
UNIVERSIDADE FEDERAL FLUMINENSE

ERICK SIMAS GRILO

ReLo: a dynamic logic to reason about Reo circuits

NITERÓI

2021

UNIVERSIDADE FEDERAL FLUMINENSE

ERICK SIMAS GRILO

ReLo: a dynamic logic to reason about Reo circuits

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como req-
uisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Ciência da Computação

Orientadores:

Bruno Lopes

NITERÓI

2021

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

G858r Grilo, Erick Simas
 ReLo: a dynamic logic to reason about Reo circuits / Erick
Simas Grilo ; Bruno Lopes Vieira, orientador. Niterói, 2021.
 151 f. : il.

 Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2021.

DOI: http://dx.doi.org/10.22409/PGC.2021.m.16759421701

 1. Reo. 2. Coq. 3. Lógica Dinâmica. 4. Produção
intelectual. I. Vieira, Bruno Lopes, orientador. II.
Universidade Federal Fluminense. Instituto de Computação.
III. Título.

 CDD -

ReLo

Aos que os possibilitam observarmos a distância, apoiando-nos em seus ombros.

Acknowledgments

First of all I thank my family, which has always given unconditional support in many

situations along this way. My brother, who were always there for me. I also thank Kara

for being the best Labrador dog ever, and for every time it'd check on me when I was

working on this project.

To my advisor and friend Bruno Lopes, for the opportunity to work in this project,

for every tip, advice and any other kind of help he has o�ered me, especially considering

the 2020 COVID-19 pandemic period this work was conceived.

To Daniel Toledo, my best friend, for everything in the past 16 years. Especially for

the help in the Byzantine Fault example explored in this work.

To all whom have helped me in any way in this project, namely the Coq-club mail-

ing list members. I also thank the Conselho Nacional de Desenvolvimento Cientí�co e

Tecnológico (CNPq) for supporting this work.

Resumo

Sistemas críticos requerem alta con�abilidade e estão presentes nos mais variados domínios.
Em suma, são sistemas cuja falha em atender requisitos especíicos podem levar a perdas
�nanceiras e até mesmo de vidas. Técnicas padrão de engenharia de software não são o
su�ciente para garantir a ausência de falhas inaceitáveis e/ou que requisitos críticos sejam
satisfeitos.

Reo é uma linguagem de modelagem baseada em componentes cujo objetivo é prover
um arcabouço para a construção de software baseada em sistemas já existentes, abordagem
esta que costuma ser usada em uma variedade de domínios. As semânticas formais de Reo
permitem que sistemas baseados em modelos Reo possam ter suas propriedades desejadas
veri�cadas. Estas veri�cações podem ser feitas no sistema como um todo ou apenas
considerando parte dele.

As abordagens existentes para raciocinar sobre modelos Reo utilizando lógicas re-
querem a conversão de uma semântica formal para um arcabouço lógico. O trabalho
de [22] modela conectores Reo diretamente em Zero-Safe Petri Nets, uma classe especial
de redes de petri que contém apenas dois tipos de lugares (Zero e Safe), sendo necessário
a conversão destas redes em lógica intuicionista temporal linear.

Este trabalho apresenta ReLo, uma lógica dinâmica projetada para raciocinar so-
bre modelos Reo. ReLo é uma semântica formal para Reo acompanhada de provas de
corretude e completude, um procedimento de provas sintáticas baseado em tableaux, a
prova de corretude e completude deste sistema, e uma implementação de ReLo no assis-
tente de provas Coq. A implementação no Coq especi�camente permite a modelagem e o
raciocínio sobre modelos Reo de forma automatizada através de ReLo em um ambiente
computacional.

Abstract

Critical systems require high reliability and are present in many domains. They are
systems which failure may result in �nancial damage or even loss of lives. Standard
techniques of software engineering are not enough to ensure the absence of unacceptable
failures and/or that critical requirements are ful�lled.

Reo is a component-based modelling language that aims to provide a framework to
build software based on existing pieces of software, which has been used in a wide variety
of domains. Its formal semantics provides grounds to certify that systems based on Reo
models satisfy speci�c requirements (i.e., absence of deadlocks). It enables the modelling
of systems that require guarantees regarding speci�c properties that they must meet.
These guarantees may be obtained by formal veri�cation of the system (or its required
parts).

Current logical approaches for reasoning over Reo require the conversion of a formal
semantics into a logical framework. ReLo is a dynamic logic that naturally subsumes
Reo's semantics. It provides a means to reason over Reo circuits.

This work proposes ReLo, a dynamic logic tailored to reason over Reo models. ReLo
serves as a Reo formal semantics with soundness and completeness proofs, a tableaux-
based deductive system followed by its soundness and completeness proofs, and an imple-
mentation of ReLo in the Coq proof assistant. The Coq implementation provides means
to the modelling and veri�cation of ReLo models in a computational environment.

List of Figures

3.1 A screenshot of CoqIde . 18

4.1 Canonical Reo connectors . 23

4.2 Modelling of the Sequencer in Reo . 24

4.3 A Reo model for smart tra�c lights and a controller of a crossroad 25

4.4 A model of the replica in the dBFT algorithm with standard Reo connectors 26

5.1 Examples of Reo models . 36

List of Tables

2.1 Classical Propositional Logic connectives 7

4.1 Basic Reo channels and their behaviour . 24

4.2 Basic Reo channels and their respective constraint automata 32

6.1 Summarization of applyRule per tableau rule � propositional Rules. 114

6.2 Summarization of applyRule per tableau rule � modal rules. 119

6.3 Summarization of applyRule per tableau rule � iteration rules. 120

Contents

1 Introduction 1

1.1 Introduction . 1

2 Related Logic Formalisms 6

2.1 Classical Propositional logic . 6

2.2 Modal Logic . 8

2.3 Propositional Dynamic Logic . 9

2.4 Calculus of Inductive Constructions . 12

3 Coq 16

3.1 Proof Assistants . 16

3.2 Coq . 17

4 Reo 22

4.1 The modelling language . 22

4.2 Constraint Automata . 27

5 A dynamical logic to reason about Reo circuits 34

5.1 A ReLo Primer . 34

5.1.1 Semantic notion of ReLo . 43

5.1.2 Axiomatic System . 45

5.2 Soundness . 46

5.3 Completeness . 47

Contents ix

5.4 A Tableau for ReLo . 56

5.4.1 Tableau Usage Examples . 60

5.4.2 Termination . 63

5.4.3 Soundness . 67

6 A ReLo Implementation in Coq 71

6.1 Core ReLo de�nitions . 71

6.2 Model Veri�cation . 86

6.3 Model Construction . 93

6.4 A tableau for ReLo in Coq . 103

7 Usage Examples 121

7.1 Sequencing Entities' communication in ReLo 121

7.2 Modelling Smart Cities entities interaction in ReLo 123

7.3 Byzantine Consensus . 124

7.4 ReLo Tableau proofs . 127

8 Conclusions and Further Work 135

References 136

Chapter 1

Introduction

1.1 Introduction

In software development, service-oriented computing [67] and model-driven development [9]

are examples of techniques that take advantages of software models. The �rst technique

advocates computing based on preexisting systems (services) as described by Service-

Oriented Architecture (SOA), while the latter is a development technique which consid-

ers the implementation of a system based on a model. A model is an abstraction of a

system (or some particular portion of it) in a speci�c language, which will be used as

a speci�cation basis for the system's implementation. it can be speci�ed in languages

such as Uni�ed Modeling Language (UML) or formal speci�cation languages like B [1] or

Alloy [42]. Researchers also have applied approaches such as formal methods in software

development to formalize and assure that certain (critical) systems have some required

properties [45,65].

Reo [3] is a prominent modelling language, enabling coordination of communication

between interconnected systems externally from the model. Reo models are composi-

tionally built from base connectors, where each connector in Reo stands for a speci�c

communication pattern. Reo has proven to be successful in modeling the organization

of concurrent systems' interaction, being used in a variety of applications, from process

modeling to Web-Services integration [6] and even in the construction of frameworks to

verify speci�cations in Reo [49,78].

Standard software engineering techniques are not designed to deal with fault non-

tolerant systems, namely critical systems. In many domains, such systems need a way to

ensure their safety to guarantee that they indeed meet the required reliability. Formal

systems compose a theoretical and implemented background able to model and reason

1.1 Introduction 2

about systems, ensuring (mathematically) that requirements are ful�lled and that systems

behave as expected.

Proof assistants [58], like Coq [30] and Isabelle [64], lead to the possibility of automa-

tizing the veri�cation of such systems and provide certi�ed code. They are computational

tools that implement logic systems. Their design is tailored to automatize many (when

possible) steps of proofs. Some of them have a theoretical background that leads to see

proofs as programs and programs as proofs.

Coordination models are models used mainly to describe concurrent and distributed

computational systems. The purpose of such models is to enable software engineering

based on heterogeneous software components, providing means on how these components

interact with each other. Among other advantages, this enables fast deployment of new

systems, by reusing already existing software that has been tested and is in production

environment, which also reduces development costs. Building software following this idea

requires a way to coordinate how their components will interact with each other.

The development of systems based on SOA employing model-driven development has

been proved to be a valuable approach [68]. The formal veri�cation of models that the

development process is based upon enables the detection of errors that could appear

only in posterior phases of software development, or even when the software reaches a

productive environment, thus avoiding unplanned costs and even greater losses.

Reo's ability to model communication between software interfaces has also attracted

researches over how one can formally verify Reo circuits, resulting in many di�erent formal

semantics [43] like automata-based models [4,10,50], coalgebraic models [3], Intuitionistic

Logic with Petri Nets [22] (to name a few), and some of their implementations [49,50,56,

63, 77, 79, 80]. However, as far as the author is concerned, there is no logic to speci�cally

reason about Reo models naturally, where the usage of logic-based approaches requires

conversion between di�erent formal semantics.

The fact that Reo can be used to model many real-world situations has attracted

attention from researchers all around the world, resulting in a great e�ort directed in

formalizing means to verify properties of Reo models [43, 44, 47, 49, 57, 61, 72]. Reo's

formal studies also resulted in the proposal of many formal semantics for this modelling

language [43], varying from operational semantics to coloring and coalgebraic models.

One of the most known formal semantics for Reo consists of Constraint Automata [11],

an operational semantic in which Reo connectors are modelled as automata for TDS-

1.1 Introduction 3

languages [7]. It enables reasoning over data �ow of Reo connectors and when they

happened. Constraint Automata have been extended to some variants which aim to

enrich the reasoning process by capturing properties like timing of the data �ows or

possible actions over the data, respectively as Timed Constraint Automata [49] and Action

Constraint Automata [48]. Some of them are brie�y discussed below, along with other

formal semantics for Reo.

The approach presented by Klein et al. [44] provides a platform to reason about Reo

models using Vereofy,1 a model checker for component-based systems, while Pourvatan et

al. [72] propose an approach to reason about Reo models by means of symbolic execution

of Constraint Automata. Kokash & Arbab [47] formally verify Long-Running Transac-

tions (LRTs) modelled as Reo connectors using Vereofy, enabling expressing properties of

these connectors in logics such as Linear Temporal Logic (LTL) or a variant of Compu-

tation Tree Logic (CTL) named Alternating-time Stream Logic (ASL). Kokash et al. [49]

use mCRL2 model checker to encode Reo's semantics in Constraint Automata and other

automata-based semantics, encoding their behaviour as mCRL2 processes and enabling

the expression of properties regarding deadlocks and data constraints which depend upon

time. Mouzavi et al. [61] propose an approach based on Maude to model checking Reo

models, encoding Reo's operational semantics of the connectors. Li et al. [57] propose a

real-time extension to Reo, implementing new channels and relying on Stochastic Timed

Automata for Reo (STA) as its formal semantics, also providing a translation of STA to

PRISM2 for model checking. UPPAAL 3 model checker has also been employed in the

veri�cation of Reo connectors employing the usage of Timed Constraint Automata [5] to

build the corresponding UPPAAL model, and in the simulation of Hybrid Reo Connec-

tors [8].

Proof assistants have been used to reason about Reo connectors [55,56,63,79,80]. The

approaches adopted by Li et al. [55, 79] are among the ones that employ Coq to verify

Reo models formally. The �rst work formalizes four of the Reo canonical connectors

(Sync, FIFO1, SyncDrain and LossySync) along with an LTL-based language de�ned as

an inductive type in Coq. The latter proposes the formalization of �ve Reo canonical

channels: Sync, SyncDrain, FIFO1, Asyncdrain, and LossySync. They are modelled as

logical propositions in Coq, where their behavior are de�ned as conjunctions regarding

data and time constraints on streams denoting input and output of the automaton. Both

1http://www.vereofy.de
2https://www.prismmodelchecker.org
3http://www.uppaal.org/

http://www.vereofy.de
https://www.prismmodelchecker.org
http://www.uppaal.org/

1.1 Introduction 4

formalizations implement the notion of Timed Data Streams as it is the �rst formalization

of semantics of Reo connectors [43].

The implementation proposed by Li et al. [55] enables the veri�cation of timed prop-

erties of connectors: such properties may be proven considering the data �ow a connector

takes as input. The formalized LTL-based language enables bounded model checking on

these connectors. However, it lacks any automatic composition operation for formalized

connectors. Therefore, the composition of Reo channels need to be manually written

by the user. The approach employed by Li et al. [79] implements the composition of

Reo connectors employing logical conjunction of connectors' behaviour, denoted by their

respective TDS.

When restricting the works considering logics and Reo, as far as the author knows

there is only the work by [22] which focuses on formalizing the semantics of nine Reo

connectors (Sync, LossySync, FIFO1, SyncDrain, AsyncDrain, Filter, Transform, Merger,

and Replicator) in terms of zero-safe Petri nets [17], a special class of Petri-nets with two

types of places: zero and stable places. This encoding is then converted to terms in

Intuitionistic Temporal Linear Logic, enabling reasoning about Reo connectors in this

logic.

ReLo [37] is a dynamic logic tailored to reason about Reo models, with a sound and

complete axiomatization and contains a tableau-based proof procedure to syntactically

reason over ReLo formulae. Based on Kripke frames, ReLo provides a framework in which

one can directly formalize properties in its language, and check whether a Reo circuit as

a ReLo model satis�es such properties. Formulas in ReLo are composed of symbols and

indexed modalities, similar to other dynamic logics [39] to model program execution, and

may be combined with logical connectives to compose other formulae. A formula [t, π]ϕ

in ReLo captures a Reo model as a ReLo program π, its data �ow t and a property ϕ,

stating that �ϕ holds � in every program state reached from the current state, by executing

π with t.

The adopted approach here proposed is threefold. This work presents (i) ReLo as a

logical framework to model and reason about Reo circuits directly in a logic's language,

in which the reasoning of data �ows may be performed employing techniques like model

checking, (ii) a prototypical implementation of this framework in Coq proof assistant,

enabling the veri�cation of properties of Reo programs in ReLo within a computerized

environment, and (iii) the de�nition of a tableau-based syntactic proof system for this

logic, followed by the implementation of core de�nitions of this tableau, enabling the

1.1 Introduction 5

syntactic reasoning of ReLo in Coq.

This work is structured as follows. Chapter 2 discusses brie�y some related logic

formalisms with the one hereby proposed. Chapter 3 gives a glance at proof assistants,

showing core concepts and keywords of Coq proof assistant, while Chapter 4 introduces

Reo modelling language, along with some examples and a brief introduction to two of Reo's

formal semantics: Timed Data Streams and Constraint Automata. Chapter 5 discuss

ReLo's main aspects, from its core de�nitions (such as language, models, transitions

�ring) and soundness and completeness proofs, to the introduction of a ReLo Tableau

that enables syntactic reasoning. Chapter 6 discuss thoroughly a ReLo formalization in

Coq proof assistant of the concepts de�ned in Chapter 6. Chapter 7 introduces some

usage examples of ReLo and its Coq implementation. Finally, Chapter 8 closes the work

by discussing the obtained results, and assessing possible future work.

Chapter 2

Related Logic Formalisms

The present work proposes a logic-based approach to reason over Reo models in Coq. In

this chapter, the main aspects of the underlying logic theory present in Coq are recovered,

with a focus on the logic formalisms that Coq employs. It also provides an overview of

logical frameworks upon which ReLo is based.

2.1 Classical Propositional logic

Propositional Logic is a mathematical model which enables the reasoning of logical sen-

tences (propositions) which contain truth values (such as true or false). Propositions can

be combined to produce more complex propositions out of simpler ones [2]. As part of a

branch of logic that studies methods to reason about relationship and\or how to compose

propositions out of other propositions, Classical Propositional Logic is a logical system

that provides the necessary apparatus to deal with such study.

Being a relatively simple mathematical model, Classical Propositional Logic allows

reasoning over statements such as �Charlie is a nice boy�, represented in the logic as a

propositional symbol α. Therefore, α ≡ �Charlie is a nice boy� denotes the attribution

to α the proposition mentioned the same way variables are used to represent numbers in

mathematics.

Propositions in this logic can be separated into two structural types: atomic propo-

sitions, propositions with no logical connectives, and molecular propositions, which are

propositions built from other propositions using logical connectives. Logical connectives

can be found in the spoken language as conjunctions such as �or", �and", and the nega-

tion adverb �not". Such connectives lead to the possibility of reasoning about connected

2.1 Classical Propositional logic 7

molecular propositions.

To formally reason about these propositions, a formal system is de�ned to translate

written sentences into propositional symbols as shown above (these are called well-formed

formulae, which in the propositional calculus are atomic or molecular formulae) and in-

ference rules, which are rules used to reason over these propositions.

In Classical Propositional Logic, both atomic and molecular propositions may denote

only two truth-values: true and false. At any moment, a given proposition may either be

true or false, not being able to be both at the same time.

Formally, the language of Propositional Logic can be described as follows.

De�nition 2.1.1 (Language of Classical Propositional Logic). The language of Proposi-

tional Logic can be described by

an enumerable set Φ of propositional symbols;

a set of connectives which are interpreted as operator symbols, composing molecular

statements out of other molecular or atomic propositions, namely the connectives

∧ (and), ∨ (or), → (implies), ↔ (biconditional) and ¬ (not).

In what follows we discuss the semantics of Classical Propositional Logic as in [32].

It considers a space of truth values Tv = {t, f} which can be assigned to propositions: t

denoting truth and f , falsehood. The negation ¬ is a unary connective which semantically

can be seen as a map ¬ : Tv → Tv, ¬(t) = f and ¬(f) = t. The semantics of binary

connective (∧,∨,→, and↔) propositions that follows from De�nition 2.1.1 are shown in

Table 2.1, where ϕ and ψ are formulae.

ϕ ψ ∧ ∨ → ↔

t t t t t t

t f f t f f

f t f t t f

f f f f t t

Table 2.1: Classical Propositional Logic connectives

Classical Propositional Logic has an inference rule as follows, called �Modus ponens�.

Any inference in which any well-formed furmula of its language is substituted uniformly

for the schematic letters in this rule is an instance of it.

2.2 Modal Logic 8

ϕ ϕ→ ψ

ψ

A well formed formula in Classical Propositional Logic is expressed by employing the

language in De�nition 2.1.1 as in the following grammar, with p ∈ Φ: p | ϕ ∧ ψ | ϕ ∨ ψ |
ϕ→ ψ | ϕ↔ ψ | ¬ϕ.

2.2 Modal Logic

Modal logics are de�ned as logics in which the notion of modality is added to formulae,

employing the usage of terms �necessarily�(2) and �possibly� (3) to denote the truth

of a statement [19, 33]. Although the term �Modal Logic� can be used to describe a

family of logics, considering other modalities of other logics [33], we will focus on the two

modalities presented. The structure of the language of modal logics is the one presented

in De�nition 2.1.1 with the modality operators 2 and 3 added as follows.

De�nition 2.2.1 (Language of Modal Logics).

an enumerable set Φ of propositional symbols;

p ∈ Φ: p | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | ¬ϕ | 2ϕ | 3ϕ;

The notion of truth in modal logics depends on whether a formula ϕ has a modality,

and if the modality is either 2 or 3. A formula 2ϕ denotes that �it is necessary that ϕ

holds in every possible world�, while 3ϕ stands for �it is possible that ϕ holds at some

possible world�. Worlds can be seen as �places� where the logical sentences hold, and

they can model a variety of situations, like the current state of the execution of some

machinery.

Notions of truth in modal logics rely on a structure called Kripke frames, in honor of

Saul Kripke1. A Kripke frame F is de�ned as a pair F = 〈W,R〉, where W is a set (of

possible worlds), and R ⊆ W ×W a relation over W denoting how the worlds relate with

each other (i.e., how can one world reach another world). Then, a model in modal logics

is M = 〈F ,V〉, where V : W → 2Φ is the valuation function: for each world w ∈ W ,

V (w) is the set of all atomic propositional symbols that hold in w.

The semantic notion related to formulae in modal logic is stated in De�nition 2.2.2.

LetM = 〈F ,V〉 a model in modal logic, and p, ϕ1 and ϕ2 be propositional formula. The

1https://www.gc.cuny.edu/faculty/core-bios/saul-kripke

https://www.gc.cuny.edu/faculty/core-bios/saul-kripke

2.3 Propositional Dynamic Logic 9

notion of satisfaction of a formula ϕ in M at a state w ∈ W of the model, denoted by

M, w p is de�ned as follows.

De�nition 2.2.2 (Semantic notion of standard Modal Logic).

� M,w p i� p ∈ V (w)

� M,w ¬ϕ i�M, s 1 ϕ

� M,w ϕ1 ∧ ϕ2 i�M,w ϕ1 andM,s ϕ2

� M,w ϕ1 ∨ ϕ2 i�M,w ϕ1 orM,s ϕ2

� M,w ϕ1 → ϕ2 i�M,w 1 ϕ1 orM,s ϕ2

� M,w ϕ1 ↔ ϕ2 i�M,w 1 ϕ1 orM,s ϕ2 andM,w ϕ1 orM,s 1 ϕ2

� M,w 3ϕ if there exists a state v ∈ W , wRv andM,v ϕ

� M,w 2ϕ if for all states v ∈ W such that wRv andM,v ϕ

We denote by M ϕ if ϕ is satis�ed in all states of M. By ϕ we denote that ϕ is

valid in any state of any model.

2.3 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) is a Dynamic Logic tailored to reason about pro-

grams. It describes how programs interact between themselves and the propositions which

are not bounded to a speci�c domain of computation [39]. Intuitively, it can be understood

as a special case of a modal logic tailoed to reason about programs.

There are numerous variants of PDL which focus on employing PDL to reason over

speci�c domains, like PDL with converse [28] or PDL without iteration [38], but we will

focus on regular PDL. The syntax of PDL considers elements from Classical Logic, Modal

logic, and the algebra of regular expressions (to de�ne iteration of programs). PDL's

syntactic elements must be of one of the following types: formulas (or atomic propositions)

ϕ, ψ, . . . , programs α, β, . . . , and modalities 2 and 3 indexed by programs π as [π] and

〈π〉. Atomic propositions are symbols p, q, . . . the same way they are de�ned in Classical

or Modal logic. PDL's syntax is formally introduced by De�nition 2.3.1.

De�nition 2.3.1 (Syntax of PDL).

2.3 Propositional Dynamic Logic 10

� an enumerable set Φ of propositional symbols;

� p ∈ Φ: p | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | ¬ϕ | [π]ϕ | 〈π〉ϕ;

� a program π may be an atomic program γ or the result of one of the following

operations over one (or more) programs α, β:

� α; β as the sequential composition operator

� α ∪ β as the nondeterministic choice operator

� α? as the iteration operator

� ϕ? as the test operator

Intuitively, formulas in PDL can be interpreted as the following: [π]ϕ denotes �It

is necessary that after executing π, ϕ holds�. The execution of PDL programs can be

interpreted as follows.

� [π]ϕ: �It is necessary that after executing π, ϕ holds�

� α; β: �Execute α, followed by the execution of β�

� α ∪ β: �Either α or β will be nondeterministically selected to be executed�

� α?: �α will be executed zero or a �nite number of times �

� ϕ?: �if ϕ is true, then proceed with the execution, otherwise abort�

The semantics of PDL comes from modal logics [39]. Execution of programs π in

PDL are seen as relations Rπ over a set of states W , Rπ ⊆ W ×W , which describes the

program's execution. Notation uRπv means that (u, v) ∈ Rπ. The relation of the iteration

of a program α? Rα? is the re�exive transitive closure of Rα as R?
α.

PDL also employs Kripke frames F = 〈S,Rπ〉, where S is a set of states and Rπ is an

indexed binary relation over a set of worlds in PDL for each atomic program π. A PDL

model is a model M = 〈F , V 〉, V as the valuation function which addresses for states

s ∈ S each formula which is valid on them, V ⊆ S × 2Φ.

The relation R for compound programs is as follows.

� uR(α;β)v i� there exists a world w such that uRαw and wRβv

� uR(α∪β)v i� uRαv or uRβv

2.3 Propositional Dynamic Logic 11

� uR(ϕ?)v i� u = v and ϕ ∈ V (v)

Let us consider Algorithm 1 as a PDL modelling example. We will denote each atomic

statement as a di�erent symbol. Consider the following symbolization, where ϕ and ψ are

the tests respectively used in the �while� and �if� statements in the algorithm, and α, β,

and γ are the atomic program statements.

Algorithm 1: An imperative program

1 while a != 100 do
2 a = a + 1;
3 if x < 100 then
4 printf(�a's value is %d�, a);
5 else
6 y = 100 - x;
7 end if

8 end while

� �a != 100� → ϕ

� �a = a + 1;� → α

� �x < 100� → ψ

� �printf("a's value is %d", a);� → β

� �y = 100 - x;� → γ

Therefore, Algorithm 1 is modelled in PDL as follows. The �if� code block can be

formalized as π′ = ((ψ?; β) ∪ (¬ψ?; γ)), where the nondeterministic choice operator ∪
models both outcomes of the �if� condition: if y holds, then β is executed, otherwise γ

is executed. The �while� statement can be modelled as π = ((ϕ?;α; π′) ∪ ¬x?), where

(ϕ?;α; π′) models the execution of the �while� code block (lines 2-7), and ¬x models the

case the program execution does not enter in the �while� code block, where the program

execution would begin from line 8.

Similar to De�nition 2.2.2, De�nition 2.3.2 introduces the semantic notion of formulae

in modal logic in De�nition 2.2.2. LetM = 〈F ,V〉 a model in modal logic, and p, ϕ1 and

ϕ2 be propositional formula. The notion of satisfaction of a formula p in M at a state

s ∈ S of the model, denoted byM,s p is de�ned as follows.

De�nition 2.3.2 (Semantic notion of PDL).

2.4 Calculus of Inductive Constructions 12

� M,s p i� p ∈ V (s)

� M,s ¬ϕ i�M, s 1 ϕ

� M,s ϕ1 ∧ ϕ2 i�M,s ϕ1 andM,s ϕ2

� M,w ϕ1 ∨ ϕ2 i�M,w ϕ1 orM,s ϕ2

� M,w ϕ1 → ϕ2 i�M,w 1 ϕ1 orM,s ϕ2

� M,w ϕ1 ↔ ϕ2 i�M,w 1 ϕ1 orM,s ϕ2 andM,w ϕ1 orM,s 1 ϕ2

� M,s 〈π〉ϕ if there exists a state w ∈ S, sRπw, andM,s ϕ

� M,s [π]ϕ if for all states v ∈ W such that wRv (i.e., (w, v) ∈ R),M,v ϕ

We denote by M ϕ if ϕ is satis�ed in all states of M. By ϕ we denote that ϕ is

valid in any state of any model.

2.4 Calculus of Inductive Constructions

The Calculus of Constructions (CoC) [24] is conceived as a formalism for constructive

proofs in natural deduction style, where every proof is a λ-expression typed with propo-

sitions of the implemented logic. Calculus of Constructions is based on Intuitionistic

Type Theory (as proposed by Martin-Löf [59]): by removing types the result is a pure

λ-expression with its associated algorithm. The Calculus of Constructions therefore leads

to a high-level functional programming language that lets their users formalize de�nitions

and prove properties about them in the same computational environment [24].

The idea behind the Calculus of Constructions is a formalism that relies heavily on the

Curry-Howard Correspondence among proposition and types. Calculus of Constructions

provides a powerful language to formalize constructions as a notion of a high-level fully

functional programming language containing enough expressibility to allow the speci�ca-

tion of complex algorithms, as well as the notion of data types as present in programming

languages.

The Calculus of Constructions was conceived to show how powerful the Curry-Howard

Correspondence is to Computer Science. In the Calculus of Constructions, every term is

a λ-expression. All expressions in CoC are typed: there are types for functions, proofs,

atomic types, and types for types themselves. Every object formalized in CoC must

2.4 Calculus of Inductive Constructions 13

belong to a type. Quanti�ers such as the existential quanti�er ∃ and ∀ are formalized

with respect to a type and has form �exists a of type P" and �for all a of type P �,

respectively. Expressions of type x of type P are written as x : P and can be informally

read as �x belongs to P �.

Object types in the Calculus of Constructions hold logical propositions, individual

terms denoting data types, and function types. Therefore all terms in the Calculus of

Constructions are formalized within the same context, where both data types and function

types can be thought of as proofs of their types. As an example, the λ-abstraction

(λx : M)N can be interpreted as a proof for [x : M]P when M is a proof of P considering

N as a hypothesis.

Calculus of Constructions was then extended to a variant that enables the formal-

ization of (co-)inductive de�nitions. This extension was provided in 1989 as Calculus of

Inductive Constructions (CiC) [26], a result of research on the extraction of programs

from proofs in the Calculus of Constructions. An important aspect for this extension

relies on the idea that inductively de�ned propositions and data types play a core role in

any application [71]. Calculus of Inductive Constructions is the current logical formalism

behind the Coq system. This extension enables inductively de�ned data types as well as

principles such as proofs by induction and recursively de�ned functions.

Sorts in CiC have types and there is a well-founded hierarchy of types. Calculus of

Inductive Constructions introduces three base sorts:

Prop is the sort of logical propositions. Let P be a logical proposition. Therefore P stands

for the type of proofs of P . An element p ∈ P is an evidence that P is provable

(namely, p is a proof of P).

Set is the set of small data types, such as booleans, natural numbers, operations and

functions over them.

Type is the type of all types. Type also contains all data types de�ned by Set and their

operation, as well as larger types and operations over them. Type is de�ned because

assuming Set is of type Set leads to an inconsistency. CiC provides an in�nite

well-founded hierarchy of sorts where Set and Type (i) belongs to a Type (j),

where i < j.

Terms in CiC may be constructed from sorts, variables, constants, functions and their

applications. They are syntactically built from the following rules:

2.4 Calculus of Inductive Constructions 14

1. the types Prop, Set and Type (the well-founded in�nite hierarchy is hereby implicit)

are terms.

2. variables and constants are terms,

3. if x is a variable, with T and U terms, then ∀x : T, U is also a term.

4. if x is a variable, with T and u terms, then λx : T.u denoting a function that maps

elements from T to u is also a term.

5. if t and u are terms, then (tu) is also a term. This term denotes the application of

t on u.

CoC is conceived with an objective which is to provide in the same environment means

to formalize both proofs and programs. The inference rules of CoC are de�ned as follows.

Let Γ a context (set of logical types, propositions) and ∆ a logical type. The symbol ∼=
denotes the congruence over propositions, contexts and terms by means of β-conversion.

Γ ` ∆
Γ ` ∆ ∼= ∆

which is the identity for (logical) types.

Γ `M : N
Γ `M ∼= M

as the identity for terms, where M is a well typed term of type N .

Γ `M ∼= N
Γ ` N ∼= M

as the rule that states that the congruence over propositions is symmetric.

Γ `M ∼= N Γ ` N ∼= P
Γ `M ∼= P

denoting the transitivity of congruence over propositions, where M ,N and P are

terms.

Γ ` P1
∼= P2 Γ[x : P1] `M1

∼= M2

Γ ` [x : P1]M1
∼= [x : P2]M2

as the conversion rules between types P1 and P2.

Γ ` P1
∼= P2 Γ[x : P1] `M1

∼= M2 Γ[x : P1] `M1 : N1

Γ ` (λx : P1)M1
∼= (λx : P2)M2

2.4 Calculus of Inductive Constructions 15

Γ ` (MN : P) Γ `M ∼= M1 Γ ` N ∼= N1

Γ ` (MN) ∼= (M1N1)

as the conversion between λ-applications, with M , M1, N and N1 are well typed

terms of type P .

Γ[x : A] `M : P Γ ` N : A

Γ ` ((λx : A)MN) ∼= [N/x]M ′

denoting the compositionally of λ-terms by means of β-reduction.

Γ `M : P Γ ` P ∼= Q

Γ `M : Q

as the type conversion rule, P and Q types and M a well formed term of type P

For further details regarding CoC, the work presented in [24] provide a full overview on

the rules and the general aspects of this system.

Chapter 3

Coq

This chapter brie�y introduces proof assistants and discusses some of the main aspects

of the Coq Proof Assistant, focusing on the portion of the system employed in this work.

Coq is a widely used proof assistant in many projects around the world [12,15,18,35,36,

53, 55, 57]. Before introducing Coq, details on proof assistants regarding their objectives

with some background on why they became important tools in software development are

brie�y discussed.

3.1 Proof Assistants

Proof assistants are systems that support the process of formalizing objects like ideas

and models, and properties (consisting of what one would like to prove) regarding these

objects and the process of proving properties about formalized properties [34]. Based on

some logical formalism, they provide an environment that provides tools to structure and

process proofs.

The advent of such systems has led to a new way of proving theorems, which may lead

to the reduction of the human e�ort involved in the steps of the process, and the human

errors that could be introduced in a proof (such as typos and steps erroneously taken).

By using a proof assistant, such errors are easily avoided, making the task of building up

proof easier to perform. They also enable one to verify that proof has been performed in

a machine environment, which may increase the trust of a proof result [35].

Their popularity began to rise in the mid-'90s when at the same time Intel faced the

infamous �Pentium Bug�, which resulted in the recall of millions of buggy chips and a loss

of approximately USD 475 millions [23]. Although the application of proofs of correctness

3.2 Coq 17

of programs has been used since in the early days of computer science, it was ignored by

the software industry until this time as it was dubbed �impractical� [40] by people who

judged the required mathematical skills as �impossibly di�cult�, followed by claims that

its usage extends software development life-cycle [46].

In the past thirty years, the usage of such systems has transcended the academic

environment, making its way to the software development industry in a variety of areas,

to ensure properties about software or certain programs/functions: among many other

initiatives, SiFive1 is a startup based in San Mateo, California, which aims to use Coq to

certify processors and other core pieces of software while Bella et. al. [13] uses Isabelle to

certify an electronic payment protocol.

