Phase II, and one interrupted the experiment after filling the initial form. In Phase III, eight

participants interrupted after the initial form, and two interrupted after starting the experiment.

Figure 6.7 presents the experience of the 12 participants that concluded either Phase II or

Phase III. While all of them have at least an average experience with Jupyter Notebook and

Python, most of them are novices in Jupyter Lab, which is the tool Julynter supports. It is

expected, as Jupyter Lab is a newer tool released in 2018. When we asked which tool they

prefer, seven participants prefer Jupyter Notebook, four participants prefer Jupyter Lab, and a

participant has never used Jupyter Lab to have a preference.

When we asked the participants to report their use-cases for Jupyter in a text field (i.e., we

did not give predefined options and a participant could write multiple things), nine participants

6.4 Julynter 164

No reply: 1

Phase II - Invitations: 10
Phase II - Initial form: 7 Phase II - Experiment start: 6 Phase II - Final form: 6

Phase III - Initial form: 14

Phase III - Experiment start: 8 Phase III - Final form: 6

Interrupted: 11

Phase I - Pilot: 2 Phase I - Initial form: 2 Phase I - Experiment start: 2 Phase I - Final form: 2

Figure 6.6: Participants experiment flow.

Linting Jupyter
Notebook

Jupyter
Lab

Python R Julia

No experience

Novice

Average

Experienced

Very experienced

4

3

3

1

1

6

4

2

5

3

2

2 5

4

3

5

4

3

7

5

Figure 6.7: Participants’ experience.

6.4 Julynter 165

Table 6.2: Julynter usage statistics.

Phase P# Days Sessions Notebooks Lints Solved
Solved

(%)
Lint

Clicks

II #1 4 2 1 77 72 93.5% 62
II #2 3 2 1 330 330 100.0% 218
II #3 4 10 4 317 217 68.5% 202
II #4 5 8 2 201 154 76.6% 129
II #5 2 4 1 71 48 67.6% 40
II #6 1 1 1 587 521 88.8% 124

III #7 6 18 15 602 534 88.7% 460
III #8 3 7 1 1,888 1,873 99.2% 880
III #9 3 29 7 106 66 62.3% 85
III #10 1 22 8 85 43 50.6% 54
III #11 5 28 4 1,053 751 71.3% 333
III #12 2 14 4 58 20 34.5% 34

Total 12 28 145 49 5,375 4,629 86.1% 2,621

answered data-centric use-cases, such as data analysis, data cleaning, and data visualization;

four use Jupyter for prototyping scripts and tools; four use or have used Jupyter for education

tasks such as preparing course material or doing homework; three use it for research; two use it

for communicating results and workflows; and one uses Jupyter to build interactive reports.

During the experiment, seven participants worked on data analysis projects, four partici-

pants used notebooks as scratchpads for prototyping and developing packages, and one partici-

pant prepared class materials.

In the next subsection, we present the experiment results, filtering out both the participants

of the pilot experiment (Phase I) and the participants that did not conclude the experiment.

6.4.4 Results and Discussion

Usage. Since the participants used Julynter at their own pace with their own notebooks, the

number of recommendations they received varied. Table 6.2 presents the number of days, usage

sessions, notebooks each participant worked on, and the number of lint recommendations they

received, solved, or clicked. We count a usage session as the moment a participant opens a

notebook in the Jupyter Lab interface. Note that while many participants worked on a single

notebook during the experiment, most of them opened the same notebook multiple times and

through many days.

6.4 Julynter 166

C1 C2 C3 C4 C5
Confuse Notebook

0

200

400

600

800

1000

Lin
ts

95%

94%

95% 30%
76%

5%

6%

5% 70%

24%

H1 H2 H3 H4 H5 H6
Hidden State

0

200

400

600

800

1000

1200

1400

73% 96%

76%

86%

98%

78%

27% 4%

24%

14%

2%

22%

I1 I2
Import

0

50

100

150

200

250

300

85%

66%15%

34%

P1
Path

0

1

2

3

4

5

6

50%

50%

T2 T4 T5
Invalid Title

0

5

10

15

20

44%

20%

56%

80%

100%

Solved Unsolved

Figure 6.8: Solved and unsolved lints.

The participants #1 and #2 worked on the same usage session through different days, indi-

cating that they did not close Jupyter Lab from a day to another. #6 was the only participant

that worked on a single usage session of a single notebook during the experiment. Nonetheless,

#6 was also the participant that received the most lint recommendations during Phase II. Dur-

ing Phase III, #10 also used Julynter for a single day, but in eight notebooks across 22 kernel

sessions.

In this table, we count lints as all recommendations that Julynter shows and solved lints as

all recommendations that disappear after a participant action. Despite the tool showing hundreds

of recommendations to most participants, this number does not reflect directly on the effort they

had to solve them. For instance, opening a big notebook with execution results leads to many H1

recommendations, indicating that it has results from previous kernel sessions. Solving them is

as easy as running all notebook cells. On the other hand, solving cells with H4 recommendations

(which identify skips) requires restarting the kernel and re-running all cells.

Recommendations. Figure 6.8 presents all lints that appeared to the participants, indicating the

percentage of solved and unsolved lints. The recommendations T1 (empty title), T3 (title with

“-Copy”), T6 (big title), and T7 (small title) did not appear for any participant. As expected,

recommendations that can appear for any cell were more prevalent than the ones that appear

for the notebook (C4, T1 – T7) or in sporadic events such as importing modules (I1 – I2) or

using absolute paths (P1). Recommendations related to the organization of the notebook (H4 –

skips, C2 – out-of-order cells) appeared the most.

These results suggest that Julynter recommends changes to improve the quality of the note-

book that the participants are willing to apply. Nonetheless, the participants solved more some

types of recommendations than others.

6.4 Julynter 167

Recommendation Feedback. In the Confuse Notebook group, C4 and C5 were the least solved

recommendations. These recommendations suggest using Markdown cells in the beginning to

describe the notebook and in the end to conclude it, respectively. We received four negative

reports about C5, three textual reports asking why it was necessary, and one textual report

complaining that it appeared too soon (i.e., before finishing the notebook to draw conclusions).

C4 was more controversial: we received two negative reports and three positive ones about

it. #10 sent a textual report indicating that the recommendation was good, but it would not be

fixed because the notebook was part of a tool written by someone else. #12 sent both positive

and negative reports about it, with a textual report indicating that “not all notebooks are literate

ones”.

In the Hidden State group, participants solved the least H1, H4, and H6 recommendations.

As described before, H1 appears when the user first opens a notebook that has results from

previous executions. If the user does not want to run the notebook, it is expected not to have

it solved. We received two negative reports with textual reports. A participant indicated that

the notebook was not executed yet. The other indicated that an error in a previous part of the

notebook prevented its normal execution.

The recommendation H4 is harder to solve, as it requires restarting the kernel and re-running

all cells. This recommendation received a textual report indicating that the participant did not

understand the suggestion. It also received a positive report. Related to this recommendation,

in the exit questionnaire, two participants suggested that linting notebooks should occur in two

phases: a phase for supporting exploratory analyses with skips in the cell execution counter and

a phase to guarantee the reproducibility.

The recommendation H6 appears when a cell uses a variable that is not defined in the note-

book. A participant sent a textual report indicating that the recommendation was not appropriate

because the variable was actually defined. When we analyzed the notebook code, we noted that

a widget uses IPython functions to change the global state. As this is a very unusual situation,

we suggest using Julynter filters for this type of false-positive recommendation.

In the Import group, participants solved the least the recommendation I2 (adding packages

to “requirements.txt”) and two of them sent textual reports indicating that they do not use these

files. Once again, #12 sent both positive and negative reports in different notebooks. The other

recommendation (I1 – moving imports to the beginning) also received feedback. A participant

sent a negative report without indicating why, but two participants sent positive reports. #10

sent a textual report indicating that imports should indeed stay in the first cell, but the issue

would not be fixed as the notebook was designed by someone else.

6.4 Julynter 168

Confuse
Notebook

Hidden
State

Import Absolute
Path

Invalid
Title

Very Unsatisfied

Unsatisfied

Neutral

Satisfied

Very Satisfied

6

2

2

1

4

2

2

1

1

5

4

1

1

3

1

1

Figure 6.9: Satisfaction with the lint groups.

The recommendation to not use absolute Paths (P1) only appeared for two participants. One

could not solve it due to a bug that Julynter had during Phase II in Windows. The participant

who experienced the bug sent a positive report about the suggestion, though.

Finally, the Invalid Title group had the recommendations the participants solved the least:

T5 (title with special characters), T4 (title with blank spaces), and T2 (title with “Untitled”).

A participant sent a negative report about T4, asking why the title could not have blank spaces.

The same participant sent a positive report about T2.

In the exit questionnaire, we asked the participants to indicate the extent they are satisfied

with each linting recommendation group. Figure 6.9 presents the results. In this figure, we

filtered out groups that did not appear for the participant. The participants are mostly satisfied

with the recommendations, and the only groups that caused dissatisfaction are the Confuse

Notebook and Hidden States. The participants that did not like these groups are the ones that

sent negative feedback to C5, H1, and H4.

Usability. We used the System Usability Score (SUS) (BROOKE, 1996) to evaluate the us-

ability of Julynter. This score is calculated based on ten standard statements presented in the

exit questionnaire. The user can select answers ranging on a Likert scale from 1 (completely

disagree) to 5 (completely agree). We calculated an average SUS score of 77.5 on a scale be-

tween 0 and 100. According to Bangor, Kortum, and Miller (2008), this is a good score in the

acceptability range. The minimum score was 52.5, which is close to the minimum OK score in

the acceptability range. On the other hand, the maximum score was 100, which is categorized

as the best imaginable score (BANGOR; KORTUM; MILLER, 2008).

6.4 Julynter 169

Phase II Phase III

Figure 6.10: Chosen words in the Microsoft Product Reaction Cards (BENEDEK; MINER,
2002). The colors vary according to the experiment phase in a gradient. Mixed colors indicate
that participants of both phases chose the word and the mixing intensity indicates the proportion.

Figure 6.10 presents a word cloud representing the Microsoft Product Reaction Cards

(BENEDEK; MINER, 2002) we presented in the exit questionnaire. The most selected cards

are usable and useful. These cards are a positive indication that the participants see value in the

adoption of Julynter and that this adoption does not have a high barrier.

Improvements. In Figure 6.10, the usable word was more prevalent among the participants

of Phase III. It occurred because we made many changes to improve the tool based on the

reports that the participants submitted using the tool and the exit questionnaire of Phase II. The

following list presents the changes:

• Fixed two bugs that were reported by two participants (#5 and #6). One of them occurred

on the presence of “\” in path strings and the other one prevented further recommendations

from Julynter when a cell had syntax errors.

• Added an icon next to the problematic cells to indicate that we have recommendations for

them, based on the feedback of four participants (#2, #4, #5, and #6) that felt the recom-

mendations were disconnected from the notebook. In the initial version of Julynter, the

recommendation only appeared in a side panel, and the distinction of execution counter

and cell index when referring to cells caused confusion. This change probably had a big

impact on Julynter usability, as Phase III participants clicked more on the recommenda-

tions than Phase II participants (see Table 6.2).

• Included a button in the interface to explain the reason of the recommendation and reduce

the confusion of two participants (#1 and #5).

6.4 Julynter 170

• Added a button to filter all recommendations that require restarting the notebook based

on the feedback of two participants (#2 and #6). These participants identified that the de-

velopment of notebooks occurs in two phases: (i) writing the notebook in an exploratory

manner, and (ii) ensuring the quality and reproducibility. Hence, a filter that disables

recommendations that require restarting aims to support the first phase.

• Redesigned the tool architecture to support other programming languages based on the

request of #1 to support multiple programming languages besides Python.

• Loaded the interface font-size from Jupyter Lab configuration files based on the request

of #3 to support configurable sizes.

• Started saving the recommendation results on the notebook metadata and implemented a

command-line tool to check the stored recommendations based on the request of #4. This

participant would like to have icons on GitHub and GitLab expressing how adherent to

recommendations are the notebooks. Implementing a CLI was the first step towards this

goal.

• Improved the options to filter recommendations, adding an option to filter specific ones,

based on the feedback of #6.

We also contacted the participants of Phase II after the changes and asked them what they

thought about the changes. #1 did not reply. #3 had an issue updating and running Julynter

and also did not give feedback. The other four participants liked the changes. #4 would like to

see the notebook compliance to Julynter recommendation in platforms like GitHub and GitLab,

but recognizes that it is outside our scope. #6 suggested some minor interface changes, such

as changing icon colors, rewording recommendations, and removing menu items. We intend to

apply some of these suggestions in the future.

In Phase III, we received feedback suggesting to implement the linting as a command-line

interface, suggesting to reword a recommendation, and suggesting to add an option to indicate

that the notebook should not change the style. We cannot implement all Julynter recommenda-

tions in a command-line interface, since some of them depend on the execution state. However,

we intend to implement the other two by changing the lint message as requested and adding a

button to disable Julynter altogether.

Besides these reports, some participants of both phases expressed concerns about the data

intrusiveness of the experiment itself. Some even suggested designing a controlled remote ex-

periment in a virtual machine or Binder for security reasons. We considered it when designing

6.4 Julynter 171

the experiment, but we anticipated it would be artificial and would not detect which recommen-

dations occur in the wild nor whether the recommendations are good enough for users to apply

in their own notebooks.

Moreover, some indicated that they use Jupyter Notebook instead of Jupyter Lab daily and

did not run the experiment much. Finally, some reported bugs that were not caused by Julynter.

A participant indicated that despite all effort with linting, “the biggest problem remains the

lack of training of scientists in software engineering”.

6.4.5 Threats to Validity

The Julynter experiment also has some threats to validity that we depict below.

Internal. We selected participants for Phase II based on our previous knowledge that they used

Jupyter. This may bias the selection of participants to close contacts. In an attempt to mitigate

this threat, we distributed the invitation for Phase III to public data science and research groups

in Telegram and Whatsapp, to the official Jupyter Lab Gitter, and on Twitter. According to

Twitter’s current statistics, the tweet was retweeted 22 times, people saw the invitation tweet

4,049 times, and 326 people interacted with the tweet, despite only 12 filling the initial form

– the remaining two participants came from Phase II invitations. Nonetheless, the selection is

also biased towards our reach in social media.

Construct. Due to the COVID-19 pandemic, we had to design a remote experiment instead

of a lab experiment to evaluate Julynter. In this experiment, we distributed Julynter to each

participant use at their own pace with their own notebooks. They may have had very distinct

usages and different goals that may not justify the usage of Julynter. In fact, during the ex-

periment, some participants used Julynter in scratchpad notebooks that usually do not have a

high requirement of quality. Despite this threat, these participants had a positive feeling about

Julynter overall.

External. We had a small number of participants. Even though we listened to their feedback

to improve the tool, the number is not significant to draw conclusions on which are the best

recommendations and how users would use the tool in the wild.

6.5 Discussion 172

6.5 Discussion

This chapter introduced a set of best practices for developing notebooks, two noWorkflow in-

tegrations for Jupyter, and Julynter as a linting tool to support the best practices. The noWork-

flow integrations extend the provenance collection from simple scripts to interactive notebooks,

providing all the provenance’s underlying benefits. While the noWorkflow extension provides

features for collecting individual cell’s provenance and analyzing the provenance, the noWork-

flow kernel collects provenance from all cell executions and enables notebook cleaning as a

provenance application.

While the noWorkflow extensions have benefits, they have the drawback of an extra prove-

nance collection and storage overhead that may not appeal to users. Hence, we also introduced

Julynter as the first linting tool that considers the notebook structure. Julynter uses simple

provenance data collected by the IPython kernel and attempts to improve the quality and repro-

ducibility of notebooks by recommending actions related to the best practices. We evaluated

Julynter with users in a remote experiment and received positive feedback about it.

Chapter 7

Conclusion

7.1 Contributions

This thesis hypothesizes that scripts and interactive notebooks can also be supported by an in-

frastructure for collecting, managing, and analyzing provenance from experiments. To support

this hypothesis, we improved the noWorkflow’s provenance collection by replacing the passive

monitoring strategy with an overriding strategy that allowed us to collect fine-grained prove-

nance from scripts with mutable data structures. We also created an extension and a kernel for

provenance collection in interactive notebooks. Moreover, we proposed a command for export-

ing the provenance as Versioned-PROV and a version model with semantic versions. While we

focus on scripts and interactive notebooks in this thesis, the version model could also describe

the versioning of workflow experiments. Similarly, the Versioned-PROV definition is generic

enough to describe mutable data structures in any PROV document.

We also improved the provenance analysis by introducing a notebook extension, a web

visualization tool, and extending the querying and visualization features of noWorkflow by

proposing pattern matching, object queries, dataflow graphs, and activation graph summarizing

and comparison. For notebooks, we evaluated the usability of Julynter with users in a remote

experiment and received positive feedback about it.

The change in the collection strategy may also have improved the efficiency since the over-

riding strategy only triggers the provenance collection in points of interest. In contrast, the

passive monitoring strategy triggers the provenance collection during the execution of function

calls in imported modules, and noWorkflow 0 adds an overhead for ignoring the trigger. We did

not properly evaluate this effect since both strategies collect provenance at different depth and

granularity. Nonetheless, we also improved the efficiency of module collection by collecting

modules on demand, and we improved the management efficiency by reducing the storage over-

7.1 Contributions 174

head. In notebooks, we guaranteed the efficiency of provenance usage by proposing Julynter,

a linting tool that considers the structure of notebooks and uses simple provenance information

that is readily available in the IPython kernel.

