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Resumo

Esse trabalho apresenta um estudo sobre problemas de reconhecimento, partição e colora-
ção em grafos. Mais especificamente, esta dissertação aborda a classe de grafos conhecida
como grafos-(r, `) (denotado também em alguns estudos como grafos-(k, `)) que contém os
grafos que podem ter seu conjunto de vértices particionado em r conjuntos independentes
e ` cliques.

Neste trabalho, primeiramente investigamos a complexidade do problema de coloração
e lista coloração para grafos-(r, `). Demonstrando como o mesmo se comporta para todos
os valores de r e `, investigamos também como utilizar o ferramental de complexidade
parametrizada para resolver esses problemas de forma viável computacionalmente em ins-
tâncias satisfazendo características específicas. Além disso, apresentamos a equivalência
entre coloração de grafos-(2, 1) e lista coloração de grafos bipartidos.

Em seguida, fornecemos uma análise sobre a complexidade do reconhecimento dos
grafos-(r, `), provendo um algoritmo de reconhecimento para a grafos-(2, 2) com comple-
xidade de pior caso inferior a do corrente estado da arte.

Por fim, fornecemos uma estratégia para gerar obstruções minimais de grafos-(2, 1)
mostrando as obstruções geradas pelo mesmo e seu tempo de execução.

Palavras-Chave— grafos-(r, `), partição, coloração, obstruções, algoritmo FPT por-
tuguese



Abstract

This work presents a study on graph partition, coloring and recognition problems. More
specifically, this dissertation addresses the class of graphs known as (r, `) graphs (also
called (k, `) graphs in some studies), which contains all graphs that can have their vertex
set partitioned in r independent sets and ` cliques.

In this work, we first investigated the complexity of the problem of coloring and list-
coloring (r, `) graphs. Demonstrating how those problems behaves for all values of r and
`, we also investigate how to use the parameterized complexity framework to solve these
problems in a computationally feasible for instances satisfying specific characteristics.
Besides that, we present the equivalence between the problem of coloring (2, 1) graphs
and the problem of list coloring bipartite graphs.

Next, we provide an analysis on the complexity of recognizing (r, `) graphs, providing
a recognition algorithm for (2, 2) graphs having worse case complexity better than the
current state-of-the-art.

Finally, we provide a strategy to generate minimal obstructions for (2, 1) graphs show-
ing the generated obstructions by the method and its running time.

Keywords— (r, `) graphs, partition, graph coloring, obstruction, FPT.
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Chapter 1

Introduction

In the process of solving a graph problem, a common step is to find structural features
that makes it easier to be solved. Several of these features can be seen as a kind of
partition.

Partitioning in graphs received attention from several different perspectives. The main
goal of a partitioning problem in graphs is to partition the set of vertices of a graph into
subsets V1, V2, . . . , Vk, where V1 ∪ V2 ∪ . . . ∪ Vk = V and Vi ∩ Vj = ∅, i 6= j, 1 ≤ i ≤ k and
1 ≤ j ≤ k, however, some properties may be required on these subsets of vertices. Feder[1]
describes some common properties, that may be internal: Vi may be required to be stable
or complete, or external: Vi and Vj may be required to be completely nonadjacent, that
is, no vertex of Vi is adjacent to any vertex of Vj, or completely adjacent, i.e., each vertex
in Vi is adjacent to each vertex in Vj.

A well-known partitioning problem is the recognition of split graphs, that is, deciding
if a given graph G admits a partition of V (G) into a clique C and an independent set I.
Among other studies, the recognition of a split graph can be derived from its characteri-
zation by finite forbidden subgraphs or its degree sequence, see [2] and references therein.
Brandstädt [3] introduced a generalization of split graphs, defined here as an (r, `)-graph,
a graph whose set of vertices can be partitioned into r independent sets and ` cliques. A
P versus NP-complete dichotomy for recognizing (r, `)-graphs is well known: the problem
is in P if max{r, `} ≤ 2, and is NP-complete otherwise.

The class of (r, `)-graphs and its subclasses have been extensively studied in the
literature. For instance, list partitions of (r, `)-graphs were studied by Feder et al [4]. In
another paper, Feder et al. [5] proved that recognizing graphs that are both chordal and
(r, `) is in P. Kolay et al. [6] and Baste et al. [7] considered the problem of removing a
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small number of vertices from a graph so that it becomes (r, `). Faria et al. [8] presented
kernelization algorithms for Signed Max Cut on (r, `)-graphs. Alves et al. [9] analyse
the complexity of recognizing well-covered (r, `)-graphs.

In this dissertation we developed three studies related to (r, `)-graphs. In Chapter
2, we present a complexity analysis of Graph Coloring on (r, `)-graphs, describing
a Poly vs. NP-hard dichotomy of this problem regarding the parameters r and `. We
also analyze the complexity of the problem on (r, `)-graphs under the parameterized com-
plexity perspective, providing a polynomial kernel for the problem in graphs-(2, 1). In
Chapter 3, we improved the state of the art on the recognition of (2, 2)-graphs, providing a
O(n3 ·m2+m5)-time algorithm for recognizing (2, 2)-graphs. To the best of our knowledge,
the current state of the art on (2, 2)-graphs’ recognition is the Brandstädt’s algorithm [10],
which performs in O(n12)-time. In Chapter 4, we present a strategy to list all the minimal
obstructions of (2, 1)-graphs with at most 9 vertices that can be extended to any n vertices.
We also produce a web page illustrating all the 1026 minimal obstructions of (2, 1)-graphs
with at most 9 vertices, which may help future studies on such a class.



Chapter 2

On the coloring of (r,`)-Graphs

In the Graph Coloring problem, we are given as input a graph G, and the objective
is to determine the minimum integer k such that G admits a proper vertex k-coloring.
In this chapter, we describe a Poly vs. NP-hard dichotomy of this problem regarding the
parameters r and ` of (r, `)-graphs, which determine the boundaries of the NP-hardness
of Graph Coloring for such classes. We also analyze the complexity of the problem
on (r, `)-graphs under the parameterized complexity perspective. We show that given a
(2, 1)-partition S1,S2,K1 of a graph G, finding an optimal coloring of G is: NP-complete
even when K1 is a maximal clique of size three; XP but W[1]-hard when parameter-
ized by min{|S1|, |S2|}; FPT and admits a polynomial kernel when parameterized by
max{|S1|, |S2|}. Besides, concerning the case where K1 is a maximal clique of size three,
a P vs. NPc dichotomy regarding the neighborhood of K1 is provided; furthermore, an
FPT algorithm parameterized by the number of vertices having no neighbor in K1 is
presented.