Unlike Automated Theorem Provers [32, 58], Proof Assistants relies on heavy user

manipulation to build proofs about theorems, although some of them let their users to

automatize some, if not all steps, of proofs [30], and even to rehash or build brand new

proof tactics [54].

3.2 Coq

Coq [30] is a proof assistant based on an implementation of Calculus of Inductive Con-

structions [26,69], a type theory based on Calculus of Constructions [24,25]. Its objective

is to provide tools to write both functional programs and proofs in higher-order logic us-

ing only one programming language named Gallina [70]. Terms of Gallina can represent

programs as well as properties of these programs and proofs of these properties.

Coq o�ers a system that lets one develop mathematical proofs, and especially to write

formal speci�cations, programs and to verify that programs are correct concerning their

speci�cation, all within a single environment that also lets their users de�ne their proof

tactics [29]. Coq also contains speci�c software development formalisms which enable

features like the modularization of code, and type classes, which can easily relate to

programming constructs that some functional languages have, such as Haskell.

There are also other proof assistants with similar objectives as Coq, but with di�erent

logical foundations, such as HOL systems, a family of interactive theorem provers based

on Church's higher-order logic including Isabelle/HOL [64], HOL4 [74] and PVS [66]. As

a proof assistant, Coq has been used for many purposes: to name a few, Gonthier [35]

presents a machine-checked proof of the four-color theorem, while Leroy et al. certify a

1https://www.sifive.com/

https://www.sifive.com/

3.2 Coq 18

compiler in Coq [53], among others [18, 57]. Figure. 3.1 shows an overview of CoqIde for

Coq version 8.13.1.

,

Figure 3.1: A screenshot of CoqIde

Another key property of Coq is that its language contains dependent types, which

can be intuitively described as types that types depend upon values. An example of a

dependent type is a list of elements where its type includes an expression denoting its size.

This leads to the possibility of statically verifying the absence of out-of-bounds access.

In short, dependent types may enable the possibility to enrich property veri�cation by

expressing correctness properties in the type's de�nition [21].

Coq o�ers a centralized environment to write programs, algorithms, and prove prop-

erties regarding these objects, based on the logical formalism brie�y introduced in Sec-

tion 2.4. All expressions formalized in Coq are named terms, and all terms have a type.

Hence, every object handled in Coq is typed. There are types for propositions, programs

(or functions), data types (natural numbers, booleans, lists, pairs, and many others).

The types of types are called sort. All sorts have a type, and there is an in�nite well-

founded typing hierarchy of sorts, whose base sorts are Prop, Set, and Type, to avoid

inconsistencies [25].

Coq's built-in language allows one to work both with program de�nitions and with

the proof process. In what follows some of its keywords are brie�y introduced. For more

insights regarding these keywords, we suggest the reader refer to the system's reference

3.2 Coq 19

manual 2.

Lemma id : Prop denotes the binding of the type of a proposition to the variable id ,

enabling the interactive proving of id by employing Coq tactics.

Qed/Defined. Qed de�nes the proof term in Coq as an opaque term (a term which can

be unfolded in tactic applications), whereas the usage of Defined closes the proof

term as a transparent term, enabling it to be unfolded in posterior programs and

proofs.

Inductive ident : type := {| ident : type} de�nes an inductive type whose con-

structors are de�ned by each {| ident : type} clause. The type of ident is type

(which can be omitted as Coq's type checker is capable of deducting the term's

type from its constructors). Inductive de�nitions are closed by types (i.e., their

constructors have the same type of the de�nition) and they can be parametrized.

Definition id lets their users bind functions, theorems, (co-)inductive de�nitions and

the evaluation of an expression (basically any well-typed term) to a variable named

id .

Record ident : sort? := ident? { ident binders : type } de�nes a macro which

constructs records as in many programming languages, similar to C's �struct� key-

word. The �rst identi�er ident is the name of the de�ned record. The keyword sort?

is the record's type, and ident? is an identi�er which de�nes a constructor function

for the record. Both sort? and ident? may be omitted, in which Coq will try to

guess the resulting record type, and instances of the record must be de�ned by using

the regular syntax (writing each �eld and its corresponding value). A record may

have one or more �elds (denoted by the ident within the curly brackets) separated

by �;�.

Fixpoint param {struct id} is the command that allows the de�nition of functions by

pattern-matching over an inductive structure which is one of the param provided,

de�ning recursive functions in Coq. These de�nitions need to meet syntactical

criteria on an argument called decreasing argument. Thus, the idea of the criteria is

to have a structure that tells Coq such de�nitions always terminate. The decreasing

argument can be speci�ed by using struct id or automatically guessed by Coq.

2https://coq.inria.fr/doc/index.html

https://coq.inria.fr/doc/index.html

3.2 Coq 20

Instance id class id binders : type := { id := term} declares a class instance

identi�ed by id , with non-obligatory parameters binders and the �elds declared

within the scope of {id := term}. Coq then generates obligations that must be

proven correct in order for the term to be de�ned, which may be proven using Coq's

proof apparatus.

Extraction id enables the extraction of de�nition id to either Haskell, OCaml or Scheme.

Variants like Extraction ��le.v" destFile extracts all de�nitions within the �le �le.v

(where .v is Coq's source code �le extension) to the speci�ed target language in

a �le named destFile. This language can be set with the command Extraction

Language lang, where lang is either Scheme, Haskell or OCaml (the default extrac-

tion language).

Program Instance id : Type := term uses the Program [75] tactic to bind the term

de�ned in term to the variable id by formalizing it as if one were programming in

a regular functional language, but at the same time using Coq's proof apparatus

to support in proving automatically that the function de�nition indeed meets its

requirements. Its combination with keyword Instance provides tools that ease the

task of dealing with obligations generated by Instance, by de�ning the Obligation

Tactic which Program will use by default.

Coq comes packed with a core set of tactics and some powerful tactics de�ned

in some modules (which require importing such modules) that eases process of proving

propositions. These tactics can also be extended by a user to adapt basic tactics to a

certain domain. A tactic can be de�ned as an intermediate between the user and Coq's

language to deal with individual parts of a proof, enabling the possibility to adapt or

automate a given part of a proof [29].

A simple yet representative usage example is introduced as follows. One can use Coq

to obtain certi�ed code in other languages, such as Haskell or Scheme. Suppose one would

like to formalize weekdays and then reason about the next day. This can be achieved by

formalizing weekdays as an inductive type with its constructors denoting days of the week.

Inductive weekdays :=

| monday | tuesday | wednessday | thursday | friday | saturday | sunday .
Then nextDay is a function that takes a weekday and returns the next day according

to the current calendar.

Definition nextDay (day : weekdays) : weekdays :=

3.2 Coq 21

match day with

| monday ⇒ tuesday | tuesday ⇒ wednessday | wednessday ⇒ thursday

| thursday ⇒ friday | friday ⇒ saturday | saturday ⇒ sunday

| sunday ⇒ monday

end.

Properties about nextDay can then be formalized, proved and the speci�ed algorithm

can be extracted to the aforementioned target languages.

Lemma nextDayMonday : ∀ day : weekdays , nextDay day = monday ↔ day = sunday .

Proof.

split.

- intros. destruct day . all : inversion H . reflexivity.

- intros. rewrite H . reflexivity.

Defined.

The following Coq code illustrates the example of instantiating a typeclass in Coq,

and to which extent we use it to de�ne equality relations provided by class EqDec.

Program Instance nat eqDec : EqDec (nat) eq :=

{ equiv dec := fix rec x y :=

match x ,y with

| 0, 0 ⇒ in left

| Datatypes.S n, Datatypes.S m ⇒ if rec n m then in left else in right

| 0, Datatypes.S n | Datatypes.S n, 0 ⇒ in right

end

}.

This de�nes nat eqDec as an equality relation for natural numbers described by nat.

The usage of Instance introduces some goals generated by each of the patterns in the

pattern matching de�ned in equiv dec, which are automatically solved by Program's us-

age.

The extraction of these de�nitions may be done with the command Extraction

Language Scheme, given that the desired target extraction language is Scheme. By for-

malizing these de�nitions within a module named example, the command Extraction

example usageEx generates a .scm �le named usageEx , containing all the aforemetioned

de�nitions as Scheme code.

Chapter 4

Reo

In this chapter, a succinct overview of Reo [3, 4] is presented, considering its main char-

acteristics with two usage examples. We also brie�y introduce the main aspects of one

popular formal semantics for Reo, Constraint Automata as proposed by Baier et al. [11].

We also introduce two usage examples of Reo, which will later be discussed in Chapter 6,

bound to show how one can formalize and certify Reo circuits employing ReLo.

4.1 The modelling language

Reo plays a central role in integrating software components, especially considering Component-

Based Software Engineering, where it is expected that software components are indepen-

dent of each other, being more adapted to the environment they were conceived for. In

recent times, software development has shifted from building large, single instances of

a system to building systems by reuse of already existing pieces of software, where the

full application (system) itself is generated through the orchestrated interaction of these

software components, where Reo may be adequate in orchestrating such interaction.

As a coordination model, Reo focuses on connectors, their composition, and how they

behave, not focusing on particular details regarding the entities that are connected, com-

municate, and interact through those connectors. Connected entities may be modules of

sequential code, objects, agents, processes, web services, and any other software compo-

nent where its integration with other software can be used to build a system [3]. Such

entities are de�ned as component instances in Reo.

Component instances are de�ned as a non-empty set P that denotes a set of entities

involved in an instance (process, services, actors, usually denoted by capital letters) and

a prede�ned set of I/O operations associated with each of those entities, where they

only interact with each other by the channel that connects these instances. A software

component is a software implementation that may execute in physical or logical devices.

4.1 The modelling language 23

Therefore, software components are abstract entities that describe the behavior of its

instances.

Channels in Reo are de�ned as a point-to-point link between two distinct nodes, where

each channel has its unique prede�ned behavior. Each channel in Reo has exactly two

ends, which can be of the following types: the source end, which accepts data into the

channel, and the sink end, which dispenses data out of the channel. Channels are used

to compose more complex connectors, being possible to combine user-de�ned channels

amongst themselves and with the canonical connectors provided by Baier et al. [11].

Figure 4.1 shows the basic set of connectors as presented by Kokash et al. [49]. Table 4.1

relates the canonical Reo connectors with their behavior.

A B

(a) Sync

A B

(b) LossySync

A B

(c) FIFO

A B

(d) SyncDrain

A B

(e) AsyncDrain

A B

(f) Filter

A B

(g) Transform

A

B
C

(h) Merger

A
B

C

(i) Replicator

Figure 4.1: Canonical Reo connectors

A node in Reo is de�ned as a logical structure denoting how channel ends are linked

to each other in Reo connectors. Nodes composing channel ends in Reo can be either

source nodes, sink nodes, or mixed nodes. Source nodes are nodes that accept data into

the channel, i.e., nodes that serve as a gateway to data �ow into the channel, while sink

nodes are nodes where data �ows out of the channel and mixed nodes are nodes that act

both as source nodes and sink nodes.

Channel ends can be used by any entity to send/receive data, given that the entity

belongs to an instance that knows these ends. In other words, entities may use channels

only if the instance they belong to is connected to one of the channel ends, enabling either

sending or receiving data (depending on the kind of channel end the entity has access to).

The bound between a software instance and a channel end is a logical connection

that does not rely on properties such as the location of the involved entities. Channels

in Reo have the sole objective to enable the data exchange following the behaviour of the

connectors composing the channel, utilizing I/O operations prede�ned for each entity in

an instance. A channel can be known by zero or more instances at a time, but its ends

can be used by at most one entity at the same time.

Figure 4.2 introduces a Reo connector known as Sequencer1. It models the data �ow
1http://reo.project.cwi.nl/v2/#examples-of-complex-connectors

http://reo.project.cwi.nl/v2/#examples-of-complex-connectors

4.1 The modelling language 24

Connector Reo Behaviour

Sync A B Data �ows Synchronously from A to B.

LossySync A B

Data either �ows Synchronously from A to B, or
it is lost in its way from A to B due so some com-
munication faliure (i.e., link failure between the
interfaces).

FIFO A B
Data �ows from A to B in a bu�er-fashioned man-
ner. It �rst leaves A, then it is stored in a inter-
mediate place before reaching B.

SyncDrain A B The data �ow of A and B must be synchronized.

AsyncDrain A B
The data �ow of A and B must not be synchro-
nized.

Filter A B
A data item d will successfully be transmitted from
A to B if it satis�es a logical predicate P .

Transform A B
A data item d will be transformed by a transfor-
mation function f : data → data before reaching
B.

Merger
A

B
C

The data from ports A and B are transmitted to
C similar to the functioning of a demultiplex

Replicator A
B

C Data from A is simutaneously replicated to B and
C, similar to a multiplex.

Table 4.1: Basic Reo channels and their behaviour

between three entities sequentially. The data �ows from X to the �rst FIFO connector (a

bu�er), which will be sequentially transmitted to port names A, B, and C. The Sequencer

can be used to model scenarios where processes sequentially interact between themselves.

X Y

A

W

B

Z

C

Figure 4.2: Modelling of the Sequencer in Reo

Figure 4.3 models a simpli�cation of a scenario containing two Smart tra�c lights A

and B in a crossroad. Their default functioning follows a timed schedule: while one of

them is green, the other is red. In addition to this timed behaviour, a controlling station

4.1 The modelling language 25

has a sensor (i.e., a camera, denoted by the upper dot) that monitors the crossroad and

identi�es whether there is heavy tra�c waiting for the green light on one of the tra�c

lights [36].

Intuitively, the circuit controls the e�ective time a tra�c light may be green or red

depending on the number of cars waiting to pass. This may be done by verifying which

data item is coming from both the timer and the sensor, and when is these data incoming.

The circuit �lters this data, to mutually exclude one of the tra�c lights. The destination

node (denoted by the leftmost dot in Figure 4.3) will receive the data item (0 or 1) and,

based on this item decide which tra�c light gains the priority to go green.

The data incoming from the uppermost dot denotes a property which the sensor

has detected (i.e., many cars waiting for the tra�c light to be green), while d is a data

item denoting that the semaphores will alternate between open and closed, enabling the

interchange of which tra�c light will be either open or closed (the interchange between d

and !d forced by the circuit renders unable the scenario where one of the tra�c lights is

always open).

A
/B

!d

C

d

Figure 4.3: A Reo model for smart tra�c lights and a controller of a crossroad

Reo can also be used to model a consensus algorithm that deals with Byzantine

fault [52] to achieve consensus under uncertainty, which may be caused by di�erent fac-

tors (varying from network issues to faulty agents). Intuitively, these machines can lead

to �bad decisions� to be taken in a consensus-based distributed system. Among the al-

gorithms conceived to address this problem, the delegated Byzantine Fault Tolerance 2.0

(dBFT) [41] was employed for the Neo Blockchain to achieve consensus globally in the

system. It takes quorum-based decisions in an environment with 3f + 1 machines, where

at most f machines can present Byzantine fault-like behavior. A machine in dBFT is also

called a replica.

The dBFT 2.0 is an algorithm split into three steps: I) One of the replicas will be

chosen as the primary, being responsible to propose an information pack, II) the remainder

of the replicas (known as backups) will validate such information, and III) �nally commit

to that information, as soon as 2f+1 valid responses are available. After commitment, the

replica is unable to revert its own decision, so the logic ensures that each local commit

4.1 The modelling language 26

decision, once made by an honest replica, will represent a global commit after passing

the uncertain quorum 2f + 1 threshold. If enough time passes without changing state

(assuming that the primary system may have failed), then a condition is triggered that

will reset the whole process and restart from the next primary. This process is known as

view change.

Figure 4.4 models the communication structure of a replica in dBFT in Reo. Node

A' denotes the circuit data input, which will be �ltered to the primary node P or backup

node B in a round-robin scheme as follows:

� If the data �ows from A to node P, after a preset time the data �ow from P to the

request node R. From R, there are two accessible nodes: one that will timeout after

a preset time and will put the machine in the change view node V' (by �owing data

from R to V'); and one that will move the system to the commit node CA' if the

test condition for the validity of the block passes (by �owing data from R to C').

� If the data �ow from A to node B, after a preset time it will move to the change

view node VR'. Node R' represents other replicas in the network, where its data will

be the requests released by the other consensus replicas, which arrive in R' with a

bounded nondeterministic delay. All �lters in the model that have their sink node

one of the V' nodes denote the preset time the replica will wait to change its state

to change view (V').

A' VA'

CA'

VB'

P

B

R

B' VR'

CR'

R'

Figure 4.4: A model of the replica in the dBFT algorithm with standard Reo connectors

As a consensus replica, A' and R' interface with the remainder of the network as

input nodes, where A' receives data from the network and R' as the input coming from

the node R of other replicas from within the network. Nodes starting with V' and C' are

output nodes, where they will broadcast data to the other replicas within the network

considering whether they will commit (C') or change view (V').

From the perspective of dBFT 2.0, the �lters with sink nodes B, VR', VB', R, and

VA' are temporizers which control the data �ow in the model. The ones with sink nodes

4.2 Constraint Automata 27

VR' VB' and VA' especially denotes the temporizers which controls the time out which

will lead the current replica to set its state to "Change view", indicating that some failure

happened and it will not go to the commit nodes CA' and CR'.

In short, Reo circuits may be understood as data �owing from di�erent interfaces (i.e.,

port names connected to a node), where the connector itself models the communication

pattern between two of these interfaces. A ReLo program is composed of one or more

Reo connectors as introduced in Figure 4.1.

4.2 Constraint Automata

Constraint Automata [4] are de�ned as the most basic operational models for Reo, among

many other formal semantics for Reo [43]. They have been extended to other formal

semantics for Reo that aim to capture di�erent sets of properties, like actions over data

(Action Constraint Automata [48]) or timing properties (Timed Constraitn Automata [5]).

Constraint Automata compose a basis to model and verify the speci�cation of such

coordination mechanisms by the usage of formal methods (e.g., model checking against

temporal-logic speci�cations [62]). By using Constraint Automata as formal semantics for

Reo, automata states depict the possible con�gurations of a channel (e.g., the data within

a connector at a given time), while transitions of the automaton denote how data in the

connector �ow and how it changes the con�guration of the automaton. In what follows,

we recover and brie�y discuss the main concepts from Baier et al. [11] on Constraint

Automata. They are formally introduced by De�nition 4.2.1.

De�nition 4.2.1 (Constraint Automata). A Constraint Automaton (CA) is a tuple A =

(Q,Names,→, Q0) where

Q is a �nite set of states, con�gurations of A

Names is a �nite set of names,

→ : Q× 2Names ×DC ×Q is the transition relation with DC a set of (propositional)

Data Constraints, and

Q0 ⊆ Q is the set of initial states.

Constraint automata are seen as Timed Data Stream (TDS) acceptors. To understand

how constraint automata relate to Timed Data Streams, we recover the main de�nitions

from Baier et al. [11] regarding Timed Data Streams and Constraint Automata.

Let A be any set. Streams are de�ned as a set Aω containing all in�nite sequences over

A. Therefore, Aω = {α | α : {0, 1, 2, . . . } → A}. Individual streams are described as α =

4.2 Constraint Automata 28

α(0), α(1), α(2), . . . and the derivative of a stream α is denoted as the stream initiating

in the next value, namely α′ = α(1), α(2), α(3), α(i) denotes the i-th derivative, where

α′(k) = α(k + 1) and α(i)(k) = α(i + k), ∀i, ∀k > 0. Hence, TDS are composed by a

stream α ∈ Dataω, Data a non-empty �nite set and a time stream a ∈ Rω+ as a stream of

increasing positive real numbers.

The behavior of Reo channels are modeled as Timed Data Streams (TDS) [7]. TDS

models are one of the �rst formalizations of co-algebraic semantics of Reo connectors [43].

They introduce the notion of a channel node's behavior being a relation R ⊆ TDS ×
TDS. Informally, TDS are composed of two streams, one denoting the data items that

will �ow through a given port and the other one denoting the time instant that the

port observes this data �ow. TDS are used to model how data �ows through a Reo

connector by discriminating the �ow through the relation R. TDS are formally presented

by De�nition 4.2.2.

De�nition 4.2.2 (Timed Data Streams).

A Timed Data Stream is de�ned as a pair of functions (α, a) as follows.

TDS = {(α, a) ∈ Dataω × Rω+ : ∀k ≥ 0: a(k) ≤ a(k + 1) and limk→∞ a(k) =∞}

Hence, TDS are composed by a stream α ∈ Dataω with Data as a non-empty �nite

set and a time stream a ∈ Rω+, a stream of increasing positive real numbers. A TDS can

be intuitively seen as a �controller� which denotes, for each data item α(k), the moment

a(k) it is �owing.

In order to formalize the concept of input/output behavior of Constraint Automata

by means of TDS, a set of names Names is used, where Names consists of a �nite set

of names A1,A2, . . . ,An used to identify the input/output ports that connect di�erent

components or a whole system within the environment it is inserted. For each port

Ai ∈ Names, a TDS is de�ned. Intuitively, each TDS depicts the behavior of how data

�ow in a port denoted by a port name A ∈ Names. De�nition 4.2.3 formalizes the notion

of TDSNames as the set of all TDS-tuples containing one TDS for each port.

De�nition 4.2.3 (TDSNames).

TDSNames = {((α1, a1), (α2, a2), . . . , (αn, an)) : (αi, ai) ∈ TDS, i = 1, 2, . . . , n,

with n = |Names|. }

With the notion of TDS and ports as de�ned, a Data Assignment denotes which data

element is in each port that belongs to a non-empty subset of ports N ⊆ Names. Hence,
a Data Assignment for a port is de�ned as a function δ : N → Data, and De�nition 4.2.4

presents the notation's de�nition.

4.2 Constraint Automata 29

De�nition 4.2.4 (Data Assignment). A Data Assignment is de�ned as a notation for

functions δ : N → Data as δ = [A→ δa] : A ∈ N

By de�ning θ = ((α1, a1), (α2, a2), . . . , (αn, an)) : (αi, ai)) ∈ TDSNames, θ.time is

de�ned in De�nition 4.2.5 as the time stream obtained by merging all timed streams

a1, a2, . . . , an increasingly. At each iteration, θ.time's value is recalculated as the mini-

mum time value obtained by such merging, considering θ' as the derivative of θ.

De�nition 4.2.5 (θ.time(k)). The merging of time streams in increasing order denotes

θ.time(k) as

θ.time(0) = min{ai(0) : i = 1, 2, . . . , n},

θ.time(k) = min{ai(k) : ai(k) > θ.time(k − 1), i = 1, 2, . . . , n, k = 1, 2, . . .}.

With θ.time(k) as the k-th minimum time in where data starts to �ow in a port,

the next de�nition captures the idea of selecting all ports that are in θ.time(k), θ.N =

θ.N(0), θ.N(1), θ.N(2), . . ., as a stream over 2Names as follows.

De�nition 4.2.6 (θ.N(k)). θ.N(k) denotes all ports that contains data in time instant

θ.time(k):

θ.N(k) = {Ai ∈ Names : ai(l) = θ.time(k) for some l ∈ {0, 1, 2, . . .}, i = 1, 2, . . . , n}.

Considering θ, θ.time(k) and θ.N(k), the derivative of θ is written θ′ as the TDS-

tuple that is obtained by calculating the derivatives of all TDS (αi, ai) with its associated

port Ai ∈ θ.N(k). As an example, let θ = ((α0, a0), (α1, a1), (α2, a2)) and k = 0. If

θ.N(0) = {A0}, θ′ = (α′0, a
′
0), (α1, a1), (α2, a2).

Following the same idea presented in De�nition 4.2.6, the concept of a stream over the

data �ow in ports in θ.time is de�ned as θ.δ = θ.δ(0), θ.δ(1), θ.δ(2), . . . as a stream over

the set of data assignments for each port Ai ∈ θ.N . Intuitively, θ.δ(k) holds all observed

data �ow at time instant θ.time(k) and is de�ned as follows.

De�nition 4.2.7 (θ.δ(k)). The stream θ.δ(k) over the set of Data Assignments is de�ned

as θ.δ(k) = [Ai → αi(li) : Ai ∈ θ.N(k)]

where li ∈ [0, 1, 2, . . .] is the unique index with ai(li) = θ.time(k).

A TDS language (for Names) denotes any subset of TDSNames where TDS languages

are also used as a formalism to describe the possible data �ow a coordination model

(namely, data �ow of a Reo circuit).

4.2 Constraint Automata 30

Constraint Automata uses a �nite set Names denoting Reo port names, where it

can be a set of form {A1, A2, . . . , An }, and the i-th port stands for a I/O port of a

Reo connector or component. As depicted by De�nition 4.2.1, transitions of Constraint

Automata are labeled with pairs containing a non-empty subset N ⊆ Names and a data

constraint g. Data constraints are seen as a representation on data assignments in the

sense of denoting which data item may be observed at a given port, being propositional

formulae built from atomic propositions such as dA = d, meaning �at port A the data item

observed must be d�, with A ∈ Names and d ∈ Data. Hence, De�nition 4.2.8 formally

introduces the grammar to describe data constraints.

De�nition 4.2.8 (Data constraints). A data constraint (DC) g is formally de�ned by the

following grammar:

g ::= true | dA = d | g1 ∨ g2 | ¬g.

We follow the same notation presented by Baier et al. [11], where a transition is

denoted by q
N,g−−→ p rather than (q,N, g, p) ∈→, q, p ∈ Q are states of the automaton,

g a data constraint which must be satis�ed to enable the transition, and N ⊆ Names.
For a transition to be �red, it is required that N 6= ∅ and g is satis�able by θ.δ(k) at the

k-th iteration of a run (i.e., θ.δ(k) |= g, where |= stands for the satisfaction relation for

classical propositional logic).

The intuitive meaning of Constraint Automata as formal semantics for Reo models

can be understood by interpreting the states as the con�guration of the connector and the

transitions as how the connector's behavior can change in a single step. Hence, q0
N,g−−→ q1

means that, in order for the automaton to change its con�guration from q0 to q1, it must

have data �ow only in ports A ∈ N , where such data �ow must satisfy the data constraint

denoted by g, while in the other ports N \ Names there must not have any data �ow

(i.e., N \ Names * θ.N(k)).

Hence, the idea of Constraint Automata being TDS acceptors can be interpreted as

follows. Given an input TDS-tuple θ ∈ TDSNames as input to a Constraint Automaton

A, the automaton tries to �gure whether θ denotes a possible data �ow of A the same

way a �nite automaton would get as input a �nite word and decides whether it describes

an accepting run. Nevertheless, since Constraint Automata does not have �nal states as

a criterion for acceptance, all accepting runs are in�nite runs if θ is in�nite.

Formally, an accepting run in a Constraint Automaton is de�ned as follows.

De�nition 4.2.9 (Accepting runs on Constraint Automata).

Given a TDS-tuple θ ∈ TDSNames as input, an accepting in�nite run on a Constraint

Automaton A is denoted by the greatest set of streams q = q0, q1, q2, . . . over Q where:

4.2 Constraint Automata 31

1. There exists a transition q0
N,g−−→ q1;

2. N = θ.N(0);

3. θ.δ(0) |= g;

4. q′ (an in�nite stream initiating from the resulting state obtained from (I)) stands

for an in�nite q1-run on θ′ in A;

Therefore, De�nition 4.2.9 respectively states the following: it is necessary to have

at least one transition that can be �red from the actual state in the run, the other ports

other than the ones involved in a �ring transition contains data, the data on those ports

must satisfy g, and that these conditions may hold for the remainder of θ, denoted by

its derivative θ′. Such conditions establish the notion of accepting runs on Constraint

Automata. Alternatively, De�nition 4.2.10 formally introduces the notion of rejecting

runs on Constraint Automata.

De�nition 4.2.10 (Rejecting runs on Constraint Automata).

Given a TDS-tuple θ ∈ TDSNames as input, a rejecting run a Constraint Automaton A
is denoted by a �nite sequence q = q0, q1, q2, . . . , qn over Q where:

1. from q0 there is no transition q0
N,g−−→ q1 with N = θ.N(0) and θ.δ(0) |= g;

2. from qn there is a transition q0
N,g−−→ q1 with N = θ.N(0) and θ.δ(0) |= g, but

q1, q2, . . . , qn denotes a rejecting run in A.

Subsuming De�nitions 4.2.9 and 4.2.10, an accepting run for θ in an automaton A is

an in�nite run which satis�es De�nition 4.2.9 starting at some initial state q0 ∈ Q0, while

a rejecting run is a run for θ in A where at some point k there is no transition to be �red.

Arbab [3] provides the canonical set of Reo connectors that may be used to compose

more complex channels. Because Constraint Automata are a theory that provides a for-

mal semantics for Reo connectors, a constraint automaton for each canonical connector

(depicted in Figure 4.1) is also provided, each following its respective channel's behavior.

Table 4.2 summarizes basic channels provided by Arbab and their corresponding Con-

straint Automata. The label depicted above the edges between {} are the ports that can

�observe" data for the transition to be �red, while the label below it stands for (possible)

data constraints upon observed data. The absence of this second label means that there

are no data constraints for this transition.

The idea of compositionally building out more complex Reo connectors out of canon-

ical ones is to join source nodes in Reo with other nodes (sink, source or mixed) by the

4.2 Constraint Automata 32

Channel Reo Constraint automaton

Sync A B q0
{A,B}
dA = dB

LossySync A B q0
{A,B}
dA = dB

{A}

FIFO A B q0p1 p0

{A}
dA = 1

{A}
dA = 0

{B}
dB = 1

{B}
dB = 0

SyncDrain A B q0 {A,B}

AsyncDrain A B q0 {A}{B}

Filter A B

q0
{A}
¬P (dA)

{A,B}
P (dA) ∧ dA = dB

Transform A B q0
{A,B}

f(dA) = dB

Merger
A

B
C q0

{A,C}
dA = dC

{A,B}
dA = dB

Replicator A
B

C
q0

{A,B,C}
dA = dB ∧ dA = dC

Table 4.2: Basic Reo channels and their respective constraint automata

usage of a product construction between automata. Thus, the natural join of two lan-

guages L1 and L2, respectively the languages of Constraint Automata A1 and A2 is done

by composing the product automata of A1 and A2 as a product operation. This natural

join is analogue to the operation de�ned for relational databases [11]. De�nition 4.2.11

summarizes such operation.

De�nition 4.2.11 (Product Automata). Let A1 = (Q1,Names1,→1, Q0,1) and A2 =

4.2 Constraint Automata 33

(Q2,Names2,→2, Q0,2) two Constraint Automata. the Product Automaton A1 ./ A2 is

formally de�ned as A1 ./ A2 = (Q1 × Q2,Names1 ∪ Names2,→, Q0,1 × Q0,2), where →
is the resulting transition relation, de�ned as follows.

1.
q1

N1,g1−−−→ p1, q2
N2,g2−−−→ p2, N1 ∩Names2 = N2 ∩Names1

(q1, q2)
N1∪N2,g1∧g2−−−−−−−→ (p1, p2)

2.
q1

N,g−−→ p1, N ∩Names2 = ∅

(q1, q2)
N,g−−→ (p1, q2)

3.
q2

N,g−−→ p2, N ∩Names1 = ∅

(q1, q2)
N,g−−→ (q1, p2)

Intuitively, the rules for constructing the resulting product automaton's transitions

as the natural join of languages of both automata is expressed as follows. Let A1 and A2

constraint automata. The product of A1 with A2 generates a product automaton which

joins transitions from both automata where its behavior a�ect equally both automata

(rule (i))), or are disjoint transitions (rules (ii) and (iii)).

Chapter 5

A dynamical logic to reason about Reo cir-

cuits

In this Section, we introduce ReLo [37] as a dynamic logic tailored to reason about Reo

models. ReLo introduces a framework to enable the natural modeling of Reo connectors

in a logic, enabling the usage of known techniques to model veri�cation in modal logics.

We will discuss its foundations, de�nitions, and as well proofs regarding soundness and

completeness, and a syntactic proof system built for ReLo. Besides presenting the main

concepts of the logic, we also introduce other logic-speci�c de�nitions, such as the �ring

of transition and program behaviour.

5.1 A ReLo Primer

ReLo was tailored to subsume Reo models' behaviour naturally in a logic, without needing

any mechanism to convert a Reo model denoted by one of its formal semantics to some

logical framework. Each basic Reo connector is modelled in the logic's language, which is

de�ned as follows.

De�nition 5.1.1 (ReLo's language). The language of ReLo consists of the following:

� An enumerable set of propositions Φ.

� Reo channels as denoted by Figure 4.1

� A set of port names N

� A sequence SeqΠ = {ε, s1, s2, . . . } of data �ows in ports of a ReLo program Π

(de�ned below). We de�ne si ≤ sj if si is a proper (i.e., sj contains all of si's data).

Each sequence si denotes the data �ow of the Reo program Π

5.1 A ReLo Primer 35

� Program composition symbol : �

� A sequence t of data markings of ports p with data values {0,1}, which denotes that

p contains a data item. A BNF describing t is de�ned as follows:

〈t〉 ::= 〈t〉 〈portName〉 〈data〉 | 〈portName〉 〈data〉
| 〈portName〉 ::= p ∈ N
| 〈data〉 ::= 0 | 1

� Empty sequence ε

� Iteration operator ?

The following is a simple yet intuitive example of the structure of data �ows in ReLo.

Let the sequence t be t = {A1, B1C}. It states that the port name A have the data item

1 in its current data �ow, while there is a data item 1 in the FIFO between B and C.

A ReLo program is de�ned as any Reo model built from the composition of Reo

channels πi, which are de�ned in ReLo as Π = (f, b), Π = π1 � π2 � · · · � πn, and

πi = (f1, b1). The set f is the set of connectors p of the model where data �ows in and

out of the channel (the connector has at least a source node and a sink node), namely

Sync, LossySync, FIFO, Filter, Transform, Merger and Replicator. The set b is the set

of blocking channels (channels without sink nodes whose inability to �re prevents the

remainder of the connectors related to their port names from �re), namely SyncDrain

and AsyncDrain.

De�nition 5.1.2 (Logical formula in ReLo).

We de�ne formulae in ReLo as follows: φ = p | > | ¬φ | φ ∧ ψ | 〈t, π〉φ, such that p ∈ Φ.

We use the standard abbreviations > ≡ ¬⊥, φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ), φ → ψ ≡ ¬φ ∨ ψ and

[t, π]ϕ ≡ ¬〈t, π〉¬φ, where π is some Reo program and t a data sequence.

Before the processing of programs in ReLo can begin, the expected behavior of the

connector's data �ow must be preserved. The connectors in Figure 5.1 are examples of

compound Reo connectors. For ReLo they can be constructed as Π, and the order they

are composed must not a�ect the �nal behaviour of the model, which must be always the

same.