The infrastructure we designed for noWorkflow has also been successfully used in other

research projects for algorithmic debugging (LINHARES et al., 2019), and incremental exe-

cution (HU et al., 2020). We are also aware that it is also being used in other unpublished

research projects to support statistical debugging, test case generation, speed-up of experiment,

and collaborative experiments.

During the development of the thesis, we noticed the necessity of better understanding the

problem. Hence, we dedicate a good amount of time studying approaches that collect prove-

nance from scripts and understanding how scientists use scripts and notebooks. Based on 27

approaches that collect provenance from scripts, we proposed a taxonomy and categorized them

accordingly. We found that very few approaches collect fine-grained provenance that includes

variable dependencies, and none of them describe an efficient collection of mutable data struc-

tures, as we do in noWorkflow 2. This is important in scripts because many scripts write on

mutable data structures. In fact, we found that 55.5% (492,659) of the Python notebooks with

valid syntax had at least one assignment to a mutable object attribute or mutable collection

item. Moreover, the only approaches that provide mechanisms for analyzing the evolution are

the ones that rely on Git generic analyses. They do not offer provenance-tailored evolution

analyses.

When we studied how scientists use scripts, we found Python as the favorite tool among

most participants who answered a questionnaire. We also noticed that scripting languages have

almost no role in provenance and reproducibility when compared to workflow management

systems. Studying actual scientific scripts from DataOne, we also found no evidence of prove-

nance usage. We extracted a common structure that scientific scripts follow, and we uncovered

the usage rate of each Python construct in scripts. These rates are important to prioritize the

features that tool developers should implement for a proper provenance collection.

Since many scientists use interactive notebooks, we analyzed over one million notebooks

from GitHub, observing good and bad practices regarding the quality and reproducibility of

notebooks. As good practices, we found the usage of literate programming aspects of notebooks

(e.g., Markdown cells and visualizations), the application of abstractions on notebooks with

more complex control flows, and the usage of descriptive filenames. As bad practices, we found

that most notebooks do not test their code. A large number of notebooks have characteristics

that hinder the reasoning and reproducibility, such as out-of-order cells, non-executed code

7.2 Future Work 175

cells, and the possibility of hidden states.

In this study, we also ran a big reproducibility study. We explored distinct execution or-

ders (top-down, execution counter order) and distinct environments (shared environments with

installations, isolated environments, and isolated bloated environments with pre-installed de-

pendencies) to run the notebooks. We achieved a reproducibility rate that ranged from 4.90%

to 15.04%, indicating that notebooks are not as reproducible as some work usually claim.

7.2 Future Work

There are many opportunities for future work to build on top of the contributions of this thesis.

With the script analysis’ insights, we foresee developing tools and processes targeted at sci-

entists to support the experiments’ development. For instance, packages that bundle scientific

tools could benefit from knowing which modules scientists use the most and use this informa-

tion to include these modules in the packages. Additionally, a plugin for an IDE or text editor

could provide code snippets based on the conceptual regions we identified (i.e., header, top,

definitions, bottom) and processing strategies (i.e., process data during input, during output, in

the middle, or interweaving). Finally, this plugin could also provide a “jump” feature to move

the cursor directly to each region’s beginning.

The analyses we proposed for the script study could also be used for replication with a

dataset including scientific scripts from other repositories such as GitHub and Zenodo. Addi-

tionally, a reproducibility study could be performed for scripts to compare their reproducibility

with the notebooks’ reproducibility.

In the notebook reproducibility study, we executed notebooks following distinct execution

orders in distinct environments. However, our orders and environments represent only a small

subset of the possible configurations. Hence, we foresee reproducibility studies that propose

distinct configurations – for instance, executing cells with imports before other cells in an en-

vironment created by guessing the repository dependencies. Other reproducibility questions

are also worth investigating. We intend to investigate strategies to assess the different types

of projects (e.g., student notebooks, tutorial notebooks, research notebooks, scratchpads, dash-

boards, among others) to compare their metrics.

The infrastructure we built for noWorkflow also has many possibilities for improvements.

First, we designed it for collecting provenance from single-threaded scripts. Some assumptions

in the AST transformations related to the fine-grained collection do not hold for multi-threaded

applications and asynchronous applications. Hence, there is an opportunity of improving it.

7.2 Future Work 176

Second, the provenance collection is quite limited in terms of black-box function calls. If

a function does not have a pure Python definition, noWorkflow indicates that its return value

was derived from all of its arguments. However, it is not always the case, and users should be

able to specify rules for defining dependencies in black-box functions. Similarly, noWorkflow

considers gray-box functions (i.e., functions that the definition is available outside the user-

defined collection depth) as black-box and creates these simplified dependencies as well. There

is an opportunity to improve the provenance collection of grey-box functions to perform the full

provenance collection but store only the actual dependencies between the return value and the

arguments.

Third, the collection of files consider only opening and closing operations, and the prove-

nance encompasses the entire file contents. However, files could be treated as mutable data

structures. In this case, there is an opportunity to improve file access collection to answer

provenance queries related to which parts of the file contribute to generating the experiment

results.

Fourth, the collected dependencies do not distinguish between flows (e.g., argument pass-

ing), control dependencies (e.g., if statements), derivations (e.g., binary operations), value as-

signments (e.g., assignment statements), and same assignments (e.g., singleton assignments)

(BOWERS; MCPHILLIPS, T.; LUDÄSCHER, 2018). It could be valuable to distinguish

among these types of dependencies for derivation queries. We can currently distinguish some

of these types by identifying the dependency name (i.e., argument dependencies have the name

argument), but it is not consistent for all names.

Finally, there are opportunities to improve the version model to support collaborations,

improve queries to support graph provenance queries, and improve storage and monitoring to

support real-time provenance analysis.

In addition to the future work in the noWorkflow infrastructure itself, the collected prove-

nance also enables other future work related to provenance applications. As stated before, it has

been applied for algorithmic debugging, and it is being applied for statistical debugging. How-

ever, we also foresee the usage of provenance for an omniscient debugger that allows navigating

back in the execution trace.

We foresee the usage of the fine-grained provenance of noWorkflow to support code cover-

age tools. Currently, existing tools use the passive monitoring strategy to collect the activated

code in the granularity of lines. noWorkflow supports a finer granularity: statements and ex-

pressions.

7.3 Publications and Awards 177

We intend to improve the notebook cleaning interface to allow users to specify the relevant

parts of the notebook directly in the Jupyter interface, specifying not only evaluations and code

cells but also Markdown cells. We also intend to collect the Markdown provenance in this

process. Additionally, we foresee deepening the cleaning to consider only parts of the cells

instead of expanding the relevant selection to the whole cell that contains a selected evaluation.

Such an algorithm would also allow the creation of dynamic program slices of scripts. With a

similar algorithm to the one we use for cleaning, the provenance can also be used to refactor

scripts by extracting cells and functions from a code slice.

Currently, the cell dependency collected by Julynter uses only variable name definitions for

each cell. This usage is unreliable for dependency detection. We intend to integrate noWork-

flow and Julynter to use noWorkflow’s dependency collection when its kernel is being used.

This integration will improve the cell dependency detection and allow the inclusion of linting

suggestions for testing the code and abstracting it into functions, classes, and modules.

Finally, we intend to evaluate the cleaning algorithm using the dataset of the reproducibility

study.

7.3 Publications and Awards

We published the following papers in the context of this thesis:

• PIMENTEL, J.F.; FREIRE, J.; MURTA, L.; BRAGANHOLO, V. Collecting and analyz-

ing provenance on interactive notebooks: when IPython meets noWorkflow. In: TaPP,

2015.

• PIMENTEL, J.F.; FREIRE, J.; BRAGANHOLO, V.; MURTA, L. Tracking and analyzing

the evolution of provenance from scripts. In: IPAW, 2016.

• PIMENTEL, J.F.; FREIRE, J.; MURTA, L.; BRAGANHOLO, V. Fine-grained prove-

nance collection over scripts through program slicing. In: IPAW, 2016.

• PIMENTEL, J.F.; DEY, S.; MCPHILLIPS, T.; BELHAJJAME, K.; KOOP, D.; MURTA

L.; BRAGANHOLO, V. Yin & Yang: demonstrating complementary provenance from

noWorkflow & YesWorkflow. In: IPAW, 2016.

• PIMENTEL, J.F.; MURTA, L.; BRAGANHOLO, V.; FREIRE, J. noWorkflow: a tool for

collecting, analyzing, and managing provenance from python scripts. Proceedings of the

VLDB Endowment, 2017.

7.3 Publications and Awards 178

• PIMENTEL, J.F.; MISSIER, P.; MURTA, L.; BRAGANHOLO, V. Versioned-PROV: A

PROV extension to support mutable data entities. In: IPAW, 2018.

• PIMENTEL, J.F.; MURTA, L.; BRAGANHOLO, V.; FREIRE, J. A large-scale study

about quality and reproducibility of jupyter notebooks. In: MSR, 2019.

• PIMENTEL, J.F.; FREIRE, J.; MURTA, L.; BRAGANHOLO, V. A survey on collecting,

managing, and analyzing provenance from scripts. ACM Computing Surveys, 2019.

• PIMENTEL, J.F.; MURTA, L.; BRAGANHOLO, V.; FREIRE, J. Understanding and

Improving the Quality and Reproducibility of Jupyter Notebooks. Empirical Software

Engineering. In press, 2021.

The MSR paper (PIMENTEL et al., 2019b) received two awards:

• ACM SIGSOFT Distinguished Paper Award

• FOSS Impact Paper Award

In addition to these papers, we also published other papers in collaborations that are out of

the scope of this thesis during this doctoral course:

• SANTOS, H.; PIMENTEL, J.F.; DA SILVA, V.T.; MURTA, L. Software rejuvenation via

a multi-agent approach. Journal of Systems and Software, 2015.

• COSTA, C.; FIGUEIREDO, J.J.; PIMENTEL, J.F.; SARMA, A.; MURTA, L. Recom-

mending Participants for Collaborative Merge Sessions. IEEE Transactions on Software

Engineering, 2019.

• LINHARES, H.; PIMENTEL, J.F.; KOHWALTER, T.; MURTA, L. Provenance-enhanced

Algorithmic Debugging. In SBES, 2020.

• MOURÃO, E.; PIMENTEL, J.F.; MURTA, L.; KALINOWSKI, M.; MENDES, E.;

WOHLIN, C. On the performance of hybrid search strategies for systematic literature

reviews in software engineering. Information and Software Technology, 2020.

• MENEZES, J.W.; TRINDADE, B.; PIMENTEL, J.F.; MOURA, T.; PLASTINO, A.;

MURTA, L.; COSTA, C. What causes merge conflicts? In: SBES, 2020.

The SBES 2020 paper (MENEZES et al., 2020) received the Best Paper Award.

References

ACUÑA, Ruben. Understanding Legacy Workflows through Runtime Trace Analysis.

2015. MA thesis – Arizona State University.

ACUÑA, Ruben; CHOMILIER, Jacques; LACROIX, Zoé. Managing and Documenting

Legacy Scientific Workflows. Journal of Integrative Bioinformatics, v. 12, n. 3, p. 277–277,

2015.

ACUÑA, Ruben; LACROIX, Zoé. Extracting Semantics from Legacy Scientific Workflows.

In: ICSC. Laguna Hills, USA: IEEE, 2016. p. 9–16.

ACUÑA, Ruben; LACROIX, Zoé; BAZZI, Rida A. Instrumentation and Trace Analysis for

Ad-Hoc Python Workflows in Cloud Environments. In: CLOUD. New York, USA: IEEE,

2015. p. 114–121.

ADIDA, Ben; BIRBECK, Mark; MCCARRON, Shane; PEMBERTON, Steven. RDFa in

XHTML: Syntax and processing. W3C Proposed Recommendation, v. 7, p. 1–89, 2008.

AGRAWAL, Rakesh; SRIKANT, Ramakrishnan. Fast Algorithms for Mining Association

Rules. In: VLDB. Santiago de Chile, Chile: Morgan Kaufmann, 1994. p. 487–499.

ALTINTAS, Ilkay; BARNEY, Oscar; JAEGER-FRANK, Efrat. Provenance collection support

in the kepler scientific workflow system. In: IPAW. Chicago, USA: Springer, 2006.

p. 118–132.

ANACONDA. Anaconda Software Distribution. Accessed: 2019-10-01. 2018. Available

from: <https://www.anaconda.com>.

ANAND, Manish Kumar; BOWERS, Shawn; LUDÄSCHER, Bertram. Provenance browser:

Displaying and querying scientific workflow provenance graphs. In: ICDE. Long Beach, USA:

IEEE, 2010. p. 1201–1204.

ANGELINO, Elaine; BRAUN, Uri; HOLLAND, David A; MARGO, Daniel W. Provenance

Integration Requires Reconciliation. In: TAPP. Heraklion, Crete, Greece: USENIX, 2011.

p. 1–6.

ANGELINO, Elaine; YAMINS, Daniel; SELTZER, Margo. StarFlow: A script-centric data

analysis environment. In: IPAW. Troy, USA: Springer, 2010. p. 236–250.

REFERENCES 180

ARNAOUDOVA, Venera; DI PENTA, Massimiliano; ANTONIOL, Giuliano. Linguistic

antipatterns: What they are and how developers perceive them. Empirical Software

Engineering, Springer, v. 21, n. 1, p. 104–158, 2016.

AUTHORITY, Python Code Quality. Astroid: A common base representation of python

source code for pylint and other projects. Accessed: 01.24.2020. Dec. 2017. Available from:

<https://github.com/PyCQA/astroid>.

BAGGERLY, Keith A; COOMBES, Kevin R. Deriving chemosensitivity from cell lines:

Forensic bioinformatics and reproducible research in high-throughput biology. The Annals of

Applied Statistics, JSTOR, v. 3, n. 4, p. 1309–1334, 2009.

BANGOR, Aaron; KORTUM, Philip T; MILLER, James T. An empirical evaluation of the

system usability scale. International Journal of Human–Computer Interaction, Taylor &

Francis, v. 24, n. 6, p. 574–594, 2008.

BAO, Zhuowei; COHEN-BOULAKIA, Sarah; DAVIDSON, Susan B; GIRARD, Pierrick.

PDiffView: viewing the difference in provenance of workflow results. Proceedings of the

VLDB Endowment, v. 2, n. 2, p. 1638–1641, 2009.

BARKER, Adam; VAN HEMERT, Jano. Scientific workflow: a survey and research

directions. In: PPAM. Gdansk, Poland: Springer, 2007. p. 746–753.

BECKER, Gabriel; MOORE, Sara E; LAWRENCE, Michael. trackr: A Framework for

Enhancing Discoverability and Reproducibility of Data Visualizations and Other Artifacts in

R. Journal of Computational and Graphical Statistics, Taylor & Francis, v. 28, n. 3,

p. 644–658, 2019.

BECKER, Richard A; CHAMBERS, John M. Auditing of data analyses. SIAM Journal on

Scientific and Statistical Computing, SIAM, v. 9, n. 4, p. 747–760, 1988.

BENEDEK, Joey; MINER, Trish. Measuring Desirability: New methods for evaluating

desirability in a usability lab setting. Proceedings of Usability Professionals Association,

v. 2003, n. 8-12, p. 57, 2002.

BOCHNER, Carsten; GUDE, Roland; SCHREIBER, Andreas. A python library for

provenance recording and querying. In: IPAW. Salt-Lake City, USA: Springer, 2008.

p. 229–240.

BOWERS, Shawn; MCPHILLIPS, Timothy M; LUDÄSCHER, Bertram. Provenance in

collection-oriented scientific workflows. Concurrency and Computation: Practice and

Experience, Wiley Online Library, v. 20, n. 5, p. 519–529, 2008.

REFERENCES 181

BOWERS, Shawn; MCPHILLIPS, Timothy; LUDÄSCHER, Bertram. Validation and

Inference of Schema-Level Workflow Data-Dependency Annotations. In: IPAW. London,

United Kingdom: Springer, 2018. p. 128–141.

BRACHMANN, Michael; SPOTH, William. Your notebook is not crumby enough, REPLace

it. In: CIDR. Amsterdam, The Netherlands: www.cidrdb.org, 2020.

BRACHMANN, Mike; BAUTISTA, Carlos; CASTELO, Sonia; FENG, Su; FREIRE, Juliana;

GLAVIC, Boris; KENNEDY, Oliver; MÜELLER, Heiko; RAMPIN, Rémi; SPOTH, William;

YANG, Ying. Data debugging and exploration with vizier. In: SIGMOD. Amsterdam, The

Netherlands: ACM, 2019. p. 1877–1880.

BRAUN, Uri; GARFINKEL, Simson; HOLLAND, David A;

MUNISWAMY-REDDY, Kiran-Kumar; SELTZER, Margo I. Issues in automatic provenance

collection. In: IPAW. Chicago, USA: Springer, 2006. p. 171–183.

