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Resumo

O conhecimento humano geralmente é baseado na modelagem de elementos que compõem
o mundo. Os elementos, suas propriedades e suas relações com outros elementos dão
origem a uma rede de dados. Como parte da coleta e estruturação de dados relacionais,
Bases de Conhecimento (BCs) são compilações dessas redes em estruturas processáveis
por máquina. Dada a natureza evolutiva da informação, que, essencialmente, continua
crescendo, sendo reformulada e transformada, as BCs são naturalmente ruidosas e incom-
pletas. Uma vez que elas são adotadas em aplicações científicas e industriais, há uma
alta demanda de soluções para completar suas informações. Originalmente, paradigmas
simbólicos foram usados para abordar esse problema. Porém, motivados em parte pe-
los problemas de escalabilidade das soluções simbólicas, vários trabalhos recentes atacam
o desafio de completar GCs aprendendo representações distribucionais, i.e., embeddings
de entidades e relações, seguido pela aplicação dos embeddings na predição de novas re-
lações entre as entidades. Apesar do seu recente sucesso, grande parte desses métodos
concentram-se em aprender embeddings a partir apenas dos vizinhos locais das relações.
Como resultado, eles podem falhar em capturar informações de contexto dos GCs ao negli-
genciar as dependências de longo prazo e a propagação da semântica das entidades. Nessa
dissertação, nós investigamos a completação de BCs, especificamente suas representações
em grafo (grafos de conhecimento, GCs), através de uma perspectiva de aprendizado de
representações, focando na predição de novas relações entre as entidades existentes. Para
tanto, nós propomos o ÆMP (Attention-based Embeddings from Multiple Patterns –
Embeddings baseados em Atenção de Múltiplos Padrões), um novo modelo distribucional
de inspiração simbólica para aprendizado de representações contextualizadas por meio
de: (i) aquisição de informações de contexto das entidades através de um esquema de
passagem de mensagens baseado em atenção, que captura a semântica local das entidades
enquanto foca em diferentes aspectos da vizinhança; e (ii) captura do contexto semântico,
aproveitando os caminhos e suas relações entre as entidades. Nós conduzimos experimen-
tos em grafos de conhecimento referência, comparando os resultados do ÆMP com as
abordagens estado-da-arte em predição de relações, mostrando que o ÆMP supera ou
compete com esses métodos. Além disso, nós demonstramos que ÆMP tem potencial de
escala para GCs grandes, lidando com até milhões de triplas. Nossas descobertas empíri-
cas trazem percepções em como mecanismos de atenção podem melhorar a representação
do contexto das entidades e como a combinação de entidades e contextos de caminhos
semânticos melhoram a representação geral das entidades e, assim, as capacidades gerais
de predição de relações.

Palavras-chave: Grafo de conhecimento; aprendizado de representações; embedding ;
arcabouço de passagem de mensagens; mecanismo de atenção.



Abstract

Human knowledge often establishes itself on modeling elements that compose the world.
The elements, their properties, and their relationships with other elements give rise to
a network of data. As part of gathering and structuring the relational data, knowledge
bases (KBs) compile these networks into machine-readable structures. Due to the evolv-
ing nature of information, which essentially keeps growing, rephrasing, and transforming,
KBs are naturally noisy and incomplete. Since they are extensively adopted in scien-
tific and industrial applications, there is a high demand for solutions that complete their
information. Originally, symbolic paradigms were used to approach this challenge. Never-
theless, motivated by the scalability issues of the symbolic solutions, several recent works
tackle KG completion challenge by learning distributed representations, i.e., embeddings
for entities and relations, followed by employing them to predict new relations among the
entities. Despite their aggrandizement, most of these methods concentrate only on the
local neighbors of a relation to learn the embeddings. As a result, they may fail to capture
the KGs’ context information by neglecting long-term dependencies and the propagation
of entities’ semantics. In this dissertation, we address the completion of KBs, specifically
their graph representations (knowledge graphs, KGs), through a representation learning
perspective focusing on predicting new relationships among existing entities. For this pur-
pose, we propose ÆMP (Attention-based Embeddings from Multiple Patterns), a novel
symbolic-inspired distributional model for learning contextualized representations by: (i)
acquiring entities’ context information through an attention-enhanced message-passing
scheme, which captures the entities’ local semantics while focusing on different aspects of
their neighborhood; and (ii) capturing the semantic context, by leveraging paths and their
relationships between entities. We conduct experiments on knowledge graph benchmarks,
comparing ÆMP’s results with state-of-the-art approaches on relation prediction, showing
that ÆMP either outperforms or competes with these methods. Also, we demonstrate
that ÆMP has the potential to scale to larger KGs, handling up to millions of triples.
Our empirical findings draw insights into how attention mechanisms can improve entities’
context representation and how the combination of entities and semantic paths contexts
improves the general representation of entities and, then, the overall relation prediction
capabilities.

Keywords: Knowledge graph; representation learning; embedding; message passing
framework; attention mechanism.



List of Figures

1.1 Example of a knowledge graph about actors and films. . . . . . . . . . . . 2

1.2 Example of a knowledge graph under ÆMP perspective. Gray circles in-

dicate the head and tail entities. Dashed-arrows are potentially missing

relations. Yellow-shaded arrows indicate the semantic paths between the

head and tail. Green, red, and blue-shaded areas represent the different

attention mechanisms used in ÆMP. . . . . . . . . . . . . . . . . . . . . . 6

2.1 A knowledge graph about films and actors. . . . . . . . . . . . . . . . . . . 11

2.2 Example of the representations of a knowledge graph’s entities and rela-

tionships in 3-dimensional euclidean space. . . . . . . . . . . . . . . . . . . 13

2.3 Example of the representations of a semantic path between entities entities. 14

4.1 Overview of ÆMP architecture. Boxes represent the vector representations

produced in each step. Gray-shaded illustrates the message-passing scheme.

Red-shaded points out each hop used on local attention. Green-shaded

expresses the iterations used on global attention. Blue-shaded indicates the

randomly selected relationships used on random attention. Yellow-shaded

indicates the semantic paths. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Example of knowledge graph under the ÆMP highlighting ÆMP’s mecha-

nisms. Similar to the knowledge graph illustrated in Figure 1.2, gray circles

indicate the head and tail entities. Dashed-arrows are potentially missing

relations. Yellow-shaded arrows indicate the semantic paths between the

head and tail. Green, red, and blue-shaded areas represent global, local,

and random attention mechanisms, respectively, used in ÆMP. . . . . . . . 28

4.3 Example of the representation of the semantic paths between head and tail

entities, i.e., PatrickStewart and IanMcKellen entities, respectively. . . . 32



List of Figures vii

5.1 Confusion matrices of the ground truth relations and predicted relations

by each ÆMP’s variation. The heatmap indicates the Hit@1 metric vary-

ing from 0 to 1, and axes are in descending order (top-bottom for y-axis,

and left-right for the x-axis) regarding the number of triples in which the

relation is the predicate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Boxplot of the Hit@1 results from ÆMP and its subset variations using (or

not) the semantic paths’ representation to predict new relations. . . . . . . 47

5.3 Average Hit@1 results from ÆMP and its subset variations regarding the

variation of entities context hops, semantic paths length, and a sample of

entities neighbors hyperparameters. . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Boxplot of the training time from ÆMP regarding different sized KGs. . . 49



List of Tables

2.1 Notations used in this dissertation. . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Comparison between literature approaches, their used mechanisms, and

tasks in which they were previously evaluated. . . . . . . . . . . . . . . . . 23

4.1 Notations used in this dissertation. . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Examples of facts in the format (subject, predicate, object) from datasets

WN18 and FB15k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Datasets statistics summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Search space of the ÆMP’s hyperparameters. . . . . . . . . . . . . . . . . . 37

5.4 Relation prediction results on WN18 and WN18RR datasets. (L), (G), (R)

stands for ÆMP local, global, and random attention patterns, respectively.

[*]: Results are taken from [67]. The best result value is in bold and second

best result value is underlined. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Relation prediction results on FB15k and FB15k-237 datasets. (L), (G),

(R) stands for ÆMP local, global, and random attention patterns, respec-

tively. [*]: Results are taken from [67]. The best result value is in bold and

second best result value is underlined. . . . . . . . . . . . . . . . . . . . . . 42

5.6 Best (1st) and the second-best (2nd) MRR metric in each dataset. . . . . . 43

5.7 Ablation studies parametrization settings. . . . . . . . . . . . . . . . . . . 43



List of Abbreviations and Acronyms

ÆMP : Attention-based Embeddings from Multiple Patterns;

AI : Artificial intelligence;

CP : Canonical Polyadic;

GAT : Graph attention network;

GCN : Graph convolution network;

ILP : Inductive logic programming;

KB : Knowledge base;

KG : Knowledge graph;

MR : Mean rank;

MRR : Mean reciprocal rank;

MTM : Machine translation model;

NLP : Natural language processing;

PRA : Path-Ranking Algorithm;

RNN : Recurrent neural network.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Relational data and knowledge graphs . . . . . . . . . . . . . . . . . . . . 9

2.2 Learning knowledge graphs’ representations . . . . . . . . . . . . . . . . . 11

2.2.1 Facts embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Additional information embedding . . . . . . . . . . . . . . . . . . 13

2.2.2.1 Semantic paths . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2.2 Entities context . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2.3 Message passing framework . . . . . . . . . . . . . . . . . 15

2.3 Attention mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 General attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Graph attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Knowledge graph attention mechanisms . . . . . . . . . . . . . . . . 17

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



Contents xi

3 Related Work 19

3.1 Symbolic statistical relational learning . . . . . . . . . . . . . . . . . . . . 19

3.2 Knowledge graph representation . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Entities context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Relational paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Attention mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Attention-based embeddings for general graphs . . . . . . . . . . . 23

3.3.2 Attention-based embeddings for knowledge graphs . . . . . . . . . . 23

3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Learning Attention-based Representations from Multiple Patterns 25

4.1 Learning entities context representations . . . . . . . . . . . . . . . . . . . 26

4.1.1 Message passing scheme . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Attention-enhanced massage passing . . . . . . . . . . . . . . . . . 28

4.2 Learning semantic paths representations . . . . . . . . . . . . . . . . . . . 31

4.3 Training Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1.1 Message passing scheme . . . . . . . . . . . . . . . . . . . 33

4.4.1.2 Path representation . . . . . . . . . . . . . . . . . . . . . 34

5 Experimental Results 35

5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions 50



Contents xii

6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References 53



Chapter 1

Introduction

Human knowledge often establishes itself on modeling the elements that compose the

world. The elements, their properties, and the existing relations among elements give

rise to a network of data. As part of gathering and structuring the relational data,

the network of data can be posed as sets of information (i.e., facts, beliefs, and rules)

circa elements, often called entities. Knowledge bases (KBs) play a fundamental role in

compiling this network of knowledge, structuring and storing information, its properties,

and its relationships. The KBs are a general formulation of a technology to compile,

structure, and store the data networks into machine-readable structures.