The model SyncFIFO is composed by a FIFO and a Sync connector in which the data

leaving the FIFO is sent to C from B synchronously. Suppose that there is data in the

FIFO and in port B (t = {A1B,B0}). If the FIFO from A to B is processed �rst than

the Sync between B and C, the data �ow in B will be overwritten before it is sent to C,

5.1 A ReLo Primer 36

which is not the correct behaviour. The Sync from B to C must �re prior to the FIFO

from A to B.

Another example is denoted by the model Sync2Drain. Suppose there is data only in

port name A (t = {A1}). If the Sync from B to A is evaluated �rst than the SyncDrain

between B and C, the restriction imposed by the fact that the condition required for

the SyncDrain to �re was not met (as C's data �ow di�ers from B's at this moment)

is not considered, and data will wrongly �ow from B to A. The SyncDrain must be

�rst evaluated before all �ows as they may block the �ow from data of its ports to other

channels.

A B C

(a) SyncFIFO

A B C

(b) Sync2Drain

Figure 5.1: Examples of Reo models

Therefore, the next de�nition maps each canonical connector that compose a Reo

model to a ReLo program as De�nition 5.1.3. This will be further explored in De�ni-

tion 5.1.4, an auxiliary function which interprets a Reo program Π = (f, b) and dismem-

bers it in a ordered sequence of connectors to be evaluated s, which will later be used to

process an input t for π.

De�nition 5.1.3 (parse base cases). Each canonical Reo connector is mapped to a ReLo

program in parse as follows:

�
A B to A→ B

�
A B to (A,A→ B)

�
A B to fifo(A,B)

�
A B to SBlock(A,B)

�
A B to ABlock(A,B)

�
A B to Transform(f, A,B), f : Data→ Data is a transformation function.

�
A B to Filter(P,A,B), P is a logical predicate over the data item in A.

�
A

B
C

to (A→ C,B → C)

�

A
B

C

to (A→ B,A→ C)

5.1 A ReLo Primer 37

Considering that each Reo program Π is the composition of programs π1�π2,� · · ·�
πn, πi = (fi, bi) as Reo programs, parse is formalized in De�nition 5.1.4. The symbol ◦
denote the addition of an element to s, the resulting set of parse's processing.

De�nition 5.1.4 (parse function). The function that interprets the execution of a ReLo

program is de�ned as follows. We de�ne ε as an abbreviation to denote when there is no

f or b in the signature (i.e. the base case when no program is parametrized)

parse(f, b, s) =

s, if f = b = ε

parse(fj, b, s ◦ A→ B), if f = A B � fj

s ◦ A→ B, f = A B

parse(fj, b, s ◦ (A,A→ B)), if f = A B � fj

s ◦ (A,A→ B), f = A B

parse(fj, b, s) ◦ fifo(A,B), if f = A B � fj

(s ◦ fifo(A,B)), f = A B

SBlock(A,B) ◦ parse(f, bj, s), if b = A B � bj

(SBlock(A,B) ◦ s), b = A B

ABlock(A,B) ◦ parse(f, bj, s), if b = A B � bj

(ABlock(A,B) ◦ s), b = A B

parse(fj, b, s ◦ Transform(f, A,B)), if f = A B � fj

(Transform(f, A,B) ◦ s), f = A B

parse(fj, b, s ◦ Filter(P,A,B)), if f = A B � fj

(Filter(P,A,B) ◦ s), f = A B

parse(fj, bi � bj, s ◦ (A→ C,B → C)), if f = A

B
C � fj

(s ◦ (A→ C,B → C)), f = A

B
C

parse(fj, b, s ◦ (A→ B,A→ C)), if f = A
B

C � fj

(s ◦ (a→ b, a→ c)), f = A
B

C

(5.1)

We employ parse to interpret Reo programs Π as a sequence of occurrences of possible

5.1 A ReLo Primer 38

data �ow (where each �ow corresponds to the execution of a Reo connector). These data

�ow may denote data transfer (of the form a→ b), �ow �blocks� (i.e., (a)synchronization of

data �ow) induced by connectors such as SyncDrain and aSyncDrain (the �rst one requires

that data �ow synchronously through its ports, while the latter requires that data �ow

asynchronously through its ports). There are also the notion of a bu�er introduced by

FIFO connectors, which data �ow into a bu�er before �owing out of the channel, and

merging/replicating data �ow between ports, respectively denoted by channels Merger

and Replicator.

There are also special data �ows, denoting the �transformation� of some data �owing

from A to B as Transform(f, A,B) which will apply f with the data in A before it sends

f(DA) (DA denoting the data item in A) to B, and the �ltering of data �ow by some

predicate as Filter(P,A,B), P as a quanti�able-free predicate over the data item seen in

A. Therefore, data will �ow to B only if P (DA) is satis�ed.

After processing π with parse, the interpretation of the execution of π is given by

go(t, s, acc), go : s × s → s, where s is a string denoting the processed program π as the

one returned by parse, and t is the initial data �ow of ports of the Reo program π. The

parameter acc holds all connectors of the Reo circuit that satisfy their respective required

conditions for data to �ow. In what follows we de�ne ax ≺ t as an operator which states

that ax is in t, ax a single data of a port and t a structure containing data markup for

ports p ∈ N .

Example 5.1.1 shows how parse functions and illustrates why it is necessary. The

programs that depict the FIFO connectors from Fig. 4.2 are the last programs to be

executed, while the ones that denote �immediate� �ow (the Sync channels) come �rst.

This is done to preserve the data when these connectors �re (if eligible). Suppose that

there is a data item in the bu�er between X and Y and a data item in Y (i.e., t = X1Y, Y 0).

If the data item leaves the bu�er �rst than the data item in Y, the latter will be overwritten

and the information is lost.

Example 5.1.1. let π be the Reo program corresponding to the circuit in Fig. 4.2:

π = X Y � Y A � Y W � W B � W Z � Z C � Z X

parse(π, {}) = {Y → A;W → B;Z → C; fifo(X, Y); fifo(Y,W); fifo(W,Z)}

The usage of parse is required to eliminate problems regarding the execution order

of π's Reo channels, which could be caused by processing π the way it is inputted (i.e.,

its connectors can be in any order). Consider, for example, the behavior of SyncDrain

and aSyncDrain programs as �blocking� programs as discussed earlier. In a single step,

they must be evaluated prior to the �ow programs, because if they fail to execute due to

5.1 A ReLo Primer 39

missing requirements, data should not �ow from their port names to other connectors. In

a nutshell, parse organizes the program so this veri�cation can be performed.

Therefore, the interpretation of a π program processed by parse is performed by

go(t, s, acc), where s is a string containing π as processed by parse, t is π's initial data

arrangement, and acc �lters the connectors of the ReLo program that can be �red if the

requirements to do so are met.

The function go will check for each of the Reo connectors processed by parse satis�es

the required condition to �re, following the connectors' behaviour in Table 4.1, which are

also formalized as Constraint Automata in Table 4.2.

5.1 A ReLo Primer 40

De�nition 5.1.5 (Relation go for a single execution step). We de�ne go(t, s, acc) as

follows:

� s = ε : fire(t, acc)

� s = A→ B ◦ s′ :

� go(t, s′, acc ◦ (A→ B)), i� Ax ≺ t, (A→ B) ⊀ s′

� go(t, s′, (acc ◦ (A→ B)) \ s′j) ∪ go(t, s′, acc), i�

Ax ≺ t,

(A→ B) ⊀ s′

∃s′j ∈ acc | sink(s′j) = B

� go(t, s′, acc), otherwise

� s = (A,A→ B) ◦ s′ :

� go(t, s′, acc ◦ (A→ B)) ∪ go(t, s′, acc ◦ (A→ A)), i� Ax ≺ t, (A→ B) ⊀ s′

� go(t, s′, (acc ◦ (A→ B)) \ s′j) ∪ go(t, s′, acc), i�

Ax ≺ t,

(A→ B) ⊀ s′

∃s′j ∈ acc | sink(s′j) = B

� go(t, s′, acc), otherwise

� s = fifo(A,B) ◦ s′ :

� go(t, s′, acc ◦ (AxB)), i� Ax ≺ t, fifo(A,B) ⊀ s′, (AxB) ⊀ acc

� go(t, s′, acc ◦ (AxB → Bx)), i� AxB ≺ t, fifo(A,B) ⊀ s′

� go(t, s′, (acc◦(AxB → Bx))\s′j)∪go(t, s′, acc), i�

AxB ≺ t,

fifo(A,B) ⊀ s′,

∃s′j ∈ acc | sink(s′j) = B

� go(t, s′, acc), otherwise

� s = Sblock(A,B) ◦ s′ :

� go(t, s′, acc), i�

(Ax ≺ t ∧Bx ≺ t) ∨ (Ax ⊀ t ∧Bx ⊀ t)

Sblock(A,B) ⊀ s′

� go(t, halt(A,B, s′), acc), i�

(Ax ≺ t ∧Bx ⊀ t) ∨ (Ax ⊀ t ∧Bx ≺ t)

Sblock(A,B) ⊀ s′

5.1 A ReLo Primer 41

� s = Ablock(A, b) ◦ s′ :

� go(t, s′, acc), i�

(Ax ⊀ t ∧Bx ≺ t) ∨ (Ax ≺ t ∧Bx ⊀ t)∨

(Ax ⊀ t ∧Bx ⊀ t), Ablock(A,B) ⊀ s′

� go(t, halt(A,B, s′), acc), i�

(Ax ≺ t ∧Bx ≺ t),

Ablock(A,B) ⊀ s′

� s = Transform(f, A,B) ◦ s′ :

� go(t, s′, acc ◦ (f(DA)→ B)), i�

ax ≺ t

T ransform(f, A,B) ⊀ s′

� go(t, s′, (acc◦(f(DA)→ B))\s′j)∪go(t, s′, acc), i�

Ax ≺ t,

T ransform(f, A,B) ⊀ s′

∃s′j ∈ acc | sink(s′j) = B

� go(t, s′, acc), otherwise

� s = Filter(f, A,B) ◦ s′ :

� go(t, s′, acc ◦ (A→ B)), i�

Ax ≺ t

P (DA) holds

Filter(f, A,B) ⊀ s′

� go(t, s′, (acc ◦ (A→ B)) \ s′j) ∪ go(t, s′, acc), i�

Ax ≺ t,

P (DA) holds

Filter(f, A,B) ⊀ s′

∃s′j ∈ acc | sink(s′j) = B

� go(t, s′, acc), otherwise

The existing condition after each return condition of go denotes the case where two or

more Reo connectors within a circuit have the same sink node. This implies that if both of

their respective source nodes have data �owing simultaneously, their sink nodes will have

data �owing nondeterministically. Such condition models this scenario, considering when

both cases may happen as two nondeterministic �distinct� possible executions. Therefore,

the operation acc◦(X → Y))\s′j removes every interpretation of s′ which sink node equals

Y , while go(t, s′, acc) denotes an execution containing the removed s′j but not considering

5.1 A ReLo Primer 42

X → Y . The return condition s = ε denotes that the program as a whole have already

been processed.

Considering the cases including block programs induced by SyncDrain and AsyncDrain

connectors, halt(A,B, s′) is de�ned as a function that will be used in the case the block

program conditions fails. Then, data �ow that were in the ports of the SyncDrain/AsyncDrain

evaluated cannot be further considered in this execution steps: channels which have their

sink node pointed to A or B.

Intuitively, go is a function that processes a program π with input t as the program's

data initially available at ports p ∈ π, and returns the next data con�guration after

processing all connectors and verifying whether they are eligible for data to �ow. The

return of go depends on a function fire which is bound to return the �nal con�guration of

the Reo circuit after an iteration (i.e., the last ports that data �ow). We de�ne sink(s′j)

as the sink node of a connector, in this case, the port name where a data item �owing

into a Reo connector is bound to. The operation denoted by ∪ is the standard set union.

As previously stated, go employs a function named fire : T × s→ T , a function that

returns the �ring of all possible data �ows in the Reo connector, given the Reo program

π and an initial data �ow on ports of π. The set T is the set of possible data �ows

as constructed by the BNF grammar in De�nition 5.1.1. The function fire returns the

resulting data �ow of this execution step by considering the program processed by go as

s and the current step's data �ow t. Parameter s contains ReLo programs as yielded by

parse.

De�nition 5.1.6 (Data marking relation fire).

fire(t, s) =

ε, if s = ε

AxB ◦ fire(t, s′), if s = (AxB) ◦ s′ and Ax ≺ t

B(f(a)) ◦ fire(t, s′), if s = (f(DA)→ B) ◦ s′ and Ax ≺ t

Bx ◦ fire(t, s′), if

s = (A→ B) ◦ s′ and Ax ≺ t, or

s = (AxB → Bx) ◦ s′ and axb ≺ t

(5.2)

Then, we de�ne fReLo as the transition relation of a model. It denotes how the

transitions of the model �re, i.e., given an input t and a program π denoting a Reo

circuit, fReLo(t, π) interfaces with go to return the resulting data �ow of π given that data

depicted by t are �owing in the connector's ports.

5.1 A ReLo Primer 43

De�nition 5.1.7. Transition relation fReLo

fReLo(t, π) = go(t, (parse(π, [])), []) (5.3)

We de�ne fReLo(t, π?) as the application of fReLo(t, π) iteratively for the (nondeter-

ministic �nite) number of steps denoted by ?, starting with t with π, and considering the

obtained intermediate t′ in the steps.

A ReLo frame is a structure based on Kripke frames [51] formally de�ned as a tuple

F = 〈S,Π, RΠ, δ, λ〉, where each element of F is described by De�nition 5.1.8.

De�nition 5.1.8 (ReLo frames).

� S is a non-empty enumerable set of states

� A Reo program Π.

� RΠ ⊆ S × S is a relation de�ned as follows.

� Rπi = {uRπiv | fReLo(t, πi) ≺ δ(v), t ≺ δ(u)} and πi is any combination of any

atomic program which is a subprogram of Π.

� Rπ?
i

= R?
πi
, the re�exive transitive closure (RTC) of Rπi.

� λ : S × N → R is a function that returns the time instant a data item in a data

markup �ows through a port name of N .

� δ : S → T , is a function that returns data in ports of the circuit in a state s ∈ S, T
being the set of possible data �ows in the model.

From De�nition 5.1.8, a ReLo model is formally de�ned as a tuple M = 〈F ,V〉 by
De�nition 5.1.9. Intuitively, it is a tuple consisting of a ReLo frame and a valuation

function, which given a state w of the model and a propositional symbol ϕ ∈ Φ, maps to

either true or false, depending on the formula satis�ability on state w.

De�nition 5.1.9 (ReLo models). A model in ReLo is a tupleM = 〈F ,V〉, where F is

a ReLo frame and V : S × Φ→ {>,⊥} is the model's valuation function

5.1.1 Semantic notion of ReLo

We de�ne ReLo's semantic notion intuitively as follows. LetM = 〈F ,V〉 and p, p1 and

p2 be propositional formula. The notion of satisfaction of a formula p in M at a state

s ∈ S of the model, denoted byM, s p is de�ned as follows.

5.1 A ReLo Primer 44

De�nition 5.1.10 (Semantic notion of ReLo).

� M,s p i� V (s, p) = true

� M,s > always

� M,s ¬ϕ i�M, s 1 ϕ

� M,s ϕ1 ∧ ϕ2 i�M,s ϕ1 andM,s ϕ2

� M,s 〈t, π〉ϕ if there exists a state w ∈ S, sRπw, andM,s ϕ

We denote by M ϕ if ϕ is satis�ed in all states of M. By ϕ we denote that ϕ is

valid in any state of any model.

We recover the circuit in Fig. 4.2 as an example. Let us consider s = DX , (i.e. t =

D1) and the Sequencer's corresponding model M. Therefore, M, DX 〈t, π〉p holds if

V (DXfifoY , p) = true as DXfifoY is the only state where DXRΠDXfifoY . For example,

one might state p as �There is no port with any data �ow�, hence V (DXfifoY , p) = true.

As a usage Example based on the same example, we formalize some properties which

may be interesting for this connector to have. Let us consider that the data markup is

t = X1,M the model regarding the Sequencer, and the states' subscript denoting which

part of the connector have data. The following lemma state that for this data �ow, after

every single execution of π, it is not the case that the three connected entities have their

data equal to 1 simultaneously, but it does have data in its bu�er from X to Y .

Example 5.1.2. [X1, π]¬(DA = 1∧DB = 1∧DC = 1)∧ t′ = X1Y , where t′ = fReLo(t, π)

M,DX [X1, π]¬(DA = 1 ∧DB = 1 ∧DC = 1) ∧ t′ = X1Y .

M,D X Y ¬(DA = 1 ∧DB = 1 ∧DC = 1) ∧ t′ = X1Y .

M,D X Y ¬(DA = 1 ∧DB = 1 ∧DC = 1) andM, D X Y t′ = X1Y .

Considering the scenarios where is interesting to reason regarding iteration, the notion

ofM, DX 〈t, π?〉p holds if a state s is reached fromDX by means ofR?
π with V (s, p) = >.

If we state p as �the data item of port X equals 1�, it holds because DXR
?
πDX and

V (DX , p) = >. The following illustrates an example considering this scenario: if there is

an execution of π that lasts a nondeterministic �nite number of iterations, and there is

data in C equal to 1, then there is an execution under the same circumstances where the

same data has been in B.

5.1 A ReLo Primer 45

Example 5.1.3. 〈t, π?〉DC = 1→ 〈t, π?〉DB = 1

M,DX 〈t, π?〉DC = 1→ 〈t, π?〉DB = 1

M,DX ¬(〈t, π?〉DC = 1) ∨ 〈t, π?〉DB = 1

M,DX [t, π?]¬DC = 1 ∨ 〈t, π?〉DB = 1

M,DX [t, π?]¬DC = 1 orM,DX 〈t, π?〉DB = 1

M,DX 〈t, π?〉DB = 1, becauseM,DB DB = 1 and DXRπ?RB.

5.1.2 Axiomatic System

We also de�ne an axiomatization of ReLo based on other dynamic logics tailored to reason

about programs. We discuss and de�ne ReLo's axioms and rules as follows. Let ϕ and ψ

be formulas. De�nition 5.1.11 introduces ReLo's axiomatic system. We discuss the proofs

of validity (w.r.t. ReLo's model) of (R), (It), and (In) in Lemma 1.

De�nition 5.1.11 (Axiomatic System).

(PL) Enough Propositional Logic tautologies

(K) [t, π](ϕ→ ψ)→ ([t, π]ϕ→ [t, π]ψ)

(And) [t, π](ϕ ∧ ψ)↔ [t, π]ϕ ∧ [t, π]ϕ

(Du) [t, π]ϕ↔ ¬〈t, π〉¬ϕ
(R) 〈t, π〉ϕ↔ ϕ i� fReLo(t, π) = ε

(It) ϕ ∧ [t, π][t(f,b), π
?]ϕ ↔ [t, π?]ϕ, t(f,b) =

fReLo(t, π)

(In) ϕ ∧ [t, π?](ϕ → [t(f,b)? , π]ϕ) → [t, π?]ϕ,

t(f,b)? = fReLo(t, π
?)

(MP)
ϕ ϕ→ ψ

ψ

(Gen)
ϕ

[t, π]ϕ

Axioms (PL), (K), (And) and (Du) are standard in Modal Logic literature, along

with rules (MP) and (Gen) [39]. Axiom (It) denotes the reasoning over nondeterministic

iteration denoted by the operator ?, following a similar idea portrayed by its counterpart

for PDL. An intuitive interpretation of (It) is as follows. If ϕ holds in the current state

and after a single execution of π with t, any �nite nondeterministic number of iterations

of π with t preserves ϕ's truth value, then ϕ must hold after any (nondeterministic �nite)

number of iterations of π with t.

Axiom (In) denotes a similar idea as the one presented by [39] for Propositional

Dynamic Logic (PDL). It enables the inductive reasoning on programs by carrying the

following intuitive meaning: �considering that ϕ holds in the current state, if after any

(nondeterministic �nite) number of iterations of π with its respective input t ϕ holds,

then it will hold after any number of iterations of π taking t as its input.

5.2 Soundness 46

We de�ne proofs in ReLo as the formula obtained from successive applications of

axioms and/or inference rules (MP and Gen) to an axiom. Consistency in ReLo is de�ned

as follows: if ` ϕ, then ϕ.

5.2 Soundness

In this section, we discuss the soundness of ReLo w.r.t the axiomatic system De�ni-

tion 5.1.11 introduces, formally de�ning it in terms of Lemma 1 as follows.

Lemma 1 (Soundness of ReLo's axiomatic system). If ` ϕ then � ϕ.

1. (R): 〈t, π〉ϕ↔ ϕ if fReLo(t, π) = ε

Proof.

Suppose by contradiction that exists a state s from a modelM = 〈S,Π, RΠ, δ, λ, V 〉
where (R) does not hold. There are two possible cases.

(⇒)

Suppose by contradiction M, s 〈t, (f, b)〉ϕ and M, s 1 ϕ. M, s 〈t, (f, b)〉ϕ i�

there is a state v ∈ S such that sRπv. Because fReLo(t, (f, b)) = ε, s = v (i.e., in

this execution no other state is reached from s). Therefore,M, s ϕ, contradicting

M, s 1 ϕ.

(⇐)

Suppose by contradiction M, s ϕ and M, s 1 〈t, (f, b)〉ϕ. In order to M, s 1
〈t, (f, b)〉ϕ, for every state v ∈ S such that sRπv,M, v 1 ϕ. Because fReLo(t, (f, b)) =

ε, s = v (i.e., in this execution no other state is reached from s). Therefore,

M, v 1 ϕ, contradictingM, v ϕ.

2. (It): ϕ ∧ [t, π][t, π?]ϕ↔ [t, π?]ϕ

Proof.

Suppose by contradiction that exists a state s from a modelM = 〈S,Π, RΠ, δ, λ, V 〉
where (It) does not hold. There are two possible cases.

(⇒)

Suppose by contradiction M, s ϕ ∧ [t, (f, b)][t, (f, b)?]ϕ and M, s 1 [t, (f, b)?]ϕ.

Therefore,M, s ϕ andM, s [t, (f, b)][t, (f, b)?]ϕ. ForM, s [t, (f, b)][t, (f, b)?]ϕ,

every state w ∈ S such that sRπw, M, w [t, π?]ϕ. Then, for M, w [t, π?]ϕ,

5.3 Completeness 47

every state v ∈ S such that wRπ?v, M, v ϕ. From M, s 1 [t, π?]ϕ, there is a

state u ∈ S such that sRπ?u and M, u 1 ϕ. Because sRπw and wRπ?v from Rπ?

we have sRπ?v. Then, for all u such that sRπ?u, M, u ϕ which contradicts the

existence of a state u such that sRπ?u andM, u 1 ϕ.

(⇐)

Suppose by contradiction M, s [t, (f, b)?]ϕ and M, s 1 ϕ ∧ [t, (f, b)][t, (f, b)?]ϕ.

Then,M, s ¬(ϕ ∧ [t, (f, b)][t, (f, b)?]ϕ) which isM, s ¬ϕ orM, s ¬[t, (f, b)]

[t, (f, b)?]ϕ. In order to M, s [t, (f, b)?]ϕ, for each state w ∈ S such that sR?
πw,

M, w ϕ. By the de�nition of R?
π, sR

?
πs. Then, M, s ϕ which contradicts

M, s ¬ϕ. Now, considering M, s ¬[t, (f, b)][t, (f, b)?]ϕ, for each state v ∈ S

such that sRπv, M, v 1 [t, (f, b)?]ϕ. Then, to M, v 1 [t, (f, b)?]ϕ, there exists a

state u ∈ S such that vR?
πu andM, u 1 ϕ. Because sRπv and vR?

πu, sR
?
πu. From

M, w ϕ, there is no state u such thatM, u 1 ϕ, which is a contradiction.

3. (Ind): ϕ ∧ [t, π?](ϕ→ [t, π]ϕ)→ [t, π?]ϕ

Proof.

Suppose by contradiction that exists a state s from a modelM = 〈S,Π, RΠ, δ, λ, V 〉
where (Ind) does not hold. Therefore, supposeM, s ϕ∧[t, (f, b)?](ϕ→ [t, (f, b)]ϕ)

and M, s 1 [t, (f, b)?]ϕ. Then, M, s ϕ and M, s [t, (f, b)?](ϕ → [t, (f, b)]ϕ).

Then, for all states w ∈ S such that sR?
πw, M, w ϕ → [t, (f, b)]ϕ which is

M, w ¬ϕ ∨ [t, (f, b)]ϕ. Then, M, w ¬ϕ or M, w [t, (f, b)]ϕ. Considering

M, w ¬ϕ, by R?
π we have sR?

πs. BecauseM, s ϕ, there is a state w (namely,

s = w) whereM, w ¬ϕ does not hold, resulting in a contradiction. Now, consid-

eringM, w [t, (f, b)]ϕ, for each state v ∈ S such that wRπv,M, v ϕ. Because

sR?
πw and wRπv, by the de�nition of R?

π sR
?
πv. Then, if M, s 1 [t, (f, b)?]ϕ then

there is a state u ∈ S such that sR?
πu and M, u 1 ϕ. Because for each state

v ∈ S such that wRπv, M, v ϕ, such state u cannot exist as its existence is a

contradiction.

5.3 Completeness

We start by de�ning the Fisher-Ladner closure of a formula as the set closed by all of its

subformulae, following the idea employed in other modal logic works [14,39] as follows.

5.3 Completeness 48

De�nition 5.3.1 (Fisher-Ladner Closure). Let Φ be a the set of all formulae in ReLo.

The Fischer-Ladner closure of a formula, notation FL(ϕ) is inductively de�ned as follows:

� FL : Φ→ 2Φ

� FL(f,b) : {〈t, (f, b)〉ϕ} → 2Φ, where (f, b) is a ReLo program and ϕ a ReLo formula.

These functions are de�ned as

� FL(p) = {p}, p an atomic proposition;

� FL(ϕ→ ψ) = {ϕ→ ψ} ∪ FL(ϕ) ∪ FL(ψ)

� FL(f,b)(〈t, (f, b)〉ϕ) = {〈t, (f, b)〉ϕ}

� FL(〈t, (f, b)〉ϕ) = FL(f,b)((〈t, (f, b)〉ϕ) ∪ FL(ϕ)

� FL(f,b)(〈t, (f, b)?〉ϕ) = {〈t, (f, b)?〉ϕ} ∪ FL(f,b)(〈t, (f, b)〉〈t, (f, b)?〉ϕ)

From the de�nitions above, we prove two lemmas which can be understood as prop-

erties that formulae need to satisfy in order to belong to their Fisher-Ladner closure.

Lemma 2. If 〈t, (f, b)〉ψ ∈ FL(ϕ), then ψ ∈ FL(ϕ)

Lemma 3. If 〈t, (f, b)?〉ψ ∈ FL(ϕ), then 〈t, (f, b)〉〈t, (f, b)?〉ψ ∈ FL(ϕ)

The proofs for Lemmas 2 and 3 are straightforward from De�nition 5.3.1. The follow-

ing de�nitions regard the de�nitions of maximal canonical subsets of ReLo formulae. We

�rst extend De�nition 5.3.1 to a set of formulae Γ. The Fisher-Ladner closure of a set of

formulae Γ, FL(Γ) = FL(ϕ), ∀ϕ ∈ Γ. Therefore, FL(Γ) is closed under subformulae.

We prove that the Fisher-Ladner closure of a �nite set Γ is also �nite. For the

remainder of this section, we will assume that Γ is �nite.

Lemma 4. If Γ is a �nite set of formulae, then FL(Γ) also is a �nite set of formulae

Proof. The proof is standard in literature [16]. Intuitively, because FL is de�ned recur-

sively over a set of formulae Γ into formulae ψ of a formula ϕ ∈ Γ, Γ being �nite leads to

the resulting set of FL(Γ) also being �nite (at some point, all atomic formulae composing

ϕ will have been reached by FL).

De�nition 5.3.2 (Atom). Let Γ be a set of consistent formulae. An atom of Γ is a set

of formulae Γ′ that is a maximal consistent subset of FL(Γ). The set of all atoms of Γ is

de�ned as At(Γ).

5.3 Completeness 49

Lemma 5. Let Γ a consistent set of formulae and ψ a ReLo formula. If ψ ∈ FL(Γ), and

ψ is satis�able then there is an atom of Γ, Γ′ where ψ ∈ Γ′.

Proof. The proof follows from Lindembaum's lemma. From Lemma 4, as FL(Γ) is a �nite

set, its elements can be enumerated from γ1, γ2, . . . , γn, n = |FL(Γ)|. The �rst set, Γ′1

contains ψ as the starting point of the construction. Then, for i = 2, . . . , n, Γ′i is the

union of Γ′i−1 with either {γi} or {¬γi}, respectively whether Γ′i ∪ {γi} or Γ′i ∪ {¬γi} is
consistent. In the end, we make Γ′ = Γ′n as it contains the union of all Γi, 1 ≤ i ≤ n. This

is summarized in the following bullets:

� Γ′1 = {ψ};

� Γ′i,=

Γ′i−1 ∪ {γi}, if Γn−1 ∪ {γn} is consistent

Γ′i−1 ∪ {¬γi}, otherwise
for 1 < i < n;

� Γ =
⋃n
i=1 Γi

De�nition 5.3.3 (Canonical relations over Γ). Let Γ a set of formulae, A,B atoms of Γ

(A,B ∈ At(Γ)), Π a ReLo program and 〈t, (f, b)〉ϕ ∈ At(Γ). The canonical relations on

At(Γ) is de�ned as SΓ
Π as follows:

ASΓ
ΠB ↔

∧
A ∧ 〈t, (f, b)〉

∧
B) is consistent

ASΓ
Π?B ↔

∧
A ∧ 〈t, (f, b)?〉

∧
B) is consistent

De�nition 5.3.3 states that the relation between two atoms of Γ, A and B is done

by the conjunction of the formulae in A with all formulae in B which can be accessed

from A with a diamond formula, such that this conjunction is also a consistent formula.

Intuitively, it states that A and B are related in SΓ
Π by every formula ϕ of B which

conjunction with A by means of a diamond results in a consistent scenario.

The following de�nition is bound to formalize the canonical version of δ as the data

markup function.

De�nition 5.3.4 (Canonical data markup function δΓ
c).

Let F = {〈t1, (f1, b1)〉ϕ1, 〈t2, (f2, b2)〉ϕ2, . . . , 〈tn, (fn, bn)〉ϕn} be the set of all diamond for-

mula occurring on an atom A of Γ. The canonical data markup is de�ned as δΓ
c : At(Γ)→

T as follows:

5.3 Completeness 50

� The sequence {t1, t2, . . . , tn} ⊆ δ(A) Therefore, {t1, t2, . . . , tn} ⊆ δΓ
c (A). Intuitively,

this states that all the data �ow in the set of formulae must be valid data markups of

A, which leads to them to also be valid data markups of δΓ
c following De�nition 5.3.3.

� for all programs π = (f, b) ∈ Π, fReLo((δ
Γ
c (A)), (f, b)) ≺ δΓ

c (B)↔ ASΓ
ΠB.

De�nition 5.3.5 (Canonical model). A canonical model over a set of formulae Γ is

de�ned as a ReLo modelMΓ
c = 〈At(Γ),Π, SΓ

Π, δ
Γ
c , λc, V

Γ
c 〉, where:

� At(Γ) is the set of states of the canonical model;

� Π is the model's ReLo program;

� SΓ
Π are the canonical relations over Γ;

� δΓ
c is the canonical markup function;

� λc : At(Γ)×N → R;

� V Γ
c : At(Γ)× ϕ→ {true, false}, namely V Γ

c (A, p) = {A ∈ At(Γ) | p ∈ A};

Lemma 6. For all programs π = (f, b) that compose Π, t = δΓ
c (A):

1. if fReLo(t, (f, b)) 6= ε, then fReLo(t, (f, b)) ≺ δΓ
c (B) i� ASΓ

ΠB.

2. if fReLo(t, (f, b)) = ε, then (A,B) /∈ SΓ
Π.

Proof. The proof for 1. is straightforward from De�nition 5.3.4. The proof for 2. follows

from axiom R. Because fReLo(t, (f, b)) = ε, no other state is reached from the current

state, hence no state B related with A by RΓ
Π can be reached.

The following lemma states that canonical models always exists if there is a formula

〈t, (f, b)ϕ〉 ∈ FL(Γ), a set of formulae Γ and a Maximal Consistent Set A ∈ At(Γ). This

assures that given the required conditions, a canonical model can always be built.

Lemma 7 (Existence Lemma for canonical models). Let A be an atom of At(Γ) and

〈t, (f, b)〉ϕ ∈ FL(Γ). 〈t, (f, b)〉ϕ ∈ A ⇐⇒ exists an atom B ∈ At(Γ) such that ASΓ
ΠB,

t ≺ δΓ
c (A) and ϕ ∈ B.

Proof. ⇒
Let A ∈ At(Γ) 〈t, (f, b)〉ϕ ∈ FL(Γ) and 〈t, (f, b)〉ϕ ∈ A . Because A ∈ At(Γ), from

De�nition 5.3.4 we have t ≺ δΓ
c (A). From Lemma 5 we have that if ψ ∈ FL(Γ) and ψ is

consistent, then there is an atom of Γ, Γ′ where ψ ∈ Γ′. Rewriting ϕ as (ϕ∧γ)∨ (ϕ∧¬γ)

5.3 Completeness 51

(a tautology from Propositional Logic), an atom B ∈ At(Γ) can be constructed, because

either 〈t, (f, b)〉(ϕ∧γ) or 〈t, (f, b)〉(ϕ∧¬γ) is consistent. Therefore, considering all formulae

γ ∈ FL(Γ), B ∈ At(Γ) is constructed with ϕ ∈ B and A ∧ (〈t, (f, b)〉ϕ
∧
B. From

De�nition 5.3.3, ASΓ
ΠB.

⇐
Let A ∈ At(Γ) and 〈t, (f, b)〉ϕ ∈ FL(Γ). Also, let B ∈ At(Γ), ASΓ

ΠB, t ≺ δΓ
c (A), and

ϕ ∈ B. Because ASΓ
ΠB, from De�nition 5.3.3, ASΓ

ΠB ↔ (A ∧ 〈t, (f, b)〉
∧
B), ∀ϕi ∈ B

is consistent. From ϕ ∈ B, (A ∧ 〈t, (f, b)〉ϕ) is also consistent. As A ∈ At(Γ) and

〈t, (f, b)ϕ ∈ FL(Γ), by De�nition 5.3.2, as A is maximal, then necessarily 〈t, (f, b)〉ϕ ∈ A.

The following lemma formalizes the truth notion for a canonical modelMΓ
c , given a

state s and a formula ϕ. It formalizes the semantic notion for canonical models in ReLo.