BROOKE, John. SUS: a “quick and dirty’usability. Usability Evaluation in Industry, CRC

press, p. 189, 1996.

CALLAHAN, Steven P; FREIRE, Juliana; SANTOS, Emanuele;

SCHEIDEGGER, Carlos Eduardo; SILVA, Claudio T; VO, Huy T. Managing the Evolution of

Dataflows with VisTrails. In: ICDE. Atlanta, USA: IEEE, 2006. p. 71–71.

CANNON, Brett; SMITH, Nathaniel; STUFFT, Donald. PEP 518: Specifying Minimum

Build System Requirements for Python Projects. Accessed: 2020-09-22. 2016. Available

from: <https://www.python.org/dev/peps/pep-0518/>.

CARVALHO, L; BELHAJJAME, Khalid; MEDEIROS, C. A PROV-compliant approach to

script-to-workflow process. The Semantic Web Journal, 2018.

CHACON, Scott; STRAUB, Ben. Pro Git. 2. ed. New York, USA: Apress, 2014.

CHAMBERS, John M. Programming with Data: A Guide to the S Language. New York,

USA: Springer Science & Business Media, 1998.

CHAPMAN, Adriane; JAGADISH, HV. Understanding provenance black boxes. Distributed

and Parallel Databases, Springer, v. 27, n. 2, p. 139–167, 2010.

CHAPMAN, Adriane; MISSIER, Paolo; SIMONELLI, Giulia; TORLONE, Riccardo.

Capturing and Querying Fine-grained Provenance of Preprocessing Pipelines in Data Science.

Proceedings of the VLDB Endowment, 2021.

CHAVAN, Amit; HUANG, Silu; DESHPANDE, Amol; ELMORE, Aaron;

MADDEN, Samuel; PARAMESWARAN, Aditya. Towards a unified query language for

provenance and versioning. In: TAPP. Edinburgh, Scotland: USENIX, 2015. p. 1–6.

REFERENCES 182

CHEBOTKO, Artem; ABRAHAM, John; BRAZIER, Pearl; PIAZZA, Anthony;

KASHLEV, Andrey; LU, Shiyong. Storing, indexing and querying large provenance data sets

as RDF graphs in apache HBase. In: SERVICES. Santa Clara, USA: IEEE, 2013. p. 1–8.

CHEBOTKO, Artem; LU, Shiyong; FEI, Xubo; FOTOUHI, Farshad. RDFProv: A relational

RDF store for querying and managing scientific workflow provenance. Data & Knowledge

Engineering, Elsevier, v. 69, n. 8, p. 836–865, 2010.

CHENEY, James; AHMED, Amal; ACAR, Umut A. Provenance as dependency analysis.

Mathematical Structures in Computer Science, Cambridge University Press, v. 21, n. 6,

p. 1301–1337, 2011.

CHENEY, James; CHITICARIU, Laura; TAN, Wang-Chiew. Provenance in Databases: Why,

How, and Where. Foundations and Trends in Databases, v. 1, n. 4, p. 379–474, 2007.

CHIRIGATI, Fernando; RAMPIN, Rémi; SHASHA, Dennis; FREIRE, Juliana. Reprozip:

Computational reproducibility with ease. In: SIGMOD. San Francisco, USA: ACM, 2016.

p. 2085–2088.

CHIRIGATI, Fernando; SHASHA, Dennis; FREIRE, Juliana. Reprozip: Using provenance to

support computational reproducibility. In: TAPP. Lombard, USA: USENIX, 2013. p. 977–980.

CHITTIMALLI, Pavan Kumar; NAIK, Ravindra. Variable provenance in software systems. In:

RSSE. Hyderabad, India: ACM, 2014. p. 9–13.

CLAERBOUT, Jon; KARRENBACH, Martin. Electronic documents give reproducible

research a new meaning. In: SEG. New Orleans, USA: SEG, 1992. p. 601–604.

CLIFF, Norman. Answering ordinal questions with ordinal data using ordinal statistics.

Multivariate Behavioral Research, Taylor & Francis, v. 31, n. 3, p. 331–350, 1996.

CLIFFORD, Ben; FOSTER, Ian; VOECKLER, Jens-S; WILDE, Michael; ZHAO, Yong.

Tracking provenance in a virtual data grid. Concurrency and Computation: Practice and

Experience, Wiley Online Library, v. 20, n. 5, p. 565–575, 2008.

COLLBERG, Christian; PROEBSTING, Todd; MORAILA, Gina; SHANKARAN, Akash;

SHI, Zuoming; WARREN, Alex M. Measuring reproducibility in computer systems

research. Department of Computer Science, University of Arizona, 2014. p. 1–37.

CONRADI, Reidar; WESTFECHTEL, Bernhard. Version models for software configuration

management. ACM Computing Surveys, ACM, v. 30, n. 2, p. 232–282, 1998.

COOK, John. Code to slice open a Menger sponge. Acessed: 2021-05-03. Available from:

<https://www.johndcook.com/blog/2011/08/30/slice-a-menger-

sponge/>.

REFERENCES 183

COSTA, Flavio; SILVA, Vítor; DE OLIVEIRA, Daniel; OCAÑA, Kary;

OGASAWARA, Eduardo; DIAS, Jonas; MATTOSO, Marta. Capturing and querying workflow

runtime provenance with PROV: a practical approach. In: EDBT/ICDT. Genoa, Italy: ACM,

2013. p. 282–289.

CRUZ, Sergio Manuel Serra da; NASCIMENTO, José Antonio Pires do. SisGExp: rethinking

long-tail agronomic experiments. In: IPAW. McLean, USA: Springer, 2016. p. 214–217.

DA CRUZ, Sérgio Manuel Serra; NASCIMENTO, José Antonio Pires do. Towards integration

of data-driven agronomic experiments with data provenance. Computers and Electronics in

Agriculture, Elsevier, v. 161, p. 14–28, 2019.

DAVIDSON, Susan B; FREIRE, Juliana. Provenance and scientific workflows: challenges and

opportunities. In: SIGMOD. Vancouver, BC, Canada: ACM, 2008. p. 1345–1350.

DAVISON, Andrew. Automated capture of experiment context for easier reproducibility in

computational research. Computing in Science & Engineering, AIP Publishing, v. 14, n. 4,

p. 48–56, 2012.

DEMSKY, Brian. Garm: cross application data provenance and policy enforcement. In:

HOTSEC. Montreal, Canada: USENIX, 2009. v. 9, p. 10–10.

DEY, Saumen; BELHAJJAME, Khalid; KOOP, David; RAUL, Meghan;

LUDÄSCHER, Bertram. Linking prospective and retrospective provenance in scripts. In:

TAPP. Edinburgh, Scotland: USENIX, 2015. p. 1–7.

DIAS, Jonas; OGASAWARA, Eduardo; OLIVEIRA, Daniel de; PORTO, Fabio;

COUTINHO, Alvaro LGA; MATTOSO, Marta. Supporting dynamic parameter sweep in

adaptive and user-steered workflow. In: WORKS. Seattle, USA: ACM, 2011. p. 31–36.

DIAS, Luiz Gustavo; MATTOSO, Marta; LOPES, Bruno; OLIVEIRA, Daniel de.

Experiencing DfAnalyzer for Runtime Analysis of Phylogenomic Dataflows. In: BSB. São

Paulo, Brazil: Springer, 2020. p. 105–116.

DIETRICH, Christian; LOHMANN, Daniel. The dataref versuchung: Saving time through

better internal repeatability. SIGOPS Operating Systems Review, ACM, v. 49, n. 1,

p. 51–60, 2015.

DONOHO, David L; MALEKI, Arian; RAHMAN, Inam Ur; SHAHRAM, Morteza;

STODDEN, Victoria. Reproducible research in computational harmonic analysis. Computing

in Science & Engineering, AIP Publishing, v. 11, n. 1, p. 8–18, 2009.

DRUMMOND, Chris. Replicability is not reproducibility: nor is it good science. In: ICML.

Montreal, CA: International Machine Learning Society, 2009. p. 1–4.

REFERENCES 184

DUBOIS, Paul F. Guest Editor’s Introduction: Python–Batteries Included. Computing in

Science & Engineering, IEEE Computer Society, v. 9, n. 3, p. 7–9, 2007.

DUBOIS, Paul F. Ten good practices in scientific programming. Computing in Science &

Engineering, AIP Publishing, v. 1, n. 1, p. 7–11, 1999.

EICHINSKI, Philip; ROE, Paul. Datatrack: An R package for managing data in a multi-stage

experimental workflow. In: ESON. Baltimore, USA: IEEE, 2016. p. 1–8.

ESTUBLIER, Jacky. Software Configuration Management: A Roadmap. In: ICSE. New York,

USA: ACM, 2000. p. 279–289. ISBN 1-58113-253-0.

FELIZARDO, Katia Romero; MENDES, Emilia; KALINOWSKI, Marcos;

SOUZA, Érica Ferreira; VIJAYKUMAR, Nandamudi L. Using forward snowballing to update

systematic reviews in software engineering. In: ESEM. Ciudad Real, Spain: ACM, 2016.

p. 1–6.

FILGUIERA, Rosa; KLAMPANOS, Iraklis; KRAUSE, Amrey; DAVID, Mario;

MORENO, Alexander; ATKINSON, Malcolm. Dispel4Py: A Python Framework for

Data-intensive Scientific Computing. In: DATACLOUD@SC. Salt Lake, USA: IEEE

Computer Society, 2014. p. 9–16.

FILGUIERA, Rosa; KRAUSE, Amrey; ATKINSON, Malcolm; KLAMPANOS, Iraklis;

MORENO, Alexander. dispel4py: A python framework for data-intensive scientific

computing. The International Journal of High Performance Computing Applications,

SAGE Publications Sage UK: London, England, v. 31, n. 4, p. 316–334, 2017.

FLOYD, Robert W. Algorithm 97: shortest path. Commun. ACM., ACM, v. 5, n. 6, p. 345,

1962.

FREIRE, Juliana; KOOP, David; SANTOS, Emanuele; SILVA, Cláudio T. Provenance for

computational tasks: A survey. Computing in Science & Engineering, AIP Publishing, v. 10,

n. 3, p. 11–21, 2008.

FREIRE, Juliana; SILVA, Cláudio T; CALLAHAN, Steven P; SANTOS, Emanuele;

SCHEIDEGGER, Carlos E; VO, Huy T. Managing rapidly-evolving scientific workflows. In:

IPAW. Chicago, USA: Springer, 2006. p. 10–18.

FREW, James. Earth System Science Server (ES3): Local Infrastructure for Earth Science

Product Management. In: ESTC. Palo Alto, CA: NASA, 2004. p. 1–5.

FREW, James; BOSE, Rajendra. Earth system science workbench: A data management

infrastructure for earth science products. In: SSDBM. Fairfax, VA, U.S.A: IEEE, 2001.

p. 180–189.

REFERENCES 185

FREW, James; JANÉE, Greg; SLAUGHTER, Peter. Automatic Provenance Collection and

Publishing in a Science Data Production Environment – Early Results. In: IPAW. Troy, USA:

Springer, 2010. p. 27–33.

FREW, James; JANÉE, Greg; SLAUGHTER, Peter. Provenance-enabled automatic data

publishing. In: SSDBM. Portland, USA: Springer, 2011. p. 244–252.

FREW, James; METZGER, Dominic; SLAUGHTER, Peter. Automatic capture and

reconstruction of computational provenance. Concurrency and Computation: Practice and

Experience, Wiley Online Library, v. 20, n. 5, p. 485–496, 2008.

FREW, James; SLAUGHTER, Peter. Es3: A demonstration of transparent provenance for

scientific computation. In: IPAW. Salt Lake City, USA: Springer, 2008. p. 200–207.

GAILLY, Jean-loup; ADLER, Mark. zlib. Accessed: 2021-01-07. 2017. Available from:

<https://github.com/madler/zlib>.

GARIJO, Daniel; GIL, Yolanda. Augmenting PROV with Plans in P-PLAN: Scientific

Processes as Linked Data. In: LISC. Boston, USA: CEUR-WS.org, 2012.

GAROUSI, Vahid; KÜÇÜK, Barış. Smells in software test code: A survey of knowledge in

industry and academia. Journal of Systems and Software, Elsevier, v. 138, p. 52–81, 2018.

GAVISH, Matan; DONOHO, David. A universal identifier for computational results. Procedia

Computer Science, Elsevier, v. 4, p. 637–647, 2011.

GELFOND, Jonathan; GOROS, Martin; HERNANDEZ, Brian; BOKOV, Alex. A system for

an accountable data analysis process in R. The R journal, NIH Public Access, v. 10, n. 1, p. 6,

2018.

GHARIBI, Gharib; WALUNJ, Vijay; ALANAZI, Rakan; RELLA, Sirisha; LEE, Yugyung.

Automated management of deep learning experiments. In: DEEM@SIGMOD. Amsterdam,

The Netherlands: ACM, 2019. p. 1–4.

GILL, Richard D. Event based simulation of an EPR-B experiment by local hidden variables:

epr-simple and epr-clocked. arXiv preprint arXiv:1507.00106, 2015.

GLAVIC, Boris; DITTRICH, Klaus R. Data Provenance: A Categorization of Existing

Approaches. In: BTW. Aachen, Germany: GI, 2007. p. 227–241.

GREFF, Klaus; KLEIN, Aaron; CHOVANEC, Martin; HUTTER, Frank;

SCHMIDHUBER, Jürgen. The sacred infrastructure for computational research. In: SCIPY.

Austin, USA: SciPy Conference, 2017. v. 28, p. 49–56.

REFERENCES 186

GREFF, Klaus; SCHMIDHUBER, Jürgen. Introducing Sacred: A Tool to Facilitate

Reproducible Research. In: AUTOML. Lille, France: International Machine Learning Society,

2015. p. 1–6.

GROTH, Paul; MILES, Simon; MOREAU, Luc. PReServ: Provenance recording for services.

In: UK e-Science All Hands Meeting. Nottingham, UK: EPSRC, 2005. v. 2005, p. 1–8.

GRUS, Joel. I don’t like notebooks. JupyterCon Presentation. Accessed: 2021-02-19. 2018.

Available from: <https://conferences.oreilly.com/jupyter/jup-

ny/public/schedule/detail/68282>.

GUO, Philip J; ENGLER, Dawson. Using automatic persistent memoization to facilitate data

analysis scripting. In: ISSTA. Toronto, ON, Canada: ACM, 2011. p. 287–297.

GUO, Philip J; ENGLER, Dawson R. CDE: Using System Call Interposition to Automatically

Create Portable Software Packages. In: ATC. Portland, USA: USENIX Association, 2011.

p. 1–6.

GUO, Philip J; ENGLER, Dawson R. Towards Practical Incremental Recomputation for

Scientists: An Implementation for the Python Language. In: IPAW. Troy, USA: Springer,

2010. p. 1–10.

GUO, Philip J; SELTZER, Margo. BURRITO: Wrapping Your Lab Notebook in

Computational Infrastructure. In: TAPP. Boston, USA: USENIX, 2012. v. 12, p. 1–7.

GUO, Philip Jia. Software tools to facilitate research programming. 2012. PhD thesis –

Stanford University, Stanford University.

HAN, Jiawei; PEI, Jian; KAMBER, Micheline. Data mining: concepts and techniques.

Waltham, USA: Morgan Kaufmann, 2011.

HAN, Peiyi; WANG, Chaozheng; LIU, Chuanyi; DUAN, Shaoming; PAN, Hezhong;

LUO, Pengshuai. SecureMLDebugger: A Privacy-Preserving Machine Learning Debugging

Tool. In: DSC. Hong Kong, China: IEEE, 2020. p. 127–134.

HANNAY, Jo Erskine; MACLEOD, Carolyn; SINGER, Janice; LANGTANGEN, Hans Petter;

PFAHL, Dietmar; WILSON, Greg. How do scientists develop and use scientific software? In:

SE-CSE. Vancouver, BC, Canada: IEEE Computer Society, 2009. p. 1–8.

HANSON, Brooks; SUGDEN, Andrew; ALBERTS, Bruce. Making data maximally available.

Science, American Association for the Advancement of Science, New York, N.Y., v. 331,

n. 6018, p. 649–649, 2011.

HEAD, Andrew. Interactive Program Distillation. 2020. PhD thesis – UC Berkeley, UC

Berkeley.

REFERENCES 187

HEAD, Andrew; HOHMAN, Fred; BARIK, Titus; DRUCKER, Steven M; DELINE, Robert.

Managing messes in computational notebooks. In: CHI. Glasgow, Scotland, UK: ACM, 2019.

p. 1–12.

HEDGES, Larry V; OLKIN, Ingram. Statistical methods for meta-analysis. Waktham, USA:

Academic press, 2014.

HERSCHEL, Melanie; DIESTELKÄMPER, Ralf; LAHMAR, Houssem Ben. A survey on

provenance: What for? What form? What from? VLDB Journal, v. 26, n. 6, p. 881–906, 2017.

HIRSCHBERG, Daniel S. Algorithms for the longest common subsequence problem. Journal

of the ACM, ACM, v. 24, n. 4, p. 664–675, 1977.

HOBAN, Sean; BERTORELLE, Giorgio; GAGGIOTTI, Oscar E. Computer simulations: tools

for population and evolutionary genetics. Nature Reviews Genetics, Nature Publishing

Group, v. 13, n. 2, p. 110–122, 2012.