One of the first attempts of representing through standards and structuring these

data networks (also called linked data) is the Semantic Web1, which is a W3C2 stan-

dard that extends the World Wide Web aiming to handle linked data. The Semantic

Web plays a fundamental role in compiling, structuring, storing, and providing access

to linked data through implementing standards aiming to make information machine-

readable. As an example of these standards and their technologies, we highlight RDF3,

OWL4, and SPARQL5, which provides an interchangeable structure for linked data, a

logic-based structure for the representation of complex semantics among the linked data,

and a querying interface for accessing information, respectively.

Existing compiled KBs such as WordNet [46], YAGO [56, 60], Freebase [6], and

NELL [47] organize open information over topological and non-topological relations.

The KBs might follow the standards proposed in the Semantic Web, provide their own
1https://www.w3.org/standards/semanticweb/
2https://www.w3.org/
3https://www.w3.org/RDF/
4https://www.w3.org/OWL/
5https://www.w3.org/TR/rdf-sparql-query/
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standards, or having conversions in between. They have succeeded as core resources

on knowledge-related tasks such as question answering [71], query expansion [12], infor-

mation retrieval [41], recommender systems [55], and even commonsense reasoning [38].

Typically, the information in these bases is organized according to a conceptual structure

in the form of triples or emphasizing the relational character of their data in the form of

graphs, specifically, knowledge graphs (KGs), as illustrated in Figure 1.1.

England

BornIn IsA

PlayIanMcKellen

BornIn

IsA

Play

LiveIn

PatrickStewart

CharacterIn

Picard

CharacterInGandalf

Person

hasCharacter

StarTrek

Film

IsA

TheLordOf 
TheRing

FriendOf?

Figure 1.1: Example of a knowledge graph about actors and films.

The KGs successfully leverage industrial scale knowledge learning, inference, and rea-

soning. Besides, it can be used as data sources to methods that learn patterns from

relational data, such as techniques from statistical relational AI [21], and, also, enabling a

range of new graph-based methods. Thus, knowledge graphs6 are also broadly adopted in

industrial applications such as search-engines7, social networks8, and question-answering

systems9.

1.1 Motivation

Knowledge bases are usually created by manually providing annotations about facts from

a domain or automatically capturing information from the web. In manual annotations,

KBs have specialists that manually annotate the entities and their relationships, such as

WordNet in the linguistic domain. In automatic capturing, such as done in NELL [47],
6Google Knowledge Graph, Pinterest Knowledge Graph, etc..
7Google, Yahoo, Bing, etc..
8Twitter, Facebook, Pinterest, LinkedIn, etc..
9WolframAlpha, Amazon’s Alexa, Apple’s Siri, etc..
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the process consists of reading web content and developing a general representation of the

world through automatically inferring entities, properties, and relationships.

Despite the success of knowledge graphs (KGs) as core resources on a large plethora

of tasks, real-world KGs usually experience incompleteness and noisy information in both

information acquisition cases. For instance, situations that lead KGs to be incomplete

include not foreseen circumstances and outdated information. Human mistakes in man-

ual annotations and capture errors in automatic acquisition lead KGs to be noisy. Like

so, they are strictly dependable on new information acquisition, which is often hard to

obtain and noisy prone once the information continuously evolves over time [37]. Thus,

an essential aspect regarding KGs arises the existence of automatic methods to com-

plete their information. This capacity involves solving the prediction of missing relations

among entities in the KG. For instance, taking Figure 1.1 in consideration, predict the

missing relation FriendOf between PatrickStewart and IanMcKellen that relates them

as friends.

Several previous works have proposed techniques to predict and infer new relationships

from the existing information to address the capabilities of completing knowledge graphs.

Such methods can be roughly divided into two categories [16]: distributional [7,61,64,73],

which are mostly driven by the recent advances in learning representations from sym-

bolic data; and symbolic methods [18, 68], that leverage logic and domain knowledge

to infer new relationships. The distributional methods aim to learn and operate latent

representations, i.e., embedding vectors, of entities and relations. These methods rely

on encoding the interactions between entities neighborhood, i.e., the entities local rela-

tionships, into low-dimensional dense vectors, which allow for new relationships between

entities to be predicted from interactions of the entities embeddings [53]. Differently, the

symbolic methods [18,68] aim to predict new relations from the observed examples in the

knowledge graph. Generally, these methods extract rules from the examples in order to

model logical patterns, i.e., semantic paths between entities [53]. Methods grounded in

the symbolic paradigm can reason over complex relational paths due to their rule-based

grounding. However, they are well-known to suffer from scalability issues [18]. To learn

concepts, these methods need to have a target relation in order to reason [18, 50]. An

initial attempt is to try using all possible relations as targets to overcome this issue,

which drives the scalability issues. Consequently, these methods have limitations in their

rule-inference search space. In contrast, the embedding-based methods, grounded in the

distributional paradigm, are capable of only learning local structures, requiring further

enhancements to allow for more generality. Nonetheless, they scale, being capable of
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operating on knowledge graphs with millions of facts.

As a consequence, arise the need for hybrid methods, such as the ones covered under

the neural-symbolic [18, 20] umbrella (which are out-of-scope of this dissertation), and

distributional methods capable of handling the semantics of entities relationships, i.e.,

context (the scope of this dissertation). The recent adoption of attention mechanisms [9]

aims to leverage input’s context to learn more general representations. As stated by

Professor Yousha Bengio10 in the 2019 AI Debate [4]:

“Attention is interesting because it changes the very nature of what a stan-

dard neural net can do in many ways. It creates dynamic connections that are

created on the fly based on context. It is even more context-dependent, but

in a way that can favour what Gary (Professor Garry Marcus11) called free

generalization that I think is important in language and in conscious process-

ing.”,

the attention mechanisms are examples of leveraging contextual information to the distri-

butional paradigms. Path-based approaches, such as the Path-Ranking Algorithm (PRA) [34],

are another example of learning representations inspired in symbolic approaches, which

targets learning inference paths in KGs [33,35].

1.2 Objectives

Motivated by the aforementioned observations, the main objective of this dissertation is

guided by the following statement:

A symbolic-inspired distributional solution is able to automatically complete

knowledge graphs by predicting new relations among entities leveraging the

advantages from both aspects. Thus, the solution: (i) should be scalable by

learning dense latent representations from entities and relations; and (ii) the

learned representations should be contextualized, encoding entities local struc-

ture (entities context) and logical patterns from entities chained relationships

(semantic paths).

The secondary objectives are:
10https://en.wikipedia.org/wiki/Yoshua_Bengio
11https://en.wikipedia.org/wiki/Gary_Marcus
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1. to provide a new competing technique for knowledge graph completion;

2. to evaluate if contextualized representations are able to enhance the overall predic-

tion results; and

3. to evaluate if a symbolic-inspired distributional solution has, indeed, the potential

to scale to larger knowledge graphs.

1.3 Methodology

Our methodology is divided twofold. First, we formally present the knowledge base com-

pletion challenge through a relation prediction perspective, as described in Section 1.3.1.

Subsequently, developing the proposed solution for the challenge is the second part of our

methodology (Section 1.3.2).

1.3.1 Problem formulation

Given a knowledge base represented by a labeled multi-digraph KG = (E ,R,F), i.e., a

knowledge graph, where E is the set of nodes that represents the entities, R the set of

edges’ labels that represents the relations, and F : ExRxE the set of edges that represents

the existing facts, i.e., existing triples. Our goal is, given a pair of entities (h, t), where

h ∈ E and t ∈ E , to predict the relationship between these two entities. The outcome

assembles a new (missing) fact f ′ = (h, r, t), where r ∈ R is the predicted relation, and

{f ′ ∈ F|P (r|h, t)} is the candidate triple, where P (r|h, t) is the probability of existing a

relation r between the pair of entities (h, t).

A commonly seen variation of this problem is the link prediction task [7,51,64]. The

main difference between both tasks is that the link prediction task aim to predict an

entity e given a pair entity-relation, while the relation prediction task aims to predict

a relationship between two given entities, as described above. In this work, we focus

specifically in the relation prediction task.

1.3.2 Proposed solution

in this dissertation, we address the relation prediction task as a process towards com-

pleting knowledge graphs (Section 1.3.1) by designing a novel embedding-based model

called ÆMP (Attention-based Embeddings from Multiple Patterns). ÆMP aims at the
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England

BornIn IsA

PlayIanMcKellen

IsA

Play

LiveIn

PatrickStewart

CharacterIn

Picard

CharacterInGandalf

Person

hasCharacter

StarTrek

Film

IsA

TheLordOf 
TheRing

FriendOf?

BornIn

Figure 1.2: Example of a knowledge graph under ÆMP perspective. Gray circles indicate
the head and tail entities. Dashed-arrows are potentially missing relations. Yellow-shaded
arrows indicate the semantic paths between the head and tail. Green, red, and blue-shaded
areas represent the different attention mechanisms used in ÆMP.

major advantages of distributional and symbolic paradigms: local structure learning and

scalability from the distributional paradigm and generality with semantic paths from the

symbolic paradigm. To achieve such a goal, ÆMP learns contextualized representations

from the combination of entities context and semantic paths. The key insights of ÆMP

are based on the perception that multiple patterns exist to relate entities. Similar to a

word in a sentence, entities local neighborhood evidences their structure and properties,

while semantic paths relate long-term dependencies among them. Besides, the unifica-

tion of the contextual information provides enhanced information to predict new relations

among existing entities in knowledge graphs.

Figure 1.2 exemplifies the patterns and mechanisms that ÆMP uses to learn represen-

tations. Primarily, ÆMP operates an attention-enhanced message-passing scheme, which

iteratively propagates the k-hop local neighbor information of a given entity over the

neighborhood edges, paying attention in local (Figure 1.2 red-shaded areas, where light

red is the local 1-hop neighbors and the dark red is the local 2-hop neighbors), global

(Figure 1.2 green area, results from a complete scheme’s iteration), and random (Fig-

ure 1.2 blue area, randomly capture relationships) aspects of the neighborhood to learn a

unique contextualized representation of the given entity and its neighborhood. Secondly,

ÆMP identifies the semantic paths between a pair of entities and combines them into a

single semantic path representation (Figure 1.2 yellow arrows). Finally, ÆMP combines
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both contextualized entities and semantic path representations to inform the probability

P (r|h, t) of a new relationship between a pair of entities.

We conduct extensive evaluations of ÆMP on four datasets extracted from the two

main knowledge graphs benchmarks (WN18 [7], WN18RR [14], FB15k [7], and FB15k-

237 [62]). We compare the efficiency of ÆMP against some state-of-the-art models in re-

lation prediction. Our experimental protocol considers the mean reciprocal rank (MRR),

mean rank (MR), and hit ratio at k (Hit@k) metrics. The metrics results show that ÆMP

outperforms the compared methods in three (WN18, WN18RR, and FB15k) out of the

four datasets and demonstrates competitive results on the fourth benchmark. Further-

more, we conduct three ablation studies over ÆMP, in which we evaluate and discuss

different aspects of the contextualized representations and how they influence the general

performance of the model and the scalability up to millions of triples.

1.4 Contributions

We summarize the main contributions of this dissertation as follows:

i) A novel attention-enhanced message-passing scheme for learning entities and their

context joint representations;

ii) Identification of semantic paths between pairs of entities and the combination of the

paths’ representations into a single general semantic path representation; and

iii) Combination of attention-based entities representations with semantic paths repre-

sentations for relation prediction.