2.1 Overview

Partitioning problems in graphs received attention from several different perspectives.
The main goal of a partitioning problem in graphs is to partition the set of vertices of a
graph into subsets V1, V2, . . . , Vk, where V1 ∪ V2 ∪ . . . ∪ Vk = V and Vi ∩ Vj = ∅, i 6= j,
1 ≤ i ≤ k and 1 ≤ j ≤ k, however, some properties may be required on these subsets of
vertices. Feder et al. (1999) [11] describe some common properties, like internal: Vi may
be required to be stable (independent set) or complete (clique), or external: Vi and Vj

may be required to be completely nonadjacent, that is, no vertex of Vi is adjacent to any
vertex of Vj, or completely adjacent, i.e., each vertex in Vi is adjacent to any other.
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Graph Coloring can be seen as an example of a partitioning problem. In the
Graph Coloring problem we receive as input a graph G and we are asked to determine
the minimum integer k such that G admits a vertex coloring using at most k colors such
that adjacent vertices have different colors. Note that Graph Coloring consists of de-
termining the minimum integer k for which the input graph G can be partitioned into k
independent sets. The motivation for studying that problem relies on the strong connec-
tions with the research on perfect graphs and the search of polynomial-time algorithms to
recognize certain graph classes. From a practical point of view, Lewis (2015) [12] discusses
the Graph Coloring problem by relating some applications, e.g., in pattern matching,
scheduling, the solution of Sudoku puzzles, and many others. A survey on vertex color-
ing problems can be found in Malaguti’s work [13]. Besides, variants of vertex and edge
coloring problems are shown by Dantas, Freitas and Akihiro [14, 15, 16].

In this chapter, we are concerned with Graph Coloring on (r, `)-graphs. We achieve
a classical complexity analysis of the problem, determining the boundaries of the NP-
hardness for such classes of graphs. This result implies a Poly vs. NP-hard dichotomy
of the problem regarding to the parameters r and ` of (r, `)-graphs. Also, we perform
a parameterized complexity analysis of the problem. Using reductions between List-
Coloring on (r, `)-graphs and Graph Coloring as strategy, we prove that, given a
(2, 1)-partition S1,S2,K1 of the input graph G, finding an optimal coloring of G is:

1. NP-complete when K1 is maximal and has size three;

2. para-NP-complete when |K1| = 3 and the number of vertices having some neighbors
in K1 is the parameter (we also provide a P vs. NP-hard dichotomy with respect to
this parameter);

3. FPT when |K1| = 3 and the number of vertices having no neighbors K1 is the
parameter;

4. XP but W[1]-hard when parameterized by min{|S1|, |S2|};

5. FPT and admits a polynomial kernel when parameterized by max{|S1|, |S2|}.

2.2 Preliminaries

Let G = (V,E) be a graph. A coloring (or k-coloring) of G is a function c : V →
{1, . . . , k}. We call c(u) the color of u ∈ V . A coloring c : V → {1, . . . , k} is proper if
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c(u) 6= c(v) whenever uv ∈ E(G). If a graph G admits a proper k-coloring, we say that
G is k-colorable. The smallest number of colors needed to color a graph G properly is
called its chromatic number, denoted χ(G). A graph G is perfect if χ(H) = ω(H), for any
induced subgraph H of G.

In what follows, we define the decision problems related to this work.

Graph Coloring (decision version)
Instance: A graph G; a positive integer k.
Question: Is χ(G) ≤ k?

List Coloring
Instance: A palette P of colors; a graph G such that each vertex v ∈ V (G) is
equipped with a list Lv ⊆ P .
Question: Is there a proper vertex coloring (list coloring) c ofG such that c(v) ∈ Lv

for each v ∈ V (G)?

Parameterized complexity. We refer the reader to [17, 18, 19, 20] for basic background
on parameterized complexity, and we recall here only some definitions.

A parameterized problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈
Σ∗ × N, k is called the parameter. A parameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm A, a computable function f , and a constant c such that
given an instance I = (x, k), A (called an FPT-algorithm) correctly decides whether I ∈ L
in time bounded by f(k)|I|c.

Within parameterized problems, the class W[1] may be seen as the parameterized
equivalent to the class NP of classical optimization problems. Without entering into
details (see [17, 18, 19, 20] for the formal definitions), a parameterized problem being
W[1]-hard may be seen as a strong evidence that this problem is not FPT. The canonical
example of a W[1]-hard problem is Independent Set parameterized by the size of the
solution1.

To transfer W[1]-hardness from one problem to another, one uses an fpt-reduction,
which given an input I = (x, k) of the source problem, computes in time f(k)|I|c, for
some computable function f and a constant c, an equivalent instance I ′ = (x′, k′) of the

1Given a graph G and a parameter k, the problem is to decide whether there exists an independent
set S ⊆ V (G) such that |S| ≥ k.
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target problem, such that k′ is bounded by a function depending only on k.

Even if a parameterized problem is W[1]-hard, it may still be solvable in polynomial
time for fixed values of the parameter; such problems are said to belong to the complexity
class XP. Formally, a parameterized problem whose instances consist of a pair (x, k) is in
XP if an algorithm can solve it with running time f(k)|x|g(k), where f, g are computable
functions depending only on the parameter and |x| represents the input size. For example,
Independent Set parameterized by the solution size is easily seen to belong to XP.

2.3 Complexity of Graph Coloring on (r, `)-graphs

In the following, the acronyms P and NPc stand for polynomial-time solvable and NP-hard,
respectively.

The chromatic number is easy to determine for null, edgeless, bipartite, complete and
split graphs, which are our starting point.

Next, we show our results for other values of r and `. The following result presents
two classes of (r, `)-graphs in which Graph Coloring can be solved in polynomial time.

Proposition 1. Graph Coloring is polynomial-time solvable when restricted to the
following classes:

(a) (0, 2)-graphs;

(b) (3, 0)-graphs.

Proof. a) (0, 2)-graphs are also known as co-bipartite graphs, which are perfect (see [21]),
a well-known class for which the problem is solvable in polynomial time, c.f. [22].

b) Let G be (3, 0)-graph. Since it is known that V (G) admits a partition into 3 in-
dependent sets, then χ(G) ≤ 3. Hence, it suffices to verify if G is an edgeless graph,
χ(G) = 1, or if G is bipartite, χ(G) = 2, otherwise χ(G) = 3. Since all of these verifica-
tions can be done in polynomial time, we are done.

We show a complexity result for the class of (4, 0)-graphs.

Proposition 2. Graph Coloring on (4, 0)-graphs is NP-hard.
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Proof. Since every planar graph is 4-colorable (see [23]), the class of planar graphs is a
subclass of (4, 0)-graphs. Then, the result follows by the NP-completeness of 3-Coloring
for planar graphs, c.f. [24].

Recall we allow that some parts of the partition of an (r, `)-graph to be empty. This
implies that every (r, `)-graph is also an (r, ` + 1)-graph and an (r + 1, `)-graph. From
this observation and Proposition 2 we obtain the partial classification in Table 2.1.

r
` 0 1 2 3 4 . . . n

0 P P P ? ? . . . ?
1 P P ? ? ? . . . ?
2 P ? ? ? ? . . . ?
3 P ? ? ? ? . . . ?
4 NPc NPc NPc NPc NPc . . . NPc
... ... ... ... ... ... . . . NPc
n NPc NPc NPc NPc NPc . . . NPc

Table 2.1: Partial P vs. NPc dichotomy for Graph Coloring on (r, `)-graphs.

Note that (2, 1)-graphs, (1, 2)-graphs and (0, 3)-graphs are crucial classes for com-
pletely map the complexity of Graph Coloring on (r, `)-graphs, since the complexity
of Graph Coloring for their subclasses of (r, `)-graphs are in P.