Lemma 8 (Truth Lemma). Let MΓ
c = 〈At(Γ),Π, SΓ

Π, δ
Γ
c , λ, V

Γ
c 〉 be a canonical model

over a formula γ. Then, for every state A ∈ At(Γ) and every formula ϕ ∈ FL(γ):

MΓ
c , A � ϕ ⇐⇒ ϕ ∈ A

Proof. The proof proceeds by induction over the structure of ϕ.

� Induction basis: suppose ϕ is a proposition p. Therefore, MΓ
c , A � p. From De�-

nition 5.3.5, MΓ
c 's valuation function is V Γ

c (p) = {A ∈ At(Γ) | p ∈ A}. Therefore,
p ∈ A.

� Induction Hypothesis: Suppose ϕ is a non atomic formula ψ. Then, MΓ
c , A �

ψ ⇐⇒ ψ ∈ A, ψ a strict subformula of ϕ.

� Inductive step: Let us prove it holds for the following cases:

� Case ϕ = ¬ψ: by the induction hypothesis, MΓ
c , A � ¬ψ ⇐⇒ ¬ϕ ∈ A.

Because A is maximal w.r.t. φ, then ¬φ ∈ A holds byMΓ
c 's de�nition.

� Case ϕ = ψ1∧ψ2: by the induction hypothesis,MΓ
c , A � ψ1∧ψ2 ⇐⇒ ψ1 ∈ A

and ψ2 ∈ A, which holds byMΓ
c 's de�nition.

� Other connectives (∨,→,↔): their proof may be derived from the items above.

� Case ϕ = 〈t, (f, b)〉φ. Then,MΓ
c , A � 〈t, (f, b)〉φ ⇐⇒ 〈t, (f, b)〉φ ∈ A:

→

5.3 Completeness 52

LetMΓ
c , A � 〈t, (f, b)〉φ. From De�nition 5.3.3, there is a state B where ASΓ

ΠB

and φ ∈ B. By Lemma 7, 〈t, (f, b)〉φ ∈ A. Therefore, it holds.
←

Let MΓ
c , A 2 〈t, (f, b)〉φ. From De�nition 5.3.5's valuation function V Γ

c and

Lemma 5, we have MΓ
c , A � ¬〈t, (f, b)〉φ. Therefore, for every B where

ASΓ
ΠB,MΓ

c , B � ¬φ. From the induction hypothesis, φ /∈ B. Hence, From

Lemma 7, 〈t, (f, b)〉φ /∈ A.

� Case ϕ = 〈t, (f, b)?〉φ. Then,MΓ
c , A � 〈t, (f, b)?〉φ ⇐⇒ 〈t, (f, b)?〉φ ∈ A:

→

Let MΓ
c , A � 〈t, (f, b)?〉φ. From De�nition 5.3.3, there is a state B where

ASΓ
Π?B and φ ∈ B. By Lemma 7, 〈t, (f, b)?〉φ ∈ A. Therefore, it holds.

←

Let MΓ
c , A 2 〈t, (f, b)?〉φ. From De�nition 5.3.5's valuation function V Γ

c and

Lemma 5, we have MΓ
c , A � ¬〈t, (f, b)?〉φ. Therefore, for every B where

ASΓ
Π?B,MΓ

c , B � ¬φ. From the induction hypothesis, φ /∈ B. Hence, From

Lemma 7, 〈t, (f, b)?〉φ /∈ A.

We proceed by formalizing the following lemma, which is bound to show that the

properties that de�ne ? for regular ReLo models also holds in ReLo canonical models.

Lemma 9. Let A,B ∈ At(Γ) and Π a ReLo program. If ASΠ?B then AS?ΠB

Proof. Suppose ASΠ?B. De�ne C = {C ′ ∈ At(Γ) | AS?ΠC} as the set of all atoms C ′

which A reaches by means of SΠ? . We will show that B ∈ C. Let Cc be the maximal

consistent set obtained by means of Lemma 5, Cc = {
∧
C1 ∨ C2 ∨ · · ·

∧
Cn}, where the

conjunction of each Ci is consistent, and each Ci is a maximal consistent set. Also, de�ne

t = δΓ
c (Cc) as the canonical markup of Cc.

Note that Cc ∧ 〈t, (f, b)〉¬Cc is inconsistent: if it was consistent, then for some D ∈
At(Γ) which A cannot reach, Cc ∧ 〈t, (f, b)〉

∧
D would be consistent, which leads to∧

C1 ∨C2 ∨ · · · ∨Ci ∨ 〈t, (f, b)〉
∧
D also being consistent, for some Ci. By the de�nition

of Cc, this means that D ∈ C but that is not the case (because D ∈ Cc contradicts D
not being reached from A and consequently Cc's de�nition, as D ∈ Cc leads to D being

reachable from A). Following a similar reasoning,
∧
A ∧ 〈t, (f, b)〉Cc is also inconsistent

and therefore its negation,
∧
¬(A ∧ 〈t, (f, b)〉Cc) is consistent, which can be rewritten as∧

A→ [t, (f, b)]Cc.

5.3 Completeness 53

Because Cc ∧ 〈t, (f, b)〉¬Cc is inconsistent, its negation ¬(Cc ∧ 〈t, (f, b)〉¬Cc) is valid,
which can be rewritten to ` Cc → [t, (f, b)]Cc (I). Therefore, by applying generalization

we have ` [t, (f, b)?](Cc → [t, (f, b)]Cc). By axiom (It), we derive ` [t, (f, b)]Cc →
[t, (f, b)?]Cc (II). By rewriting (II) in (I) we derive Cc → [t, (f, b)?]Cc. As

∧
A →

[t, (f, b)]Cc is valid, from (II)
∧
A → [t, (f, b)?]Cc also is valid. From the hypothesis

ASπ?B and Cc's de�nition,
∧
A ∧ 〈t, (f, b)?〉B and

∧
B ∧ Cc are consistent (the latter

from Cc's de�nition). Then, there is a Ci ∈ Cc such that
∧
B ∧

∧
C is consistent. But

because each Ci is a maximal consistent set, it is the case that B = Ci, which by the

de�nition of Cc leads to AS?ΠB.

De�nition 5.3.6 (Proper Canonical Model). The proper canonical model over a set of

formulae Γ is de�ned as a tuple 〈At(Γ),Π, RΓ
Π, δ

Γ
Π, λc, V

Γ
Π 〉 as follows:

� At(Γ) as the set of atoms of Γ;

� Π as the ReLo program;

� The relation R of a ReLo program Π is inductively de�ned as:

� Rπ = Sπ for each canonical program π;

� RΓ
Π? = (RΓ

Π)?;

� Π = π1 � π2 � · · · � πn a ReLo program, RΠ ⊆ S × S as follows:

* Rπi = {uRπiv | fReLo(t, πi) ≺ δ(v)}, t ≺ δ(u) and πi is any combination of

any atomic programs which is a subprogram of Π.

� δΓ
Π as the canonical markup function;

� λc : At(Γ)×N → R;

� V Γ
c (A, p) = {A ∈ At(Γ) | p ∈ A} as the canonical valuation introduced by De�ni-

tion 5.3.5.

Lemma 10. Every canonical model for Π has a corresponding proper canonical model:

for all programs Π, SΓ
Π ⊆ RΓ

Π

Proof. The proof proceeds by induction on Π's length

� For basic programs π, it follows from De�nition 5.3.6:

5.3 Completeness 54

� Π?: From De�nition 5.1.8, Rπ? = R?
π. By the induction hypothesis, SΓ

Π ⊆ RΓ
Π,

Also from the de�nition of RTC, we have that if (SΓ
Π) ⊆ (RΓ

Π), then (SΓ
Π)? ⊆ (RΓ

π)?

(i). From Lemma 9, SΓ
Π? ⊆ (SΓ

Π)?, which leads to (SΓ
Π)? ⊆ (RΓ

Π)? by (i). Finally,

(RΓ
Π)? = (RΓ

Π?). Hence, (SΓ
Π?) ⊆ (RΓ

Π?)

Lemma 11 (Existence Lemma for Proper Canonical Models). Let A ∈ At(Γ) and

〈t, (f, b)〉ϕ ∈ FL(Γ). Then,

〈t, (f, b)〉ϕ ∈ A↔ exists B ∈ At(Γ), ARΓ
ΠB, t ≺ δΓ

c (A) and ϕ ∈ B.

Proof.

⇒
Let 〈t, (f, b)〉ϕ ∈ A. From Lemma 7 (Existence Lemma for canonical models), There is

an atom B ∈ At(Γ) where ASΓ
ΠB, t ≺ δΓ

c (A) and ϕ ∈ B. From Lemma 10, SΓ
Π ⊆ RΓ

Π.

Therefore, there is an atom B ∈ At(Γ) where ARΓ
ΠB, t ≺ δΓ

c (A) and ϕ ∈ B.
⇐
Let B an atom, B ∈ At(Γ), ARΠB, t ≺ δΓ

c (A) and ϕ ∈ B. The proof follows by induction

on the program Π = (f, b) as follows:

� a canonical program πi: this case is straightforward as from De�nition 5.3.6, Sπi =

Rπi , and consequently ASπiB, t ≺ δΓ
c (A) and (i) ϕ ∈ B. From Lemma 7 and (i),

〈t, (f, b)〉ϕ ∈ A.

� Π?: from De�nition 5.3.6, RΠ? = R?
Π. Then, letB ∈ At(Γ), ARΠ?B, t ≺ δΓ

c (A) and ϕ ∈
B. This means that there is a �nite nondeterministic number n where ARΠ?B =

ARΠA1RΠA2 . . . RΠAn, where An = B. The proof proceeds by induction on n:

� n = 1: ARΠB and ϕ ∈ B. Therefore, from Lemma 7,〈t, (f, b)〉ϕ ∈ A. From

axiom Rec, one may derive 〈t, (f, b)〉ϕ → 〈t, (f, b)?〉ϕ. By the de�nition of

FL and A's maximality (as it is an atom of Γ) 〈t, (f, b)?〉ϕ ∈ A.

� n > 1: From the previous proof step and the induction hypothesis, 〈t, (f, b)?〉 ∈
A2 and 〈t, (f, b)〉〈t, (f, b)?〉 ∈ A1. From axiom Rec, one can derive

 〈t, (f, b)〉〈t, (f, b)?〉ϕ→ 〈t, (f, b)?〉ϕ. By the de�nition of FL, and A's maxi-

mality (as it is an atom of Γ), 〈t, (f, b)?〉ϕ ∈ A.

5.3 Completeness 55

Lemma 12 (Truth Lemma for Proper Canonical Models). LetMΓ
c = 〈At(Γ),Π, RΓ

Π, δ
Γ
Π, λc, V

Γ
Π 〉

a proper canonical model constructed over a formula γ. For all atoms A and all ϕ ∈ FL(γ).

M, A � ϕ↔ ϕ ∈ A.

Proof. The proof proceeds by induction over ϕ.

� induction basis: ϕ is a proposition p. Therefore, MΓ
c , A � p holds from De�ni-

tion 5.3.6 as V Γ
c (p) = {A ∈ At(Γ) | p ∈ A}.

� induction hypothesis: suppose ϕ is a non atomic formula ψ. Then,M, A ϕ ⇐⇒
ϕ ∈ A, ψ a strict subformula of ϕ.

� Inductive step: Let us prove it holds for the following cases:

� Case ϕ = ¬ψ: by the induction hypothesis, MΓ
c , A � ¬ψ ⇐⇒ ¬ϕ ∈ A.

Because A is maximal w.r.t. φ, then ¬φ ∈ A holds byMΓ
c 's de�nition.

� Case ϕ = ψ1∧ψ2: by the induction hypothesis,MΓ
c , A � ψ1∧ψ2 ⇐⇒ ψ1 ∈ A

and ψ2 ∈ A, which holds byMΓ
c 's de�nition.

� Other connectives (∨,→,↔): their proof may be derived by following the ideas

presented in the bullets above.

� Case ϕ = 〈t, (f, b)〉φ. Then,MΓ
c , A � 〈t, (f, b)〉φ ⇐⇒ 〈t, (f, b)〉φ ∈ A:

→

Let MΓ
c , A � 〈t, (f, b)〉φ. From De�nition 5.3.3, there is an atom B where

ASΓ
ΠB and φ ∈ B. By Lemma 11, 〈t, (f, b)〉φ ∈ A. Therefore, it holds.

←

Let MΓ
c , A 2 〈t, (f, b)〉φ. From De�nition 5.3.5's valuation function V Γ

c and

Lemma 5, we have MΓ
c , A � ¬〈t, (f, b)〉φ. Therefore, for every B where

ASΓ
ΠB,MΓ

c ¬φ. From the induction hypothesis, φ /∈ B. Hence, from

Lemma 11 〈t, (f, b)〉φ /∈ A.

� Case ϕ = 〈t, (f, b)?〉φ. Then,MΓ
c , A � 〈t, (f, b)?〉φ ⇐⇒ 〈t, (f, b)?〉φ ∈ A:

→

Let MΓ
c , A � 〈t, (f, b)?〉φ. From De�nition 5.3.3, there is a state B where

ASΓ
Π?B and φ ∈ B. By Lemma 7, 〈t, (f, b)?〉φ ∈ A. Therefore, it holds.

←

Let MΓ
c , A 2 〈t, (f, b)?〉φ. From De�nition 5.3.5's valuation function V Γ

c and

Lemma 5, we have MΓ
c , A � ¬〈t, (f, b)?〉φ. Therefore, for every B where

ASΓ
Π?B,MΓ

c , B � ¬φ. From the induction hypothesis, φ /∈ B. Hence, From

Lemma 7, 〈t, (f, b)?〉φ /∈ A.

5.4 A Tableau for ReLo 56

Theorem 1 (Completeness of ReLo). The logic ReLo is complete with respect to the

class of proper canonical models.

Proof. For every consistent formula A, a canonical modelM can be constructed. From

Lemma 5, there is an atom A′ ∈ At(A) with A ∈ A′, and from Lemma 12, M, A′ � A.

Therefore, ReLo 's modal system is complete with respect to the class of proper canonical

models as De�nition 5.3.6 proposes.

5.4 A Tableau for ReLo

In this section we propose a tableau method for ReLo providing a syntactic proof proce-

dure similar to what other dynamic logics propose [27, 28, 73]. The de�nitions of tableau

and branch are standard in the literature [28,60,73] and are as follows.

De�nition 5.4.1 (Tableau in ReLo). A tableau T in ReLo is a rooted tree with nodes

labeled with formulae, pre�xed by states in an auxiliary �nite sequence of states ST which

guides the decomposition of formulae. A branch B is a path from the root to a leaf node. A

segment S is a path from the root node to some intermediate node (i.e., a non-leaf node).

Intuitively, a tableau in ReLo of a formula ϕ : T denotes a failed attempt to prove ϕ :

F , which in turn yields ϕ as true. Branches of the tableau can be interpreted as a tentative

of the construction of a model that holds for the initial formula ϕ : F , and segments as

the intermediate steps taken to construct such model. De�nition 5.4.2 formalizes the rules

that may be applied to formulas in ReLo's Tableau.

De�nition 5.4.2. Tableau rules for ReLo

Let w, x denote states, ϕ a ReLo formula, and π = (f, b) a ReLo program. The rules

valid for ReLo Tableau are as follows. In what follows, let t′π be the result of fReLo(t, π)

and δ(w) the data markup function of a state w.

� Propositional rules

(And-T)
w: ϕ ∧ ψ : T
w: ϕ : T

w: ψ : T

(And-F) w: ϕ ∧ ψ : F
w: ϕ : F w: ψ : F

(Or-T) w : ϕ ∨ ψ : T
w: ϕ : T w: ψ : T

(Or-F)
w : ϕ ∨ ψ : F
w: ϕ : F

w: ψ : F

5.4 A Tableau for ReLo 57

(Neg-T)
w : ¬ϕ : T
w : ϕ : F

(Neg-F)
w : ¬ϕ : F
w : ϕ : T

(→ −T) w : ϕ→ ψ : T
w : ϕ : F w : ψ : T

(→ −F)
w : ϕ→ ψ : F
w : ϕ : T

w : ψ : F

� Modal rules

(〈t, π〉 − T) w: 〈t, π〉ϕ : T

x: ϕ : T

x is a new state in the se-

quence of states ST accessible

from w.

(〈t, π〉 − F)
w: 〈t, π〉ϕ : F

x: ϕ : F

x is any state (new or al-

ready existing) in the sequence

of states ST with x accessible

from w by π.

([t, π]− T)
w: [t, π]ϕ : T

x: ϕ : T

x is any state (new or al-

ready existing) in the sequence

of states ST with x accessible

from w by π.

([t, π]− F)
w: [t, π]ϕ : F

x: ϕ : F

x is a new state in the se-

quence of states ST accessible

from w.

(〈t, π〉(R) − T)
w: 〈t, π〉ϕ : T, i� fReLo(t, π) = ε

w: ϕ : T

w the same state. This rule captures

the behavior of axiom R. Its non va-

lidity is the normal case for diamond

formulas.

The rules for the iteration operator combine pre�xed tableau with some ideas from [76]

to allow reasoning over iteration. A formula 〈t, π?〉ϕ is de�ned as an eventuality. When-

ever an eventuality is found, we introduce it as a fresh (possibly indexed) propositional

symbol X〈〉 where X〈〉 ↔ 〈t, π?〉ϕ. The indexation of these variables is required to identify

di�erent eventualities in the proof process. The objective of introducing such variables is

to enable the detection of unsuccessful loops where 〈t, π〉ϕ is not ful�lled (as in De�ni-

tion 5.4.3).

The introduction of such propositional symbols requires a distinct set X for them to

di�er from the set Φ of propositional letters used for formulae. Note that this is also valid

for eventualities [t, π?]ϕ, in which case the fresh symbol introduced is X[].

� Program operator rules

5.4 A Tableau for ReLo 58

� Iteration

(〈t, π?〉)-T
w: 〈t, π?〉ϕ : T

w: X〈〉 : T
X〈〉 ↔ 〈t, π?〉ϕ

(〈t, π?〉)-F
w: 〈t, π?〉ϕ : F

w: ϕ : F

w: 〈t, π〉〈t′π, π?〉ϕ : F

The data sequence t is a sequence

such that t ⊆ δ(w) and t′π ≺
fReLo(tπ, π).

([t, π?])-T
w: [t, π?]ϕ : T

w: ϕ : T

w: [t, π][t′π, π
?]ϕ : T

The data sequence t′π is a sequence

such that t ⊆ δ(w) and t′π ≺
fReLo(t, π).

([t, π?])-F

w: [t, π?]ϕ : F

w: X[] : F

X[] ↔ [t, π?]ϕ

(X〈〉) w: X〈〉 : T
w : ϕ : T w : ϕ : F

w: 〈t, π〉X〈〉 : T

(X[]) w: X[] : F

w: ϕ : F w : ϕ : T

w: [t, π]X[] : F

The iteration rules introduced by X〈〉 rules can be intuitively detailed as follows: for

formulas 〈t, π?〉ϕ, the reduction of the modality employing ? is done by stating that ϕ is

either valid in the reached state, or we may reduce it once again in another state where

ϕ is valid. The rule X〈〉 denote that
In what follows some useful de�nitions regarding notions of iteration in the tableau

are discussed. We follow the methodology proposed by [28].

A segment S is denoted by a path between two di�erent states in the Tableau. A set

of pre�xed formulae of a segment S is the set of all formulae ϕ in S that are pre�xed by

some state w as

S/w = {ϕ | w : ϕ ∈ S}

A pre�x w is said to be reduced in a segment S if the modal rules are the only rules

not applied yet to the set S/w. It is fully reduced if all possible rules have been applied.

Intuitively, the reduction states that all iteration rules have been applied in formulae

in S/w (if possible), while the full reduction yields formulae with all transitional (i.e.,

rules that may change a state) rules applied.

A branch B is said to be π-completed if all pre�xes are reduced, and for every w which

is not fully reduced, there is a segment S and a pre�x w′ of S smaller than B and w which

is fully reduced and w′ is a copy of w in B.
A pre�x w′ of a segment S ′ is said to be a copy of another pre�x w in a segment S

5.4 A Tableau for ReLo 59

if S/w = S ′/w′ and they have the same transitions format given by the auxiliary tree of

states.

De�nition 5.4.3 (ful�lled X). An eventuality X is said to be ful�lled if there is a labeled

formula w : ϕ : T in the same segment with w : X〈〉 (satisfying it), or X〈〉 collapses to a

X〈〉0 which has already appeared in the branch and is ful�lled. For the case of X[], it is

ful�lled if there is a w : ϕ : F in the same segment with w : X[], or X[] collapses to a X[]0

which has already appeared in the branch and is ful�lled.

An eventuality X[] cannot be ful�lled and collapse to itself at the same time in another

state v previously visited because it generates both ϕ : T and ϕ : F from the rule

application. Suppose w : X[] : T collapses to a shorter v : X[] : T . If it ful�lled X[], then X[]

in state w would not exist, as it would have already been ful�lled in a earlier derivation.

The same is also valid for eventualities X〈〉, following the same idea.

Summarizing, this can be interpreted as a unsuccessful loop, in which we try to ful�ll

eventualities X[] or X〈〉 by applying their corresponding rules: the left hand side of the rule
is always discarded, with no success on ful�lling the eventualities generated in their right

hand side. At some point during the derivation, there will be a state ω with formulae

as the same of a previously visited state (i.e., a copy) v where S/ω = S ′/v. One may

conclude that this will not end, and the loop will never succeed to close. This is captured

in De�nition 5.4.4 as an ignorable branch.

De�nition 5.4.4. A branch B is ignorable if it contains a X introduced by any of the

X − rules which collapses to itself (either directly or transitively) and its corresponding

shorter branch (the left branch resulting from X rule's application) is closed.

The idea De�nition 5.4.4 presents is to denote that the looping introduced by X rules

may not close, yielding a unsuccessful loop by always iterating and leaving the rightmost

branch �open�. If at some point the proof reaches a Xi with the same formulae as an

already visited state, we can conclude that it will never be ful�lled and therefore ignore

the remainder of the branch, as it has already been reduced earlier in the proof and it

may introduce a potentially in�nite pattern in the formula decomposition process. With

De�nition 5.4.4, we may de�ne the closure of ReLo tableau as follows.

De�nition 5.4.5 (Tableau contradiction). A contradiction in a branch B of a ReLo

tableau is de�ned following the notion of �parent contradiction�: B is contradictory if

there is a state w and a formulae ϕ, such that (w : ϕ : T) and (w : ϕ : F) are in B.

5.4 A Tableau for ReLo 60

De�nition 5.4.6 (Tableau closure). A tableau T is closed if all of its branches are either

contradictory or ignorable, yielding that the formula syntactically holds in ReLo. Con-

versely, a tableau T is open if there is at least a branch with no contradictions or it is not

ignorable.

5.4.1 Tableau Usage Examples

In what follows we provide usage examples of the tableau developed for ReLo. We show

its usage for the axioms de�ned in Section 5.1.11, stating that they are indeed valid in

the proposed Tableau. The rules applied are shown in the rightmost part of the proof,

where t and π in the names of rules with modalities are omitted.

� K: [t, (f, b)](ϕ→ ψ)→ ([t, (f, b)]ϕ→ [t, (f, b)]ψ)

1.

2.

3.

4.

5.

6.

7.

8.

9.

w : [t, (f,b)](ϕ→ ψ)→ ([t, (f,b)]ϕ→ [t, (f,b)]ψ) : F

w : [t, (f,b)](ϕ→ ψ) : T

w : ([t, (f,b)]ϕ→ [t, (f,b)]ψ) : F

w : [t, (f,b)]ϕ : T

w : [t, (f,b)]ψ : F

x : ψ : F

x : ϕ→ ψ : T

x : ϕ : F

x : ϕ : T

×
8,9

x : ψ : T

×
6,8

1,→ −F
1,→ −F
3,→ −F
3,→ −F
5, []− F
2, []− T

5,→ −T
4, []− T

� And-→: [t, (f, b)](ϕ ∧ ψ)→ ([t, (f, b)]ϕ ∧ [t, (f, b)]ψ)

1.

2.

3.

4.

5.

6.

7.

8.

w : [t, (f,b)](ϕ ∧ ψ)→ ([t, (f,b)]ϕ ∧ [t, (f,b)]ψ) : F

w : [t, (f,b)](ϕ ∧ ψ) : T

w : ([t, (f,b)]ϕ ∧ [t, (f,b)]ψ) : F

w : [t, (f,b)]ϕ : F

x : ϕ : F

x : ϕ ∧ ψ : T

x : ψ : T

x : ϕ : T

×
5, 8

w : [t, (f,b)]ψ : F

y : ψ : F

y : ϕ ∧ ψ : T

y : ϕ : T

y : ψ : T

×
5, 8

1,→ −F
1,→ −F

3,∧ − F
4, []− F
2, []− T
6,∧ − T
6,∧ − T

5.4 A Tableau for ReLo 61

� And-←: ([t, (f, b)]ϕ ∧ [t, (f, b)]ψ)→ [t, (f, b)](ϕ ∧ ψ)

1.

2.

3.

4.

5.

6.

7.

8.

w : ([t, (f,b)]ϕ ∧ [t, (f,b)]ψ)→ [t, (f,b)](ϕ ∧ ψ) : F

w : ([t, (f,b)]ϕ ∧ [t, (f,b)]ψ) : T

w : [t, (f,b)](ϕ ∧ ψ) : F

w : [t, (f,b)]ϕ : T

w : [t, (f,b)]ψ : T

x : ϕ ∧ ψ : F

x : ϕ : F

x : ϕ : T

×
7, 8

x : ψ : F

x : ψ : T

×
7, 8

1,→ −F
1,→ −F
2,∧ − T
2,∧ − T
3, []− F

6,∧ − F
4, []− T ; 5, []− T

� R→: 〈t, (f, b)〉ϕ→ ϕ, if fReLo(t, (f, b)) = ε

1.

2.

3.

4.

w : 〈t, (f,b)〉ϕ→ ϕ, if fReLo(t,(f,b) : F

w : 〈t, (f,b)〉ϕ : T

w : ϕ : F

w : ϕ : T

×
3,4

1,→ −F
1,→ −F
2, <> −R− T

� R←: ϕ→ 〈t, (f, b)〉ϕ, if fReLo(t, (f, b)) = ε

1.

2.

3.

4.

w : ϕ→ 〈t, (f,b)〉ϕ, if fReLo(t,(f,b) : F

w : ϕ : T

w : 〈t, (f,b)〉ϕ : F

w : ϕ : F

×
2,4

1,→ −F
1,→ −F
2, <> −R− T

5.4 A Tableau for ReLo 62

� It− →: ϕ ∧ [t, (f,b)][t(f,b), (f,b)
?]ϕ→ [t, (f,b)?]ϕ

1.

2.

3.

4.

5.

6.

w : ϕ ∧ [t, (f,b)][t(f,b), (f,b)
?]ϕ→ [t, (f,b)?]ϕ : F

w : ϕ ∧ [t, (f,b)][t(f,b), (f,b)
?]ϕ : T

w : [t, (f,b)?]ϕ : F

w : ϕ : T

w : [t, (f,b)][t(f,b), (f,b)
?]ϕ : T

w : [t, (f,b)?]ϕ : T

×
3,6

1,→ −F
1,→ −F
2,∧ − T
2,∧ − T
5, []− T

� It− ←: [t, (f,b)?]ϕ→ ϕ ∧ [t, (f,b)][t(f,b), (f,b)
?]ϕ

1.

2.

3.

4.

5.

6.

7.

8.

w : [t, (f,b)?]ϕ→ ϕ ∧ [t, (f,b)][t(f,b), (f,b)
?]ϕ : F

w : [t, (f,b)?]ϕ : T

w : ϕ ∧ [t, (f,b)][t(f,b), (f,b)
?]ϕ : F

w : ϕ : F

w : ϕ : T

w : [t, (f,b)][t(f,b), (f,b)
?]ϕ : T

×
4,5

w : [t, (f,b)][t(f,b), (f,b)
?]ϕ : F

x : [t(f,b), (f,b)
?]ϕ : F

w : ϕ : T

w : [t, (f,b)][t(f,b), (f,b)
?]ϕ : T

x : [t(f,b), (f,b)
?]ϕ : T

×
5,7

1,→ −F
1,→ −F

3,∧ − F
2, []? − T ; 4, []− F
2, []? − T
2, []? − T
7, []− T

5.4 A Tableau for ReLo 63

� Ind: ϕ ∧ [t, (f, b)?](ϕ→ [t(f,b)? , (f, b)]ϕ)→ [t, (f, b)?]ϕ

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

w : ϕ ∧ [t, (f,b)?](ϕ→ [t(f,b), (f,b)]ϕ)→ [t, (f,b)?]ϕ : F

w : ϕ ∧ [t, (f,b)?](ϕ→ [t(f,b), (f,b)]ϕ) : T

w : [t, (f,b)?]ϕ : F

w : ϕ : T

w : [t, (f,b)?](ϕ→ [t(f,b), (f,b)]ϕ) : T

w : ϕ : F

×
4, 6

w : ϕ : T

w : [t(f,b), (f,b)]X[] : F

x : X[] : F

x : ϕ→ [t(f,b), (f,b)]ϕ : T

x : [t, (f,b)?](ϕ→ [t(f,b), (f,b)]ϕ : T

x : ϕ : F

×
4, 11

x : [t(f,b), (f,b)]ϕ : T

x : ϕ : F

×
4, 12

x : ϕ : T

x : [t(f,b),(f,b)]X[] : F

y : X[] : F

×
Ignorable, 14 = 8

1,→ −F
1,→ −F
2,∧ − T
2,∧ − T

3, []? − F
3, []? − F
7, []− T
5, []− T
5, []− T

9,→ −T

8,X[]

8,X[]

13, []− F

5.4.2 Termination

Due to the presence of iteration rules in ReLo's Tableau, it is not terminating as these rules

may lead to a in�nite number of derivations. Therefore, We de�ne a search strategy for

ReLo in which the tableau process has termination (i.e., after tableau rule applications,

the tableau will eventually stop). The interesting cases here are introduced by rules

regarding the ? operator, which may allow a nondeterministic �nite number of derivations,

which can lead to an in�nite tableau.

Lemma 13 (Termination of ReLo's Tableau). The proposed tableau is terminating.

Proof. The proof proceeds by induction on ReLo's tableau rules. The idea of the proof is

to show that every rule de�ned for the tableau reaches a scenario that cannot be further

reduced or it does not bring any advantage to do so (which is the case when considering

? rules). From Lemmas 14 and 16, tableau proofs for a formula ϕ will either result on a

closed tableau for ¬ϕ, to which ϕ is satis�able in ReLo or it will result on an open tableau,

to which the formula ϕ is not satis�able in ReLo, and a counter-model can be derived. To

5.4 A Tableau for ReLo 64

proceed with such induction, we �rst de�ne (inductively) a systematic procedure which we

de�ne the application of rules as follows based on standard arguments in literature [31]:

1. A tableau for ϕ is a tableau T initiating with (w : ϕ : F) as the root of the proof

tree.

2. The order of the main operators of formulae to be reduced in Steps 3. and 4. must

follow the following sequence, �rst to last from top to bottom:

(a) propositional main operators {∧,∨,¬,→}

(b) modal main operators [t, (f, b)], 〈t, (f, b)〉

(c) iteration main operators [t, (f, b)?], 〈t, (f, b)?〉,X〈〉,X[]

3. If after n applications of tableau expansion rules to formulae in T as in Step 2 the

result is a closed tableau, stop and return T as a closed tableau.

4. If Step 3 did not yield a closed tableau, choose the formula k : ψ : σ closest to the root

node in the leftmost branch1 which has not been reduced. If ψ is a atomic formula,

then this step ends. Otherwise, for all open branches B that contain (k : ψ : σ):

� if ψ is of form ψ1 ∧ ψ2 and σ = T, then add k : ψ1 : T and k : ψ2 : T at the

end of B. If σ = F, then add k : ψ1 : F and k : ψ2 : F splitting the end of B,
resulting in two new branches from B, one ending with k : ψ1 : T and other

ending with k : ψ2 : T .

� if ψ is of form ψ1 ∨ ψ2 and σ = T, then add k : ψ1 : T and k : ψ2 : T splitting

the end of B, resulting in two new branches from B, one ending with k : ψ1 : T

and other ending with k : ψ2 : T . If σ = F, then add k : ψ1 : F and k : ψ2 : F

at the end of B.

� if ψ is of form ¬ψ1 and σ = T, then add k : ψ1 : F at the end of B. If σ = F,

then add k : ψ1 : T at the end of B.

� if ψ is of form ψ1 → ψ2, it may be rewritten as (¬ψ1)∨ψ2, therefore it reduces

to the case of ψ1 ∨ ψ2.

� if ψ is of form 〈t, (f, b)〉ψ1 and σ = T, then add k′ : ψ1 : T as a new state

which has not been visited yet (i.e., it does not identify a pre�x in the current

tableau), k′ as the next available pre�x. If σ = F, then for each accessible state

1As this may result in a nondeterministic choice (i.e., more than one un�nished formulae in the same
tree level), we focus on the leftmost occurrence.

5.4 A Tableau for ReLo 65

k′ from k which has already been visited, add k′ : ψ1 : F to the end of each

branch.

� if ψ is of form [t, (f, b)]ψ1 and σ = T, then for each accessible state k′ from k

which has already been visited, add k′ : ψ1 : T to the end of each branch. If

σ = F, then add k′ : ψ1 : F as a new state which has not been visited yet (i.e.,

it does not identify a pre�x in the current tableau), k′ as the next available

pre�x.

� if ψ is of form 〈t, (f, b)?〉ψ1 and σ = T, introduce k : X〈〉i : T , where X〈〉i =

〈t, (f, b)?〉ψ1 at the end of B, and check whether there is a state k0 in which

every formula of k0 is true in k (and vice-versa), and whether k0 : X〈〉k : T holds.

If this holds, then X〈〉i collapses into X〈〉k, and k is a copy of k0. Therefore,

B is a ignorable branch and ψ should not be reduced further. If σ = F, then

add both k: ψ1 : F and k: 〈t, π〉〈t′π, π?〉ψ1 : F at the end of B. Then, add

k : 〈t′π, π?〉ψ1 : F at the end of B, and check if exists a state k0 in which every

formula of k0 is true in k (and vice-versa). If it does, then this con�guration has

already been considered in the proof and this branch is an ignorable branch.

� if ψ is of form X〈〉, then at the end of B add k : ψ1 : T at the left resulting

branch B1, and k : ψ1 : F and k : 〈t, π〉X〈〉k : T at the right resulting branch

B2, splitting it in two new branches from B. Now, add k′ : X〈〉k : T at the end

of B2. Check whether there is a state k0 in which every formula of k0 is true

in k′ (and vice versa), and there is an eventuality X〈〉k0
= 〈t, (f, b)?〉ψ1 = X〈〉′k

. If this holds, then X〈〉′k collapses into X〈〉k0
, and k′ is a copy of k0. The left

resulting branch B1 is closed because there is a k0 : ψ1 : F (from the previous

derivation of X〈〉k), and B2 is a ignorable branch.

