
Universidade Federal Fluminense

LUAN TEYLO GOUVEIA LIMA

Scheduling Deadline Constrained Bag-of-Tasks in
Cloud Environments using Hibernation prone Spot

Instances

NITERÓI

2021

Universidade Federal Fluminense

LUAN TEYLO GOUVEIA LIMA

Scheduling Deadline Constrained Bag-of-Tasks in
Cloud Environments using Hibernation prone Spot

Instances

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.
Topic Area: Computer Science.

Advisor:

LÚCIA MARIA DE ASSUMPÇÃO DRUMMOND

NITERÓI

2021

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

L732s Lima, Luan Teylo Gouveia
 Scheduling Deadline Constrained Bag-of-Tasks in Cloud
Environments using Hibernation prone Spot Instances / Luan
Teylo Gouveia Lima ; Lúcia Maria de Assumpção Drummond,
orientadora. Niterói, 2021.
 112 f.

 Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2021.

DOI: http://dx.doi.org/10.22409/PGC.2021.d.02852177129

 1. Escalonamento de tarefa. 2. Computação em nuvem. 3.
Produção intelectual. I. Drummond, Lúcia Maria de
Assumpção, orientadora. II. Universidade Federal Fluminense.
Instituto de Computação. III. Título.

 CDD -

LUAN TEYLO GOUVEIA LIMA

Scheduling Deadline Constrained Bag-of-Tasks in Cloud Environments using

Hibernation prone Spot Instances

Approved on March 26th, 2021 by:

Dr. Lúcia M. A. Drummond, D.Sc. / IC / Universidade

Federal Fluminense (President)

Dr. Leandro Santiago de Araújo , D.Sc. / IC / Universidade

Federal Fluminense

Dr. Maria Cristina Silva Boeres, Ph.D. / IC / Universidade

Federal Fluminense

Dr. Alba Cristina M. A. de Melo, Ph.D. / CIC /

Universidade de Braśılia

Dr. Laurent Lefèvre, Ph.D. / Inria / Université de Lyon

Dr. Luciana Arantes, Ph.D. / LiP6 / Sorbonne Université

Dr. Pierre Sens, Ph.D. / LiP6 / Sorbonne Université

Niterói

2021

“We are at the very beginning of time for the human race. It is not unreasonable that we

grapple with problems. But there are tens of thousands of years in the future. Our

responsibility is to do what we can, learn what we can, improve the solutions, and pass

them on.”

Richard P. Feynman

To my wife, Pamela.

Agradecimentos

À professora Lúcia Drummond, pela orientação e por toda a confiança depositada na

elaboração deste trabalho. Sou grato pela oportunidade de trabalhar com uma pessoa tão

comprometida com o crescimento intelectual de seus alunos.

À professora Luciana Arantes, pelo acolhimento durante o meu peŕıodo de doutorado

sandúıche e pelas várias ideias que fizeram deste um trabalho do qual me orgulho muito.

Sem a sua ajuda o meu desempenho e os resultados não seriam os mesmos.

To Professor Pierre Sens for all the help and patience in his explanations. I am grateful

for the dedication you had with me during the period I was in LiP6 and for you always

have time to clarify my doubts.

Aos meus pais, Miguel e Santiaga, por toda dedicação, carinho e paciência. Agradeço

pelo apoio e pela alegria com que vocês recebem as not́ıcias que tenho para dar, mesmo

quando significam que haverá uma distância f́ısica ainda maior entre a gente.

Ao meu irmão Miguel Júnior, que não cansa de me surpreender com a sua maturidade

e inteligência. Você ainda continua sendo o melhor presente que meus pais me deram.

À Pamela, com quem compartilho as minhas conquistas ao longo de 12 anos. Obrigado

pelo relacionamento duradouro e construtivo.

Ao Elcio, Betânia, Tatiana e dona Dalvina, pelo acolhimento e por todo o apoio. Sem

vocês tudo seria mais dif́ıcil. Sou imensamente grato por fazer parte da famı́lia.

Aos meus companheiros de laboratório Pablo, Maicon, Rodrigo e Rafaela, que entre

cafés e conversas, me proporcionaram um ambiente de trabalho rico e prazeroso. A todos

os professores e colegas que de alguma forma colaboraram para a minha formação.

Ao CNPq, pela bolsa concedida nos dois primeiros anos do meu doutorado. À

FAPERJ pela bolsa Aluno Nota 10, concedida nos dois últimos anos do meu doutorado. À

CAPES, pela bolsa de doutorado-sandúıche, concedida por meio do seu Programa Institu-

cional de Internacionalização (CAPES/PrInt). Ao CNPq e AWS pelo projeto BioCloud,

que disponibilizou verbas para a utilização de recursos de nuvem.

Resumo

Os principais provedores de nuvens computacionais oferecem diversos tipos de máquinas
virtuais (MVs) em distintos modelos de contratação, com diferentes garantias e graus de
confiabilidade, dos quais os mais populares são o sob demanda (on-demand) e o spot. As
MVs on-demand são alocadas por um custo fixo por unidade de tempo, e sua disponibil-
idade é garantida pelo provedor durante toda a execução da aplicação. Já as instâncias
spot são oferecidas com um grande desconto monetário, quando comparadas com as on-
demand. Contudo, tanto a disponibilidade quanto a confiabilidade variam de acordo com
a demanda de recursos enfrentada pelo provedor. Ademais, as instâncias spot podem ser
encerradas ou hibernadas a qualquer momento, caso o provedor necessite de seus recursos
computacionais.

Em novembro de 2017, a Amazon Web Services (AWS) introduziu o recurso de hi-
bernação em MVs spot. Agora, em vez de encerrar as MVs, o provedor pode hiberná-
las temporariamente. Nesta tese, estamos interessados na execução aplicações Bag-of-
Tasks sujeitas a um deadline. Assim, propomos o Hibernation Aware Dynamic Scheduler
(HADS), um framework modular e leve que pode ser facilmente atualizado para atender
a novos requisitos. O HADS inclui uma série de funções integradas, como balanceamento
de cargas (por meio de um procedimento de work-stealing), checkpoint nativo e proced-
imentos de migração e recuperação de tarefas. Ao contrário de outros frameworks que
lidam com a rescisão/revogação de MVs spot, o HADS explora o recurso de hibernação
dessas máquinas para minimizar os custos monetários de execução, gerenciando todo o
ciclo de vida da aplicação.

Além dos modelos de contratação, os provedores de nuvem introduziram recentemente
o conceito de MVs burstable. Essas MVs lidam com as variações da carga de trabalho das
aplicações, aumentando a sua capacidade de processamento durante um peŕıodo limitado
de tempo. As MVs burstable são oferecidas no mercado on-demand com um grande
desconto em comparação a MVs com poder de processamento equivalente. Assim, neste
trabalho, também apresentamos o Burst-HADS, uma extensão do HADS que explora
instâncias burstable para minimizar o tempo total de execução da aplicação. O Burst-
HADS é um framework multi-objetivo que minimiza o custo monetário da execução e o
tempo de execução das aplicações. Portanto, esta tese apresenta o HADS e Burst-HADS
e todos os estudos realizados ao longo do seu desenvolvimento.

Palavras-chave: Computação em Nuvem, Escalonamento, Máquinas spot, Checkpoint.

Abstract

Leading cloud providers offer several types of Virtual Machines (VMs) with different
guarantees in terms of availability and volatility. Moreover, the same resource is provided
through multiple pricing models, also called markets. Among them, the most popular
markets are on-demand and the spot. In the on-demand market, the VMs are allocated
for a fixed cost per time unit, and the provider ensures their availability during the whole
execution. On the other hand, in the spot market, VMs are offered with a huge discount
when compared to the on-demand ones, but their availability fluctuates according to the
cloud’s current demand. Different from the on-demand VMs, the cloud provider can
terminate spot VMs at any time.

In November 2017, Amazon Web Services (AWS) introduced the hibernation feature
on VMs from the spot market. Now, instead of terminating the spot VMs, the provider
can hibernate them temporarily. In this thesis, we are interested in executing Bag-of-
Task applications subject to a deadline on cloud environments. Thus, we propose the
Hibernation Aware Dynamic Scheduler (HADS), a modular and lightweight framework
that can be easily upgraded to meet new requirements. HADS includes a series of built-in
functions such as load balance (through a work-stealing procedure), native checkpoint, and
recovery procedures. Unlike other frameworks that cope with the termination/revocation
of spot VMs, HADS explores the hibernation feature of spot VMs to minimize execution
monetary costs. As a matter of fact, HADS manages all life-cycle of BoT applications
and schedules the tasks on the given VM instances.

Besides the hibernation feature, cloud providers have also introduced in recent years
the concept of burstable VMs. Those VMs can burst up their respective baseline CPU
performance during a limited period of time. Burstable VMs are offered on the on-demand
market with a huge discount when compared to an equivalent non-burstable on-demand
VM. In this work, we also present the Burst-HADS, an extension of HADS that explores
burstable instances to minimize the application’s total execution time. Burst-HADS is
a multi-objective framework that minimizes the monetary cost and the execution time
of the applications. Thus, this thesis presents HADS and Burst-HADS and all studies
conducted during their development.

Keywords: Cloud Computing, Scheduling, Spot VMs, Burstable VMs, Checkpoint.

List of Figures

4.1 Execution without hibernation . 25

4.2 Execution with hibernation . 26

4.3 General architecture of the Frameworks . 27

4.4 Frameworks’ execution steps . 28

4.5 Examples of the env.json and job.json input files 28

5.1 Dump time in S3, EBS and EFS for different sizes of memory footprint . . 32

5.2 Dump time of concurrent checkpoints in S3 and EFS storage services . . . 34

5.3 Overheads of launching a spot VM and recording checkpoints 35

5.4 Recovery Procedure Times . 36

5.5 Monetary Costs of Storage and VM hiring with Services S3, EBS and EFS 38

6.1 Dspot definition . 41

6.2 Execution where vj hibernates at p, does not resume, and its tasks are

migrated at mtt . 49

6.3 A scheduling with two logical Allocation Cycles (AC) 49

6.4 Diagram with the events and actions handle by the Dynamic Scheduling

Module . 51

6.5 Spot vmj state diagram . 52

6.6 Evaluating the migration of task 6 to a spot VM 55

6.7 Migration of task 6 to a new on-demand VM 56

6.8 Example of tasks in an on-demand VM that can be stolen by the work-

stealing procedure . 60

7.1 Average duration of hibernation in different scenarios 66

List of Figures viii

7.2 Percentage distribution of the procedures used by HADS during the exe-

cution of jobs J60 and J80 . 68

7.3 Percentage distribution of the procedures used by HADS during the exe-

cution of jobs J100 and ED200 . 69

7.4 Impact of variation of kh in the execution costs of job ED200 70

7.5 Work-stealing distribution of Job ED200 71

7.6 Tasks progress of spot VM c4.large during the execution of Job ED200 in

scenario sc2 . 72

7.7 Tasks progress of spot VM c3.large during the execution of Job ED200 in

scenario sc2 . 72

7.8 Dump time variation . 73

9.1 Monetary cost of a practical execution of Burst-HADS without hibernations

and on-demand only strategy . 96

List of Tables

3.1 Related Literature of Scheduling Using Burstable and/or Spot and Regular

On-demand Instances . 23

4.1 Variables and parameters of the problem. 26

5.1 Monetary Costs of Services S3, EBS and EFS in a Long-running Application 37

6.1 Functions and Procedures called by Primary Scheduling Module Algorithms 46

6.2 Variables and parameters used on Primary Scheduling Module Algorithms 47

6.3 Variables and parameters used by the Dynamic Scheduling Module algo-

rithms . 61

6.4 Functions and Procedures called by the Dynamic Scheduling Module algo-

rithms . 61

7.1 VMs attributes . 63

7.2 Jobs characteristics . 63

7.3 Different execution scenarios generated by varying parameters λh and λr . 65

7.4 Baseline executions . 66

7.5 Execution of HADS in scenarios sc1 to sc7. The table shows the proba-

bilistic mass function of the hibernation (λh) and the resume events (λr)

for each scenario, the average number of hibernations, the number of used

on-demand VMs, the average makespan, and the average monetary cost . . 68

7.6 Average number of checkpoints, migrations, recoveries, and CPU save time

from checkpoint in of job ED200 in the seven scenarios 73

8.1 Notation and Variables used in the Mathematical Formulation. 77

9.1 VMs attributes . 88

9.2 Different execution scenarios generated by varying parameters λh and λr . 88

List of Tables x

9.3 Results of the ILS-based Primary Scheduling Heuristic and the Exact Ap-

proach . 89

9.4 Results of the ILS-based Primary Scheduler, MinMin, MaxMin and Greedy

Heuristics. 90

9.5 Cost and Makespan of Burst-HADS and HADS, without hibernation; and

ILS On-demand only. 91

9.6 Comparison between Burst-HADS and HADS in terms of monetary cost

and makespan in scenarios s1 to s5 . 92

9.7 Attributes of Burst-HADS’ input set VMs 95

9.8 Different execution scenarios generated by varying the parameters λh and

λr . 96

9.9 Comparison between Burst-HADS and On-demand strategy in terms of

monetary cost and makespan in scenarios c1, c2 and c3 97

Acronyms and Abreviations

AC : Allocation Cycle

AWS : Amazon Web Services

BoT : Bag-of-Task

BP : Base Pairs

Burst-HADS : Burst Hibernation Aware Dynamic Scheduler

CRIU : Checkpoint Restore In Userspace tool

EBS : EC2 Block Storage

EC2 : Amazon Elastic Compute Cloud

EFS : Elastic File System

HADS : Hibernation-Aware Dynamic Scheduler

IaaS : Infrastructure-as-a-Service

ILS : Iterated Local Search

PaaS : Platform as a Service

S3 : Simple Storage Service

SaaS : Software as a Service

SDK : Software Development Kit

vCPU : Virtual CPU

VM : Virtual Machine

Contents

1 Introduction 1

1.1 Objective . 4

1.2 Contributions . 5

1.3 Thesis Outline . 6

2 Background 7

2.1 Cloud Computing . 7

2.2 Amazon Web Services . 9

2.2.1 Markets of the Amazon Elastic Compute Cloud 10

2.2.2 Storage Services . 11

2.3 The Scheduling Problem on Clouds . 13

3 Related Work 16

3.1 Bag-of-Tasks Scheduling on the Cloud . 16

3.2 Scheduling using Spot and On-demand Instances 18

3.3 Burstable Instances Related Literature . 21

4 Proposed Models and Framework Architecture 24

4.1 System and Application Models . 24

4.2 Architecture of HADS and Burst-HADS Frameworks 26

5 Evaluating AWS Storage services for Checkpointing and Recovering 31

5.1 Dump Time Evaluation . 32

Contents xiii

5.1.1 Dump Time evaluation of Concurrent Checkpoints 33

5.2 Overall Overhead Analysis . 34

5.3 Monetary Cost Estimation . 37

6 Hibernation Aware Dynamic Scheduler 40

6.1 Primary Scheduling Module . 40

6.1.1 Estimation of Dspot . 40

6.1.2 Checkpoint Intervals . 42

6.1.3 Primary Scheduling Heuristic Algorithm 43

6.2 Dynamic Scheduling Module . 47

6.2.1 Preliminary Concepts . 47

6.2.2 VM states and Allocation Cycle concept 48

6.2.3 Migration Time Limit (mtt) . 49

6.2.4 Event Handler . 51

6.2.5 Migration Procedure . 54

6.2.6 Work-Stealing Procedure . 59

7 Experimental Results of HADS 62

7.1 Experimental Environment . 62

7.1.1 Emulation of the Hibernation and Resume Events 64

7.1.2 Parameters Setting and Generated Scenarios 64

7.2 Baseline Executions . 66

7.3 Performance Results . 67

7.3.1 Impact of hibernation and resuming 70

7.3.2 Built-in Functions Evaluation . 71

8 Burst Hibernation Aware Dynamic Scheduler 74

8.1 Burst Primary Scheduling Module . 74

Contents xiv

8.1.1 Mathematical Formulation . 74

8.1.2 Iterated Local Search Heuristic . 77

8.2 Burst Dynamic Scheduling Module . 81

8.2.1 Migration Procedure . 81

8.2.2 Work-Stealing Procedure . 84

9 Burst-HADS Experimental Results 87

9.1 Experimental Environment . 87

9.2 Evaluation of the ILS Primary Task Scheduling 88

9.3 Baseline executions . 90

9.4 Performance Results . 91

9.5 Case study: A Sequence Alignment Problem 93

10 Conclusions and Future Work 98

10.1 Concluding Remarks . 98

10.2 Future Work . 100

Bibliography 102

Appendix A -- Published Papers 111

Chapter 1

Introduction

In the past few years, cloud computing has emerged as an attractive option to run different

applications due to several advantages over other platforms, such as clusters and grids.

Infrastructure-as-a-Service (IaaS) existing cloud platforms (e.g., Amazon Web Services,

Microsoft Azure, Google Cloud, etc.) enable users to dynamically acquire resources,

usually as virtual machines (VMs), according to their application requirements, without

upfront capital investments, and in a pay-per-use model where users only pay for which

was actually used. Those platforms offer different classes of VMs with distinct guarantees

in terms of availability and volatility, provisioning the same resource through multiple

pricing models and markets. For instance, in Amazon Elastic Compute Cloud (EC2),

there are three manly markets: i) reserved market, where the user pays an upfront price,

guaranteeing long-term availability; ii) on-demand market which is allocated for specific

periods of time, and incurs a fixed cost per unit time of use, ensuring the availability of

the instance during this period; iii) spot market in which unused resources are available

up to 90% discount when compared to the on-demand model.

In the three markets, there is a wide range of VM types that suit different user re-

quirements. According to Amazon Web Service (AWS), “Instance types comprise varying

combinations of virtual CPUs (vCPUs), memory, storage, and networking capacity and

give you the flexibility to choose the appropriate mix of resources for your applications.

Each instance type includes one or more instance sizes, allowing you to scale your re-

sources to the requirements of your target workload” [16]. Instances types are grouped

into families based on their use case. For example, the compute-optimized instances (c3,

c4, and c5) offered in EC2 are ideal for compute-bound applications that require high-

performance processors.

In the spot market, the availability of its VMs fluctuates according to the cloud’s

1 Introduction 2

current demand. If there are not enough resources to meet clients’ requests, the cloud

provider can interrupt a spot VM (temporarily or definitively). Despite the risk of un-

availability, the main advantage of spot VMs is that their costs are much lower than

on-demand VMs since the user requests unused instances at steep discounts. An inter-

rupted spot VM instance can either terminate or hibernate. If the VM will be terminated,

the cloud provider warns the user two minutes before its interruption. On the other hand,

hibernated VM instances are frozen immediately after notifying the user. In this case,

EC2 saves the VM instance memory and context in the root of EC2 Block Storage (EBS)

volume, and during the VM’s interruption period, the user is only charged for the EBS

storage use. EC2 resumes the hibernated spot instance, reloading the saved memory

and context, only when there is enough available resource whose price is lower than the

maximum one, which the user agreed to be charged.

Besides the markets, all leading cloud providers introduced in the last years the con-

cept of burstable VMs. Those VMs can sprint their performance during a limited period

of time to cope with sudden workload variations. By operating on a CPU credit regime

that controls the processing power offered to users, burstable VM instances can use 100%

of the VM’s processing power or only a fraction of its power depending on such credits.

Burstable on-demand instances have two main advantages: i) they are offered with an up

to 20% discount compared to non-burstable on-demand instances with equivalent compu-

tational resources, and ii) contrarily to spot VMs, they are not prone to revocation. On

the other hand, to obtain monetary advantages of burstable instances, the user has to

control their respective CPU credit usage by monitoring their baseline performance and

defining bursting periods.

In this thesis, we are particularly interested in Bag-of-Task (BoT) applications exe-

cuting in cloud environments. This type of application is composed of independent tasks

which can be executed in any order and in parallel. In addition, we consider that the

BoT applications may require deadline-bounds where the correctness of the computation

also depends on the time for executing all tasks. It is worth pointing out that, although

simple, the BoT approach is used by several well-known applications such as parameter

sweep, chromosome mapping, Monte Carlo simulation, and computer imaging applica-

tions. Moreover, the task scheduling to a heterogeneous environment is a well-known

NP-hard problem which makes that an even more challenging problem [34, 23].

Thus, we propose the Hibernation-Aware Dynamic Scheduler (HADS). A framework

that explores hibernate-prone spot instances and on-demand instances to minimize the

1 Introduction 3

applications’ monetary cost. To this end, HADS tries to execute the application tasks

in spot VMs as much as possible. However, it must also ensure that the application

deadline constraints will be satisfied even if allocated spot VMs hibernate multiple times,

otherwise, a temporal failure will take place. The latter happens whenever one or more

spot VMs hibernate, not resuming in time to satisfy application’s deadline. The framework

is event-driven and was built in a modular way with two main scheduling modules: i) the

Primary Scheduling Module that defines an initial scheduling map of tasks to VMs,

and ii) a Dynamic Scheduling Module responsible for task migration or task rollback

recovering to/in idle VMs.

HADS’ first version was presented in [76]. In this version, we used hibernation-prone

spot instances to minimize only the monetary cost of BoT applications execution, re-

specting their deadline constraints. To meet such a deadline, even in the presence of

multiple hibernations, new on-demand VMs, not allocated in the initial mapping would

be dynamically launched. In this case, tasks of the hibernated spot instances and those

not executed yet would be migrated to on-demand instances. Although the strategy sig-

nificantly reduced the monetary costs, always respecting the application deadline, the

application’s total execution time could considerably increase if VM spots hibernate. To

tackle such a problem, we investigate how burstable instances could be used to reduce the

impact on the application’s execution time and the corresponding monetary costs. Thus,

in [77], we proposed Burst-HADS, an extension of HADS that manages the execution of

BoT applications with deadline constraints by scheduling them to spot and burstable on-

demand VMs, aiming to minimize both the monetary costs and the BoT total execution

time (makespan).

Although both frameworks were originally designed and evaluated using AWS, it is

important to point out that both of them are easily adapted to other cloud services.

In fact, except for the hibernation feature, which is currently supported only by AWS,

the frameworks could be extended to support any cloud provider that offered a Software

Development Kit (SDK) to request and manage the cloud resources and services. Thus,

if in the future, other cloud providers like Google Cloud or Microsoft Azure implement

a feature similar to Amazon’s spot hibernation, the frameworks can be adopted in these

environments too.

In this work, we present both versions of the framework and all the steps followed

during their development. This work was conducted in collaboration with the LIP6 lab-

1.1 Objective 4

oratory from Sorbonne Université as part of the ReMatCH project1. That collaboration

started in 2019 and yielded a total of four papers: [74, 75, 78, 77], a 6-month sandwich

doctorate in the LiP6 laboratory, and several events participation. Moreover, in 2021 we

start a project called BioCloud, in partnership with CNPq and AWS2. From this project,

we present a case study published in [79], where 22,600 SARS-CoV-2 sequences were com-

pared with the MASA-OpenMP tool [69] in Amazon EC2 using Burst-HADS, showing

that clouds can play a fundamental role in ensuring the efficiency of the execution of such

applications with reduced costs.

Thus, in this thesis, we present a compilation of all those publications.

1.1 Objective

In this work, the main objective is to explore hibernation prone spot VMs and Burstable

VMs to reduce the monetary cost and execution time of the BoT applications subject to

a deadline defined by the user.

Therefore, we propose HADS, a modular and lightweight framework. It includes a se-

ries of built-in functions such as load balance, checkpoint, and recovery procedures. Unlike

other frameworks that cope with the termination/revocation of spot VMs, HADS explores

the hibernation feature of spot VMs to minimize the monetary cost of the execution.

Moreover, we also propose Burst-HADS, an extension of HADS that also explores

hibernation-prone spot VMs to minimize the monetary cost, but it also uses the burst

capacity of the burstable on-demand instances to minimize the application’s execution

time. In fact, unlike HADS, Burst-HADS is a multi-objective framework and tries to

minimize both the monetary cost and the execution time at the same time.

In addiction, we present the formulation of the primary task scheduling problem, a

multi-objective problem that aims to minimize, at the same time, (i) the monetary cost

and (ii) the execution time, makespan, of the initial scheduling plan defined by Burst-

HADS’ Primary Scheduling Module. As we will show in Chapter 9, the execution time to

solve the exact model is prohibitive even to BoT applications with few tasks. Thus, to find

good solutions to the primary scheduling problem in an acceptable time, we propose an

Iterated Local Search (ILS) based approach presented in Chapter 8. The ILS heuristic was

1More information about the project can be found in http://cloud.ic.uff.br/index.php/pt/

capes-print/
2More information about the project can be found in http://cloud.ic.uff.br/index.php/

project-cnpq-aws/

http://cloud.ic.uff.br/index.php/pt/capes-print/
http://cloud.ic.uff.br/index.php/pt/capes-print/
http://cloud.ic.uff.br/index.php/project-cnpq-aws/
http://cloud.ic.uff.br/index.php/project-cnpq-aws/

1.2 Contributions 5

validated by comparing it to the optimal solutions given by the mathematical formulation

and to baseline algorithms.

Besides the scheduling frameworks and the mathematical formulation, we also show an

extensive evaluation using several scenarios of spot VMs hibernation and resumes. Those

tests were performed in a real cloud environment, using synthetic and real benchmark

applications. The results showed that HADS and Bust-HADS can be very advantageous,

guaranteeing the application’s deadline, even in the presence of hibernations, and still

optimizing the monetary cost.

1.2 Contributions

The main contributions of this work are the following:

I The proposal of the HADS framework that explores hibernation-prone spot VMs to

minimize the monetary cost of the execution;

II The design of the Primary Scheduling Module that defines the initial scheduling

strategy;

III The design of the Dynamic Scheduling Module that reacts to events that may cause

deadline violation;

IV The proposal of Burst-HADS, a multi-objective framework, that explores hibernation-

prone spot VMs and burstable VMs to minimize the monetary cost and the execution

time;

V The design of the Burst Primary Scheduling Module that uses an ILS-based heuristic

to define the initial scheduling strategy;

VI The design of the Burst Dynamic Scheduling Module that explores the burst capacity

of the VMs to minimize the execution time if spot VMs hibernates; and

VII Practical evaluations of the proposed scheduling frameworks in a real cloud provider

environment.

1.3 Thesis Outline 6

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces some back-

ground concepts. Chapter 3 presents related works and discusses our proposal’s main

contributions compared with them. Chapter 4 presents the system and application model

considered in this thesis and the frameworks’ general architecture. Chapter 5 discuss a

study and evaluation of AWS storage services in the context of checkpointing and recov-

ering procedures. In Chapter 6, we described HADS framework, while Chapter 7 presents

evaluation results related to HADS. Next, in Chapter 8, we present the Burst-HADS, and

its evaluation results are showed in Chapter 9. Finally, Chapter 10 concludes the thesis

and introduces some future directions.

Chapter 2

Background

In this Chapter, we present some background concepts related to the work presented in

this thesis. Firstly, in Section 2.1, we present some aspects of cloud computing. Next,

Section 2.2 presents AWS, the cloud provider used in this work, and that introduces the

hibernation feature. Finally, in Section 2.3, we present the scheduling problem in cloud

environments.

2.1 Cloud Computing

Over the past years, different definitions of cloud computing have been presented [57, 27, 5,

86, 26]. These definitions vary from the technical aspects, which addresses concepts related

to the architecture and the physical environment, to the aspects related to usability, whose

focus is on the services provided and the charging models [46].

From the service perspective, cloud computing environments are a set of virtual servers

working interconnected over the internet that can scale dynamically and be terminated

at any time by the user [43]. These environments are similar to clusters in some technical

aspects. However, differently from the latter, the cloud offers computational resources

through virtualization, and the users pay only for what they actually used (pay-per-

use) [46]. Cloud computing environments can be classified in the following models [57]:

• Public cloud: An organization or company owner of large data centers offer compu-

tational resources to the general public. Examples of public clouds are AWS, Google

Cloud, and Microsoft Azure;

• Private cloud: an organization uses which owns infrastructure to deploy a cloud

2.1 Cloud Computing 8

solution. In this case, this organization is the only one responsible for managing

and use the resources; and

• Hybrid cloud: it is a combination of public and private clouds. Normally, the

company uses its private cloud resources for the most important or critical tasks,

adding additional resources from the public cloud when necessary, for example, to

handle workload peaks.