1.5 Dissertation organization

Given the interdisciplinary nature of the relation prediction task and the associated tech-

niques that inspired ÆMP, we recommend reading the text in full. Nonetheless, a guided

description of each following chapter follows.

Chapter 2 contains all background knowledge, concepts, and notations that ground

the content of this text. The chapter starts by introducing relational data and knowledge

graphs, which are the objects of study of this work. Following, we briefly introduce repre-

sentation learning on graphs and different aspects of learning representations of knowledge
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graphs elements. Finally, the concept of attention mechanisms and their application on

graphs is presented. We recommend the integral reading for readers that are not ac-

quainted with various aspects of representation learning.

Chapter 3 summarizes the related literature. We, first, introduce symbolic approaches

to the knowledge base completion challenges and some of their disadvantages over the

distributional methods. The distributional methods are discussed in the following section,

where we also approach learning representations from additional information within the

knowledge graph. Then, works on attention mechanisms and their variations for graphs

and knowledge graphs are examined. Subsequently, we discuss how the related literature

relates with ÆMP.

ÆMP is proposed in Chapter 4. We start the chapter by proposing the attention-

enhanced message-passing scheme for learning contextualized entities representations.

Subsequently, we discuss the representation of semantic paths. Afterward, we introduce

ÆMP’s training objective based on the probability distribution of relations regarding a

pair of entities representations. Finally, we theorize some design alternatives. This chap-

ter reading is essential for the general understanding of ÆMP, the main contribution of

this work.

Chapter 5 holds all experimental evaluation, associated studies, and analysis. In

this chapter, implementation details, such as hyperparameters configuration, resources

used in the experiments, and compared literature results are also considered. Similar

to Chapter 4, this chapter is fundamental for the overall understanding of ÆMP, and it

shows the relevance of the proposed approach.

Finally, in Chapter 6 we conclude our work. Besides, in this chapter, we discuss

limitations and propose future extensions of the work presented in this dissertation. We

divide these extensions into twofold, where in the first part we suggest some immediate

exploration, and in the second part, we propose three research questions for long-term

studies.



Chapter 2

Background

This chapter presents concepts related to relational data and how they are represented in

the form of triples and knowledge graphs (Section 2.1), as the input to the techniques pro-

posed in Chapter 4. The Sections 2.2 and 2.3 cover representation learning and attention

mechanisms, respectively, groundings of this dissertation’s central theme.

The notations used in this chapter and the rest of the dissertation and their description

are presented in Table 2.1.

Table 2.1: Notations used in this dissertation.

Symbol Description

h, t Head and tail entities
r Relation between a pair of entities
K Arbitrary mathematical domain
v,M Vector and matrix
W Arbitrary weights matrix
σ Non-linear transformation
φ Score function
mi
θ Message of a KG’s element e at iteration i

α Attention alignment score
Nθ Neighbor set of a KG’s element
Cθ Context set of a KG’s element
P(h,t) Final semantic path representation of entities pair (h, t)

2.1 Relational data and knowledge graphs

Relational data covers the majority of the existing information. Any reference to a da-

tum (also called entity, object, individual, among others) such as properties, types, and
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relationships with other data configures a datum to be relational.

As expected, when it comes to structuring relational data, solutions have to be capable

of modeling relationships, since relations are intrinsic to the information contained in the

data. A simplistic and generic way of organizing relationships between elements is the

conceptual structure called facts, i.e., triples in the form (head, relation, tail), in which

head and tail are the entities (also called subject and object, respectively) and relation

(also called predicate) is the relationship between both entities that qualifies the triple

semantics. The following triples exemplify this structure:

(BossaNova, typeOf,MusicGenre)

(BossaNova, originallyFrom,Brazil),

where BossaNova is the subject in both triples, typeOf and originallyFrom are rela-

tions, and MusicGenre and Brazil are the objects.

Definition 2.1 (Labeled Multidigraph) A labeled multidigraph is an ordered triplet

G = (V ,A,L), where V is a set of vertices, A is a ordered multiset of edges, i.e., a

multiset of ordered pairs of vertices V, and L is an ordered set of labels associated to each

edge e ∈ A.

Definition 2.2 (Knowledge Graph) A knowledge graph KG = (E ,R, T ) is a labeled

multidigraph G = (V ,A,L), where KG ≡ G, E = V is a set of vertices called entities,

R ⊆ L is a set of labels called relations, and T ≡ A ◦ L is a set derived from the

combination element-wise between edges and labels, called triples.

Another common representation of relational data are the knowledge graphs (KGs)

(Definition 2.2), which are a semantic-based relational representation of data. In this

representation, a datum is an entity, and the semantic relation between entities is a fact,

or triple. The KGs are usually built upon the labeled multidigraph data structure (Defini-

tion 2.1). Graphs are data structures composed of nodes and edges. Edges connect a node

to another node. Specifically, labeled multidigraph are graphs which all edges have an as-

sociated direction (directed graphs, digraphs) and an associated label (labeled digraphs).

Also, these graphs’ nodes might have multiple directed edges between them (multidi-

graph). In this structure, the vertices are the entities, and the edges express relationships

between entities. Also, the edges’ labels define the semantics of each relationship, thus,

composing the facts.
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An example of both representation formats (triples and graphs) is depicted in Fig-

ure 2.1. Figure 2.1.(a) illustrates the graph, with the entities represented as the graph’s

nodes and the relationships being the graph’s labeled edges. Figure 2.1.(b) encodes the

same information in the triple format.

PatrickStweart

IanMckellen

Gandalf

CharacterIn

Film

BornIn

BornIn

Person

IsA

IsA

Play

CharacterIn

England

Picard StarTrek

TheLordOfTheRing

IsA

Play

FriendOf?

 

(a) (b)

LiveIn

hasCharacter

Figure 2.1: A knowledge graph about films and actors.

2.2 Learning knowledge graphs’ representations

Neural networks are relaxed biology-inspired mathematical structures able to produce

an output based on input signals inside an artificial neuron, vaguely similar to a brain’s

neuron, which produces a stimulus based on input pulses. The artificial neuron’s output

is the result of a non-linear transformation, i.e., activation function [1], over the weighted

sum of the input signal features with the addition of a bias, i.e.:

f(x,W) = σ(
n∑
i

wkixi + bi), (2.1)

where x ∈ Rd is the vector corresponding a input signal and its d features, W ∈ Rn×d is

the weighting matrix, n is the number of input signal, b is the bias vector, and σ is the

activation function.

In this sense, a significant part of our mission towards building intelligent agents is

to develop AI systems that are able to understand from the identification and generaliza-

tion of hidden explanatory factors in the observed data. The general objective towards

learning representations is to represent symbols in a mathematical space so that statis-

tical models can manipulate them and infer new information based on representations
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distribution [53]. Following the previously introduced notion of neural networks and arti-

ficial neurons, the generalized learning ability of neural networks come from the injection

function of Equation 2.1 which maps the input set features to a high-level output rep-

resentations1. Learning representation allows models to be aware of a range of latent

information, such as priors and context [5].

2.2.1 Facts embedding

Definition 2.3 (Knowledge graph representation) Given a knowledge graph in the

form KG = (E ,R, T ), where E ×R ⊂ D×D and D is the symbolic domain of knowledge

graph’s elements, the embeddings of its elements, i.e., entities and relations in a math-

ematical space K, are such, given a perfect representation function Γ(θ) : D → Kd that

perfectly maps an element θ ∈ E ×R from the knowledge graph’s symbolic domain D into

a low dimensional embedding vector e ∈ Kd of dimension d.

In the context of knowledge graphs, learning representations aims to provide distribu-

tive representations of the knowledge graphs’ elements in a latent space. Thus, as stated

in Definition 2.3, the elements are condensed into dense vector representations, also called

embeddings, and relations are transformations within this space.

The Definition 2.3 introduces the concept of a perfect representation function, which

is able to represent entities and relationships without loss. Such a perfect function is

unlikely to be achievable. Like so, knowledge graph embedding models aim to learn a

mapping function γ, where γ is an approximated function of Γ. These models’ learning

process intends to minimize a loss function based on a scoring function φ, which applies

a transformation in the elements and measures how “close” the transformed element and

the embedding are.

For instance, Figure 2.2 illustrates a toy version of TransE [7], a knowledge graph

embedding model. In the figure, the knowledge graph is represented in a 3-dimensional

Euclidean space, where the representations are obtained by optimizing the score function

φ.
1From now on in this dissertation we will use feature and representation as synonyms
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Play

CharacterIn

Figure 2.2: Example of the representations of a knowledge graph’s entities and relation-
ships in 3-dimensional euclidean space.

2.2.2 Additional information embedding

An alternative to providing more expressive embeddings is to incorporate additional in-

formation. This alternative allows models to be exposed not only to the facts information

but also to more complex relationships, such as types [48], logical rules [15], long-term

semantic relationships [40], local context [54], and text descriptions [70], among others.

In the following sections, we discuss how additional information can be integrated. Fol-

lowing our motivation to build a symbolic-inspired distributional method, we will focus

on two of them: the long-term semantic relationship, i.e., the semantic paths, and the

local context, i.e., the entities information.

2.2.2.1 Semantic paths

Definition 2.4 (Semantic path) Given a set of facts F = {(h, r1, n1), (n1, r2, n2), . . . , (nk, rk, t)},
a semantic path h r1,r2,...,rk−−−−−→ t is a sequence of relations through which two entities are con-

nected and bounds a specific semantics.

Definition 2.5 (Semantic path representation) Given a semantic path h r1,r2,...,rk−−−−−→ t,

the set of relations’ embeddings within the path ER = {er1 , er2 , . . . , erk}, and a composition

function ⊕, the semantic path’s representation is P(h,t) = ⊕
er∈ER

er.

A semantic path defines a long-term semantic relationship between entities, as outlined

in Definition 2.4. The ability to represent the long-term relationships enables models to

be aware of prior semantics [15] and, many times, capture common-sense knowledge [8].

For instance, taking the example illustrated in Figure 2.3, once the relations between

PatrickStewart and Picard, and Picard and StraTrek are explicit, is common-sense

that PatrickStewart is an actor in StarTrek, similar to inferring over a non-explicit
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CharacterIn
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ActorIn?

ActorIn?
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Figure 2.3: Example of the representations of a semantic path between entities entities.

rule. The process of representing a path is most usually straightforward: most existing

approaches provide the path representation by composing the relations representations

(Definition 2.5) aided by a composition function (e.g., addition, multiplication, recurrent

neural networks).

As an example, Figure 2.3 shows the path linking entities PatrickStewart and

StarTrek. The path PatrickStewart
Play,CharacterIn−−−−−−−−−−→ StarTrek suggests a semantically

rich relationship between entities, in which we might even infer a new relation ActorIn

in between. The representation of this path consist in applying a composition function

over Play and CharacterIn representations.

2.2.2.2 Entities context

Definition 2.6 (Entity’s context) Given an entity e, the single-hop entity’s context is

the subgraph formed by all entities directly connected to e, i.e., all facts that involves e.

A general k-hop entity’s context is composed by the iterative aggregation (k iterations) of

entities neighbors.