� if ψ is of form [t, (f, b)?]ψ1 and σ = T, add both k: ψ1 : T and k: [t, π][t′π, π
?]ψ1

: T at the end of B. Then, add k : [t′π, π
?]ψ1 : T at the end of B, and check if

exists a state k0 in which every formula of k0 is true in k (and vice-versa). If

it does, then this con�guration has already been considered in the proof and

this branch is a ignorable branch. if σ = F, introduce k : X[]i
: T at the end of

B, and check whether there is a state k0 in which every formula of k0 is true in

k (and vice-versa), and k0 : X[]k
: T . If this holds, then X[]i

collapses into X[]k
,

and k is a copy of k0. Therefore, B is a ignorable branch and ψ should not be

reduced further.

� if ψ is of form X[], then at the end of B add k : ψ1 : F at the left resulting

branch B1, and k : ψ1 : T and k : [t, π]X[]k
: F at the right resulting branch

5.4 A Tableau for ReLo 66

B2, splitting it in two new branches from B. Now, add k′ : X[]k
: T at the end

of B2. Check whether there is a state k0 in which every formula of k0 is true

in k′ (and vice versa), and there is an eventuality X[]k0
= [t, (f, b)?]ψ1 = X[]

′
k

. If this holds, then X[]k′
collapses into X[]k0

, and k′ is a copy of k0. The left

resulting branch B1 is closed because there is a k0 : ψ1 : F (from the previous

derivation of X[]k
), and B2 is a ignorable branch.

Following this procedure, all rules which do not refer to the ? operator (i.e., rules

denoted by bullets �Logical rules� and �Modal rules� in De�nition 5.4.2), decrease the size

of the rules' resulting formulae, either by decomposing logical operators (�Propositional

rules�) or modalities (�Modal rules�), eventually reaching an atomic formula ϕ, except for

modalities which may also introduce new states as pre�xes for formulae.

As for the rules considering ? operator, their behaviour intuitively introduce a �nite

non-deterministic number of additional reductions (but no additional new states). Let

us follow by contradiction by supposing that, by following the aforementioned procedure,

tableau construction goes on forever. It is useful here that the number of formulae com-

posing a formula ϕ is �nite, although the amount of states is potentially in�nite. Then,

it is possible for some state k to know when all formulas that could have been introduced

earlier in the tableau have already been. Consider a chain of states k1, k2, k3, . . . in which

ki relates with kj, i < j as a result of rules 〈〉 − T or [] − F (i.e, rules that introduce a

new unused state ki), either themselves or as a result of some ? rule. Because the range

of formulas obtained by rules application is �nite, there exists ki and kj which are copies,

i.e., they have the same associated set of formulae.

This is why the procedure always checks for the existence of such a state: new deriva-

tions are only performed for formulae that have not been already reduced, and the check

for states which have the same set of formulae pre�xed by them is performed to avoid

derivations which lead to in�nite branches. For the branch θ, if at step n+ 1 such states

do not exist (by induction, the �rst state ki has already been found in the �rst n steps

of the procedure, therefore step n+ 1 will �nd state kj in which kj is a copy of state ki),

then this branch is an in�nite branch and it will never be closed. When all formulae have

been already reduced, the resulting tableau is either a closed tableau or an open tableau,

to which the open branch leads to a counter model for the formula one is trying to prove.

5.4 A Tableau for ReLo 67

5.4.3 Soundness

The proof of ReLo's tableau soundness follows standard techniques in literature [31, 32].

We adapt them to ReLo's reality in order to proceed. The soundness of the tableau

proceeds by de�ning the notion of a satis�able tableau, and then showing that satis�ability

is a loop invariant property.

Let us de�ne a map m : Φ → {T, F} as a function that maps a formula (i.e., its

labeling state and the formula itself) to T . Intuitively, m states that the tableau formula

w : ϕ is valid at the state denoted by its label.

De�nition 5.4.7 (Tableau satis�ability). A ReLo tableau T is satis�able if at least one

of its branches B is satis�able. A branch B is satis�able if there is a map m which maps

each of its formulae (w : ϕ) ∈ B to T .

Lemma 14 (Satis�ability for ReLo Tableau is loop invariant). The application of any

tableau expansion rule (as in De�nition 5.4.2) to a satis�able tableau T will result in

another satis�able tableau T ′.

Proof. Suppose T is a satis�able tableau. We want to prove that the application of

a tableau expansion rule to some formula ψ in a branch B of T results in a satis�able

tableau T ′. The proof proceeds by induction on the tableau expansion rules, showing that

for each rule application, the resulting tableau is indeed satis�able. From De�nition 5.4.7,

as T is satis�able, it has a satis�able branch. Suppose b is such a satis�able branch of T .
We have to analyze the following cases:

1. case b 6= B: as no rule was applied in b and b is a branch of T ′, b is still a satis�able
branch of a satis�able tableau T ′.

2. case b = B: branch B is satis�able in T . We must show that an tableau expansion

rule application must yield a satis�able tableau T ′. We need to consider each of

the possible tableau expansion rules that could be applied to formula ψ. For these

cases, we only consider rules (∗ − T) as their dual may be obtained as follows:

� (And− F) may be obtained by the negation of (Or − T)

� (Or − F) may be obtained by the negation of (And− T)

� (→ −F) may be obtained by rewriting it to ¬ϕ1 ∨ ϕ2, which reduces to the

case of (Or − F)

� (〈t, π〉−F) may be obtained by the negation of ([t, π]−T)

� ([t, π]−F) may be obtained by the negation of (〈t, π〉−T)

5.4 A Tableau for ReLo 68

� (〈t, π?〉−F) may be obtained by the negation of ([t, π?]−T)

� ([t, π?]−F) may be obtained by the negation of (〈t, π?〉−T)

Therefore, let the tableau expansion rule applied to a formula ψ be:

� (And − T): by induction, ψ is w : ϕ1 ∧ ϕ2 mapped to T by a map m in T .
Therefore, because w : ϕ1 and w : ϕ2 maps both to T by m in B′ as a satis�able
branch, T ′ is a satis�able tableau.

� (or − T): by induction, ψ is w : ϕ1 ∨ ϕ2 mapped to T by a map m in T . The
application of (or − T) yields two di�erent branches from B, namely B1 with

ϕ1 and B2 with ϕ2, and from ψ mapping to T by m, either ϕ1 or ϕ2 (or both)

maps to T by m. If m(ϕ1) = T , then B1 denotes a satis�able branch in T ′,
and if m(ϕ2) = T , then B2 denotes a satis�able branch in T ′. In both cases,

applying this rule in a formula in the branch B results in a satis�able branch

B′ of a satis�able tableau T ′.

� (→ −T): by induction, ψ is w : ϕ1 → ϕ2, which can be rewritten as ¬ϕ1 ∨ ϕ2,

which reduces to the case of (or − T).

� (〈t, π〉−T): by induction, ψ is w : 〈t, π〉ϕ mapped to T by a map m in T . This
rule yields m(x : ϕ) = T in T ′, where ϕ is labeled with a new state x in the

sequence of states allocated to formulas in T . Therefore, the resulting branch

B′ is a satis�able branch in T ′.

� ([t, π]−T): by induction, ψ is w : [t, π]ϕ mapped to T by a map m in T . This
rule yields m(x : ϕ) = T in T ′, where ϕ is labeled with a new (or already

existing) state in the sequence of states allocated to formulas in T . Therefore,
the resulting branch B′ is a satis�able branch in T ′.

� ([t, π?]−T): by induction, ψ is w : [t, π?]ϕ mapped to T by a map m in T . The
branch B′ that results from applying this rule to ψ is B with formulae w : ϕ

and w : [t, π][t′π, π
?]ϕ, where both formulae maps to t by m. Therefore, B′ is a

satis�able branch, yielding T ′ as a satis�able tableau.

� (〈t, π?〉−T): by induction, ψ is w : 〈t, π?〉ϕ with m(〈t, π?〉ϕ) = T in T . This

rule yields a new propositional symbol X〈〉, which in turn may be further re-

duced by the X〈〉 rule. The application of X〈〉 results in a tableau T ′ with two

new branches as follows.

� B1 which results from appending w : ϕ to B. From the rule, m(w : ϕ) maps

to T in B1, rendering it as a satis�able branch of T ′, which consequently

5.4 A Tableau for ReLo 69

is a satis�able tableau.

� B2, which results from appending both w : ϕ and w : 〈t, π〉X〈〉. From the

rule, in this branch m(w : ϕ) = F and m(w : 〈t, π〉X〈〉) = T . We need to

ensure now that the outcome of subsequent X〈〉 also results in a satis�able

tableau, where they may result in ignorable branches. We need to ensure

that such branches can be discarded, still resulting on a satis�able tableau

T ′.
Therefore, let us de�ne a order relation R≺ as a relation over formulae X〈〉
in a branch B as follows:

* (x0 : X〈〉) R≺ (x1 : X〈〉) i� x0 : X〈〉 belongs to a segment X0, x1 : X〈〉
appears in a segment X1 and (x0, X0) is shorter than (x1, X1).

* (x1 : X〈〉1) R≺ (x0 : X〈〉0) i� X〈〉1 collapses in X〈〉0 and x0 is the fully

reduced copy of x1.

Now, let R≺−T be R≺'s transitive closure. Therefore, by R≺, there is a

state ω with (ω : X〈〉ω), where either X〈〉 will be ful�lled by some xi : ϕ : T

(as yielded by the result of X〈〉's rule application), and xω is accessible

from xi, or that (ω : X〈〉ω) R≺−T (ω : X〈〉ω), and for every xi in path(X〈〉),
xi : ϕ : F , where path(X〈〉) is the path of states reached from x0 until

xω from successive X〈〉 expansions. Intuitively, the �rst case denotes the

scenario where the eventuality X〈〉 will be ful�lled, and the second one

denotes that it cannot be ful�lled, and hence it is a ignorable branch that

can be discarded, where both scenarios leads to a consistent T ′.

With Lemma 14, we may proceed with the following lemmas, also standards in the

literature [28, 32].

Lemma 15. If there is a closed tableau T for ϕ, then ϕ is not satis�able

Proof. The proof proceeds by contradiction. Suppose that there is a closed tableau for

ϕ, but ϕ is satis�able. The construction of the tableau for ϕ is the tableau 〈w : ϕ〉 which
is basically ϕ labeled with a �starting� state w. This tableau is satis�able (because we

supposed ϕ is satis�able). Then, from Lemma 14, each subsequent tableau generated by

applying the tableau expansion rules to subformulas of ϕ results in satis�able tableau,

even for the closed tableau T . But because T is closed, there is no satis�able branch B
in T , which contradicts Lemma 14.

5.4 A Tableau for ReLo 70

Lemma 16 (Soundness of ReLo tableau). If ϕ has a tableau proof, then ϕ is a tautology

in ReLo.

Proof. A tableau proof for ϕ comes from a closed tableau for w : ϕ : F . From Lemma 15,

if ¬ϕ has a closed tableau, then it is not satis�able. Therefore, it follows that ϕ is indeed

satis�able.

Chapter 6

A ReLo Implementation in Coq

In this chapter, we detail and discuss the implementation of ReLo as described in Chap-

ter 5, focusing on the logic's core aspects. We also implement some functionalities re-

garding model veri�cation, including a veri�cation mechanism that returns whether a

model satis�es some ReLo formula, a mechanism that tries to �nd a model that satis�es

a formula (if satis�able), and a tableau proof procedure based on the rules presented in

Section 5.4. All the code discussed here is available at https://github.com/frame-lab/

ReoLogicCoq.

6.1 Core ReLo de�nitions

The formalization starts by implementing ReLo's basic notions referring to frame and

model as in De�nitions 5.1.8 and 5.1.9. They are formalized as Coq records respectively

as frame (De�nition 6.1.1) and model (De�nition 6.1.2) as follows:

De�nition 6.1.1 (ReLo frames in Coq).

Record frame := mkframe {

S : set state;

R : set (state × state);

lambda : state → name → QArith base.Q;

delta : state → set dataConnector

}.

� S is the set of states;

� R is the relation RΠ ⊆ S × S, structured in Coq as a set of pair of states (si, sj),

denoting that sj is accessible from si;

https://github.com/frame-lab/ReoLogicCoq
https://github.com/frame-lab/ReoLogicCoq

6.1 Core ReLo de�nitions 72

� lambda is a function that expects a state s and a port name n, returning the time

the data was �owing in port name n at state s, and

� delta as the function which returns the possible data items of port names at a state

s.

De�nition 6.1.2 (ReLo models in Coq). A ReLo model is a Record formalized contain-

ing two �elds, namely Fr as a frame from De�nition 6.1.1, and V as the model's valuation

function, which maps a state s and a propositional formula ϕ to true if ϕ holds in state

s, and false otherwise.

Record model := mkmodel {

Fr : frame;

V : state → (dataProp name data) → bool

}.

The following de�nitions introduces Reo connectors based on their behaviour, as ex-

plored in Section 4. De�nition �owProgram introduces Reo programs that denote data

�ow from a source node to a sink node, while blockProgram formalizes the connectors that

have their behavior as �blocks� which may enable or hold data �ow to the remainder of

the connectors (attached to these connectors by a common node):

Inductive �owProgram :=

| �owSync : name → name → �owProgram

| �owLossySync : name → name → �owProgram

| �owFifo : name → name → �owProgram

| �owMerger : name → name → name → �owProgram

| �owReplicator : name → name → name → �owProgram

| �owTransform : (data → data) → name → name → �owProgram

| �owFilter : (data → bool) → name → name → �owProgram.

Inductive blockProgram :=

| �owSyncdrain : name → name → blockProgram

| �owaSyncdrain : name → name → blockProgram.

We proceed by formalizing the ReLo program as π = (f, b) as the following Coq

de�nition. Constructor reoProg expects two arguments: a set �owProgram denoting the

set of �ow programs f and set blockProgram stands for the set of �blocking� programs b.

Inductive reoProgram :=

| reoProg : set �owProgram → set blockProgram → reoProgram.

Then, the de�nition of a Reo connector in Coq is achieved by mapping π = (f, b) as

a Reo circuit Π out of canonical connectors by means of the following de�nition:

6.1 Core ReLo de�nitions 73

Inductive connector :=

| sync : name → name → connector

| lossySync : name → name → connector

| �fo : name → name → connector

| syncDrain : name → name → connector

| asyncDrain : name → name → connector

| �lterReo : (data → bool) → name → name → connector

| transform : (data → data) → name → name → connector

| merger : name → name → name → connector

| replicator : name → name → name → connector.

After the de�nition of connector. the possible data �ows of each connector are for-

malized in coq as dataConnector shown below.

Inductive dataConnector :=

| �foData : name → data → name → dataConnector

| dataPorts : name → data → dataConnector.

A ReLo program is de�ned as π = (f.b), where f is the set of connectors that compose

the Reo model which are connectors that models data communication between two entities

(�owProgram), and b is the set of �blocking� connectors, namely the ones that describe a

drain behaviour (blockProgram).

A program π = (f, b) is then converted to a Reo model composed by channels intro-

duced in Figure 4.1 and de�ned in Coq by connector. A lift is performed to each of the

programs by the following de�nition.

Definition program2SimpProgram (prog : reoProgram) : set connector :=

match prog with

| reoProg setFlow setBlock ⇒ (block2Reo setBlock)++(�ow2Reo setFlow)

end.

Then, we de�ne program as an inductive type which depicts the type of possible

data �ring for each Reo connector modelled as a ReLo program. Its constructors will

be used later by the �ring relation to determine how data �ow between which ports.

The mapping between the connector and its corresponding program is straightforward,

except for sync, merger and replicator which share asyncTo as the program. Constructor

transformTo stands for the Transform channel, and expects a transformation function of

support data→ data, and port names A and B, where the resulting data �ow is f(DA),

with DA the data �ow in the port at the moment. Constructor �lterTo denotes the data

�ow for Filter channel, where the predicate over the data �ow is modelled as a evaluation

6.1 Core ReLo de�nitions 74

of a function f : data→ bool. Therefore, data will �ow from A to B only if f(DA) = true.

Inductive program :=

| to : name → name → program

| asyncTo : name → name → program

| �foAlt : name → name → program

| transformTo : (data → data) → name → name → program

| �lterTo : (data → bool) → name → name → program

| SBlock : name → name → program

| ABlock : name → name → program.

We proceed by de�ning parse as in De�nition 5.1.4 in the following Coq code. It

re�ects the order of processing of each Reo channel that compose the Reo model as

De�nition 5.1.4 proposes, with the same purpose of correctly evaluate the programs,

independently of the order they are used to construct the model as a whole.

Fixpoint parse (pi : list connector) (s : list program) : list program :=

match pi with

| [] ⇒ s

| a::t ⇒ match a with

| sync a b ⇒ (parse(t) (s ++ [to a b]))

| lossySync a b ⇒ (parse(t) (s ++ [asyncTo a b]))

| �fo a b ⇒ (parse t s) ++ [�foAlt a b]

| syncDrain a b ⇒ (parse(t) ([(SBlock a b)] ++ s))

| asyncDrain a b ⇒ (parse(t) [(ABlock a b)] ++ s)

| �lterReo f a b ⇒ (parse(t) ([�lterTo f a b] ++ s))

| transform f a b ⇒ (parse(t) ([transformTo f a b] ++ s))

| merger a b c ⇒ (parse(t) (s ++ [(to a c); (to b c)]))

| replicator a b c ⇒ (parse(t) (s ++ [(to a b); (to a c)]))

end

end.

The next de�nition is that of the function �re, which is given in De�nition 5.1.6, and

with a data �ow of ports composing a program π and the program π itself models the

resulting data �ow as the result of �ring all eligible connectors. It is used by function go

as in De�nition 5.1.5.

Fixpoint �re (t : set dataConnector) (s : set goMarks) (acc: set dataConnector)

: set (set dataConnector) :=

match s with

6.1 Core ReLo de�nitions 75

| [] ⇒ match acc with

| [] ⇒ []

| x::y ⇒ [acc]

end

| ax::l ⇒ match ax with

| goTo a b ⇒ if (existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t)) then

match (port2port (goTo a b)

(�lter(fun y : (dataConnector) ⇒ match y with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t))) with

| None ⇒ (�re t l acc)

| Some x ⇒ (�re t l (x::acc))

end

else �re t l acc

| goTransform f a b ⇒ if (existsb

(fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t)) then

match (port2portTr f (goTransform f a b)

(�lter(fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t))) with

| None ⇒ (�re t l acc)

| Some x ⇒ (�re t l ((x::acc)))

end

else �re t l acc

| goFilter f a b ⇒ if (existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

6.1 Core ReLo de�nitions 76

end) (t)) then

match (port2portFil f (goTo a b)

(�lter(fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t))) with

| None ⇒ (�re t l acc)

| Some x ⇒ (�re t l ((x::acc)))

end

else �re t l acc

| goFifo a x b ⇒ if (existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t))

then (�re t l ((�foData a x b)::acc))

else �re t l acc

| goFromFifo a x b ⇒
if (existsb (fun x : (dataConnector) ⇒ match x with

| �foData name1 data name2 ⇒ (equiv decb name1 a)

| ⇒ false

end) (t))

then (�re t l ((dataPorts b x)::acc))

else �re t l acc

end

end.

Therefore, the function �re expects as input the current data �ow as t, a set of possible

�rings as s and acc as the output which will contain the next expected data �ow of the

whole connector. Its execution coordinates which ports and connectors �re, adding the

result of �ring them to acc. Auxiliary function port2port searches in the data �ow t if,

for each of the possible �rings to be considered in s there is a data �owing in their source

nodes. If this is the case, then the data found is the one to be considered in the connector's

�ring. The exception is for the case where a FIFO connector has data in it, where then

�re will check in the data �ow t whether the FIFO has data in it.

Note that �re employs auxiliary functions like port2port , port2portTr , and port2portFil ,

which retrieve the destination nodes of a connector when �ring, and in the case of Trans-

6.1 Core ReLo de�nitions 77

form and Filter connectors, respectively applies the function to the data item �owing

from the sink node to the source node, and only transmits the data to the sink node if

the �ltering criteria are satis�ed.

Function �re also has as one of its parameters a variable s as a set of goMarks, which

are e�ectively processed by it. The inductive type goMarks denote the type of possible

data �ows of each Reo connector modelled in connectors and it is de�ned as follows:

Inductive goMarks :=

| goTo : name → name → goMarks

| goFifo : name → data → name → goMarks

| goFromFifo : name → data → name → goMarks

| goTransform : (data → data) → name → name → goMarks

| goFilter : (data → bool) → name → name → goMarks.

Constructor goMarks formalizes the data �ows of channels Snyc, LossySync,Merger

and Replicator with goTo, the data respectively puring into and �owing FIFO channels

as goFifo and goFromFifo, the �ow of Transform and Filter channels as goTransform

and goFilter, respectively. Each of these constructors will be used by go to structure the

connectors eligible to data �ow, which in turn will be e�ectively processed by �re.

With the de�nition of �re, we de�ne go following De�nition 5.1.5: for each connector

πi ∈ s, the function will check whether the speci�ed conditions in De�nition 5.1.5 are

satis�ed by the data item in t as follows:

� to A B as the Sync connector: go will then add goTo A B according to i� A has

data in it in t.

� asyncTo A B as the LossySync connector: go will add goTo A B and goTo A A as

data �ows to be processed i� A has data in it in t. This simulates the two possible

outcomes form the LossySync execution: either the data �ows from A to B, or it

stays in port name A denoting it was lost on its way to B.

� �foAlt A B as the FIFO connector: go needs to consider two cases:

1. There is data coming into the FIFO channel: i� A has data in it in t, then go

adds goFifo A B to denote that there is data bound to enter the FIFO from

its source node;

2. There is data coming into the FIFO channel: i� there is data in the FIFO in

t, then go adds goFromFifo A B to denote that there is data bound to �ow out

of the FIFO channel to its sink node.

6.1 Core ReLo de�nitions 78

� transformTo t A B as the Transform connector: i� A has data in it in t, then it

adds goTransform f A B to denote the data �ow of A to B with the data item in A

transformed by f.

� �lterTo p A B as the Filter connector: transformTo t A B as the Transform con-

nector: i� A has data in it in t, then it adds goFilter f A B to denote the data �ow

of A to B will take place only if the data item satis�es the property speci�ed in f.

� SBlock A B as the SyncDrain connector: if both port names have data �owing

simultaneously in the channel, then it continues normal processing for the remainder

of the connector. Otherwise, go will remove from further processing connectors with

a sink node equal to one of the nodes of the SyncDrain channel being processed.

� ABlock A B as the AsyncDrain: if only one of the port names has data �owing

simultaneously in the channel, then it continues normal processing for the remainder

of the connector. Otherwise, go will remove from further processing connectors with

a sink node equal to one of the nodes of the SyncDrain channel being processed.

Fixpoint go (s : set program) (k : nat) (acc : set goMarks) (t : set dataConnector) :

set (set dataConnector) :=

match k with

| 0 ⇒ �re t acc []

| Datatypes.S n ⇒ match s with

| [] ⇒ �re t acc []

| prog::s' ⇒ match prog with

| to a b ⇒ if existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t)then

if negb((existsb (fun x : goMarks ⇒ match x with

| goTo name1 name2 ⇒ (equiv decb name2 b)

| goFifo name1 data name2 ⇒ (equiv decb name2 b)

| goFromFifo name1 data name2 ⇒ (equiv decb name2 b)

| goTransform f name1 name2 ⇒ (equiv decb name2 b)

| goFilter f name1 name2 ⇒ (equiv decb name2 b)

end) (acc)))

then (go s' n (acc++[goTo a b]) t)

else

6.1 Core ReLo de�nitions 79

(go s' n (swap acc (goTo a b)) t) ++ (go s' n (acc) t)

else (go s' n acc t)

| asyncTo a b ⇒ if (existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 name2 ⇒ (equiv decb name1 a)

| ⇒ false

end) (t)) then

if negb((existsb (fun x : goMarks ⇒ match x with

| goTo name1 name2 ⇒ (equiv decb name2 b)

| goFifo name1 data name2 ⇒ (equiv decb name2 b)

| goFromFifo name1 data name2 ⇒ (equiv decb name2 b)

| goTransform f name1 name2 ⇒ (equiv decb name2 b)

| goFilter f name1 name2 ⇒ (equiv decb name2 b)

end) (acc)))

then (go s' n (acc++[goTo a b]) t) ++

(go s' n (acc++[goTo a a]) t)

else

(go s' n ((swap acc (goTo a b))++[goTo a b]) t) ++

(go s' n (acc) t)

else (go s' n acc t)

| transformTo f a b ⇒ if existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t)then

if negb((existsb (fun x : goMarks ⇒ match x with

| goTo name1 name2 ⇒ (equiv decb name2 b)

| goFifo name1 data name2 ⇒ (equiv decb name2 b)

| goFromFifo name1 data name2 ⇒ (equiv decb name2 b)

| goTransform f name1 name2 ⇒ (equiv decb name2 b)

| goFilter f name1 name2 ⇒ (equiv decb name2 b)

end) (acc)))

then (go s' n (acc++[goTransform f a b]) t)

else (go s' n (swap acc (goTransform f a b)) t) ++

(go s' n (acc) t)

6.1 Core ReLo de�nitions 80

else (go s' n acc t)

| �lterTo f a b ⇒ if existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) (t)then

if negb((existsb (fun x : goMarks ⇒ match x with

| goTo name1 name2 ⇒ (equiv decb name2 b)

| goFifo name1 data name2 ⇒ (equiv decb name2 b)

| goFromFifo name1 data name2 ⇒ (equiv decb name2 b)

| goTransform f name1 name2 ⇒ (equiv decb name2 b)

| goFilter f name1 name2 ⇒ (equiv decb name2 b)

end) (acc)))

then

(go s' n (acc++[goFilter f a b]) t)

else

(go s' n (swap acc (goFilter f a b)) t) ++ (go s' n (acc) t)

else

(go s' n acc t)

| �foAlt a b ⇒ if (existsb (fun x : (dataConnector) ⇒
match x with

| �foData name1 data name2 ⇒ (equiv decb name1 a)

| ⇒ false

end) (t)) then

if negb((existsb (fun x : goMarks ⇒ match x with

| goTo name1 name2 ⇒ (equiv decb name2 b)

| goFifo name1 data name2 ⇒ (equiv decb name2 b)

| goFromFifo name1 data name2 ⇒ (equiv decb name2 b)

| goTransform f name1 name2 ⇒ (equiv decb name2 b)

| goFilter f name1 name2 ⇒ (equiv decb name2 b)

end) (acc)))

then

(go s' n (acc++dataConnectorToGoMarksFifo(t)) t) ++

(go s' n (acc) t)

else

6.1 Core ReLo de�nitions 81

(go s' n (acc++dataConnectorToGoMarksFifo(t)) t)

else

if (existsb (fun x : (dataConnector) ⇒ match x with

| �foData name1 data name2 ⇒ (equiv decb name1 a)

| dataPorts name1 name2 ⇒ (equiv decb name1 a)

end) (t)) then

(go s' n (acc++(dataConnectorToGoMarksPorts t

(�foAlt a b))) t)

else (go s' n acc t)

| SBlock a b ⇒ if (existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) t) && (existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 data ⇒ (equiv decb name1 b)

| ⇒ false

end) t) ||

negb((existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) t)) &&

negb(existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 b)

| ⇒ false

end) t) then

(go s' n acc t)

else

(go (halt [a;b] s') n acc t)

| ABlock a b ⇒ if negb((existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) t)) &&

6.1 Core ReLo de�nitions 82

negb((existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 b)

| ⇒ false

end) t)) ||

(existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) t) &&

(existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 b)

| ⇒ false

end) t)

then (go (halt [a;b] s') n acc t)

else

if negb((existsb (fun x : (dataConnector) ⇒
match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) t)) &&

(existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 b)

| ⇒ false

end) t) ||

((existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 a)

| ⇒ false

end) t)) &&

negb(existsb (fun x : (dataConnector) ⇒ match x with

| dataPorts name1 data ⇒ (equiv decb name1 b)

| ⇒ false

end) t)

then (go s' n acc t)

else (go (halt [a;b] s') n acc t)

end

end

6.1 Core ReLo de�nitions 83

end.

Each of the conditions processed by go also considers when there is more than a

connector with the same sink node, in which cases data may �ow nondeterministically.

These cases are handled by go for each connector, in which the function will generate a

output considering each scenario: in the following Coq piece of code, we explain the idea

referring to the case of Sync as to A B.

(go s' n (swap acc (goTo a b)) t) ++ (go s' n (acc) t)

The output for this case will recursively call go in two scenarios:

1. excluding all other connectors that have the same sink node B as the connector

being evaluated (employing swap) as an auxiliary de�nition: (go s' n (swap acc

(goTo a b)) t)

2. not considering the current connector (go s' n (acc) t).

Therefore, swap is de�ned as follows.

Fixpoint swap (s : set goMarks) (current : goMarks) : set goMarks :=

match s with

| [] ⇒ []

| dataMark::t ⇒ match dataMark with

| goTo a b ⇒ match current with

| goTo u v ⇒ if (equiv decb b v)

then (goTo u v)::(swap t current)

else (goTo a b)::(swap t current)

| goFifo u w v ⇒ if (equiv decb b v)

then (goFifo u w v)::(swap t current)

else (goTo a b)::(swap t current)

| goFromFifo u w v ⇒ if (equiv decb b v)

then (goFromFifo u w v)::(swap t current)

else (goTo a b)::(swap t current)

| goTransform f u v ⇒ if (equiv decb b v)

then (goTransform f a b)::(swap t current)

else (goTo a b)::(swap t current)

| goFilter f u v ⇒ if (equiv decb b v)

then (goFilter f a b)::(swap t current)

else (goTo a b)::(swap t current)

end

6.1 Core ReLo de�nitions 84

| goTransform f a b ⇒ match current with

| goTo u v ⇒ if (equiv decb b v)

then (goTo u v)::(swap t current)

else (goTransform f a b)::(swap t current)

| goFifo u w v ⇒ if (equiv decb b v)

then (goFifo u w v)::(swap t current)

else (goTransform f a b)::(swap t current)

| goFromFifo u w v ⇒ if (equiv decb b v)

then (goFromFifo u w v)::(swap t current)

else (goTransform f a b)::(swap t current)

| goTransform f u v ⇒ if (equiv decb b v)

then (goTransform f a b)::(swap t current)

else (goTransform f a b)::(swap t current)

| goFilter f ' u v ⇒ if (equiv decb b v)

then (goFilter f ' a b)::(swap t current)

else (goTransform f a b)::(swap t current)

end

| goFilter f a b ⇒ match current with

| goTo u v ⇒ if (equiv decb b v)

then (goTo u v)::(swap t current)

else (goFilter f a b)::(swap t current)

| goFifo u w v ⇒ if (equiv decb b v)

then (goFifo u w v)::(swap t current)

else (goFilter f a b)::(swap t current)

| goFromFifo u w v ⇒ if (equiv decb b v)

then (goFromFifo u w v)::(swap t current)

else (goFilter f a b)::(swap t current)

| goTransform f ' u v ⇒ if (equiv decb b v)

then (goTransform f ' a b)::(swap t current)

else (goFilter f a b)::(swap t current)

| goFilter f u v ⇒ if (equiv decb b v)

then (goFilter f a b)::(swap t current)

else (goFilter f a b)::(swap t current)

end

| goFifo a data b ⇒ match current with

6.1 Core ReLo de�nitions 85

| goTo x y ⇒ if (equiv decb b y)

then (goTo x y)::(swap t current)

else (goFifo a data b)::(swap t current)

| goFifo x y z ⇒ if (equiv decb b z)

then (goFifo x y z)::(swap t current)

else (goFifo a data b)::(swap t current)

| goFromFifo x y z ⇒ if (equiv decb b z)

then (goFromFifo x y z)::(swap t current)

else (goFifo a data b)::(swap t current)

| goTransform f y z ⇒ if (equiv decb b z)

then (goTransform f y z)::(swap t current)

else (goFifo a data b)::(swap t current)

| goFilter f u v ⇒ if (equiv decb b v)

then (goFilter f a b)::(swap t current)

else (goFifo a data b)::(swap t current)

end

| goFromFifo a data b ⇒ match current with

| goTo x y ⇒ if (equiv decb b y)

then (goTo x y)::(swap t current)

else (goFromFifo a data b)::(swap t current)

| goFifo x y z ⇒ if (equiv decb b z)

then (goFifo x y z)::(swap t current)

else (goFromFifo a data b)::(swap t current)

| goFromFifo x y z ⇒ if (equiv decb b z)

then (goFromFifo x y z)::(swap t current)

else (goFromFifo a data b)::(swap t current)

| goTransform f y z ⇒ if (equiv decb b z)

then (goTransform f y z)::(swap t current)

else (goFromFifo a data b)::(swap t current)

| goFilter f u v ⇒ if (equiv decb b v)

then (goFilter f a b)::(swap t current)

else (goFromFifo a data b)::(swap t current)

end

end

end.

6.2 Model Veri�cation 86

Function go deals with the �blocking programs� induced by connectors SyncDrain and

AsyncDrain as speci�ed in De�nition 5.1.5 (and discussed right before go's Coq code as

ABlock and SBlock): if the conditions required to enable data �ow from these connectors

are not met, it introduces a call to a de�nition halt(a, b, s′) where a and b are the port

names of the connector, and s′ is the remainder of the connector to be processed. Then,

halt will exclude the connectors from s′ which contains the same sink nodes as the ones in

the connector (either SyncDrain or AsyncDrain) from the �ring processing �re performs

when �nishing go's execution.

Definition halt (names : set name) (s' : set program) :=

removePortNames s' (haltAux names names s' (length s'))

The �ring relation f as De�nition 5.1.7 formalizes is implemented by the following

Coq de�nition:

Definition f (t : set (set dataConnector)) (pi : set connector) :=

�at map (go (parse pi []) (length (parse pi [])) []) t .

6.2 Model Veri�cation

After implementing the concepts of ReLo in Section 6.1, we proceed by implementing the

notion of a ReLo formula in Coq. This de�nition will pave the way to our model veri�ca-

tion tool, and for the formalization of the tableau procedure we'll present in Section 6.4.

We start by formalizing the notion of a syntactic ReLo program as syntaticProgram as an

inductive type with two constructors: sProgram denoting a standard ReLo program, and

star to denote the �nite non-deterministic iteration of a ReLo program.

Inductive syntaticProgram :=

| sProgram : reoProgram → syntaticProgram

| star : reoProgram → syntaticProgram.