Virtualization is one of the main technologies behind the success of the clouds. It can

be defined as a process of sharing computational resources (such as CPU, storage, and

network) that isolate the physical hardware. According to [41], the virtualization process

reduces the inefficiency of the allocating and distribution of computational resources. The

most common way of virtualization in cloud computing is the use of virtual machines. VMs

create hardware and software environments configured completely independently of the

physical resource, allowing the simultaneous execution of independent VMs on top of the

same physical hardware [43].

Compared with other distributed platforms, such as grids and clusters, the cloud

computing services present several technical and economic advantages, as they combine

virtualization and scalability in models of service economically viable for both the client

and the provider [46]. Some of the main advantages of using the clouds are [41]: availabil-

ity, monetary cost savings, reliability, and service integration. Moreover, cloud providers

claim to present an unlimited pool of resources to the users. According to Hashem et

al. [41], besides the minimization of the monetary cost related to automation and data

processing, in the cloud, the reduction on the costs starts since the acquisition and main-

tenance until the management of the infrastructure.

Elasticity is one of the key advantages of cloud computing. In a scenario in which

the allocated resources are not enough to meet the application’s demand, either due

to load variations or incorrect estimates, cloud environments allow the users to change

the current computational power by allocating or removing resources. Thus, the use of

elasticity eliminates the need to previously request a greater amount of computational

power than the application really needs (over-provisioning), to meet possible future load

increments.

The services offered by the cloud are divided into three categories [41]:

• Platform as a Service (PaaS), where different resources (operating systems, libraries,

compilers, etc.) operates together to provide a platform for the end-user. AWS

2.2 Amazon Web Services 9

Elastic Beanstalk [70], Google App Engine [33], and Heroku [42] are some examples

of PaaS.

• Software as a Service (SaaS) consists of applications executing directly on a cloud

infrastructure and offered as a service to the end-user. Examples of this model are

Google Docs [38], Gmail [37] and Overleaf [62].

• Infrastructure as a Service (IaaS) refers to the acquisition of virtualized hardware

equipment. In this model, the customer has full control of the configuration and

installation of the software. Amazon EC2 [9], Google Cloud Platform [24], and

Microsoft Azure [18] are examples of IaaS.

Usually, the use of cloud services for executing distributed applications is based on

the IaaS model and is done by allocating a virtual cluster, which can be composed of

VMs of the same type (homogeneous environment) or VMs with different configurations

(heterogeneous environment). Thus, before the execution, it is necessary to define and

request the necessary VMs and plan the application’s execution.

2.2 Amazon Web Services

There are currently several public cloud providers, such as AWS [12], Microsoft Azure [18]

and Google Cloud [24]. Among those companies, AWS is undoubtedly the market leader.

According to [60], AWS is responsible for almost half the world’s public cloud infrastruc-

ture market, reporting in 2020 a profit of $13.5 billion. AWS provides a series of ser-

vices and features, from infrastructure technologies like compute, storage, and databases

to emerging technologies, such as machine learning and artificial intelligence. Amazon

EC2 [9] is one of these services. EC2 allows users to contract resources packaged as VMs,

organized in the following key features, such as the number of vCPUs, memory capacity,

network bandwidth, and usage purpose [16].

In EC2, a price is established for each VM according to its resources. For example,

while a general-purpose t3.large VM (2 vCPUs and 8 GB of memory) can cost up to

0.0832$ for one hour of use; a CPU optimized c3.9xlarge VM (36 vCPUs and 72 GB of

memory) costs up to 1.53$ for the same time period. Currently, EC2 offers more than 30

VM types. Yet, users have limits on how many instances they can contract at the same

time.

2.2 Amazon Web Services 10

Since October 2017, EC2 uses a per-second billing model for Linux VMs, unlike the

previous per-hour billing [21], providing an opportunity to pay for what was actually used.

Other providers also use similar billing models. For example, in Google Compute Engine1,

when a new VM is initiated, users pay for its first minute (even if it was used by only 30

seconds). After this minute, instances are charged in one-second increments.

2.2.1 Markets of the Amazon Elastic Compute Cloud

In Amazon EC2, the same VM type can be hired in three different markets: on-demand,

spot, and reserved. In the on-demand market, the users can request resources at any

time and at a fixed price per time unit; the on-demand VMs have their availability and

reliability ensured by the provider. In other words, the user has the guarantee that he/she

will be able to request resources at any time, and it will be active during the time the

user needs. However, the on-demand market has the most expensive resources.

In the reserved market, users need to reserve a set of VMs for a specific and, normally,

long period of time. Thus, the environment’s total monetary cost is knowing beforehand,

and the provider also guarantees the total disponibility of the resources. That kind of

market is suitable for a user who knows their application’s demand and requirements for

a long period of time (one or more years). According to AWS, the price reduction of the

reserved market in relation to the on-demand one can be up to 72%2.

EC2’s spot VMs are unused resources offered by the provider with a huge discount

(according to Amazon, the discount can be up to 90% when compared to on-demand

prices). However, spot VMs can be revoked, i.e., terminated by Amazon whenever the

provider needs its resources. Furthermore, in November 2017, EC2 introduced the spot

VM hibernation feature [7]. Now, instead of terminated, VMs can be hibernated by the

provider [7]. When a VM hibernates, its memory and context are saved, and therefore, at

its resumption, the respective context is restored. The tasks interrupted can be restarted

from the hibernation point. Yet, while a VM is hibernated, the user is not charged for

that VM.

Another interesting feature offered in EC2 on-demand market is the burstable capacity

of some VMs types. Those instances can sprint their performance (burst mode) during

a limited period of time following the user application demands. The burst capacity

operates according to a CPU credit regime that controls the processing power offered to

1https://cloud.google.com/compute/vm-instance-pricing
2https://aws.amazon.com/ec2/pricing/reserved-instances

https://aws.amazon.com/ec2/pricing/reserved-instances

2.2 Amazon Web Services 11

users. Basically, if the instance has CPU credits, the user can use 100% of the VM’s

processing power (burst mode). Otherwise, only a fraction of that power is available

(baseline mode).

Burstable instances accumulate CPU credits per hour, whose amount depends on

the instance type. If a burstable instance uses fewer CPU resources than required for

baseline performance (for example, when it is idle), the unspent CPU credits are accrued

in the CPU credit balance of the instance. If a burstable VM needs to burst above

the baseline performance level, it spends the accrued credits. The more credits that a

burstable performance instance has accrued, the longer it can burst beyond its baseline

when higher performance is required. In EC2, burstable VMs are the ones of type family

t2 and t3 [14].

2.2.2 Storage Services

AWS also offers several storage services, as can be seen in their portfolio [15]. Each service

is optimized for different storage needs. In this work, we evaluated and used three popular,

simple, and cheap general-purpose storage services offered by the provider: (i) the Amazon

Simple Storage Service (S3) [11], (ii) the Amazon Elastic Block Store (EBS) [8], and (iii)

the Amazon Elastic File System (EFS) [10].

Amazon S3 is probably the most known storage service used in AWS. According to

the provider, this service can be utilized to store and recover any amount of data and

was developed to answer a minimum quantity of characteristics focused on simplicity and

system robustness. S3 provides storage to a wide range of object sizes, from 0 Bytes to

5TB, kept in a two-level organization [11]. In the superior level, there are the buckets,

structures that are similar to folders that have a unique global name. As reported by [63],

the buckets can be used for different purposes such as allowing data organization by

the users, identifying the users to be billed accordingly, data transferring, and as an

aggregation to audition reports. Each user of S3 can create up to 100 buckets associated

with one unique account, and an unlimited number of objects can be stored in a bucket.

In the inferior level, there are the objects. They contain the data stored by the user

and some metadata. The S3 objects’ metadata is a key-value pair, in which each data

stocked in a bucket is represented by a name and a unique key [17]. The user can create,

change and read the objects within a bucket. However, renaming and moving them to

another bucket requires the download from the original bucket to a local system.

2.2 Amazon Web Services 12

The charges in S3 are based on three factors: the size of stored objects, storage time,

and S3 class used. Each S3 class is specialized for each type of memory access, such as

random access, dynamic access, or less frequent one. This work utilized the S3 Standard

class, which has low latency, high throughput and is optimized for general access usage.

In the us-east-1 region, localized in North Virginia, checked in February of 2021, the price

of each GB per month of storage in S3 is US$0.023, and for every 1000 requests of PUT,

COPY, POST, or LIST type, it is charged US$0.005. Besides, the data transfer from S3

to the Internet is charged when the user exceeds 1 GB of data within one month.

EBS is another option of storage inside EC2. In this service, users can create storage

volumes that are attached to a directory inside the VM [68]. The capacity of these volumes

can vary from 1 GB to 16 TB and is defined by the user in the solicitation moment [8].

EBS volumes are persistent and can be kept even without any VM associated with them.

However, the disk can only be mounted in one VM at a time. Thus, access to the disk is

limited to this single VM. The two types of disk volumes that can be created are the Solid

State Drives (SSDs), disks used for applications that need low latency, and the Hard Disk

Drives (HDDs), mostly used for applications that need higher throughput.

In this thesis, we used gp2 type SSDs as they have a latency of fewer than 10 millisec-

onds [8]. These SSDs also offer throughput up to 250MB/s. In terms of values, checked

in February of 2021, EBS charges US$0.10 per GB of the allocated disk, unlike S3, which

charges by the size of each stored object. Moreover, the read and write operations in EBS

are already included in the price.

The EFS is the storage service that provides a simple and scalable file system. This

file system is also manageable to the cloud and local storage usage [10]. During its usage,

EFS itself increases and decreases the allocated size of the file system automatically as

files are inserted and deleted in the system.

The EFS files are stored in many availability zones (AZs) of the same region, and they

can be accessed in parallel by as many VMs as the user want. However, there is a limit

of 35000 accesses to the EFS files per second, and each file has a size limit of 52.67 TB.

The EFS compatible file system is the Network File System (NFS) version 4 (NFSv4.0 or

NFSv4.1). Regarding costs, the EFS charges a bigger fee to files that are more frequently

accessed by the VMs and a smaller fee to files that are infrequently accessed, as they stay

in a cheaper EFS class. The management between both classes can be done automatically

by EFS if the user enables the Lifecycle Management in the creation of the EFS. So, in

the us-east-1 region, localized in North Virginia, the fee charged in the most frequently

2.3 The Scheduling Problem on Clouds 13

accessed files is $0.30 per GB per month, and the fee charged for the infrequent ones is

$0.025 per GB per month, checked in April of 2020.

2.3 The Scheduling Problem on Clouds

Yu et al. [91] define scheduling as the process of mapping tasks and manage the execution

of the entire applications in a computational environment. Therefore, the scheduler’s main

function is to define where and when the tasks should be executed. Usually, this decision

is bounded by restrictions imposed in the application or in the environment, such as a

deadline or memory limits. According to Topcuoglu et al. [83], in distributed systems, an

efficient scheduling approach is a key factor to achieving high computational performance.

In formal terms, the scheduler goal is to allocate a set of tasks B = {t1, t2, . . . , tm}
to a set of machines M = {vm1, vm2, . . . , vmn}. During that process, the scheduler

is guided by an objective function. Moreover, the scheduler is subject to restrictions

that, if not satisfied, make the solution unfeasible [84]. The most common objectives

for scheduling applications are: minimize the total execution time (makespan), maximize

the load balance, and minimize the failure rate. Besides, in cloud environments, the

execution’s monetary cost is one of the main users’ concerns. In addition to the objectives,

the most common restrictions faced by the scheduler are budget limits and deadlines [56].

The problem of scheduling tasks in a distributed system is part of the so-called NP-

hard problems [85]. This means that no known algorithm can find the optimal solution

in a polynomial time (unless P = NP). Consequently, scheduling approaches usually

implement algorithms that generate approximate results, called scheduling heuristics [83,

56, 91]. These approaches do not guarantee that the solution found is optimal, i.e., the

best possible solution to the problem. However, they can find solutions with acceptable

quality and in a viable execution time [47].

Scheduling algorithms can be either static or dynamic [31]. In static algorithms, the

entire scheduling plan is defined before the execution. To do that, the algorithm may

consider the environment’s initial conditions (such as processing capacities, number of

available VMs, and bandwidth). Moreover, the heuristic is not able to take into account

possible changes that can occur during the application execution, and all information re-

lated to the application and the environment, such as execution time, memory capacity,

processing power, etc., must be known a priori. Therefore, the information’s accuracy

directly influences the scheduling result since inaccurate information induces the scheduler

2.3 The Scheduling Problem on Clouds 14

to generate low-quality solutions. The most common ways of obtaining tasks and environ-

ment information are from historical records of previous executions or benchmark tests.

Furthermore, some information can be obtained from estimations using mathematical

models or statistical tools.

In the case of dynamic algorithms, the scheduling plan is created or updated during

the execution of the application. Usually, in this approach, tasks are allocated in stages

according to the computational resources’ availability. Thus, the scheduler monitors the

execution, including the VMs and tasks’ status and, if there are tasks ready to be sched-

uled and idle VMs, it allocates those tasks following parameters that meet the desired

objective. Generally, the dynamic scheduler uses a local approach, where each task’s

assignment is decided independently, using only the information of the task and the avail-

able resource, without considering other tasks in the decision [31, 47]. Moreover, unlike

static scheduling, the dynamic scheduler can update from time to time all information

related to the application and with the environment, which improves accuracy. Also, any

change in the environment can be easily detected and handled by adapting the allocation

plans. Although dynamic scheduling is more flexible and requires fewer input parameters,

its execution overhead and implementation complexity are usually greater than the static

one [31].

Differently from other environments such as grids and clusters, some additional as-

pects of the cloud environments need to be taken into account by the scheduling strategy.

Firstly, since clouds adopted a pay-per-use pricing model, every decision made in those

environments results in monetary cost. Thus, although cloud resources are virtually un-

limited, a user’s budget is not. Hence, the scheduling decisions need to consider a trade-off

between the desired performance and the monetary cost.

Secondly, there is a wide variability of instance types offered by the providers. It can

be a challenge to the users to define what type of instance is suitable for their application.

Those issues can be further complicated when considering other services and aspects of

the cloud, such as different markets and features. Finally, in the cloud, the heterogeneity

of the physical hardware can result in unexpected performance variation. For instance,

a VM running in a brand new physical machine probably will have better performance

than a VM of the same type running in an old physical machine [81].

Thus, unlike the advertising of cloud providers who advocate usability as one of the

main advantages of cloud environments, when we consider all the necessary variables to

be defined to execute a given application efficiently, a cloud can become a complex envi-

2.3 The Scheduling Problem on Clouds 15

ronment where any decision directly impacts the final execution and respective monetary

costs.

Chapter 3

Related Work

Elastic environments, such as clouds, where computational resources can be added and

removed based on the application’s needs, are extremely suitable for applications com-

posed of independent tasks. More recently, with the introduction of new hiring models,

as the spot and reserved markets, several works that explore the characteristics of those

models have also been proposed [58]. In this Chapter, we discuss some of those works,

including the burstable instances related literature.

This Chapter is divided into three sections. Firstly, in Section 3.1, we introduces

works that deal with the scheduling of BoT application in cloud environments. Next,

in Section 3.2, we present scheduling works that propose solutions that use spot or/and

on-demand instances. Finally, in Section 3.3 we present related literature about burstable

instances.

3.1 Bag-of-Tasks Scheduling on the Cloud

BoT applications running in cloud environments are widely used not only for scientific

applications but also for many commercial applications. In [35], Facebook reports that the

jobs running in their own internal data centers are mostly independent tasks. Many works

propose then scheduling independent tasks to both on homogeneous and heterogeneous

cloud environments [82]. In the former, the performance and pricing of all available

VMs are the same. In this case, authors usually consider either reserved VMs [89] or

on-demand VMs [81]. For instance, Thai et al. [81] study scheduling of applications

on on-demand VMs distributed across different datacenters, focusing on the trade-offs

between performance and cost while Yao et al. [89] provide a solution that satisfies job

deadlines while minimizing monetary cost. The proposed heuristics use both on-demand

3.1 Bag-of-Tasks Scheduling on the Cloud 17

and reserved VMs. Works on heterogeneous cloud consider different types of VMs. For

instance, in [80] the authors present a heuristic algorithm for executing a bag-of-tasks

application taking into account either budget or deadline constraints. In [82], Thai et al.

present an extensive survey and taxonomy of existing research in scheduling of bag-of-task

applications on clouds.

Although the spot market has received a lot of attention in the last years, few BoT

schedulers exploit the use of spot VMs. Yao et al. [89], for example, propose a scheduler

that satisfies a deadline, and that minimizes the monetary cost, by using only on-demand

and reserved VMs. In [40], an agent-based strategy that uses different heuristics to sched-

ule concurrent BoT applications to on-demand VMs is presented. Farahadaby et al. [32]

propose FPRAS, a scheduler algorithm for BoT applications in multi-cloud environments

whose objective is to minimize the monetary cost of the execution. In [49], Keshanchi

et al. propose N-GA, a genetic algorithm-based scheduler for heterogeneous distributed

environments such as clouds. N-GA is a static scheduler whose objective is to reduce the

execution time of applications.

In Huang et al. [44], the authors aimed to minimize the total execution time of BoT

applications executed in on-demand VMs, by developing a PSO-based scheduler. In [61],

the authors present BaTs, a budget-constrained scheduler that uses on-demand VMs to

execute BoT applications. In [22], Chakravarthi et al. present NBWS, a budget constraint

dynamic scheduler, for scheduling workflows in on-demand VMs. Unlike the majority of

the related works, NBWS considers CPU performance variation of on-demand VMs and

the overhead (delay) of resource acquisition to make scheduling decisions. According

to the authors, the simulated results showed that NBWS was able to over-performance

baseline schedulers in monetary cost and execution time.

Unlike our approach, all the above works do not consider the use of spot VMs to min-

imize the monetary cost of the execution and do not apply any technique that guarantees

the complete execution of the applications in case of VMs interruptions.

Besides the monetary costs and execution time of applications, energy consumption

is also a popular objective of BoT scheduling problems. In [73], for example, Tang et

al. propose a heuristic that defines where new jobs should be scheduled to reduce the

number of active cloud data centers. The authors use a workload prediction approach

that combines linear regression with neural network techniques. In [23], a multi-criteria

meta-heuristic, whose objective was to minimize the makespan of the application and the

energy consumption of the cloud resources, was proposed. In [54], Lu and Sun present an

3.2 Scheduling using Spot and On-demand Instances 18

energy-efficient resource scheduling algorithm, called CSRSA (Clonal Selection Resource

Scheduling Algorithm). The algorithm deals with the problem of energy consumption by

applying concepts and principles of load balancing techniques. According to the authors,

their simulated results show that CSRSA has a close optimal ability to reduce energy

consumption on data centers. In [6], the authors have proposed a multi-objective divisible

scheduling heuristic whose aim is to minimize both energy consumption and execution

time of BoT applications. Similarly to our work, applications are subject to a deadline.

However, since the energy efficiency is related to data centers, those works are applied in

the provider-side and not on the client-side, as is the case of HADS and Burst-HADS.

3.2 Scheduling using Spot and On-demand Instances

Spot and on-demand instances have received a lot of attention in applications scheduling.

Likewise to our proposed framework, several works in the related literature [72, 66, 58,

71, 53, 87, 74, 75] propose, for monetary cost sake, the use, whenever possible, of spot

VMs for scheduling applications. On the other hand, as these works were conceived before

December 2017, they cope with the termination/revocation of spot VMs instead of their

hibernation. The common objective of them is rather a tradeoff between monetary cost,

reliability, and execution time. SpotOn [72] is a batch computing service platform that

uses the price history of the spot market to select the fault-tolerance mechanism that can

mitigate the impact of spot VMs revocations and minimize the expected monetary cost of

the job execution. Loo et al. [53] proposed a hybrid approach that considers on-demand

and spot VMs to execute tasks with different priorities. In their approach, on-demand

VMs are used for high priority tasks while spot VMs are reserved for non-priority ones.

Spot VMs interruptions are tackled by reserving a certain number of on-demand VMs as

spare resources to execute backup tasks. Whenever a spot instance is terminated, the

workload is immediately migrated to on-demand VMs.

Pham and Fahringer [66] propose an evolutionary multi-objective scheduling algo-

rithm that minimizes the makespan and the cost of workflow applications running in the

cloud. The strategy starts the execution using spot instances. In case of revocation, the

spot instance is replaced by a similar on-demand VM keeping the same scheduling plan

defined beforehand the execution. In [92], Zhou et al. proposed Dyna, a probabilistic

scheduling system that minimizes a Workflow-as-a-Service provider’s cost while satisfying

the performance guarantees of individual workflows predefined by the user. According to

the authors, the system uses a series of optimization techniques for monetary cost opti-

3.2 Scheduling using Spot and On-demand Instances 19

mizations, specifically designed for cloud dynamics, and adopt both spot and on-demand

instances. The spot instances are adopted to reduce monetary cost, and on-demand in-

stances are used as the last defense to meet deadline constraints.

In [71], Sharma et al. proposed SpotCheck, a framework that uses nested VMs within

spot VMs to provide the illusion of a platform that offers always-available VMs. In order to

cope with spot revocations, the nested VMs are migrated to an on-demand VM whenever

a spot revocation occurs. Menache et al. [58], proposed an online learning algorithm,

which selects spot and on-demand VMs to execute batch jobs that arrive over time. The

algorithm adapts the resource allocation by learning from its performance on prior job

executions and from the history of spot prices.

AutoBot, proposed in [87], uses both spot and on-demand VMs for scheduling tasks

of BoT applications with a user-defined deadline. It applies task migration from spot to

on-demand VMs to satisfy time constraints and uses checkpoint strategies for performance

sake. AutoBot [87] is the closer work to HADS, because: (i) it uses both spot and on-

demand VMs for scheduling tasks of BoT applications with a user-defined deadline; (ii)

it applies task migration from spot to on-demand VMs to satisfy constraints; and (iii) it

uses checkpoint strategies for performance sake. However, although AutoBot article was

published in 2019, the authors still consider bid prices and the variation of the market

to ensure reliability and to meet the application deadline. Furthermore, unlike HADS,

where migration is a consequence of spot VM hibernations, AutoBot considers a critical

point within the application execution when all tasks running in spot VMs should migrate

to on-demand ones, even if no spot interruptions has happened. Consequently, AutoBot

does not take full advantage of the available allocated spot VMs as HADS does.

All the above works cope with the termination/revocation of spot VMs and do not

consider the hibernation feature. Moreover, most of them exploit the historical of spot

VM price variation to predict spot VMs’ revocations. In fact, the prediction based on

spot price variation is a good approach. However, since 2017 that approach can be more

challenging in AWS, as the provider has adopted prices more stable to the spot market.

Moreover, some techniques explored the spot market’s bid price to improve the reliability

of the VMs. That approach is no longer support since the provider does not use the bid

[64].

Several works from the related literature deal with the checkpointing problem of BoT

applications in clouds [72, 36, 6, 87]. Yi et al. [90] propose an adaptive checkpoint that

takes into account the price variation of the spot VM to predict the spot termination and

3.2 Scheduling using Spot and On-demand Instances 20

decide when a checkpoint shall be taken. On the other hand, SpotOn [72] implements a

proactive mechanism, where the number of checkpoints is neither related to the market

volatility nor the number of revocations, but on a specified checkpointing interval. In [87],

three checkpoint strategies are proposed: i) optimistic checkpoint, where the state of the

task is recorded just before the migration to an on-demand VM; ii) grace period check-

point, where the two minutes between the notification of the interruption of a spot VM

and the VM interruption itself are used to take the checkpoint; and iii) sliding checkpoint,

where the checkpoint is taken in fixed intervals.

As stated before, since AWS adopted a new price model, prices of VMs in the spot

market are quite stable and defined exclusively by the supply and demand of spare capacity

and no more by bid prices [64]. Therefore, checkpoint strategies based only on price

variations could no be so efficient in EC2’s VMs. Another remark is that the just described

grace period checkpoint cannot be applied by HADS, because spot VMs are hibernated

immediately without the two minutes notification. Therefore, uncoordinated checkpoints,

periodically taken in constant intervals, akin to SpotOn checkpoint strategy, seem to be

the most suitable technique for tasks running in hibernated-prone spot VMs. Instead of

saving task states, SpotCheck [71] provides a checkpoint of the VM’s memory state in

an external disk by running a background process that continually flushes dirty memory

pages to a backup machine. The VM may then resume from the saved memory state in

a different machine.

To deal with spot VM revocations, we proposed in [74] a static heuristic that creates

pre-defined backup maps before the execution of the job tasks themselves. It was the first

attempt to cope with spot VMs hibernation, and results from simulation showed that the

hibernation problem is better handled with a dynamic approach. Thus, in [76] we present

a dynamic scheduler, denoted HADS that uses both spot and regular (non-burstable)

on-demand VMs to execute BoT applications. It aims at minimizing the execution’s

monetary cost respecting application deadline. Finally, in [77], we present Burst-HADS,

a extension of HADS that exploits hibernation-prone spot VMs and also burstable VMs.

It also applies new heuristics to reduce not only the monetary cost of the execution but

also the execution time of the application, while meeting the deadline defined by the user.

To the best of our knowledge, the hibernation mechanism of the spot VMs is only

discussed in our previous works [74, 76] and in Fabra et al. [30]. In the latter, the

authors consider a scenario where hibernation-prone spot VMs can be used and then they

show that deadline constraints add complexity to the problem of resource provisioning.

3.3 Burstable Instances Related Literature 21

However, no practical solution is presented neither discussed. Moreover, that work does

not concern the task scheduling problem, but a resource provisioning one.

3.3 Burstable Instances Related Literature

Since AWS introduces the concept of burstable VM, many works exploring its features

have been proposed. Many of them focus on evaluating the burstable approach and

the improvement in computational performance that it can induce. In [51], Leitner and

Scheuner presented a first empirical and analytical study about the second generation of

AWS burstable instances (T2 family). They specifically considered T2.micro, T2.small,

and T2.medium instances. Their article aimed at answering if, in terms of monetary cost

and performance, these instance types are more efficient than other ones. The presented

results show that compared to general-purpose and computed-optimized instances (2015

generation), the evaluated T2 instances provide a higher CPU performance-cost ratio as

long as the average utilization of instances is below 40%.

To figure out the CPU usage limits on-the-fly, considering the dynamic variation of the

workloads, Ali et al. proposed in [2] an autonomic framework that combines light-weight

profiling and an analytical model. The objective was to maximize the amount of work done

using the burstable capacity of T2 VM instances. The authors state that the framework

extends the CPU credits depletion period. Similarly to Leitner and Scheuner’s work [51],

their results also confirmed the benefits from active CPU usage control when burstable

instances are exploited. However, they do not discuss the impact on the total execution

time when such an approach is applied. Jiang et al. [45] analytically modelled the

performance of burstable VMs, considering their respective configuration, such as CPU,

memory, and CPU credits parameters. They also showed that providers could maximize

their total revenue by finding the optimal prices for burstable instances. Although their

work, contrarily to ours, does not focus on application performance, its contribution is

interesting since it states that providers can offer burstable instances for low prices without

losing revenue while meeting QoS parameters.

Some scheduling and scaling works also take advantage of burstable instance features.

In [19], for example, Baarzi et al. proposed an autoscale tool denoted BurScale, which

uses burstable instances, together with on-demand instances, to handle transient queuing

which arises due to traffic variability. They also presented how burstable instances can

mask VM startup/warmup costs when autoscaling, to handle flash crowds, takes place.

3.3 Burstable Instances Related Literature 22

Using two distinct workloads, a stateless web server cluster and a stateful Memcached

caching cluster, the authors showed that a careful combination of burstable and regular

instances ensure similar performance for applications as traditional autoscaling systems

while reducing up to 50% of the monetary cost.