HOEKSTRA, Rinke; GROTH, Paul. PROV-O-Viz-understanding the role of activities in

provenance. In: IPAW. Cologne, Germany: Springer, 2014. p. 215–220.

HORWITZ, Susan; REPS, Thomas. The use of program dependence graphs in software

engineering. In: ICSE. Melbourne, Australia: ACM, 1992. p. 392–411.

HU, Jingmei; JOUNG, Jiwon; JACOBS, Maia; GAJOS, Krzysztof Z; SELTZER, Margo I.

Improving data scientist efficiency with provenance. In: ICSE. Seoul, South Korea: ACM,

2020. p. 1086–1097.

HUQ, Mohammad Rezwanul. An inference-based framework for managing data

provenance. 2013. PhD thesis – University of Twente.

HUQ, Mohammad Rezwanul; APERS, Peter MG; WOMBACHER, Andreas. An

inference-based framework to manage data provenance in Geoscience Applications. IEEE

Transactions on Geoscience and Remote Sensing, IEEE, Washington, USA, v. 51, n. 11,

p. 5113–5130, 2013a.

HUQ, Mohammad Rezwanul; APERS, Peter MG; WOMBACHER, Andreas.

ProvenanceCurious: a tool to infer data provenance from scripts. In: EDBT. Genoa, Italy:

ACM, 2013b. p. 765–768.

HÜRSCH, Walter L; LOPES, Cristina Videira. Separation of Concerns. Northeastern

University, USA, 1995.

IBÁÑEZ, J. David et al. pygit2. Accessed: 2021-01-07. 2018. Available from:

<https://github.com/libgit2/pygit2>.

REFERENCES 188

IOANNIDIS, John PA. Why most published research findings are false. PLOS Medicine,

Public Library of Science, v. 2, n. 8, e124, 2005.

ISRAEL, Glenn D. Determining sample size. University of Florida, USA, 1992.

IVES, Zack; ZHANG, Yi; HAN, Soonbo; ZHENG, Nan. Dataset Relationship Management.

In: CIDR. Asilomar, USA: www.cidrdb.org, 2019.

IVIE, Peter. A Workflow Management System to Facilitate Reproducibility of Scientific

Computing Applications. 2018. PhD thesis – University of Notre Dame, University of Notre

Dame.

JACKSON, Keith R. pyGlobus: a Python interface to the Globus Toolkit™. Concurrency and

Computation: Practice and Experience – 13–15, Wiley Online Library, v. 14, n. 13–15,

p. 1075–1083, 2002.

JALALI, Samireh; WOHLIN, Claes. Systematic literature studies: database searches vs.

backward snowballing. In: ESEM. Lund University, Sweden: ACM, 2012. p. 29–38.

JONES, Matthew B; LUDÄSCHER, Bertram; MCPHILLIPS, Timothy; MISSIER, Paolo;

SCHWALM, Christopher; SLAUGHTER, Peter; VIEGLAIS, Dave; WALKER, Lauren;

WEI, Yaxing. DataONE: A Data Federation with Provenance Support. In: IPAW. McLean,

USA: Springer, 2016. v. 9672, p. 230.

KALLIAMVAKOU, Eirini; GOUSIOS, Georgios; BLINCOE, Kelly; SINGER, Leif;

GERMAN, Daniel M; DAMIAN, Daniela. The promises and perils of mining GitHub. In:

MSR. Hyderabad, India: ACM, 2014. p. 92–101.

KERY, Mary Beth. Tools to support exploratory programming with data. In: VL/HCC.

Raleigh, USA: IEEE, 2017. p. 321–322.

KERY, Mary Beth; HORVATH, Amber; MYERS, Brad. Variolite: Supporting Exploratory

Programming by Data Scientists. In: CHI. Denver, USA: ACM, 2017. p. 1–12.

KERY, Mary Beth; JOHN, Bonnie E; O’FLAHERTY, Patrick; HORVATH, Amber;

MYERS, Brad A. Towards effective foraging by data scientists to find past analysis choices.

In: CHI. Glasgow, Scotland, UK: ACM, 2019. p. 1–13.

KERY, Mary Beth; MYERS, Brad A. Interactions for untangling messy history in a

computational notebook. In: VL/HCC. Lisbon, Portugal: IEEE, 2018. p. 147–155.

KERY, Mary Beth; RADENSKY, Marissa; ARYA, Mahima; JOHN, Bonnie E.;

MYERS, Brad A. The Story in the Notebook: Exploratory Data Science Using a Literate

Programming Tool. In: CHI. Montreal QC, Canada: ACM, 2018. 174:1–174:11. ISBN

978-1-4503-5620-6. DOI: 10.1145/3173574.3173748.

REFERENCES 189

KIM, Jihie; DEELMAN, Ewa; GIL, Yolanda; MEHTA, Gaurang; RATNAKAR, Varun.

Provenance trails in the wings/pegasus system. Concurrency and Computation: Practice

and Experience, Wiley Online Library, v. 20, n. 5, p. 587–597, 2008.

KLUYVER, Thomas; RAGAN-KELLEY, Benjamin; PÉREZ, Fernando;

GRANGER, Brian E; BUSSONNIER, Matthias; FREDERIC, Jonathan; KELLEY, Kyle;

HAMRICK, Jessica B; GROUT, Jason; CORLAY, Sylvain; IVANOV, Paul; AVILA, Damián;

ABDALLA, Safia; WILLING, Carol, et al. Jupyter Notebooks - a publishing format for

reproducible computational workflows. In: ELPUB. Göttingen, Germany: IOS Press, 2016.

p. 87–90.

KNUTH, Donald E. Literate programming. Computer, v. 1, n. 2, p. 97–111, 1984.

KOENZEN, Andreas; ERNST, Neil; STOREY, Margaret-Anne. Code Duplication and Reuse

in Jupyter Notebooks. arXiv preprint arXiv:2005.13709, 2020.

KOHWALTER, Troy; OLIVEIRA, Thiago; FREIRE, Juliana; CLUA, Esteban;

MURTA, Leonardo. Prov Viewer: a graph-based visualization tool for interactive exploration

of provenance data. In: IPAW. McLean, USA: Springer, 2016. p. 71–82.

KOOP, David; PATEL, Jay. Dataflow notebooks: encoding and tracking dependencies of cells.

In: TAPP. Seattle, Washington: USENIX, 2017. p. 1–7.

KOOP, David; SANTOS, Emanuele; BAUER, Bela; TROYER, Matthias; FREIRE, Juliana;

SILVA, Cláudio T. Bridging workflow and data provenance using strong links. In: SSDBM.

Portland, USA: Springer, 2010. v. 28, p. 397–415.

KOSLOW, Stephen H. Sharing primary data: a threat or asset to discovery? Nature Reviews

Neuroscience, Nature Publishing Group, v. 3, n. 4, p. 311, 2002.

KÖSTER, Johannes; RAHMANN, Sven. Snakemake—a scalable bioinformatics workflow

engine. Bioinformatics, Oxford Univ Press, v. 28, n. 19, p. 2520–2522, 2012.

LANGTANGEN, Hans Petter. Python scripting for computational science. 3rd. Berlin,

Heidelberg and New York: Springer, 2006. v. 3.

LERNER, Barbara; BOOSE, Emery. POSTER: RDataTracker and DDG Explorer. In: IPAW.

Cologne, Germany: Springer, 2014a. p. 1–3.

LERNER, Barbara; BOOSE, Emery. RDataTracker: collecting provenance in an interactive

scripting environment. In: TAPP. Cologne, Germany: USENIX, 2014b. p. 1–4.

LERNER, Barbara; BOOSE, Emery; PEREZ, Luis. Using Introspection to Collect Provenance

in R. Informatics, Multidisciplinary Digital Publishing Institute, v. 5, n. 1, p. 12, 2018.

REFERENCES 190

LEWINE, Donald. POSIX programmers guide. Sebastopol, USA: "O’Reilly Media, Inc.",

1991.

LIM, Chunhyeok; LU, Shiyong; CHEBOTKO, Artem; FOTOUHI, Farshad. Prospective and

retrospective provenance collection in scientific workflow environments. In: SCC. Miami,

USA: IEEE, 2010. p. 449–456.

LIM, Chunhyeok; LU, Shiyong; CHEBOTKO, Artem; FOTOUHI, Farshad;

KASHLEV, Andrey. OPQL: querying scientific workflow provenance at the graph level. Data

and Knowledge Engineering, Elsevier, v. 88, n. 0, p. 37–59, 2013.

LIN, Cui; LU, Shiyong; FEI, Xubo; CHEBOTKO, Artem; PAI, Darshan; LAI, Zhaoqiang;

FOTOUHI, Farshad; HUA, Jing. A reference architecture for scientific workflow management

systems and the VIEW SOA solution. IEEE Transactions on Services Computing, IEEE,

v. 2, n. 1, p. 79–92, 2009.

LINHARES, Henrique; PIMENTEL, João Felipe; KOHWALTER, Troy;

MURTA, Leonardo Gresta Paulino. Provenance-enhanced Algorithmic Debugging. In: SBES.

Salvador, Brazil: ACM, 2019. p. 203–212.

LIU, Ji; PACITTI, Esther; VALDURIEZ, Patrick; MATTOSO, Marta. A Survey of

Data-Intensive Scientific Workflow Management. Journal of Grid Computing, Springer,

v. 13, n. 4, p. 457–493, 2015.

LOUI, Ronald P. In praise of scripting: Real programming pragmatism. Computer, IEEE,

v. 41, n. 7, p. 22–26, 2008.

LYNCH, Clifford. Authenticity and integrity in the digital environment: an exploratory

analysis of the central role of trust. CLIR, June, v. 32, n. 1, p. 1–84, 2000.

MACKO, Peter; SELTZER, Margo. A General-Purpose Provenance Library. In: TAPP.

Boston, USA: USENIX, 2012. p. 1–6.

MARINHO, Anderson; MATTOSO, Marta; WERNER, Claudia; BRAGANHOLO, Vanessa;

MURTA, Leonardo. Challenges in Managing Implicit and Abstract Provenance Data:

Experiences with ProvManager. In: TAPP. Heraklion, Crete, Greece: USENIX, 2011. p. 1–6.

MARTIN, Andrew P; LYLE, John; NAMILUKO, Cornelius. Provenance as a Security

Control. In: TAPP. Boston, USA: USENIX, 2012.

MATTOSO, Marta; DIAS, Jonas; OCAÑA, Kary ACS; OGASAWARA, Eduardo;

COSTA, Flavio; HORTA, Felipe; SILVA, Vítor; OLIVEIRA, Daniel de. Dynamic steering of

HPC scientific workflows: A survey. Future Generation Computer Systems, Elsevier, v. 46,

p. 100–113, 2015.

REFERENCES 191

MATTOSO, Marta; WERNER, Claudia; TRAVASSOS, Guilherme Horta;

BRAGANHOLO, Vanessa; OGASAWARA, Eduardo; OLIVEIRA, Daniel; CRUZ, Sergio;

MARTINHO, Wallace; MURTA, Leonardo. Towards supporting the life cycle of large scale

scientific experiments. International Journal of Business Process Integration and

Management, Inderscience Publishers, v. 5, n. 1, p. 79–92, 2010.

MCFEE, Brian; RAFFEL, Colin; LIANG, Dawen; ELLIS, Daniel PW; MCVICAR, Matt;

BATTENBERG, Eric; NIETO, Oriol. librosa: Audio and music signal analysis in python. In:

SCIPY. Austin, USA: SciPy Conference, 2015. v. 8, p. 18–25.

MCGUGAN, Will. Beginning game development with Python and Pygame: from novice

to professional. New York, USA: Apress, 2007.

MCKINNEY, Wes. pandas: a foundational Python library for data analysis and statistics.

Python for High Performance and Scientific Computing, v. 14, n. 9, 2011.

MCPHILLIPS, Timothy; BOWERS, Shawn; BELHAJJAME, Khalid;

LUDÄSCHER, Bertram. Retrospective provenance without a runtime provenance recorder. In:

TAPP. Edinburgh, Scotland: USENIX, 2015a. p. 1–7.

MCPHILLIPS, Timothy; SONG, Tianhong; KOLISNIK, Tyler; AULENBACH, Steve;

BELHAJJAME, Khalid; BOCINSKY, Kyle; CAO, Yang; CHENEY, James;

CHIRIGATI, Fernando; DEY, Saumen; FREIRE, Juliana; JONES, Christopher;

HANKEN, James; KINTIGH, Keith; KOHLER, Timothy; KOOP, David; MACKLIN, James;

MISSIER, Paolo; SCHILDHAUER, Mark; SCHWALM, Christopher; WEI, Yaxing;

BIEDA, Mark; LUDÄSCHER, Bertram. YesWorkflow: a user-oriented, language-independent

tool for recovering workflow information from scripts. International Journal of Digital

Curation, v. 10, n. 1, p. 298–313, 2015b.

MENEZES, José William; TRINDADE, Bruno; PIMENTEL, João Felipe; MOURA, Tayane;

PLASTINO, Alexandre; MURTA, Leonardo; COSTA, Catarina. What causes merge conflicts?

In: SBES. Natal, Brazil: ACM, 2020. p. 203–212.

MEYER, Robert. Correlations and coding in visual cortex. 2016. MA thesis – Technische

Universitaet Berlin, Germany.

MEYER, Robert; OBERMAYER, Klaus. pypet: A Python Toolkit for Data Management of

Parameter Explorations. Frontiers in Neuroinformatics, Frontiers Media SA, v. 10, p. 1–16,

2016.

MEYER, Robert; OBERMAYER, Klaus. pypet: a python toolkit for simulations and numerical

experiments. Neuroscience, BioMed Central, v. 16, Suppl 1, p184, 2015.

REFERENCES 192

MICHAELIDES, Danius T; PARKER, Richard; CHARLTON, Chris; BROWNE, William J;

MOREAU, Luc. Intermediate Notation for Provenance and Workflow Reproducibility. In:

IPAW. McLean, USA: Springer, 2016. p. 83–94.

MICHENER, William; VIEGLAIS, Dave; VISION, Todd; KUNZE, John; CRUSE, Patricia;

JANÉE, Greg. DataONE: Data Observation Network for Earth—Preserving data and enabling

innovation in the biological and environmental sciences. D-Lib Magazine, Corporation for

National Research Initiatives, v. 17, n. 1/2, p. 12, 2011.

MICROSOFT. Naming Files, Paths, and Namespaces. Accessed: 2019-10-01. 2018.

Available from: <https://docs.microsoft.com/en-

us/windows/desktop/FileIO/naming-a-file>.

MILES, Simon; GROTH, Paul; BRANCO, Miguel; MOREAU, Luc. The requirements of

using provenance in e-science experiments. Journal of Grid Computing, Springer, v. 5, n. 1,

p. 1–25, 2007.

MILES, Simon; GROTH, Paul; MUNROE, Steve; MOREAU, Luc. PrIMe: A methodology for

developing provenance-aware applications. ACM Transactions on Software Engineering

and Methodology, ACM, v. 20, n. 3, p. 8, 2011.

MISSIER, Paolo; DEY, Saumen; BELHAJJAME, Khalid; CUEVAS-VICENTTÍN, Víctor;

LUDÄSCHER, Bertram. D-PROV: Extending the PROV Provenance Model with Workflow

Structure. In: TAPP. Lombard, USA: USENIX, 2013a. p. 1–7.

MISSIER, Paolo; MOREAU, Luc; CHENEY, James; LEBO, Timothy;

SOILAND-REYES, Stian. PROV-Dictionary: Modeling Provenance for Dictionary Data

Structures. 2013b. Available from:

<https://www.w3.org/TR/prov-dictionary/>.

MOREAU, Luc; CLIFFORD, Ben; FREIRE, Juliana; FUTRELLE, Joe; GIL, Yolanda;

GROTH, Paul; KWASNIKOWSKA, Natalia; MILES, Simon; MISSIER, Paolo; MYERS, Jim;

PLALE, Beth; SIMMHAN, Yogesh; STEPHAN, Eric; DEN BUSSCHE, Jan Van. The open

provenance model core specification (v1. 1). Future Generation Computer Systems,

Elsevier, v. 27, n. 6, p. 743–756, 2011.

MOREAU, Luc; FREIRE, Juliana; FUTRELLE, Joe; MCGRATH, Robert E.; MYERS, Jim;

PAULSON, Patrick. The Open Provenance Model: An Overview. In: IPAW. Salt Lake City,

USA: Springer Berlin Heidelberg, 2008a. v. 5272, p. 323–326. ISBN 978-3-540-89965-5.