With the de�nition of syntacticProgram, we formalize formula as an inductive type

that formalizes ReLo formulae in Coq. Each of its constructors denote a di�erent formula

component in ReLo: proposition stands for a regular propositional formulae, modalities 〈〉
and [] are respectively formalized as diamond and box, propositional operators ∧,∨,¬,→
,↔ are formalized respectively by constructors and, or, neg, imp, biImpl. Constructors

chiFormulaBox and chiFormulaBox formalizes respectively the propositional symbols X[]

and X〈〉. For these constructors, the parameter nat denotes the index of the X variable

derived, following the de�nitions in Section 5.4 and its parameter formula denotes the

formula which has been rewritten as an eventuality X[] or X〈〉. The inductive type formula

will also be employed in the tableau implemented in Section 6.4.

6.2 Model Veri�cation 87

Inductive formula:=

| proposition : (dataProp name data) → formula

| box : set dataConnector → syntaticProgram → formula → formula

| diamond : set dataConnector → syntaticProgram → formula → formula

| and : formula → formula → formula

| or : formula → formula → formula

| neg : formula → formula

| imp : formula → formula → formula

| biImpl : formula → formula → formula

| chiFormulaBox : nat → formula → formula

| chiFormulaBox : nat → formula → formula.

These de�nitions allow us to start the development of the framework which, given a

ReLo program Π and a ReLo formula ϕ, returns a model of Π in which ϕ is valid (if exists).

If ϕ does not hold in Π, Coq will return a model with the formulae valid, based on ϕ's

processing. We formalize the notion of satisfaction of formulas [t, (f, b)]ϕ and 〈t, (f, b)]〉,
ϕ is a propositional symbol respectively as boxSatisfactionPi and diamondSatisfactionPi.

De�nition boxSatisfactionPi with a modelM as m, a propositional formula p and a

set of states (which denotes the actual con�guration of the model reached after executing

a [] modality) states returns true if p is valid in every state in states . This is performed

by evaluating V as the model m's valuation function with each state of states and the

propositional formula p. Conversely, diamondSatisfactionPi with the same parameters

will yields true if p is valid in at least one state in states .

Definition boxSatisfactionPi (m:model) (p : dataProp name data)

(states : set state) :=

if (states == []) then false else

forallb (fun x : state ⇒ (V(m)x p)) states .

Definition diamondSatisfactionPi (m:model) (p : dataProp name data)

(states : set state) :=

if (states == []) then false else

existsb (fun x : state ⇒ (V(m)x p)) states .

The formalization proceeds with function singleModelStep as the core of the model

veri�cation process in our implementation. It recursively decomposes the formula inputted

as formula ϕ as a composite formula until propositional symbols are reached as follows:

� if ϕ is a proposition p denoted by the match with proposition, singleModelStep

evaluates whether the proposition p is valid in the model m at the state s

6.2 Model Veri�cation 88

� If ϕ is the negation of another formula ¬ψ denoted by the match with neg, then

singleModelStep recursively calls itself to check whether ψ is valid, yielding the

boolean negation of result of this recursive call.

� If ϕ is the conjunction of two formulae φ1∧φ2 denoted by the match with and, then

singleModelStep recursively calls itself to check whether both ψ1 and ψ2 are valid.

� If ϕ is the disjunction of two formulae φ1∨φ2, then or recursively calls itself to check

whether either ψ1 or ψ2 are valid.

� If ϕ is the implication of two formulae φ1 → φ2, then imp recursively calls itself to

check whether either ¬ψ1 or ψ2 are valid (by considering the de�nition of connective

→ in terms of ∨).

� If ϕ is the bi-implication of two formulae φ1 ↔ φ2, then biImpl recursively calls

itself to check whether either ψ1 → ψ2 and ψ2 → ψ1 are valid (by considering the

de�nition of connective → in terms of ∨).

� If ϕ is [t, (f, b)]ψ, then singleModelStep needs to consider 1) the program that

is within the modality, i.e., if it is either a regular program or a iteration of a

program with ? operator, and 2) the structure of ψ to accordingly recursively

process it with singleModelStep, similar to how it is performed for the proposi-

tional operators. From 1), singleFormulaVerify will either retrieve a set of all states

{w ∈ S | (s, w) ∈ RΠ} by means of retrieveRelatedStatesFromV, or it will calculate

the re�exive transitive closure of RΠ by means of RTC to obtain the set of states

{w ∈ S | (s, w) ∈ RΠ?}. The processing by singleModelStep will require that ψ to

be valid in all states w found by retrieveRelatedStatesFromV for both cases, which

is done by the standard function forallb employed.

� If ϕ is 〈t, (f, b)〉ψ, then singleModelStep needs to consider 1) the program that

is within the modality, i.e., if it is either a regular program or a iteration of a

program with ? operator, and 2) the structure of ψ to accordingly recursively

process it with singleModelStep, similar to how it is performed for the proposi-

tional operators. From 1), singleFormulaVerify will either retrieve a set of all states

{w ∈ S | (s, w) ∈ RΠ} by means of retrieveRelatedStatesFromV, or it will calculate

the re�exive transitive closure of RΠ by means of RTC to obtain the set of states

{w ∈ S | (s, w) ∈ RΠ?}. The processing by singleModelStep will require that ψ to

be valid in at least one state w found by retrieveRelatedStatesFromV for both cases,

which is done by the standard function existsb employed.

6.2 Model Veri�cation 89

Fixpoint singleModelStep (m:model) (formula : formula) (s :state) : bool :=

match formula with

| chiFormulaBox x phi | chiFormulaBox x phi ⇒ false

| proposition p ⇒ (V(m) s p)

| neg p ⇒ negb (singleModelStep m p s)

| and a b ⇒ (singleModelStep m a s) && (singleModelStep m b s)

| or a b ⇒ (singleModelStep m a s) || (singleModelStep m b s)

| imp a b ⇒ negb (singleModelStep m a s) || (singleModelStep m b s)

| biImpl a b ⇒ (negb (singleModelStep m a s) || (singleModelStep m b s)) &&

(negb (singleModelStep m b s) || (singleModelStep m a s))

| box t pi p' ⇒ match pi with

| sProgram reo ⇒ match p' with

| chiFormulaBox x phi | chiFormulaBox x phi ⇒ false

| proposition p'' ⇒ boxSatisfactionPi (m) (p'')

(retrieveRelatedStatesFromV (R(Fr(m))) s)

| box t' pi' p'' ⇒ forallb (singleModelStep m p')

(retrieveRelatedStatesFromV (R(Fr(m))) s)

| diamond t' pi' p'' ⇒ existsb (singleModelStep m p')

(retrieveRelatedStatesFromV (R(Fr(m))) s)

| and a b ⇒ (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s))) &&

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| or a b ⇒ (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s))) ||

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| neg a ⇒ negb (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| imp a b ⇒ (negb (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))) ||

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| biImpl a b ⇒ (negb (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))) ||

6.2 Model Veri�cation 90

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s))) &&

(negb (forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))) ||

(forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

end

| star reo ⇒ match p' with

| chiFormulaBox x phi | chiFormulaBox x phi ⇒ false

| proposition p'' ⇒ boxSatisfactionPi (m) (p'')

(retrieveRelatedStatesFromV (RTC(m)) s)

| box t' pi' p'' ⇒ forallb (singleModelStep m p')

(retrieveRelatedStatesFromV (RTC(m)) s)

| diamond t' pi' p'' ⇒ existsb (singleModelStep m p')

(retrieveRelatedStatesFromV (RTC(m)) s)

| and a b ⇒ (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s))) &&

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| or a b ⇒ (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s))) ||

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| neg a ⇒ negb (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| imp a b ⇒ (negb (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))) ||

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| biImpl a b ⇒ (negb (forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))) ||

(forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s))) &&

(negb (forallb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))) ||

6.2 Model Veri�cation 91

(forallb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))

end

end

| diamond t pi p' ⇒ match pi with

| sProgram reo ⇒ match p' with

| chiFormulaBox x phi | chiFormulaBox x phi ⇒ false

| proposition p'' ⇒ diamondSatisfactionPi (m) (p'')

(retrieveRelatedStatesFromV (R(Fr(m))) s)

| box t' pi' p'' ⇒ forallb (singleModelStep m p')

(retrieveRelatedStatesFromV (R(Fr(m))) s)

| diamond t' pi' p'' ⇒ existsb (singleModelStep m p')

(retrieveRelatedStatesFromV (R(Fr(m))) s)

| and a b ⇒ (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s))) &&

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| or a b ⇒ (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s))) ||

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| neg a ⇒ negb (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| imp a b ⇒ (negb (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))) ||

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

| biImpl a b ⇒ (negb (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))) ||

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s))) &&

(negb (existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (R(Fr(m))) s)))) ||

(existsb (singleModelStep m a)

6.2 Model Veri�cation 92

((retrieveRelatedStatesFromV (R(Fr(m))) s)))

end

| star reo ⇒ match p' with

| chiFormulaBox x phi | chiFormulaBox x phi ⇒ false

| proposition p'' ⇒ diamondSatisfactionPi (m) (p'')

(retrieveRelatedStatesFromV (RTC(m)) s)

| box t' pi' p'' ⇒ forallb (singleModelStep m p')

(retrieveRelatedStatesFromV (RTC(m)) s)

| diamond t' pi' p'' ⇒ existsb (singleModelStep m p')

(retrieveRelatedStatesFromV (RTC(m)) s)

| and a b ⇒ (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s))) &&

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| or a b ⇒ (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s))) ||

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| neg a ⇒ negb (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| imp a b ⇒ (negb (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))) ||

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))

| biImpl a b ⇒ (negb (existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))) ||

(existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s))) &&

(negb (existsb (singleModelStep m b)

((retrieveRelatedStatesFromV (RTC(m)) s)))) ||

(existsb (singleModelStep m a)

((retrieveRelatedStatesFromV (RTC(m)) s)))

end

As singleModelStep's de�nition shows, it relies on two standard Coq functions and

two user de�ned functions to deal with modalities. De�nition forallb expects a function

6.3 Model Construction 93

f : S → bool and a set of states s of type S, returning true if f(si) = true for each si in

the set of states s, while existsb also expects a function f : S → bool and a set of states s

of type S, but returning true if f(si) = true for at least one si in the set of states s. Note

that it also considers the formulas X〈〉 and X[] as they are also members of formula, but as

they are only introduced by the tableau (explained in Section 6.4), singleModelStep must

not process it

The �rst user de�ned is retrieveRelatedStatesFromV, which given a set of states set-

States and a state s it retrieves a set containing all states w such as pairs (s, w) ∈ setStates.

Then, RTC calculates the re�exive transitive closure by appyling the union operation of

the model m's transition relation R, its transitive closure returned by getTransitive, and

its re�exive closure returned by getRe�exive.

Fixpoint retrieveRelatedStatesFromV (setStates : set (state × state)) (s : state)

: set state :=

match setStates with

| nil ⇒ nil

| a::states ⇒ if s == (fst a)

then (snd a)::(retrieveRelatedStatesFromV states s)

else retrieveRelatedStatesFromV states s

end.

Definition RTC (m:model) : set (state × state) :=

set union equiv dec (R(Fr(m))) (set union equiv dec (getTransitive m) (getRe�ex-

ive m)).

We de�ne singleFormulaVerify as the top-level de�nition that checks whether a for-

mula p is valid in a model m, given a set of data markup t denoting the data �ow for

port names of the Reo circuit. The veri�cation employs singleModelStep with m as the

model and p as the formula, applying it to each state denoted by t as the starting state

of singleModelStep.

Definition singleFormulaVerify (m : model) (p : formula)

(t : set dataConnector) : bool :=

(forallb (fun x ⇒ eqb x true) (map (singleModelStep m p) (getState m t))).

6.3 Model Construction

In this section we detail the construction of a framework that calculates a model that

accepts a formula (if exists). If the formula is not valid, the framework returns a model

which is induced by the formula evaluated (by expanding all the modalities of a formula,

6.3 Model Construction 94

until every subformulae has already been reduced).

The framework is driven by the following ideas:

� For each state s reached during the execution, calculate and store the propositions

(of type dataProp) in the valuation function V.

� For each state w reached from a state s, add (s, w) in the relation R

� Decompose the formula ϕ to be evaluated until all propositional symbols have been

reached. Formulas with no iteration operators ? are inductively decomposed, while

formulas with modalities that contain program operators ? require a upper bound

n that limits its execution to a �nite number of steps n. The validity of ? formulas

then will be achieved (if possible) in at most n executions for each modality with ?.

The calculation of propositions that are valid in the connector considers three di�erent

scenarios:

1. The data item DA is in port A (i.e., propositions like DA = 1, where 1 is the data

item)

2. Ports A and B have the same data item at the same time (i.e., propositions like

DA = DB)

3. The data item D is in a bu�er (FIFO connector)

The implementation of the item 1 starts with function retrieveSinglePortProp. It is a

function that with a set of data �ows t , a state denoted as a natural number index , and a

port name n returns a proposition dataPorts n x if t describes a data �ow of port n with

data item x .

Fixpoint retrieveSinglePortProp (t : set (dataConnector name data)) (index : nat)

(n : name) : set (dataProp name data) :=

match t with

| [] ⇒ []

| a::t' ⇒ match a with

| dataPorts a x ⇒ if (n == a) then [dataInPorts n x]

else retrieveSinglePortProp t' index n

| �foData a x b ⇒ retrieveSinglePortProp t' index n

end

end.

6.3 Model Construction 95

Item 2 is then implemented by means of portsHaveTheSameData, a function that

with two data �ows n1 and n2 creates a proposition dataInPorts data a b if they have the

same data item in their �ow.

Definition portsHaveSameData (n1 : (dataConnector name data)) (n2 : (dataCon-

nector name data)) : set (dataProp name data) :=

match n1 ,n2 with

| dataPorts a x , dataPorts b y ⇒ if x == y then [dataBothPorts data a b] else []

| , ⇒ []

end.

Function portsHaveSameData is then extended to a set of data �ows t with the

implementation of retrieveTwoPortsProp. It checks in the whole data �ow of the model

at a speci�c state index as t to build valid propositions of type DA = DB in state index .

Fixpoint retrieveTwoPortsProp (index :nat) (t : set (dataConnector name data))

(n : (dataConnector name data)) : set (dataProp name data) :=

match t with

| [] ⇒ []

| a::t' ⇒ portsHaveSameData a n++(retrieveTwoPortsProp index t' n)

end.

Then, retrieveFIFOdataProp recovers propositions regarding the data within bu�ers

as in item 3. Given a data �ow t and a state index , retrieveFIFOdataProp checks in t if

there is a �ow denoting data stored within FIFO connectors. For each data item found, it

creates a proposition stating that DA (DA as the data item in the �ow) is in FIFO within

port names a and b.

Fixpoint retrieveFIFOdataProp (index : nat) (t : set (dataConnector name data))

(n : dataConnector name data) : set (dataProp name data) :=

match t with

| �fodata::t' ⇒ match �fodata with

| �foData a x b ⇒ if (equiv decb �fodata n)

then [dataInFifo a x b]++

(retrieveFIFOdataProp index t' n)

else (retrieveFIFOdataProp index t' n)

| dataPorts a b ⇒ (retrieveFIFOdataProp index t' n)

end

| [] ⇒ []

end.

6.3 Model Construction 96

These functions are then joined by buildValidPropositions, a de�nition which uni�es

the three possible sets of propositions created by retrieveSinglePortProp, portsHaveSame-

Data, and retrieveFIFOdataProp. It will process each of the aforementioned functions,

considering all port names of the Reo model as N .

Definition buildValidPropositions (N : set name) (index : nat) (t : set (dataConnector

name data)) : set (dataProp name data) :=

((�at map(retrieveTwoPortsProp index t) (t))) ++

(�at map(retrieveSinglePortProp t index) (N)) ++

(�at map(retrieveFIFOdataProp index t) t).

The construction of the model e�ectively is split into two parts. When evaluating a

program Π and a formula ϕ, we �rst construct a modelM0 considering a starting state

0 as the state where a data �ow t ∈ δ(0), and the valid proposition in 0 are the ones

derived by buildValidPropositions considering t . If ϕ is a proposition, then there is no

further processing to be performed and M0 is returned. Otherwise, considering M0 as

the starting point, ϕ is decomposed and processed, so for each state j reached, their

corresponding information is added to the model (the state, the pair (i, j) is added to RΠ

as the model's transition relation, and the valid propositions of the reached state based

on δ(j)). this search is done in a depth-search fashion employing the de�nitions we detail

as follows.

We proceed by formalizing a de�nition which will be useful when formalizing the

resulting modelM0's valuation function V. getProp will be employed to return whether

a proposition n is in a set of propositions setProp, where setProp denotes V (0, n).

Fixpoint getProp (setProp: set (dataProp name data)) (n: (dataProp name data)) :

bool :=

match setProp with

| [] ⇒ false

| a::t ⇒ if (equiv decb a n) then true else getProp t n

end.

Then, de�nition getValFunctionProp will employ getProp to de�ne a valuation func-

tion forM0 with the same parameters V expects.

Definition getValFunctionProp (N : set name) (t :set (dataConnector name data))

(index : nat) (s :nat) (p:(dataProp name data)) :=

getProp ((buildValidPropositions N index t)) p.

The Frame F for model M0 is formalized by buildPropFrame, which yields a Coq

model as in De�nition 6.1.1 as follows. Function setStateForProp returns a set contain-

6.3 Model Construction 97

ing a single state s as the set S of states of the model, while notation [] is an empty

set of relations R, lambdaForProp returns a standard lambda for the data �ow t , and

deltaForProp returns t as the state's own data markup, as there is no other states to be

reached.

Definition buildPropFrame (t : set (dataConnector name data)) (s :nat) :=

mkframe (setStateForProp s) ([]) (lambdaForProp) (deltaForProp t).

Then,M0 is de�ned by buildPropModel, which follows De�nition 6.1.2 with a valu-

ation function yielded by getValFunctionProp.

Definition buildPropModel (N : set name)(t : set (dataConnector name data))

(s :nat) := mkmodel (buildPropFrame t s) (getValFunctionProp N t s).

The de�nitions detailed above comprise the �rst part of the model construction frame-

work. We focus now on the second half, which aims to provide the construction of models

for formulas ϕ which are not propositions withM0 as a basis for the processing. The de-

velopment will build intermediate modelsM1,M2, . . . ,M until the end of the processing

is reached (i.e., the formula has been fully reduced). EachMi is the result of evaluating

the current set of states and the possible data �ows the model is currently in, which will

culminate inM as the resulting Coq model.

The formalization proceeds by formalizing a function which retrieves the valid propo-

sitions of a given state n. For the whole model M, we implement the structure of the

propositions as a set of pairs s, p, meaning that a proposition p is valid at state s. There-

fore, getValFunction with a proposition prop, a state state, and a set of propositions props

returns a set containing all propositions in props which are valid in the current state, i.e.,

the �rst value of the .

Fixpoint getValFunction (props : set (nat × (set (dataProp name data))))

(state : nat) (prop: (dataProp name data)) :=

match props with

| [] ⇒ false

| stateAndProp::moreProps ⇒ if fst(stateAndProp) == state then

set mem equiv dec (prop) (snd(stateAndProp))

else getValFunction moreProps state prop

end.

The valuation function needs to be updated to consider each reached state and their

corresponding valid propositions for each veri�cation step. To this extent, we formalize

a Coq Record that keeps track of the propositions and the states they are valid on as

calcProps. This information is constantly updated in the model being constructed.

6.3 Model Construction 98

Record calcProps := mkcalcProps {

statesAndProps : set (nat × set (dataProp name data));

propCounter : nat

}.

De�nition addInfoToModel adds this information to intermediate modelsMi. Given

a intermediate model m asMi−1, the current state being evaluated as dest and the state

considered when evaluating Mi−1 (i.e., the state that dest was reached from) as origin, t

as the resulting set of data �ows in the Reo model, by �ring f(ti-1,Π), and dataMarkups

as the current set of states and the propositions that are valid on them, addInfoToModel

adds dest as a state of the model in S, a pair (origin, dest) denoting that the states are

directly related in R, the new data markup function δ forMi is calculated for the state

dest based on t , resulting on the frame F constructed by mkframe.

Definition addInfoToModel (m: model name nat data) (origin:nat) (dest : nat)

(N : set name) (t : (set (dataConnector name data)))

(dataMarkups : (set (nat × (set (dataConnector name data))))) (calc : calcProps) :=

mkmodel

(mkframe (set add equiv dec dest (S(Fr(m))))

(set add equiv dec (origin,dest) (R(Fr(m)))) (lambda(Fr(m)))

(getDelta dataMarkups))

(getValFunction (statesAndProps (getNewValFunc calc N [t] dest))).

The model Mi is constructed with the resulting frame F as aforementioned with

mkmodel, with its resulting valuation function considering all the states already visited

and their corresponding valid propositions stored in calc by means of getNewValFunc.

Therefore, addInfoToModel recalculates the resulting valuation function by creating a new

calcProps, in which the new information regarding the propositions valid in state dest are

added to the model. The propositions valid in dest are calculated by buildValidPropositions

considering each element of the data �ow t . Its result is then sent back to addInfoToModel ,

which adds the resulting set of valid propositions as its valuation function, by retrieving

the value of the �eld statesAndProps of the calcProps returned by getNewValFunc.

Definition getNewValFunc (calc: calcProps) (N : set name)

(t :set (set (dataConnector name data))) (state: nat) :=

mkcalcProps (set add equiv dec (state,�at map

(buildValidPropositions N (propCounter(calc))) t) (statesAndProps calc))

(propCounter(calc) + length (�at map (buildValidPropositions N state) t)).

De�nition addInfoToModel lets the formalization consider all possible states that can

6.3 Model Construction 99

be reached during the model construction. Function processIntermediateStep extends the

usage of addInfoToModel to add all possible �next states� that can be reached from ori-

gin: with m as the last obtained modelMi−1, N as the set of port names that compose

the model, visitedStates as a set that tracks all states that have been already visited by

the model construction process, calcProps as the auxiliary structure that keeps track of

the states and their valid propositions, and nextSetOfStates as the set of states reached

by f(t,Π) from the current state origin, addInfoToModel employs addInfoToModel for

each state reached from index in nextSetOfStates , where each element of nextSetOfS-

tates are of form (s, dataMarkup). Therefore, (fst(currentState)) is the state itself, and

(snd(currentState)) is the data �ow that identi�es such state.

Fixpoint processIntermediateStep (m: model name nat data) (origin : nat)

(N : set name) (visitedStates : (set (nat × (set (dataConnector name data)))))

(calc : calcProps) (nextSetOfStates : set (nat × set (dataConnector name data)))

:= match nextSetOfStates with

| [] ⇒ (m, (visitedStates,calc))

| currentState::moreStates ⇒
processIntermediateStep

(addInfoToModel m origin (fst(currentState)) N (snd(currentState))

(set add equiv dec ((fst(currentState)),(snd(currentState))) visitedStates)

calc) origin N

(set add equiv dec ((fst(currentState)),(snd(currentState))) visitedStates)

(getNewValFunc calc N [(snd(currentState))] (fst(currentState)))

moreStates

end.

Then, processGeneralStep uses processIntermediateStep to consider all current reached

states, i.e., all possible states to which new states can be reached from the current process-

ing step. It decomposes the current set of states to be evaluated as pairs (s, dataMarkup)

as elements of currentSetofStates . For each pair (s, dataMarkup), processGeneralStep

calls processIntermediateStep with its corresponding parameters as follows: m is the cur-

rent model to which information will be added, index as each of the current states to be

evaluated (i.e, the �rst element of the pair (s, dataMarkup) � s), N as the set of port

names of the Reo model, visitedStates as the set of all visited states so far by the process,

calc as the supporting structure that holds information about all states and the propo-

sitions valid on them, and nextSetOfstates as the resulting states that can be reached

from �ring the current state s's corresponding data markup dataMarkup as the second

6.3 Model Construction 100

element of the pair (s, dataMarkup), i.e., f(dataMarkup,Π).

Fixpoint processGeneralStep (m: model name nat data) (N : set name)

(visitedStates : (set (nat × (set (dataConnector name data)))))

(calc : calcProps) (currentSetOfStates : set (nat × set (dataConnector name data)))

(pi : (reoProgram name data)) (index : nat) :=

match currentSetOfStates with

| [] ⇒ (m, (visitedStates,(index,calc)))

| currentState::moreStates ⇒
processGeneralStep (fst(processIntermediateStep m

(fst(currentState)) N visitedStates calc

(getNewIndexesForStates (f([snd(currentState)])

(program2SimpProgram (pi))) visitedStates index))) N

(fst(snd(processIntermediateStep m (fst(currentState)) N visitedStates calc

(getNewIndexesForStates (f([snd(currentState)])

(program2SimpProgram (pi))) visitedStates index))))

(snd(snd(processIntermediateStep m (fst(currentState)) N visitedStates calc

(getNewIndexesForStates (f([snd(currentState)])

(program2SimpProgram (pi))) visitedStates index)))) (moreStates) pi

(calculateAmountNewStates (fst(snd(processIntermediateStep m

(fst(currentState)) N visitedStates calc

(getNewIndexesForStates (f([snd(currentState)])

(program2SimpProgram (pi))) visitedStates index)))) index)

end.

To obtain the corresponding indexes for new states reached by f(dataMarkup,Π)

to processIntermediateStep as its parameter nextSetOfStates employs getNewIndexes-

ForStates. it is a function which will consider the creation of fresh indexes to denote

states that have not been visited yet. If f(dataMarkup,Π) results in some already vis-

ited state, then nextSetOfStates will yield the index of the already visited state. It uses

liftIndex, a function which will either retrieve a new index for the next visited state (if it

has not been visited), or return the corresponding state's index from the set of already

visited states.

Definition getNewIndexesForStates (t : set (set (dataConnector name data)))

(visStates : set (nat × (set (dataConnector name data)))) (index : nat) :=

liftIndex index (getVisitedStates t visStates).

Function getNewIndexesForStates also employs getVisitedStates , which based on the

6.3 Model Construction 101

data �ow t and the set of already visited states visStates returns the indexes of states

already depicted by data �ows in t .

Fixpoint liftIndex (index : nat)

(currentStates : set (option nat × set (dataConnector name data))) :=

match currentStates with

| [] ⇒ []

| visState::moreStates ⇒ match (fst(visState)) with

| None ⇒ (index, (snd(visState)))::

(liftIndex (Datatypes.S index) moreStates)

| Some a ⇒ (a,(snd(visState)))::(liftIndex index moreStates)

end

end.

The next step is to formalize the top level de�nition which will use processGeneralStep

to implement the search to retrieve the resulting model after processing the formula.

De�nition getModel is the main function that recursively searches for a ReLo model

induced by phi . Given a set of port names n, a data �ow t it will decompose the formula

until all atomic subformulas of phi have been processed.

The model construction relies on processGeneralStep, which updates the model for

each modality processed. The remainder of the parameters supports the process as follows:

m is the intermediate model obtained so far, index is the next available number to denote

a state in the model, setStates is the set of pairs (state, t) of all states visited and their

corresponding data �ow, calc is the auxiliary structure calcProps which holds the states

and which propositions are valid on them, and upperBound establishes a limit of processing

of each iteration found in the modalities that compose phi .

Fixpoint getModel (m: model name nat data) (n: set name)

(t : set (set (dataConnector name data))) (index :nat)

(phi : (formula name data)) (setStates : set (nat × (set (dataConnector name data))))

(calc : calcProps) (upperBound : nat) :=

match phi with

| proposition p ⇒ m

| chiFormulaBox x phi | chiFormulaBox x phi ⇒ m

| diamond t' pi p ⇒ match pi with

| sProgram pi' ⇒
getModel (fst(processGeneralStepm n setStates calc (getNewIndex-

esForStates t setStates index) pi' (index))) n

6.3 Model Construction 102

(f(t)(program2SimpProgram (pi')))

(fst(snd(snd(processGeneralStepm n setStates calc (getNewIndex-

esForStates t setStates index) pi' (index)))))

p (fst(snd(processGeneralStepm n setStates calc (getNewIndex-

esForStates t setStates index) pi' index)))

(snd(snd(snd(processGeneralStepm n setStates calc (getNewIndex-

esForStates t setStates index) pi' (index))))) upperBound

| star pi' ⇒
fst(expandStarFormulas m n (t) (index) phi (setStates) (calc)

upperBound)

end

| box t' pi p ⇒ match pi with

| sProgram pi' ⇒ getModel (fst(processGeneralStep m n setStates

calc (getNewIndexesForStates t setStates index) pi'

(index))) n

(f(t)(program2SimpProgram (pi')))

(fst(snd(snd(processGeneralStepm n setStates calc (getNewIndex-

esForStates t setStates index) pi' (index)))))

p (fst(snd(processGeneralStepm n setStates calc (getNewIndex-

esForStates t setStates index) pi' index)))

(snd(snd(snd(processGeneralStepm n setStates calc (getNewIndex-

esForStates t setStates index) pi'

(index))))) upperBound

| star pi' ⇒
fst(expandStarFormulas m n (t) (index) phi (setStates)

(calc) upperBound)

end

| and a b | or a b | imp a b | biImpl a b ⇒ (getModel (getModel m n t index a

setStates calc upperBound) n t index b setStates calc) upperBound

| neg a ⇒ (getModel m n t index a setStates calc upperBound)

end.

The top-level function that employs getModel is formalized as constructModel, that

de�nes as parameters n as the set of port names of the Reo model, t the starting data

�ow of the process, and phi the formula to be evaluated. It calls getModel considering an

initial model m supplied by buildPropModel as one that contains a single state where the

6.4 A tableau for ReLo in Coq 103

propositions derived from t are valid.

Definition constructModel (n: set name) (t : set (set (dataConnector name data)))

(phi : (formula name data)) (upperBound : nat) :=

getModel (buildPropModel n (hd [] t) 0) n t 1 phi

(getNewIndexesForStates t [] 0) (mkcalcProps [] 0) upperBound .

6.4 A tableau for ReLo in Coq

We provide an implementation in Coq of the core de�nitions of a ReLo Tableau as in

Section 5.4. The development presented in this section aims to provide means for unfolding

the tableau during the proof process, to check whether a branch is closed and even whether

a tableau is open or closed, considering the particularities when it comes to formulae X〈〉
and X[]. These functionalities will allow us to check whether the forumlae is valid or not,

following De�nition 5.4.6.

The development starts by structuring proof trees as binTree, a binary tree structure

which nodes have content of type (w : ϕ : γ), where w is a label (state) of where the

formula ϕ has value γ ∈ {T, F}.
Inductive binTree : Type :=

| nilLeaf : binTree
| leaf : (state × (((formula name data)) × bool)) → binTree

| node : (state × (((formula name data)) × bool))→ binTree→ binTree→ binTree.

A proof tree denoted by binTree has three type of nodes:

� nilLeaf denoting an empty node, required for the de�nition of binType not to be

ill-formed.

� leaf as a leaf node, with no nodes reachable from them.

� node as an intermediate node of the proof tree. This node type may have up to

two descending nodes, either empty nodes (denoting no nodes in this branch), leaf

nodes or intermediate nodes.

Note that leaf could be formalized in terms of node with both descendant nodes as

nilLeaf. However, to ease the proof tree reading and processing, we decided to split leaf

and intermediate nodes by using di�erent type constructors.

With binType, we proceed to formalize ReLo Tableau as De�nition 5.4.1 in Coq, a

Record detailed in De�nition 6.4.1.

6.4 A tableau for ReLo in Coq 104

De�nition 6.4.1 (ReLo Tableau in Coq). A tableau in Coq is depicted as tableau as a

structure containing two �elds: proofTree as the tree structure to syntactically reason over

ReLo formulae, and statesTree as the auxiliary states structure that holds the information

of how states used in the proof relate to each other.

Record tableau := mkTableau {

proofTree : binTree;

statesTree : set (state × state)

}.

We continue by formalizing a function that constructs tableau from Coq ReLo for-

mulas as detailed in Section 6.3, with the inductive type formula. The smallest tableau

for a formula ϕ is a proof tree rooted with ϕ as F in a state w, which is also the starting

point for tableau proofs. Therefore, formula2Tableau builds a tableau by supposing it is

false in a state 0 as the starting point of the proof.

Definition formula2Tableau (phi : formula name data) :=

mkTableau (leaf (0, (phi, false))) ([]).

The two following de�nitions are support functions to operate on the proof trees as

binTree. Function searchBinTree's objective is to recursively traverse the tree as a whole,

searching whether there is a node with its contents equal to the ones provided in variable

nodeContent (i.e., the same state, the same formula and its value in the state). It returns

false if no node in proof tree t satisfying these conditions are found.

Fixpoint searchBinTree (t : binTree nat name data)

(nodeContent : nat × (((formula name data)) × bool)) :=

match t with

| nilLeaf ⇒ false

| leaf phi ⇒ (equiv decb (fst(nodeContent)) (fst(phi))) && (equiv decb (fst(snd(nodeContent))

) (fst(snd(phi)))) && (equiv decb (snd(snd(nodeContent))) (snd(snd(nodeContent))))

| node phi a b ⇒ if (equiv decb (fst(nodeContent)) (fst(phi))) && (equiv decb

(fst(snd(nodeContent))) (fst(snd(phi))))

&& (equiv decb (snd(snd(nodeContent))) (snd(snd(nodeContent))))

then true

else searchBinTree a nodeContent ||

searchBinTree b nodeContent

end.

Alternatively, searchBinTreeNode works similarly to searchBinTree, but instead of

returning boolean values if the node is found in t , searchBinTreeNode returns the node

6.4 A tableau for ReLo in Coq 105

itself as a binTree structure. It employs option type from Coq standard library to denote

cases when the node is not found.

Fixpoint searchBinTreeNode (t : binTree nat name data)

(nodeContent : nat × (((formula name data)) × bool)) :=

match t with

| nilLeaf ⇒ None

| leaf phi ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equiv decb (fst(snd(nodeContent))) (fst(snd(phi))))

&& (equiv decb (snd(snd(nodeContent))) (snd(snd(nodeContent))))

then Some (leaf phi) else None

| node phi a b ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equiv decb (fst(snd(nodeContent))) (fst(snd(phi))))

&& (equiv decb (snd(snd(nodeContent))) (snd(snd(nodeContent))))

then Some (leaf phi)

else if searchBinTree a nodeContent

then searchBinTreeNode a nodeContent

else searchBinTreeNode b nodeContent

end.

We proceed by providing de�nitions that will be employed in the tableau proof process,

regarding the construction of the proof tree after applying a tableau rule as proposed

in Section 5.4. Function addLeftToTableau adds non-branching rules to the proof tree

speci�ed in t . Parameter t' is the placeholder to which the result of the application of a

rule in the proof tree t will be supplied. leafNode is a variable that denotes the leaf node

of the branch the derivation in t' must be added. Function equalFormula is a function

that basically calls equiv decb to check whether two formulae of type formula are equal.