In [88], Wang et al. combined on-demand, spot, and burstable instances proposing

an in-memory distributed storage solution. Burstable instances were used as a backup to

overcome performance degradation resulting from spot instance revocations. According

to the authors, those instances’ burst capacity makes them ideal candidates for such a

backup. Performance results show that the backup that uses burstable instances presents

a latency, which is 25% lower than the latency of backup based on regular instances,

inducing, therefore, significant monetary cost saving.

Table 3.1 summarizes the main characteristics of the related approaches presented

in this Chapter. The following features are highlighted in the table: Spot, On-demand

and Burstable, which indicates if the solution considers spot and/or on-demand markets

and also burstable VMs; hibernate/resume, which shows if hibernation-prone VMs are

used; the type of the scheduled application and the used fault tolerance technique; the

objectives and constraints of the scheduling algorithm; and how the proposed scheduler

was evaluated.

As we can see in Table 3.1, on-demand VMs are used in more than 95% of the related

literature, while spot VMs comprise 50% and Burstable VMs only 12.50%. Moreover,

more than 83% of the works considered BoT applications. In terms of fault tolerance,

the migration procedure is used in more than 54% of the related works, while checkpoint

and replication are used in 29.17% and 4.17%, respectively. In the table, we also see that

the minimization of the monetary cost is the most common objective found in the related

literature (more than 66% of the related works). Finally, the evaluation using simulation

was adopted by more than 79% of the works, while the practical evaluation was used in

only 33.33% of the approaches.

3.3 Burstable Instances Related Literature 23

Table 3.1: Related Literature of Scheduling Using Burstable and/or Spot and Regular
On-demand Instances

Article Spot Burstable On-demand hibernate/resume Applications Fault Tolerance Objective

(minimize)

Constraint Evaluation

Approach

Oprescu and Kielmann [61] (2010) No No Yes No BoT - Execution Time Budget Simulation

Yi et al. [90] (2011) Yes No No No BoT Checkpoint and

Migration

Monetary Cost - Simulation

Farahadaby et al. [32] (2012) No No Yes No BoT - Monetary Cost - Simulation

Lu et al. [53] (2013) Yes No Yes No BoT Migration Monetary Cost - Simulation

Gutierrez-Garcia et al. [40] (2013) No No Yes No BoT - Monetary Cost - Simulation

Aupy et al. [6] (2013) No No Yes No BoT Checkpoint Energy

Consumption

and Execution

Time

Deadline Simulation

Menache et al. [58] (2014) Yes No Yes No BoT Migration Monetary Cost Deadline Simulation

Yao et al. [89] (2014) No No Yes No BoT - Monetary Cost Deadline Simulation

Zhou et al. [92] (2015) Yes No Yes No Workflows Checkpoint and

Migration

Monetary Cost Deadline Simulation and

Prototype on

EC2

Subramanya et al. [72] (2015) Yes No Yes No BoT Checkpoint,

Migration and

Replication

Monetary Cost - Simulation and

Prototype on

EC2

Sharma et al. [71] (2015) Yes No Yes No BoT Migration Monetary Cost - Prototype on

EC2

Wang et al. [88] (2017) Yes Yes Yes No Memchached

Application

Migration Monetary Cost - Prototype on

EC2

Keshanchi et al. [49] (2017) No No Yes No BoT - Execution Time - Simulation

Tang et al. [73] (2018) No No Yes No BoT - Energy

Consumption

- Simulation

Huang et al. [44] (2019) No No Yes No BoT - Execution Time - Simulation

Lu and Sun [54] (2019) No No Yes No BoT - Energy

Consumption

- Simulation

Teylo et al. [74] (2019) Yes No Yes Yes BoT Migration Monetary Cost Deadline Simulation

Pham and Fahringer [66] (2019) Yes No Yes No Workflows Migration Monetary Cost

and Makespan

- Simulation

Varshney and Simmhan [87] (2019) Yes No Yes No BoT Checkpoint and

Migration

Monetary Cost Deadline Simulation and

Prototype on

EC2

Baarzi et al. [19] (2019) No Yes Yes No Web Server and

Memcached

Application

Migration Monetary Cost - Prototype on

EC2

Teylo et al. [76] (2020) Yes No Yes Yes BoT Migration and

Checkpoint

Monetary Cost Deadline Prototype on

EC2

Teylo et al. [77] (2020) Yes Yes Yes Yes BoT Migration and

checkpoint

Monetary Cost Deadline Prototype on

EC2

Chakravarthi et al. [23] (2020) No No Yes No BoT - Execution Time Budget Simulation

Chhabra et al. [23] (2020) No No Yes No BoT - Energy

Consumption

and Execution

Time

- Simulation

Chapter 4

Proposed Models and Framework Archi-
tecture

In this Chapter, we present the system and application models considered in this thesis

and the general architecture adopted by HADS and Burst-HADS. Thus, this Chapter is

divided in two sections. Section 4.1 presents the System and the application models, while

Section 4.2 introduces the frameworks’ architecture.

4.1 System and Application Models

As stated in Chapter 2, cloud computing providers offer computational resources packaged

as VMs in different markets. Thus, let M = M s ∪M o ∪M b be the set of VMs that a user

can deploy to execute her/his BoT application, where M s is the set of spot instances, M o

is the set of regular on-demand VMs, and M b is the set of burstable on-demand instances.

M depends on the type and market of the VMs that can be deployed during the execution

and must respect the resource restrictions imposed by cloud providers. For instance, in

Amazon EC2, if the user decides to use only on-demand VMs of type c5.xlarge and spot

VMs of type c5.2xlarge, M must be composed exclusively by those VMs. Moreover, since,

by default, Amazon does not allow more than five VM instances with similar type and

market running at the same time, in our example, M o and MS would be composed by

a maximum of five VMs c5.xlarge and five c5.2xlarge, VMs. Besides, M b would be an

empty set, since c5 VMs are not burstable ones. We also define max ondemand as the

maximum number of on-demand VMs that can be allocated simultaneously. This value

is determined by the cloud provider. For instance, in Amazon EC2, by default, this value

is 20 VMs per region.

4.1 System and Application Models 25

Each vmj ∈M has a memory capacity of mj gigabytes, and a set of cores V Cj. Thus,

since we consider two markets, the spot and the on-demand, each vmj ∈M is present in

only one of them with cost cj. As stated in Chapter 2, in October 2017, Amazon adopted

the per-second billing in Linux VMs, in which users are billing in one-second increments

[21]. Therefore cj corresponds to the cost in seconds of vmj. Besides, each burstable

vmj ∈M b has a current CPU credit amount ccj that is constantly updated by the cloud

provider (in the case of vmj 6∈M b, i.e., non-burstable VMs, ccj =∞).

Let B be the set of tasks of the BoT application. We assume that each task ti ∈ B
executes in only one core of a VM, requiring a known amount of memory rmi, which

must be available throughout ti’s execution. Therefore, a multi-core VM can execute

two or more tasks simultaneously (one task per core) provided that there is enough main

memory for all of them. We also consider that the time required to execute each task ti

in a vmj ∈M is known and given by eij.

The user defines D, which is the deadline to finish the execution of all tasks of the

application with regard to the time when the application started. We then define T =

{1, . . . , D} as the set that discretizes such an execution in time intervals. Note that, in

this work, we consider that a deadline miss as a temporal failure, where the correctness of

the execution is also related to the capacity to meet the deadline.

Figure 4.1 shows the execution of tasks of an application in a spot VM. As we can

observe, each core starts executing a task. However, due to the lack of memory to fulfill

memory requirements of both tasks 1 and 5 at the same time, there is a gap between tasks

4 and 5 which induces core0 to remain idle until task 1 finishes.

In an environment where spot VMs can hibernate and resume multiple times, let

break-point of vmj be the time p ∈ T when the last hibernation of vmj started. If vmj

resumes in time to satisfy the application deadline, as shown in Figure 4.2, its tasks can

go on running from the break-point.

1

5

2

43

0

D

sp
otcore1

core0

Figure 4.1: Execution without hibernation

4.2 Architecture of HADS and Burst-HADS Frameworks 26

1

5

2

43

0

D
Hibernation

end

4

1

sp
otcore1

core0
Hibernation

start

Figure 4.2: Execution with hibernation

All variables and parameters defined in this Chapter are summarized in Table 4.1.

Table 4.1: Variables and parameters of the problem.

Name Description

B Set of tasks

M = Ms ∪Mo ∪M b Set of VMs that can be used

Ms Set of spot VMs that can be used

Mo Set of on-demand VMs that can be used

M b Set of Burstable VMs

T Discretized time set

D Deadline defined by the user

vmj Virtual machines

mj Memory capacity of vmj in gigabytes

V Cj Set of cores of vmj

cj Cost in seconds of vmj

ccj Current amount of CPU credit

max ondemand Maximum number of on-demand VMs allo-

cated simultaneously

ti Task ti

rmi Amount of memory required by ti

eij Time required to execute ti in a vmj

break-point Discrete time when vmj hibernates

α Time intervals a new deployed VM takes to re-

ceive the migrated tasks

4.2 Architecture of HADS and Burst-HADS Frameworks

HADS and Burst-HADS frameworks use a master-worker architecture standard. The

master is responsible for defining the scheduling plan, choosing the VMs, requesting the

resources to the provider, and, eventually, migrating tasks to other VMs. On the other

hand, the workers operate as asynchronous daemon applications which run in the back-

4.2 Architecture of HADS and Burst-HADS Frameworks 27

ground on each deployed VM. The workers’ main role is monitoring the VMs and the

tasks to communicate all status changes to the master.

Workers are also an interface between the master and the deployed VMs. For example,

when the master needs to configure a storage service in one specific VM, it sends a

command to the corresponding worker, which executes all the configuration procedures.

All the master’s commands are sent throughout the network by using the HTTP protocol.

Figure 4.3 represents the frameworks general architecture. Note that, in the example of

Figure 4.3, the master runs on a local computer. However, it could be executed in a VM

on the cloud. But, since we need the guarantee that the master will always be available,

it must be executed in an on-demand VM.

Local Computer

MASTER

Cloud Provider

VM
WORKER

VM
WORKER

VM
WORKER

VM
WORKER

Dynamic
Scheduling

 Module

Primary
Scheduling

module

Figure 4.3: General architecture of the Frameworks

To deploy and terminate the VMs, the master uses the SDK offered by the cloud

provider. In the case of AWS, the frameworks use Boto3 [13], an SDK for Python 3.0.

Boto3 allows users to develop python scripts that can create, update, and delete AWS

resources. Boto3 goes from the management of the services and resources of EC2 to the

consult of the users’ bill. All Boto3 functionalities used by the proposed frameworks are

packaged in a class of the framework that standardizes function callings, input parameters,

and outputs. Therefore, HADS and Burst-HADS are independent of the cloud provider’s

SDK, allowing them to support any provider easily.

Figure 4.4 presents the frameworks’ execution steps. Firstly, to initiate a new BoT

execution on the cloud, the user needs to generate two JSON files [65] that describe the

job (the BoT application) and the available VMs (the execution environment). In Figure

4.4, those files are presented as job.json and env.json, respectively. Also, the user needs to

define some input parameters, for example, the deadline D and the storage service. Note

that both frameworks have utility tools to help the users generate the input JSON files.

Figure 4.5 present an example of the env.json and job.json files. As can be seen,

the env.json presents the information of the VMs type c3.large and t3.xlarge, while the

4.2 Architecture of HADS and Burst-HADS Frameworks 28

job.json env.json Primary Scheduling
Module map.json

Dynamic Scheduling
Module

Database

Cloud Provider

Deploy the VMs
and start the workers

Input
parameters

Generate the primary
scheduling map

Start the Dynamic
Scheduling

 Module

VM
WORKER

VM
WORKER

VM
WORKER

VM
WORKER

Figure 4.4: Frameworks’ execution steps

job.json represents a synthetic job with three tasks. The provider gives all VMs’ infor-

mation presented in the env.json. The file also includes what market the VM can be

launched in and indicates if the VM is burstable or not. In the case of the job.json, we

also have the execution time of each task in each one of the VMs presents in the env.json,

the task’ memory requirement, and the command that need to be executed by the worker

at the moment of the task execution.

Figure 4.5: Examples of the env.json and job.json input files

All the user-given information is used as input to the Primary Scheduling Module

(Burst Primary Scheduling Module, in the case of Burst-HADS). The Primary Schedul-

4.2 Architecture of HADS and Burst-HADS Frameworks 29

ing Module generates the initial scheduling map by executing some heuristics that use

the input information to define the initial scheduling strategy. Those heuristics will be

presented in the next chapters. As shown in Figure 4.4, the module outputs the map

also in the JSON format (represented as map.json in the figure). Choosing the JSON

format has the following motivations: i) that format is human-readable, allowing users to

understand the map and the input parameters; ii) JSON files are easily editable, allowing

users or third-party tools to change the scheduling and input parameters; and iii) JSON

files can be easily extended to support new functionalities or features of the frameworks.

After generating the primary scheduling map, the framework starts the Dynamic

Scheduling Module. That module requests the VMs defined by the Primary Scheduling

Module and dispatches the tasks according to the initial scheduling plan described in

the map.json. Then, the Dynamic Scheduling Module manages all the BoT execution,

reacting to events, such as spot hibernations, that can cause any deadline violation.

Besides the execution’s management, the Dynamic Scheduling Module is also respon-

sible for starting the workers at each VM. Moreover, whenever a new BoT application is

submitted to the execution, the environment must be ready to receive and execute the

tasks. In order words, libraries and dependence files need to be installed on the VMs be-

fore the execution. However, instead of installing the dependencies directly on the VMs,

HADS and Bust-HADS use nested containers in the VMs.

Currently, the frameworks use the Docker platform [59]. When a new container is

created, a VM image (Amazon Machine Image, in the case of AWS) holding the containers

is also created. Thus, if a BoT application needs to be executed multiple times, the

frameworks do not need to create the same containers again. Instead, they load that

image at the moment of the VMs deployment.

The Dynamic Scheduling Module is also responsible for coordinating the recording

of tasks’ checkpoints and for contracting and configuring the cloud storage service that

will be used to store all checkpoint files. Thus, the worker is started, the master sends a

command to define the storage system. When the worker completes the storage system

mounting process, tasks can then start executing. During the execution, the worker

records checkpoints according to a pre-defined checkpoint interval (see Section 6.1.2).

In this work, the checkpoints are recorded using the Checkpoint Restore In Userspace

tool (CRIU) [29]. CRIU is a widely used checkpointing tool that can record the state of

individual applications. Different from other tools, CRIU is implemented in the user space

and does not need superuser privileges. Moreover, it has a straightforward installation,

4.2 Architecture of HADS and Burst-HADS Frameworks 30

and it is available in most Linux repositories.

As represented in Figure 4.4, the Dynamic Scheduling Module has access to a database,

which is used to store all events that occur along with the execution and keep information

of the resources and tasks, including which tasks each VM executed and task migrations

events. Each event stored in the database has a timestamp, allowing users to track

the events chains. Moreover, by querying the database, the framework can define the

execution total monetary cost and time.

Chapter 5

Evaluating AWS Storage services for
Checkpointing and Recovering

When using a checkpoint/recovery approach, it is essential to ensure that all files required

for recovery of the application will always be available in case of failure. In cloud environ-

ments, different storage services can be hired and used along with the VMs. As presented

in Chapter 2, AWS offers several options of storage services [15], with different features,

prices and purposes. Considering the HADS and Burst-HADS framework, we are inter-

ested in using three general-purpose storage services offered by AWS (Amazon S3, EBS,

and EFS) to store and recover checkpoints files of BoT tasks running in spot VMs. Thus,

in this Chapter, we conduct a study evaluating the impact of such approaches on the

time and monetary cost of the execution, considering the use of each one of those storage

services. All experimental tests presented in this Chapter were performed using VMs of

type c3.2xlarge, composed of 8 vCPUs and 16 GBs of memory. Moreover, we also used

the synthetic application proposed in [4], which allows us to define the associated task’s

memory footprint and execution time.

This Chapter is divided into three sections. Firstly, in Section 5.1, we evaluate and

measure the times required to record checkpoints on the three evaluated services. Next, in

Section 5.2, we analyze the impact of checkpoints in the execution time of the application,

considering a scenario where there are no spot hibernations. Moreover, we also evaluate

the overheads associated with the recovery procedure. Finally, in Section 5.3, we esti-

mate how checkpoints considering each one of three services would impact the execution’s

monetary cost.

5.1 Dump Time Evaluation 32

5.1 Dump Time Evaluation

According to [25] ”the dump time is the overhead spent writing out the checkpoint files

required to restart the application after an interrupt”. To characterize that overhead,

concerning the evaluated storage services, we create a set of synthetic tasks with memory

footprint varying from 140 MB to 7,750 MB (one task by memory size). For each task,

we define an average base time, i.e. execution time without checkpoint and revocations,

of ≈20 minutes and a fixed checkpointing interval of 5 minutes, resulting in 4 checkpoints

per task. The dump time evaluation is presented in Figure 5.1. The Y-axis in Figure 5.1

is in log scale for better visibility of the small times.

As shown in Figure 5.1, the S3 service presented by far the worst results in the

evaluated scenarios. Consider the task with the smallest footprint size (140 MB), when

using S3, the dump time was 89.35% higher than EFS and 96.75% higher than EBS. In

fact, for all used memory ranges, the dump time with S3 presented an increment of 72.57%

and 89.37% on average when compared to EFS and EBS, respectively. Besides that, in

S3, the larger the size of the memory footprint, the greater the amount of variation in

dump time. The same amount of variation is not seen in the other evaluated services.

task's memory footprint (MB)

av
er

ag
e

du
m

p
tim

e
(s

ec
on

ds
)

1.00

5.00

10.00

50.00

100.00

1,000.00 2,000.00 3,000.00 4,000.00 5,000.00 6,000.00 7,000.00

S3 EFS EBS

Figure 5.1: Dump time in S3, EBS and EFS for different sizes of memory footprint

It is worth mentioning that the results of S3 are intrinsically linked to the tool used

to create the storage system. As said before, S3 does not offer native support to a file

5.1 Dump Time Evaluation 33

system, requiring third-party tools to it. Therefore, we would probably see different

results for S3 experiments with different file system tools. Moreover, any alteration in

a file in S3 requires the download of the entire file to a local storage system. So, if an

incremental checkpoint technique is adopted, in which a new checkpoint modifies the

previous checkpoint file (according to the current state of the application), possibly the

use of S3 will not compensate for the higher cost.

On the other hand, EBS presented the best results, with dump time varying from 0.65

to 55.82 seconds, followed by EFS (2.12 to 78.73 seconds). Those results were expected

since EBS is a local storage service and thus had no additional transfer overhead associated

with the storage operation. However, it is important to mention that in the scenario

where multiple tasks are sharing the same EBS volume to store their checkpoint files, the

recovery procedure cannot spread those tasks easily among different VMs. However, it is

important to note that the EBS volume is independent of the VM, i.e. the volume and

all the data stored in it is maintained by the provider even when the VM is revoked or

terminated.

5.1.1 Dump Time evaluation of Concurrent Checkpoints

To evaluate the impact of concurrent checkpoints in the shared storage services S3 and

EFS, the task with the biggest memory footprint (7,750 MB) was executed considering

scenarios where one, two, four, and six VMs shared the same file system. To avoid

concurrency with other resources, we considered only one task per VM. Moreover, the

checkpoint recording was synchronized by HADS, and the task execution time was also

around 20 minutes with an interval of 5 minutes between checkpoints. Figure 5.2 shows

the results of this test.

As can be seen in Figure 5.2, while in EFS the dump time increased with the number

of VMs, in S3, the dump time was almost the same, for all cases. For one VM, the

average dump time with S3 was 65.92% greater than EFS. However, with two VMs, that

difference drops to 46.31%. At the four VMs scenario, the time already becomes bigger

in EFS then S3 (3.03% of increment). In the six VMs scenario, the dump time with

concurrent checkpoint recording increased 37.89% with EFS in comparison to S3.

5.2 Overall Overhead Analysis 34

Number of VMs

D
um

p
Ti

m
e

(s
ec

on
ds

)

0

120

240

360

480

1 2 4 6

S3 EFS

Figure 5.2: Dump time of concurrent checkpoints in S3 and EFS storage services

Those results show that to adopt EFS, the checkpoint/recovery solution has to con-

sider the number of concurrent recordings, once the performance of this service showed a

fast degradation in the evaluated scenarios.

When we consider several VMs, each one with its local storage (EBS), there is no

concurrency in the storage system to be analyzed. Also, the tool used in this work to

record the checkpoint (CRIU) does not allow concurrent checkpoints of tasks running in

the same VM. When two or more checkpoints requests are submitted, the tool queues

them and executes the recordings one at a time. Thus, the concurrency in EBS service

was not analyzed in this work.

5.2 Overall Overhead Analysis

Figure 5.3 presents the average percentages of time spent by the frameworks operations

in the scenario where there are no spot revocations. Once again, the task with the biggest

footprint size was used in this evaluation, and the checkpoints were recorded with a 5

minutes interval. Since there is no spot revocation, in this scenario, there are three

distinct operations: spot VM launching, checkpoint recording and task execution.

5.2 Overall Overhead Analysis 35

Storage Services

0%

25%

50%

75%

100%

S3 EFS EBS

Task execution Checkpointing Launch the spot VM

Figure 5.3: Overheads of launching a spot VM and recording checkpoints

The overhead of launching a spot VM includes the time for requesting the VM, con-

figuring and mounting the storage system and, finally, booting the VM. As can be seen

in Figure 5.3, the overhead of that operation is almost the same for all services. In the

case of S3 that overhead was 6% of the total execution time, while in EFS and EBS it

was 8%. As explained in Section 2.2.2, differently from the other services, EBS has to

create the storage volume, what results in additional overhead, that is smaller than the

time required to boot a VM.

The checkpointing overhead presented in Figure 5.3 confirms the results of Section

5.1, where the overhead percentage depends on the used storage service.

The increment in the total execution time of the application is equal to the product of

the number of recorded checkpoints by the dump time. The checkpoint time represented

37.1%, 15.4% and 11.4% of the total execution time using the services S3, EFS and EBS,

respectively.

Finally, considering all overheads caused by the checkpoint procedure and the VM

launching, the useful work accomplished by the VM considering the scenario of Figure

5.3, i.e., the execution of the task itself, represents 56.7% of the total execution time

using S3, 76.5% in the case of EFS and 79.8% using EBS. Therefore, if the user aims to

maximize the useful work executed by the VM, the services EFS and EBS seems to be

better than S3.

Figure 5.4 shows the overhead of the task recovery procedure concerning the evaluated

storage services. To estimate that overhead, a controlled revocation was implemented,

5.2 Overall Overhead Analysis 36

considering the execution of the largest execution time task and a 5 minutes checkpoint

interval. The base execution time of the task is around 20 minutes and the VM revocation

was emulated by terminating the VM before 10 minutes of execution. Thus, in this test,

only one checkpoint was recorded before the revocation (saving the first 5 minutes of

execution). Since only one spot VM was used, the time presented in Figure 5.4 includes

the time necessary to launch a new on-demand VM, to set up the storage system and to

recover the task using CRIU [29].

Storage Services

Ti
m

e
(S

ec
on

ds
)

160

180

200

220

240

S3 EFS EBS

Figure 5.4: Recovery Procedure Times

As can be seen, EBS presented the largest overhead in the recovery procedure. The

time of EBS is 9.14% higher than S3 and 25.86% higher than EFS. EBS requires that

the VM is associated with the storage volume to access it. To mount an EBS volume

and associate it to a VM, HADS uses the API Boto3. However, during a VM revocation,

HADS cannot associate the volume to other VM until the complete termination of the

revoked VM. In the tests presented in Figure 2, 148 seconds on average were spent to

terminate the spot VM. That result shows that although EBS has the best results in

terms of dump time (Section 5.1), the mechanism of association caused an additional

overhead on the recovery procedure. Note that, in the case of S3, the time spent in the

recovery is mostly due to the time necessary to recover the task (121 seconds on average).

So, in our tests, S3 presented the worst results both for recording checkpoints and for

recovering these checkpoints files as well.

5.3 Monetary Cost Estimation 37

Table 5.1: Monetary Costs of Services S3, EBS and EFS in a Long-running Application

Checkpoint
Interval (h)

of Checkpoints
Total Execution Time (h) Total Monetary Cost (US$)

S3 EBS EFS S3 EBS EFS

1 720 763.14 731.16 735.75 $23.13 $24.50 $30.64
5 144 728.63 722.23 723.15 $22.11 $24.24 $30.27
10 72 724.31 721.12 721.57 $21.99 $24.20 $30.22
15 48 722.88 720.74 721.05 $21.94 $24.19 $30.20
20 36 722.16 720.56 720.79 $21.92 $24.19 $30.20
25 28 721.68 720.43 720.61 $21.91 $24.18 $30.19

5.3 Monetary Cost Estimation

In our previous tests, we have executed only short-running applications with tasks requir-

ing less than one hour of execution. Moreover, all the files stored in the evaluated storage

services were deleted with less than 24 hours after the executions. In those cases, the type

of storage service used for checkpoint and recovery does not impact the monetary cost of

the executions. However, based on the dump times previously obtained and the monetary

cost of the storage services obtained from [21], we could estimate the monetary costs of

long-running tasks for each storage service.

To compute those costs, we considered an application with only one task with the same

characteristics of the largest task presented in Figure 5.1, executing for 30 days without

any interruption or revocation. We also considered that throughout the execution, the

dump time did not vary. In terms of storage, the users are charged at 30 days based price

(Section 2.2.2), and we assumed that 30 GBs of data were kept in the storage service,

including the checkpoint files, along those days. Additional charges of those storage

services were not considered.

The estimated results are presented in Table 5.1, where the first column shows the

checkpoint intervals, followed by the number of checkpoints, obtained by dividing the

task execution time by the dump time. Thus, we can estimate the total execution time

by adding the total checkpointing overhead to the task execution time. That time is

then used to compute the monetary costs of the execution. As can be seen in Table 5.1,

although the estimated execution time using S3 is the greatest one, it presents the lowest

monetary cost estimation. The monetary cost using S3 is 9.43% less than EBS and 36.66%

less than EFS. Thus, although the cost of VM hiring increases with S3 (because of the

increase in the execution time, the VM has to be hired for a longer time), the saving with

that type of storage service makes it attractive, considering the total cost.

Figure 5.5 shows the monetary cost that would be paid for the VM and the storage

5.3 Monetary Cost Estimation 38

service, considering the example where 25 hours is used between the checkpoints (that

case is presented in the last row of Table 5.1).

Storage Services

M
on

et
ar

y
C

os
t (

U
S

 $
)

$0.00

$10.00

$20.00

$30.00

$40.00

S3 EBS EFS

Storage service VM

Figure 5.5: Monetary Costs of Storage and VM hiring with Services S3, EBS and EFS

In this example, while the user pays US$0.69 for the 30 GBs stored for 30 days in S3, in

EBS and EFS those costs are US$3.0 and US$9.01, respectively. Therefore, there is a clear

connection between the cost of the service and its performance. That connection makes

S3 a competitive option when the monetary cost is more important than the execution

time. Moreover, we can also see in Table 5.1 that EFS is the most expensive service. That

result can be even worst when the total execution time of EFS and EBS are analyzed.

As can be seen, the difference in the execution times of those services is less than 1%.

However, the monetary cost with EFS is 19.93% higher than EBS. Therefore, the adoption

of EFS is justified only in cases where a shared storage system with performance near a

local storage system are necessary.

From the results presented in this Chapter we see that the EBS service showed the

best tradeoff between monetary cost and performance. However, as that service is a local

storage system, it prevents tasks sharing the same EBS volume from being spread among

different VMs in the recovery process. Moreover, in the recovery process, that service

presents an additional overhead caused by the necessity of associating the storage volume

containing the checkpoint with the VM, where the recovered task will execute. In the

case of EFS, the service presented checkpointing and recovery times close to EBS but

with higher monetary costs than the other services. Also, the EFS performance showed a

significant degradation with concurrent checkpoint records. We also see that S3 can be a

very attractive option when the monetary cost is more important than the application’s

total execution time and also for concurrent checkpoints. Thus, since our main concern is

5.3 Monetary Cost Estimation 39

the monetary cost, for the evaluations of HADS (Chapter 7) and Burst-HADS (Chapter 9)

we used S3. However, note that, for the study case presented in Section 9.5, the execution

time of the application was very impacted by S3. Moreover, we do not record checkpoints

in this study case. Thus, in this case, we adopt EBS.