REFERENCES 193

MOREAU, Luc; LUDÄSCHER, Bertram; ALTINTAS, Ilkay; BARGA, Roger S.;

BOWERS, Shawn; CALLAHAN, Steven; CHIN JR., George; CLIFFORD, Ben;

COHEN, Shirley; COHEN-BOULAKIA, Sarah; DAVIDSON, Susan; DEELMAN, Ewa;

DIGIAMPIETRI, Luciano; FOSTER, Ian; FREIRE, Juliana; FREW, James; FUTRELLE, Joe;

GIBSON, Tara; GIL, Yolanda; GOBLE, Carole; GOLBECK, Jennifer; GROTH, Paul;

HOLLAND, David A.; JIANG, Sheng; KIM, Jihie; KOOP, David; KRENEK, Ales;

MCPHILLIPS, Timothy; MEHTA, Gaurang; MILES, Simon; METZGER, Dominic;

MUNROE, Steve; MYERS, Jim; PLALE, Beth; PODHORSZKI, Norbert;

RATNAKAR, Varun; SANTOS, Emanuele; SCHEIDEGGER, Carlos;

SCHUCHARDT, Karen; SELTZER, Margo; SIMMHAN, Yogesh L.; SILVA, Claudio;

SLAUGHTER, Peter; STEPHAN, Eric; STEVENS, Robert; TURI, Daniele; VO, Huy;

WILDE, Mike; ZHAO, Jun; ZHAO, Yong. Special issue: The first provenance challenge.

Concurrency and Computation: Practice and Experience, Wiley Online Library, v. 20,

n. 5, p. 409–418, 2008b.

MOREAU, Luc; MISSIER, Paolo. PROV-DM: The PROV Data Model. 2012. Available

from: <http://www.w3.org/TR/prov-dm>.

MUELLER, Alexander. 5 reasons why jupyter notebooks suck. Accessed: 2019-10-01.

2018. Available from: <https://towardsdatascience.com/5-reasons-why-

jupyter-notebooks-suck-4dc201e27086>.

MUNAIAH, Nuthan; KROH, Steven; CABREY, Craig; NAGAPPAN, Meiyappan. Curating

GitHub for engineered software projects. Empirical Software Engineering, Springer, v. 22,

n. 6, p. 3219–3253, 2017.

MUNISWAMY-REDDY, Kiran-Kumar; HOLLAND, David A; BRAUN, Uri;

SELTZER, Margo I. Provenance-Aware Storage Systems. In: ATC. Boston, USA: USENIX

Association, 2006. p. 43–56.

MURTA, Leonardo; BRAGANHOLO, Vanessa; CHIRIGATI, Fernando; KOOP, David;

FREIRE, Juliana. noWorkflow: capturing and analyzing provenance of scripts. In: IPAW.

Cologne, Germany: Springer, 2014. p. 71–83.

MWEBAZE, Johnson; BOXHOORN, Danny; VALENTIJN, Edwin. Astro-wise: Tracing and

using lineage for scientific data processing. In: NBIS. Indianapolis, USA: IEEE, 2009.

p. 475–480.

MWEBAZE, Johnson; BOXHOORN, Danny; VALENTIJN, Edwin. Dynamic Pipeline

Changes in Scientific Data Processing. In: ESON. Stockholm, Sweden: IEEE, 2011.

p. 263–270.

REFERENCES 194

MYERS, Glenford J; BADGETT, Tom; THOMAS, Todd M; SANDLER, Corey. The art of

software testing. Hoboken, USA: Wiley Online Library, 2004. v. 2.

NAMAKI, Mohammad Hossein; FLORATOU, Avrilia; PSALLIDAS, Fotis;

KRISHNAN, Subru; AGRAWAL, Ashvin; WU, Yinghui; ZHU, Yiwen; WEIMER, Markus.

Vamsa: Automated Provenance Tracking in Data Science Scripts. In: KDD. Virtual Event, CA,

USA: ACM, 2020. p. 1542–1551.

NEGLECTOS. A Preliminary Analysis on the Use of Python Notebooks. Accessed:

2019-10-01. 2018. Available from:

<https://blog.bitergia.com/2018/04/02/a-preliminary-analysis-

on-the-use-of-python-notebooks/>.

OLIVEIRA, Daniel de; OGASAWARA, Eduardo; BAIÃO, Fernanda; MATTOSO, Marta.

Scicumulus: A lightweight cloud middleware to explore many task computing paradigm in

scientific workflows. In: CLOUD. Miami, USA: IEEE, 2010. p. 378–385.

OLIVEIRA, Wellington; OLIVEIRA, Daniel De; BRAGANHOLO, Vanessa. Provenance

Analytics for Workflow-Based Computational Experiments: A Survey. ACM Computing

Surveys, ACM, v. 51, n. 3, p. 53, 2018.

OUSTERHOUT, John K. Scripting: Higher level programming for the 21st century.

Computer, IEEE, v. 31, n. 3, p. 23–30, 1998.

OXVIG, Christian Schou; ARILDSEN, Thomas; LARSEN, Torben. Storing Reproducible

Results from Computational Experiments using Scientific Python Packages. In: SCIPY.

Austin, USA: SciPy, 2016. p. 45–50.

PARENTE, Peter. nbestimate. Accessed: 2020-12-03. 2020. Available from:

<https://nbviewer.jupyter.org/github/parente/nbestimate/blob/

master/estimate.ipynb>.

PATTERSON, Evan. The algebra and machine representation of statistical models. 2020.

PhD thesis – Department of Statistics, Stanford University, CA, USA.

PATTERSON, Evan; BALDINI, Ioana; MOJSILOVIC, Aleksandra; VARSHNEY, Kush R.

Machine Representation of Data Analyses: Towards a Platform for Collaborative Data

Science. In: AAAI. Palo Alto, USA: AAAI Press, 2017a.

PATTERSON, Evan; BALDINI, Ioana; MOJSILOVIC, Aleksandra; VARSHNEY, Kush R.

Semantic Representation of Data Science Programs. In: IJCAI. Stockholm, Sweden: ijcai.org,

2018. p. 5847–5849.

REFERENCES 195

PATTERSON, Evan; MCBURNEY, Robert; SCHMIDT, Holly; BALDINI, Ioana;

MOJSILOVIĆ, Aleksandra; VARSHNEY, Kush R. Dataflow representation of data analyses:

Toward a platform for collaborative data science. IBM Journal of Research and

Development, IBM, v. 61, n. 6, p. 9–1, 2017b.

PAWLIK, Mateusz; AUGSTEN, Nikolaus. Tree edit distance: Robust and memory-efficient.

Information Systems, Elsevier, v. 56, p. 157–173, 2016.

PÉREZ, Fernando; GRANGER, Brian E. IPython: a system for interactive scientific

computing. Computing in Science & Engineering, IEEE, v. 9, n. 3, p. 21–29, 2007.

PETERSEN, Kai; FELDT, Robert; MUJTABA, Shahid; MATTSSON, Michael. Systematic

Mapping Studies in Software Engineering. In: EASE. University of Bari, Italy: ACM, 2008.

v. 8, p. 68–77.

PETRICEK, Tomas; GEDDES, James; SUTTON, Charles. Wrattler: Reproducible, live and

polyglot notebooks. In: TAPP. London, UK: USENIX, 2018.

PIMENTEL, João Felipe. Prov Survey GitHub page. Accessed: 2021-02-19. Jan. 2017.

Available from: <https://github.com/JoaoFelipe/prov-survey>.

PIMENTEL, João Felipe; BRAGANHOLO, Vanessa; MURTA, Leonardo; FREIRE, Juliana.

Collecting and analyzing provenance on interactive notebooks: when IPython meets

noWorkflow. In: TAPP. Edinburgh, Scotland: USENIX, 2015. p. 1–6.

PIMENTEL, João Felipe; DEY, Saumen; MCPHILLIPS, Timothy; BELHAJJAME, Khalid;

KOOP, David; MURTA, Leonardo; BRAGANHOLO, Vanessa; LUDÄSCHER, Bertram. Yin

& Yang: demonstrating complementary provenance from noWorkflow & YesWorkflow. In:

IPAW. McLean, USA: Springer, 2016a. p. 161–165.

PIMENTEL, João Felipe; FREIRE, Juliana; BRAGANHOLO, Vanessa; MURTA, Leonardo.

Tracking and analyzing the evolution of provenance from scripts. In: IPAW. McLean, USA:

Springer, 2016b. p. 16–28.

PIMENTEL, João Felipe; FREIRE, Juliana; MURTA, Leonardo; BRAGANHOLO, Vanessa.

A survey on collecting, managing, and analyzing provenance from scripts. ACM Computing

Surveys, ACM, v. 52, n. 3, p. 1–38, 2019a.

PIMENTEL, João Felipe; FREIRE, Juliana; MURTA, Leonardo; BRAGANHOLO, Vanessa.

Fine-grained provenance collection over scripts through program slicing. In: IPAW. McLean,

USA: Springer, 2016c. p. 199–203.

REFERENCES 196

PIMENTEL, João Felipe; MISSIER, Paolo; MURTA, Leonardo; BRAGANHOLO, Vanessa.

Versioned-PROV. en. Accessed: 2018-03-11. 2018a. Available from:

<https://dew-uff.github.io/versioned-prov/>.

PIMENTEL, João Felipe; MISSIER, Paolo; MURTA, Leonardo; BRAGANHOLO, Vanessa.

Versioned-PROV: A PROV Extension to Support Mutable Data Entities. In: IPAW. London,

UK: Springer, 2018b. p. 87–100.

PIMENTEL, João Felipe; MURTA, Leonardo; BRAGANHOLO, Vanessa; FREIRE, Juliana.

A large-scale study about quality and reproducibility of jupyter notebooks. In: MSR. Montreal,

Canada: IEEE, 2019b. p. 507–517.

PIMENTEL, João Felipe; MURTA, Leonardo; BRAGANHOLO, Vanessa; FREIRE, Juliana.

noWorkflow: a tool for collecting, analyzing, and managing provenance from python scripts.

Proceedings of the VLDB Endowment, v. 10, n. 12, p. 1841–1844, 2017.

PIMENTEL, João Felipe; MURTA, Leonardo; BRAGANHOLO, Vanessa; FREIRE, Juliana.

Understanding and Improving the Quality and Reproducibility of Jupyter Notebooks.

Empirical Software Engineering. In press, p. 1–63, 2021.

PINTO, Gustavo; WIESE, Igor; DIAS, Luiz Felipe. How do scientists develop scientific

software? an external replication. In: SANER. Campobasso, Italy: IEEE, 2018. p. 582–591.

POMOGAJKO, Kirill. Why I Don’t Like Jupyter (FKA IPython Notebook). Accessed:

2019-10-01. 2015. Available from:

<https://yihui.name/en/2018/09/notebook-war/>.

PONTES, Vynicius Morais. Reducing the Storage Overhead of the noWorkflow Content

Database by using Git. 2018. s. 17. Bachelor’s Thesis – Universidade Federal Fluminense.

PORGES, Arthur. A set of eight numbers. The American Mathematical Monthly, Taylor &

Francis, v. 52, n. 7, p. 379–382, 1945.

PRABHU, Prakash; KIM, Hanjun; OH, Taewook; JABLIN, Thomas B.; JOHNSON, Nick P.;

ZOUFALY, Matthew; RAMAN, Arun; LIU, Feng; WALKER, David; ZHANG, Yun;

GHOSH, Soumyadeep; AUGUST, David I.; HUANG, Jialu; BEARD, Stephen. A survey of

the practice of computational science. In: SC. Seattle, USA: ACM, 2011. p. 1–12.

PYPA. Python Packaging Documentation: install_requires vs requirements files.

Accessed: 2020-10-08. 2020. Available from:

<https://packaging.python.org/discussions/install-requires-vs-

requirements>.

REFERENCES 197

PYTHON-WIKI. Python Testing Tools Taxonomy. Accessed: 2019-10-01. 2019. Available

from: <https://wiki.python.org/moin/PythonTestingToolsTaxonomy>.

RAMAKRISHNAN, Arun; SINGH, Gurmeet; ZHAO, Henan; DEELMAN, Ewa;

SAKELLARIOU, Rizos; VAHI, Karan; BLACKBURN, Kent; MEYERS, David;

SAMIDI, Michael. Scheduling data-intensiveworkflows onto storage-constrained distributed

resources. In: CCGRID. Rio de Janeiro, Brazil: IEEE, 2007. p. 401–409.

RAMAKRISHNAN, Raghu; ULLMAN, Jeffrey D. A survey of deductive database systems.

The Journal of Logic Programming, Elsevier, v. 23, n. 2, p. 125–149, 1995. ISSN

0743-1066.

RAMASUBRAMANI, Vyas; ADORF, Carl; DODD, Paul; DICE, Bradley;

GLOTZER, Sharon. signac: A Python framework for data and workflow management. In:

SCIPY. Austin, USA: SciPy Conference, 2018.

REPROZIP. Making Jupyter Notebooks Reproducible with ReproZip. Accessed:

2019-10-01. 2017. Available from:

<https://docs.reprozip.org/en/1.0.x/jupyter.html>.

ROSSUM, Guido van; WARSAW, Barry; COGHLAN, Nick. PEP 8: style guide for Python

code. Accessed: 2019-10-01. 2001.

RUGGIERI, Salvatore; PEDRESCHI, Dino; TURINI, Franco. Data Mining for Discrimination

Discovery. ACM Trans. Knowl. Discov. Data, ACM, New York, USA, v. 4, n. 2, 9:1–9:40,

May 2010. ISSN 1556-4681. DOI: 10.1145/1754428.1754432. Available from:

<http://doi.acm.org/10.1145/1754428.1754432>.

RULE, Adam; TABARD, Aurélien; HOLLAN, James D. Exploration and Explanation in

Computational Notebooks. In: CHI. Montreal QC, Canada: ACM, 2018. 32:1–32:12. ISBN

978-1-4503-5620-6. DOI: 10.1145/3173574.3173606.

RUNNALLS, Andrew R. Aspects of CXXR internals. Computational Statistics, Springer,

v. 26, n. 3, p. 427–442, 2011.

RUNNALLS, Andrew R; SILLES, Chris A. CXXR: An ideas hatchery for future R

development. In: JSM. Miama Beach, USA: AMSTAT, 2011. p. 1–9.

RUNNALLS, Andrew; SILLES, Chris. Provenance tracking in R. In: IPAW. Santa Barbara,

USA: Springer, 2012. p. 237–239.

SAMUEL, Sheeba; KÖNIG-RIES, Birgitta. ProvBook: Provenance-based Semantic

Enrichment of Interactive Notebooks for Reproducibility. In: ISWC. Monterey, USA:

CEUR-WS.org, 2018.

REFERENCES 198

SHAPIRO, Samuel Sanford; WILK, Martin B. An analysis of variance test for normality

(complete samples). Biometrika, JSTOR, v. 52, n. 3/4, p. 591–611, 1965.

SHEN, Helen et al. Interactive notebooks: Sharing the code. Nature, Macmillan Publishers

Ltd., London, England, v. 515, n. 7525, p. 151–152, 2014.

SILLES, Chris A; RUNNALLS, Andrew R. Provenance-awareness in R. In: IPAW. Troy,

USA: Springer, 2010. p. 64–72.

SILLES, Christopher Anthony. Provenance-aware CXXR. 2014. PhD thesis – University of

Kent.

SILVA, Cláudio T; TOHLINE, Joel E. Computational Provenance. Computing in Science &

Engineering, v. 10, n. 3, p. 9–10, 2008.

SILVA, Vítor; CAMPOS, Vinícius; GUEDES, Thaylon; CAMATA, José;

OLIVEIRA, Daniel de; COUTINHO, Alvaro LGA; VALDURIEZ, Patrick;

MATTOSO, Marta. DfAnalyzer: Runtime dataflow analysis tool for Computational Science

and Engineering applications. SoftwareX, Elsevier, v. 12, p. 100592, 2020.

SILVA, Vítor; OLIVEIRA, Daniel de; VALDURIEZ, Patrick; MATTOSO, Marta. DfAnalyzer:

runtime dataflow analysis of scientific applications using provenance. Very Large Data Bases,

Proceedings of the VLDB Endowment, v. 11, n. 12, p. 2082–2085, 2018a.

SILVA, Vítor; SOUZA, Renan; CAMATA, Jose; OLIVEIRA, Daniel de;

VALDURIEZ, Patrick; COUTINHO, Alvaro LGA; MATTOSO, Marta. Capturing provenance

for runtime data analysis in computational science and engineering applications. In: IPAW.

London, UK: Springer, 2018b. p. 183–187.

SIMMHAN, Yogesh L; PLALE, Beth; GANNON, Dennis. A survey of data provenance in

e-science. SIGMOD Record, ACM, v. 34, n. 3, p. 31–36, 2005a.

SIMMHAN, Yogesh L; PLALE, Beth; GANNON, Dennis. A Survey of Data Provenance

Techniques. v. 47405. Indiana University, Bloomington IN, 2005b.

SIMMHAN, Yogesh L; PLALE, Beth; GANNON, Dennis. Karma2: Provenance management

for data-driven workflows. International Journal of Web Services Research, IGI Global,

v. 5, n. 2, p. 1–22, 2008.

SORLIN, Sébastien; SOLNON, Christine. Reactive tabu search for measuring graph

similarity. In: IAPR. Poitiers, France: Springer, 2005. p. 172–182.

SOUZA, Renan; MATTOSO, Marta. Provenance of dynamic adaptations in user-steered

dataflows. In: IPAW. London, UK: Springer, 2018. p. 16–29.

REFERENCES 199

STALEY, Tim. Making Git and Jupyter Notebooks play nice. Accessed: 2019-10-01. 2017.

Available from: <http://timstaley.co.uk/posts/making-git-and-

jupyter-notebooks-play-nice/>.