Next, we discuss bounds for the chromatic number of (2, 1)-graphs and (1, 2)-graphs.

Theorem 1. Let G be either a (2, 1)-graph or a (1, 2)-graph. It holds that

ω(G) ≤ χ(G) ≤ ω(G) + 1,

and a proper (ω(G) + 1)-coloring of G can be obtained in polynomial time.

Proof. For any graph G holds that ω(G) ≤ χ(G). To determine the upper bound, first
observe that a (r, `)-partition of G can be obtained (if any) in polynomial-time when
r, ` ≤ 2 (see [3]).

Let (S1, S2, K1) be a (2, 1)-partition of G, without loss of generality, we can assume
that K1 is a maximal clique. Thus, we can obtain a proper (ω(G) + 1)-coloring of G as
follows: color each vertex of K1 with a distinct color (|K1| ≤ ω(G)); next for each vertex
v ∈ S1 color v with the same color of some w ∈ K1 such that vw /∈ E(G) (since K1 is
a maximal clique, such a vertex exists); finally color all vertices of S2 with a novel color
c|K1|+1.
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Now, let (S1, K1, K2) be a (1, 2)-partition of G. Since G[K1 ∪ K2] is a (0, 2)-graph
(subclass of perfect graphs), G[K1∪K2] can be colored in polynomial time with ω(G[K1∪
K2]) colors (see Proposition 1). Thus, G can be colored with ω(G[K1∪K2])+1 colors.

By Theorem 1, regarding to (2, 1)-graphs and (1, 2)-graphs, it remains to analyse the
complexity of checking whether χ(G) = ω(G). Theorem 2 provides implications to these
questions.

Theorem 2. List Coloring on (r, `)-graphs is polynomial-time reducible to the decision
version of Graph Coloring on (r, `+ 1)-graphs.

Proof. Let G be an (r, `)-graph, instance of List Coloring. Let Lv be the color list,
for every v ∈ V (G), and P = {c1, c2, . . . , ck} the color palette used in G. From G, create
a graph HG, instance of Graph Coloring, as follows:

• V (HG) = V (G) ∪ K where K is a clique formed by k new vertices w1, w2, . . . , wk

such that each vertex wi ∈ K represents the color ci ∈ C;

• E(HG) = E(G)∪E(K)∪E ′ where K is a clique, and E ′ is the set of edges wiv with
wi ∈ K and v ∈ V (G) such that ci /∈ Lv.

It remains to show that G has a proper list coloring if and only if HG is properly
k-colorable, for k = |P |.

Suppose that G has a proper list k-coloring c. In HG, for every vertex v ∈ V (G)
assign the same color that has been assigned to v in such list coloring, i.e., c(v). Since K
is a clique, K must be colored with k colors. Without loss of generality, we assign color
ci to each vertex wi, i ∈ {1, . . . , k}. By construction, wiv ∈ E(HG) if and only if ci /∈ Lv,
hence the assingment of color ci to vertex wi, for every i ∈ {1, . . . , k}, completes a proper
k-coloring of HG.

For the converse, suppose that HG has a proper k-coloring. By construction |K| = k

and K is a clique. Then, we assume that color ci is assigned to vertex wi, for every
i ∈ {1, . . . , k}. Notice that by removing K from HG, the color assignment to the vertices
of HG \K is also a proper coloring for G. By construction, wiv ∈ E(HG) if and only if
ci /∈ Lv, hence the assignment for HG\K is a solution of List Coloring in G. Therefore
G has a proper list coloring.
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From Theorem 2 and the NP-completeness of List Coloring for (1, 1)-graphs ([25]),
bipartite graphs ([26]), and co-bipartite graphs ([25]) the following holds.

Corollary 1. Graph Coloring is NP-hard on (1, 2)-graphs, (2, 1)-graphs and (0, 3)-
graphs.

Since some parts of the partition of an (r, `)-graph may be empty, we accomplish the
P vs. NPc dichotomy regarding Graph Coloring on (r, `)-graphs.

2.4 Parameterized complexity analysis for (2, 1)-graphs

In Theorem 2 we show that List Coloring on (r, `)-graphs is reducible to Graph
Coloring on (r, `+1)-graphs. Next, we remark that such problems are in fact equivalent
in many ways.

Theorem 3. Given a graph H together with an (r, `)-partition

(S1, S2, . . . , Sr, K1, K2, . . . , K`),

such that ` ≥ 1.

The problem of deciding whether χ(H) = |K`| is polynomial-time reducible to List
Coloring on (r, `− 1)-graphs, where the number of colors of the palette is |K`|.

Proof. Let (S1, S2, . . . , Sr, K1, K2, . . . , K`) be an (r, `)-partition of a graph H such that
` ≥ 1.

An instance of List Coloring can be constructed by setting P = {cw : w ∈ K`};
Lv = P \{cw : w ∈ N(v)∩K`} for each vertex v in the input graph G = H[V \K`]. At this
point, it is easy to see that H is |K`|-colorable if and only if G equipped with the color
lists is an yes-instance of List Coloring. Note that if K` is not the largest clique in the
given partition, then the resulting instance is a no-instance of List Coloring.

Theorem 3 brings interesting consequences for our study. For example, given Theo-
rem 1, Theorem 2 and Theorem 3, it holds that Graph Coloring on (2, 1)-graphs is
equivalent to List Coloring on bipartite graphs.

Given that List Coloring on bipartite graphs is a very interesting problem. In this
section we focus on the parameterized complexity of Graph Coloring on (2, 1)-graphs.
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Let G be a (2, 1)-graph. Since in polynomial time one can compute a (2, 1)-partition
(S1, S2, K1) of G, we can assume that a (2, 1)-partition of G is provided together with G
as input of Graph Coloring on (2, 1)-graphs. Then, we may consider three natural
parameters for such a problem: k = |K1|, r1 = min{|S1|, |S2|} and r2 = max{|S1|, |S2|}.
Without loss of generality, we consider |S1| ≤ |S2|.

2.4.1 The size of the clique as a parameter

Recall that, according to Theorem 1, Theorem 2, and Theorem 3, Graph Coloring
on (2, 1)-graphs parameterized by k = |K1| is equivalent to List Coloring on bipartite
graphs parameterized by the number of colors of the palette.

The result of Corollary 2, presented below, suggests that the maximum clique’s size is
not a useful parameter to produce efficient parameterized algorithms for Graph Color-
ing on (2, 1)-graphs. We show that the problem remains NP-complete even if the size of
the maximum clique is three. First, we define the PreColoring Extension problem,
and we recall a result of [27].

PreColoring Extension
Instance: A positive integer k; a graph G whose some vertices are precolored using
at most k colors.
Question: Can the precoloring of G be extended to a proper coloring of G using
at most k colors?

Theorem 4 ([27]). PreColoring Extension is NP-complete for planar bipartite graphs
even with color bound k = 3.

Corollary 2. List Coloring remains NP-complete even when |P | = 3 and the input
graph is planar bipartite.