Definition 2.7 (Entity’s context representation) Given the subgraph G ′e of the k-

hop entity’s context, the embeddings’ set of the elements within the subgraph EG′e = {eθ} ∀ θ ∈ G ′e,
and an aggregation function AGG, the entity’s context representation is AGG

eθ∈EG′
e

(eθ).

Entities contextual information (Definition 2.6), or entities context for short, plays a

fundamental part in describing the entity semantics. Thus, incorporating this informa-

tion into the entities representation, at some level, leverages models to be cognizant of

entities types and domain rules. The entities context representation (Definition 2.7) is

characterized by an embeddings’ aggregation of the context’s elements.
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2.2.2.3 Message passing framework

A special case of learning joint representations of an entity and its local context can be

defined based in the Message Passing Neural Networks framework [22]. Also known as

message passing framework [27], the framework proposes the use of an iterative framing

to learn graphs’ nodes representations by aggregating the node’s local neighborhood and

then updating the node’s hidden representation. The iterative process of learning a hidden

representation hu of a node u can be express as:

hk+1
u = UPDATE (hku,m

k
Cu)

mk
Cu = AGGREGATE (hkv ,∀v ∈ Cu),

(2.2)

where k is an iteration, UPDATE and AGGREGATE are arbitrary differentiable func-

tions, and mk
C(u) is the message aggregated from the node’s neighbors.

The framework, originally developed for an arbitrary graph, can be easily specialized

to knowledge graphs. Like so, we define the same aforementioned operations regarding

an arbitrary knowledge graph’s element θ:

hk+1
θ = UPDATE (hkθ ,m

k
Cθ)

mk
Cθ = AGGREGATE (hkv ,∀v ∈ Cθ).

(2.3)

2.3 Attention mechanisms

The attention mechanisms are tools originally develop to aid neural machine translation

models (MTMs) to handle long sentences [3, 9]. In short, the mechanisms provide a

weighted alignment, also called context vector, between the hidden states’ representations

of an encoder2 model. The context vector is then combined with the network’s previous

state as input to the decoder3. The key success factor of the attention mechanisms is that,

through the context vector’s aggregation, the decoder has access to some of the input’s

representation, which allows it to focus on the most relevant pieces of information, even

in long sentences.

In the following, we discuss the general attention mechanism and their versioning for

graphs and knowledge graphs.
2Encoder: the component that is responsible for learning a dense representation from the input, i.e.,

the input’s encoding.
3Decoder: the component that is responsible for learning a mapping between the encoder’s dense

representation from the input to a target object.
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2.3.1 General attention

Definition 2.8 (Attention mechanism – adapted from [9]) Given a set of key-value

pairs (K,V ), a query q, and p a distribution function (e.g. softmax), where K is the set

of keys, i.e., the encoder hidden states, V is the set of values, i.e., the values to which the

attention is applied, and the query q is the decoder hidden state, the attention mechanism

is such A(q,K, V ) =
∑

i p(a(ki, q))∗vi, where a is an alignment function and the attention

weights are αij = p(a(ki, q)).

Formally, as stated in Definition 2.8 [9], the attention mechanisms learn a distribution

over the input keys regarding an input query. The hidden states are captured and used as

keys under an alignment function from the encoder. Aside, the query, i.e., the last state

of the decoder is also used in the alignment function. Further, a distribution function

(usually a softmax function, notwithstanding, alternative functions can be used [19]) is

applied over the alignment function resulting in the attention weights. A significant ad-

vantage of this formulation is that if both alignment function and probability distribution

function are differentiable, the attention weights can be learned in a single feed-forward

neural layer.

From the general formulation, the concepts of local and global attention [43] can be

derivated. The global attention learns based on the keys set being all hidden states of the

encoder. Its advantage is to offer a smooth distribution over a differentiable setting. In

contrast, the local attention learns based on a subset of the encoder’s hidden states. A

subset allows local attention to be attentive to specific aspects of the keys, but it demands

more complex learning techniques since it is no longer differentiable.

2.4 Graph attention

Definition 2.9 (Graph attention mechanism – adapted from [36]) Given a graph’s

element θ (e.g., node, edge, and subgraph), and the set of elements in the neighborhood

of θ, Nθ, the graph attention mechanism ζ : {θ} × Nθ → R is a mapping function that

assigns to a neighbor element a relevance score, in which
∑

i∈Nθ ζ(θ, i) = 1.

Similar to attention mechanisms in Natural Language Processing (NLP) tasks, atten-

tion mechanisms in graphs (Definition 2.9) enable methods to focus on different aspects

of a graph’s element neighborhood [36]. The main idea of the attention mechanisms in
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graphs is to compute the element’s hidden representation by attending over its neighbor-

hood.

Formally, following the definition of the graph attention networks (GAT) introduced

by Veličković et al. [66], the graph attention layer produces an output set of attended

representations h′ = {h′1, h′2, . . . , h′k}, h′i ∈ Rd′ , based on its input set h = {h1, h2, . . . , hk},
hi ∈ Rd, where hi is an element’s feature vector, k is the number of elements in the sets,

and d and d′ are the dimensions of each feature vector.

To that end, the layer defines an attention mechanism a : Rd × Rd → R that is able

to compute the attention coefficient

eij = a(Whi,Whj), (2.4)

based on a transformation higher-level mappingW ∈ R(d′×d) of the input features. The co-

efficient is able to indicate the relevance of a neighbor’s features hj regarding the element’s

representation hi. To leverage coefficients comparability, they are, then, normalized with

a softmax function:

αij = softmaxj(eij) =
exp(eij)∑
k∈Ni exp(eik)

. (2.5)

The final attended output representation is a linear combination between the nor-

malized attention coefficients with their input corresponded potentially transformed by a

non-linear function σ:

h′i = σ

(∑
j∈Ni

αijWhj

)
. (2.6)

2.4.1 Knowledge graph attention mechanisms

The previous section introduces a general definition of graph attention mechanisms for any

of the graph’s elements. However, the GAT formulation focus on the graph’s nodes, not

being able to handle mixed graphs’ elements (e.g., nodes and edges, nodes and subgraphs).

Moreover, as described in Section 2.1, relations play a fundamental part in the entities

role assignment. Thus, the graph attention mechanisms are not capable to properly

operate knowledge graphs, which by its nature requires methods efficient on handling

mixed graph’s elements, i.e., entities, and relations. In contrast, the solution is to extend

GATs to an approach that manages entities and relations together.

To formulate the notion of attention mechanisms specialized in knowledge graphs

extending the Definition 2.9, we base ourselves in the definition proposed by Nathani,
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Chauhan, Sharma et al. [51]. The knowledge graph attention layer outputs two sets of at-

tended representations h′ = {h′1, h′2, . . . , h′k1}, h
′
i ∈ Rd′1 for entities, and h′ = {g′1, g′2, . . . , g′k2},

g′i ∈ Rd′2 for relations, based on their input set h = {h1, h2, . . . , hk1}, hi ∈ Rd1 and

g = {g1, g2, . . . , gk2}, gi ∈ Rd2 , respectively, where hi is an entity’s feature vector, gi is a

relation’s feature vector, k1 and k2 are the number of elements in the entities and relations

sets, respectively, and d1, d2 and d′1, d′2 are the input and output dimensions of each from

entity and relation feature vector, respectively.

To compute the attention coefficient on knowledge graphs’ elements, the attention

mechanism a : Rd′1 × Rd′1 × Rd′2 → R is such:

eijk = a(Wahi,Wahj,Wbgk), (2.7)

where Wa ∈ Rd′1×d1 and Wb ∈ Rd′2×d2 are higher-level transformation for entities and

relation feature vectors, respectively. Similar in GAT, the attention coefficient carries the

relevance of an triple tijk = (hi, gk, hj) among others. The coefficients of a triple tijk are

then normalized regarding the entity i context Ni and the set of pair relation-entity Nin
connected to it:

αijk = softmaxjk(eijk) =
exp(eijk)∑

n∈Ni

∑
r∈Nin exp(einr)

. (2.8)

Finally, the output representation of an entity hi, is a result of the combination

of each triple representation weighted by their attention coefficients under a non-linear

transformation σ:

h′i = σ

∑
j∈Ni

∑
k∈Nij

αijkeijk

 . (2.9)

2.5 Discussion

This Chapter covers the grounding knowledge, definitions, and notations for the tech-

nique proposed in Chapter 4. It addresses relational data representation, specifically

knowledge graphs, and machine learning methods such as representation learning and

attention mechanisms for knowledge graphs.

Section 2.1 addresses the representation of relational data and their structuring in

triples and knowledge graphs. Sections 2.2 and 2.3 covers the machine learning groundings

for representation learning and attention mechanisms. The way in which these concepts

are applied to our proposed solution is explained in Chapter 4.
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Related Work

This chapter presents previous literature on knowledge base completion and knowledge

graph embedding. Some works presented here will be used as grounding for ÆMP in

Chapter 4 and baseline in the experimental results presented in Chapter 5. We explore

techniques that attempt to complete knowledge bases based in symbolic statistical rela-

tional learning (Section 3.1) followed by methods aligned with the scope of this disser-

tation that learns representations over knowledge graphs (Section 3.2). Then, we show

some works on attention mechanisms over graphs (Section 3.3). Finally, in Section 3.4,

we discuss the differences between the related literature with the technique proposed in

this dissertation (Chapter 4).

3.1 Symbolic statistical relational learning

Initial attempts on prediction new relationship among entities in knowledge bases (KBs)

uses Logic Programmings [21] and Inductive Logic Programming (ILP) [50] by mining

logical rules from these KBs. For instance, the general-purpose ILP system ALEPH1 [49]

applies search strategies combined with evaluation functions to mine predicate logical

rules that describe concepts in a domain. Such rules can be used as a mechanism to

infer new relationships among entities by employing logical reasoning. AMIE+ [18] is

another relevant method to mine logical rules from KBs that is grounded in the Open

World Assumption [17]. The main difference between AMIE+ and most of the ILP-based

methods is that AMIE+ is able to mine rules despite not having explicit counterexamples,

leveraging the principles of Partial Completeness Assumption [17] to automatically infer

counterexamples for rules.
1https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
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The above-mentioned approaches focus on mining logical rules, making them unable

to reason over noisy information and uncertainty. To overcome this issue, the combination

of graphical models with logic and relational approaches [21] are another set of techniques

that generally aims to represent relational data under uncertainty and probabilistic theory.

Focusing on the KB completion challenge, methods leverage by this combination, such as

the Markov Logic Network [59], represent the joint distribution over the entities and their

existing associated facts to predict new relationships through probabilistic inference.

Symbolic statistical relational learning methods aim at reasoning over uncertainty

under a hypothesis-logical space. Their limitation goes towards modeling capacities, i.e.,

they are usually limited to model data based in a predefined probabilistic model, and

scalability, given the complexity of hypothesis-logical space used by these approaches,

they are unable to leverage differentiable capabilities [11]. In the next section, we discuss

differentiable approaches to relational learning. Specifically, we focus on knowledge graph

embeddings, which are the scope of this dissertation.