Fixpoint addLeftToTableau (t : binTree nat name data)

(t' : binTree nat name data) (leafNode : nat × (((formula name data)) × bool)) :

(binTree nat name data) :=

match t with

| nilLeaf ⇒ t

| leaf phi ⇒ if (equiv decb (fst(leafNode)) (fst(phi)))

&& (equalForumla (fst(snd(leafNode))) (fst(snd(phi))))

&& (equiv decb (snd(snd(leafNode))) (snd(snd(phi))))

then ((node phi) t' (nilLeaf))

else (leaf phi)

6.4 A tableau for ReLo in Coq 106

| node phi a b ⇒ (node phi) (addLeftToTableau a t' leafNode)

(addLeftToTableau b t' leafNode)

end.

In addition to addLeftToTableau, we also provide addBranchLeftToTableau as a func-

tion which adds branching rules to the proof tree speci�ed in t , complementing addLeft-

ToTableau. Parameters b1 and b2 respectively denote the left and right branches gener-

ated by branching rules as in De�nition 5.4.2. They are added to the end of the branch

denoted by leafNode, in a similar fashion as addLeftToTableau does, but adding each

branch as a di�erent branch.

Fixpoint addBranchLeftToTableau (t : binTree nat name data)

(b1 : binTree nat name data) (b2 : binTree nat name data)

(leafNode : nat × (((formula name data)) × bool)) : (binTree nat name data) :=

match t with

| nilLeaf ⇒ t

| leaf phi ⇒ if (equiv decb (fst(leafNode)) (fst(phi)))

&& (equalForumla (fst(snd(leafNode))) (fst(snd(phi))))

&& (equiv decb (snd(snd(leafNode))) (snd(snd(phi))))

then ((node phi) (b1) (b2))

else (leaf phi)

| node phi a b ⇒ ((node phi) (addBranchLeftToTableau a b1 b2 leafNode)

(addBranchLeftToTableau b b1 b2 leafNode))

end.

The formalization proceeds by de�ning now the core function in applying tableau rules.

Function tableauRules is responsible for implementing the map between the formula in

a tableau node, and mapping the result of the application as new node(s) appended to

the end of a branch of the proof tree. It takes as parameters t as the proof tree of a

tableau T , origT as a copy ot [t] which will be used to produce the �nal tree, statesTree

as the set of accessed states of the tableau, nodeContent as the formula which one wants

to apply the rule, state as the next index available for a new state (as rules []-F and 〈〉-T
require a new, not visited state), destState as the state where formulas 〈〉-F and []-T will

be expanded to (since their resulting formulae can employ an already visited state or a

new one), indexchiFormulaBox and indexchiFormulaBoxmond respectively as the current

index to keep track of how many X[] and X〈〉 have already been instantiated, and leafNode

as the leaf node of the branch where the result of the rule application must be added in

6.4 A tableau for ReLo in Coq 107

the proof tree.

With these parameters, tableauRules searches in the proof tree t in the branch ended

by leafNode if there is a node with content denoted by nodeContent as a node (w : ϕ : γ).

By matching the combination of formula ϕ and γ as one of the rules in De�nition 5.4.2,

tableauRules returns the result of the rule application as a new tableau T ′ with the rule's

result appended to leafNode. For each formula constructor, tableauRules implements the

rule application result considering both T and F rules. The T case is considered in the

if (snd(snd(phi))) clauses after each of the cases, and the F case in the corresponding

else.

Definition tableauRules

(t : binTree nat name data) (origT : binTree nat name data)

(statesTree : set (nat × nat))

(nodeContent : nat × (((formula name data)) × bool))

(state : nat) (destState : nat) (indexchiFormulaBox : nat)

(indexchiFormulaBoxmond : nat)

(leafNode : nat × (((formula name data)) × bool)) :=

match (searchBinTreeNode t nodeContent) with

| None ⇒ (origT,statesTree)

| Some tx ⇒
match tx with

| nilLeaf ⇒ (tx, statesTree)

| leaf phi ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equalForumla (fst(snd(nodeContent))) (fst(snd(phi))))

&& (equiv decb (snd(snd(nodeContent))) (snd(snd(phi))))

then match (fst(snd(phi))) with

| proposition p ⇒
(origT, statesTree)

| chiFormulaBox n phi' ⇒ if negb (snd(snd(phi))) then

match phi' with

| box t' pi p ⇒ match pi with

| star pi' ⇒ ((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (p , false))) (node ((fst(phi)), (p , true))

(leaf ((fst(phi)),

((box t' pi) (chiFormulaBox indexchiFormulaBox phi') , false)))

(nilLeaf nat name data)) leafNode) , (statesTree))

6.4 A tableau for ReLo in Coq 108

| sProgram pi' ⇒ (origT, statesTree)

end

| ⇒ (origT, statesTree)

end

else (origT, statesTree)

| chiFormulaBox n phi' ⇒ if (snd(snd(phi))) then

match phi' with

| diamond t' pi p ⇒ match pi with

| star pi' ⇒ ((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (p , true)))

(node ((fst(phi)), (p , false))

(leaf ((fst(phi)), ((diamond t' pi)

(chiFormulaBox indexchiFormulaBoxmond phi') , true)))

(nilLeaf nat name data)) leafNode) , (statesTree))

| sProgram pi' ⇒ (origT, statesTree)

end

| ⇒ (origT, statesTree)

end

else (origT, statesTree)

| and phi1 phi2 ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT) ((node ((fst(phi)), (phi1 , true))

(leaf ((fst(phi)), (phi2 , true)))

(nilLeaf nat name data))) leafNode), (statesTree))

else ((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (phi1 , false)))

(leaf ((fst(phi)), (phi2 , false))) leafNode), (statesTree))

| or phi1 phi2 ⇒ if (snd(snd(phi))) then

((addBranchLeftToTableau (origT) (leaf ((fst(phi)), (phi1 , true)))

(leaf ((fst(phi)), (phi2 , true))) leafNode), (statesTree))

else ((addLeftToTableau (origT)

((node ((fst(phi)), (phi1 , false))

(leaf ((fst(phi)), (phi2 , false)))

(nilLeaf nat name data))) leafNode), (statesTree))

| neg phi1 ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

6.4 A tableau for ReLo in Coq 109

(leaf ((fst(phi)), (((phi1)) , false))) leafNode), (statesTree))

else ((addLeftToTableau (origT)

(leaf ((fst(phi)), (((phi1)) , true))) leafNode), (statesTree))

| box t' pi p ⇒ match pi with

| sProgram pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

((leaf ((destState), (p , true)))) leafNode), (statesTree))

else ((addLeftToTableau (origT)

((leaf ((state), (p , false)))) leafNode) ,

(set add equiv dec ((fst(phi)), (state)) statesTree))

| star pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

((node ((fst(phi)), (p , true)) (leaf ((fst(phi)),

(((box t' (sProgram pi')(box t' (star pi') p))) , true)))

(nilLeaf nat name data))) leafNode), (statesTree))

else ((addLeftToTableau (origT) ((leaf ((fst(phi)),

((chiFormulaBox indexchiFormulaBox p) , false))))

leafNode), (statesTree))

end

| diamond t' pi p ⇒ match pi with

| sProgram pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

((leaf ((state), (p , true)))) leafNode),

(set add equiv dec ((fst(phi)), (state)) statesTree))

else ((addLeftToTableau (origT)

((leaf ((destState), (p , false)))) leafNode), (statesTree))

| star pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT) ((leaf ((fst(phi)),

((chiFormulaBox indexchiFormulaBoxmond p) , true))))

leafNode), (statesTree))

else ((addLeftToTableau (origT)

((node ((fst(phi)), (p , false))

(leaf ((fst(phi)), (((diamond t' (sProgram pi')

(diamond t' (star pi') p))) , false)))

(nilLeaf nat name data))) leafNode), (statesTree))

6.4 A tableau for ReLo in Coq 110

end

| imp phi1 phi2 ⇒ if (snd(snd(phi))) then

((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (phi1 , false)))

(leaf ((fst(phi)), (phi2 , true))) leafNode), (statesTree))

else ((addBranchLeftToTableau (origT)

((node ((fst(phi)), (phi1 , true))

(leaf ((fst(phi)), (phi2 , false)))) (nilLeaf nat name data))

(nilLeaf nat name data) leafNode), (statesTree))

| ⇒ (tx, statesTree)

end

else (tx, statesTree)

| node phi x y ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equalForumla (fst(snd(nodeContent))) (fst(snd(phi))))

&& (equiv decb (snd(snd(nodeContent))) (snd(snd(phi))))

then match (fst(snd(phi))) with

| proposition p ⇒ (origT, statesTree)

| chiFormulaBox n phi' ⇒ if negb (snd(snd(phi))) then

match phi' with

| box t' pi p ⇒ match pi with

| star pi' ⇒ ((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (p , false)))

(node ((fst(phi)), (p , true))

(leaf ((fst(phi)), ((box t' pi)

(chiFormulaBox indexchiFormulaBox phi') , false)))

(nilLeaf nat name data)) leafNode) , (statesTree))

| sProgram pi' ⇒ (origT, statesTree)

end

| ⇒ (origT, statesTree)

end

else (origT, statesTree)

| chiFormulaBox n phi' ⇒ if (snd(snd(phi))) then

match phi' with

| diamond t' pi p ⇒ match pi with

| star pi' ⇒ ((addBranchLeftToTableau (origT)

6.4 A tableau for ReLo in Coq 111

(leaf ((fst(phi)), (p , true)))

(node ((fst(phi)), (p , false))

(leaf ((fst(phi)), ((diamond t' pi)

(chiFormulaBox indexchiFormulaBoxmond phi') , true)))

(nilLeaf nat name data)) leafNode) , (statesTree))

| sProgram pi' ⇒ (origT, statesTree)

end

| ⇒ (origT, statesTree)

end

else (origT, statesTree)

| and phi1 phi2 ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

((node ((fst(phi)), (phi1 , true))

(leaf ((fst(phi)), (phi2 , true)))

(nilLeaf nat name data))) leafNode), (statesTree))

else ((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (phi1 , false)))

(leaf ((fst(phi)), (phi2 , false))) leafNode), (statesTree))

| or phi1 phi2 ⇒ if (snd(snd(phi))) then

((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (phi1 , true)))

(leaf ((fst(phi)), (phi2 , true))) leafNode), (statesTree))

else ((addLeftToTableau (origT)

((node ((fst(phi)), (phi1 , false))

(leaf ((fst(phi)), (phi2 , false)))

(nilLeaf nat name data))) leafNode), (statesTree))

| neg phi1 ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

(leaf ((fst(phi)), (((phi1)) , false))) leafNode), (statesTree))

else ((addLeftToTableau (origT)

(leaf ((fst(phi)), (((phi1)) , true))) leafNode), (statesTree))

| box t' pi p ⇒ match pi with

| sProgram pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

((leaf ((destState), (p , true)))) leafNode), (statesTree))

6.4 A tableau for ReLo in Coq 112

else ((addLeftToTableau (origT)

((leaf ((state), (p , false)))) leafNode) ,

(set add equiv dec ((fst(phi)), (state)) statesTree))

| star pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT) ((node ((fst(phi)), (p , true))

(leaf ((fst(phi)), (((box t' (sProgram pi')

(box t' (star pi') p))) , true)))

(nilLeaf nat name data))) leafNode), (statesTree))

else ((addLeftToTableau (origT)((leaf ((fst(phi)),

((chiFormulaBox indexchiFormulaBox p) , true)))) leafNode),

(statesTree))

end

| diamond t' pi p ⇒ match pi with

| sProgram pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

((leaf ((state), (p , true)))) leafNode),

(set add equiv dec ((fst(phi)), (state)) statesTree))

else ((addLeftToTableau (origT)

((leaf ((destState), (p , false)))) leafNode), (statesTree))

| star pi' ⇒ if (snd(snd(phi))) then

((addLeftToTableau (origT)

((leaf ((fst(phi)),

((chiFormulaBox indexchiFormulaBoxmond p) , true))))

leafNode), (statesTree))

else ((addLeftToTableau (origT) ((node ((fst(phi)),(p , true))

(leaf ((fst(phi)), (((diamond t' (sProgram pi')

(diamond t' (star pi') p))) , false)))

(nilLeaf nat name data))) leafNode), (statesTree))

end

| imp phi1 phi2 ⇒ if (snd(snd(phi))) then

((addBranchLeftToTableau (origT)

(leaf ((fst(phi)), (phi1 , false)))

(leaf ((fst(phi)), (phi2 , true))) leafNode), (statesTree))

else ((addBranchLeftToTableau (origT)

((node ((fst(phi)), (phi1 , true))

6.4 A tableau for ReLo in Coq 113

(leaf ((fst(phi)), (phi2 , false)))) (nilLeaf nat name data))

(nilLeaf nat name data) leafNode), (statesTree))

| ⇒ (tx, statesTree)

end

else (tx, statesTree)

end

end.

To summarize, Tables 6.1, 6.2, and 6.3 denote the relation of each rule with the corre-

sponding Coq code in applyRule that adds it to the proof tree t . The tables respectively

shows the rules de�ned for propositional connectors, modalities and program operators.

The left column is the tableau rule, while the right column denotes the piece of Coq code

of applyRule which constructs the result of its application.

A top-level function to ease the process of applying a tableau rule to one of its nodes'

contents is needed, to ease its usage. Function applyRule is the top level function used

to tableauRules in the tableau process. Therefore, applyRule has as parameters t as a

tableau de�ned by type tableau,nodeContent as the content of the rule to be applied in

the proof tree of t , state as the next available state, indexchiFormulaBox and indexchi-

FormulaBoxmond respectively as the next indexes for X[] and X〈〉 formulae, and leafNode

as the leaf node of the branch where the result of the rule application must be appended.

It then will apply the rule corresponding to the content of nodeContent , adding its result

in the resulting tableau after leafNode. The resulting tableau t' is of type tableau and

consists of t with the rule applied by tableauRules , and the set of states updated when

applicable.

Definition applyRule (t : tableau nat name data)

(nodeContent : nat × (((formula name data)) × bool)) (state : nat)

(indexchiFormulaBox : nat) (indexchiFormulaBoxmond : nat)

(leafNode : nat × (((formula name data)) × bool)) :=

(mkTableau (fst(tableauRules (proofTree(t)) (proofTree(t)) (statesTree(t)) nodeCon-

tent state indexchiFormulaBox indexchiFormulaBoxmond leafNode))

(snd(tableauRules (proofTree(t)) (proofTree(t)) (statesTree(t)) nodeCon-

tent state indexchiFormulaBox indexchiFormulaBoxmond leafNode))).

The next step in the formalization is to provide means to check whether a tableau

is closed. Intuitively, a tableau is closed if all of its branches have a contradiction (i.e.,

the branch's leaf node formula must contradict some formula in its branch). The idea we

implement is to retrieve all leaf nodes, and for each leaf node found, get its corresponding

6.4 A tableau for ReLo in Coq 114

Tableau Rule Coq Tableau code

w: ϕ ∧ ψ : T
w: ϕ : T
w: ψ : T

w: ϕ ∧ ψ : F
w: ϕ : F w: ψ : F

if (snd(snd(phi))) then
((addLeftToTableau (origT)
((node ((fst(phi)), (phi1 , true))

(leaf ((fst(phi)), (phi2 , true)))
(nilLeaf nat name data))) leafNode),

(statesTree))
else ((addBranchLeftToTableau (origT)
(leaf ((fst(phi)), (phi1 , false)))
(leaf ((fst(phi)), (phi2 , false))) leafNode),

(statesTree))

w : ϕ ∨ ψ : T
w: ϕ : T w: ψ : T

w : ϕ ∨ ψ : F
w: ϕ : F
w: ψ : F

if (snd(snd(phi))) then
((addBranchLeftToTableau (origT)
(leaf ((fst(phi)), (phi1 , true)))
(leaf ((fst(phi)), (phi2 , true))) leafNode),

(statesTree))
else ((addLeftToTableau (origT)
((node ((fst(phi)), (phi1 , false))

(leaf ((fst(phi)), (phi2 , false)))
(nilLeaf nat name data))) leafNode),

(statesTree))

w : ¬ϕ : T
w : ϕ : F

w : ¬ϕ : F
w : ϕ : T

if (snd(snd(phi))) then
((addLeftToTableau (origT)
(leaf ((fst(phi)), (((phi1)) , false))) leafN-

ode), (statesTree))
else ((addLeftToTableau (origT)
(leaf ((fst(phi)), (((phi1)) , true))) leafN-

ode), (statesTree))

w : ϕ→ ψ : T
w : ϕ : F w : ψ : T

w : ϕ→ ψ : F
w : ϕ : T
w : ψ : F

if (snd(snd(phi))) then
((addBranchLeftToTableau (origT)
(leaf ((fst(phi)), (phi1 , false)))
(leaf ((fst(phi)), (phi2 , true))) leafNode),

(statesTree))
else ((addBranchLeftToTableau (origT)
((node ((fst(phi)), (phi1 , true))

(leaf ((fst(phi)), (phi2 , false)))) (nilLeaf
nat name data))

(nilLeaf nat name data) leafNode),
(statesTree))

Table 6.1: Summarization of applyRule per tableau rule � propositional Rules.

branch to check whether it has a contradiction. If there is an open branch, then the

tableau is not closed, and the formulae is not valid in the proposed tableau.

The set of leaf nodes is retrieved by getAllLeafNodes, a function that given a proof

6.4 A tableau for ReLo in Coq 115

tree t returns all leaf nodes found in it.

Fixpoint getAllLeafNodes (t : binTree nat name data) : set (binTree nat name data)

:= match t with

| nilLeaf ⇒ []

| leaf phi ⇒ [leaf phi]

| node phi a b ⇒ (getAllLeafNodes a) ++ (getAllLeafNodes b)

end.

We proceed with getBranch to enable a branch by branch analysis on whether a

tableau is closed or not. Therefore, getBranch with a proof tree t and a leaf node as

nodeContent , getBranch yields a branch which the leaf node has the content denoted by

nodeContent .

Fixpoint getBranch (t : binTree nat name data)

(nodeContent : nat × (((formula name data)) × bool)) :=

match t with

| nilLeaf ⇒ t

| leaf phi ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equalForumla (fst(snd(nodeContent))) (fst(snd(phi))))

&& (equiv decb (snd(snd(nodeContent))) (snd(snd(nodeContent))))

then (leaf phi) else (nilLeaf nat name data)

| node phi a b ⇒ if searchBinTree a nodeContent

then (node phi (getBranch a nodeContent) (nilLeaf nat name data))

else getBranch b nodeContent

end.

This de�nition is followed by isBranchContradictory', a function that checks within

a branch t whether there is a contradiction with its leaf node as nodeContent , returning

true if a contradiction is found, and false otherwise. The contradiction is depicted by the

boolean disjunctions denoted as ||.

Fixpoint isBranchContradictory' (t : binTree nat name data)

(nodeContent : nat × (((formula name data)) × bool)) :=

match t with

| nilLeaf ⇒ false

| leaf phi ⇒ (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equalForumla (fst(snd(nodeContent))) (fst(snd(phi))))

&& ((equiv decb (snd(snd(nodeContent))) (negb(snd(snd(phi))))) ||

((equiv decb (negb(snd(snd(nodeContent)))) (snd(snd(phi))))))

6.4 A tableau for ReLo in Coq 116

| node phi a b ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equalForumla (fst(snd(nodeContent))) (fst(snd(phi))))

&& ((equiv decb (snd(snd(nodeContent))) (negb(snd(snd(phi)))))

|| ((equiv decb (negb(snd(snd(nodeContent)))) (snd(snd(phi))))))

then true

else (isBranchContradictory' a nodeContent)

|| (isBranchContradictory' b nodeContent)

end.

This de�nition also comes with a dual that retrieves the nodes where a contradiction

was found in the branch, instead of only �nding that the branch has a contradiction.

Function retrieveContradictoryNodes returns a pair containing the node that contradicted

the leaf node nodeContent if the branch has a contradiction. Otherwise, it returns None

to denote no contradictory nodes in the branch t exists.

Fixpoint retrieveContradictoryNodes (t : binTree nat name data)

(nodeContent : nat × (((formula name data)) × bool)) :=

match t with

| nilLeaf ⇒ None

| leaf phi ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equalForumla (fst(snd(nodeContent))) (fst(snd(phi))))

&& ((equiv decb (snd(snd(nodeContent))) (negb(snd(snd(phi)))))

|| ((equiv decb (negb(snd(snd(nodeContent)))) (snd(snd(phi))))))

then Some (phi, nodeContent) else None

| node phi a b ⇒ if (equiv decb (fst(nodeContent)) (fst(phi)))

&& (equalForumla (fst(snd(nodeContent))) (fst(snd(phi))))

&& ((equiv decb (snd(snd(nodeContent))) (negb(snd(snd(phi)))))

|| ((equiv decb (negb(snd(snd(nodeContent)))) (snd(snd(phi))))))

then Some (phi, nodeContent)

else if searchBinTree a nodeContent

then retrieveContradictoryNodes a nodeContent

else retrieveContradictoryNodes b nodeContent

end.

The next step is to enable the veri�cation of whether the tableau is either closed or

open. First, it is necessary to analyze a single branch of the tableau. Then, it is extended

to comprise the tableau as a whole. We also need to consider he cases where the leaf

node of the tableau contains formulae X〈〉 or X[], where the condition for the branch to

6.4 A tableau for ReLo in Coq 117

be ignorable (presented in Section 5.4) must be satis�ed.

We proceed by collecting all states in the tableau with getStates . This function with

t as the branch to be evaluated returns all di�erent states present in the corresponding

branch, which will be useful when searching in the branch for states which are copy of

the state of the leaf nodes, when their formulas are of type X〈〉 or X[].

Fixpoint getStates (t : binTree nat name data) : set (nat) :=

match t with

| nilLeaf ⇒ []

| leaf phi ⇒ [fst(phi)]

| node phi a b ⇒ set union equiv dec

(set union equiv dec ([fst(phi)]) (getStates a)) (getStates b)

end.

The next de�nition is bound to deal with eventualities X〈〉 or X[]. Given a branch

as t and a state denoted by a natural number as state, getFormulae returns a set of all

formulae of t indexed by state state. it will be used to �nd whether there is a state w in

branch t with the set of formulas

Fixpoint getFormulae (t : binTree nat name data) (state:nat) :

set (formula name data) :=

match t with

| nilLeaf ⇒ []

| leaf phi ⇒ if (fst(phi)) == state then [fst(snd(phi))] else []

| node phi a b ⇒ if (fst(phi)) == state

then set union equiv dec (set union equiv dec ([fst(snd(phi))])

(getFormulae a state)) (getFormulae b state)

else set union equiv dec (getFormulae a state)

(getFormulae b state)

end.

Therefore, checkCopyState is a function that searches whether there is a set of states

statesFromBranch of the branch t with their formulas equal to the set of formulae formu-

laStateQui . If there is a state n ∈ statesFromBranch which contains exactly the formulae

formulaStatesQui and vice-versa, checkCopyState yields true as its result.

Fixpoint checkCopyState (t : binTree nat name data) (statesFromBranch : set nat)

(formulaStateQui : set (formula name data)) : bool :=

match statesFromBranch with

| [] ⇒ false

6.4 A tableau for ReLo in Coq 118

| st::moreStates ⇒ set eq (getFormulae t st) (formulaStateQui)

|| (checkCopyState t moreStates formulaStateQui)

end.

After the formalization of both isBranchContradictory and checkCopyState, we may

implement a top level function in which will take a leaf node of a branch as nodeContent

and a branch t to check whether t 's leaf node contradicts any of the formulas of t .

Therefore, isBranchContradictory splits this veri�cation in two cases.

� if nodeContent is of form X〈〉 or X[], then it must check whether the eventuality

has been ful�lled (by means of isBranchContradictory') or if it makes the branch

ignorable (by means of checkCopyStates).

� if nodeContent is not of form X〈〉 or X[], then it searches within the branch if there

is a node containing the formula in nodeContet with opposite validity.

Definition isBranchContradictory (t : binTree nat name data)

(nodeContent : nat × (((formula name data)) × bool)) :=

match (fst(snd(nodeContent))) with

| chiFormulaBox n phi | chiFormulaBox n phi ⇒
(isBranchContradictory' t nodeContent)

|| (checkCopyState t (getStates t) (getFormulae t (fst(nodeContent))))

| ⇒ isBranchContradictory' t nodeContent

end.

6.4 A tableau for ReLo in Coq 119

Tableau Rule Coq Tableau code

w: 〈t, π〉ϕ : T
x: ϕ : T

w: 〈t, π〉ϕ : F
x: ϕ : F

if (snd(snd(phi))) then
((addLeftToTableau (origT)
((leaf ((state), (p , true)))) leafNode),
(set add equiv dec ((fst(phi)), (state))

statesTree))

else ((addLeftToTableau (origT)
((leaf ((destState), (p , false)))) leafNode),

(statesTree))

w: [t, π]ϕ : T
x: ϕ : T

w: [t, π]ϕ : F
x: ϕ : F

if (snd(snd(phi))) then
((addLeftToTableau (origT)
((leaf ((destState), (p , true)))) leafNode),

(statesTree))
else ((addLeftToTableau (origT)
((leaf ((state), (p , false)))) leafNode) ,

(set add equiv dec ((fst(phi)), (state)) stat-
esTree))

w: 〈t, π?〉ϕ : T
w: X〈〉 : T
X〈〉 = 〈t, π?〉ϕ

w: 〈t, π?〉ϕ : F
w: ϕ : F

w: 〈t, π〉〈t′π, π?〉ϕ : F

if (snd(snd(phi))) then
((addLeftToTableau (origT) ((leaf

((fst(phi)),
((chiFormulaBox indexchiFormulaBoxmond

p) , true))))
leafNode), (statesTree))
else ((addLeftToTableau (origT)
((node ((fst(phi)), (p , false))

(leaf ((fst(phi)), (((diamond t' (sProgram
pi')

(diamond t' (star pi') p))) , false)))
(nilLeaf nat name data))) leafNode),

(statesTree))
end

w: [t, π?]ϕ : T
w: ϕ : T

w: [t, π][t′π, π
?]ϕ : T

w: [t, π?]ϕ : F
w: X[] : F

X[] = [t, π?]ϕ

if (snd(snd(phi))) then
((addLeftToTableau (origT)
((node ((fst(phi)), (p , true)) (leaf

((fst(phi)),
(((box t' (sProgram pi')(box t' (star pi') p)))

, true)))
(nilLeaf nat name data))) leafNode),

(statesTree))
else ((addLeftToTableau (origT) ((leaf

((fst(phi)),
((chiFormulaBox indexchiFormulaBox p) ,

false))))
leafNode), (statesTree))
end

Table 6.2: Summarization of applyRule per tableau rule � modal rules.

6.4 A tableau for ReLo in Coq 120

Tableau Rule Coq Tableau code

w: X〈〉 : T
w : ϕ : T w : ϕ : F

w: 〈t, π〉X〈〉 : T

if (snd(snd(phi))) then
match phi' with
| diamond t' pi p ⇒ match pi with
| star pi' ⇒ ((addBranchLeftToTableau

(origT)
(leaf ((fst(phi)), (p , true)))
(node ((fst(phi)), (p , false))

(leaf ((fst(phi)), ((diamond t' pi)
(chiFormulaBox indexchiFormulaBoxmond

phi') , true)))
(nilLeaf nat name data)) leafNode) ,

(statesTree))
| sProgram pi' ⇒ (origT, statesTree)
end

| ⇒ (origT, statesTree)
end

else (origT, statesTree)

w: X[] : F
w: ϕ : F w : ϕ : T

w: [t, π]X[] : F

match phi' with
| box t' pi p ⇒ match pi with
| star pi' ⇒ ((addBranchLeftToTableau

(origT)
(leaf ((fst(phi)), (p , false)))
(node ((fst(phi)), (p , true))

(leaf ((fst(phi)), ((box t' pi)
(chiFormulaBox indexchiFormulaBox phi') ,

false)))
(nilLeaf nat name data)) leafNode) ,

(statesTree))
| sProgram pi' ⇒ (origT, statesTree)
end

| ⇒ (origT, statesTree)
end

else (origT, statesTree)

Table 6.3: Summarization of applyRule per tableau rule � iteration rules.

Chapter 7

Usage Examples

The current chapter provides usage examples of the formalisms hereby implemented. The

proposed framework is further explored, considering the usage of all concepts introduced

in Sections 5 and 6.

7.1 Sequencing Entities' communication in ReLo

Let us recover the example of the Sequencer model, introduced in Figure 4.2. The ReLo

program Π is formalized from the following of �ow programs in SequencerProgram as pi , a

standard program as de�ned by reoProgram's constructor sProgram. This example's code

can be found in the project's repository, in a �le named �SequencerEx.v�.

Definition SequencerProgram := [�owFifo nat D E ; �owSync nat E A; �owFifo

nat E F ; �owSync nat F B ; �owFifo nat F G ; �owSync nat G C ; �owSync nat G D].

Definition pi := sProgram (reoProg SequencerProgram []).

A user-de�ned model can be input in the system for veri�cation. suppose the following

structure denotes a simpli�cation of the Sequencer's behavior as sequencerModel , where

sequencerFrame is a user de�ned frame as in De�nition 6.1.1, and sequencerValuation is

the model's valuation function as in De�nition 6.1.2.

Definition sequencerModel := mkmodel sequencerFrame sequencerValuation.

Definition sequencerFrame := mkframe [DA;DB ;DC ;DD ;DE ;DF ;DG ;D DFIFOE ;

D EFIFOF ;D FFIFOG] [(DD ,D DFIFOE);(D DFIFOE ,DE);(DE ,DA);

(DE ,D EFIFOF);(D EFIFOF ,DF);(DF ,DB);(DF ,D FFIFOG);

(D FFIFOG ,DG);(DG ,DC);(DG ,DD)] sequencerLambda deltaSequencer .

The valuation function sequencerValuation denotes which formulae are valid on each

state of the model sequencerModel using getPropositionSequencer as the function which

stores the set of formulae valid for each state. An empty set of valid formulae denotes

7.1 Sequencing Entities' communication in ReLo 122

that there is no formulae valid in this state.

Definition sequencerValuation (s : statesSequencer) (p : (dataProp ports nat)) :=

existsb (fun x : (dataProp ports nat) ⇒ equiv decb p x)

(getPropositionSequencer s).

Definition getPropositionSequencer (s : statesSequencer) :=

match s with

| DA ⇒ [dataInPorts A 0; dataInPorts A 1]

| DB ⇒ [dataInPorts B 0; dataInPorts B 1]

| DC ⇒ [dataInPorts C 0; dataInPorts C 1]

| DD ⇒ [dataInPorts D 0; dataInPorts D 1]

| DE ⇒ []

| DF ⇒ []

| DG ⇒ []

| D EFIFOF ⇒ []

| D FFIFOG ⇒ []

| D DFIFOE ⇒ []

end.

Properties may be formalized as ReLo formulae in Coq and validated on the model.

The following formula states that �after every execution of pi with t denoting a data

�ow of item 1 in port name D , no data �ow is present on ports A,B and C . The below

evaluation of singleFormulaVerify yields true because the model [sequencerModel] indeed

satis�es the property modelled.

Definition t := [dataPorts D 1].

Eval compute in singleFormulaVerify sequencerModel

(box t pi (((neg ((and (and (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1)))

(proposition (dataInPorts C 1)))))))) t .

Another example of formulae can be stated as follows: �given that there is a nondeter-

ministic execution where there is a data item 1 in port D , then there is a nondeterministic

execution where the same data item will be in port C .

Eval compute in singleFormulaVerify sequencerModel

(box t pi (((neg ((and (and (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1)))

(proposition (dataInPorts C 1)))))))) t .

The formalization presented in Section 6.3 is also useful for scenarios where the user

7.2 Modelling Smart Cities entities interaction in ReLo 123

only wants to reason over a Reo model and a ReLo formulae, leaving the task to construct

a model for the Coq implementation as in variable example1Relo. It uses constructModel

with the Reo model's port names, the data �ow denoted by t , and a formula that states

�given that there is a nondeterministic execution where there is a data item 1 in port C ,

then there is a nondeterministic execution where the same data item will be in port B .

Variable example1Relo then will return a ReLo model in which the formula is valid. Then,

the resulting model in example1Relo can be used by the model veri�cation apparatus

implemented in Section 6.2.

Definition example1Relo :=

Eval compute in constructModel [A ; B ; C ; D ; E ; F ; G] [t]

(imp (box t piStar' ((((((((proposition (dataInPorts C 1))))))))))

(box t piStar' ((((((((proposition (dataInPorts B 1)))))))))))

(length(SequencerProgram) × 3).

Definition validityExample1Relo := singleFormulaVerify example1Relo

(imp (box t piStar' ((((((((proposition (dataInPorts C 1))))))))))

(box t piStar' ((((((((proposition (dataInPorts B 1))))))))))) t .

7.2 Modelling Smart Cities entities interaction inReLo

We recover the Reo model in Figure 4.3 from [36] to instantiate a Smart Crossroad sce-

nario, in which the tra�c lights interact in a Reo model to obtain the token which will

enable them to allow cars pass. The Coq code of this example may be found in the

project's repository in a �le named �SmartCitiesEx.v�.

We proceed by stating the set of port names composing the model as modelPortsType.

Inductive modelPortsType := A | Y | B | X | I | J | L | K | M | N | C .

The corresponding Reo model is formalized as the followingReLo program. The model

contains a Transform channel which function is to invert its data �ow. The transform

function is swap01 as follows.

Definition SmartCitiesModelProg := [�owMerger nat A B Y ; �owSync nat Y X ;

�owSync nat X I ; �owSync nat X J ; �owTransform swap01 J L; �owSync nat I K ;

�owSync nat L M ; �owFifo nat K N ; �owMerger nat M N C].

Definition swap01 (n:nat) : nat :=

match n with

| 0 ⇒ 1

| 1 ⇒ 0

| Datatypes.S o ⇒ (Datatypes.S o)

7.3 Byzantine Consensus 124

end.

Let us suppose the starting data �ow is item 1 in port name A. In this example, we

will consider the iteration of program SmartCitiesModelProg as piStar .

Definition t := [dataPorts A 1].

Definition piStar := star (reoProg SmartCitiesModelProg []).

Then, the behaviour of the model can be analyzed as follows. The idea of the connector

is that a single data input 1 will result in both data items 0 and 1 reaching port name

C, denoting that both semaphores get to let their cars pass. This can be formalized as

(DA = 1)→ (〈t, π?〉DA = C ∧ 〈t, π?〉DC = 1), which in Coq can be formalized as follows.

(imp ((((proposition (dataInPorts A 1)))))

(and (box t piStar (((proposition (dataInPorts C 0)))))

(box t piStar (((proposition (dataInPorts C 1)))))))

Therefore, the model calculated based in the formula above can be calculated by

constructModel resulting in SmartCitiesEx1 .