Chapter 6

Hibernation Aware Dynamic Scheduler

In this Chapter, we present the HADS framework. At first, in Section 6.1, we introduce

HADS’ Primary Scheduling Module, which creates an initial scheduling map based on the

tasks’ execution time estimation, the deadline, and sets of on-demand and spot instances.

Next, in Section 6.2, we present the Dynamic Scheduling Module, including some schedul-

ing concepts adopted by HADS and the functions that handle spot instance hibernations

and task migrations.

6.1 Primary Scheduling Module

This section presents HADS’ Primary Scheduling Module. Firstly, we define the Dspot

value, a parameter that delimits the primary tasks makespan. This limit is necessary

to ensure that there will be enough remaining time to execute the application in case of

hibernations, respecting the deadline D. Next, we show how the checkpoint intervals are

defined by the framework and present the heuristics used to create the initial scheduling

map.

6.1.1 Estimation of Dspot

To avoid a temporal failure caused by a spot VM hibernation, the non-finished tasks,

which include running tasks and tasks waiting to be executed, should be migrated to

other VMs. Thus, we have to guarantee that there will always be enough spare time to

migrate and execute those tasks before the deadline of D. Therefore, aiming at ensuring

the application deadline no matter if and when spot VM hibernations could happen, we

determine the Dspot value. The Dspot is the worst-case estimated makespan and is used to

6.1 Primary Scheduling Module 41

guarantees enough spare time to migrate tasks of any hibernated spot VM to other VMs

and execute them before the deadline D. Dspot is computed by considering the deadline D

and the execution time of the longest tasks that might need to be migrated and executed

to/in the slowest VMs.

Algorithm 1 renders the estimation value of Dspot. The algorithm receives, as input,

the set of tasks B, the set M of VMs, the maximum number of on-demand VMs that can

be allocated simultaneously (max ondemand parameter) and the deadlineD. The average

number of tasks n that could be assigned to a VM can be estimated by dividing the number

of tasks in B by the maximum number of VMs (line 1). Then, the n longest tasks are

included in set L ⊂ B (line 2). Therefore, the execution time of these tasks in the slowest

VM of M , vms, obtained by calling procedure get slowest vm (line 3), characterizes the

worst case makespan, denoted mkpw. Note that the tasks are not actually scheduled to

vms. The assign function just emulates the scheduling of each ti ∈ L to vms.

In line 7, mkpw, is estimated by calling the procedure get makespan which considers

the slowest VM of M , vms, Dspot is, then, the difference between D and mkpw plus α,

the overhead to migrate the tasks (line 8). If Dspot is equal to zero, the scheduler deploys

only on-demand VMs. Figure 6.1 illustrates the Dspot estimation.

Algorithm 1 compute Dspot

Input: B,M,max ondemand, and D
1: n← d |B|

max ondemande
2: L← get longest tasks(n,B)
3: vms ← get slowest vm(M)
4: for all ti ∈ L do
5: assign(ti, vms)
6: end for
7: mkpw = get makespan(vms)
8: return max(D − (mkpw + α), 0)

D

SP
O
T

Core0

Core1

α

Dspot

mkpw

Figure 6.1: Dspot definition

The time complexity of Algorithm 1 depends on the execution of functions

get longest tasks (line 2) and get slowest vm (line 3). Besides, in line 4, a for-loop is exe-

6.1 Primary Scheduling Module 42

cuted for the n longest tasks. Thus, since the complexity of the functions get longest tasks

is O(|B|), and get slowest vm is O(|M |), the complexity of Algorithm 1 in the worst case

is O(|B| + |M | + n). However, as |B| > n and |B| > |M | the algorithm has time com-

plexity O(|B|), where |B| is the size of the set of tasks B and |M | is the size of the set

of VMs M . Note that, the algorithm receives as input the set B of tasks and the set M

of VMs as lists of integers, where each element is either a task ID or a VM ID. Thus , as

|B| >> |M |, in terms of space complexity we have O(|B|) as well.

6.1.2 Checkpoint Intervals

Since in BoT application tasks execute independently to each other, an uncoordinated

checkpoints approach is very suitable because it does not require any global tasks syn-

chronization. Hence, only the last checkpoint needs to be kept for each task. We consider

that, when executing a task ti scheduled to a spot VM, it will have its checkpoint period-

ically saved.

We define the input parameter ovh as the maximum percentage of time overhead that

the checkpoint mechanism is allowed to add in the original execution time of a task. The

necessary time to record a checkpoint of a task ti, called dump(ti) increases with the task’s

memory size. Consequently, the number of checkpoints, n ckpi, taken along the execution

of ti scheduled to spot vmj, is defined by Equation 6.1. Note that, we consider that the

execution time of a task ti allocated to a vmj increases ovh percent (eij = eij(1 + ovh)).

n ckpi = (eij × ovh)/dump(ti) (6.1)

In Equation 6.2, we also define intv ckpi as the time interval between two consecutive

checkpoints of task ti scheduled to spot vmj.

intv ckpi = eij/n ckpi (6.2)

Note that in this work checkpoints are taken in parallel. Therefore, tasks running in

the same VM can have their checkpoints recorded concurrently.

6.1 Primary Scheduling Module 43

6.1.3 Primary Scheduling Heuristic Algorithm

Algorithm 3 describes the primary scheduling heuristic, which is a greedy algorithm that

schedules a set of application tasks ti ∈ B to a set of spot and on-demand VMs. The

algorithm receives as input the set B of tasks, sets of VMs M , M s and M o, the deadline D,

the parameter ovh that indicates the maximum percentage of time overhead induced by

checkpoint, the migration overhead α and the max ondemand parameter. The primary

scheduling heuristic has three distinct phases: i) scheduling of a task to an already selected

VM; ii) scheduling of a task to a new spot VM; and iii) scheduling of a task to a new

on-demand VM.

Initially, in line 1, Algorithm 3 computes the estimated time limit Dspot (previously

explained in Section 6.1.1). Then, it sorts the tasks of B in descending order by their

memory size requirements (line 2) and tries to schedule them, following the three phases

in the order. By calling the procedure check schedule (Algorithm 2), the heuristic verifies

if it is possible to schedule ti in the selected vmj of the current phase, i.e., if ti is scheduled

in vmj, (1) memory requirements must be satisfied and (2) the application deadline D

(resp.,Dspot), in case of on demand (resp., spot) vmj, should not be violated (line 4 of

Algorithm 2). If these two conditions are not ensured, the algorithm goes to the next

phase; otherwise ti is scheduled and the algorithm tries to schedule the next task of B.

Note that if vmj is a spot VM, the time to execute ti should include the overhead ovh

induced by the checkpoints (line 2 of Algorithm 2). Furthermore, for spot VMs, Algorithm

3 also computes intv ckp, the interval time between two consecutive checkpoints using

Equation 6.2 presented in Section 6.1.2 (lines 9 and 22). The three phases of Algorithm

3 are described next.

Phase 1: Scheduling tasks to an already allocated VM avoids VM deploying time.

Thus, for each task ti ∈ B, the algorithm tries to schedule it in a core of a virtual machine

vmj from A, the set of already selected VMs (lines 7 to 17). It firstly tries spot VMs. We

point out that for the first task, Phase 1 is bypassed since A is initially empty.

Phase 2: If ti can not be scheduled to a vmj of A, the algorithm tries to select a

new spot VM (lines 19 to 28) using a weighted round-robin algorithm (WRR) [48]. In

WRR, each spot VM has an associated weight and the algorithm selects the VMs in

round-robin way, according to such weights. As shown in Equation 6.3, the weight of

vmj, weight(vmj), is equal to the quotient between Gflopsj of vmj, and cj, the price of

the VM per second. Gflopsj of vmj is estimated by using the LINPACK benchmark [28]

6.1 Primary Scheduling Module 44

and express the computing power of this VM.

Our choice in using WRR and spot VMs with different configurations is in agreement

with Amazon’s recommendations1 that say that an application should use different types

of spot VMs to increase the availability of spot VM instances. According to Kumar et al.

[50], interruptions of spot VMs, which include hibernation, usually take place in VMs of

the same type. Therefore, a choice of heterogeneous spot VMs minimizes the impact of

VM hibernations.

weight(vmj) = Gflopsj/cj,where vmj ∈M (6.3)

Phase 3: If it is not possible to allocate a new spot VM to schedule ti, the algorithm

schedules it in the cheapest on-demand VM instance (lines 30 to 35).

Finally, when all tasks have been scheduled, the algorithm creates the primary schedul-

ing map (line 37), which describes the initial execution strategy that the Dynamic Schedul-

ing Module of HADS should follow.

Algorithm 2 check schedule

Input: ti, vmj , Dk and ovh
1: if vmj ∈Ms then
2: eij ← eij + (eij × ovh)
3: end if
4: if startij + eij < Dk and enough mem(rmi,mj) then
5: return True
6: else
7: return False
8: end if

1https://aws.amazon.com/pt/ec2/spot/instance-advisor/

6.1 Primary Scheduling Module 45

Algorithm 3 Primary Scheduling Heuristic

Input: B, M , Ms, Mo, D, ovh and max ondemand

1: Dspot = compute Dspot(B,M,max ondemand,D)

2: sort by memory(B) {Sort tasks by memory requirement rmi}
3: A← ∅ {Set of selected VMs}
4: for all ti ∈ B do

5: {Phase 1: Try to schedule the task to an already selected VM}
6: sort by price(A) {Sort the selected VMs by price}
7: for all vmj ∈ A do

8: if vmj ∈Ms and check schedule(ti, vmj , Dspot, ovh) then

9: intv ckpi ← compute intv ckp(ti, vmj , ovh)

10: schedule(ti, vmj , intv ckpi)

11: break {Schedule next task}
12: end if

13: if vmj ∈Mo and check schedule(ti, vmj , D,) then

14: schedule(ti, vmj ,)

15: break {Schedule next task}
16: end if

17: end for

18: {Phase 2: Try to schedule the task to a new spot VM}
19: if not scheduled then

20: vmk ← get wrr VM(Ms){Select a spot VM using the weighted round-robin heuristic}
21: if check schedule(ti, vmk, Dspot, ovh) then

22: intv ckpi ← compute intv ckp(ti, vmk, ovh)

23: schedule(ti, vmk, intv ckpi)

24: A← A ∪ {vmk} {Update the set of selected VMs}
25: Ms ←Ms\{vmk}
26: break {Schedule next task}
27: end if

28: end if

29: {Phase 3: Schedule task to the cheapest new on-demand VM}
30: if not scheduled then

31: vmk ← get cheapest vm(Mo)

32: schedule(ti, vmk,)

33: A← A ∪ {vmk} {Update the set of selected VMs}
34: Mo ←Mo\{vmk}
35: end if

36: end for

37: map← create primary map(A)

38: return map

For each phase of Algorithm 3, we have the following time complexity. Since functions

6.1 Primary Scheduling Module 46

check schedule (see Algorithm 2) and compute intv ckp have both time complexity O(c),

the phase 1 of Algorithm 3 (lines 7 to 17) has complexityO(|A|log|A|), where |A| is the size

of the set of selected VMs A. The phase 2 (lines 19 to 28) has complexity O(c) which is the

complexity of function get wrr VM , that returns the next VM according to the weight

computed with Equation 3. Finally, the phase 3 (lines 30 to 35) has complexity O(|M o|),
that is the time spent by function get slowest vm(M o), where |M o| is the size of set M o

of on-demand VMs. Therefore, the complexity of the algorithm is O(|B| × (log |B| +
|A|log|A| + |M o|)), where O(|B| log(|B|)) is the complexity of the merge sort algorithm

executed on line 2. Moreover, Algorithm 3 receives four lists of integers, representing sets

B, M , M s and M o, where each element in a list represents either the ID of a task or of a

VM. Thus, as |B| >> |M |, in terms of space complexity Algorithm 3 is O(|B|).

The functions and procedures called by HADS’ Primary Scheduling Module algorithms

are summarized in Table 6.1, while variables and parameters are presented in Table 6.2.

Table 6.1: Functions and Procedures called by Primary Scheduling Module Algorithms

Name Description

get longest tasks(n, S) Renders the n longest tasks of set S

get slowest vm(M) Renders the slowest VM of M

assign(ti, vms) Emulates the assignment of task ti to vms. In this case task ti is not actually

scheduled to vms

get makespan(vms) Renders the worst case makespan as if the n longest tasks had been scheduled

to the slowest VM of M

sort by memory(B) Sorts the tasks of set B in descending order by memory size demand

sort by price(A) Sorts the VMs of set A by price

enough mem(rmi,mj) Returns True, if there is enough memory to schedule ti to vmj consider-

ing the memory requirement rmi and the memory capacity mj ; otherwise

returns False

get cheapest vm(Mo) Selects the cheapest on-demand VM

get wrr VM(Ms) Selects the next spot VM using the weighted round-robin heuristic

6.2 Dynamic Scheduling Module 47

Table 6.2: Variables and parameters used on Primary Scheduling Module Algorithms

Name Description

B Set of tasks

M Set of VMs that can be used

Ms Set of VMs spots

Mo Set of on-demand VMs that can be allocated

D Application deadline

Dspot Estimated time limit which ensures that there will be enough spare time to migrate

tasks of a hibernated VM spot to other VMs no matter when hibernations take

place

mkpw Worst case makespan (Used only on Algorithm 1)

L Set with n longest tasks (Used only on Algorithm 1)

max ondemand Maximum number of on-demand VMs allocated simultaneously

rmi Amount of memory required by ti

eij Execution time of a task ti in the spot vmj

ovh The maximum percentage of time overhead induced by checkpoint

intv ckpi checkpointing time interval of task ti

startij The time that a task ti will start if it is allocated to a vmj

α Time overhead to migrate tasks to a new deployed VM

A Set of VMs selected to execute the tasks (Used on Algorithm 3)

ti Task ti

vms, vmj , vmk Virtual machines

6.2 Dynamic Scheduling Module

In this section, we present the HADS’ Dynamic Scheduling Module. Firstly, in Section

6.2.1, we discuss some scheduling concepts used by the module, including the VMs states,

Allocation Cycles and the Migration Time Limit estimation. Next, in Section 6.2.4,

we introduce the event handler procedure, while Section 6.2.5 presents the migration

procedure. Finally, Section 6.2.6 presents the work-stealing procedure, a load balance

strategy used to reduce the allocation time of on-demand VMs.

6.2.1 Preliminary Concepts

HADS Dynamic Scheduling Module is an event-driven algorithm that performs some

actions in response to events, such as spot VM hibernation, resuming, idleness, etc., that

may occur along the application. These actions aim at reducing monetary costs and

meeting the application deadline. They may also change the VM state (e.g., from busy

6.2 Dynamic Scheduling Module 48

to idle, idle to terminated, etc.). To decide if an idle VM should terminate or not, the

algorithm divides its execution time into logical units, denoted Allocation Cycles (AC).

Such a concept is presented in Section 6.2.2.

As previously discussed, if a hibernated spot VM does not resume or does it but

too late to avoid a temporal failure, the module should execute a migrate procedure.

However, in this case, it is also necessary to define a Migration Time Limit (mtt ∈ T)

to start executing this procedure. Otherwise, it will be useless to execute it. Hence, in

this section, we first explain the concept of allocation cycles, then how mtt is computed

(Section 6.2.3).

By considering that a spot vmj hibernates at time p ∈ T , we define Qj = RTj ∪WTj

as the set of tasks that should be migrated if that VM does not resume in time, where

RTj ∈ B contains the tasks that were running in vmj at p and WTj contains tasks

that were waiting to be executed in that virtual machine. For instance, in Figure 6.2 vmj

hibernates, does not resume in time, and unfinished tasks, {1, 2, 4, 5}, should be migrated.

In this case, RTj = {1, 4}, WTj = {2, 5}. The migration procedure starts at mtt, having

an overhead of α. In the example, the tasks are migrated to two VMs: i) a new on-demand

VM with two cores and ii) an already allocated spot VM with one core. We observe that

contrary to task 4, which does not have any checkpoint, task 1 will start executing in the

new VM from its last checkpoint.

6.2.2 VM states and Allocation Cycle concept

Let BR, IR, HR, and TR subsets of M be the sets of busy, idle, hibernated, and

terminated VMs, respectively. We consider that a VM can be in one of the following

states i) busy, if active and executing tasks (vmj ∈ BR); ii) idle, if active but not execut-

ing any task (vmj ∈ IR); iii) hibernated, if it has been hibernated by the cloud provider

(vmj ∈ HR); and iv) terminated, if the VM has terminated or it was not available at the

beginning of the application execution (vmj ∈ TR).

To decide if an idle spot VM should terminate or not HADS has introduced an alloca-

tion/termination policy. On the one hand, since VMs are charged by second (see Section

4.1), the user has an interest that a VM terminates as soon it becomes idle. On the

other hand, since already deployed VMs can receive and execute tasks without deploying

overheads, it would be interesting that it does not terminate.

Therefore, to be able to decide if a VM should terminate or not, the Dynamic Schedul-

6.2 Dynamic Scheduling Module 49

D

SP
O

T
j

Core0

Core0

Core1

4 5

2

3Core0

Core1 0

α

4

1

5

2

Hibernation
 Start (p)

Migration Trigger
Time Limit (mtt)

Migration

Procedure estimate_rtQj

O
N
-D
EM

A
N
D

SP
O

T

Checkpoint of task 1

α Migration overhead

Recovery task from checkpoint

1

K

WTj = {2, 5}RTj = {1, 4}

Figure 6.2: Execution where vj hibernates at p, does not resume, and its tasks are migrated
at mtt

ing Module logically divides the VM’s execution time into units denoted Allocation Cycles

(ACs), and a vmj is terminated when it is in the idle state and reaches the end of its

current AC, denoted AC curj. Figure 6.3 shows an example in which the execution of

scheduled tasks to a VM requires two ACs (AC1 and AC2). In this example, if the VM

becomes idle and does not receive any new task during AC curj = AC2, the VM will

terminate at the end of AC2.

40Core0

1Core1 3

D

 V
M

6

5

AC1 AC2

Figure 6.3: A scheduling with two logical Allocation Cycles (AC)

6.2.3 Migration Time Limit (mtt)

Let K ⊂M be the set of VMs that will receive the migrated tasks. For instance, in Figure

6.2, K includes a new on-demand VM with two cores and an already allocated spot VM

with one core. The function estimate rt renders the time intervals required to perform

6.2 Dynamic Scheduling Module 50

all tasks of Qj in VMs of K, which is an estimation of the makespan of Qj’s tasks if they

were scheduled to VMs of K.

Algorithm 4 shows the estimate rt algorithm. The algorithm dynamically selects the

set of VMs to execute the tasks of Qj by including them in set K. For each task ti,

by calling the function check migration, it tries to assign ti to an already allocated vmk,

according to the following order: firstly vmk ∈ K; if not possible, an idle VM (vmk ∈ IR);

if not possible, a busy VM (vmk ∈ BR). This order is defined by the function sort selected

of line 3 of the algorithm. In each of these sets, their respective VMs are sorted by price

in ascending order. The check migration algorithm (Algorithm 7) is described in Section

6.2.5. It basically verifies if vmk has enough memory for executing ti and if ti is migrated

to vmk, the deadline is still respected. On the other hand, if an allocated VM cannot

be select, the algorithm selects a new on-demand VM (line 14). Finally, the makespan,

considering the assignment of tasks of Qj to the VMs of K, is estimated (line 20).

In Algorithm 4, the time complexity of the function check migration is O(|Qk|) (see

Algorithm 7), where Qk ⊂ B is composed of the tasks allocated to vmk that were not

finished yet. Moreover, let m′ be equal to |K| + |IR| + |BR|, where |K| is the size of

the set of selected VMs, |IR| is the size of the set of idle VMs and |BR| is the size of

the set of busy VMs. For each task ti ∈ Qj, the algorithm executes a for-loop where the

function check migration is executed m′ times (lines 3 to 9). In the sequence, whenever

a task ti is not assigned to a vmk in the for-loop of line 3, Algorithm 4 executes a second

for-loop (line 11), where the check migration function is executed |M o| times. Thus,

since the complexity of function assign (executed in lines 5 and 13) is O(c), complexity of

Algorithm 4 in the worst case is O(|Qj|×(|Qk|(m′+|M o|)). In addition, since sets Qj, Qk,

IR, BR and M o are represented by lists of integers and as the number of tasks is usually

greater than the number of VMs, space complexity of Algorithm 4 is O(|Qj|+ |Qk|).

Equation 6.4 expresses the migration time limit (mtt ∈ T) that defines when the

migration procedure must be triggered; otherwise, it will not be possible to meet the

application deadline D and, therefore, a temporal failure will take place. We consider

that a new deployed VM takes α time intervals to receive the migrated tasks.

mtt = D − (estimate rt(Qj, IR,BR,M
O, D) + α) (6.4)

6.2 Dynamic Scheduling Module 51

Algorithm 4 estimate rt

Input: Qj , IR, BR, Mo and D
1: K ← ∅
2: for ti ∈ Qj do
3: for vmk ∈ sort selected(K, IR,BR) do
4: if check migration(ti, vmk, D) then
5: assign(ti, vmk)
6: K ← K ∪ {vmk}
7: break {Next task}
8: end if
9: end for

10: if task was not assign then
11: for vmk ∈Mo do
12: if check migration(ti, vmk, D) then
13: assign(ti, vmk)
14: K ← K ∪ {vmk}
15: break {Next task}
16: end if
17: end for
18: end if
19: end for
20: return get makespan(K)

6.2.4 Event Handler

The events considered by the Dynamic Scheduling Module are handled by Algorithm 5.

Those events and the respective actions taken by the module are present in Figure 6.4

and described next.

Event

Event Handler

Idle
vmj reaches

end of
AC_curj

Spot vmj
hibernates

Migration
time Limit
Reached

spot vmj
resumes

 vmj becomes
idle

Update VM state to
Idle. Execute the

work-stealing
procedure

Update VM state to
terminated

Update VM state to
hibernatet. If vmj was

busy, compute mtt

Execute the
migration procedure

if vmj resumes
after mtt, call

the work-steling
procedure

Figure 6.4: Diagram with the events and actions handle by the Dynamic Scheduling
Module

Figure 6.5 shows the state diagram of spot vmj and the transition between them

according to those events. As can be seen, a busy or idle spot VM can go to hibernate

6.2 Dynamic Scheduling Module 52

if the provider hibernates it. Moreover, when hibernated, a spot VM can go to the idle

or busy state if the VM resumes before the mtt value or after it, respectively. We also

see in Figure 6.5 that a busy VM goes from busy to idle when it finishes all its task

(Qj = ∅), and an idle VM can go back to the busy state when it receives tasks from the

work-stealing procedure (Section 6.2.6) or due to the migration procedure (Section 6.2.5).

Finally, an idle VM is terminated when it remains idle and reach the ends of its current

AC.

Idle

Busy

Hibernated
Terminated

Work Stealing or

migration

Qj =∅

Hibernation

Hi
be

rn
at

io
n

Re
su

m
e

be
fo

re
 m

tt

Resume after
 mtt

en
d

of
 A

C_
cu

r j

Figure 6.5: Spot vmj state diagram

vmj becomes idle (line 2)

Upon finishing to execute all tasks scheduled to it (Qj = ∅), vmj changes its state

from busy to idle (lines 3 and 4) and the work stealing procedure is executed (line 5) since

the current AC has not ended. Note that if, due to the execution of this procedure, vmj

receives new tasks to execute, its state will be changed to busy again. More details about

the work stealing procedure are presented in Section 6.2.6.

Idle vmj reaches the end of its current AC (line 6)

As previously explained, if after the end of the current AC (AC curj), vmj is idle

and has no new tasks to execute, i.e., Qj = ∅, it will be terminated. In this case, vmj

is removed from the set IR of idle VMs and included in the set TR of terminated VMs

(lines 7 and 8).

Spot vmj hibernates (line 9)

The cloud provider can hibernate either busy or idle spot VMs. In both cases, the

algorithm changes the vmj’s state to hibernated updating the corresponding sets (lines

6.2 Dynamic Scheduling Module 53

12, 14, and 16).

Furthermore, if vmj was busy, it also computes the migration time limit mtt (Equation

6.4), considering the unfinished tasks Qj of vmj (line 11). To this end, the algorithm

compute the time required to execute the tasks by calling estimate rt(Qj), as explaining

in Section 6.2.3. If the vmj was idle, the algorithm just changes its state to hibernated

(lines 12 and 16).

Migration time limit reached (line 17)

Whenever vmj is busy and the migration time limit mtt is reached, in order to satisfy

the application deadline D, all unfinished tasks (Qj) of vmj should be migrated to other

VMs. For this purpose, the algorithm calls the migration procedure (line 18), which is

described in details in Section 6.2.5.

Spot vmj resumes (line 19)

The spot vmj may resume before the migration time limit mtt or not. In both cases,

it is excluded from the set HR of hibernated VMs (line 20). As previously discussed, if a

VM resumes before the time limit, the VM turns its state to busy (line 22), and the tasks

scheduled to it continue their execution from their respective break-point, and no addi-

tional action is necessary. However, when a VM resumes after mtt, the event Migration

time limit reached already happened, and, consequently, the tasks of this VM were al-

ready migrated to other VMs. Hence, in this case, the algorithm executes a work-stealing

procedure (line 24) that tries to move tasks from busy VMs to vmj. This procedure is

described in Section 6.2.6.

6.2 Dynamic Scheduling Module 54

Algorithm 5 Event Handler

Input: event, vmj , Qj , IR, BR, TR, HR, Mo, α, and D

1: switch (event)

2: case Qj = ∅:
3: BR← BR\{vmj}
4: IR← IR ∪ {vmj}
5: work-stealing procedure(vmj , BR) {/*Algorithm 8*/}
6: case vmj ∈ IR and AC curj ended :

7: IR← IR\{vmj}
8: TR← TR ∪ {vmj}
9: case vmj hibernates:

10: if vmj ∈ BR then

11: mtt← D − (estimate rt(Qj , IR,BR,M
o, D) + α)

12: BR← BR\{vmj}
13: else

14: IR← IR\{vmj}
15: end if

16: HR← HR ∪ {vmj}
17: case mtt reached:

18: migration procedure(Qj , D, IR,BR,M
o) {/*Algorithm 6*/}

19: case vmj resumes :

20: HR← HR\{vmj}
21: if resumes before mtt then

22: BR← BR ∪ {vmj}
23: else

24: work-stealing procedure(BR, IR, vmj , D) {/*Algorithm 8*/}
25: end if

26: end switch

6.2.5 Migration Procedure

The migration procedure is presented in Algorithm 6. It receives as input the set of

tasks to be migrated (Ql), the deadline D, the set of idle and busy VMs (IR and BR,

respectively) and the set of on-demand VMs that can be allocated (M o).

Firstly, for each task ti in Ql, the algorithm tries to schedule ti to one of the idle

VMs of set IR (lines 4 to 12). If it is successful, the algorithm updates the state of the

selected VM by removing it from set IR and included it in the set BR (lines 8 and 9).

Otherwise, the algorithm tries to schedule ti to one of the busy VMs of set BR (lines 16

to 22). If not possible, the task is scheduled to a new on-demand VM of set M o (lines 27

to 35). In this case, it is only necessary to consider the start period of ti in vmj (startij),

6.2 Dynamic Scheduling Module 55

the corresponding execution time (eij), and the overhead α in order to avoid deadline

violation (line 28). The new allocated on-demand VM is then removed from set M o and

included in set BR (lines 31 and 32).

It is worth pointing out that if ti ∈ RTl, i.e., ti was running when the hibernation

happened, it will start its execution in the selected target VM from the last recorded

checkpoint, and only the remaining execution time of the task will be considered in the

migration procedure. In addition, if the target VM is a spot one, by intv chki, provided

by the Primary Scheduled module for ti, it knows the time interval with which the new

checkpoints of ti must be taken.