3.2 Knowledge graph representation

Most current methods for learning KG’s entities and relations representations model each

fact individually, providing an embedding vector for each KG element in a continuous

vector space. Usually, the embeddings of each entity are learned based only on embed-

dings of their direct neighbors [7, 30, 61, 64, 73]. TransE [7], ComplEx [64], RotatE [61],

and QuatE [73] are examples of these methods; they rely mainly on the representation

of entities on vector spaces (such as, Euclidean space, and complex spaces) and on alge-

braically operating this representations to achieve their tasks. These method ignores that

facts are part of a much richer structure (the knowledge graph itself).

In short, TransE represents entities and relations in a Euclidean vector, learning the

embedding from the translation of and entity regarding a relation. ComplEx uses the

complex space to represent entities and relations, aiming to better capture symmetric and

antisymmetric relationships. SimplE proposes enhancing Canonical Polyadic (CP) [28]

allowing the two embeddings of each entity to be learned dependently while leading the

model to have a simple representation. Similar to ComplEx, RotatE uses the complex

space proposing a rotational model, where the relations are modeled as rotations from

the entities. QuatE uses quaternion inner product as a compositional operator for the

representation of relations and entities in a hyper-complex space.



3.2 Knowledge graph representation 21

In the following, we revisit methods that start from the same motivation as ours:

entities are likely to be better represented when contextual information is incorporated

into the learning process; consequently, one may reach better predictive results to complete

the KGs. These methodologies can be divided into two categories: entities context, where

local relationship patterns and neighborhood information among entities are observed, and

relational paths, where the paths between entities and their semantics are considered.

3.2.1 Entities context

Luo et al. [42] pioneered the generation of context-dependent entity embeddings. Their

goal is to learn 1-hop local neighborhood representations for entities, called contextual

connectivity patterns, and, based on previous learned embeddings, refer to local connec-

tivity patterns, fine-tune them with the connectivity patterns. Oh et al. [54] proposes

context-aware embeddings by jointly learning from an entity and its multi-hop neighbor-

hood. Both approaches only adopt as context the representations of the entities neighbors,

which limits their capacity to generalize the entity’s local structure once the semantics of

the relationships between neighbors are neglected by the models.

In contrast, Wang et al. [67] urge the necessity to address entities local context re-

garding their relationships and, consequently, their local structure. Like so, they design

a message-passing scheme to learn entities k-hop neighborhood based on the aggregation

of graph’s edges, i.e., the relationships. However, the proposed method equally weights

the neighbors within the aggregation process.

We argue that the message-passing scheme holds the potential to acquire entities

local structures. Thus, we benefit from the message-passing scheme in our model and

propose an enhancement to avoid handling equally all neighbors. We adopt an attention

mechanism to focus on different aspects of the passed messages, weighting the importance

of each fact in the neighborhood for the final entity representation.

3.2.2 Relational paths

Several previous works count with sequences of relations among entities to add contex-

tual information to KG’s embeddings [13, 25, 26, 39, 40]. PTransE [40] extends the use of

translation-based embeddings mechanisms [7] to find the relationship between two entities

by including multiple-step relation paths between them. Gu et al. [26] proposes additive

and multiplicative compositions over relations while [52] leverages recurrent neural net-
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works to consider relational paths of entities. Both of those strategies model a single path

between two entities. Aiming at complex reasoning to populate KBs from texts, [63]

and [13] incorporate multiple paths that are built not only upon relations but also with

other entities. More recently, Guo et al. [25] also targeted at learning from relational

paths but using a recurrent neural network with residual connections. By allowing skip-

ping connections, entities in a path can contribute to predicting not only a possible link

but can also semantically enhance the objects entities in a path.

In this dissertation, we also build paths motivated by the semantic enrichment that one

entity may provide to the others. However, we focus on message-passing schemes leveraged

by different patterns of attention to let the model find out during the learning which

elements are more relevant to the embeddings and, consequently, the relation prediction

task.

3.3 Attention mechanisms

As defined in Chapter 2, attention mechanisms enhance models to be aware of a general

context by learning from the encoder’s hidden states [3]. Luong et al. [43] proposed

the use of local and global attentions on sentences. Both are variations of the original

attention aiming to predict an alignment position for the current target and a target-

centered window to compute the context vector, respectively.

BigBird [72] is another relevant attention mechanism in NLP that takes inspiration

from graph sparsification methods. The BigBird is an attention mechanism that over-

comes the Transformers [65], a set of attention mechanisms that are currently considered

the state-of-the-art in several language-related tasks by proposing a sparse attention mech-

anism. This new attention mechanism leverages the combined use of random, windowed

(local), and global attention to be robust and expressive as the Transformers but using

fewer resources.

In the following, we explore attention mechanisms over graphs. We differ from all

techniques by leveraging graph-based attention to capture different contextual patterns

over elements from the knowledge graph, taking inspiration from local, global, and sparse

attention mechanisms.
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Table 3.1: Comparison between literature approaches, their used mechanisms, and tasks
in which they were previously evaluated.

Model Mechanisms Task evaluated
Message-passing scheme Semantic Paths Attention Link Prediction Relation Prediction

TransE [7] X X
PTransE [40] X X X
ComplEx [64] X X
SimplE [30] X X
RotatE [61] X X
QuatE [73] X X

Nathani et al. [51] X X X
PathCon [67] X X X

3.3.1 Attention-based embeddings for general graphs

One of the first approaches to employ the concept of attention to learn representations

from graph-based data was GAT [66]. However, that work was focused on learning repre-

sentations using attention weights computed over every other node (in the most general

formulation). Moreover, they target the node classification task, neglecting labeled multi-

digraphs. Here, besides allowing different views of attention over the nodes and edges, we

aim at predicting relations in knowledge graphs. GAT, on the other hand, handles graphs

that are not designed to take into account the relations, which are not only responsible

for connecting entities but also to modulate their roles.

3.3.2 Attention-based embeddings for knowledge graphs

The first attempt to use attention-based mechanisms to learn how to predict relations in

KGs was presented in [51]. To solve the issue of capturing the contributions of distant

entities, they relied on a relation composition mechanism that introduces auxiliary edges

between neighbors in hops. We, on the other hand, allow for local and global attention

mechanisms to potentially focus on close and distant neighbors during the message-passing

mechanism. Moreover, we include a random attention mechanism that potentially learns

when to attend to close and distant neighbors.

3.4 Discussions

This chapter presents works that, at some level, are related to ÆMP, formally proposed

in Chapter 4. We start the chapter by introducing some traditional approaches from

statistical relation learning to the knowledge base completion task. Later, we explore
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techniques of knowledge graphs representation learning focused on learning over facts

only. Additionally, how discuss the aggregation of the additional information to the

representations. Further, we explore attention mechanisms that inspire ÆMP.

Table 3.1 compiles the most related models, their capabilities, and tasks in which they

were evaluated. The baseline methods, used in Chapter 5, were those evaluated in the

context of the relation prediction task. Besides, the content of this chapter is helpful to

have an overview of different aspects of the literature and is important for the complete

understating of the inspirations considered in Chapter 4.



Chapter 4

Learning Attention-based Represen-
tations from Multiple Patterns

In this chapter, we propose and develop1 ÆMP (Attention-based Embeddings from

Multiple Patterns), illustrated in Figure 4.1, that learns contextualized representations

for relation prediction on knowledge graphs. ÆMP grounds its architecture in three main

components: (i) an attention-enhanced massage-passing scheme for learning the joint rep-

resentation of entities and their contexts; (ii) a method to capture and represent semantic

paths as context information in the learning process; and (iii) the combination of both

contextual information to the final contextualized representation.

This chapter is composed of Section 4.1, where we describe the attention-enhanced

massage-passing scheme for learning the joint representation of entities and their contexts.

In this section, we present the message-passing scheme (Figure 4.1.(a)), and propose the

employment of local (Figure 4.1.(b)), global (Figure 4.1.(c)), and random (Figure 4.1.(d))

attention mechanisms. Section 4.2 describes how we capture the semantic paths (Fig-

ure 4.1.(e)) and how they are contemplated as context information into the learning pro-

cess. The ÆMP’s training objective is discussed in Section 4.3, where we also demonstrate

how we combined the context information.

The notations used in this chapter and the rest of the dissertation and their description

are presented in Table 4.1.
1https://github.com/MeLL-UFF/AEMP
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Figure 4.1: Overview of ÆMP architecture. Boxes represent the vector representations
produced in each step. Gray-shaded illustrates the message-passing scheme. Red-shaded
points out each hop used on local attention. Green-shaded expresses the iterations used
on global attention. Blue-shaded indicates the randomly selected relationships used on
random attention. Yellow-shaded indicates the semantic paths.

4.1 Learning entities context representations

Inspired by the advances in attention mechanisms over graphs (GATs) [66], as well as

their sparse versions in NLP [44, 72], and the message-passing scheme for aggregating

entities neighborhood representations [67], we propose a novel mechanism for capturing

and learning entities context (Algorithm 1). Our mechanism uses the message-passing

scheme to interactively learn entities representations from the propagation of their multi-

hop neighbor edges representations. After learning such representations, as a second step

in the learning process, we submit them to an attention layer that combines local, global,

and random attention mechanisms. Such a combination of different views benefits the

model to learn the entities context while focusing on different neighborhood aspects.

Following the example illustrated in Figure 4.2, local attention reinforces local con-

nective patterns, providing a narrow view of the entities and their surroundings (e.g.,

the red-shaded areas in the figure; the relationship between entities PatrickStewart and

England). Global attention reinforces global connective patterns, broadly focusing on the

entities neighborhood (e.g., the green-shaded area in the figure; the relationship between

entities England and XMen). Random attention assists in capturing non-directed patterns

(e.g., the blue-shaded area in the figure; the relationship between entities IanMcKellen

and Magneton). After considering different contextual patterns, ÆMP is able to infer new

relationships such as the one between PatrickStewart and IanMcKellen, for example.



4.1 Learning entities context representations 27

Table 4.1: Notations used in this dissertation.

Symbol Description

mi
e Message of entity e at iteration i

sir Representation of a relationship r at iteration i
N (e) Incident relationships of an entity e
N (r) Incident entities to a relationship r
λ Attention mechanism (local, global, or random)
αλrk Attention alignment score regarding a relation r and an iteration k
sλ
k
r Attention-enhanced relationship representation
CR Relationships’ context set
CI Iterations’ context set
mATT
e Final representation of an entity e
M(h,t) Final entities context representation of entities pair (h, t)
P(h,t) Final semantic path representation of entities pair (h, t)

4.1.1 Message passing scheme

Equations 4.1 and 4.2 and Figure 4.1.(a) formalizes and describes, respectively, the

massage-passing scheme for entities representation learning. We define mi
e ∈ Rd as the

message, i.e., the contextual representation of an entity e, and sir as the representation of

a relationship r between a pair of entities, both computed in an iteration i.

mi
e =

∑
r∈N (e)

sir, (4.1)

si+1
r = σ

(
flatten

(
mi
hm

i
t

T
)
Wi

1 + sir W
i
2 + bi

)
,

h, t ∈ N (r), mi
hm

i
t =


m
i(1)
h m

i(1)
t . . . m

i(1)
h m

i(d)
t

. . .

m
i(d)
h m

i(1)
t . . . m

i(d)
h m

i(d)
t

 ,
(4.2)

The entity’s message mi
e ∈ Rd is the sum of all incident relationship representations

N (e) of an entity e (Equation 4.1). The relationships’ representations are updated it-

eratively according to Equation 4.2, where the next relation state si+1
r is updated based

on a cross-neighbor aggregator operation [67]. The aggregator models the entities cross

matrix, a pairwise product of the entities representations mi(dk)
h m

i(dk)
t , where mi

h and mi
t

are the head and tail representations, respectively, (dk) is a dimension in d. The updated

relationship representation si+1
r is a combination of the flattened entities cross matrix with

the last relationship representation sir, both linear transformed with weights W1 and W2,
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PatrickStewart

IanMcKellen
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Magneton

England
BornIn

BornIn

Play

Play

EnemyWith

CharacterIn

CharacterIn
FriendOf?