STAMATOGIANNAKIS, Manolis; GROTH, Paul; BOS, Herbert. Looking inside the

black-box: capturing data provenance using dynamic instrumentation. In: IPAW. Cologne,

Germany: Springer, 2014. p. 155–167.

STEVENS, Jean-Luc Richard; ELVER, Marco; BEDNAR, James A. An automated and

reproducible workflow for running and analyzing neural simulations using Lancet and IPython

Notebook. Frontiers in Neuroinformatics, Frontiers, v. 7, n. 44, p. 44, 2013.

STONEBRAKER, Michael; HELD, Gerald; WONG, Eugene; KREPS, Peter. The design and

implementation of INGRES. ACM Transactions on Database Systems, ACM, v. 1, n. 3,

p. 189–222, 1976.

STRACHEY, Christopher. Fundamental concepts in programming languages. Higher-order

and symbolic computation, Springer, v. 13, n. 1-2, p. 11–49, 2000.

STUDENT. The probable error of a mean. Biometrika, JSTOR, p. 1–25, 1908.

SUBRAMANIAN, Krishna; MAAS, Johannes; BORCHERS, Jan. TRACTUS: Understanding

and Supporting Source Code Experimentation in Hypothesis-Driven Data Science. In: CHI.

Honolulu, USA: ACM, 2020. p. 1–12.

TAN, Wang Chiew et al. Provenance in Databases: Past, Current, and Future. IEEE Data

Engineering Bulletin, v. 30, n. 4, p. 3–12, 2007.

TARIQ, Dawood; ALI, Maisem; GEHANI, Ashish. Towards Automated Collection of

Application-Level Data Provenance. In: TAPP. Boston, USA: USENIX, 2012. p. 1–5.

TIM; DOORKNOB. Is space not allowed in a filename? Accessed: 2019-10-01. 2014.

Available from: <https://unix.stackexchange.com/q/148043>.

TRAVASSOS, Guilherme Horta; BARROS, Márcio O. Contributions of in virtuo and in silico

experiments for the future of empirical studies in software engineering. In: WSESE. Rome,

Italy: IEEE, 2003. p. 117–130.

TUFANO, Michele; PALOMBA, Fabio; BAVOTA, Gabriele; DI PENTA, Massimiliano;

OLIVETO, Rocco; DE LUCIA, Andrea; POSHYVANYK, Denys. There and back again: Can

you compile that snapshot? Journal of Software: Evolution and Process, Wiley Online

Library, v. 29, n. 4, e1838, 2017.

VALEUR, Håvar. Tracking the lineage of arbitrary processing sequences. 2005. s. 91.

PhD thesis – Norwegian University of Science and Technology, Trondheim.

REFERENCES 200

VAN DER HOEK, André. Design-time product line architectures for any-time variability.

Science of Computer Programming, Elsevier, v. 53, n. 3, p. 285–304, 2004.

VERNOOJJ, Jelmer. Dulwich. Accessed: 2021-01-07. 2018. Available from:

<https://github.com/dulwich/dulwich>.

WALKER, Edward; GUIANG, Chona. Challenges in executing large parameter sweep studies

across widely distributed computing environments. In: CLADE. Monterey Bay, USA: ACM,

2007. p. 11–18.

WANG, Gao; PENG, Bo. Script of Scripts: A pragmatic workflow system for daily

computational research. PLOS Computational Biology, Public Library of Science, v. 15, n. 2,

e1006843, 2019.

WANG, Jianwu; CRAWL, Daniel; PURAWAT, Shweta; NGUYEN, Mai; ALTINTAS, Ilkay.

Big data provenance: Challenges, state of the art and opportunities. In: BIGDATA. Santa

Clara, USA: IEEE, 2015. p. 2509–2516.

WANG, Jiawei; LI, Li; ZELLER, Andreas. Better code, better sharing: on the need of

analyzing jupyter notebooks. In: ICSE-NIER. Seoul, South Korea: ACM, 2020. (ICSE),

p. 53–56.

WANG, Jiawei; TZU-YANG, KUO; LI, Li; ZELLER, Andreas. Assessing and Restoring

Reproducibility of Jupyter Notebooks. In: ASE. Melbourne, Australia: IEEE/ACM, 2020.

p. 138–149.

WENSKOVITCH, John; ZHAO, Jian; CARTER, Scott; COOPER, Matthew; NORTH, Chris.

Albireo: An Interactive Tool for Visually Summarizing Computational Notebook Structure. In:

VDS. Vancouver, BC, Canada: IEEE, 2019. p. 1–10.

WICKERT, Andrew D. Open-source modular solutions for flexural isostasy: gFlex v1. 0.

Geoscientific Model Development, Copernicus GmbH, v. 9, n. 3, p. 997–1017, 2016.

WILCOXON, Frank. Individual comparisons by ranking methods. In: BREAKTHROUGHS in

statistics. New York, USA: Springer, 1992. p. 196–202.

WILSON, Greg; ARULIAH, D. A.; BROWN, C. Titus; CHUE HONG, Neil P.; DAVIS, Matt;

GUY, Richard T.; HADDOCK, Steven H. D.; HUFF, Kathryn D.; MITCHELL, Ian M.;

PLUMBLEY, Mark D.; WAUGH, Ben; WHITE, Ethan P.; WILSON, Paul. Best Practices for

Scientific Computing. PLOS Biology, Public Library of Science, v. 12, n. 1, p. 1–7, Jan. 2014.

DOI: 10.1371/journal.pbio.1001745.

REFERENCES 201

WINCKEL, Greg von. The quantum harmonic oscillator with two electrons. Accessed:

2018-06-15. 2014. Available from: <scientificpython.net/pyblog/quantum-

harmonic-oscillator-with-two-interacting-electrons>.

WOHLIN, Claes. Guidelines for Snowballing in Systematic Literature Studies and a

Replication in Software Engineering. In: 38. EASE. London, UK: ACM, 2014. ISBN

978-1-4503-2476-2.

WOLSTENCROFT, Katherine; HAINES, Robert; FELLOWS, Donal; WILLIAMS, Alan;

WITHERS, David; OWEN, Stuart; SOILAND-REYES, Stian; DUNLOP, Ian;

NENADIC, Aleksandra; FISHER, Paul, et al. The Taverna workflow suite: designing and

executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids

Research, Oxford Univ Press, W557, n. 61, w557–w561, 2013.

XU, Zhaogui; QIAN, Ju; CHEN, Lin; CHEN, Zhifei; XU, Baowen. Static Slicing for Python

First-Class Objects. In: QSIC. Nanjing, China: IEEE, 2013. p. 117–124.

YSEARKA. importing seaborn changes matplotlib graphs. Accessed: 2021-01-26. 2016.

Available from:

<https://stackoverflow.com/questions/38077854/importing-

seaborn-changes-matplotlib-graphs?noredirect=1&lq=1>.

ZANIOLO, Carlo. The database language GEM. SIGMOD Record, ACM, v. 13, n. 4,

p. 207–218, 1983.

ZHANG, Qian; CAO, Yang; WANG, Qiwen; VU, Duc; THAVASIMANI, Priyaa;

MCPHILLIPS, Timothy M; MISSIER, Paolo; SLAUGHTER, Peter; JONES, Christopher;

JONES, Matthew B, et al. Revealing the Detailed Lineage of Script Outputs Using Hybrid

Provenance. International Journal of Digital Curation, v. 12, n. 2, p. 390–408, 2017.

ZHANG, Yi; IVES, Zachary G. Finding related tables in data lakes for interactive data science.

In: SIGMOD. Portland, USA: ACM, 2020. p. 1951–1966.

ZHANG, Yi; IVES, Zachary G. Juneau: data lake management for Jupyter. Proceedings of

the VLDB Endowment, v. 12, n. 12, 2019.

ZHAO, Yong; HATEGAN, Mihael; CLIFFORD, Ben; FOSTER, Ian;

VON LASZEWSKI, Gregor; NEFEDOVA, Veronika; RAICU, Ioan; STEF-PRAUN, Tiberiu;

WILDE, Michael. Swift: Fast, reliable, loosely coupled parallel computation. In: SERVICES.

Salt Lake City, USA: IEEE, 2007. p. 199–206.

ZHAO, Yong; LU, Shiyong. A logic programming approach to scientific workflow provenance

querying. In: IPAW. Salt-Lake City, USA: Springer, 2008. p. 31–44.

REFERENCES 202

ZHAO, Yong; WILDE, Michael; FOSTER, Ian. Applying the virtual data provenance model.

In: IPAW. Chicago, Illinois, USA: Springer, 2006. p. 148–161.

203

APPENDIX A -- Versioned-PROV

A.1 Introduction

This appendix describes Versioned-PROV, a PROV extension to support mutable data entities

(PIMENTEL et al., 2018b). Versioned-PROV was proposed in collaboration with Paolo Missier

(Newcastle University), Leonardo Murta (UFF), and Vanessa Braganholo (UFF).

As presented in Chapter 4, PROV (and its predecessor, OPM (MOREAU et al., 2008a)) has

been applied to describe the provenance gathered from workflow systems (COSTA et al., 2013),

operating systems (MUNISWAMY-REDDY et al., 2006), and scripts (ANGELINO; YAMINS;

SELTZER, 2010). Tools that collect operating system provenance map users as agents, file

objects and program arguments as entities, and program executions and system calls as activi-

ties (MUNISWAMY-REDDY et al., 2006). Workflow systems map data as entities and process-

ing steps as activities (COSTA et al., 2013). Finally, tools that collect coarse-grained provenance

from scripts map data in function arguments and data values obtained from return statements as

entities, and function calls as activities (ANGELINO; YAMINS; SELTZER, 2010).

In the aforementioned approaches, entities are immutable data that go through processing

steps (modeled as activities) to produce new immutable data (modeled as entities). The assump-

tion of immutable entities also exists in the PROV data model, where changes to an entity e are

explicitly represented by the creation of a new entity e′ generated by the activities that use the

original e.

No known approaches use PROV to describe fine-grained provenance from scripts, with

support for variables and mutable data structures. The goal of this appendix is to extend the

well-known concepts of coarse-grained provenance for scripts, which is limited to function

arguments and function calls, to (1) script variables, (2) expressions with operators, and (3)

assignments, thus realizing fine-grained provenance for scripts. Specifically, we note that we

can map script variables to entities, expressions with operators to activities that generate new

entities, and assignments to activities that produce derivations, i.e., from expression results to

A.1 Introduction 204

variables. For example, a = b + c can be mapped as an activity + that uses the entities b

and c to generate the derived entity sum, and an assignment activity that uses sum to generate

the derived entity a.

This is a challenging goal because using PROV to represent fine-grained provenance suffers

from two main problems: (P1) when an entity that represents a collection is changed (e.g., a

list is updated to add an element), a new entity should be created, together with multiple new

relationships, connecting the new entity to each of the existing or new entities that represent

the elements of the collection; and (P2) when more than one variable is assigned to the same

collection, and one of the variables changes, all other variables should also change, as they refer

to the same memory area. This means that a new entity should be created for each variable that

contains the collection, together with edges for all entities that represent the elements of the col-

lection. As we show in Section A.4, these problems lead to O(N) and Ω(R×N) extra elements

in the provenance graph, respectively, for collections with N elements and R references.

PROV has been extended in many different ways (COSTA et al., 2013; GARIJO; GIL,

2012; MISSIER et al., 2013a), but most extensions focus only on representing domain-specific

provenance and do not improve the support for data structures. The PROV-Dictionary exten-

sion (MISSIER et al., 2013b) improves the support for data structures in PROV by adding

derivation statements that indicate that a new collection shares most elements of the old one,

but with the insertion or removal of specific elements. This solves P1 since it reduces the num-

ber of edges to 1. However, it still suffers from P2, since it requires updating all entities that

refer to the same collection when it changes, which leads to Ω(R) extra elements.

In this appendix, we present Versioned-PROV, an extension that adds reference sharing and

checkpoints to PROV. Checkpoints solve problem P1 in O(1) by allowing the representation

of multiple versions of collections with a single entity. Reference sharing solves problem P2

in O(1) by allowing collections to be represented only once and referred to by other entities

through reference derivations plus checkpoints to indicate states.

This appendix is organized as follows. Section A.2 presents a running example, which is

based on the Floyd-Warshall algorithm (FLOYD, 1962). Section A.3 introduces Versioned-

PROV. Section A.4 evaluates the approach by comparing it to PROV and PROV-Dictionary.

Section A.5 concludes the appendix.

A.2 Running Example 205

1 m = 10000 # max value
2 result = dist = [
3 [0, 1, 4],
4 [m, 0, 2],
5 [2, m, 0]]
6 nodes = len(dist)
7 indexes = range(nodes)
8 for k in indexes:
9 distk = dist[k]
10 for i in indexes:
11 if i == k: continue
12 disti = dist[i]
13 for j in indexes:
14 if j == i or j == k: continue
15 ikj = disti[k] + distk[j]
16 if disti[j] > ikj:
17 disti[j] = ikj
18 print(result[0][2])

(A)

0

1

1

2

4

2

2

(B)

Figure A.1: Floyd-Warshall implementation (A) and encoded input graph (B).

A.2 Running Example

While Versioned-PROV intends to be generic enough for any situation that requires sharing

references to mutable collections in PROV, we use fine-grained script provenance as a case

study for presenting our extension. More specifically, we use the Floyd-Warshall algorithm

(FLOYD, 1962) as a base to describe and evaluate the mapping of fine-grained provenance

from scripts using Versioned-PROV. This algorithm has relevant applications, such as finding

the shortest path between two addresses in a navigation system.

The algorithm calculates the length of the shortest path between all pairs of nodes in a

weighted graph. It achieves this by updating the distance of the path from node i to node j if

there is a node k for which the distance of the path from i to k plus the distance of the path

from k to j is shorter than the distance from i to j. The result of Floyd-Warshall is the set of

shortest distances among all pairs of nodes, but it does not produce the actual shortest paths.

However, observing that the path between two nodes is defined by the sum of two other paths,

here we show that we can use the fine-grained provenance of a given output distance to obtain

the actual paths that have that distance.

Figure A.1 presents a Python implementation of Floyd-Warshall with a predefined input

graph. Line 18 prints the distance of the shortest path from 0 to 2. While there is a direct edge

with cost 4, the actual result is 3, because the shortest path goes from 0 to 1, with cost 1, and

then from 1 to 2, with cost 2. After the algorithm changes the result matrix, querying the prove-

nance of result[0][2] in line 18 should indicate that it derives from result[0][1] and

result[1][2].

A.3 Versioned-PROV 206

Table A.1: Versioned-PROV types.
Type Statement Meaning

Reference wasDerivedFrom
The generated entity derived from the used entity by reference,
indicating that both have the same numbers.

Put hadMember
Put a member into a collection key position at a given check-
point. Using a placeholder as member indicates a deletion.

A.3 Versioned-PROV

Versioned-PROV adds the concepts of checkpoints, reference sharing, and accesses to PROV.

Different from plain PROV, which assumes immutable entities, a Versioned-PROV entity may

represent multiple versions of a data object. We present Versioned-PROV concepts in Sec-

tion A.3.1. In Section A.3.2, we detail Versioned-PROV by presenting a mapping of a part

assignment in the Floyd-Warshall algorithm, and contrasting it to PROV and PROV-Dictionary.

A.3.1 Concepts

The PROV data model is based on the idea of instantaneous transition events that describe

usage, generation, and invalidation of entities (MOREAU; MISSIER, 2012). These events are

important to describe the provenance timeline without explicit time and ordering. Versioned-

PROV builds on top of PROV events and determines that a version of a data object changes on

a generation event, and is accessed on a usage event. Instead of relying on the implicit ordering

of events from PROV, Versioned-PROV uses checkpoint attributes to tag events and changes on

entities. Then, it uses the explicit ordering of checkpoints to obtain a version of a data object.

Hence, we require a total order to be defined on the set of checkpoints. Our implementation of

Floyd-Warshall uses timestamps as checkpoints, but the figures in this appendix use sequential

numbers. Both can be ordered. noWorkflow 2 uses the elapsed time since the beginning of the

trial as checkpoint, which can also be ordered.

As an extension of PROV, Versioned-PROV follows its semantics. Thus, despite the goal of

representing multiple versions of a data object, an entity in PROV can only be generated once,

according to the unique-generation constraint of PROV (MOREAU; MISSIER, 2012). Thus,

the only mutability on the Versioned-PROV entities occurs in the memberships of collection

entities. A collection may have different members at different moments, but the operations that

put and delete members from a collection are incremental. It means that if a collection c had

an entity e1 at checkpoint 1 and an operation put the entity e2 into a different position of c at

checkpoint 2, then c had both e1 and e2 at checkpoint 2.

A.3 Versioned-PROV 207

Table A.2: Versioned-PROV attributes.
Attribute Range Statement Meaning

checkpoint
Sortable

Value
hadMember

Checkpoint of the collection update.
Required for hadMember with type Put.

checkpoint
Sortable

Value
Events (e.g., used,
wasDerivedFrom)

Checkpoint of the event. Required for
wasDerivedFrom with type Reference.

key String hadMember The position of Put.
key String wasDerivedFrom The position of the accessed collection entity.

collection Entity Id wasDerivedFrom
Collection entity that was accessed or
changed.

access ‘r’ or ‘w’ wasDerivedFrom
Indicates whether an access reads (‘r’) an ele-
ment from a collection or writes (‘w’) into it.