This approach tries to minimize monetary costs, since VMs are allocated by AC units

and the available time of current allocated ACs of idle and busy VMs are requested by

the migration procedure, whenever possible. A final remark is that, in the case of both

idle (line 3) and busy VMs (line 15), the algorithm gives priority to spot VMs rather than

on demand ones, which also reduces monetary costs.

In order to migrate a task ti to a spot vmj, Algorithm 6 calls the procedure check migration

of Algorithm 7. Task ti can be migrated to vmj provided that the latter, after schedul-

ing ti, has enough spare time for executing a migration procedure of its longest sched-

uled task, since vmj itself can hibernate just before finishing executing this longest

task. Among both the running and waiting scheduled tasks of vmj (Qj) and ti, the

call get longest Tasks(1, Qj ∪ {ti}) renders a set with the longest task tm (line 1). The

algorithm then computes eftj, the expected finishing time of vmj considering the migra-

tion of ti to vmj (line 2). Finally, the function returns True if the two conditions of line 3

hold: (1) the difference between D and eftj is greater than emj, the execution time of the

longest task tm, plus α; (2) there exists enough memory in vmj to execute ti; otherwise,

it returns False. Figure 6.6 shows a scenario where condition (1) is satisfied. Note that

task 6 is the longest one.

D

SP
O

T
j

3Core0

Core1 0 1

5

21

4 4

Current Time
eftj

6

emj + αtm = 6

Figure 6.6: Evaluating the migration of task 6 to a spot VM

We should emphasize that it is crucial to leave a spare time in vmj between the end of

6.2 Dynamic Scheduling Module 56

the execution of vmj tasks and the application deadline D, which is equal to the execution

time of the longest task because vmj is also subject to hibernation. If it occurs along the

execution of tasks of Qj or ti, the scheduling will wait for a resuming event until mtt,

whose value has been computed by Equation 6.4. However, if vmj hibernates and does

not resume before mtt, there always exists on-demand VMs with the same characteristics

of vmj that can be allocated. Thus, the spare time reservation guarantee that all tasks

will have enough time to migrate and execute, respecting the application’s deadline D,

no matter when hibernation events take place. Figure 6.7 illustrates this last case, where

a hibernation occurs just before the end of task 6, which is, therefore, migrated to a new

on-demand VM.

D

SP
O

T
j

3Core0

Core1 0 1

5

21

4 4

Hibernation Start

6

O
N

-D
EM

A
N

D

Core0 6

α

Figure 6.7: Migration of task 6 to a new on-demand VM

The migration procedure executes merge sort procedures whose complexities are

O(|IR|log(|IR|)), O(|BR|log(|BR|)) and O(|M o|log(|M o|)) (lines 3, 15 and 26). More-

over, in attempts 1 and 2, the algorithm executes the function check migration (Al-

gorithm 7) that, as presented before, has complexity O(Qj). Thus, in attempt 1 the

complexity is O(|IR|(log|IR| + Qj)), since the algorithm check migration is executed

|IR| times, where |IR| is the size of the set of idle VMs. In attempt 2 the complexity

is O(|BR|(log|BR|+Qj)), since the algorithm check migration is executed |BR| times,

where |BR| is the size of the set of busy VMs. Finally, since in attempt 3 only the merge

sort is executed, the complexity is O(|M o|log|M o|), which is the time spent to sort the

set of on-demand VMs M o.

In the worst case, each attempt is executed |Ql| times, where |Ql| is the number of

tasks that will be migrated. Thus, the complexity of Algorithm 6 is:

6.2 Dynamic Scheduling Module 57

O(|Ql| × [(|IR| log(|IR|) + |Qj|)+

(|BR| log(|BR|) + |Qj|)+

(|M o| log(|M o|))])

However, since |BR|+ |IR|+ |M o| < |M | the complexity of Algorithm 6 is O(|Ql| ×
(|M |log|M |+ |Qj|)). In terms of space complexity, Algorithm 6 is O(|Ql|).

6.2 Dynamic Scheduling Module 58

Algorithm 6 Migration Procedure

Input: Ql, D, IR, BR, and Mo

1: for each ti ∈ Ql do

2: {/*Attempt 1*/}
3: sort by market(IR) {/* Prioritizes spot VMs */}
4: for each vmj ∈ IR do

5: { /* Call Algorithm 7 */ }
6: if check migration(ti, vmj , D) then

7: migrate(ti, vmj)

8: IR← IR\{vmj}
9: BR← BR ∪ {vmj}

10: break {Migrate next task}
11: end if

12: end for

13: if not migrated then

14: {/*Attempt 2*/}
15: sort by market(BR) {/* Prioritizes spot VMs */}
16: for each vmj ∈ BR do

17: { /* Call Algorithm 7 */ }
18: if check migration(ti, vmj , D) then

19: migrate(ti, vmj)

20: break {Migrate next task}
21: end if

22: end for

23: end if

24: if not migrated then

25: {/*Attempt 3*/}
26: sort by price(Mo)

27: for each vmj ∈Mo do

28: if startij + eij + α < D then

29: start vm(vmj)

30: migrate(ti, vmj)

31: Mo ←Mo\{vmj}
32: BR← BR ∪ {vmj}
33: break {Migrate next task}
34: end if

35: end for

36: end if

37: end for

6.2 Dynamic Scheduling Module 59

Algorithm 7 check migration

Input: ti, vmj , and D
1: tm← (tk ∈ get longest Tasks(1, Qj ∪ {ti}))
2: eftj ← compute eft(vmj , ti)
3: if D − eftj > emj + α and enough mem(rmi,mj) then
4: return True
5: else
6: return False
7: end if

6.2.6 Work-Stealing Procedure

For monetary costs sake, the work-stealing procedure, presented in Algorithm 8, aims

at reducing the allocation time of on-demand VMs as well as balancing the load of spot

VMs. It is triggered whenever the spot vmj: i) resumes after the migration time limit

mtt has been reached (line 24 of Algorithm 5) or ii) VM becomes idle after the execution

of its scheduled tasks (Qj = ∅) and the current AC of the VM has not ended (line 5 of

Algorithm 5). Basically, the algorithm tries to migrate tasks from both on-demand and

busy spot VMs to the idle VM in question.

Algorithm 8 Work-Stealing Procedure

Input: BR, IR, vmk, D
1: sort by market(BR) {/* Prioritizes on-demand VMs */}
2: for each vmj ∈ BR do
3: S ← selectStolenTasks(WTj) {/* get tasks that can be stolen */}
4: for each ti ∈ S do
5: { /* Call Algorithm 7 */ }
6: if check migration(ti, vmk, D) then
7: migrate(ti, vmk)
8: end if
9: end for

10: end for
11: if at least one task was stolen then
12: BR← BR ∪ {vmk}
13: IR← IR\{vmk}
14: end if

For each busy vmj ∈ BR the procedure selects the tasks that can be stolen from it

(line 3) and tries to migrate them to the idle vmk (lines 4-9). Since on-demand VMs are

more expensive than spot VMs, the procedure considers firstly the tasks of the former

(line 1).

Note that the working stealing procedure is applied only to the waiting tasks WTj

of vmj and not to those that were executing. Figure 6.8 shows an example where tasks

are spread over three ACs (AC1, AC2, and AC3) of a VM. Since the current Allocation

6.2 Dynamic Scheduling Module 60

Cycle AC cur = AC1, tasks 5, 6, 7, and 8 are candidates to be stolen and start in the

next cycles.

3

0Core0

1Core1

4

2 7

8

D

on
-d
em

an
d

 V
M

AC1

5

6

AC2 AC3

current
execution time

Figure 6.8: Example of tasks in an on-demand VM that can be stolen by the work-stealing
procedure

Similarly to the migration procedure, by calling the function check migration of Al-

gorithm 7 for each selected task, the work-stealing procedure also verifies if the task

migration would result in deadline violation (line 6). If it is not the case, the task is

migrated (line 7). Finally, if at least one task has been migrated to the idle spot vmk, its

state changes to busy and, therefore, it is included in the set of busy VMs and removed

from the set of idle ones (lines 12 and 13).

Note that, whenever the work-stealing procedure is executed, it sorts the set BR of

busy VMs with a sort algorithm of complexityO(|BR|log(|BR|)) (line 1). In the sequence,

for each vmj ∈ B, the function selectStolenTaks, whose complexity is O(|WTj|), is

called. Moreover, in lines 4 to 9, the check migration procedure is called |S| times,

where |S| is the number of tasks selected to be stolen. Thus, the complexity of Algorithm

8 is O(|BR| × (log(|BR|) + |WTj| + |S||Qk|), where O(|Qk|) is the complexity of the

check migration procedure. Since the number of tasks is greater than the number of

VMs, we have that WTj > log(|BR|) and |S||Qk| > log(|BR|). Thus, the complexity of

Algorithm 8 is O(|BR|× (|WTj|+ |S||Qk|). Besides, as the sets WTj, S, Qk, BR, and IR

are represented by lists of integers and |WTj| ≥ |S|, the space complexity of Algorithm 8

is O(|WTj|+ |Qk|).

All variables and parameters used by HADS’ Dynamic Scheduling Module are pre-

sented in Table 6.3. The functions and procedures called by the algorithms are summarized

in Table 6.4.

6.2 Dynamic Scheduling Module 61

Table 6.3: Variables and parameters used by the Dynamic Scheduling Module algorithms

Name Description
B Set of tasks
M Set of VMs that can be used
Ms Set of VMs spots
Mo Set of on-demand VMs that can be allocated
IR Set of idle VMs
BR Set of busy VMs
TR Set of terminated VMs
HR Set of hibernated VMs
K Set of selected VMs

R = IR ∪BR ∪K Set of VMs that are available during the migration
Qj Set of unfinished tasks of a vmj

WTj Set of tasks that are waiting to be executed in vmj

S The set of tasks that can be stolen from vmj

event An event that trigger an action in the Algorithm
D Application deadline
eik Execution time of a task ti in the spot vmk

mtt Migration time limit
intv ckpi Checkpointing time interval of task ti

α Time intervals to migrate tasks to a new deployed VM

Table 6.4: Functions and Procedures called by the Dynamic Scheduling Module algorithms

Name Description

get longest tasks(n, S) Renders the n longest tasks of set S

get slowest vm(M) Renders the slowest VM of M

enough mem(rmi,mj) Returns True, if there is enough memory to schedule ti to vmj con-

sidering the memory requirement rmi and the memory capacity mj ;

otherwise returns False

get cheapest vm(Mo) Selects the cheapest on-demand VM

schedule(ti, vmj , intv ckpi) Schedules task ti to a core of vmj . intv ckpi informs, in case of a spot

VM, the time interval between two consecutive checkpoints

sort selected(K, IR,BR) sorts the VMs of K, IR, BR, according to the order: (1) VMs of K,

(2)VMs of IR, and (3)VMs of BR. For each of these sets, the VMs are

sorted by price

get makespan(K) Renders the makespan as if the tasks of Qj had been scheduled to the

VMs of K

selectStolenTasks(WTj) Returns all tasks that can be stolen from a busy vmj . Receive as input

the set of waiting tasks WTj that are waiting to be executed in vmj

migrate(ti, vmk) Migrates task ti to one of the virtual cores of the spot vmk

Chapter 7

Experimental Results of HADS

This Chapter presents the experimental evaluation conducted with HADS. Firstly, In

Section 7.1 we present the experimental environment, including the used BoT applications,

VMs, the generated hibernated and resume scenarios, and all input parameters used in

the tests. Next, in Section 7.2, we define two execution baseline cases: i) spot VMs

without hibernation, where HADS execute all tasks without any spot hibernation; and ii)

on-demand only, where only on-demand VMs are used. Then, in Section 7.3, we discuss

the experiments conducted on Amazon EC2.

7.1 Experimental Environment

All results presented in this chapter were obtained from real executions using VMs from

EC2. According with EC2 only the VMs of families c3, c4, c5, m4, m5, r3, and r4 with less

than 100 GB of memory, running in the spot market, are hibernation-prone. Therefore,

in the experiments, we have selected spot VMs of the families c3 and c4 which provide

good computation power and have high availability in the spot market 1. Table 7.1 shows

the computational characteristics of VMs that we used in our experiments as well as its

respective prices in on-demand and spot markets. Note that all results presented in this

chapter were published in [75]. Therefore, all presented VMs’ prices were obtained in

December 2019.

1https://aws.amazon.com/ec2/spot/instance-advisor/

7.1 Experimental Environment 63

Table 7.1: VMs attributes

Type #VCPUs Memory Gflops On-demand price Spot price

per hour per hour

c3.large 2 3.75 GB 22.09 0.105$ 0.0294$

c4.large 2 3.75 GB 40.73 0.100$ 0.0308$

c3.xlarge 4 7.50 GB 44.46 0.210$ 0.0596$

c4.xlarge 4 7.50 GB 83.33 0.199$ 0.0673$

Besides the VMs, to evaluate HADS we use the following BoT applications:

Synthetic: In this case, the jobs are composed by tasks generated with the application

template proposed by Alves et al. [3] which is based on vector operations and whose

execution time depends on the size of the vectors. We thus created several synthetic

tasks, each one with memory footprint between 2.81 MB and 13.19 MB, resulting in

execution times which vary from 1:42 to 5:30 minutes. Then, we conceived three BoT

applications, J60, J80, and J100, by randomly selecting those tasks.

NAS benchmark: It concerns the ED application, a real embarrassingly distributed

application, offered on the GRIDNBP 3.1 suite of NAS benchmark [20]. By executing ED,

we created the job ED200 which is composed of 200 tasks running the largest problem

size (class B).

Table 7.2 shows the characteristics of the four BoT jobs, including their respective

number of tasks, memory footprint, and runtime.

Table 7.2: Jobs characteristics

job # tasks
runtime (minutes) memory footprint

min avg max min avg max

J60 60 01:42 03:18 05:23 2.85MB 4.69MB 12.20MB

J80 80 01:43 03:19 05:22 2.91MB 4.71MB 13.19MB

J100 100 01:47 03:10 05:30 2.81MB 4.49MB 10.86MB

ED200 200 02:41 03:31 05:54 153.74MB 168.68MB 177.77MB

To store checkpoint files in those tests, we use the S3 service. That service was

chosen due to its economic advantage and because the memory footprint of the executed

applications does not cause a huge overhead in terms of dump time, i.e., the time it

takes to record a checkpoint. Moreover, EBS and EFS were not used for the following

reasons. EBS service is a local storage system that prevents tasks sharing the same EBS

7.1 Experimental Environment 64

volume from being spread among different VMs in the recovery process. Furthermore,

in the recovery process, EBS presents an additional overhead caused by the necessity

of associating the storage volume containing the checkpoint with the VM, where the

recovered task will execute. In the case of EFS, the service presented checkpointing and

recovery times close to EBS but with higher monetary costs than the other services.

Also, the EFS performance showed a significant degradation with concurrent checkpoint

records. All results related to the storage services are presented in detail in Chapter 5.

7.1.1 Emulation of the Hibernation and Resume Events

Cloud users have no control over spot VMs hibernations since the cloud provider decides

when to hibernate and resume a given spot VM according to resource demands varia-

tion. Thus, to evaluate different patterns of spot VMs hibernation and resuming, we

have emulated the hibernation feature by using Poisson distribution [1] to generated the

hibernation and resuming events for each type of spot VM.

Since in Amazon EC2, when a spot VM of a given family type hibernates, other VMs

of the same type will probably hibernate too, we emulate events for groups of VMs of

identical types. In other words, when an event happens for a VM, it has an impact not only

on this VM but also on all VMs of that type. Thus, we use distinct Poisson functions

for modeling the events, which allows the creation of scenarios where hibernating and

resuming events have different probability mass functions defined by the parameters λh

and λr, respectively.

Whenever an emulated hibernation event occurs, the spot VM state is saved by using

the checkpoint tool CRIU[29], and all tasks allocated to it are paused. Hence, if the

VM resumes later, those tasks can be recovered and continue their execution. Note that,

although the hibernation event is emulated, the feature of the hibernation event was

preserved, i.e., all tasks are recovered from the break-point when a hibernated spot VM

resumes. The λ values used to evaluate HADS are presented next.

7.1.2 Parameters Setting and Generated Scenarios

In order to evaluate HADS, we firstly generated different scenarios. To this end, we con-

sidered allocation cycles of 15 minutes (AC = 900s) and, based on empirical experiments,

task migration overhead equals to 3 minutes (α = 180s). In addition, the sets M s and M o

were built considering the allocation constraints adopted by Amazon EC2 in December

7.1 Experimental Environment 65

2019, which means that up to five VMs of each type in each market could be allocated.

The checkpoint overhead ovh, was set to 10%. For all jobs, the execution deadline was 35

minutes (D = 2100s).

Let the λ parameter of Poisson distribution be the number of expected events divided

by a time interval. Since the application execution is discretized by time interval and D

is the application deadline, if we respectively define kh and kr, as the expected number

(rate) of hibernating and resuming events during the application execution, λh and λr

parameters are given by λh = kh/D and λr = kr/D. We should point that, since we are

considering scenarios where multiple events can happen, the actual number of hibernation

(resp., resuming) events that occur in an experiment might be greater than kh (resp., kr),

as shown in Table 7.5, discussed later. Table 7.3 presents seven different scenarios by

varying kh and kr.

Table 7.3: Different execution scenarios generated by varying parameters λh and λr

ID hibernating resuming λh λr

sc1 kh = 1 kr = 0 1/2100 0/2100
sc2 kh = 5 kr = 0 5/2100 0/2100
sc3 kh = 1 kr = 5 1/2100 5/2100
sc4 kh = 5 kr = 5 5/2100 5/2100
sc5 kh = 3 kr = 2.5 3/2100 2.5/2100
sc6 kh = 2 kr = 1 2/2100 1/2100
sc7 kh = 2 kr = 2 2/2100 2/2100

Figure 7.1 shows the average duration of a hibernation in each scenario. As expected,

scenarios sc1 and sc2 present the longest hibernation time duration (25:20 and 31:18 min-

utes, respectively) since, in these scenarios, the resuming event does not occur (kr = 0).

The smallest times are observed in sc3 and sc4 (14:07 and 15:37 minutes, respectively)

because they have the highest rate of resuming events (kh = 5), which reduces the av-

erage duration of hibernation. On the other hand, in scenario sc5 where kr = 2.5, the

hibernation time (20:12 minutes) is longer than in sc6 and sc7 (17:30 and 16:41 minutes,

respectively) since, in those cases, the expect number of hibernation events is kh = 2 while

in scenario sc5, it is kh = 3 .

7.2 Baseline Executions 66

D
ur

at
io

n
of

 H
ib

er
na

tio
n

(m
in

)

00:00

10:00

20:00

30:00

40:00

sc1 sc2 sc3 sc4 sc5 sc6 sc7

Figure 7.1: Average duration of hibernation in different scenarios

7.2 Baseline Executions

We have considered two baseline cases: i) spot VMs without hibernation, which is the case

where the initial scheduling defined by the Algorithm 3 is followed without the need of

migration; and ii) on-demand only, which uses the same scheduling, but only with on-

demand VMs. Table 7.4 presents the average costs of executing the four evaluated jobs

(J60, J80, J100 and ED200) on both baseline cases. It also contains the type and number

of used VMs, the average makespan in minutes, and the percentage difference between

their execution costs (diff).

Note that, because the scheduling is the same in both cases, except for the market,

the cost difference is around 66.33% to 76.2%, which is close to the difference in the price

between the used spots and on-demand VMs (see Table 7.1). Note also that, in Table 7.4

the jobs makespan are below the 35 minutes of the jobs deadline. This occurs because

Algorithm 3 respects the Dspot limit presented in Section 6.1.1.

Table 7.4: Baseline executions

job #VMs makespan spot without hibernation on-demand only diff

J60 (6 VMs)
2-c3.large 2-c4.large

2-c4.xlarge
20:08 $0.08 $0.32 76.25%

J80 (8 VMs)
2-c3.large 1-c3.xlarge
3-c4.large 2-c4.xlarge

19:49 $0.10 $0.37 72.97%

J100 (10 VMs)
2-c3.large 1-c3.xlarge
4-c4.large 3-c4.xlarge

18:43 $0.13 $0.43 70.78%

ED200
(16 VMs)

5-c3.large 2-c3.xlarge
5-c4.large 4-c4.xlarge

31:27 $0.33 $0.98 66.33%

7.3 Performance Results 67

7.3 Performance Results

Table 7.5 presents the performance results related to the execution of jobs J60, J80, J100,

and ED200 in each of the seven scenarios. It presents the average number of hibernations,

the number of used on-demand VMs in executions where hibernation took place, followed

by the corresponding average values of both the makespan and monetary costs. The

percentage difference between the latter and the on-demand VMs baseline is presented in

the last column (diff). Note that the makespan of the four jobs is less than the 35 minutes

of the deadline, which confirms the effectiveness of Algorithm 3 in respecting applications

deadline.

Figures 7.2 and 7.3 show the percentage of time that a procedure is executed in respect

to the total number of hibernations occurred along with the job execution. For instance,

if four hibernations occurred and in two of them the on-demand migration procedure took

place, there will be a bar with 50%. In the Figures on-demand, idle, and busy migrations

mean the type of state of the VMs to which a task is migrated according to Algorithm 6.

We can observe in Table 7.5 that, when compared to the on-demand baseline, HADS

presents cost reductions in all cases which vary from 19.79% to 72.92%.

For all jobs, the worst results in terms of monetary cost are those for scenario sc2.

Such a result is expected since sc2 has no VMs resuming (kr = 0) and has the highest

hibernation rate (kh = 5). Therefore, in this case, it is always necessary to allocate many

on-demand VMs throughout the execution to avoid temporal failures. Since there is no

resuming of spot VMs in this scenario, hibernated VMs will always reach the migration

time limit (mtt). Figures 7.2 and 7.3 show that in sc2 the migration to on-demand VMs

occurs in more than 50% of the hibernation cases. The impact of the hibernation is only

mitigated by migrations of tasks to busy and idle VMs.

Nevertheless, it is worth pointing out that, although there is no possibility of resuming

in scenario sc1 either, the cost is reduced in more than 50% for almost all jobs, excepted

for J80 where the reduction was 46.87%. Such a reduction happens because, in this

scenario, the number of hibernations is low (kh = 1), i.e., in general, less than half of the

spot VMs hibernate. Thus, the tasks are migrated to busy or idle VMs instead of new

allocated on-demand VMs. That can be seen in Figures 7.2 and 7.3, where migrations to

busy VMs happen in more than 50% of the hibernation cases.

Scenario sc3 presents the best results in terms of cost reduction (more than 60% for

all jobs) because it has the lowest hibernation rate (kh = 1) and the highest resuming

7.3 Performance Results 68

Table 7.5: Execution of HADS in scenarios sc1 to sc7. The table shows the probabilis-
tic mass function of the hibernation (λh) and the resume events (λr) for each scenario,
the average number of hibernations, the number of used on-demand VMs, the average
makespan, and the average monetary cost

Jobs scenario λh λr # hibernation # on-demand makespan (min) cost diff

J60
(6 VMs spots)

sc1 1/2100 0/2100 1.33 1.33 25:13 $0.146 54.52%
sc2 5/2100 0/2100 4.33 3.33 34:24 $0.256 19.79%
sc3 1/2100 5/2100 1.67 1.0 24:39 $0.087 72.92%
sc4 5/2100 5/2100 2.02 1.33 30:40 $0.145 54.69%
sc5 3/2100 2.5/2100 2.00 0.67 24:31 $0.090 71.77%
sc6 2/2100 1/2100 2.00 1.00 30:45 $0.097 69.79%
sc7 2/2100 2/2100 2.00 1.67 32:02 $0.093 70.94%

J80
(8 VMs spots)

sc1 1/2100 0/2100 2.57 1.0 27:11 $0.197 46.82%
sc2 5/2100 0/2100 6.33 4.67 34:56 $0.284 23.12%
sc3 1/2100 5/2100 2.67 1.30 31:53 $0.117 68.47%
sc4 5/2100 5/2100 4.00 2.33 32:41 $0.140 62.09%
sc5 3/2100 2.5/2100 4.33 3.33 33:26 $0.213 42.34%
sc6 2/2100 1/2100 2.67 1.33 26:58 $0.153 58.56%
sc7 2/2100 2/2100 2.67 1.33 29:13 $0.123 66.67%

J100
(10 VMs spots)

sc1 1/2100 0/2100 2.33 0.67 26:42 $0.167 61.77%
sc2 5/2100 0/2100 7.67 3.67 30:14 $0.302 30.66%
sc3 1/2100 5/2100 1.33 1.00 26:08 $0.150 65.61%
sc4 5/2100 5/2100 3.40 1.89 34:12 $0.189 56.64%
sc5 3/2100 2.5/2100 3.00 2.70 32:59 $0.223 48.78%
sc6 2/2100 1/2100 4.67 2.00 28:54 $0.177 59.48%
sc7 2/2100 2/2100 3.67 1.33 32:31 $0.160 63.30%

ED200
(16 VMs spots)

sc1 1/2100 0/2100 3.00 3.33 32:19 $0.430 56.12%
sc2 5/2100 0/2100 8.33 7.67 33:03 $0.657 32.99%
sc3 1/2100 5/2100 2.33 4.00 34:43 $0.353 63.95%
sc4 5/2100 5/2100 5.33 4.93 34:22 $0.413 57.82%
sc5 3/2100 2.5/2100 4.67 5.00 33:00 $0.442 54.84%
sc6 2/2100 1/2100 4.00 4.67 34:01 $0.523 46.60%
sc7 2/2100 2/2100 4.33 3.00 33:15 $0.410 58.16%

rate (kr = 5). Figures 7.2 and 7.3 show that spot VMs resumed in all executions. For

example, in J60, J80, and J100 more than 25% of the hibernated VMs resumed before

the hibernation time limit, while in ED200 this number drops to 18%.

Figure 7.2: Percentage distribution of the procedures used by HADS during the execution
of jobs J60 and J80

7.3 Performance Results 69

Figure 7.3: Percentage distribution of the procedures used by HADS during the execution
of jobs J100 and ED200

By comparing scenarios sc2 and sc4, we can evaluate the impact that resuming spot

VMs has on HADS behavior and on the final execution costs. In both scenarios the

hibernation rate is kh = 5, while the number of resuming is kr = 0 and kr = 5 for sc2

and sc4, respectively. Due to such a difference, the cost gain in sc4 is more than 50% for

all evaluated jobs, against a maximum cost gain of 32.99% in sc2 (job ED200). Thus,

although the hibernation rate is the same for both scenarios, we observe in Figures 7.2

and 7.3 that migrations to on-demand VMs occurred in less than 50% of the hibernations

for sc4, but it is more than 50% in sc2. Furthermore, as the resuming rate is high in sc4,

the bars idle migration, busy migration, and resuming before the hibernation time limits

are non zero in all executions, as shown in the figures. This behavior is also observed in

sc6 and sc7. Both scenarios have a similar hibernation rate (kh = 2). However, as the

resume rate of scenario sc7 (kr = 2) is higher than the one of sc6 (kr = 1), the former

outperforms the latter in terms of cost (more than 50% in all cases) which means that

even small increments in the resume rate have a significant impact on cost reduction.

In scenario sc5 with kh = 3 and kr = 2.5, even if HADS has migrated tasks to on-

demand VMs in all evaluated jobs, their cost reduction is between 40% and 70%. We

thus suspect that the algorithm’s efficiency depends on a trade-off between the number

of hibernation and resume events that take place during the execution of an application.

Hence, to better understand the impact of these rates, in the next section, we present

results from several experiments by varying the rate with which spot VMs hibernate and

resume.

7.3 Performance Results 70

7.3.1 Impact of hibernation and resuming

Aiming at evaluating the cost of hibernation rates, we have submitted job ED200, which

contains the largest number of tasks compared to the synthetic jobs, to three different

scenarios where, at each new execution, the hibernation rate increases by 1. Besides the

two baseline cases, we have considered three scenarios: i) any spot VM resumes (kr = 0);

ii) executions with medium chances of resuming (kr = 3); and iii) executions with high

chances of resuming (kr = 7).