Hop-2
Hop-1

Iteration-  hops

Figure 4.2: Example of knowledge graph under the ÆMP highlighting ÆMP’s mecha-
nisms. Similar to the knowledge graph illustrated in Figure 1.2, gray circles indicate the
head and tail entities. Dashed-arrows are potentially missing relations. Yellow-shaded
arrows indicate the semantic paths between the head and tail. Green, red, and blue-
shaded areas represent global, local, and random attention mechanisms, respectively, used
in ÆMP.

followed by a final nonlinear transformation σ.

4.1.2 Attention-enhanced massage passing

Built on top of the message-passing scheme, we define a multi-context attention layer

motivated by both GATs [66] and the sparse attention mechanism [44, 72]. We extend

the GATs’ attention mechanism by adopting local and global attention, inspired by [43].

Moreover, we include random attention within the message-passing scheme iterations to

leverage sparsely arranged possible relationships.

Illustrated in Figure 4.1.(b) and described in Equations 4.3 and 4.4, the local attention

apparatus employs the relationships’ messages acquired in each hop CR from a particular

iteration k as the context of the resultant message sk in the iteration. It allows for the

querying message to be informed of its neighborhood structural information, i.e., its local

context structure.

αlocalrk = alignr(s
k, skr) =

exp(sk
ᵀ W skr)∑

r′∈CR exp(skᵀ W skr′)
(4.3)
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slocal
k

r = σ

(∑
r∈CR

αlocalrk W skr

)
(4.4)

The global attention (Figure 4.1.(c), Equations 4.5 and 4.6) operates over the final

entities messages of each iteration CI . By doing so, the global semantic of each iteration

is captured and informed to the querying message.

αglobalrk = alignk(sr, s
k
r) =

exp(sr
ᵀ W skr)∑

i∈CI exp(srᵀ W sir)
(4.5)

sglobal
k

r = σ

(∑
i∈CI

αglobalri W sir

)
(4.6)

We highlight the difference between contexts from equations 4.4 and 4.6, where CR is

intrinsic related to the messages acquired within a hop and CI is composed of all messages

from an iteration.

Finally, the random attention illustrated in Figure 4.1.(d) and described in Equa-

tions 4.7 and 4.8 randomly captures, according to predefined probability called context

selection criteria, further aspects of the entities neighborhood. Such aspects might get ne-

glected by the local attention based on each hop or the global attention based on a whole

iteration update. In this way, the random attention weights are built upon both the hops

and iterations, i.e., using each randomly capture specific relationship representation sir′

of a iteration i within a hop r′. The random mechanism allows the querying message to

pay attention to diverse aspects of its neighborhood, introducing an indiscriminate bias.

αrandomrk = alignrk(s, s
k
r) =

exp(sᵀ W skr)∑
{i,r′}∈CR exp(sᵀ W sir′)

(4.7)

srandom
k

r = σ

 ∑
{i,r}∈CR

αrandomri W sir

 (4.8)

The final representation of an entity and its local, global, and random contexts regard-

ing Equation 4.1 are the last aggregation operation of the message-passing scheme, where

the final message of an arbitrary entity e ismK
e , whereK is the last iteration. Here, we use

mlocal
e , mglobal

e , and mrandom
e being the resulting representation of the attention-enhanced

message-passing scheme on each attention pattern, and mATT
e being the concatenation of
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Algorithm 1: Attention-enhanced Message-Passing Scheme
1 i← 1
2 Si ← S0

3 Srandom ← {}
4 Sglobal ← S0

5 Slocal ← S0

6 while i 6= K do
7 Si+1 ← {}
8 hop← 1
9 while hop 6= H do

10 Mi ← Equation 4.1 (Si)
11 si+1

r ← Equation 4.2 (Mi)
12 Si+1 ← Si+1 ∪ si+1

r

13 Slocal ← Slocal ∪ si+1
r

14 if with a probability p then
15 Srandom ← Srandom ∪ si+1

r

16 hop← hop+ 1

17 end
18 Slocal ← Equation 4.4 (Si+1, S

local)
19 Sglobal ← Sglobal ∪ Si+1

20 i← i+ 1

21 end
22 M local ← Slocal

23 M global ← Equation 4.6 (SK , S
global)

24 M random ← Equation 4.8 (SK , S
random)

25 MATT ←M local ⊕M global ⊕M random

26 return MATT

the outcome representation of each attention mechanism:

mATT
e = mlocal

e ⊕mglobal
e ⊕mrandom

e , (4.9)

where mlocal
e , mglobal

e , and mrandom
e are the representations of the entity and its local con-

text, global, and random contexts, respectively.

Finally, to provide the final embedding of the head and tail pairM(h,t), we combine

both head and tail final messages, as shown in the following equation:

M(h,t) = mATT
h ⊕mATT

t , (4.10)

where mATT
h and mATT

t are the final representation messages from entities head and tail,

respectively.

The Algorithm 1 details the process followed by the attention-enhanced message pass-
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ing scheme. The algorithm is initialized in the first iteration with an initial state (e.g.,

random features, Xavier initialization [23], bag-based features [45]) (Algorithm 1 – Lines

1-5). The message passing scheme (Algorithm 1 – Lines 6-20) iteratively updates the

hidden state Si by aggregating entities neighbors (Algorithm 1 – Lines 9-17). During the

algorithm’s loop phase, the random (Algorithm 1 – Line 15), the local (Algorithm 1 –

Line 18), and the global (Algorithm 1 – Line 19) contextual information are gathered.

Further, the attention coefficients are computed based on the previously gathered con-

texts (Algorithm 1 – Lines 22-24). Finally, the entity’s final representation is provided by

the contexts’ concatenation (Algorithm 1 – Line 25).

4.2 Learning semantic paths representations

Our aforementioned attention-based approach provides essential information for learning

entities local-expanded context. However, it is incapable, given the limit in the num-

ber of hops, of capturing long semantic paths, i.e., long sequences of relations between

entities. As an example, the semantic path (Figure 4.2 yellow-shaded arrows) between

PatrickStewart and IanMcKellen entities is overlooked, since it is longer than the en-

tities context hops. To address this issue, we propose considering the semantic paths

between entities within the learning process of ÆMP.

To do so, as described in Algorithm 2 and illustrated in Figure 4.3, we, first, identify

P(h, t) = {p1, . . . , pm}, which are all the semantic paths between two entities (Algorithm 2

– Line 1), where h and t are the head and tail entities and pi = (r1, . . . , rn) is the semantic

path h
r1,...,rn−−−−→ t between them, and ri is a relation within the path. In the algorithm

we use the breadth-first search algorithm [10] with maximum path length as constrain

to find all paths between the entities. After, we provide one-hot representations to the

identified paths (Algorithm 2 – Lines 2-4) and, similar to [40], in order to learn a single

representation of the semantic paths, we perform a linear transformation (Algorithm 2

– Line 6) over the concatenation of the paths’ representations (Algorithm 2 – Line 4),

mapping the concatenated representation to the same dimensional space than M(h,t).

Equation 4.11 shows this process:

P(h,t) = W
∥∥∥∥
p∈P(h,t)

p, (4.11)

where W denotes the linear transformation matrix, and ‖ denotes concatenation opera-

tion.
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PatrickStewart IanMcKellenProfessorX Magneton
Play PlayEnemyWith

England
BornIn BornIn

Figure 4.3: Example of the representation of the semantic paths between head and tail
entities, i.e., PatrickStewart and IanMcKellen entities, respectively.

Algorithm 2: Learning semantic paths representation
1 P(h, t)← BreadthF irstSearch(h, t,max_length)
2 P(h,t) ← OneHotEncoding(p′); p′ ∈ P(h, t)
3 foreach p ∈ P(h, t)− {p′} do
4 P(h,t) ← P(h,t) ⊕OneHotEncoding(p)
5 end
6 P(h,t) ←W P(h,t)

7 return P(h,t)

4.3 Training Objective

To achieve the main objective of predicting relations over KGs, we borrow the idea of

a loss function based on the distribution probability of a relation over a head and tail

pair from [67]. Like so, we take the probability distribution computed by a softmax

function from the addition of both entities context M(h,t) and semantic path context

P(h,t) representations:

P (r|h, t) = softmax(M(h,t) + P(h,t)). (4.12)

The training loss is represented in Equation 4.13, where our objective is to minimize

the cross-entropy loss between the predicted probability of a training fact and its ground-

truth:



4.4 Discussions 33

min L(Ω) = −
∑

(h,r,t)∈T

r log(P (r|h, t)). (4.13)

As a result of the training phase, the model learns a distribution function over a

training set that maps the probability of a relation regarding two entities. To infer new

relationships after training given a query, i.e., a pair of entities in the form of head and

tail, and a relation, we retrieve the learned representations of each query’s elements and

apply the learned distribution function over the representations aiming to measure the

probability of the relationship to be true.

4.4 Discussions

In this chapter, we propose and develop a new method for learning representations in

knowledge graphs. Our approach, named ÆMP, proposes: (i) a new attention-enhanced

message passing scheme to learn entities context representations (Section 4.1); (ii) se-

mantic paths’ representations based on relations’ embeddings (Section 4.2); and (iii) the

combined use of both representations to the final attention-enhanced contextualized rep-

resentations (Section 4.3).

Although ÆMP was introduced in this chapter in the form of a specialized framework,

it can easily be generalized and extended to support design alternatives in its three main

components. In the following, we develop some discussions towards design alternatives

possible in a general formulation of ÆMP.

4.4.1 Design Alternatives

4.4.1.1 Message passing scheme

The message passing scheme is generalizable through an update and an aggregate func-

tions [27]. Thus, Equations 4.1 and 4.2 can be posed as the sum of the incoming neighbors’

messages and a non-linear transformation over a linear combination of the previous em-

bedding with the neighborhood information.

Given the general form of the message passing framework, new entities neighborhood

aggregators can be applied. We show some examples in the following:

Average neighbor aggregator [67]. Applies a non-linear transformation over the input
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vectors’ element-wise average:

si+1
e = σ

(
1

3
(mi

h +mi
t + sir)W + b

)
, h, t ∈ N (r). (4.14)

Graph convolutional networks (GCNs) [32]. Adopt a self-loop update strategy

aligned with a symmetric-normalized aggregation function:

si+1
e = σ

W ∑
v∈N (h)∪{h}

sie√
N (h)

∥∥N (v)

 . (4.15)

4.4.1.2 Path representation

Different composition operators can be used to provide the semantic paths’ represen-

tations. As described in Section 4.2, we use the concatenation operator in the ÆMP

framework over the relations’ representations that composes the target semantic path.