Proof. LetG be an instance of PreColoring Extension such thatG is planar bipartite
and k = 3. We know that some vertices v ∈ V (G) are precolored with color cv ∈ {1, 2, 3}.
By a copy of G we create graph G′, which is an instance of List Coloring as follows:
If v ∈ V (G) is precolored with cv, then Lv = {cv}, otherwise Lv = {1, 2, 3}. Clearly, if
the precoloring of G can be extended to the other vertices of G, then we have a proper
3-coloring for G′: it is enough to assign to every v ∈ V (G′) the same color that has been
assigned to v ∈ V (G). The converse is analogous.
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Although the size of the clique/palette is not a useful parameter to produce an FPT
algorithm for Graph Coloring/List Coloring, others parameters arise from this.
Since List Coloring for bipartite graphs is polynomial-time solvable if either all vertices
have lists of size three or all vertices have lists of size two (one can use 2-SAT), two
questions regarding the parameterized complexity of List Coloring on bipartite graphs
raise:

• (i) the complexity when |P | = 3 and the number of vertices with lists of size 1 and
2 is a parameter;

• (ii) the complexity when |P | = 3 and the number of vertices with lists of size 3 is a
parameter.

We deal with these questions and their relations with Graph Coloring on (2, 1)-
graphs in the next subsections.

2.4.2 The size of the neighborhood of the clique as a parameter

In this section, we are concerned with (2, 1)-graphs with |K1| = 3. If K1 is maximal
and has size 2 then the problem can be solved in polynomial time ( see [27, 28]). Thus,
|K1| = 3 is the smallest size where Graph Coloring on (2, 1)-graphs remains NP-hard.

Let G be a (2, 1)-graph with a (2, 1)-partition S1, S2, K1 such that K1 is a maximal
clique of size three. By the reduction of Theorem 3, if a vertex v ∈ V (G) is adjacent to
i ∈ {0, 1, 2} vertices of the clique, then v ∈ H has a list of size 3− i. Since the clique K1

is maximal, then no vertex of H will have a list of size 0.

We show in this section that Graph Coloring on such (2, 1)-graphs is para-NP-
complete when parameterized by the size of the neighborhood of the clique K1, i.e., the
number of vertices with lists of size one or two considering the equivalent instance of List
Coloring. In particular, we show that the problem is NP-hard even when there are
only three vertices with a list of size at most two. These hardness results are presented
for different cases related to the lists’ size, proving a P vs. NPc dichotomy regarding the
number of vertices with lists of size one and two for List Coloring on bipartite graphs
with |P | = 3.
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Figure 2.1: Graph G′ constructed for Theorem 5.

Instances having only vertices with lists of size one or three

Theorem 5. List Coloring on bipartite graphs with |P | = 3 is NP-complete even if
every vertex has a list of size three, except for three vertices with unitary lists.

Proof. Let G be an instance of List Coloring on bipartite graphs with P = {c1, c2, c3}.
In what follows, we construct an instance G′ of List Coloring on bipartite graphs with
every vertex having lists equal to {c1, c2, c3}, except for three vertices with unitary lists.
See an example in Figure 2.1.

• Let be G′ = G;

• Add six new vertices to G′: a1, a2, a3 and b1, b2, b3, with lists {c1}, {c2}, {c3},
{c1, c2, c3}, {c1, c2, c3}, {c1, c2, c3}, respectively;

• Add to G′ the six edges a2b1, a3b1, a1b2, a3b2, a1b3, a2, b3;

• Now, consider A,B a bipartition of G.

– for every vertex x ∈ A add xbi to E(G′), for i ∈ {1, 2, 3}, if ci /∈ Lx;

– for every vertex y ∈ B add yai to E(G′), for i ∈ {1, 2, 3}, if ci /∈ Ly;

– for every vertex v ∈ A ∪B define Lv = {c1, c2, c3}.

Notice that |Lai
| = 1, for every i ∈ {1, 2, 3}, then a1, a2, and a3 must be assigned

colors 1, 2, and 3, respectively. Consequently, the construction implies that b1, b2 and b3

must be colored with 1, 2, and 3, respectively. Now, it is easy to see that a proper list
coloring of G implies a proper list coloring of G′ and vice versa.
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We remark that the problem is trivially solvable when the number of vertices with
lists of size one and two is 0 since it becomes 3-Coloring on bipartite graphs. However,
if that number is 3, the problem is NP-complete. The following result completes this case
analysis, where there is no vertex with lists of size two.

Theorem 6. List Coloring on bipartite graphs with |P | = 3 can be solved in linear
time when the input graph has only two vertices with unitary lists, and the other vertices
have lists of size three.

Proof. Let G = (A∪B,E) be the input graph. Consider u, v ∈ V (G) such that Lu = {cu}
and Lv = {cv}. We consider two cases: (I) u, v ∈ A (or u, v ∈ B), and (II) u ∈ A, v ∈ B
(or u ∈ B, v ∈ A).

In Case (I), it is enough to assign color cu to u, color cv to every vertex in A \ {u},
and a third color to the vertices in B.

In Case (II), if cu 6= cv, then we assign cu and cv to every vertex in A and B,
respectively. Otherwise, we may assume that uv /∈ E(G), and it is enough to find a
proper 2-coloring for the graph G \ {u, v} avoiding color cu.

Instances having only vertices with lists of size two or three

Next, we show that by avoiding unitary lists, six vertices with lists of size two are necessary
and sufficient for List Coloring in bipartite graphs to be NP-complete when |P | = 3.

Theorem 7. List Coloring on bipartite graphs with |P | = 3 can be solved in linear
time whenever the input graph has at most five vertices with lists of size two and no vertex
with a unitary list.

Proof. Let G = (A∪B,E) be the input graph. Since the number of vertices with lists of
size two is at most five, then there is a part (that is an independent set) of the bipartition
ofG, say A, contains at most two vertices with lists of size 2; therefore there is c ∈ ⋂

v∈A Lv.
In this case, we assign color c to every vertex v ∈ A, and as every u ∈ B has a list of size
at least two, for each vertex u of the independent set B, there will still be at least one
color available in Lu \ {c}.

The previous proof holds whenever the input is a bipartite graph G having no vertex
with a unitary list, |P | = 3, and there are not three vertices with distinct lists of size two
in some part.
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Theorem 8. List Coloring on bipartite graphs with |P | = 3 remains NP-complete
when the input graph has exactly six vertices with lists of size two and no vertex with a
unitary list.

Proof. Let G be an instance of PreColoring Extension on bipartite graphs with color
bound k = 3. Let C ⊆ V (G) be the set of precolored vertices of G, and let {1, 2, 3} be
the set of colors of G.

From G, we create a bipartite instance G′ of List Coloring as follows.

• Let be P = {black, dark gray, light gray};

• first, set V (G′) = V (G) and E(G′) = E(G);

• for each current vertex v in V (G′) set Lv = P ;

• add to G′ the gadget Γ illustrated in Figure 2.2.

Note that the gadget Γ admits only two possible list colorings. Although different due
to the color labels, these colors are isomorphic because they produce the same partition
in three independent sets. At this point, we are not interested in the labels assigned
to the vertices, but in the three independent sets formed by a partition. Recall that
PreColoring Extension can be reinterpreted as a partition problem: given a partition
of G[C] into k independent sets, we are asked to determine whether such a partition can
be extended to a partition of G into k independent sets.