Definition SmartCitiesEx1 :=

constructModel [A ; Y ; B ; X ; I ; J ; L ; K ; M ; N ; C] [t]

(imp ((((proposition (dataInPorts A 1)))))

(and (box t piStar (((proposition (dataInPorts C 0)))))

(box t piStar (((proposition (dataInPorts C 1)))))))

(length(SmartCitiesModelProg) × 3).

The validity of the formula in SmartCitiesEx1 can then be assessed by singleFor-

mulaVerify .

Eval compute in singleFormulaVerify SmartCitiesEx1

(imp ((((proposition (dataInPorts A 1)))))

(and (box t piStar (((proposition (dataInPorts C 0)))))

(box t piStar (((proposition (dataInPorts C 1))))))) t .

7.3 Byzantine Consensus

In this example, we show a ReLo formalization of the Byzantine consensus detailed in

Chapter 4. We detail the implementation of the Reo model in Figure 4.4. The code of this

example can be found in the project's repository in a �le named �ByzantineConsensus.v�.

We start by formalizing the Reo model in Figure 4.4 as π = (f, b), where f =

BizantineConsensusFlowProgram and b = BizantineConsensusBlockProgram, which will

be combined in pi to form the pair (f, b) of a ReLo program. De�nition piStar is the

iteration of π as π?.

7.3 Byzantine Consensus 125

Definition BizantineConsensusFlowProgram := [�owFilter timerProp R' B' ; �owSync

nat B' A;

�owSync nat B' X ; �owFilter timerProp X CR' ; �owFilter timerProp A VR' ;

�owFilter timerProp B VB' ; �owFilter timerBPProp A' B ;

�owFilter timerAPProp A' P ; �owFilter timerProp P R; �owSync nat R Y ;

�owSync nat R Z ; �owFilter timerVAProp Y VA' ; �owFilter timerProp Z CA'].

Definition BizantineConsensusBlockProgram := [�owSyncdrain A X ; �owaSyncdrain

VR' CR' ; �owaSyncdrain VB' A; �owaSyncdrain VA' CA' ; �owSyncdrain Y Z].

Definition pi := sProgram (reoProg BizantineConsensusFlowProgram BizantineCon-

sensusBlockProgram).

Definition piStar := star (reoProg BizantineConsensusFlowProgram BizantineCon-

sensusBlockProgram).

Each of the Filter connectors above contains a predicate which speci�es a condition

for the data to �ow for the speci�c port. In this example, we denote that the data to �ow

from nodes CA', CR, and A' is 1. If it is zero, then it is the case it �ows from A to B

only. As stated above, we model the notion of a temporizer as a special predicate which

knows when to �re the transition. For the sake of simplicity, it assumes that the timer

is always set to immediately �re, but the data will �ow to sink nodes VB', VR' and VA'

only if it equals 0.

Definition timerProp (n : nat) := true.

Definition timerAPProp (n : nat) :=

match n with

| 1 ⇒ true

| 0 ⇒ false

| Datatypes.S m ⇒ false

end.

Definition timerBPProp (n:nat) :=

match n with

| 0 ⇒ true

| Datatypes.S m ⇒ false

end.

Definition timerVAProp (n:nat) :=

match n with

| 0 ⇒ true

| Datatypes.S m ⇒ false

7.3 Byzantine Consensus 126

end.

One of the properties that can be checked in this model is as follows. The replica will

only set its state to commit (by sending data to node "CA'") if the conditions required

are met, and the preset timer for the V's have not been �red. This can be modelled as

the following ReLo formulae: [t, π?](DCA′ = 1) → [t, π?](¬(DV A′) ∧ ¬(DV B′) ∧ ¬(DV R′))

as the ReLo used to �nd the model yielded by property1 . De�nition t states that the

initial data �ow in this example is the data item 1 in port name A.

Definition t := [dataPorts A' 1].

Definition property1 := Eval compute in constructModel

[R' ; B' ; A ; X ; CR' ; VR' ; B ; VB' ; A' ; P ; R ; Y ; Z ; VA' ; CA'] [t]

(((imp (box t piStar(proposition (dataInPorts CA' 1)))

(box t piStar(and (and (neg(proposition (dataInPorts VA' 1)))

(neg(proposition (dataInPorts VB' 1))))

(neg(proposition (dataInPorts VR' 1))))))))

(length(BizantineConsensusFlowProgram) + length(BizantineConsensusBlockProgram)).

The formula above can be veri�ed in the model obtained by property1 by means of

singleFormulaVerify as follows.

Eval compute in singleFormulaVerify property1

(((imp (box t piStar(proposition (dataInPorts CA' 1)))

(box t piStar(and (and (neg(proposition (dataInPorts VA' 1)))

(neg(proposition (dataInPorts VB' 1)))) (neg(proposition (dataInPorts VR' 1))))))))

t .

Another property that can be veri�ed is as follows. Conversely to the data �ow setting

the replica to the commit state in nodes with port names CA', data will �ow to the node

denoting the view change only if there is no data in the change nodes CA' and CR'.

This property along with property1 states the notion that �no replica can set its state to

commit and change view simultaneously�.

Definition property2 := Eval compute in constructModel

[R' ; B' ; A ; X ; CR' ; VR' ; B ; VB' ; A' ; P ; R ; Y ; Z ; VA' ; CA'] [t']

(((imp ((box t' piStar(proposition (dataInPorts VA' 0))))

(box t' piStar((and (neg(proposition (dataInPorts CA' 0)))

(neg(proposition (dataInPorts CR' 0)))))))))

(length(BizantineConsensusFlowProgram) + length(BizantineConsensusBlockProgram)).

It can also be veri�ed with singleFormulaVerify with the model obtained by property2

as follows.

7.4 ReLo Tableau proofs 127

Eval compute in singleFormulaVerify property2

(((imp ((box t' piStar(proposition (dataInPorts VA' 0))))

(box t' piStar((and (neg(proposition (dataInPorts CA' 0)))

(neg(proposition (dataInPorts CR' 0))))))))) t .

7.4 ReLo Tableau proofs

In this section, we will recover Axiom K's proof in Section 5.4.1 to show how tableau proofs

can be addressed in Coq. Its corresponding Coq code is in the project's repository, in a

�le named �TableauEx.v�. The axiom can be formalized in Coq as axiomKTableau. In this

example, we denote ϕ and ψ respectively as Coq ReLo formulas (proposition (dataInPorts

A 1)) and (proposition (dataInPorts B 1)). After each Coq tableau rule application, the

resulting proof tree is also shown as Listings 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7.

Definition axiomKTableau :=

(imp ((box t (sProgram (reoProg [�owLossySync nat A B] []))

(imp (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1)))))

(imp ((box t (sProgram (reoProg [�owLossySync nat A B] [])))

(proposition (dataInPorts A 1)))

((box t (sProgram (reoProg [�owLossySync nat A B] [])))

(proposition (dataInPorts B 1))))).

Listing 7.1: Tableau obtained from formula axiomKTableau

1 = { | proofTree :=

2 l e a f (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

3 (imp (p ropo s i t i on (dataInPorts A 1))

4 (p r opo s i t i on (dataInPorts B 1))))

5 (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

6 (p r opo s i t i on (dataInPorts A 1)))

7 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

8 (p r opo s i t i on (dataInPorts B 1)))) , f a l s e)) ;

9 s t a t e sTree := []

10 | }

Then, the analysis of the tableau can be done by applying rules using applyRules

successively. It starts with formula2TableauKApp1 as the result of applying rule (→ −F)

7.4 ReLo Tableau proofs 128

to the initial proof tree in axiomKTableau as the smallest tableau containing K as false.

To proceed, it is necessary to supply the node which the derivation rule will be applied,

the corresponding indexes introduced in applyRule's de�nition, and the leaf node that

identi�es the branch to which the result of the rule application must be added to the

proof tree.

Definition formula2TableauKApp1 :=

applyRule (formula eqDec H�l portsEq nat eqDec) formula2TableauK

(0, (imp (box t (sProgram (reoProg [�owLossySync nat A B] []))

(imp (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1))))

(imp

(box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts A 1)))

(box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts B 1)))), false)) 0 0 0 0

(0, (imp (box t (sProgram (reoProg [�owLossySync nat A B] []))

(imp (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1))))

(imp

(box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts A 1)))

(box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts B 1)))), false)).

Listing 7.2: Tableau obtained from formula formula2TableauKApp1

1 = { | proofTree :=

2 node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

3 (imp (p ropo s i t i on (dataInPorts A 1))

4 (p r opo s i t i on (dataInPorts B 1))))

5 (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

6 (p r opo s i t i on (dataInPorts A 1)))

7 (box [] (sProgram (reoProg [f lowLossySync nat A B] []))

8 (p r opo s i t i on (dataInPorts B 1)))) , f a l s e))

9 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

10 (imp (p ropo s i t i on (dataInPorts A 1))

7.4 ReLo Tableau proofs 129

11 (p r opo s i t i on (dataInPorts B 1))) , t rue))

12 (l e a f (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

13 (p r opo s i t i on (dataInPorts A 1)))

14 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

15 (p r opo s i t i on (dataInPorts B 1))) , f a l s e)))

16 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat) ;

17 s ta t e sTree := []

18 | }

The derivation proceeds with formula2TableauKApp2 , which applies the rule (→ −T)

in the right hand of K's main implication obtained in formula2TableauKApp1 .

Definition formula2TableauKApp2 :=

applyRule (formula eqDec H�l portsEq nat eqDec) formula2TableauKApp1

(0, (imp (box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts A 1)))

(box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts B 1))), false)) 0 0 0 0

(0, (imp (box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts A 1)))

(box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts B 1))), false)).

Listing 7.3: Tableau obtained from formula formula2TableauKApp2

1 = { | proofTree :=

2 node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

3 (imp (p ropo s i t i on (dataInPorts A 1))

4 (p r opo s i t i on (dataInPorts B 1))))

5 (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

6 (p r opo s i t i on (dataInPorts A 1)))

7 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

8 (p r opo s i t i on (dataInPorts B 1)))) , f a l s e))

9 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

10 (imp (p ropo s i t i on (dataInPorts A 1))

11 (p r opo s i t i on (dataInPorts B 1))) , t rue))

12 (node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

13 (p r opo s i t i on (dataInPorts A 1)))

7.4 ReLo Tableau proofs 130

14 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

15 (p r opo s i t i on (dataInPorts B 1))) , f a l s e))

16 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

17 (p r opo s i t i on (dataInPorts A 1)) , t rue))

18 (l e a f (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

19 (p r opo s i t i on (dataInPorts B 1)) , f a l s e)))

20 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

21 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat) ;

22 s ta t e sTree := []

23 | }

Then, the next rule to be applied is ([]−F) which was obtained in formula2TableauKApp2 .

Note that, the next index has been updated to consider a new state, denoted by the num-

ber 1.

Definition formula2TableauKApp3 :=

applyRule (formula eqDec H�l portsEq nat eqDec) formula2TableauKApp2

(0, (box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts B 1)), false)) 1 0 0 0

(0, (box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts B 1)), false)).

Listing 7.4: Tableau obtained from formula formula2TableauKApp3

1 { | proofTree :=

2 node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

3 (imp (p ropo s i t i on (dataInPorts A 1))

4 (p r opo s i t i on (dataInPorts B 1))))

5 (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

6 (p r opo s i t i on (dataInPorts A 1)))

7 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

8 (p r opo s i t i on (dataInPorts B 1)))) , f a l s e))

9 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

10 (imp (p ropo s i t i on (dataInPorts A 1))

11 (p r opo s i t i on (dataInPorts B 1))) , t rue))

12 (node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

13 (p r opo s i t i on (dataInPorts A 1)))

14 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

7.4 ReLo Tableau proofs 131

15 (p r opo s i t i on (dataInPorts B 1))) , f a l s e))

16 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

17 (p r opo s i t i on (dataInPorts A 1)) , t rue))

18 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

19 (p r opo s i t i on (dataInPorts B 1)) , f a l s e))

20 (l e a f (1 , (p r opo s i t i on (dataInPorts B 1) , f a l s e)))

21 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

22 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

23 (n i l L e a f nat por t s nat) ;

24 s ta t e sTree := [(0 , 1)]

25 | }

The derivation obtained in formula2TableauKApp4 is the application of rule (→ −T)

on the formula obtained from formula2TableauKApp1 as the implication of the left hand

side of K's main implication.

Definition formula2TableauKApp4 :=

applyRule (formula eqDec H�l portsEq nat eqDec) formula2TableauKApp3

(0, (box t (sProgram (reoProg [�owLossySync nat A B] []))

(imp (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1))), true)) 1 1 0 0

(1, (proposition (dataInPorts B 1), false)).

Listing 7.5: Tableau obtained from formula formula2TableauKApp4

1 = { | proofTree :=

2 node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

3 (imp (p ropo s i t i on (dataInPorts A 1))

4 (p r opo s i t i on (dataInPorts B 1))))

5 (imp(box t (sProgram (reoProg [f lowLossySync nat A B] []))

6 (p r opo s i t i on (dataInPorts A 1)))

7 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

8 (p r opo s i t i on (dataInPorts B 1)))) , f a l s e))

9 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

10 (imp (p ropo s i t i on (dataInPorts A 1))

11 (p r opo s i t i on (dataInPorts B 1))) , t rue))

12 (node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

13 (p r opo s i t i on (dataInPorts A 1)))

7.4 ReLo Tableau proofs 132

14 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

15 (p r opo s i t i on (dataInPorts B 1))) , f a l s e))

16 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

17 (p r opo s i t i on (dataInPorts A 1)) , t rue))

18 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

19 (p r opo s i t i on (dataInPorts B 1)) , f a l s e))

20 (node (1 , (p r opo s i t i on (dataInPorts B 1) , f a l s e))

21 (l e a f (1 , (imp (p ropo s i t i on (dataInPorts A 1))

22 (p r opo s i t i on (dataInPorts B 1)) , t rue)))

23 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

24 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

25 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat) ;

26 s ta t e sTree := [(0 , 1)]

27 | }

The next derivation is formula2TableauKApp5 is bound to apply rule → −T to the

implication obtained in formula2TableauKApp4 .

Definition formula2TableauKApp5 :=

applyRule (formula eqDec H�l portsEq nat eqDec) formula2TableauKApp4

(1, (imp (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1)), true)) 1 1 0 0

(1, (imp (proposition (dataInPorts A 1))

(proposition (dataInPorts B 1)), true)).

Listing 7.6: Tableau obtained from formula formula2TableauKApp5

1 = { | proofTree :=

2 node (0 , (imp(box t (sProgram (reoProg [f lowLossySync nat A B] []))

3 (imp (p ropo s i t i on (dataInPorts A 1))

4 (p r opo s i t i on (dataInPorts B 1))))

5 (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

6 (p r opo s i t i on (dataInPorts A 1)))

7 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

8 (p r opo s i t i on (dataInPorts B 1)))) , f a l s e))

9 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

10 (imp (p ropo s i t i on (dataInPorts A 1))

11 (p r opo s i t i on (dataInPorts B 1))) , t rue))

12 (node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

7.4 ReLo Tableau proofs 133

13 (p r opo s i t i on (dataInPorts A 1)))

14 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

15 (p r opo s i t i on (dataInPorts B 1))) , f a l s e))

16 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

17 (p r opo s i t i on (dataInPorts A 1)) , t rue))

18 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

19 (p r opo s i t i on (dataInPorts B 1)) , f a l s e))

20 (node (1 , (p r opo s i t i on (dataInPorts B 1) , f a l s e))

21 (node (1 , (imp (p ropo s i t i on (dataInPorts A 1))

22 (p r opo s i t i on (dataInPorts B 1)) , t rue))

23 (l e a f (1 , (p r opo s i t i on (dataInPorts A 1) , f a l s e)))

24 (l e a f (1 , (p r opo s i t i on (dataInPorts B 1) , t rue))))

25 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

26 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

27 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat) ;

28 s ta t e sTree := [(0 , 1)]

29 | }

The last derivation applied is formula2TableauKApp6 , which will apply ([] − T) in

the left branch generated by formula2TableauKApp5 . The resulting tableau will result in

a contradiction in both branches obtained in formula2TableauKApp5 as the right branch

already have a contradiction.

Definition formula2TableauKApp6 :=

applyRule (formula eqDec H�l portsEq nat eqDec)

formula2TableauKApp5

(0, (box t (sProgram (reoProg [�owLossySync nat A B] []))

(proposition (dataInPorts A 1)), true)) 1 1 0 0

(1, (proposition (dataInPorts A 1), false)).

Listing 7.7: Tableau obtained from formula formula2TableauKApp6

1 = { | proofTree :=

2 node (0 , (imp(box t (sProgram (reoProg [f lowLossySync nat A B] []))

3 (imp (p ropo s i t i on (dataInPorts A 1))

4 (p r opo s i t i on (dataInPorts B 1))))

5 (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

6 (p r opo s i t i on (dataInPorts A 1)))

7 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

7.4 ReLo Tableau proofs 134

8 (p r opo s i t i on (dataInPorts B 1)))) , f a l s e))

9 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

10 (imp (p ropo s i t i on (dataInPorts A 1))

11 (p r opo s i t i on (dataInPorts B 1))) , t rue))

12 (node (0 , (imp (box t (sProgram (reoProg [f lowLossySync nat A B] []))

13 (p r opo s i t i on (dataInPorts A 1)))

14 (box t (sProgram (reoProg [f lowLossySync nat A B] []))

15 (p r opo s i t i on (dataInPorts B 1))) , f a l s e))

16 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

17 (p r opo s i t i on (dataInPorts A 1)) , t rue))

18 (node (0 , (box t (sProgram (reoProg [f lowLossySync nat A B] []))

19 (p r opo s i t i on (dataInPorts B 1)) , f a l s e))

20 (node (1 , (p r opo s i t i on (dataInPorts B 1) , f a l s e))

21 (node (1 , (imp (p ropo s i t i on (dataInPorts A 1))

22 (p r opo s i t i on (dataInPorts B 1)) , t rue))

23 (node (1 , (p r opo s i t i on (dataInPorts A 1) , f a l s e))

24 (l e a f (1 , (p r opo s i t i on (dataInPorts A 1) , t rue)))

25 (n i l L e a f nat por t s nat))

26 (l e a f (1 , (p r opo s i t i on (dataInPorts B 1) , t rue))))

27 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

28 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat))

29 (n i l L e a f nat por t s nat)) (n i l L e a f nat por t s nat) ;

30 s ta t e sTree := [(0 , 1)]

31 | }

The user can check whether the obtained tableau after the rule application is a closed

tableau by means of checkContradictoryBranch. Ît will calculate each branch in proof

tree formula2TableauKApp6 and return true if all branches are closed, or false otherwise.

Eval compute in isTableauClosed (formula eqDec H�l portsEq nat eqDec)

(proofTree(formula2TableauKApp6)).

With the model obtained in Listing 7.7, isTableauClosed will compute two branches:

one ending in row 24 and other ending in row 26. The branch ending in row 24 has

a contradiction with the node in row 23 regarding formula (proposition (dataInPorts A

1)). The branch ending in row 26 has a contradiction with the node in row 20 regarding

formulae (proposition (dataInPorts B 1). As all branches have a contradiction, the tableau

is closed.

Chapter 8

Conclusions and Further Work

Reo is a widely used tool to model new systems out of the coordination of already existing

pieces of software. It has been used in a variety of domains, drawing the attention of

researchers from di�erent locations around the world. This has resulted in Reo having

many formal semantics proposed, each one employing di�erent formalisms: operational,

co-algebraic, and coloring semantics are some of the types of semantics proposed for Reo.

This work presents ReLo, a dynamic logic to reason about Reo models. We have dis-

cussed its core de�nitions, syntax, semantic notion, providing soundness and completeness

proofs for it. We also discussed a Coq implementation of ReLo and some useful tools to

enable its usage in a computational environment, like the search for a model that satis�es

a formula, and a ReLo tableau implementation. ReLo naturally subsumes the notion of

Reo programs and models in its syntax and semantics, and implementing its core concepts

in Coq enables the usage of Coq's proof apparatus to reason over Reo models with ReLo.

Future work may consider the integration of the current implementation of ReLo

with ReoXplore1, a web platform conceived to reason about Reo models, the study of

ReLo and other Reo formal semantics (i.e., Constraint Automata and its core variants)

to evaluate the expressiveness of possible extensions of ReLo, and the adaptation of

ReLo to subsume other Reo channels created for other formal semantics to increase its

expressibility, enabling the modelling of properties like actions and timing constraints

performed by some other formal semantics [20,49]. Spe�cially regarding ReLo complexity

results and the completeness of ReLo's tableau are also proposed as future work.

1https://github.com/frame-lab/ReoXplore

https://github.com/frame-lab/ReoXplore

References

[1] Abrial, J. B-tool reference manual. b-core (uk) ltd, 1991.

[2] Aho, A. V., Ullman, J. D. Foundations of computer science. Computer Science
Press, Inc., 1992.

[3] Arbab, F. Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 3 (2004), 329�366.

[4] Arbab, F. Coordination for component composition. Electronic Notes in Theoretical
Computer Science 160 (2006), 15 � 40. Proceedings of the International Workshop
on Formal Aspects of Component Software (FACS 2005).

[5] Arbab, F., Baier, C., de Boer, F., Rutten, J. Models and temporal logical
speci�cations for timed component connectors. Software & Systems Modeling 6, 1
(2007), 59�82.

[6] Arbab, F., Kokash, N., Meng, S. Towards using reo for compliance-aware busi-
ness process modeling. In International Symposium On Leveraging Applications of
Formal Methods, Veri�cation and Validation (2008), Springer, p. 108�123.

[7] Arbab, F., Rutten, J. J. A coinductive calculus of component connectors. In In-
ternational Workshop on Algebraic Development Techniques (2002), Springer, p. 34�
55.

[8] Ardeshir-Larijani, E., Farhadi, A., Arbab, F. Simulation of hybrid reo con-
nectors. In 2020 CSI/CPSSI International Symposium on Real-Time and Embedded
Systems and Technologies (RTEST) (2020), IEEE, p. 1�10.

[9] Atkinson, C., Kuhne, T. Model-driven development: a metamodeling foundation.
IEEE software 20, 5 (2003), 36�41.

[10] Baier, C. Probabilistic models for reo connector circuits. J. UCS 11, 10 (2005),
1718�1748.

[11] Baier, C., Sirjani, M., Arbab, F., Rutten, J. Modeling component connectors
in reo by constraint automata. Science of computer programming 61, 2 (2006), 75�
113.

[12] Bartzia, E.-I., Strub, P.-Y. A formal library for elliptic curves in the coq
proof assistant. In International Conference on Interactive Theorem Proving (2014),
Springer, p. 77�92.

[13] Bella, G., Paulson, L. C., Massacci, F. The veri�cation of an industrial
payment protocol: The set purchase phase. In Proceedings of the 9th ACM conference
on Computer and communications security (2002), ACM, p. 12�20.

References 137

[14] Benevides, M., Lopes, B., Haeusler, E. H. Towards reasoning about petri
nets: A propositional dynamic logic based approach. Theoretical Computer Science
744 (2018), 22�36.

[15] Benzmüller, C., Paleo, B. W. Interacting with modal logics in the coq proof
assistant. In International Computer Science Symposium in Russia (2015), Springer,
p. 398�411.

[16] Blackburn, P., De Rijke, M., Venema, Y. Cambridge tracts in theoretical
computer science, 2001.

[17] Bruni, R., Montanari, U. Zero-safe nets: Comparing the collective and individual
token approaches. Information and computation 156, 1-2 (2000), 46�89.

[18] Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z. Automated resource
analysis with coq proof objects. In International Conference on Computer Aided
Veri�cation (2017), Springer, p. 64�85.

[19] Chellas, B. F. Modal logic: an introduction. Cambridge university press, 1980.

[20] Chen, X., Sun, J., Sun, M. A hybrid model of connectors in cyber-physical sys-
tems. In International Conference on Formal Engineering Methods (2014), Springer,
p. 59�74.

[21] Chlipala, A. Certi�ed programming with dependent types: a pragmatic introduction
to the Coq proof assistant. MIT Press, 2013.

[22] Clarke, D. Coordination: Reo, nets, and logic. In International Symposium on
Formal Methods for Components and Objects (2007), Springer, p. 226�256.

[23] Coe, T., Mathisen, T., Moler, C., Pratt, V. Computational aspects of the
pentium a�air. IEEE Computational Science and Engineering 2, 1 (1995), 18�30.

[24] Coquand, T. Une théorie des constructions. Tese de Doutorado, Paris 7, 1985.

[25] Coquand, T. An analysis of Girard's paradox. Tese de Doutorado, INRIA, 1986.

[26] Coquand, T., Paulin, C. Inductively de�ned types. In COLOG-88 (1990),
Springer, p. 50�66.

[27] De Giacomo, G., Massacci, F. Tableaux and algorithms for propositional dy-
namic logic with converse. In International Conference on Automated Deduction
(1996), Springer, p. 613�627.

[28] De Giacomo, G., Massacci, F. Combining deduction and model checking into
tableaux and algorithms for converse-PDL. Information and Computation 162, 1-2
(2000), 117�137.

[29] Delahaye, D. A tactic language for the system coq. In International Conference
on Logic for Programming Arti�cial Intelligence and Reasoning (2000), Springer,
p. 85�95.

References 138

[30] Dowek, G., Felty, A., Herbelin, H., Huet, G., Murthy, C., Parent, C.,
Paulin-Mohring, C., Werner, B. The coq proof assistant: Version 8.13, 2020.
User manual in https://coq.inria.fr/distrib/current/refman/.

[31] Fitting, M. Proof methods for modal and intuitionistic logics, vol. 169. Springer
Science & Business Media, 1983.

[32] Fitting, M. First-order logic and automated theorem proving. Springer Science &
Business Media, 2012.

[33] Garson, J. Modal Logic. In The Stanford Encyclopedia of Philosophy, E. N. Zalta,
Ed., summer 2021 ed. Metaphysics Research Lab, Stanford University, 2021.

[34] Geuvers, H. Proof assistants: History, ideas and future. Sadhana 34, 1 (2009),
3�25.

[35] Gonthier, G. The four colour theorem: Engineering of a formal proof. In Computer
mathematics. Springer, 2008, p. 333�333.

[36] Grilo, E., Lopes, B. Modelling and certifying smart cities in reo circuits. In
2020 International Conference on Systems, Signals and Image Processing (IWSSIP)
(2020), IEEE, p. 453�458.

[37] Grilo, E., Lopes, B. Relo: a dynamic logic to reason about reo circuits1. In Pre-
Proceedings of the 15th International Workshop on Logical and Semantic Frameworks,
with Applications (LSFA) (2020), p. 32.

[38] Harel, D., Kozen, D., Tiuryn, J. Other Variants of PDL. MIT Press, 2000.

[39] Harel, D., Kozen, D., Tiuryn, J. Dynamic logic. In Handbook of philosophical
logic. Springer, 2001, p. 99�217.

[40] Hoare, C. An overview of some formal methods for program design. Computer, 9
(1987), 85�91.

[41] Hongfei, D., Zhang, E. Neo: A distributed network for the smart economy. Neo
Foundation, 2015.

[42] Jackson, D. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 2 (2002), 256�290.

[43] Jongmans, S.-S. T., Arbab, F. Overview of thirty semantic formalisms for reo.
Scienti�c Annals of Computer Science 22, 1 (2012).

[44] Klein, J., Klüppelholz, S., Stam, A., Baier, C. Hierarchical modeling and
formal veri�cation. an industrial case study using reo and vereofy. In Interna-
tional Workshop on Formal Methods for Industrial Critical Systems (2011), Springer,
p. 228�243.

[45] Knight, J. C. Safety critical systems: challenges and directions. In Proceedings of
the 24th International Conference on Software Engineering (2002), ACM, p. 547�550.

References 139

[46] Knight, J. C., DeJong, C. L., Gibble, M. S., Nakano, L. G. Why are formal
methods not used more widely? In Fourth NASA formal methods workshop (1997),
Citeseer.

[47] Kokash, N., Arbab, F. Formal design and veri�cation of long-running transactions
with extensible coordination tools. IEEE Transactions on Services Computing 6, 2
(2011), 186�200.

[48] Kokash, N., Changizi, B., Arbab, F. A semantic model for service composition
with coordination time delays. In International Conference on Formal Engineering
Methods (2010), Springer, p. 106�121.

[49] Kokash, N., Krause, C., De Vink, E. Reo+ mcrl2: A framework for model-
checking data�ow in service compositions. Formal Aspects of Computing 24, 2 (2012),
187�216.

[50] Kokash, N., Krause, C., de Vink, E. P. Data-aware design and veri�cation of
service compositions with reo and mcrl2. In Proceedings of the 2010 ACM Symposium
on Applied Computing (2010), p. 2406�2413.

[51] Kripke, S. A. A completeness theorem in modal logic. The journal of symbolic
logic 24, 1 (1959), 1�14.

[52] Lamport, L., Shostak, R., Pease, M. The byzantine generals problem. In ACM
Transactions on Programming Languages and System. 1982, p. 382�401.

[53] Leroy, X. Formal certi�cation of a compiler back-end or: programming a compiler
with a proof assistant. In ACM SIGPLAN Notices (2006), vol. 41, ACM, p. 42�54.

[54] Letouzey, P. A new extraction for coq. In International Workshop on Types for
Proofs and Programs (2002), Springer, p. 200�219.

[55] Li, Y., Sun, M. Modeling and veri�cation of component connectors in coq. Science
of Computer Programming 113 (2015), 285�301.

[56] Li, Y., Zhang, X., Ji, Y., Sun, M. Capturing stochastic and real-time behavior in
reo connectors. In Formal Methods: Foundations and Applications - 20th Brazilian
Symposium, SBMF 2017, Recife, Brazil, November 29 - December 1, 2017, Proceed-
ings (2017), p. 287�304.

[57] Li, Y., Zhang, X., Ji, Y., Sun, M. A formal framework capturing real-time and
stochastic behavior in connectors. Science of Computer Programming (2019).

[58] Loveland, D. W. Automated Theorem Proving: a logical basis. Elsevier, 2014.

[59] Martin-Löf, P., Sambin, G. Intuitionistic type theory, vol. 9. Bibliopolis Naples,
1984.

[60] Massacci, F. Strongly analytic tableaux for normal modal logics. In International
Conference on Automated Deduction (1994), Springer, p. 723�737.

[61] Mousavi, M. R., Sirjani, M., Arbab, F. Formal semantics and analysis of
component connectors in reo. Electronic Notes in Theoretical Computer Science 154,
1 (2006), 83�99.

References 140

[62] Navidpour, S., Izadi, M. Linear temporal logic of constraint automata. In Ad-
vances in Computer Science and Engineering. Springer, 2008, p. 972�975.

[63] Nawaz, M. S., Sun, M. Reo2pvs: Formal speci�cation and veri�cation of compo-
nent connectors. In The 30th International Conference on Software Engineering and
Knowledge Engineering, Hotel Pullman, Redwood City, California, USA, July 1-3,
2018. (2018), p. 391�390.

[64] Nipkow, T., Paulson, L. C., Wenzel, M. Isabelle/HOL: a proof assistant for
higher-order logic, vol. 2283. Springer Science & Business Media, 2002.

[65] Ostro, J. S. Formal methods for the speci�cation and design of real-time safety
critical systems. Journal of Systems and Software 18, 1 (1992), 33�60.

[66] Owre, S., Rushby, J., Shankar, N., others. PVS speci�cation and veri�cation
system. URL: pvs. csl. sri. com (2001).

[67] Papazoglou, M. P. Service-oriented computing: Concepts, characteristics and
directions. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings
of the Fourth International Conference on (2003), IEEE, p. 3�12.

[68] Papazoglou, M. P., Van Den Heuvel, W.-J. Service oriented architectures:
approaches, technologies and research issues. The VLDB journal 16, 3 (2007), 389�
415.

[69] Paulin-Mohring, C. Inductive de�nitions in the system coq rules and proper-
ties. In International Conference on Typed Lambda Calculi and Applications (1993),
Springer, p. 328�345.

[70] Paulin-Mohring, C. Introduction to the calculus of inductive constructions, 2015.

[71] Pfenning, F., Paulin-Mohring, C. Inductively de�ned types in the calculus
of constructions. In International Conference on Mathematical Foundations of Pro-
gramming Semantics (1989), Springer, p. 209�228.

[72] Pourvatan, B., Sirjani, M., Hojjat, H., Arbab, F. Automated analysis of reo
circuits using symbolic execution. Electronic Notes in Theoretical Computer Science
255 (2009), 137�158.

[73] Pratt, V. R. A near-optimal method for reasoning about action. Journal of
Computer and System Sciences 20, 2 (1980), 231�254.

[74] Slind, K., Norrish, M. A brief overview of hol4. In International Conference on
Theorem Proving in Higher Order Logics (2008), Springer, p. 28�32.

[75] Sozeau, M. Subset coercions in coq. In International Workshop on Types for Proofs
and Programs (2006), Springer, p. 237�252.

[76] Stirling, C. Modal and temporal logics for processes. In Logics for concurrency.
Springer, 1996, p. 149�237.

[77] Sun, M., Li, Y. Formal modeling and veri�cation of complex interactions in e-
government applications. In Proceedings of the 8th International Conference on The-
ory and Practice of Electronic Governance (2014), ACM, p. 506�507.

References 141

[78] Tasharofi, S., Sirjani, M. Formal modeling and conformance validation for ws-
cdl using reo and casm. Electronic Notes in Theoretical Computer Science 229, 2
(2009), 155�174.

[79] Zhang, X., Hong, W., Li, Y., Sun, M. Reasoning about connectors in coq. In
International Workshop on Formal Aspects of Component Software (2016), Springer,
p. 172�190.

[80] Zhang, X., Hong, W., Li, Y., Sun, M. Reasoning about connectors using coq
and z3. Science of Computer Programming 170 (2019), 27�44.

	Introduction
	Introduction

	Related Logic Formalisms
	Classical Propositional logic
	Modal Logic
	Propositional Dynamic Logic
	Calculus of Inductive Constructions

	Coq
	Proof Assistants
	Coq

	Reo
	The modelling language
	Constraint Automata

	A dynamical logic to reason about Reo circuits
	A ReLo Primer
	Semantic notion of ReLo
	Axiomatic System

	Soundness
	Completeness
	A Tableau for ReLo
	Tableau Usage Examples
	Termination
	Soundness

	A ReLo Implementation in Coq
	Core ReLo definitions
	Model Verification
	Model Construction
	A tableau for ReLo in Coq

	Usage Examples
	Sequencing Entities' communication in ReLo
	Modelling Smart Cities entities interaction in ReLo
	Byzantine Consensus
	ReLo Tableau proofs

	Conclusions and Further Work
	References