Thus, we can generalize the Equation 4.11 to a generic composition function. In the fol-

lowing, we show the use of Recurrent Neural Networks (RNNs) as a composition function.

One of the advantages of using RNNs to represent the semantic paths is that they can

potentially capture patterns among different semantic paths.

Recurrent neural networks (RNNs) [40]. Applies a recurrent neural network over

the relations to compose the semantic path representation.

P(h,t) = f(W[ci−1; ri]), ∀ri ∈ P(h, t), i =
∣∣Ppk

p0

∣∣ , (4.16)

where P(h, t) is the set of relations within the target semantic path.

This chapter’s content will base all empirical evaluation and further studies presented

in Chapter 5.
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Experimental Results

This chapter presents the experimental methodology and ÆMP’s evaluation in the rela-

tion prediction task targeting knowledge base completion. We conduct experiments on

real-world datasets largely used in the literature and report the obtained results com-

pared with several previous methods that have also focused on the relation prediction

task. Furthermore, we conduct three ablation studies to draw insights over ÆMP and its

variations. Thus, Section 5.1 approaches the experimental protocol; Section 5.2 covers

the results and comparisons on the relation prediction task; Section 5.3 discuss over the

ablation studies; and Section 5.4 debates over the experimental results brought in this

chapter.

5.1 Experimental Settings

Datasets. To evaluate ÆMP’s specialized framework proposed in the Chapter 4 in the

relation prediction task for knowledge base completion (Section 1.3.1), we conduct the

experiments based on four datasets, namely WN18, WN18RR, FB15k, and FB15k-237,

extracted from two widely used knowledge graphs.

The datasets FB15k and WN18 were first introduced by Borders et al. [7] aiming to

provide a benchmark to evaluate knowledge base completion techniques. Specifically, the

FB15k is a subset from Freebase [6], a knowledge graph containing human knowledge

facts, such as exemplified in Table 5.1. This dataset contains a total of 592213 facts that

links 14951 entities with 1345 relations. The WN18 is a subset from WordNet [46], a

knowledge graph containing lexical relations among English words, similarly as before

exemplified in Table 5.1. This dataset contains a total of 40943 entities and 18 relations
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organized into 151442 facts.

WN18RR [14] and FB15k-237 [62] are subsets of WN18 and FB15k, respectively.

Both datasets were proposed after the identification [14,62] of major data leakage in test

sets, where a large number of test triples can be obtained simply by inverting triples in

the training set. In this sense, FB15k-237 is composed of 14541 entities and 237 relations,

summing 310116 facts, where the original FB15k’ inverse relations were removed. In a

similar way, WN18RR was introduced to overcome the data leakage problem on WN18 by

featuring 11 relations from the original 18 and the same 40943 entities, summing 93003

facts.

Table 5.1 displays examples of facts from WN18 and FB15k datasets, and Table 5.2

shows some statistics regarding the four above-mentioned knowledge graphs.

Table 5.1: Examples of facts in the format (subject, predicate, object) from datasets WN18
and FB15k.

WN18 FB15k

(02174461,_hypernym,02176268) (/m/07pd_j,/film/film/genre,/m/02l7c8)
(05074057,_derivationally_related_form,02310895) (/m/06wxw,/location/location/time_zones,/m/02fqwt)

(08390511,_synset_domain_topic_of,08199025) (/m/05zr0xl,/tv/tv_program/languages,/m/02h40lc)
(02045024,_member_meronym,02046321) (/m/0gk4g,/people/cause_of_death/people,/m/0l9k1)

Table 5.2: Datasets statistics summary.

Dataset Facts (triples) Entities

Training Validation Test Total Total Unique Average degree

WN18 141442 5000 5000 151442 40943 5 7.39 ± 16.46
WN18RR 86835 3134 3034 93003 40943 5754 4.54 ± 8.57
FB15k 483142 59071 50000 592213 14951 21 79.22 ± 220.72

FB15k-237 272115 20466 17535 310116 14541 314 42.65 ± 127.70

Baselines. We compare ÆMP, and its variations, with six state-of-the-art models,

namely, TransE [7], ComplEx [64], SimplE [30], RotatE [61], QuatE [73], and Path-

Con [67]. TransE, ComplEx, SimplE, RotatE, and QuatE are the models representing

the state-of-the-art in embedding-based models, while PathCon is the state-of-the-art

closer to our model, using entities context and relational path as features in the learning

process. We reused the results reported in [67].

Implementation details. ÆMP is publicly available at https://github.com/MeLL-UFF/AEMP.
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We implemented it using Python and PyTorch1 and trained using a single Nvidia V100

GPU2. During our experiments, we vary the hyperparameters accordingly to Table 5.3.

In our best experimentation settings, we employed a learning rate of 10−3 with Adam [31]

optimizer. Also, to avoid overfitting, we employ L2 regularization using L2 weight loss of

10−7. Besides, we adopt a batch size of 128 (the number of training examples adopt in

one iteration), 25 training epochs (the number of training iterations), hidden states of 64

dimensions, and 0.2 as the random attention context selection criteria. Finally, on WN18

and WN18RR benchmarks, we employed 3-hops entities context and semantic path length

up to 3; on FB15k and FB15k-237 benchmarks, we employed 2-hops entities context and

semantic paths’ length up to 2. We adopt different values for entities context hops and

semantic paths’ length due to hardware limitations considering each benchmark’s size.

In order to provide negative examples, we utilize the negative sampling strategy to

corrupt the relation r of each true fact (h, r, t) [67]. The strategy simply corrupt a triple

(h, r, t) ∈ F by providing negative samples (h, r′, t) /∈ F . The corrupted triples are used

as negative examples in the training phase.

Table 5.3: Search space of the ÆMP’s hyperparameters.

Hyperparamter Search space

Batch size {64, 128}
Epoch {25, 50}
Hidden state dimension {64, 128}
L2 regularization weight {10−6, 10−7, 10−8}
Learning rate {10−1, 10−2, 10−3}
Maximum entities context hops {1, 2, 3}
Maximum semantic path length {1, 2, 3}
Random attention context selection criteria {0.2, 0.25, 0.5, 0.8}

Evaluation protocol. We evaluate ÆMP and the state-of-the-art models under the

relation prediction task. As described in Section 1.3.1, the task aims to infer a new

fact f = (h, r, t) by predicting a relation r given a pair of entities (h, t). We selected

and reported results from Mean Reciprocal Rank (MRR), which is the average of the

reciprocal ranks of a query’s results

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
, (5.1)

1https://pytorch.org/
2https://www.nvidia.com/en-us/data-center/v100/
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where Q is the query element, and ranki refers to the first relevant element’s rank position

for the i-th query; the Mean Rank (MR), which is the average of the predicted ranks of

a query

MR =

|Q|∑
i=1

ranki
|Q|

, (5.2)

where Q is the query element; and correctly predicted relations (Hit ratio) in the top 1

and 3 ranks evaluation metrics

Hit@k =
1

|Q|

|Q|∑
i=1

1 if ranki ≤ k, (5.3)

where Q is the query element and k ∈ {1, 3} is the rank. A lower value of MR points

out better results, while the other metrics, i.e., MRR and Hit@k target higher values.

The reported results from PathCon [67] and ÆMP in each dataset are the averages and

standard deviation values from five independent executions.

In the following, we show some examples of how to calculate the aforementioned

metrics. In the example, we show two queries (PatrickStewart, P icard) and

(IanMcKellen, PatrickStewart), and the top four predicted relations among the entities

by a hypothetical model. In the first query, the model ranked the correct relation in the

third position, while, in the second query, the model ranked the correct relation in the

first position.

head relation tail score rank

PatrickStewart BornIn Picard 0.823 1

PatrickStewart EnemyWith Picard 0.751 2

PatrickStewart Play Picard 0.718 3 *

PatrickStewart CharacterIn Picard 0.423 4

IanMcKellen FriendOf PatrickStewart 0.961 1 *

IanMcKellen EnemyWith PatrickStewart 0.930 2

IanMcKellen Play PatrickStewart 0.718 3

IanMcKellen CharacterIn PatrickStewart 0.423 4

MR = 1
2
∗ (3 + 1) = 0.5

MRR = 1
2
∗ (1

3
+ 1

1
) = 0.66

Hit@1 = 1
2
∗ ((3 ≤ 1) + (1 ≤ 1)) = 1

2
∗ (0 + 1) = 0.5

Hit@3 = 1
2
∗ ((3 ≤ 3) + (1 ≤ 3)) = 1

2
∗ (1 + 1) = 1.0
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5.2 Results

To evaluate ÆMP, we compare it to several state-of-the-art solutions, and the empirical

results are reported in Table 5.4 and Table 5.5. Our approach demonstrates competitive

results, outperforming the state-of-the-art methods on all metrics for WN18 andWN18RR

datasets and two out of four metrics for FB15k. For FB15k-237, PathCon achieves the

higher values on three metrics, yet ÆMP surpassed the other state-of-the-art models.

These findings go towards our initial premise that contextual information does enhance

the learned representations.

In general, ÆMP results using the global attention for learning the entities context

achieves the best overall results reaching the best or the second-best cases seven times.

Following, we see that the random attention mechanism is in six times in the first two

positions (either it is the best or the second-best result), followed by the combination of

local and global attention mechanisms and the random and global attention mechanisms

(they are both fives times in the first two places). While the global mechanism may have

pushed forward those results, we can see that there are several cases where global attention

is neither the best nor the second-best choice. At the same time, some other method still

wins – for example, Hit@3 of WN18 and MRR of FB15k-237 of the random mechanism is

better than global alone or some of its combinations. We highlight in Table 5.6 the best

and second MRR metric in each dataset.

The more significant absolute gains occur in WN18 and WN18RR, which are sparse

KGs, i.e., KGs of low average entities degree. This observation indicates that the at-

tention mechanisms are able to reinforce connective patterns between entities, leading to

better representations. Further investigating the learning capabilities enabled by each

attention mechanisms and their combinations on WN18RR, Figure 5.1 depicts the confu-

sion matrices of each ÆMP’s variation, where the axes are ordered in descending order,

i.e., top-bottom and left-right for the y-axis and the x-axis, respectively, and the heatmap

indicates the Hit@1 metric. The local attention mechanism (ÆMP (L) – Figure 5.1.(a))

demonstrates better performance on predicting commonly seen relations almost perfect

score on the top two most common relations, however for rarely seen relations the method

tends to present poor results. In contrast, the global and random attention mechanisms

(ÆMP (G) – Figure 5.1.(b) and ÆMP (R) – Figure 5.1.(c), respectively) presents smoother

results on rarely seen relations, but both perform worst than the ÆMP (L) on the most

common relations. The combination of local attention mechanism with global or local

attention mechanisms (ÆMP (L+G) – Figure 5.1.(d) and ÆMP (L+R) – Figure 5.1.(e),
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respectively) presents improvement on rarely seen relations, while keeping the good per-

formance on commonly seen relations. Finally, the three combined attentions mechanisms

(ÆMP (L+G+R) – Figure 5.1.(g)) suffers on the least seen relation. However, the model

presents overall better results, achieving good higher hit ratios on most relations.