By analyzing Figure 7.4, we could say that in scenarios where spots hibernate, mon-

etary costs variation has an intrinsic relation to the resuming rate of spot VMs. In the

scenario where any spot VM resumes (kr = 0), by increasing the number of hibernations,

the monetary cost gets closer to the on-demand baseline cost. However, it tends to de-

crease when the rate of resuming events increases becoming, therefore, cheaper than the

former.

$0.2

$0.4

$0.6

$0.8

$1.0

kₕ
0 1 2 3 4 5 6 7

Kr = 0
Kr = 3
Kr = 7
On-Demand only
Spot without Hibernation

Figure 7.4: Impact of variation of kh in the execution costs of job ED200

When kh = 6, all three scenarios have almost the same cost. We have observed in this

case that, in the three scenarios, all spot VMs hibernated but in different times of tasks

execution. Furthermore, some of them hibernated just before the end of the execution of a

task, requiring, therefore, on-demand VMs to meet the application deadline. On the other

hand, with a hibernation rate of kh = 7, spot VMs behavior changed and they always

hibernated at the first few seconds of the tasks execution, consequently leaving more time

for the resuming event to take place. Hence, in scenarios where kr > 0, execution costs

decrease since the probability that a resuming event happens before mtt increases. On

the other hand, when kr = 0, the execution cost is higher than the on-demand baseline

cost because the user pays for both the time of the first allocation cycle of the spot VMs

7.3 Performance Results 71

and for the on-demand VMs used in the migration.

7.3.2 Built-in Functions Evaluation

Considering the execution of job ED200, this section studies the behavior of the proposed

procedures. Figure 7.5 shows the percentage of times the work-stealing procedure was

successfully performed, i.e., it stole at least one task during its execution, in relation to

the total number of times it was called. For instance, if during the job execution the

procedure was called 10 times and it succeeded in 2 of them, the figure shows the 20%

bar.

We observe in Figure 7.5 that scenarios with higher hibernation rates benefit most

from work-stealing. In scenario sc2 (kh = 5), for example, 34.8% of work-stealing calls

were successful, followed by sc5 (kh = 3), where the success rate was 26.30%. On the other

hand, in scenario sc1, which corresponds to the lowest hibernation rate (kh = 1), only

18.18% of calls succeeded. Such behavior is expected since the work-stealing procedure

only steals tasks that are waiting to be executed and which would start executing in the

next VM’s AC (see Section 6.2.6). In addition, the migration procedure tends to schedule

tasks to the next AC too, and the higher the hibernation rate is, the higher the migration

rate is. Therefore, scenarios that face more migration events, such as sc2 and sc5, present

a higher work-stealing success rate in comparison to the other scenarios.

0.00%

10.00%

20.00%

30.00%

40.00%

sc1 sc2 sc3 sc4 sc5 sc6 sc7

Figure 7.5: Work-stealing distribution of Job ED200

Figures 7.6 and 7.7 illustrate the variation in the number of scheduled tasks (left axis)

of VMs c3.large and c4.large, used in one of the executions of job ED200 in scenario sc2.

Defined by the primary scheduling heuristic, 8 tasks (Figure 7.6) and 6 tasks (Figure 7.7)

were initially scheduled to c4.large and c3.large VMs respectively. The figures show that

the initial tasks were executed and then, as both VMs became idle, the work-stealing

7.3 Performance Results 72

Execution Time (seconds)

N
um

be
r o

f T
as

ks
0

2

4

6

8

0.00
500.00

1,000.00
1,500.00

Figure 7.6: Tasks progress of spot VM c4.large during the execution of Job ED200 in
scenario sc2

Execution Time (seconds)

N
um

be
r o

f T
as

ks

0

2

4

6

8

0.00
500.00

1,000.00
1,500.00

Figure 7.7: Tasks progress of spot VM c3.large during the execution of Job ED200 in
scenario sc2

procedure was performed, stealing 4 (resp., 6) tasks in the case of VM c4.large (resp.,

c3.large).

Note that, throughout the execution, in both VMs, the work-stealing procedure was

executed only once and before the first 15 minutes of execution, i.e., during the first AC of

the VMs. Another point is that the VMs pattern of Figures 7.6 and 7.7 was also observed

for the other VMs used to execute job ED200. In general, if the tasks of the initial list

were completed during the first VM’s AC, the work-stealing is effectively performed. Such

behavior confirms that the size of the AC, as well as the initial distribution of tasks, has

an impact on the work-stealing successful rate.

In order to study the impact of checkpointing in the execution of the ED200 job, we

evaluated the dump time to perform checkpoints, varying the size of the memory footprint

of the tasks. Based on the results, shown in Figure 7.8, we have analyzed how the former

grows in relation to the latter, and then, using a linear regression technique, we have

defined an equation that expresses such a relation. We observe in the figure that the

7.3 Performance Results 73

dump time presents almost a linear growth in relation to the memory footprints. Such a

relation can be defined by the equation y = 12.99 + 0.022 × x, where x is the memory

footprint of a task, and y is the estimated dump time to perform a checkpoint.

Figure 7.8: Dump time variation

Considering the execution of the ED200 job in each of the seven scenarios described

in Table 7.3, Table 7.6 summarizes the average number of checkpoints, task migrations,

and tasks recoveries. The last column concerns the saved CPU time due to the use of

the checkpoints. The values of the table show that the average number of checkpoints

are almost the same for the seven scenarios, slightly varying from 93.00 to 108.67. On

the other hand, we observe the strong impact of hibernation rate in the number of task

migrations. For example, there is a ratio of nine between the number of migrations in

scenario sc2 (kh = 5 and kr = 0) and scenario sc1 (kh = 1 and kr = 0). Moreover, in

scenario sc2, more than 12 minutes of CPU time were saved, while in sc1, this number

drops to 3:40.

Table 7.6: Average number of checkpoints, migrations, recoveries, and CPU save time
from checkpoint in of job ED200 in the seven scenarios

scenario # checkpoints # task # recoveries CPU

migrations from checkpoint save time

ED200

sc1 93.00 8.67 3.33 3:40

sc2 99.67 80.00 17.33 12:44

sc3 101.00 7.67 3.00 4:59

sc4 108.67 9.00 5.33 7:04

sc5 103.33 8.33 2.67 3:42

sc6 96.67 11.00 7.67 9:01

sc7 99.33 8.67 8.00 6:51

Chapter 8

Burst Hibernation Aware Dynamic Sched-
uler

The approach used by the HADS framework increases the total execution time of the

application when spot VMs hibernates. To tackle this problem, we propose the use of

burstable VMs aiming at reducing the makespan in case of hibernations. Thus, this

Chapter presents Burst-HADS, an extension of HADS framework that includes burstable

VMs on the scheduling and migration decisions. Unlike HADS, Burst-HADS adopts a

multi-objective approach that aims to minimize both the monetary cost and the total

execution time while meeting the deadline of the application. In Section 8.1, we present

the Burst Primary Scheduling Module, and in Section 8.2 we introduce the Burst Dynamic

Scheduling Module.

8.1 Burst Primary Scheduling Module

In this section, we present the extended version of the Primary scheduling module, called

Burst Primary Scheduling Module. We first introduce the mathematical formulation of

the multi-objective primary task scheduling problem considered by Burst-HADS. After

that, we present the proposed Iterated Local Search (ILS) based heuristic [52] to solve

that problem in a realistic time.

8.1.1 Mathematical Formulation

We model the primary task scheduling problem of Burst-HADS as a multi-objective integer

programming problem whose objectives are to minimize both the monetary cost and the

total execution time of the application. In other words, in our case, it is defined as the

8.1 Burst Primary Scheduling Module 75

problem of creating an initial scheduling strategy, respecting the limit of available vCPUs

and memory capacity of the used VMs while minimizing the makespan and the monetary

costs of the execution.

Since one of the objectives is to minimize the execution’s monetary cost, in the math-

ematical formulation, we considered only spot VMs of set M s ⊂M . Therefore, instead of

the deadline D the scheduling solution must respect the Dspot value, i.e., the worst-case es-

timated makespan, which guarantees there will always have enough spare time to migrate

tasks of any hibernated spot VM to other VMs and execute them before the deadline D.

The Dspot value was introduced previously in Section 6.1.1. Let the binary variable Xv
ij

indicate whether a task ti ∈ B allocated to a vmj ∈M s will start executing (Xv
ij = 1), or

not (Xv
ij = 0), at time period v ∈ T . Let also Zj and ZT be continuous variables which

respectively keep the last period of execution of a vmj ∈M s and the total execution time

of the application (makespan).

The proposed objective function (Equation 8.1) is a weighted function that minimizes

the monetary cost and the makespan, where ω is the weight given by the user for the

objectives.

min(ω × (
∑

vmj∈Ms
Zj × cj) + (1− ω)× ZT) (8.1)

Both the monetary cost and the makespan have to be first normalized. The normal-

ization procedure updates the target values to share the same minimum and maximum

values, 0 and 1, respectively. Thus, the solution’s total monetary cost was divided by the

product of the monetary cost of hiring the most expensive spot vmj ∈M s, during Dspot pe-

riods, times the maximum number of VMs that can be deployed. Similarly, the makespan

is divided by Dspot. The objective function is subject to the following constraints.

Constraint 8.2 guarantees that every task ti ∈ B must be executed, starting at a

time v ∈ T in a vmj ∈ M s. Constraint 8.3 assures that tasks’ memory demand does not

outpace the memory capacity of the VM, while constraint 8.4 guarantees that the number

of parallel tasks allocated to a vmj ∈ M s does not exceed the number of virtual cores of

the VM.

∑
vmj∈Ms

∑
v∈T

Xv
ij = 1,∀i ∈ B (8.2)

8.1 Burst Primary Scheduling Module 76

∑
ti∈B

v∑
q=p

rmi ×Xq
ij ≤ mj,

∀vmj ∈M s,∀v ∈ T, and p = max(v − eij, 1)

(8.3)

∑
ti∈B

v∑
q=p

Xq
ij ≤ |V Cj|,

∀vmj ∈M s,∀v ∈ T, and p = max(v − eij, 1)

(8.4)

Inequalities 8.5 and 8.6 relate the last period of execution of each vmj ∈ M s with

the application total execution time (makespan). Finally, constraint 8.7 assures that the

application makespan does not exceed the Dspot value.

Xv
ij × (v + eij) ≤ Zj

∀ti ∈ B, ∀vmj ∈M s and ∀v ∈ T
(8.5)

Xv
ij × Zj ≤ ZT

∀ti ∈ B, ∀vmj ∈M s and ∀v ∈ T
(8.6)

Zj ≤ Dspot,∀vmj ∈M s (8.7)

All variables and parameters used in the mathematical formulation are summarized

in Table 8.1.

8.1 Burst Primary Scheduling Module 77

Table 8.1: Notation and Variables used in the Mathematical Formulation.

Name Description

B Set of tasks

Ms Set of spots VMs

T Discretized time set

Dspot Estimated time limit which ensures that there will be enough spare time

to migrate tasks of a hibernated spot VM to other VMs no matter when

hibernations take place

vmj Virtual machine

mj Memory capacity of vmj in gigabytes

cj Cost per period of time of vmj

V Cj Set of cores of vmj

ti a task of the BoT application

rmi Amount of memory required by a task ti

eij Time required to execute task ti in a vmj

Xv
ij Binary variable which indicates whether task ti ∈ B begins its execution

in a vmj ∈Ms at time period v ∈ T or not

Zj Continuous variable which keep the last period of execution of a vmj

ZT Continuous variable which indicates the total time to execute the BoT

application (makespan)

ω Weight of the objectives in the fitness function

8.1.2 Iterated Local Search Heuristic

To create the initial scheduling map according to the mathematical formulation, we pro-

pose an Iterated Local Search (ILS) able to solve the problem in an acceptable time. The

ILS [52] is a metaheuristic that aims at improving a final solution by sampling in a broader

and distant neighborhood of candidate solutions and then applying a local search tech-

nique to refine solutions to their local optima. It explores a sequence of solutions created

by perturbations of the current best solution to reach these distant neighborhoods.

After finding a scheduling map with the ILS, a second heuristic is applied to include

burstable instances of set M b into the solution. In case of spot VM hibernations, these

instances will be used in burst mode by the Dynamic Scheduler Module, as an attempt

to minimize the impact of these hibernations in the monetary cost and/or the execution

time. Therefore, the Primary Task Scheduling Algorithm (Algorithm 9) has two parts:

i) the Iterated Local Search, that solves the scheduling problem and ii) the burstable

instances allocation, that includes burstable instances to the final solution.

8.1 Burst Primary Scheduling Module 78

Firstly, in line 2 of Algorithm 9, a initial solution is generated by calling the Primary

Scheduling Heuristic (Algorithm 3, presented in Chapter 6, Section 6.2). After obtaining

that solution, the ILS tries to improve it by applying local search and perturbation proce-

dures (Algorithm 9, lines 3 to 20). Thus, let S be a solution that defines a scheduling map

of all tasks ti ∈ B to a subset of VMs of M s∪M o. Let fitness(S) be a weighted function

that assigns a value to the quality of S. Since this function is equivalent to the objective

function presented in Equation 8.1, we define in Equation 8.8 the fitness(S,Dspot) func-

tion, where cost is the total monetary cost of S and mkp is the total execution time of

the application.

fitness(S,Dspot) =

∞, if violates Dspot

ω.cost+ (1− ω).mkp, otherwise
(8.8)

Algorithm 9 executes a local search by calling, in line 3, the local search procedure

(Algorithm 10), which executes a series of attempts to improve the current solution by

swapping tasks between the selected VMs. Algorithm 10 receives as input the current

solution S, the max attempt parameter that determines the number of times the local

search will be executed, the set of tasks B, the swap rate and the Dspot value. The

swap rate ∈ [0, 1] parameter is tuned before the execution and determines the number of

tasks that will be swapped at each iteration. All the parameters used in our tests, including

the swap rate, max attempt, max iteration and other parameters will be presented next

in Chapter 7.

As can be observed in lines 4 and 8 of Algorithm 10, a solution S is composed of two

structures: (i) a vector, which controls task allocation, where indexes correspond to tasks,

and each element keeps the identity of the VM that will execute the corresponding task,

and (ii) a list composed by selected VMs. Firstly, the algorithm computes the number of

tasks that will be swapped at each iteration (line 2) and randomly selects a destination

VM (vmdest, line 4). After that, the algorithm starts the tasks swapping procedure (lines 5

to 14), where n tasks, also randomly selected (line 7), are moved to the vmdest. After each

swap movement, the local search procedure checks if the quality of the new generated

solution has improved (line 9) and it updates the Sbest solution, if necessary. In the end,

the procedure returns the best solution (line 15).

8.1 Burst Primary Scheduling Module 79

Algorithm 9 ILS Primary Task Scheduling

Input: B, Mo, Ms, M b, max iteration, max attempt, max failed, relaxed rate, Dspot and D

1: {/*PART 01 - Iterated Local Search*/}
2: S ← initial solution(B,Ms, Dspot) {Algorithm 3}
3: S ← local search(S,max attempt,B, swap rate,Dspot) {Algorithm 10}
4: Sbest ← S

5: RDspot ← Dspot

6: it, itbest ← 0

7: while it < max iteration do

8: vmj ← random choice(Ms)

9: S.selected vms← S.selected vms ∪ vmj

10: Ms ←Ms\{vmj}
11: if (it− itbest) > max failed then

12: RDspot ← RDspot + (relaxed rate×RDspot)

13: end if

14: S ← local search(S,max attempt,B, swap rate,RDspot)

15: if fitness(S,RDspot) < fitness(Sbest, RDspot) then

16: Sbest ← S

17: itbest ← it

18: end if

19: it← it+ 1

20: end while

21:

22: {/*PART 02: Burstable instance allocation*/}
23: n′ ← dburst rate× |Sbest.selected vms|e
24: Sfinal ← burst allocation(Sbest, burst rate,M

b, Dspot, D)

25: map← create primary map(Sfinal)

26: return map

After the first execution of the local search procedure (Algorithm 9, line 3), Algorithm

9 has a loop that firstly performs a perturbation (lines 8 to 13) and then a new local

search (line 14). The perturbation is responsible for diverting the metaheuristic from

local optimal solutions. In the current work, we use two perturbation strategies. The first

one includes a not selected spot vmj ∈M s into the current solution S (lines 8 to 10). The

second one, called relaxing perturbation, increases the Dspot limit (lines 11 to 13). Note

that the latter is executed only when the number of iterations without finding a better

solution is higher than the max failed parameter (line 11). In this case, the metaheuristic

increases the Dspot limit in relaxed rate percent, where relaxed rate ∈]0, . . . , 1] is also a

parameter defined by the user.

Upon finishing the ILS (Part 1), Algorithm 9 executes the burst allocation procedure

8.1 Burst Primary Scheduling Module 80

Algorithm 10 Local Search

Input: S, max attempt, B, swap rate and Dspot

1: Sbest ← S
2: n← swap rate× |B|
3: attempt← 0
4: vmdest ← random choice(S.selected vms)
5: while attempt < max attempt do
6: for k ∈ {1, ..., n} do
7: ti ← random choice(B)
8: S.allocation array[ti]← vmdest

9: if fitness(S,Dspot) < fitness(Sbest, Dspot) then
10: Sbest ← S
11: end if
12: end for
13: attempt← attempt+ 1
14: end while
15: return Sbest

(Part 2, lines 22 to 24). In this procedure, n′ burstable VMs are included in the final

solution. The number of burstable VMs is defined as a percentage, given by the parameter

burst rate, of the selected spot VMs of the best solution found by the ILS. For example,

if 20 spot VMs were selected by the ILS, with burst rate = 0.1, only 2 burstable VMs

will be included.

Since the relaxed perturbation leads some tasks to violate the Dspot limit, the

burst allocation procedure also moves these tasks to the burstable instances. Each burstable

VM can receive at most one task to be executed in baseline mode. However, if there still

exist tasks violating Dspot and no available burstable VM, the procedure allocates them to

the cheapest regular on-demand VMs. On the other hand, if a burstable VM remains idle,

the task with the latest finishing time in the scheduling map is moved to it. Remark that

our strategy of having a single task per burstable instance at a time, executing in base-

line mode, induces CPU credits accumulation. Consequently, these burstable instances

become the best candidates to receive tasks in case of hibernations.

The first part of Algorithm 9 have complexity O(|B| × (log |B|+ |A|log|A|+ |M o|) +

(max iteration×max attempt× n)) which is the time complexity of Algorithm 3, used

to create the initial solution, plus the complexity of ILS main loop (lines 7 to 20). At

each iteration of the main loop the algorithm calls the local search procedure (Algorithm

10), whose complexity is max attempt × n, where n is the number of swapped tasks

and max attempt is the number of times the procedure try to find a better solution.

In the second part of Algorithm 9 (lines 22 to 24), the complexity is O(n′ × k), where

n′ is the number of burstable VMs that will be included in the final solution and k

represents the number of tasks violating the Dspot value. Since |B|× (log |B|+ |A|log|A|+

8.2 Burst Dynamic Scheduling Module 81

|M o|) + (max iteration×max attempt× n) >> n′ × k the complexity of Algorithm 9 is

O(|B| × (log |B| + |A|log|A| + |M o|) + (max iteration×max attempt× n)). Moreover,

Algorithm 9 receives four lists of integers, representing sets B, M o, M s and M b, where

each element in a list represents either the ID of a task or of a VM. Thus, as |B| >> |M |,
in terms of space complexity Algorithm 9 is O(|B|).

8.2 Burst Dynamic Scheduling Module

As in the case of the Primary Scheduling Module, HADS’ Dynamic Scheduling Module

was also extended to include the burstable instances. Moreover, instead of computing the

migration time limit value (mtt) and wait (as present previously in Chapter 6), the Burst

Dynamic Scheduling Module immediately migrates tasks when a spot instance hibernates.

That approach is adopted since the module has burstable VMs available to receive the

tasks. Note that, in this case, although Burst-HADS does not wait for a hibernated VM

to resume and continues executing its tasks, the framework keeps all hibernated VM as a

resource that, if resumes, can be used again to reduce the monetary cost and the execution

time of the application. The migration procedure is presented next.

8.2.1 Migration Procedure

As previously explained, as soon as a spot vml hibernates, Burst-HADS executes the

migration procedure, searching for a set of VMs to assign and execute non-finished tasks,

denoted affected tasks, that were previously scheduled to vml. Algorithm 11 presents

the migration procedure, which always respects the deadline D when selecting tasks to

migrate. It receives as input the set Ql ⊂ B of affected tasks, the sets of idle, busy, and

non-launched regular on-demand VMs (IR, BR and M o, respectively), and the deadline

D. Note that, in the case of a burstable vmj ∈ M b, eij is the execution time of task ti

in vmj in burst mode (100% of the vmj processing power) and each vmj ∈ M b have a

current CPU credit amount ccj that is constantly updated by the cloud provider (in the

case of vmj 6∈M b, i.e., non-burstable VMs, ccj =∞).

Initially, Ql is ordered, giving priority to those tasks that were executing at the mo-

ment of the hibernation and had been previously checkpointed (line 1). In order to avoid

the overhead of launching new VMs, the migration procedure gives priority to the use of

already launched VMs. For each task ti ∈ Ql the algorithm first tries to migrate the task

to an idle burstable VM (lines 4 to 13). Otherwise, it tries to schedule ti to one of the

8.2 Burst Dynamic Scheduling Module 82

non-burstable idle or busy VM of set K = IR ∪ BR (lines 18 to 27). Note that, the set

K is created by sorting the idle and busy VMs according to its market, putting the spot

VMs ahead of the set (Algorithm 11 line 17).

8.2 Burst Dynamic Scheduling Module 83

Algorithm 11 Migration Procedure

Input: Ql, IR, BR, Mo, and D

1: Ql ← sort tasks(Ql) {/* Prioritizes tasks with checkpoints */}
2: for each ti ∈ Ql do

3: {Attempt 1 - Try to migrate task to a Burstable IDLE VM}
4: for each burstable vmj ∈ IR do

5: rccij ← deij/burst periode
6: if ccj > rccij and check migration(ti, vmj , D) then

7: {Migrate ti to burstable vmj on burst mode}
8: migrate(ti, vmj)

9: IR← IR\{vmj}
10: BR← BR ∪ {vmj}
11: break {/*Migrate next task*/}
12: end if

13: end for

14: {Attempt 2 - Try to migrate task to a NON-burstable Idle or Busy VM}
15: if not migrated then

16: {/* Prioritizes idle spot VMs */}
17: K ← sort by market(IR ∪BR)

18: for each NON-burstable vmj ∈ K do

19: if check migration(ti, vmj , D) then

20: migrate(ti, vmj)

21: if vmj ∈ IR then

22: IR← IR\{vmj}
23: BR← BR ∪ {vmj}
24: end if

25: break {/*Migrate next task*/}
26: end if

27: end for

28: end if

29: {Attempt 3 - Migrate task to a new NON-burstable on-demand VM}
30: if not migrated then

31: sort by price(Mo)

32: for each vmj ∈Mo do

33: if startij + eij + α < D then

34: start vm(vmj)

35: migrate(ti, vmj)

36: Mo ←Mo\{vmj}
37: BR← BR ∪ {vmj}
38: break {/*Migrate next task*/}
39: end if

40: end for

41: end if

42: end for

8.2 Burst Dynamic Scheduling Module 84

Tasks migrated to burstable VMs are executed in burst mode, i.e., using 100% of

the VM’s CPU processing power. Therefore, it is necessary to guarantee that a selected

burstable VM will have enough CPU credits to execute all tasks assigned to it. Let

burst period be the number of periods of T corresponding to one credit consumption in

burst mode. Since we consider that a task ti is executed in only one core (see Section 4.1),

it is possible to estimate (line 5) the number of CPU credits consumed by task ti, where

eij is the execution time of ti in vmj at burst mode, and rccij is the estimated number

of required CPU credits. Then, the algorithm checks if vmj has enough CPU credits and

call the check migration function to guarantee that vmj has enough memory and will

execute ti before the deadline D (line 6). If both conditions are satisfied, ti is migrated

to vmj at the burst mode (line 8). In this case the burstable vmj is removed from set

IR and included in set BR (lines 9 and 10). Note that the cloud provider continuously

updates the number of credits, ccj, of every burstable VM.

Moreover, when Algorithm 11 migrates a task ti to a non-burstable idle or busy vmj,

it also calls the function check migration (Algorithm 7) to verify if the VM has enough

memory and will be able to finish the task before the deadline D (line 19). Furthermore, if

vmj is a spot VM, the function check migration should also verify if there will be enough

spare time in vmj between the end of the execution of vmj tasks (including task ti) and

the deadline D since, in this case, a busy or idle spot vmj is also subject to hibernation.

The spare time has to be greater than the execution time of the longest task scheduled

to vmj, ensuring, therefore, that if a hibernation occurs, there will be enough time to

migrate and execute all affected tasks before the deadline D.

Finally, if there does not exist any available already deployed VM able to execute

task ti, the algorithm migrates the task to a new on-demand VM of set M o (lines 32 to

40). In this case, it is necessary to verify that, considering the start period of ti in vmj

(startij), plus its execution time (eij) will not violate the deadline (line 33). The new

allocated on-demand VM is then removed from set M o and included in set BR (lines 36

and 37). Note that, in terms of time and memory complexity, the analysis of Algorithm

11 is similar to the analyses presented in Section 6.2.5.

8.2.2 Work-Stealing Procedure

As presented in Section 6.2.6, the work-stealing procedure aims to reduce the allocation

time of regular on-demand VMs and balance the load of spot VMs. It is triggered when

a hibernated spot VM resumes or when a VM (spot or on-demand) becomes idle. In the

8.2 Burst Dynamic Scheduling Module 85

case of Burst-HADS, Algorithm 12 tries to move tasks from non-burstable busy VMs to

the idle VM.

Algorithm 12 Burst Work-Stealing Procedure

Input: BR, IR, vmk, D

1: sort by market(BR) {/*Prioritizes non-burstable on-demand VMs*/}
2: for each NON-burstable vmj ∈ BR do

3: STj ← selectTasks(vmj) {Select the tasks that can be stolen/}
4: for each ti ∈ STj do

5: if check migration(ti, vmk, D) then

6: if vmk is burstable then

7: set baseline mode(ti, vmk)

8: migrate(ti, vmk)

9: stops the loop

10: else if vmk not burstable then

11: migrate(ti, vmk)

12: end if

13: end if

14: end for

15: end for

16: if at least one task was stolen then

17: BR← BR ∪ {vmk}
18: IR← IR\{vmk}
19: end if

For each non-burstable busy vmj ∈ BR the procedure selects the tasks that can be

stolen from it (line 3) and tries to migrate them to the idle vmk (lines 4 to 14). Since

regular on-demand VMs are more expensive than spot ones, the procedure considers firstly

the tasks from the former (line 1).

Similarly to the migration procedure, for each selected task of a vmj, the work-stealing

procedure also verifies, by calling the function check migration (Algorithm 7), if the task

migration would result in the deadline violation (line 5). Since tasks migrated to burstable

VMs by the work-stealing procedure are executed in the baseline mode, after verifying

if the idle vmk is burstable (line 6), the algorithm sets up the execution to the baseline

mode (line 7). In this work, to set up a burstable VM to the baseline mode means that

the task cannot run using 100% of the CPU processing power, but uses only the baseline

performance defined by the provider1. To limit the CPU utilization, Burst-HADS uses

the cpulimit tool [55], an open-source program that limits the CPU usage of a process in

1https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/burstable-credits-baseline-concepts.

html

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/burstable-credits-baseline-concepts.html

8.2 Burst Dynamic Scheduling Module 86

GNU/Linux. Moreover, if the idle vmk is burstable, only one task is moved to it, to avoid

a queue of tasks to be executed at the baseline mode, which could increase the application

total execution time. Thus, after moving one task to the burstable vmk, the algorithm

stops the loop (line 9). Finally, if at least one task is migrated to vmk, its state changes

to busy and, consequently, it is included into the set of busy VMs and removed from the

idle set (lines 17 and 18). Note that, in terms of time and memory complexity, Algorithm

12 has a complexity similar to the analyses of Algorithm 8, presented in Section 6.2.6.