Figure 2.2: Gadget Γ and its possible colorings.

Let I1, I2, I3 be the partition of V (Γ) into three independent sets obtained from a list
coloring of Γ.

Taking a bipartition ofG′, we complete the construction ofG′ by adding edges between
the vertices of V (Γ) and C as follows.
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• for each v ∈ V (G′) ∩ C precolored with a color j ∈ {1, 2, 3}, add an edge from v to
the two vertices of Γ that are neither in Ij nor in the part that contains v.

The edges added in the previous step preserve the bipartition of G′ and force any
partition of G′ into three independent sets to contain the vertices v with c(v) = j in
the same part as the vertices in Ij. Thus, if G′ is list colorable, then G is 3-colorable
respecting the precoloring. The converse is clear.

Instances having vertices with lists of size one and two

Regarding List Coloring on bipartite graphs G having a palette with three colors
and no vertex with a list of size two, Theorem 5 and Theorem 6 provide a dichotomy
concerning the number of vertices with a unitary list. (with at most two vertices, it
is polynomial; but with three vertices, it is NP-complete) Analogously, Theorem 7 and
Theorem 8 provide a dichotomy concerning the number of vertices having a list of size
two, when no list of size one is allowed (with at most five vertices, it is polynomial; but
with six vertices, it is NP-complete).

At this point, the reader may be wondering about cases where lists of size one and
two are allowed. Since one can add isolated vertices with lists of size one or two without
changing the instance’s answer, we have natural monotonicity. It implies that polynomial
cases have at most two vertices with unitary lists and at most five vertices with lists of
size two.

Therefore, to obtain a complete map of the complexity of List Coloring on bipartite
graphs having a palette of size three, next, we consider the remaining cases.

Corollary 3. List Coloring on bipartite graphs G with |P | = 3 is NP-complete even
restrict to instances

1. with exactly two vertices with a unitary list and two vertices with lists of size two;

2. with exactly one vertex with a unitary list and four vertices with lists of size two.

Proof. The proof for cases 1 and 2 is similar to that of Theorem 8 replacing the gadget Γ
by the gadgets Γ′ and Γ′′ shown in Figure 2.3(a) and Figure 2.3(b), respectively.

Theorem 9. List Coloring on bipartite graphs with |P | = 3 can be solved in linear
time whenever the input graph G has at most two vertices with a unitary list and one
vertex with a list of size two.
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(a) Γ′ and its only possible list coloring (b) Γ′′ and its only possible list coloring

Figure 2.3: Gadget Γ′ (two unitary lists and two lists of size two), and gadget Γ′′ (one
unitary list and four lists of size two).

Proof. Let G′ be the subgraph of G induced by the vertices with a list of size one or two.
We assume that G′ has a list coloring; otherwise, G is a trivial no-instance.

Let be G = (A ∪ B,E), and let va
1 , v

b
1 be the two vertices of G with a unitary list,

and v2 be the vertex of G with a list of size two. We can assume that these vertices exist
since we can add isolated vertices.

If a part of G, say A, contains va
1 and vb

1 then every vertex in B \ {v2} can be colored
with a color that is not in Lva

1
∪Lvb

1
; since v2 has a list of size two and G′ has a list coloring,

regardless of which part contains v2, a color for v2 still can be assigned, and after that
each vertex of A \ {v2} will still have at least one color available.

If {va
1 , v2} ⊆ A and vb

1 ∈ B then by assigning the same color c ∈ Lv2 \ Lvb
1
to all

vertices of A \ {va
1}, and fixing the color of va

1 , all vertices of B will still have at least one
color available (if Lva

1
= Lvb

1
, va

1 and vb
1 are non-adjacent).

Next, we finish our analysis of cases regarding the number of lists with size one and
two (the complete classification is summarized in Table in Concluding remarks).

Theorem 10. List Coloring on bipartite graphs with |P | = 3 can be solved in linear
time whenever the input G has exactly one vertex with a unitary list and at most three
vertices with a list of size two.

Proof. Let be G = (A ∪ B,E). Let v1 be the vertex of G with a unitary list, and let
va

2 , v
b
2, v

c
2 be the vertices of G with lists of size two.

If v1 ∈ A and {va
2 , v

b
2, v

c
2} ⊆ B then a list coloring can be found assigning the color in

Lv1 for all vertices of A. If va
2 ∈ A and {v1, v

b
2, v

c
2} ⊆ B then, similarly, a list coloring can

be found assigning a color in Lva
2
\ Lv1 for all vertices of A.
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Thus, without loss of generality, we can assume that {v1, v
a
2} ⊆ A and {vb

2, v
c
2} ⊆ B.

If Lv1 ∩Lva
2 6= ∅ then a list coloring can be found assigning the color in Lv1 for all vertices

of A. If (Lvb
2
∩ Lvc

2) \ Lv1 6= ∅ then a list coloring can be found assigning a color in
(Lvb

2
∩ Lvc

2) \ Lv1 for all vertices of B. At this point, we can assume that Lv1 = {c1},
Lva

2
= {c2, c3}, Lvb

2
= {c1, c2}, and Lvc

2
= {c1, c3}. If v1 is non-adjacent to vb

2 then a
list coloring can be found assigning the color c1 to v1 and vb

2, color c2 to all vertices in
A \ {v1}, and color c3 to all vertices in B \ {vb

2} (a similar argument holds to vc
2). If va

2

is non-adjacent to vb
2 then a list coloring can be found assigning the color c2 to va

2 and
vb

2, color c1 to all vertices in A \ {va
2}, and color c3 to all vertices in B \ {vb

2} (a similar
argument holds to vc

2). Finally, if v1, va
2 , vb

2, vc
2 induce a C4 then G is a no-instance.

2.4.3 The size of the non neighborhood of the clique as parameter

As seen in the previous section, vertices of Graph Coloring on (2, 1)-graphs that are
nonadjacent to the clique, when transformed to vertices of a List Coloring instance,
have lists of size three. Our aim in this section is solving List Coloring on bipartite
graphs with |P | = 3 when the parameter is the number of vertices with lists of size three.
That is equivalent to Graph Coloring on (2, 1)-graphs parameterized by the number
of vertices having no neighbor in K1, where |K1| = 3.

Theorem 11. List Coloring on bipartite graphs with |P | = 3 is FPT when parame-
terized by the number of vertices with lists of size three.

Proof. Let k be the number of vertices with lists of size three. A bounded search tree can
be constructed as follows:

1. Consider the instance of List Coloring as a root vertex.

2. Choose one of the k vertices v with lists of size three.

3. For every available color of v, create a branch representing an instance with k − 1
vertices with lists of size three, by fixing such a color for v.