Learning entities context assisted by the random attention mechanisms demonstrates

better results over denser (higher average entities degree) knowledge graphs, i.e., FB15k,

and FB15k-237 datasets, as seen in Table 5.2. PathCon presents itself as an excellent

choice for FB15k-237. Regarding all the datasets and metrics, it reaches the best results

in five of the cases and the second-best results in three cases. However, ÆMP ties with

PathCon in two of the five winner situations (MRR of FB15k-237 and Hit@3 of FB15k)

and is close in the other two (Hit@1 and Hit@3 of FB15k-237). These results further

indicate that adding different patterns of attention favors finding missing relations in

KGs.
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Table 5.6: Best (1st) and the second-best (2nd) MRR metric in each dataset.

WN18 WN18RR FB15k FB15k-237

TransE

ComplEx

SimplE

RotatE

QuatE 1st

PathCon 1st

ÆMP (L)

ÆMP (G) 2nd 2nd

ÆMP (R) 1st

ÆMP (L+G) 1st 2nd

ÆMP (L+R) 1st

ÆMP (G+R) 2nd

ÆMP (L+G+R) 2nd

5.3 Ablation Studies

To better assess the capabilities of ÆMP we conduct three ablation studies. As such, we

(i) evaluate the benefits of using semantic paths’ representations towards the capacity of

ÆMP to predict relations, and (ii) investigate the influence of the number of hops and the

number of context neighbors, towards the predictions’ results. Further, we (iii) analyze

the scalability capacity of ÆMP. Results are illustrated in Figures 5.2, 5.3, and 5.4 and

details of used parametrization are in Table 5.7.

Table 5.7: Ablation studies parametrization settings.

Hyperparamter Ablation Studies
(i) (ii) (iii)

Batch size 128 128 128
Epoch 20 10 5
Hidden state dimension 128 128 128
L2 regularization weight 10−7 10−7 10−7

Learning rate 10−3 10−3 10−3

Entities context hops 3 {1,2,3} 3
Sample of entities neighbors 4 {1,4,16} 16
Semantic paths length 3 {1,2,4} 3
Random attention context selection criteria 0.2 0.2 0.2
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In the first study (Figure 5.2), we assess the top 1 hit ratio (Hit@1) on WN18RR,

varying each attention mechanism and their combination alongside either enabling or dis-

abling the representation of semantic paths. Considering the variations that implement

only a subset of the attention mechanisms, ÆMP achieves its best performance when

it is able to combine head and tail entities context representations with the representa-

tion of the semantic path. However, when all three local, global, and random attention

mechanisms are enabled, and their patterns are observable, ÆMP reaches equivalent re-

sults when either using the representation of the semantic paths or not. This observation

empirically indicates that the attention-enhanced message-passing scheme might be able

to not only represents entities local neighborhood but also to learn longer sequences of

relationships, i.e., the semantic paths between the head and tail entities.

The second study (Figure 5.3), similar to the first study, assesses the top 1 hit ratio

on WN18RR. The study aims to evaluate the influence of the entities context hops, a

sample of entities neighbors, and semantic paths’ length hyperparameters in ÆMP’s (and

a subset of its variations) performance. ÆMP (circle symbol) achieves the overall best

result using samples of up to 16 neighbors, two entities context hops, and semantic path

length of four relations (Figure 5.3.(d)). In comparison, the subset variations achieve

overall better results using the maximum numbers of entities context hops and semantic

path length. Those results reinforce the previous study, suggesting that ÆMP with its

attention-enhanced message-passing scheme have generalization capabilities, capturing

contextual semantics with less context information.

Also, we draw some insights concerning the interaction between hyperparameters.

The use of semantic paths of length up to four achieves better results aligned with three

hops from the entities contexts. This combination indicates that the use of contextual

information surrounding the path contributes to better representations (Figure 5.3.(d)). A

second inside taken from the study analysis is the performance of local ÆMP’s attention-

only variation (square symbol) regarding the correlation between sample entities neighbors

and entities context hops hyperparameters. ÆMP (L) performs better when few neighbors

are sampled, but it is allowed to look further in the neighborhood through the context hops

(Figure 5.3.(b)). However, when it is provided to ÆMP (L) more contextual information

it performs better using a balanced hyperparameters settings, i.e., four samples of entities

neighbors, two entities context hops, and semantic paths of length two (Figure 5.3.(c)).

The third study (Figure 5.4) analyzes the scalability capacity of ÆMP. We measure

its training time regarding the number of triples on each previously introduced dataset
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and on a new dataset, ogbl-biokg [29], a KG composed of a large number of biomedical

facts (5088434 triples). Results show that the training time curve of ÆMP grows slower

than linear time over the number of triples, indicating that it is suitable to learn from

larger KGs. Also, our results indicates that the scalability of ÆMP is not only ruled by

the number of triples, but other factors might interfere on training time (e.g., the sparsity

of the knowledge graph).

5.4 Discussions

This chapter evaluates the performance of ÆMP as presented in Chapter 4 and variations

of it. First, we compare ÆMP and its variations with six state-of-the-art approaches in

the task they were designed for, i.e., completing knowledge bases by predicting new rela-

tionships among entities using four of the most widespread benchmarks in the literature.

Further, we conduct three ablation studies, where we closely investigate the influence of

semantic paths and hyperparameters settings in the overall technique’s performance and

analyze the technique’s scalability capabilities.

Overall, ÆMP prove to be a better or, at least, a competing technique for predicting

new facts in knowledge bases. Its multi-context attention layer innovates on gathering

entities context information, even, at some level, generalizing semantic paths. Also, it is

shown that ÆMP can scale to larger knowledge graphs.
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Figure 5.1: Confusion matrices of the ground truth relations and predicted relations by
each ÆMP’s variation. The heatmap indicates the Hit@1 metric varying from 0 to 1,
and axes are in descending order (top-bottom for y-axis, and left-right for the x-axis)
regarding the number of triples in which the relation is the predicate.
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Figure 5.2: Boxplot of the Hit@1 results from ÆMP and its subset variations using (or
not) the semantic paths’ representation to predict new relations.
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Figure 5.3: Average Hit@1 results from ÆMP and its subset variations regarding the
variation of entities context hops, semantic paths length, and a sample of entities neighbors
hyperparameters.
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Figure 5.4: Boxplot of the training time from ÆMP regarding different sized KGs.



Chapter 6

Conclusions

Relational data and their graph representation, particularly knowledge and knowledge

graphs (KGs), are powerful resources to model elements, properties, relationships, rules,

among others. They are broadly adopted in the academy and industry as core resources

for many downstream tasks, including, but not limited to, large-scale search, question-

answering, and social network modeling. Intending to provide more robust and reliable

knowledge graphs, we propose a new solution to complete their information based on

exclusive existing information.

In this sense, this dissertation devises Attention-based Embeddings from Multiple Pat-

terns (ÆMP), a novel symbolic-inspired distributional method that learns contextualized

representations from the combination of distinct views of entities context and semantic

path context to complete knowledge graphs. Firstly, ÆMP learns the joint representa-

tion of the entities and their context through a novel attention-enhanced message-passing

scheme that features a multi-context attention layer built on top of the message-passing

scheme. The attention layer extends the graph attention mechanism by adopting local,

global, and random attention mechanisms. Secondly, the model learns the representation

of the semantic path context by identifying semantic paths between a pair of entities,

providing to each of them a unique representation, and then fusing these representations

into a single semantic path context representation. From the combination of both context

representations, the model can successfully infer a relationship’s probability within two

entities.

We conduct an experimentation with four datasets based in two real-world knowledge

bases to evaluate our model and compare our results with six state-of-the-art approaches in

knowledge graph embedding. Our results show that ÆMP has the potential to outperform

the state-of-the-art models in the relation prediction task. Likewise, we dissect ÆMP
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exploring aspects regarding the influence of the parametrization, aside from the contextual

information considered and its scalability capacities. The empirical analysis indicates that

the proposed attention-enhanced message-passing scheme can represent the entities and

their context and the semantic path context. Also, it shows that ÆMP has the potential

to scale to larger KGs.

6.1 Limitations

We identify two possible limitations of this work regarding implementing the model and

further aspects to be analyzed in the ablation studies. The first limitation was diagnosed

during the experiments and shows that the model is a hard memory-bound approach.

Thus, the model might require a large amount of hardware memory to explore four or

more hops in the message-passing phase since, within each hop, the number of neighbors

to be considered in the aggregation process grows exponentially. The second limitation

aims at a twofold ablation analysis, where the individual contribution for the overall result

of the semantic paths representation and design alternatives as discussed in Chapter 4

should both be explored.

6.2 Future work

As an immediate and natural extension of this work, we highlight the evaluation of the

design alternatives suggested in Section 4.4.1 and their influence in ÆMP’s overall per-

formance. We believe, for instance, that the employment of networks that deal with

sequential data (e.g., recurrent networks or transformers) might provide better repre-

sentation for longer semantic paths. We also point out as an important next step the

assessment of ÆMP’s reasoning capabilities. For that, we expect to evaluate ÆMP under

other knowledge bases, such as YAGO [56,60] and NELL [47], and they provide substantial

comparisons with traditional symbolic approaches.

Besides the natural extensions aforementioned, we drive future enquires by proposing

three research questions:

1. Can the proposed attention-enhanced message-passing scheme be generalized to jointly

learn in the aggregation loop the representation of the semantic paths? ;

2. Can ÆMP be used as framework in order to explore even further contexts (e.g.,



6.2 Future work 52

temporal semantics of facts, domain rules) to encompass a broader range of tasks

within the knowledge base completion challenge? ; and

3. To deal with multimodal knowledge graphs, how can we extend ÆMP to jointly learn

over the relational information and the multimedia content?

The first research question is inspired by the effectiveness of sparse attention mech-

anism over transformers [72]. The goal is to analyze the expressiveness of attention-

enhanced message-passing towards learning semantic paths in the aggregation loop. As

a possible first outcome by reaching this goal, a more general framework that in-loop

represents entities context and semantic paths are expected. Another possible outcome

is the scalability of the solution, once it will optimize a learning phase of the current

ÆMP framework.

The second research question aim to address further additional information within

knowledge graphs under the scope of ÆMP. In this sense, we suggest learning additional

representations (e.g., ontologies, temporal aspects [24, 69], logic rules [2, 58]) and encom-

pass with the learned entities context and semantic paths representations.

The third research question is aligned with the second. It aims to explore extensions

of the knowledge graph. Here, our goal is to approach knowledge graphs that encode

not only entities and relations but, also, multimodal information [57] using ÆMP. We

suggest guiding the study towards proposing modifications over the attention-enhanced

message-passing scheme to jointly compute the multimodal content representations.

In conclusion, as a first major contribution, this dissertation advances the

state-of-the-art in the knowledge base completion challenge by contributing

with a new symbolic-inspired distributional solution to automatically com-

plete knowledge graphs. Our second major contribution extends to the repre-

sentation learning set of techniques by proposing a novel attention-enhanced

message-passing scheme to learn contextualized entities’ representations and

the combination of the attention-based representations with the semantic

paths’ representation. Finally, we contribute by evaluating and conducting

ablation studies over the two major contributions showing that the proposed

solution is, at least, competitive with state-of-the-art approaches in the rela-

tion prediction task.
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