Chapter 9

Burst-HADS Experimental Results

In this Chapter, we present the evaluation results related to the Burst-HADS framework.

At first, in Section 9.1, we present the experimental environment, including the input

parameters and the used VMs. Next, in Section 9.2, we evaluate the th first part of

the Algorithm 9 (presented in Chapter 8) in terms of quality of solution and execution

time. In Section 9.3, we present the baseline job execution cases, while in Section 9.4

we show the practical evaluation in EC2 considering different scenarios of hibernation

and resuming. Finally, Section 9.5 presents a study case where Burst-HADS was used to

execute SARS-CoV-2 sequence comparison with the MASA-OpenMP tool.

9.1 Experimental Environment

As in HADS evaluation presented in Chapter 7, to evaluate Burst-HADS, we also use the

BoT applications presented in Section 7.1, and the hibernation and resume events was also

emulated (Section 7.1.1). Moreover, we also adopted VMs from c3 and c4 family, however,

as a burstable resource, we include the newest generation of the burstable instance t3.large.

To store checkpoint files, the tests present in Sections 7.2 and 9.4 use the S3 service. Table

9.1 shows the computational characteristics and the corresponding prices in on-demand

and spot markets. Note that the results present in this chapter were originally published

in [77]. Thus, all presented prices are from November 2020.

For the execution of Algorithms 9 and 10, the following input parameters were used:

α = 0.5, max iteration = 200; max attempt = 50; swap rate = 0.10; max failed = 20;

relaxed rate = 0.25; burst rate = 0.2. Moreover, we defined AC = 900 seconds and the

deadline was setup to 45 minutes (D = 2700s). Except for α = 0.5, which was used to

give the same weights to both objectives, the parameters’ values were defined by executing

9.2 Evaluation of the ILS Primary Task Scheduling 88

Table 9.1: VMs attributes

Type #VCPUs Memory
Price per Hour (USD) Baseline
on-demand spot performance

c3.large 2 3.75 GB 0.105$ 0.0299$ -
c4.large 2 3.75 GB 0.100$ 0.0366$ -
c3.xlarge 4 7.50 GB 0.199$ 0.0634$ -
t3.large 2 8 GB 0.0832$ - 20%

a set of empirical tests.

We create five different scenarios for Burst-HADS’ practical tests by varying param-

eters kh and kr of the events emulation. Table 9.2 presents those scenarios. Note that,

since we adopt a different deadline, the scenarios are not the same as the ones presented

in Table 7.3.

Table 9.2: Different execution scenarios generated by varying parameters λh and λr

ID hibernating resuming λh λr

s1 kh = 1 kr = 0 1/2700 0/2700
s2 kh = 5 kr = 0 5/2700 0/2700
s3 kh = 1 kr = 5 1/2700 5/2700
s4 kh = 5 kr = 5 5/2700 5/2700
s5 kh = 3 kr = 2.5 3/2700 2.5/2700

9.2 Evaluation of the ILS Primary Task Scheduling

To evaluate the quality of the solution given by the ILS executed in the first part of

the primary scheduling heuristic (Algorithm 9), we compared it with the optimal solution

given by the exact model and also with the solutions given by three widely used benchmark

scheduling heuristics [40]:

• MinMin, where the scheduling gives priority to VMs with the minimum earliest

completion time;

• MaxMin, where the scheduling gives priority to VMs with the maximum earliest

completion time; and

• Greedy, where the shortest execution time task is scheduled to the cheapest available

VM.

9.2 Evaluation of the ILS Primary Task Scheduling 89

For the comparison with the exact model we create six small jobs using also the

synthetic application proposed in [3], composed of tasks with execution times varying

from 5 to 15 seconds (from 5 to 30 tasks). We opted for that set with up to 30 tasks

because the exact model took more than ten hours to solve the problem for jobs with

more than 30 tasks. In these experiments, the deadline was fixed in 15 minutes (D = 900)

for all jobs, and we used as input the spot VMs presented in Table 9.1, except for the

burstable VM, since we are evaluating just the ILS heuristic. In these experiments, a

computer with a processor Intel Core i7-3770 CPU 3.40 GHz with 12GB of memory and

Ubuntu 18.04 was used. The mathematical formulation was solved by using the Gurobi

Solver 9.0 [39].

Table 9.3 summarizes the results of both the exact approach and the ILS-based heuris-

tic. The first column identifies the number of tasks. The three columns that follow corre-

spond to the results achieved by ILS: makespan, cost and the execution time to obtain the

solution. The next three columns present the same results for the exact approach. The

values shown for the ILS are averages of three executions. The ILS standard deviations

were zero for all jobs.

Table 9.3: Results of the ILS-based Primary Scheduling Heuristic and the Exact Approach

Tasks
ILS Exact Approach

Makespan Cost Time Makespan Cost Time

5 21 $0.0005 0.0071 21 $0.0005 49.04
10 34 $0.0011 0.0306 34 $0.0011 70.10
15 34 $0.0020 0.0297 34 $0.0020 106.03
20 34 $0.0021 0.0558 34 $0.0021 233.10
25 34 $0.0027 0.0736 34 $0.0027 751.72
30 34 $0.0035 0.0922 34 $0.0035 9346.21

As we can observe in Table 9.3, ILS obtained the same solutions of the exact approach

for these small jobs, taking significantly less time than the mathematical formulation. On

average, the ILS takes 0.048s against 2101.43s of the exact approach. Although these

results are very encouraging, the experiments were limited to jobs with few tasks (up to

30 tasks) due to the huge required time to obtain the exact solution for jobs with more

tasks.

For the evaluation with the other heuristics, six synthetic jobs were created with sizes

varying from 50 to 200 tasks. The tasks execution times varied from 15 to 35 seconds, and

the same deadline of 15 minutes (D = 900) was applied. Table 9.4 presents the makespan

and monetary cost obtained by the ILS, MinMin, MaxMin and Greedy heuristics. As

9.3 Baseline executions 90

shown in Table 9.4, the ILS heuristic outperforms MinMin in terms of monetary cost but

increases the makespan. On average the ILS makespan presents an increment of 18.11%,

while the average monetary cost reduces by more than 38.00%.

Table 9.4: Results of the ILS-based Primary Scheduler, MinMin, MaxMin and Greedy
Heuristics.

Tasks
ILS MinMin MaxMin Greedy

mkp cost mkp cost mkp cost mkp cost

50 57 $0.0060 47 $0.0073 610 $0.0055 597 $0.0051
100 86 $0.0112 71 $0.0220 897 $0.0107 843 $0.0101
150 109 $0.0169 99 $0.0338 885 $0.0157 823 $0.0148
200 138 $0.0235 123 $0.0376 898 $0.0220 819 $0.0205
250 163 $0.0282 133 $0.0461 888 $0.0261 793 $0.0246
300 204 $0.0340 168 $0.0551 899 $0.0323 775 $0.0317

Compared to MaxMin and Greedy, the ILS presents an average reduction in the

makespan by more than 80%, with an average increment in the monetary cost by only

6.78% when compared to MaxMin, and 13.14% when compared to the Greedy heuristic.

Contrary to the MinMin heuristic, both MaxMin and Greedy heuristics reduce the solu-

tion’s monetary cost since they give priority to the cheapest VMs, which increases the

makespan.

It is worth noticing that both objectives were evenly considered in the ILS solutions

and that the average loss in one of the objectives was always smaller than the gain in the

other. Those results confirm the effectiveness of the proposed ILS to the BoT primary

scheduling problem.

9.3 Baseline executions

We have firstly evaluated Burst-HADS in a scenario without hibernation, comparing it

with (1) the schedule given by the proposed ILS using only on-demand VMs and (2) the

schedule given by HADS in a scenario without hibernation. The aim of these experiments

is to measure the impact in the monetary cost and execution time of including burstable

on-demand VMs into the scheduling procedure. Table 9.5 presents the average of three

executions of the synthetic jobs J60, J80, and J100, and the real application ED200, for

each case.

In comparison with HADS, Table 9.5 shows that Burst-HADS reduces the makespan

in 44.37%, 42.09%, 28.82%, and 11.82%, for jobs J60, J80, J100, and ED200, respectively.

However, the average monetary cost increases by 66.34%, 44.54%, 57.55%, and 33.71%,

9.4 Performance Results 91

for the same comparison. The latter increases because Burst-HADS already starts by

using some burstable on-demand VMs. Moreover, the ILS based primary scheduling uses

more VMs to reduce the execution time, while in HADS, the initial scheduling aims at

minimizing only the monetary cost.

Table 9.5: Cost and Makespan of Burst-HADS and HADS, without hibernation; and ILS
On-demand only.

JOB
Burst-HADS

Without Hibernation
HADS

Without Hibernation
ILS On-demand

cost makespan cost makespan cost makespan

J60 $0.112 1274 $0.067 2290 $0.271 1112
J80 $0.151 1329 $0.104 2295 $0.312 1190
J100 $0.176 1660 $0.112 2332 $0.371 1462

ED200 $0.357 2275 $0.267 2580 $0.698 1887

On the other hand, compared to the ILS on-demand strategy, on average, Burst-

HADS reduces the monetary cost by more than 52.00%, with an average increase of 15%

in the makespan. The ILS on-demand strategy uses the scheduling plan given by the ILS

proposed in Algorithm 9, which does not include spot neither burstable VMs, but only

regular on-demand VMs. The longer makespan is due to the execution of tasks in the

baseline mode of burstable VMs, which does not occur in the ILS on-demand strategy.

9.4 Performance Results

Table 9.6 presents the averages of three executions of jobs J60, J80, J100, and ED200 using

Burst-HADS and HADS in each of the five execution scenarios. For each job and scenario,

the table shows the average number of hibernations followed by resume events. It also

includes the number of non-burstable on-demand VMs launched by the Dynamic Module

of both Burst-HADS and HADS that handle the hibernations as well as the average of

monetary cost and makespan. Finally, the last two columns represent the percentage

difference between Burst-HADS and HADS (diff) related to the monetary cost and the

makespan.

As we observe in Table 9.6, Burst-HADS minimizes the makespan in all execution

scenarios, presenting an average reduction of 25.87%. As explained in Section 8.2.1,

whenever a spot VM hibernates, Burst-HADS immediately migrates the interrupted tasks

to other VMs. Thus, the increase in the makespan is due to the overhead of this procedure,

which might include the launch of new VMs. However, small jobs, i.e., jobs with fewer

tasks, are less affected in those scenarios than the biggest ones. For example, while

9.4 Performance Results 92

Table 9.6: Comparison between Burst-HADS and HADS in terms of monetary cost and
makespan in scenarios s1 to s5

Job scenario # hibernations # resume
used regular on-demand VMs Burst-HADS HADS Diff (%)
Burst-HADS HADS cost makespan cost makespan cost makespan

J60

s1 0.66 0.00 0.00 0.00 $0.119 1274 $0.091 2620 -30.77% 51.37%
s2 3.33 0.00 1.33 2.33 $0.204 1277 $0.257 2549 20.54% 49.90%
s3 2.33 2.33 1.33 0.00 $0.127 1752 $0.101 2539 -26.07% 31.00%
s4 5.33 4.00 1.67 0.00 $0.142 1857 $0.119 2634 -19.90% 29.50%
s5 2.66 1.00 1.33 2.00 $0.150 1445 $0.169 2359 11.44% 38.75%

J80

s1 1.00 0.00 1.33 0.33 $0.167 1419 $0.150 2581 -11.33% 45.03%
s2 5.00 0.00 1.00 3.00 $0.210 2267 $0.298 2591 29.48% 12.50%
s3 3.00 1.00 1.67 1.00 $0.164 1367 $0.147 2602 -11.34% 47.46%
s4 9.66 7.66 1.00 2.00 $0.244 2488 $0.212 2607 -15.25% 4.56%
s5 3.00 1.00 1.33 3.00 $0.195 1589 $0.246 2529 20.47% 37.17%

J100

s1 2.00 0.00 0.00 0.00 $0.191 1798 $0.157 2332 -21.76% 22.90%
s2 7.00 0.00 1.33 3.00 $0.212 1900 $0.353 2518 39.94% 24.54%
s3 6.00 3.00 1.67 1.00 $0.201 1925 $0.166 2636 -21.08% 26.97%
s4 11.00 9.00 1.00 0.00 $0.286 2453 $0.278 2591 -2.88% 5.33%
s5 3.66 2.00 1.00 2.50 $0.166 1547 $0.189 2543 12.49% 39.15%

ED200

s1 3.00 0.00 1.00 0.33 $0.388 2327 $0.314 2680 -23.57% 13.17%
s2 8.00 0.00 2.00 5.00 $0.482 2448 $0.512 2676 5.86% 8.52%
s3 6.66 4.00 2.33 1.00 $0.427 2345 $0.387 2672 -10.34% 12.24%
s4 9.00 6.00 2.00 1.00 $0.411 2560 $0.389 2690 -5.66% 4.83%
s5 4.33 2.33 1.67 3.00 $0.367 2342 $0.467 2674 21.41% 12.42%

for job J60, the average makespan reduction, considering all scenarios, is 40.10%, for

job ED200, that reduction is only 10.24%. Such a behaviour can be explained because,

in our experiments, we have fixed the same deadline for all jobs and, therefore, small

jobs have more spare time between its expected makespan defined by the ILS and the

deadline. Consequently, in this case, Burst-HADS benefits more from the burst mode of

the burstable VMs since it has more idle time to earn CPU credits. Moreover, it also

executes the work-stealing more frequently, which also reduces the makespan. On the

other hand, independently of the scenario or job, HADS’s makespan get closer to the

deadline whenever a hibernation occurs. That happens because the HADS framework

postpones as much as possible the execution of the migration procedure. Since HADS

gives priority to the monetary cost save, its central idea is to wait for the resume of

hibernated VMs, avoiding then the launch of new VMs.

In scenarios s2 and s5, Burst-HADS improved the monetary cost for all jobs. The s2

is the worst execution case scenario, since it has the highest rate of hibernation (kh = 5)

and no resume rate (kr = 0), while s5 is the average case scenario where the rate of

hibernation is kh = 3.0, and the rate of resume is kr = 2.5 (see Table 9.2). In these

scenarios, Burst-HADS uses fewer regular on-demand VMs than HADS. Moreover, in

both cases, the number of hibernations is higher than the number of resumes. Hence,

in those cases, by migrating tasks to busy and idle VMs as well as to burstable VMs,

exploring the burst mode, Burst-HADS is more effective in minimizing the impact of spot

hibernations than HADS. It is worth also pointing out that, considering all executions,

the average increase of Burst-HADS makespan is 1.92%.

9.5 Case study: A Sequence Alignment Problem 93

Compared to the ILS On-demand, both Burst-HADS and HADS minimized the mon-

etary cost for all execution cases, presenting an average reduction of 41.80% and 39.65%,

respectively. For job ED200, for example, the worst execution scenario, s2, Burst-HADS

reduced the monetary cost by 30.96%, while HADS presented an average reduction of

26.66%.

9.5 Case study: A Sequence Alignment Problem

An important application that is well suited to cloud environments is biological sequence

comparison, where sequences are pairwise compared in search of similarities. The Covid-

19 pandemic study is of particular interest nowadays, and the comparison of SARS-CoV-

2 sequences is crucial to understanding this lethal disease. In public genomic databases

there are more than 22,000 SARS-CoV-2 complete genome sequences obtained in different

countries from December 2019 to November 2020. To compare these sequences in a rea-

sonable time with accurate results, highly specialized tools are needed. MASA-OpenMP

[69] is a multithreaded freely available tool that compares two DNA sequences with the

Smith-Waterman algorithm, providing the optimal result.

To execute 22,600 sequences comparisons in the cloud, we propose an execution mod-

eling for MASA-OpenMP[69] to be managed by the Burst-HADS framework. Performance

results of this work was reported in [79] and reveal that our strategy reduces the mon-

etary cost of SARS-CoV-2 sequence comparisons with MASA-OpenMP compared to a

corresponding approach that uses only on-demand instances, meeting also the deadline

even in scenarios with several spot interruptions. Finally, we show that clouds can play

a fundamental role in ensuring the efficiency of the execution of such applications with

reduced costs. In this section we present part of those results. Specifically, we present the

monetary cost and execution time of the practical execution of EC2.

In this study, each SARS-CoV-2 pair of sequences comparison with MASA-OpenMP

is a task which takes milliseconds to be executed and therefore, it is considered a short

task. If Burst-HADS worked with those original tasks, it would be necessary to create

22,600 very short tasks, which clearly would jeopardize the execution efficiency. Thus, to

use the Burst-HADS scheduling efficiently, many of these short tasks are clustered into

a supertask. The tasks in the supertasks are executed sequentially, where each one saves

its results before finishing its execution. Due to the short duration of each task, there is

no need to save its checkpoint periodically. Instead, if a supertask is scheduled to a spot

9.5 Case study: A Sequence Alignment Problem 94

VM that hibernates, the framework recovers the last recorded result to determine the last

executed task just before the hibernation event. Another important point is that a task in

MASA-OpenMP uses all vCPUs of its respective VM, so it is not possible to accumulate

credits by using burstable VMs. Consequently, no burstable VM was used in the primary

and Dynamic Scheduling Module of Burst-HADS in this evaluation, and, also, in the case

of hibernations, only regular on-demand VMs and spot VMs can be used.

We restrict the family options of available instances considering those with the greatest

potential for efficiency and compatibility in the execution of our application, namely: c3,

c4, and c5 instances of the C family (optimized for intensive computing); m3, m4, and

m5 instances of the M family (optimized for general use) and r3, r4 and r5 instances of

the R family (optimized for massive data processing in memory). Among these families,

we only consider instances with 4 or more vCPUs, totalizing 32 instance types. Table 9.7

shows the characteristics of those VMs. Since those tests were originally reported in [79],

all monetary costs presented in this section are from November 2020.

In this section, since checkpoints are not recorded, our main concern is the service’s

performance and cost that will be used to store both the SARS-CoV-2 sequences and

the MASA-OpenMP results. Thus, in this case, we evaluate S3 and EBS to define which

service would be the best choice for those tests. To evaluate the impact of execution

time, we consider the execution of one supertask with only four sequences in a c5.9xlarge

instance. In this case, using EBS, the execution took only 14 seconds, while with S3, the

time was 2188 seconds, representing an increment of 15528.57%. That happens because

Amazon AWS does not offer native support for using S3 as a file-system. Thus, we use

the S3FS-FUSE tool [67], a user-level file system that provides an interface to S3 as a

POSIX compatible system [67]. However, the S3FS-FUSE has a poor performance when

there are random writes or appends operations because, in this case, it is necessary to

require rewriting the entire object. Thus, since it is the case of Masa-OpenMP, the use of

S3 became prohibitive with that application.

We have firstly evaluated Burst-HADS in a scenario without hibernation. We com-

pare this strategy with the situation in which SARS-CoV-2 MASA-OpenMP under the

supertask model is executed following the schedule also provided by the ILS (with the

same parameters presented in Section 9.1), but considering only on-demand VMs – we

denoted here as On-demand strategy. These experiments aim to measure the impact spot

instances have on the monetary cost of the execution. Figure 9.1 presents the average

monetary cost of three executions of MASA-OpenMP with 60 supertasks, each one con-

9.5 Case study: A Sequence Alignment Problem 95

Table 9.7: Attributes of Burst-HADS’ input set VMs

Type # vCPUs Memory (GiB)
Price per Hour (USD)
On-Demand Spot

c3.xlarge 4 7.5 0.210 0.072
c4.xlarge 4 7.5 0.199 0.076
c5.xlarge 4 8 0.170 0.073
c3.2xlarge 8 15 0.420 0.161
c4.2xlarge 8 15 0.398 0.209
c5.2xlarge 8 16 0.340 0.161
c3.4xlarge 16 30 0.840 0.350
c4.4xlarge 16 30 0.796 0.246
c5.4xlarge 16 32 0.680 0.281
c3.8xlarge 32 60 1.680 0.529
c4.8xlarge 36 60 1.591 0.609
c5.9xlarge 36 72 1.530 0.684
c5.12xlarge 48 96 2.040 0.790
c5.18xlarge 72 144 3.060 1.196
m3.xlarge 4 15 0.266 0.061
m4.xlarge 4 16 0.200 0.080
m5.xlarge 4 16 0.192 0.076
m3.2xlarge 8 30 0.532 0.129
m4.2xlarge 8 32 0.400 0.206
m5.2xlarge 8 32 0.384 0.182
m4.4xlarge 16 64 0.800 0.343
m5.4xlarge 16 64 0.768 0.335
m5.8xlarge 32 128 1.536 0.637
r3.xlarge 4 30.5 0.333 0.071
r4.xlarge 4 30.5 0.266 0.095
r5.xlarge 4 32 0.252 0.098
r3.2xlarge 8 61 0.665 0.144
r4.2xlarge 8 61 0.532 0.184
r5.2xlarge 8 64 0.504 0.221
r3.4xlarge 16 122 1.330 0.309
r4.4xlarge 16 122 1.064 0.330
r5.4xlarge 16 128 1.008 0.344

9.5 Case study: A Sequence Alignment Problem 96

taining 376 sequences, and a deadline equal to one hour. As can be seen, in comparison to

the On-demand strategy, on average, Burst-HADS reduces the monetary cost by 50.4%.

Since both strategies use the same instance types and scheduling plan, the execution time

was basically the same in both cases – 1277 seconds in the case of the On-demand strategy,

while 1274 seconds for the Burst-HADS case.

M
on

et
ar

y
C

os
t(U

SD
)

$0.00

$0.25

$0.50

$0.75

$1.00

$1.25

Burst-HADS - Without Hibernation On-Demand

Figure 9.1: Monetary cost of a practical execution of Burst-HADS without hibernations
and on-demand only strategy

Just as in the other evaluation tests, in this study, we also use Poisson distribution

[1] to emulate different spot VM patterns of hibernations and resumptions. Thus, in this

case, we consider three scenarios by varying kh and kr parameters. Table 9.8 presents

those scenarios.

Table 9.8: Different execution scenarios generated by varying the parameters λh and λr

ID hibernating resuming λh λr

c1 kh = 5 kr = 0 5/3600 0/3600
c2 kh = 5 kr = 2.5 5/3600 2.5/3600
c3 kh = 5 kr = 5 5/3600 5/3600

Table 9.9 presents the averages of three executions using Burst-HADS in each of

the three execution scenarios. For each scenario, the table shows the average number of

hibernations, followed by resume events. It also includes the average number of on-demand

VMs launched by the Dynamic Module and the average monetary cost and makespan of

the executions. Finally, the two last columns represent the percentage difference between

Burst-HADS and the On-demand strategy (diff) related to the monetary cost and the

makespan. As shown in the table, compared to the On-demand strategy, Burst-HADS

minimized the monetary cost for the scenarios c1, c2, and c3, with an average reduction

of 21.00% regarding the three scenarios. However, the makespan increases in all cases

because whenever a spot hibernation occurs, Burst-HADS migrates tasks to other VMs,

9.5 Case study: A Sequence Alignment Problem 97

causing additional overheads, including the time to launch new VMs. Nonetheless, in all

cases, the deadline was respected.

Since c1 has the highest hibernation level (kh = 5) and no resuming event (kr = 0), it is

considered the worst-case scenario in our tests. As shown in Table 9.9, the monetary cost

in c1 is only 2.06% less than the On-demand strategy, since, on average, 8.33 additional

on-demand VMs were launched to finish the execution before the deadline. On the other

hand, c2 shows how resuming events impact the execution’s final monetary cost, since,

although the average number of hibernations was greater than c1 (9.67 average hibernation

on c2 against 6.67 on c1), the cost reduction was 29.75%. Finally, in scenario c3, we see

that in the case where both the hibernation and resuming events have the same rate

(kh = 5 and kr = 5, respectively), the framework was able to reduce the monetary cost

by more than 30.00%.

Table 9.9: Comparison between Burst-HADS and On-demand strategy in terms of mon-
etary cost and makespan in scenarios c1, c2 and c3

scenario
Burst-HADS Diff (%)

hibernation # resuming # on-demand cost($) makespan cost($) makespan

c1 6.67 0.00 8.33 1.185 2978.66 2.06% -133.25%
c2 9.67 6.33 3.33 0.85 2785.66 29.75% -118.141%
c3 8.33 4.66 4.00 0.82 2350.33 32.41% -84.0512%

Thereby, this section shows that, with MASA-OpenMP on top of Burst-HADS, we

could align 22,600 SARS-CoV-2 using 24 EC2 spot instances (136 vCPUs) in 21 minutes

and 23 seconds, with a monetary cost of 0.60$ and no interruptions. If the same execution

was carried out with only on-demand instances, we would have paid 1.21$, which means

Burst-HADS reduced the monetary cost by 50.4%. Moreover, we showed that although

the makespan has an average increment of 111.81% in the scenarios with hibernations,

the deadline was always met by Burst-HADS, with monetary cost reduced up to 32% on

those cases.

Chapter 10

Conclusions and Future Work

This Chapter describes the main results and contributions of this work. In Section 10.1,

we highlight the main contributions of this thesis, while we point out in Section 10.2 some

interesting directions for future research in this topic area.

10.1 Concluding Remarks

Unlike the advertising of cloud providers who advocate the ease of use of cloud environ-

ments as one of the main advantages, when considering all the necessary variables to be

defined to execute a given application efficiently, a cloud can become a complex environ-

ment where any decision impacts directly in the final execution and respective monetary

costs. In this sense, many works have proposed tools to help the management decisions.

HADS and Burst-HADS are some of these tools, and they offer additional contributions

regarding its architecture and up-to-date VM instance classes. The frameworks have the

advantage of being modular, lightweight, and can be easily upgraded to meet new require-

ments. Moreover, they include a series of built-in functions such as load balance, native

checkpoint, and recovery procedures. Unlike other frameworks that cope with the ter-

mination of spot VMs, HADS and Burst-HADS explores the hibernation feature of spot

VMs to minimize execution monetary costs and, in the case of Burst-HADS, the burst

capacity of burstable instances to minimize the execution time of the application.

The proposed strategies were evaluated using the VMs of AWS with real executions

of synthetic applications and a real embarrassingly distributed application from the NAS

benchmark, considering several emulated scenarios with different spot VM hibernation

and resuming rates. Our results confirm the effectiveness of HADS and Burst-HADS in

terms of monetary costs and that both of them avoid temporal failures even in the presence

10.1 Concluding Remarks 99

of multiple hibernations. Furthermore, they show that the resuming rate of hibernated

spot VMs has an impact on monetary costs.

Compared to the exact approach, the results also show that Burst-HADS ILS-based

heuristic also reaches the optimal solutions but in a much shorter time (less than one

second on average) than the latter. Furthermore, when compared to baseline heuristics,

the ILS presents more balanced solutions considering both objectives. It reduces the

average monetary cost by more than 38% with an increment of the makespan of 18%

when compared to MinMin. Finally, ILS reduces the makespan by more than 80%, with

a small increment of the monetary cost; 6.78% and 13.14% when respectively compared

to MaxMin and the Greedy approaches. In all cases, the percentage loss in one objective

was smaller than the corresponding gain in the other one.

Compared to the ILS On-demand approach that uses only regular on-demand VMs,

Burst-HADS reduces the monetary cost for all execution scenarios at the expense of

slightly longer makespans due to the migration overhead. Moreover, compared to HADS,

Burst-HADS reduces the makespan by more than 25%, with an average increase of only

1.92% in the monetary cost. Finally, our case study also demonstrates the benefits of

Burst-HADS, which reduces the monetary cost of running SARS-CoV-2 MASA-OpenMP

compared with the On-demand strategy, by 50.4% if no spot hibernation occurs, and up

to 32% when hibernation happens.

Moreover, in this work, we also evaluate the storage services EBS, S3, and EFS offered

by AWS in the context of checkpoint and recovery operations. Thus, To characterize

the overheads associated with the checkpoint recording, a series of practical tests were

conducted in EC2. Those tests showed that the local storage service EBS presented

the best performance in relation to dump time, followed closely by EFS, while S3 had the

largest dump times. Those results are confirmed by the impact on the total execution time

caused by the checkpoint recording in each of the evaluated storage services. However,

the estimation of the monetary costs considering the checkpointing overhead in a long-

running task showed that S3 could be a very attractive approach when the monetary cost

is more important than the application’s total execution time.