4. Perform the previous steps i times until level k − i = 0.

Notice that at the end of the algorithm, we have a tree of order 3k, with leaves
corresponding to instances containing no vertex with a list of size three. Then, it is
possible to run in polynomial time the algorithm proposed by Hujter [28] for every leaf,
completing in 3knO(1) time a procedure that solves List Coloring.
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2.4.4 The size of the independent sets as parameters

Contrasting with the NP-hardness when |K1| = 3, Graph Coloring on (2, 1)-graphs G
can be solved in nO(r1) (r1 = min{|S1|, |S2|}) as follows: construct the equivalent instance
of List Coloring; let be |S1| ≤ |S2|; every possible coloring of S1 can be enumerate in
O(n|S1|); by fixing each coloring of S1 one can check in linear time if every vertex of S2

still has an available color in its list; if a list coloring for the bipartite graph is found then
the chromatic number of G is |K1|; otherwise, by Theorem 1, the chromatic number of G
is |K1|+ 1. Therefore, the following holds.

Theorem 12. Graph Coloring on graphs with a (2, 1)-partition S1, S2, K1 is in XP
when parameterized by min{|S1|, |S2|}.

Using a reduction from Multicolored Clique, Fellows [26] showed that List Col-
oring on bipartite graphs is W[1]-hard when parameterized by the vertex cover number.
In such a construction, a minimum vertex cover of the resulting instance G corresponds
to a part of the input’s bipartition. This fact implies that List Coloring on bipartite
graphs is W[1]-hard when parameterized by the size of the smallest part. Therefore, by
Theorem 2, the following holds.

Theorem 13. Graph Coloring on graphs with a (2, 1)-partition S1, S2, K1 is W[1]-
hard when parameterized by min{|S1|, |S2|}.

Now, letG be a (2, 1)-graph with a (2, 1)-partition S1, S2, K1 where r1 = min{|S1|, |S2|}
and r2 = max{|S1|, |S2|}. Theorem 13 suggests that parameterizing Graph Coloring
by r1 is not a useful approach to design an FPT algorithm for that problem. However,
when taking r2 as parameter, r1 is also bounded. This makes possible to produce a simple
kernelization algorithm.

Theorem 14. Graph Coloring on graphs with a (2, 1)-partition S1, S2, K1 admits a
polynomial kernel when parameterized by max{|S1|, |S2|}.

Proof. Let H be a graph with a (2, 1)-partition S1, S2, K1. Let be r2 = max{|S1|, |S2|}.
If k is the size of K1, then we need at least k colors for a proper k-coloring of H. Again,
we consider the equivalent instance of List Coloring on bipartite graphs with |P | = k

(recall Theorem 3) to obtain results for Graph Coloring on (2, 1)-graphs.

Let G be a bipartite graph, an instance of List Coloring, obtained from H as
described in Theorem 3. If |Lv| > |NG(v)|, for some v ∈ V (G), there always is an
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available color to be assigned to v. This implies that v can be removed from G without
affecting a coloring of G \ {v}. Create a graph G′ by removing from G every vertex v
such that |Lv| > |NG(v)|. We have that |V (G′)| ≤ 2 · r2 and |Lu|, for every u ∈ V (G′), is
bounded by r2. Thus, the palette of G′ has at most 2 · r2

2 colors. Then, by applying the
construction presented in Theorem 2 we obtain an equivalent (2, 1)-graph G∗such that
|V (G∗)| ≤ 2 · r2

2 + 2 · r2. Therefore, G∗ is a polynomial kernel for H.

2.5 Concluding remarks

This chapter present a complexity analysis of Graph Coloring on (r, `)-graphs, and
describe a Poly vs. NP-hard dichotomy of the problem regarding the parameters r and ` of
(r, `)-graphs, which determine the boundaries of the NP-hardness of Graph Coloring
for such classes. Table 2.2 summarizes at high granularity our complete mapping of the
complexity Graph Coloring on (r, `)-graphs.

Graph Coloring on (r, `)-graphs

r
` 0 1 2 3 4 . . . n

0 P P P NPc NPc . . . NPc
1 P P NPc NPc NPc . . . NPc
2 P NPc NPc NPc NPc . . . NPc
3 P NPc NPc NPc NPc . . . NPc
4 NPc NPc NPc NPc NPc . . . NPc
... ... ... ... ... ... . . . NPc
n NPc NPc NPc NPc NPc . . . NPc

Table 2.2: P vs. NPc dichotomy regarding the values of r and ` for Graph Coloring
on (r, `)-graphs.

Since the complement of a (r, `)-graph is a (`, r)-graph, and a coloring (partition into
independent sets) correspond to a clique cover in the complement, it holds that our results
also provide a complete classification between Poly and NP-hard for Clique Cover on
(r, `)-graphs with respect to r and `.

We also perform a parameterized complexity analysis of the problem. Using reductions
between List-Coloring on (r, `)-graphs and Graph Coloring as strategy, we show
that given a (2, 1)-partition S1,S2,K1 of the input graph G the problem of finding an
optimal coloring of G is:

• NP-complete when K1 has size three;
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• XP but W[1]-hard when parameterized by min{|S1|, |S2|};

• FPT and admits a polynomial kernel when parameterized by max{|S1|, |S2|}.

The existence of XP-time algorithms implies that for any constant value of the param-
eter under analysis, the problem will be solved in polynomial time. Such algorithms can
be easily obtained for Graph Coloring on (2, 1)-graphs with respect to min{|S1|, |S2|}
or max{|S1|, |S2|} as parameter. However, by Corollary 2, they cannot be obtained con-
cerning |K1| unless P= NP (para-NP-hardness). Although XP-time algorithms are of
some interest, in Parameterized Complexity we look for FPT algorithms that result in
more efficient methods than the typically naive XP-time algorithms. A more refined anal-
ysis leads us to conclude that while it is possible to develop an FPT algorithm regarding
max{|S1|, |S2|} the same is unlikely for min{|S1|, |S2|} because such a problem is W[1]-
hard. Besides, every FPT problem has a kernel, but such kernels do not necessarily have
polynomial-size concerning the parameter, a desirable feature. We also show that Graph
Coloring on (2, 1)-graphs parameterized by max{|S1|, |S2|} admits a polynomial kernel.
A compendium of these results is presented in Table 2.3.

Graph Coloring on (2, 1)-graphs

Class
Parameter |K1| |S1| |S2|

para-NP-hard X – –(hard even for 3)
XP – X X(P for const. values)

W[1]-hard – X –

FPT – – X

Polynomial – – XKernel

Table 2.3: Parameterized Complexity of Graph Coloring on (2, 1)-graphs regarding a
(2, 1)-partition S1,S2,K1.

From Theorem 1, Theorem 2, and Theorem 3 it holds that Graph Coloring on
(2, 1)-graphs parameterized by |K1| is equivalent to List Coloring on bipartite graphs
parameterized by the number of colors of the palette (|P |). In particular, the NP-hard
case whereK1 is a maximal clique of size three correspond to List Coloring on bipartite
graphs with |P | = 3.
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Although the size of the clique/palette is not a useful parameter to produce an FPT
algorithm for Graph Coloring/List Coloring, others parameters arise from this.
Since List Coloring for bipartite graphs is polynomial-time solvable if either all vertices
have lists of size three or all vertices have lists of size two (one can use 2-SAT), two
questions regarding the parameterized complexity of List Coloring on bipartite graphs
raise: (i) the complexity when |P | = 3 and the number of vertices with lists of size 1 and
2 is a parameter; (ii) the complexity when |P | = 3 and the number of vertices with lists
of size 3 is a parameter.