Different from PROV and PROV-Dictionary that use copy-by-value to represent data struc-

ture assignments and derivations, Versioned-PROV uses copy-by-reference. Hence, it defines

the data structure once and uses reference sharing to indicate that more than one entity refers

to the same data structure. When generating and using Versioned-PROV entities, one must

indicate a checkpoint to unfold the specific version of the data structure for any given event.

When an entity associated with a data structure changes at a given checkpoint, we can infer that

all entities that share reference with it also changes at the same checkpoint, without any extra

explicit statements.

Versioned-PROV uses PROV optional attributes and defines types to extend PROV. Ta-

ble A.1 presents the Versioned-PROV types, and Table A.2 presents the Versioned-PROV at-

tributes. The attributes key, collection, and access of wasDerivedFrom may only be used when

the derivation is related to an access or collection update. Similarly, the type Put can only ap-

pear in data structures, to define their items. Differently, the attribute checkpoint and the type

Reference can appear anywhere, despite affecting only collection entities. This keeps the model

consistent in all situations that involve using and generating entities.

A.3.2 Mapping Example

We use the script example of Section A.2 to detail Versioned-PROV in contrast to PROV and

PROV-Dictionary. We map the execution provenance of the Floyd-Warshall algorithm (Fig-

ure A.1) to these three approaches. Due to space constraints, we present only the first execution

of the part assignment in line 17 of Figure A.1 (i.e., disti[j] = ikj). The complete map-

ping is available at (PIMENTEL et al., 2018a).

Figure A.2, Figure A.3, and Figure A.4 present the part assignment mapped to plain PROV,

PROV-Dictionary, and Versioned-PROV, respectively. In our mappings, we name entities based

A.3 Versioned-PROV 208

B

A

C

disti@j#3

assign11

gen

ikj#2

der

value:3
type: access
label: disti[j]
line: 17

use

j#5

use

disti@j#2

use

disti#2

use

dist#1

use

result#1

use

type:assign

value:3
type: name
label: ikj
line: 15

value:1
type: name
label: j
line: 13

value:10000
type: access
label: disti[j]
line: 16

matrix20matrix21 matrix22

value:[2, 10000, 0]
type: name
label: disti
line: 12

matrix0#1 matrix1#1matrix2#1

disti#3

gen

derder

value:[2, 3, 0]
type: list
label: disti
line: 17

result#2

gen

derder

value:[[...]]
type: name
label: result
line: 17

dist#2

gen

derder

value:[[...]]
type: list
label: dist
line: 17

Figure A.2: Plain PROV mapping of disti[j] = ikj.

on their textual representations. Since a textual element (e.g., a variable) can be represented by

multiple entities, we enumerate them. Thus, ikj#2 denotes the second entity that represents

the variable ikj (as defined in line 15 of Figure A.1). In addition to this numbering, we

change the notation of accesses to avoid using escaping characters to represent square brack-

ets. Instead, we use the collection name followed by “@” and the accessed key. For instance,

we use disti@j to represent disti[j] (lines 16-17 of Figure A.1). Note in region A of

these figures that we have both disti@j#2 in gray, representing disti[j] of line 16, and

disti@j#3 in yellow, representing disti[j] of line 17. The latter is the result of the part

assignment.

We divide these figures into three regions: A represents the base part assignment that ex-

ists in all approaches; B represents a portion of the matrix that existed before this operation;

and C represents the overhead entities (i.e., entities that are specific to an approach) that were

generated as consequence of the part assignment. Note that Figure A.4 has no region C since

Versioned-PROV does not have overhead entities. All the entities that exist in Versioned-PROV

also exist in the other approaches.

We also use the color red to denote the overhead. Note that plain PROV has a bigger over-

head than PROV-Dictionary, which has a bigger overhead than Versioned-PROV. This occurs

due to the problems P1 and P2 mentioned in the introduction. Additionally, we use gray to

indicate the portion of the provenance graph that is not related to the part assignment operation.

As expected, all nodes and edges in region B are gray. The only gray node outside region B is

disti@j#2 in region A. This node appears due to the if condition in line 16 of Figure A.1.

Hence, it is specific to this algorithm and not a generic node that occurs in all part assignments.

A.3 Versioned-PROV 209

B

A

C

disti@j#3

assign11

gen

ikj#2

der
value:3
type: access
label: disti[j]
line: 17

use

j#5

use

disti@j#2

use

disti#2

use

dist#1

use

result#1

use

type:assign

value:3
type: name
label: ikj
line: 15

value:1
type: name
label: j
line: 13

value:10000
type: access
label: disti[j]
line: 16

value:[2, 10000, 0]
type: Dictionary
label: disti
line: 12

der-ins

matrix20

[0]

matrix21

[1]

matrix22

[2]

empty

der

matrix0#1matrix1#1 matrix2#1

der-ins

der-insder-ins

[0][1] [2]der

[0][1] [2]

der

[0][1] [2]

der

disti#3

gen

der der
value:[2, 3, 0]
type: Dictionary
label: disti
line: 17

der-ins

result#2

gen

der

der

value:[[...]]
type: Dictionary
label: result
line: 17

der-ins

dist#2

gen

der

der

value:[[...]]
type: Dictionary
label: dist
line: 17

der-ins

[1]

der

der

[2]

der

[2]

Figure A.3: PROV-Dictionary mapping of disti[j] = ikj.

The operation disti[j] = ikj is putting the value of ikj into the position j of

disti. In region A of all figures, ikj#2 represents the variable ikj; j#5 represents j; and

disti#2 represents disti. Additionally, disti@j#3 represents the resulting disti[j].

Note that disti in this execution is the same list as dist[2], represented by the entity ma-

trix2#1 (i.e., they point to the same memory area). Note also that dist and result are

the same matrix.

Since entities are immutable in PROV and PROV-Dictionary, an update in a collection

(disti#2 in region A) requires the creation of a new collection (disti#3 in region C) that

contains the updated members. PROV suffers from P1, thus it reconstructs the membership

of the new entity by using N hadMember relationships in a collection with N members (3 in

this case). We represent these relationships by edges without labels in Figure A.2. PROV-

Dictionary, on the other hand, uses a single derivedByInsertionFrom (der-ins edges in Fig-

ure A.3) to indicate that a collection was updated by the insertion of a member at a position

(disti#3 derived from disti#2 by the insertion of disti@j#3 from region A at position

1).

As stated before, disti#2 represents the same value as matrix2#1. Thus, we would

have to update matrix2#1 to reflect the change. This does not occur because matrix2#1

A.3 Versioned-PROV 210

A B

disti@j#3

assign11

gen
ckpt: 36

der ref
ac-write
ckpt: 36

value:3
type: access
label: disti[j]
line: 17

ikj#2

use
ckpt: 36

j#5

use

disti@j#2

use

disti#2

use
ckpt: 35

type:assign

value:3
type: name
label: ikj
line: 15

value:1
type: name
label: j
line: 13

value:10000
type: access
label: disti[j]
line: 16

dist@i#2
der ref

ckpt: 27

value:[2, 10000, 0]
type: name
label: disti
line: 12

[1]

matrix2#1

der ref
ckpt: 26

put [1]
ckpt: 36

m

put [1]
ckpt: 2

0

put [2]
ckpt: 2

2

put [0]
ckpt: 2

value:[2, 10000, 0]
type: list
label: [2, m, 0]
line: 5

Figure A.4: Versioned-PROV mapping of disti[j] = ikj.

is out of the scope of the execution at this point and cannot be directly used without an access

to dist#1 or result#1. Due to P2, plain PROV and PROV-Dictionary update dist#1 and

result#1 by generating dist#2 and result#2 in region C and replacing matrix2#1,

in the second position, by disti#3.

In addition to this overhead in PROV and PROV-Dictionary, we use two extra wasDerived-

From edges for every new collection entity to indicate that they derive both from the collection

before the update and from the inserted value (ikj#2). Thus, in PROV, this operation has an

overhead of 3 entities, 6 wasDerivedFrom, and 9 hadMember, and in PROV-Dictionary, this

operation has an overhead of 3 entities, 6 wasDerivedFrom, and 3 derivedByInsertionFrom.

Moreover, these overheads depend on the number of elements in the collections and the number

of references to them.

Versioned-PROV does not suffer from these problems. It uses checkpoints to indicate mul-

tiple versions of a collection, and derivations by reference to indicate that two or more entities

represent the same collection. In region C of Figure A.4, matrix2#1 was defined at check-

point 2 with the entities 2, m, 0 as members. This changed at checkpoint 36 since this part as-

signment put disti@j#3 in the first position. Thus, matrix2#1 has a version with the mem-

bers 2, m, 0 between checkpoints 2 and 35, and a version with the members 2, disti@j#3,

0 after checkpoint 36. Note that in Figure A.4 we show the first value representation of collec-

tions for easy reading, but other Versioned-PROV implementations are free to decide on having

the value attribute or not.

The aforementioned versions are valid for all the entities that derive by reference from ma-

trix2#1. In Figure A.4, dist@i#2 derived by reference from matrix2#1, and disti#2

A.4 Evaluation 211

derived by reference from dist@i#2. By transitivity, disti#2 derived by reference from

matrix2#1. This derivation avoids the creation of disti#3 and all the other entities and

relationships that exist in the other mappings.

Since an entity can represent multiple versions of a collection in Versioned-PROV, we

also use the checkpoint attribute in the use of disti#2 to indicate the used version. Note

in region A of Figure A.4 that this operation is using disti#2 at checkpoint 35 to generate

disti@j#3 at checkpoint 36.

Every entity can only be derived by a single reference: if the algorithm assigns a new value

to the variable disti (in line 12 of Figure A.1), we must create a new entity (e.g., disti#3)

as a placeholder for the new value. That is, the checkpoint attribute does not apply for reusing

an entity with different values. A variable entity in Versioned-PROV represents not just the

variable name, but a pair consisting of the variable name and its value (memory area). Note that

we do not need a new entity for disti#2 in the part assignment as it still references the same

memory area after the operation.

Finally, disti@j#3 derived by reference from ikj#2 in region A of Figure A.4. Since

these entities are not collections, the derivation by reference has no impact on them – we use it

just for consistency among all derivations. However, this specific derivation has other attributes

in addition to type and checkpoint. We also indicate that it is a write access that puts the derived

entity in the key position 1 of the collection disti#2. This information is required to answer

the provenance query of Floyd-Warshall without encoding matrix positions into entities. Note

that the members of matrix2#1 in region B of Figure A.4 are the actual entities that exist

in line 5 of Figure A.1, while the members of matrix2#1 in Figure A.2 and Figure A.3 are

dummy entities that encode the matrix position.

A.4 Evaluation

We evaluate the space overhead of Versioned-PROV in comparison to plain PROV and PROV-

Dictionary by measuring the number or PROV-N statements each approach requires in similar

situations. We analyze both the running example and the general case.

Space overhead analysis of the running example. For most operations, the storage require-

ments are the same in all three approaches. The only differences were observed in data struc-

tures definitions (lines 2-5 of Figure A.1), reference assignments or accesses (lines 2-5, 7, 9, 12,

18), and data structure updates (line 17).

A.4 Evaluation 212

In (PIMENTEL et al., 2018a) we present the complete provenance graph of Floyd-Warshall

in these three mappings, coloring only nodes and edges related to the list definitions, reference

derivations, and part assignments, since these differ in the mappings. All nodes and edges that

are common to all mappings are in light gray. PROV has many colored edges all over the graph

due to the aforementioned problems P1 and P2. PROV-Dictionary has fewer scattered edges

in the graph, but it has a huge concentration of Dictionary entities that derive from a single

EmptyDictionary entity due to problem P2. Finally, Versioned-PROV has fewer colored nodes

and edges since it does not suffer from these issues.

In Figure A.5(A) we count how many nodes are specific to each approach. Note that PROV

and PROV-Dictionary use respectively 7.52 and 4.14 times the number of specific PROV-

N statements used by Versioned-PROV to represent the same data structures. Additionally,

Versioned-PROV does not impose any node overhead. All of its overhead occurs in edges that

specify the membership of collections. On the other hand, PROV and PROV-Dictionary impose

node overhead to indicate the position of elements in data structures and to derive immutable

entities from existing ones. Moreover, by comparing Figure A.5(A) with Figure A.5(B), which

shows the total number of statements, we can see that 29% of PROV statements, 18% of PROV-

Dictionary statements, and 5% of Versioned-PROV statements are the overhead caused by col-

lection operations.

These results refer to a small Floyd-Warshall execution, with a 3×3 matrix representing the

input graph. Since the overheads of PROV and PROV-Dictionary grow in terms of the number

of collection elements and the number of shared references, more complex input graphs and

algorithms can cause a much larger overhead.

Space overhead analysis of the general case. In Section A.3, we describe the part assignment

of PROV, PROV-Dictionary, and Versioned-PROV. Figure A.6 presents the growth of state-

ments in the three approaches for part assignments. Versioned-PROV has an overhead of 2

PROV-N statements: the hadMember that puts the member in the collection, and the used that

indicates the changed collection. Plain PROV has an overhead of (3 + N) × R statements

for collections with N members and R references: it creates R entities, each of them with 2

wasDerivedFrom and N hadMember. Finally, PROV-Dictionary has an overhead of 4 × R

statements: it creates R entities, each with 2 wasDerivedFrom and 1 derivedByInsertionFrom.

Note that both plain PROV and PROV-Dictionary also use the changed collection, but this used

relationship can be inferred from one of the additional wasDerivedFrom statements. Hence,

we count it only as an overhead for Versioned-PROV. The number of statements for PROV and

PROV-Dictionary are lower bounds. If we update a collection x that is also a member of another

A.4 Evaluation 213

Plain Dict Ver
(Nodes)

Co
un

t

19 20

0
Plain Dict Ver

(Edges)

139

67

21

Nodes Edges

Plain Dict Ver
(Both)

158

87

21

(A)

Plain Dict Ver
(Nodes)

Co
un

t

212 213
193

Plain Dict Ver
(Edges)

335

263
220

Nodes Edges

Plain Dict Ver
(Both)

547
476

413

(B)

Figure A.5: Number of PROV, PROV-Dictionary, and Versioned-PROV PROV-N statements for
list definitions, reference derivations, and part assignments (A) and total number of statements
(B).

collection y, we must also update all the references of y and apply this same rule with respect

to references and number of elements. This occurs in our example of Section A.3.2: the update

of disti#2 with R = 1 and N = 3 motivates the update of dist#1 with R = 2 and N = 3.

Besides part assignments, the approaches also differ in list definitions and derivations by

reference. Figure A.7(A) shows the overhead of defining a list in each approach. Versioned-

PROV has an overhead of only N hadMember statements to define a list with N elements

since they indicate the members with their positions in the list and we reference these positions

in accesses. Thus, the provenance of Floyd-Warshall in Versioned-PROV includes the accessed

positions, allowing us to use these positions to reconstruct the paths of the graph.

On the other hand, plain PROV and PROV-Dictionary have overheads of 3 × N + 2

statements, and 1 (global) +2 × N + 3 statements, respectively. This occurs because these

approaches do not indicate the access position and the access derivation directly from the mem-

ber. Hence, we must encode the position information into entities. This encoding requires the

creation of N dummy entities. Each one of these dummy entities derives from their respective

entities (i.e., N wasDerivedFrom) by the application of a new definelist activity. The result-

ing list entity is also generated by this activity (i.e., 1 wasGeneratedBy and 1 list entity itself),

and it has the dummy entities as members. PROV-Dictionary expresses the membership with a

single derivedByInsertionFrom statement from a single global EmptyDictionary, while PROV

additionally requires N hadMember statements to define the membership of all elements.

Figure A.7(B) compares the growth of overhead in derivations by reference. Versioned-

PROV imposes no statement overhead since it uses attributes of wasDerivedFrom to indicate

A.5 Final Remarks 214

0 20 40 60 80 100
List Size

Fixed: 1 reference

0

20

40

60

80

100

St
at

em
en

ts

0 20 40 60 80 100
List Size

Fixed: 20 references

0

500

1000

1500

2000

PROV PROV-Dictionary Versioned-PROV

0 20 40 60 80 100
List References

Fixed: 1 element

0

100

200

300

400

St
at

em
en

ts

0 20 40 60 80 100
List References

Fixed: 20 elements

0

500

1000

1500

2000

List Size

0
20

40
60

80
100 List

 References

0
20

40
60

80
100

St
at

em
en

ts

0

2000

4000

6000

8000

10000

Figure A.6: Overhead functions of part assignments.

0 20 40 60 80 100
List Size

(A)

0

100

200

300

St
at

em
en

ts

PROV PROV-Dictionary Versioned-PROV

0 20 40 60 80 100
List Size

(B)

0

20

40

60

80

100

Figure A.7: Overhead functions for list definitions (A) and derivations by reference (B).

the derivation. On the other hand, PROV and PROV-Dictionary have to recreate the membership

of this new entity. PROV requires N hadMember statements, and PROV-Dictionary requires

a single derivedByInsertionFrom statement. Note that both PROV-Dictionary and Versioned-

PROV do not grow in terms of the number of elements, but Versioned-PROV still performs

better than PROV-Dictionary, since the former does not require any extra statement.