10.2 Future Work 100

10.2 Future Work

In this section, we present some promising future directions derived from the contributions

of this thesis.

• Evaluation of the impact of the size of the ACs: Our results show that the AC’s

size impacts the frameworks’ performance, especially in the work-stealing procedure.

However, in our experiments, we do not conduct a deep study to evaluate how the

Allocation Cycles size would influence the framework’s decisions and in the final

monetary cost and makespan. Thus, conducting new experiments with different

ACs values is an important step to improving the frameworks’ performance.

• Developing of a strategy considering no previous knowledge about the applica-

tions’ characteristics: Currently, both frameworks require input information about

each task of the BoT application. Specifically, the frameworks depend on the task’s

execution time and memory requirements for all scheduling and migration decisions.

Although that approach simplifies the development of the scheduling heuristic, there

are some drawbacks to using it. For example, it can be tough for the user to have all

the task information, and the user can give bad-quality information, which would

jeopardize the quality of the solutions. Moreover, the environment can suffer per-

formance variation during the execution. Thus, it is important to develop new

techniques to define tasks’ characteristics and update those characteristics on the

run.

• Extending of the frameworks to other classes of deadline constraint applications:

HADS and Burst-HADS could be used in other classes of applications. Some ap-

plications, such as scientific workflows, have dependence between their tasks. In

this case, the frameworks’ scheduling and migration decisions need to be adapted.

Besides, other applications model also bring the potential to create and study new

approaches and heuristics.

• Inclusion of prediction approaches: All decisions of migration are currently reactive.

However, the migration procedure could be improved with some predictions model.

For example, some predictions of the spot market’s future state, considering VMs’

hibernation history, could be used to avoid the migration of tasks to spot VMs with

a high chance of hibernating in the next minutes.

10.2 Future Work 101

• Smart selection of VM types: The current VM type selection is based on two factors:

the execution time and the monetary cost. But, other factors can influence that

decision in the cloud, for example, the trade-off between price and VM performance

in different execution scenarios. Moreover, the degradation of VMs performance

and the hibernation rates can be used as selection criteria. In particular, a deeper

analysis needs to be performed about burstable VMs. As those VMs also have a

CPU credit value associate, the choice for the most suitable burstable VMs for a

specific application should consider, among other things, how many CPU credits a

specific Burstable VM type earns per second.

• Evaluation of other checkpoint approaches: In this work, we have used and eval-

uated only uncoordinated checkpoints that record the checkpoint files directly on

the storage services’ file system. However, there are several checkpoint recording

approaches in the literature. Among those approaches, in particular, the two-step

asynchronous recording, where initially the checkpoint is kept in the VM memory

and then it is written in the storage system, have an interesting potential to be com-

bined with the S3 services in the case of applications with a huge memory footprint

which causes a high dump time. Another point is the use of a fixed time interval be-

tween checkpoints. Currently, that interval is defined based on an input parameter

defined by the user. But, some formulations could be used to define better intervals

without the need for any parameters defined by the user.

• Inclusion of support to other cloud providers: Several development decisions of

HADS and Burst-HADS were made considering future support to other cloud providers.

Thus, as stated in Chapters 1 and 4, both frameworks can be easily extended to

support other cloud providers. Moreover, resources from different providers could

also be combined by the framework in a multi-cloud environment.

Bibliography

[1] Ahrens, J. H.; Dieter, U. Computer methods for sampling from gamma, beta,

poisson and bionomial distributions. Computing 12, 3 (1974), 223–246.

[2] Ali, A.; Pinciroli, R.; Yan, F.; Smirni, E. Cedule: A scheduling framework

for burstable performance in cloud computing. In IEEE International Conference on

Autonomic Computing (ICAC) (2018), pp. 141–150.

[3] Alves, M. M.; de Assumpção Drummond, L. M. A multivariate and quan-

titative model for predicting cross-application interference in virtual environments.

Journal of Systems and Software 128 (2017), 150 – 163.

[4] Alves, M. M.; Drummond, L. M. A multivariate and quantitative model for

predicting cross-application interference in virtual environments. Journal of Systems

and Software 128 (2017), 150 – 163.

[5] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D.; Katz, R.; Konwin-

ski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia, M. A

view of cloud computing. Commun. ACM 53, 4 (Apr. 2010), 50–58.

[6] Aupy, G.; Benoit, A.; Melhem, R. G.; Renaud-Goud, P.; Robert, Y.

Energy-aware checkpointing of divisible tasks with soft or hard deadlines. In In-

ternational Green Computing Conference, IGCC 2013, Arlington, VA, USA, June

27-29, 2013, Proceedings (2013), pp. 1–8.

[7] AWS. Amazon EC2 Spot Lets you Pause and Resume Your Work-

loads. https://aws.amazon.com/about-aws/whats-new/2017/11/

amazon-ec2-spot-lets-you-pause-and-resume-your-workloads/, 2017. Ac-

cessed in February 2021.

[8] AWS. Amazon Elastic Block Store. https://aws.amazon.com/ebs/, 2020. Accessed

in February 2021.

[9] AWS. Amazon Elastic Compute Cloud. https://aws.amazon.com/ec2/features/,

2020. Accessed in February 2021.

https://aws.amazon.com/about-aws/whats-new/2017/11/amazon-ec2-spot-lets-you-pause-and-resume-your-workloads/
https://aws.amazon.com/about-aws/whats-new/2017/11/amazon-ec2-spot-lets-you-pause-and-resume-your-workloads/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/features/

BIBLIOGRAPHY 103

[10] AWS. Amazon Elastic File System. https://aws.amazon.com/efs/, 2020. Accessed

in February 2021.

[11] AWS. Amazon S3. https://aws.amazon.com/s3/, 2020. Accessed in February

2021.

[12] AWS. Amazon Web Services. https://aws.amazon.com/, 2020. Accessed in Febru-

ary 2021.

[13] AWS. Boto 3 Documentation. https://boto3.amazonaws.com/v1/

documentation/api/latest/index.html, 2020. Accessed in February 2021.

[14] AWS. Burstable performance instance requirements. https://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/burstable-performance-instances.html, 2020.

Accessed in February 2021.

[15] AWS. Cloud Storage with AWS. https://aws.amazon.com/products/storage,

2020. Accessed in February 2021.

[16] AWS. Instance Types. https://aws.amazon.com/ec2/instance-types/, 2020.

Accessed in February 2021.

[17] AWS. Working with Amazon S3 Objects. https://docs.aws.amazon.com/

AmazonS3/latest/dev/UsingObjects.html, 2020. Accessed in February 2021.

[18] Azure, M. Microsoft Azure. https://azure.microsoft.com/, 2020. Accessed in

February 2021.

[19] Baarzi, A. F.; Zhu, T.; Urgaonkar, B. Burscale: Using burstable instances

for cost-effective autoscaling in the public cloud. In ACM Symposium on Cloud

Computing (2019), pp. 126–138.

[20] Bailey, D.; Harris, T.; Saphir, W.; Van Der Wijngaart, R.; Woo, A.;

Yarrow, M. The nas parallel benchmarks 2.0. Tech. rep., Technical Report NAS-

95-020, NASA Ames Research Center, 1995.

[21] Barr, J. New – Per-Second Billing for EC2 Instances

and EBS Volumes. https://aws.amazon.com/pt/blogs/aws/

new-per-second-billing-for-ec2-instances-and-ebs-volumes/, 2017. Ac-

cessed in February 2021.

https://aws.amazon.com/efs/
https://aws.amazon.com/s3/
https://aws.amazon.com/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://aws.amazon.com/products/storage
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html
https://azure.microsoft.com/
https://aws.amazon.com/pt/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/pt/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/

BIBLIOGRAPHY 104

[22] Chakravarthi, K. K.; Shyamala, L.; Vaidehi, V. Budget aware scheduling

algorithm for workflow applications in iaas clouds. Cluster Computing (2020), 1–15.

[23] Chhabra, A.; Singh, G.; Kahlon, K. S. Multi-criteria hpc task scheduling on

iaas cloud infrastructures using meta-heuristics. Cluster Computing (2020), 1–34.

[24] Cloud, G. Google Cloud. https://cloud.google.com/, 2020. Accessed in Febru-

ary 2021.

[25] Daly, J. T. A higher order estimate of the optimum checkpoint interval for restart

dumps. Future generation computer systems 22, 3 (2006), 303–312.

[26] Deldari, A.; Salehan, A. A survey on preemptible iaas cloud instances: chal-

lenges, issues, opportunities, and advantages. Iran Journal of Computer Science

(2020), 1–24.

[27] Dikaiakos, M. D.; Katsaros, D.; Mehra, P.; Pallis, G.; Vakali, A. Cloud

computing: Distributed internet computing for it and scientific research. IEEE In-

ternet Computing 13, 5 (Sept 2009), 10–13.

[28] Dongarra, J. J.; Luszczek, P.; Petitet, A. The linpack benchmark: past,

present and future. Concurrency and Computation: practice and experience 15, 9

(2003), 803–820.

[29] EMELYANOV, P. Criu: Checkpoint/restore in userspace, july 2011. URL:

https://criu. org (2011).

[30] Fabra, J.; Ezpeleta, J.; Álvarez, P. Reducing the price of resource provision-

ing using ec2 spot instances with prediction models. Future Generation Computer

Systems 96 (2019), 348–367.

[31] Fakhfakh, F.; Kacem, H. H.; Kacem, A. H. Workflow scheduling in cloud

computing: A survey. In 2014 IEEE 18th International Enterprise Distributed Object

Computing Conference Workshops and Demonstrations (Sept 2014), pp. 372–378.

[32] Farahabady, M. H.; Lee, Y. C.; Zomaya, A. Y. Non-clairvoyant assignment of

bag-of-tasks applications across multiple clouds. In 2012 13th International Confer-

ence on Parallel and Distributed Computing, Applications and Technologies (2012),

IEEE, pp. 423–428.

[33] GCloud. Google APP Engine. https://cloud.google.com/appengine/, 2021.

Accessed in February 2021.

https://cloud.google.com/
https://cloud.google.com/appengine/

BIBLIOGRAPHY 105

[34] Ghobaei-Arani, M.; Souri, A.; Safara, F.; Norouzi, M. An efficient task

scheduling approach using moth-flame optimization algorithm for cyber-physical sys-

tem applications in fog computing. Transactions on Emerging Telecommunications

Technologies 31, 2 (2020), e3770.

[35] Goder, A.; Spiridonov, A.; Wang, Y. Bistro: Scheduling data-parallel jobs

against live production systems. In 2015 USENIX Annual Technical Conference

(USENIX ATC 15) (Santa Clara, CA, 2015), USENIX Association, pp. 459–471.

[36] Goiri, I.; Julià, F.; Guitart, J.; Torres, J. Checkpoint-based fault-tolerant

infrastructure for virtualized service providers. In IEEE/IFIP Network Operations

and Management Symposium, NOMS 2010, 19-23 April 2010, Osaka, Japan (2010),

pp. 455–462.

[37] Google. Gmail. https://mail.google.com/, 2021. Accessed in February 2021.

[38] Google. Google Docs. https://docs.google.com/, 2021. Accessed in February

2021.

[39] Gurobi Optimization, L. Gurobi optimizer reference manual, 2021.

[40] Gutierrez-Garcia, J. O.; Sim, K. M. A family of heuristics for agent-based elas-

tic cloud bag-of-tasks concurrent scheduling. Future Generation Computer Systems

29, 7 (2013), 1682–1699.

[41] Hashem, I. A. T.; Yaqoob, I.; Anuar, N. B.; Mokhtar, S.; Gani, A.; Khan,

S. U. The rise of “big data” on cloud computing: Review and open research issues.

Information Systems 47 (2015), 98 – 115.

[42] Herokus. Heroku. https://www.heroku.com/, 2021. Accessed in February 2021.

[43] Hoffa, C.; Mehta, G.; Freeman, T.; Deelman, E.; Keahey, K.; Berriman,

B.; Good, J. On the use of cloud computing for scientific workflows. In 2008 IEEE

Fourth International Conference on eScience (Dec 2008), pp. 640–645.

[44] Huang, X.; Li, C.; Chen, H.; An, D. Task scheduling in cloud computing using

particle swarm optimization with time varying inertia weight strategies. Cluster

Computing (2019), 1–11.

https://mail.google.com/
https://docs.google.com/
https://www.heroku.com/

BIBLIOGRAPHY 106

[45] Jiang, Y.; Shahrad, M.; Wentzlaff, D.; Tsang, D. H.; Joe-Wong, C.

Burstable instances for clouds: Performance modeling, equilibrium analysis, and rev-

enue maximization. In IEEE INFOCOM Conference on Computer Communications

(2019), pp. 1576–1584.

[46] Juve, G.; Deelman, E.; Vahi, K.; Mehta, G.; Berriman, B.; Berman,

B. P.; Maechling, P. Scientific workflow applications on amazon ec2. In 2009 5th

IEEE International Conference on E-Science Workshops (Dec 2009), pp. 59–66.

[47] Kalra, M.; Singh, S. A review of metaheuristic scheduling techniques in cloud

computing. Egyptian Informatics Journal 16, 3 (2015), 275 – 295.

[48] Katevenis, M.; Sidiropoulos, S.; Courcoubetis, C. Weighted round-robin

cell multiplexing in a general-purpose atm switch chip. IEEE Journal on selected

Areas in Communications 9, 8 (1991), 1265–1279.

[49] Keshanchi, B.; Souri, A.; Navimipour, N. J. An improved genetic algorithm

for task scheduling in the cloud environments using the priority queues: formal ver-

ification, simulation, and statistical testing. Journal of Systems and Software 124

(2017), 1–21.

[50] Kumar, D.; Baranwal, G.; Raza, Z.; Vidyarthi, D. P. A survey on spot

pricing in cloud computing. Journal of Network and Systems Management 26, 4

(2018), 809–856.

[51] Leitner, P.; Scheuner, J. Bursting with possibilities–an empirical study of credit-

based bursting cloud instance types. In IEEE/ACM 8th International Conference on

Utility and Cloud Computing (UCC) (2015), pp. 227–236.

[52] Lourenço, H. R.; Martin, O. C.; Stützle, T. Iterated local search. In

Handbook of metaheuristics. Springer, 2003, pp. 320–353.

[53] Lu, S.; Li, X.; Wang, L.; Kasim, H.; Palit, H. N.; Hung, T.; Legara, E.

F. T.; Lee, G. K. K. A dynamic hybrid resource provisioning approach for running

large-scale computational applications on cloud spot and on-demand instances. In

19th IEEE International Conference on Parallel and Distributed Systems, ICPADS

2013, Seoul, Korea, December 15-18, 2013 (2013), pp. 657–662.

[54] Lu, Y.; Sun, N. An effective task scheduling algorithm based on dynamic energy

management and efficient resource utilization in green cloud computing environment.

Cluster Computing 22, 1 (2019), 513–520.

BIBLIOGRAPHY 107

[55] Marletta, A. cpu limit tool. Available: http://cpulimit.sourceforge.net/.

[56] Masdari, M.; ValiKardan, S.; Shahi, Z.; Azar, S. I. Towards workflow

scheduling in cloud computing: A comprehensive analysis. Journal of Network and

Computer Applications 66 (2016), 64 – 82.

[57] Mell, P.; Grance, T., et al. The nist definition of cloud computing.

[58] Menache, I.; Shamir, O.; Jain, N. On-demand, spot, or both: Dynamic resource

allocation for executing batch jobs in the cloud. In 11th International Conference on

Autonomic Computing, ICAC ’14, Philadelphia, PA, USA, June 18-20, 2014. (2014),

pp. 177–187.

[59] Merkel, D. Docker: lightweight linux containers for consistent development and

deployment. Linux journal 2014, 239 (2014), 2.

[60] Novet, J. Amazon’s cloud division reports 28% revenue growth; AWS head Andy

Jassy to succeed Bezos as Amazon CEO. https://www.cnbc.com/2021/02/02/

aws-earnings-q4-2020.html, 2021. Accessed in February 2021.

[61] Oprescu, A.-M.; Kielmann, T. Bag-of-tasks scheduling under budget constraints.

In 2010 IEEE Second International Conference on Cloud Computing Technology and

Science (2010), IEEE, pp. 351–359.

[62] Overleaf. Overleaf. https://overleaf.com, 2021. Accessed in February 2021.

[63] Palankar, M. R.; Iamnitchi, A.; Ripeanu, M.; Garfinkel, S. Amazon s3 for

science grids: A viable solution? In Proceedings of the 2008 International Workshop

on Data-Aware Distributed Computing (New York, NY, USA, 2008), DADC ’08,

Association for Computing Machinery, p. 55–64.

[64] Pary, R. New Amazon EC2 Spot pricing model: Simplified purchasing without

bidding and fewer interruptions. https://aws.amazon.com/pt/blogs/compute/

new-amazon-ec2-spot-pricing/, 2017. Accessed in February 2021.

[65] Pezoa, F.; Reutter, J. L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations

of json schema. In Proceedings of the 25th International Conference on World Wide

Web (2016), pp. 263–273.

[66] Pham, T.-P.; Fahringer, T. Evolutionary multi-objective workflow scheduling

for volatile resources in the cloud. IEEE Transactions on Cloud Computing (2020).

http://cpulimit.sourceforge.net/
https://www.cnbc.com/2021/02/02/aws-earnings-q4-2020.html
https://www.cnbc.com/2021/02/02/aws-earnings-q4-2020.html
https://overleaf.com
https://aws.amazon.com/pt/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/pt/blogs/compute/new-amazon-ec2-spot-pricing/

BIBLIOGRAPHY 108

[67] Rizun, R. S3fs: Fuse-based file system backed by amazon s3. https://github.

com/s3fs-fuse/s3fs-fuse/, 2010.

[68] Ruiz-Alvarez, A.; Humphrey, M. An automated approach to cloud storage

service selection. In Proceedings of the 2nd International Workshop on Scientific

Cloud Computing (New York, NY, USA, 2011), ScienceCloud ’11, Association for

Computing Machinery, p. 39–48.

[69] Sandes, E. F. O.; Miranda, G.; Martorell, X.; Ayguade, E.; Teodoro,

G.; Melo, A. C. M. A. Masa: A multiplatform architecture for sequence aligners

with block pruning. ACM Transactions on Parallel Computing 2, 4 (2016).

[70] Services, A. W. AWS Elastic Beanstalk. https://aws.amazon.com/

elasticbeanstalk/, 2021. Accessed in February 2021.

[71] Sharma, P.; Lee, S.; Guo, T.; Irwin, D. E.; Shenoy, P. J. Spotcheck:

designing a derivative iaas cloud on the spot market. In Proceedings of the Tenth

European Conference on Computer Systems, EuroSys 2015, Bordeaux, France, April

21-24, 2015 (2015), pp. 16:1–16:15.

[72] Subramanya, S.; Guo, T.; Sharma, P.; Irwin, D. E.; Shenoy, P. J. Spoton:

a batch computing service for the spot market. In Proceedings of the Sixth ACM

Symposium on Cloud Computing, SoCC 2015, Kohala Coast, Hawaii, USA, August

27-29, 2015 (2015), pp. 329–341.

[73] Tang, X.; Liao, X.; Zheng, J.; Yang, X. Energy efficient job scheduling with

workload prediction on cloud data center. Cluster Computing 21, 3 (2018), 1581–

1593.

[74] Teylo, L.; Arantes, L.; Sens, P.; d. A. Drummond, L. M. A bag-of-tasks

scheduler tolerant to temporal failures in clouds. In 31st International Symposium

on Computer Architecture and High Performance Computing (SBAC-PAD) (2019),

pp. 144–151.

[75] Teylo, L.; Arantes, L.; Sens, P.; de A Drummond, L. M. A hibernation

aware dynamic scheduler for cloud environments. In 48th International Conference

on Parallel Processing: Workshops (2019), ACM, p. 24.

[76] Teylo, L.; Arantes, L.; Sens, P.; Drummond, L. M. A dynamic task scheduler

tolerant to multiple hibernations in cloud environments. Cluster Computing (2020),

1–23.

https://github.com/s3fs-fuse/s3fs-fuse/
https://github.com/s3fs-fuse/s3fs-fuse/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/

BIBLIOGRAPHY 109

[77] Teylo, L.; Arantes, L.; Sens, P.; Drummond, L. M. d. A. Scheduling

bag-of-tasks in clouds using spot and burstable virtual machines. arXiv preprint

arXiv:2011.05042 (2020).

[78] Teylo, L.; Brum, R. C.; Arantes, L.; Sens, P.; Drummond, L. M. d. A.

Developing checkpointing and recovery procedures with the storage services of ama-

zon web services. In 49th International Conference on Parallel Processing-ICPP:

Workshops (2020), pp. 1–8.

[79] Teylo, L.; Nunes, A. L.; Melo C. M. A., A.; Boeres, C.; de A. Drummond,

L. M.; F., M. N. Comparing sars-cov-2 sequences using a commercial cloud with a

spot instance based dynamic scheduler. In CCGRID (2021). Accepted Paper.

[80] Thai, L.; Varghese, B.; Barker. Task scheduling on the cloud with hard con-

straints. In 2015 IEEE World Congress on Services, SERVICES 2015, New York

City, NY, USA, June 27 - July 2, 2015 (2015), pp. 95–102.

[81] Thai, L.; Varghese, B.; Barker, A. Executing bag of distributed tasks on

the cloud: Investigating the trade-offs between performance and cost. In IEEE 6th

International Conference on Cloud Computing Technology and Science, CloudCom

2014, Singapore, December 15-18, 2014 (2014), pp. 400–407.

[82] Thai, L.; Varghese, B.; Barker, A. A survey and taxonomy of resource opti-

misation for executing bag-of-task applications on public clouds. Future Generation

Comp. Syst. 82 (2018), 1–11.

[83] Topcuoglu, H.; Hariri, S.; Wu, M.-Y. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE Transactions on

Parallel and Distributed Systems 13, 3 (Mar 2002), 260–274.

[84] Tsai, C. W.; Rodrigues, J. J. P. C. Metaheuristic scheduling for cloud: A

survey. IEEE Systems Journal 8, 1 (March 2014), 279–291.

[85] Ullman, J. D. Np-complete scheduling problems. Journal of Computer and System

sciences 10, 3 (1975), 384–393.

[86] Vaquero, L. M.; Rodero-Merino, L.; Caceres, J.; Lindner, M. A break in

the clouds: Towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39, 1

(Dec. 2008), 50–55.

BIBLIOGRAPHY 110

[87] Varshney, P.; Simmhan, Y. Autobot: Resilient and cost-effective scheduling of a

bag of tasks on spot vms. IEEE Trans. Parallel Distrib. Syst. 30, 7 (2019), 1512–1527.

[88] Wang, C.; Urgaonkar, B.; Gupta, A.; Kesidis, G.; Liang, Q. Exploiting

spot and burstable instances for improving the cost-efficacy of in-memory caches on

the public cloud. In Twelfth European Conference on Computer Systems (2017),

pp. 620–634.

[89] Yao, M.; Zhang, P.; Li, Y.; Hu, J.; Li, C.; Li, X. Cutting your cloud computing

cost for deadline-constrained batch jobs. In 2014 IEEE International Conference on

Web Services, ICWS, 2014, Anchorage, AK, USA, June 27 - July 2, 2014 (2014),

pp. 337–344.

[90] Yi, S.; Andrzejak, A.; Kondo, D. Monetary cost-aware checkpointing and mi-

gration on amazon cloud spot instances. IEEE Transactions on Services Computing

5, 4 (2011), 512–524.

[91] Yu, J.; Buyya, R.; Ramamohanarao, K. Workflow Scheduling Algorithms for

Grid Computing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 173–214.

[92] Zhou, A. C.; He, B.; Liu, C. Monetary cost optimizations for hosting workflow-

as-a-service in iaas clouds. IEEE transactions on cloud computing 4, 1 (2015), 34–48.

111

APPENDIX A -- Published Papers

• Costa, M.; Teylo, L.; Drummond, L. Avaliação da Migração Vertical na Amazon

Web Services. XVIII Simpósio em Sistemas Computacionais de Alto Desempenho,

2017 (Best Paper Award - WSCAD-IC).

• Cieza, E.; Teylo, L.; Frota, Y.; Drummond, L.; Bentes, C. A GPU-based Meta-

heuristic for Workflow Scheduling on Clouds. 13th International Meeting on High

Performance Computing for Computational Science, VECPAR. 2018.

• Melo, M. A.; Teylo, L.; Frota, Y.; Drummond, L. An Interference-Aware Strategy

for Co-locating High Performance Computing Applications in Clouds. High Per-

formance Computing Systems 19th Symposium, WSCAD 2018, Revised Selected

Papers. 19ed.: Springer International Publishing, 2018.

• Teylo, L.; Arantes, L.; Sens, P.; Drummond, L. A Bag-of-Task Scheduler Toler-

ant to Temporal Failures in Clouds. IEEE International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), 2019.

• Teylo, L.; Arantes, L.; Sens, P.; Drummond, L. A Hibernation Aware Dynamic

Scheduler for Cloud Environments. 15th International Workshop on Scheduling and

Resource Management for Parallel and Distributed Systems, ICPP, 2019.

• Teylo, L.; Arantes, L.; Sens, P; Drummond, L. A dynamic task scheduler tolerant

to multiple hibernations in cloud environments. Cluster Computing, v. 4, p. 1-23,

2020 (Available Online).

• Teylo, L.; Brum, R.; Arantes, L.; Sens, P.; Drummond, L. Developing Checkpointing

and Recovery Procedures with the Storage Services of Amazon Web Services. 16th

International Workshop on Scheduling and Resource Management for Parallel and

Distributed Systems, ICPP, 2020.

Appendix A -- Published Papers 112

• Teylo, L.; Nunes, A. L.; Melo C. M. A., A.; Boeres, C.; Drummond, L.; Martins,

N. Comparing sars-cov-2 sequences using a commercial cloud with a spot instance

based dynamic scheduler. 21th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, 2021 (Accepted Paper).

	Introduction
	Objective
	Contributions
	Thesis Outline

	Background
	Cloud Computing
	Amazon Web Services
	Markets of the Amazon Elastic Compute Cloud
	Storage Services

	The Scheduling Problem on Clouds

	Related Work
	Bag-of-Tasks Scheduling on the Cloud
	Scheduling using Spot and On-demand Instances
	Burstable Instances Related Literature

	Proposed Models and Framework Architecture
	System and Application Models
	Architecture of HADS and Burst-HADS Frameworks

	Evaluating AWS Storage services for Checkpointing and Recovering
	Dump Time Evaluation
	Dump Time evaluation of Concurrent Checkpoints

	Overall Overhead Analysis
	Monetary Cost Estimation

	Hibernation Aware Dynamic Scheduler
	Primary Scheduling Module
	Estimation of Dspot
	Checkpoint Intervals
	Primary Scheduling Heuristic Algorithm

	Dynamic Scheduling Module
	Preliminary Concepts
	VM states and Allocation Cycle concept
	Migration Time Limit (mtt)
	Event Handler
	Migration Procedure
	Work-Stealing Procedure

	Experimental Results of HADS
	Experimental Environment
	Emulation of the Hibernation and Resume Events
	Parameters Setting and Generated Scenarios

	Baseline Executions
	Performance Results
	Impact of hibernation and resuming
	Built-in Functions Evaluation

	Burst Hibernation Aware Dynamic Scheduler
	Burst Primary Scheduling Module
	Mathematical Formulation
	Iterated Local Search Heuristic

	Burst Dynamic Scheduling Module
	Migration Procedure
	Work-Stealing Procedure

	Burst-HADS Experimental Results
	Experimental Environment
	Evaluation of the ILS Primary Task Scheduling
	Baseline executions
	Performance Results
	Case study: A Sequence Alignment Problem

	Conclusions and Future Work
	Concluding Remarks
	Future Work

	Bibliography
	Appendix A – Published Papers