Regarding (i) a P vs. NPc dichotomy with respect to the number of vertices with lists
of size 1 and 2 is provided. Our complete classification is summarized in Table 2.4. By
the equivalence between List Coloring on bipartite graphs and Graph Coloring on
(2, 1)-graphs, this results can be seen as a dichotomy regarding the neighborhood of K1.
Therefore, as a by-product of this mapping, one can conclude that Graph Coloring
on (2, 1)-graphs with a (2, 1)-partition S1, S2, K1, where K1 is a maximal clique of size
three, can be solved in polynomial time whenever the number of edges crossing from K1

to S1 ∪ S2 is at most five, but it is NP-hard when there are six edges crossing from K1 to
S1 ∪ S2 (each vertex of S1 ∪ S2 has at most two neighbors in K1).

List Coloring on bipartite graphs with |P | = 3

|Lv| = 2
|Lv| = 1 0 1 2 3 . . . n

0 P P P NPc . . . NPc
1 P P P NPc . . . NPc
2 P P NPc NPc . . . NPc
3 P P NPc NPc . . . NPc
4 P NPc NPc NPc . . . NPc
5 P NPc NPc NPc . . . NPc
6 NPc NPc NPc NPc . . . NPc
... ... ... ... ... . . . NPc
n NPc NPc NPc NPc . . . NPc

Table 2.4: P vs. NPc dichotomy regarding the number of vertices with lists of size one and
two for List Coloring on bipartite graphs with |P | = 3. In green is highlighted the cases
that correspond to instances of Graph Coloring on graphs G having a (2, 1)-partition
S1, S2, K1 with 5 edges crossing from K1 to S1 ∪ S2, and in red is highlighted the cases
that correspond to instances of Graph Coloring on graphs G having a (2, 1)-partition
S1, S2, K1 with 6 edges crossing from K1 to S1 ∪ S2.

Contrasting with the results presented in Table 2.4 concerning the neighborhood of
K1, we answer (ii) presenting an FPT algorithm parameterized by the number of vertices
having no neighbor in K1.



Chapter 3

On the recognition of (r,`)-Graphs

In the literature it is well known that the recognition of (r, `)-graphs is polynomial-time
solvable whenever max{r, `} ≤ 2 and NP-complete otherwise (see [10, 3, 29, 30]). How-
ever, there are still some questions to be clarified. In 1996 [3], Brandstädt published
in Discrete Applied Mathematics a paper containing a O(n3)-time algorithm for recog-
nizing (2, 1) and (1, 2)-graphs and a O(n4)-time algorithm for recognizing (2, 2)-graphs.
However, in 1998 [29], Brandstädt published a corrigendum stating that the previously
presented algorithms were not correct. As a reference to the correct versions of such algo-
rithms Brandstädt cites the manuscript [10] of his own, that is unpublished but available
in a repository. In such a manuscript the complexity of recognizing (2, 1)-graphs and
(1, 2)-graphs is O(n4) while the complexity of recognizing (2, 2)-graphs is O(n12). Later,
in 1998, Brandstädt published a O((n + m)2)-time algorithm for (1, 2) and (2, 1)-graph
recognition. However, in this last paper there is no mention of the recognition of (2, 2)-
graphs. To the best of our knowledge, nowadays there is still no correct algorithm for
(2, 2)-graph recognition published in a journal, being the O(n12)-time algorithm of 1984,
available in repository, the unique reference for this algorithm. Therefore, in this chapter
we discuss the recognition of such a class. Our main goal is to develop a more efficient
algorithm to recognize (2, 2)-graphs.

3.1 State of the art

In this section, we will discuss the current state of the computational complexity to re-
cognize (r, `)-graphs. We will fulfill the following table according we expose the strategies
and how those can be used to enlighten the more complex results.
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The most trivial result is the recognition of the (1, 0)-graphs, as in order to recognize
it we just need to know whether |E(G)| > 0. Thus, (1, 0)-graphs can be solved in O(1)
time when the set of edges is given. Otherwise, given an adjacency list of the graph, one
can decide whether such a graph has empty edge set in O(n) time.

r
` 0 1 2 3 4 . . .

0 - ? ? ? ? . . .
1 O(n) ? ? ? ? . . .
2 ? ? ? ? ? . . .
3 ? ? ? ? ? . . .
4 ? ? ? ? ? . . .
... ... ... ... ... ... . . .

Table 3.1: Incomplete complexity map of the recognition of (r, `)-graphs.

Next, we consider the O(n+m) running time cases.

In [31], König showed that to recognize bipartite graphs ((2, 0)-graphs) takes O(n+m)
time. For complete graphs ((0, 1)-graphs), is enough to check whether |E(G)| = n(n−1)

2 :
if |E(G)| 6= n(n−1)

2 then we have a negative answer; and, if |E(G)| = n(n−1)
2 by checking

vertex by vertex if its neighborhood contains all other vertices (i.e., the graph is simple),
we can recognize complete graphs in O(n+m) time.

For co-bipartite graphs, it is enough to verify whether its complement is a bipartite
graph. At this point, we need to take care because if G is sparse then the construction of
G may takes O(n2) time. However, by the pigeonhole principle, we know that co-bipartite
graphs have a clique of size dn/2e; therefore, if m < n2

4 −
n2

2 then we can safely return
a negative answer, otherwise we have m =O(n2) and we can compute its complement.
Thus, the recognition of co-bipartite graphs can also be performed in O(n+m) time.

The recognition of split graphs can be done using their vertex degrees sequences [32].
Let the degree sequence of a graph G be d1 ≥ d2 ≥ . . . ≥ dn, , and let k be the largest
value of i such that di ≥ i− 1. Then G is a split graph if and only if (c.f. [32])

k∑
i=1

di = k(k − 1) +
n∑

i=k+1
di

If this is the case then the k vertices with the largest degrees form a maximum clique
in G, and the remaining vertices constitute an independent set.
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Since compute the degree of each vertex take O(n + m) time, and order the set of
vertices with respect to its degree can be done in linear time using the Counting Sort
algorithm, it holds that the recognition of split graphs can also be done in O(n+m) time.

Now, we consider the NP-complete cases.

In [33], it is shown that 3-Coloring is NP-complete; therefore, the recognition of
(3, 0)-graphs as well as the the recognition of (0, 3)-graphs are NP-complete.

By adding isolated cliques and/or dominating independent sets, it is easy to see that
we have monotonicity regarding the complexity of recognizing (r, `)-graphs. Therefore,
the recognition of (r, `)-graph is NP -Complete whenever r or ` are greater or equal to
three.

r
` 0 1 2 3 4 . . .

0 - O(n+m) O(n+m) NPc NPc . . .
1 O(n) O(n+m) ? NPc NPc . . .
2 O(n+m) ? ? NPc NPc . . .
3 NPc NPc NPc NPc NPc . . .
4 NPc NPc NPc NPc NPc . . .
... ... ... ... ... ... . . .

Table 3.2: Partial complexity mapping of the (r, `)-partite recognition problem.