A.5 Final Remarks

In this appendix, we describe Versioned-PROV, a PROV extension that supports mutable data

structures. Tools that collect fine-grained provenance from scripts can use Versioned-PROV

to support the collection of provenance from complex data structures and variables that are

implicitly modified due to the existence of other variables pointing to the same mutable data. In

fact, we use it for noWorkflow 2 (see Chapter 5. Nevertheless, our extension is not restricted to

scripts.

The Versioned-PROV approach has some limitations. First, while our extension reduces

A.5 Final Remarks 215

the storage overhead for provenance collection from scripts, it introduces an extra overhead

for querying due to the requirement of unfolding data structure versions based on checkpoints.

Thus, users must consider this tradeoff according to their needs. Second, by using a dictionary-

like structure to represent lists (i.e., indexes mapped to keys, and elements mapped to values),

some operations still produce an overhead in the provenance storage. For instance, inserting

an element at the beginning of a list will require updating all the other members of the list.

Third, using an explicit checkpoint ordering imposes synchronization challenges for parallel

provenance collection. Finally, the usage of optional attributes to extend PROV imposes a

storage overhead in disk due to the attribute name repetition. However, this overhead may

not occur depending on how it is stored. A normalized storage schema would remove the

repetitions.

Future work is needed to develop an efficient querying algorithm for Versioned-PROV. We

foresee the elaboration of unfolding algorithms that converts Versioned-PROV into plain PROV

to improve its interoperability and optimize analyses that require many queries. These algo-

rithms could also run by demand, populating caches of unfolded data structures. Additionally,

Versioned-PROV could be improved to improve the incremental membership definition of lists.

Finally, our companion website (PIMENTEL et al., 2018a) contains all the source code

used to generate images of this appendix in addition to detailed descriptions of the mapping

we applied in each approach, as well as a preliminary query implementation. noWorkflow 2

also has implementations for querying the Versioned-PROV model with some adjustments to

consider different types of elements.

216

APPENDIX B -- Version Model Evaluation

This appendix presents the evaluation of the version model proposed in Chapter 5 for tracking

the evolution of trials with their intentions (PIMENTEL et al., 2016b). This version model

was proposed in collaborations with Juliana Freire (NYU), Vanessa Braganholo (UFF), and

Leonardo Murta (UFF).

We present how noWorkflow answers a set of questions related to experiment evolution

analysis for evaluating our version model. We obtained and adapted these from the first Prove-

nance Challenge1 and ProvBench workshops2. We answer the questions using the example

described in Section 5.3.4. This example is, in fact, the workflow of the first Provenance Chal-

lenge implemented in Python with procedures implemented as “dummies”. The full history of

this experiment can be obtained on noWorkflow by running now demo 2016_ipaw_pa-

per.

Q11: if a scientist has executed an experiment twice but has replaced some procedures in

the second trial, what are the trial differences? Q23: comparing multiple executions ac-

cording to their parameters, what are the differences in execution behavior? noWorkflow

supports the comparison of activation graphs from two trials (see Section 5.4.3. Figure 5.16

presents a comparison of activation graphs from trials 1.1.1 and 2.1.1. It is possible to see that

“convert” was replaced by “pgmtoppm” and “pnmtojpeg”. To compare execution behaviors ac-

cording to parameters, we can compare trials that share the same code base but have different

parameters.

Q34: how differences in the input data relate to differences in the output values? We can

use the now diff -f command to compare file accesses of trials (as shown in Figure 5.15).

1http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge
2https://sites.google.com/site/provbench/home/provbench-provenance-week-2014
3https://github.com/provbench/Swift-PROV
4https://github.com/provbench/CSIRO-PROV

Appendix B -- Version Model Evaluation 217

1 sqlite> SELECT a.trial_id, a.name, count(a.name) as c
2 FROM activation a
3 INNER JOIN evaluation e ON (
4 a.trial_id = e.trial_id
5 AND a.id= e.id
6)
7 WHERE repr = "-1"
8 GROUP BY a.trial_id, name
9 ORDER BY c DESC;

Figure B.1: Activations that produce a failing value frequently.

This command compares input data, output data, and arguments. Thus, it is possible to get the

differences on inputs and compare them to output values by restoring them.

Q44: using historical provenance, which parts of the execution fail frequently? If we

specify that the return value “-1” of an activation represents a failure, the query presented in

Figure B.1 will return the most frequent failures on all trials combined. A more complex query

could use the Versioned-PROV model to look at the types (classes) of return values and check

for exceptions.

Q55: which trials are related to a given trial? Q65: a given trial was derived from which

trial? Q76: what are the available trials, and what are their durations? Q86: how many

trials are associated with a given source code? Q96: how many trials present failures?

Looking at the Evolution History (as shown in Figure 5.7), it is possible to see both the ancestor

of a given trial and all trials derived from it. The evolution history also presents all available

graphs. To get their duration, a user can activate tooltips on now vis or Jupyter Notebook and

access trial information, including its duration. To get all trials associated with a given source

code, we can filter the history to a specific script. Finally, the history graph presents trials with

failures as red nodes.

5https://github.com/provbench/VisTrails-PROV
6https://github.com/provbench/Wf4Ever-PROV

218

ANNEX A -- Git Integration Evaluation

A.1 Introduction

This annex presents the evaluation of using Git as a content database for noWorkflow. This

evaluation was performed by Vynicius Pontes (PONTES, 2018) in his undergraduate capstone

project under my co-advisory and Leonardo Murta (UFF) advisory.

As we discuss in Chapter 5, noWorkflow 1 and 2 added support for a content database

that uses Git for storing files. This content database has the advantages of compressing files

using zlib (GAILLY; ADLER, 2017) and combining objects into packfiles that contain one

version of them and deltas from one version to another (CHACON; STRAUB, 2014). For

this integration, noWorkflow uses two alternative libraries: Dulwich (VERNOOJJ, 2018) (pure

Python implementation) or PyGit2 (IBÁÑEZ et al., 2018) (bindings for a C library) to perform

Git operations.

While both libraries produce a Git-compatible content database, they reduce the content

database at different rates, and they impose distinct performance overheads. Hence the goal of

this annex is to evaluate these aspects of the Git integration.

A.1.1 Materials and Methods

In this section, we discuss the methodology we used to collect, prepare, and analyze the over-

head of the integration on scientific experiments.

A.1.1.1 Research Questions

For analyzing the integration, we defined two research questions:

RQ.G1. Is there any reduction in the size of the content database? Since the main goal of

the integration is to benefit from the compression and packfiles provided by Git, it is important

A.1 Introduction 219

to evaluate if these characteristics reduce the size of the content database. For answering this

question, we measure the size of the content database of each intervention (i.e., Dulwich and

PyGit2) and compare it to the size of the baseline (i.e., old content database).

In addition to this comparison, we also evaluate the effect of using Git garbage collection

on the reduction of the content database size for projects with files that grow incrementally for

each trial.

RQ.G2. Is there any performance overhead with the integration? For compressing files,

calculating their deltas, and organizing them into packfiles, Git necessarily imposes a perfor-

mance overhead during the execution of the scripts. If the performance overhead is too big,

it could make the Git approach unfeasible for experiments. For answering this question, we

measure the duration of trials of each intervention (i.e., Dulwich and PyGit2) and compare it to

the duration of baseline trials (i.e., old content database).

A.1.1.2 Corpus

The main corpus of this experiment is composed of seven scripts. For obtaining these scripts,

we first searched for “Python Github” on Google Scholar and obtained three repositories from

two experiments (GILL, 2015; WICKERT, 2016) and one library (MCFEE et al., 2015). Then,

we extracted three scripts from the experiments and two from the library. Finally, we searched

for Python scripts in scientific blog posts and obtained two scripts (COOK, n.d.; WINCKEL,

2014).

To answer the research questions, we run each script four times for each of the three ap-

proaches using noWorkflow 1: old content database, git integration using Dulwich, and git

integration using PyGit2. Then, we calculate the average of the desired metric (space or time)

for each script and use it to compare the approaches. We use the old content database as a

baseline for the comparisons.

In addition to these scripts, we also built a synthetic experiment script that simulates a trial-

and-error process by appending random text content (around 13 Megabytes) to a text file in

every trial. This script aims to simulate multiple trials of an experiment that grows the size of a

file over the trials. We execute this script ten times, increasing the size of a specific file in each

trial. Then, after ten trials, we execute the now gc command that uses Git for applying the

garbage collection over the content databases and creating packfiles with deltas.

A.1 Introduction 220

0 20 40 60 80 100 120 140 160 180 200 220
Size AVG (Megabytes)

Baseline

Dulwich

PyGit2

Figure A.1: Size of content database directories of all script executions for each content
database type [adapted from Pontes (2018)].

A.1.2 Results

A.1.2.1 RQ.G1. Is there any reduction in the size of the content database?

Real scripts. As stated before, we executed four times each one of the seven scripts and cal-

culated the average of the content database size to answer this research question. Table A.1

presents the results of this part of the experiment by script, indicating the average reductions

compared to the baseline and Figure A.1 condenses the results into box plots for comparison.

Note that the Git content databases greatly reduced the storage, producing content databases

that are 59.9% to 69.8% smaller than the baseline (average of 65.23% for PyGit2 and 68.35%

for Dulwich).

Table A.1: Average sizes of the content database after 4 executions for each content database
type and reduction percentage between the Git content database and the baseline [adapted from
Pontes (2018)].

Script Avg. Size (MB) Avg. Reduction (%)
Dulwich PyGit2 Baseline Dulwich Pygit2

analyse.py (GILL, 2015) 27.348 29.620 73.840 -62.96% -59.89%
beat_tracker.py (MCFEE et al., 2015) 66.256 72.888 213.496 -68.97% -65.86%
estimate_tuning.py (MCFEE et al.,
2015) 66.252 72.884 213.492 -68.97% -65.86%

gflex.py (WICKERT, 2016) 44.544 49.144 147.596 -69.82% -66.70%
menger_sponge.py (COOK, n.d.) 24.212 26.508 70.944 -65.87% -62.64%
qho2.py (WINCKEL, 2014) 39.344 43.380 130.230 -69.79% -66.69%
source.py (GILL, 2015) 15.142 16.547 44.844 -66.23% -63.10%
Total 283.098 310.971 894.442 -68.35% -65.23%

Next, we used a hypothesis test to verify these results statistically. With this goal, we first

checked the normality of these results using the Shapiro Wilk Test (SHAPIRO; WILK, 1965).

We found that all distributions follow a normal distribution since they failed to reject the null

A.1 Introduction 221

hypothesis at 95% confidence (p-values for baseline, Dulwich, and PyGit2 were 0.307, 0.405,

0.398, respectively).

Since the distributions are normal, we compared both interventions to the baseline using the

Paired T-Test (STUDENT, 1908), with the null hypothesis that the averages are equal. We first

compared Dulwich to the baseline and found a p-value of 0.003, rejecting the null hypothesis at

95% confidence. Then, we compared the PyGit2 to the baseline and found a p-value of 0.031,

rejecting the null hypothesis at the same confidence again. Thus, we can confirm that the Git

integration reduces the size of the content database.

For estimating how large the difference is, we calculated the effect sizes using Cohen’s

d (HEDGES; OLKIN, 2014), and we obtained d estimates of 1.73129 and 1.63806 for Dulwich

and PyGit2, respectively. These effect sizes are considered large, indicating a great reduction in

the content database size.

Git Garbage Collection. In the second part of the experiment, we evaluated the growth of

the content database and the effect of using garbage collection on the content database. We

executed a synthetic script ten times for each content database, resulting in ten consecutive

trials that increased the size of a file sequentially. Then, after the executions, we ran now

gc to execute the Git garbage collection on the content database. Table A.2 presents the size

evolution of the content database over the 10 trials and after the execution of the now gc

command. Note that the sizes of the content databases that use Git are always smaller than the

baseline. Additionally, the now gc operation reduces the size of the Git content databases by

73.79%, while the baseline does not support this feature.

Table A.2: Size in Megabytes of content database directory for each noWorkflow trial using the
synthetic script and the execution of now gc at the end [adapted from Pontes (2018)].

T. 1 T. 2 T. 3 T. 4 T. 5 T. 6 T. 7 T. 8 T. 9 T. 10 GC
Baseline 18.1 44.2 83.3 135.3 200.5 278.6 369.7 473.9 591.1 721.3 721.3
Dulwich 12.2 32 61.6 101.1 150.4 209.6 278.7 357.6 446.4 545.1 189.1
PyGit2 12.6 32.8 63 103.4 153.8 214.3 284.9 365.6 456.3 557.1 189.1

The reason for this high reduction may be associated with the nature of the text file gener-

ated by our synthetic script. Text files may achieve a good compression and efficient deltas on

Git, while other formats may suffer from the lack of compression. We did not execute now gc

for the real scripts on the first part of this experiment because they only contain a single version

of the scripts. The garbage collection usually benefits the most from multiple versions of the

same file.

A.1 Introduction 222

0 50 100 150 200 250 300 350 400
Time AVG (Seconds)

Baseline

Dulwich

PyGit2

Figure A.2: Duration of all script executions for each content database type version [adapted
from Pontes (2018)].

A.1.2.2 RQ.G2. Is there any performance overhead with the integration?

For this research question, we only considered the experiment with real scripts. In this case, we

calculated the average of the duration of four trials for each one of the seven scripts and each

content database. Table A.3 presents the results of this part of the experiment by script, indicat-

ing the average performance overhead compared to the baseline, and Figure A.2 condenses the

results into box plots for comparison.

Note that PyGit2 is much faster than Dulwich, but has almost the same effect in reducing

the storage size when compared to the baseline. Additionally, it only imposes 0.4% up to 3.3%

(average of 1.9%) performance overhead. On the other hand, Dulwich imposes a performance

overhead from 16.6% up to 62.31% (average of 43.32%). The reason for this discrepancy is

probably related to the fact that Dulwich is a pure Python implementation, while PyGit2 is a C

implementation with Python bindings.

We also used hypothesis tests to verify these results statistically. Thus, once again, we

checked the normality of the results using the Shapiro Wilk Test (SHAPIRO; WILK, 1965).

Table A.3: Average execution duration after 4 executions for each content database and average
differences between Git content database and baseline [adapted from Pontes (2018)].

Script Avg. Duration (Sec) Avg. Difference (%)
Dulwich PyGit2 Baseline Dulwich PyGit2

analyse.py (GILL, 2015) 181.2 115 111.7 62.31% 3.02%
beat_tracker.py (MCFEE et al., 2015) 254 161.9 156.8 61.94% 3.22%
estimate_tuning.py (MCFEE et al.,
2015) 264.3 171 165.6 59.64% 3.26%

gflex.py (WICKERT, 2016) 187.5 122.7 119.5 56.97% 2.69%
menger_sponge.py (COOK, n.d.) 392.8 338.2 336.8 16.63% 0.40%
qho2.py (WINCKEL, 2014) 191.4 129.4 127.5 50.10% 1.43%
source.py (GILL, 2015) 120.6 93.7 92.9 29.86% 0.94%
Total 1591.8 1131.9 1110.8 43.32% 1.90%

A.2 Conclusion 223

However, in this case, we rejected the null hypothesis for all duration distributions at 95% con-

fidence (p-values for baseline, Dulwich, and PyGit2 were 0.010, 0.014, and 0.014, respectively).

Since the distributions are not normal, we compared both interventions to the baseline using

the Wilcoxon Signed-rank Test (WILCOXON, 1992), a non-parametric test. Once again, our

null hypothesis is that the averages are equal. When we compared each intervention to the

baseline, we found the same p-value: 0.016. Hence, we reject both null hypotheses at 95%

confidence, indicating that both PyGit2 and Dulwich impose some performance overhead on

the baseline.

For estimating how large the differences are, we calculated the effect sizes using Cliff’s

Delta (CLIFF, 1996). When comparing the effect size of Dulwich to the baseline, we obtained

a delta of -0.63265, which is considered large. However, for the effect size of PyGit2, we

obtained a delta of -0.14285, which is negligible.

A.2 Conclusion

In the experiments, we observed that PyGit2 could greatly reduce the content database size

(65.23% on average), with a negligible impact on the performance (1.90% on average). We also

observed that garbage collection could further reduce the content database size (73.79% in the

synthetic script experiment).

We also observed that despite reducing the content database size as much as PyGit2, Dul-

wich imposes a large performance overhead (43.32% on average). Hence, when both libraries

are available, it is preferable to use PyGit2 for the integration in noWorkflow 1 and 2.

However, since PyGit2 only provides Python bindings for a C library, its installation is

harder than the installation of Dulwich, as it is a pure Python implementation of Git operations.

Hence, it is worth it to support both libraries in noWorkflow 1 and 2 for broader compatibility.

Despite the positive results in the experiments, it is worth mentioning that these experiments

are not conclusive for many reasons. First, we used a small set of experiments that are not

representative of all the experiments that might produce files for content databases. Second, we

evaluated it with small files in the magnitude of Kilobytes and Megabytes, which are reasonable

for Git, since it was designed for source code. The compression and packing algorithms may

struggle to operate bigger files. Finally, the experiments were performed in 2018, and all the

tools involved in the experiment (i.e., Git, Dulwich, PyGit2, and noWorkflow) evolved since the

performance overheads and size reductions were measured.