3.1.1 Brandstädt’s strategy

In this section, we consider the frontier cases (1, 2), (2, 1) and (2, 2), that were subject of
studies by Brandstädt et al. [10, 3, 29, 30]. First, we will describe the property key of the
algorithms designed by Brandstädt to recognize a (2, 1)-graph.

Let G be a graph. If G has a (2, 1)-partition then any vertex v ∈ V (G) satisfies the
following condition:

• (N1) N(v) induces a split graph,

• (N2) or V (G) \N(v) induces a bipartite graph.

More specifically, if G has a (2, 1)-partition I1, I2, C then (N2) holds for every vertex
v ∈ C and (N1) holds for the vertices v ∈ I1 ∪ I2.
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Therefore, for a graph G, let A be the set of vertices that satisfies (N1), and let B be
the set of vertices that satisfies (N2). If A ∪ B 6= V (G) then G is not a (2, 1)-graph. If
R = A∩B = ∅ then G has a (2, 1)-partition if and only if A induces a bipartite graph and
B induces a clique. Otherwise, A ∪ B = V (G), R = A ∩ B 6= ∅. In the latter case, one
must be guessing the vertices of R that must be in the clique as well as in the bipartite
part of a (2, 1)-partition of G, if any. In [10], Brandstädt showed how to perform that in
O(n4). Thus, the first Brandstädt’s recognition algorithm for (2, 1)-graphs is performed
in O(n4) time.

Since the complement graph of G can be constructed inO(n2) time, from Brandstädt’s
algorithm also holds that the recognition of a (1, 2)-graph can be performed in O(n4) time.
Later, Brandstädt et al. [30] improve such algorithm performing the recognition of these
classes in O((n+m)2)-time.

In 1996 [3], Brandstädt published a paper containing aO(n4)-time algorithm for (2, 2)-
graph recognition. However, in 1998 [29], Brandstädt published a corrigendum stating
that the previously presented algorithm was not correct. As a reference to the correct
version of such algorithm Brandstädt cites the manuscript [10] of his own available in a
repository. In such a manuscript the complexity of recognizing (2, 2)-graphs is O(n12). To
the best of our knowledge, this is the unique known algorithm to recognize (2, 2)-graphs.

Therefore, the current map of the complexity of recogning (r, `)-graphs is as follows.

r
` 0 1 2 3 4 . . .

0 - O(n+m) O(n+m) NPc NPc . . .
1 O(n) O(n+m) O(n2 +m2) NPc NPc . . .
2 O(n+m) O(n2 +m2) O(n12) NPc NPc . . .
3 NPc NPc NPc NPc NPc . . .
4 NPc NPc NPc NPc NPc . . .
... ... ... ... ... ... . . .

Table 3.3: Current complexity map of the recognition of (r, `)-graphs.

3.2 Our approach for (2, 2)-graph recognition

In this section, we will discuss our approach to obtain (2, 2)-partitions (if any) more
efficiently. As Brandstädt we will use the neighborhood and non-neighborhood pattern of
the vertices in order to reduce our analysis to instances G for which a (3, 3)-partition of
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G is known.

Our approach differs from Brandstädt in the procedure for given a (3, 3)-partition of
G to decide the vertices of the tripartite part that should be allocated in the co-bipartition
of a (3, 2)-partition (if any).

3.2.1 Finding a (3,3)-partition

As seen on the Brandstädt’s algorithm every vertex of a (2, 2)-graph must compliance at
least one of the following rules:

• (N3) N(v) induces a (1, 2)-graph.

• (N4) or, V (G) \N(v) induces a (2, 1)-graph.

Similarly to the strategy for (2, 1)-graphs, if G has a (2, 2)-partition I1, I2, K1, K2 then
(N3) holds for every vertex v ∈ K1 ∪K2 and (N4) holds for the vertices v ∈ I1 ∪ I2.

If every vertex match exactly one of these rules, we can check the derived partitions to
certify that they form a (2, 2)-partition in O(n+m) time. On the other hand, if any vertex
does not match N3 or N4 then the graph does not have a (2, 2)-partition. However, when
a vertex matches both N3 and N4 the graph could have a (2, 2)-partition but clearly it has
a (3, 3)-partition as the union of the (1, 2)-subgraph induced by its closed neighborhood,
and the (2, 1)-subgraph induced by its non-neighborhood.

Therefore, the following holds.

Theorem 15. There is an algorithm that in O(n3 + n ·m2) time either correctly asserts
if G is a (2, 2)-graph or obtains a (3, 3)-partition of G.

Proof. For each vertex v in the graph we apply the following:

• Verify if its open neighborhood is (1, 2) (O(n2 +m2));

• Verify if the complement of its neighborhood is (2, 1) (O(n2 +m2)).

Such verification spans three sets (one containing the vertices that matches only the first
verification (B), one containing the ones that matches only the second verification (C)
and one containing the vertices that matches both conditions (R)). It is easy to see that
when some vertex does not match any condition then the graph is not a (2, 2)-graph.
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Therefore, in O(n3 + n · m2) time we can find these sets or conclude that G is not
(2, 2). If |R| = 0 then, by the definition of (2, 2)-graphs, G is (2, 2) if and only if C
induces a co-bipartite graph and B induces a bipartite graph. However, if |R| > 0 then
for any vertex v ∈ R, N(v) is known to induce a (1, 2)-graph, and V (G) \N(v) induces a
(2, 1)-graph, which gives us a (3, 3)-partition of G in the desired time.

At this point, we have an algorithm that either solve the problem or obtains a (3, 3)-
partition of G. Thus, our problem is reducible to determine whether a (3, 3)-graph G with
a (3, 3)-partition I1, I2, I3, K1, K2, K3 also admits a (2,2)-partition. We can see that obtain
a (2, 2)-partition from a (3, 3)-partition of G is in fact the work of correctly rearranging
some vertex from the tripartition (sparse) to the co-tripartition (dense) as well as move
a few vertices from the dense part to the sparse one (that should becomes co-bipartite
and bipartite, respectively), i.e., from a sparse-dense partition we must find another more
particular.

To find these vertices we need to find a set of vertices in the tripartition that when
removed from such tripartition makes it a bipartition, this kind of set is known as an
odd cycle transversal. In addition, we need to assure that these vertices can be placed
in the dense part without breaking the desired (2, 2)-partition. The same holds for the
co-tripartition.

3.2.2 Applying an algorithm for Triangle Vertex Deletion

At this point, we are given a graph G with a (3, 3)-partition I1, I2, I3, K1, K2, K3 of V (G).

From the (3, 3)-partition I1, I2, I3, K1, K2, K3 the problem of obtaining a (2, 2)-partition
(if any) can be seen as rearranging the sparse-dense partition moving some vertices from
the tripartition to the co-tripartition and vice versa.

Notice that at most 6 vertices can be moved from the tripartition to the dense part,
since G[I1 ∪ I2 ∪ I3] is K4-free. So, at most 3 vertices from G[I1 ∪ I2 ∪ I3] should be in the
same clique of the resulting co-bipartition (if any).

The Odd Cycle Transversal (OCT) problem can be described as the problem
of finding a k-set of vertices of a graph such that when removed from the input graph,
makes it a bipartite one. This problem is known to be NP-complete, however, Reed,
Smith and Vetta presented a fixed-parameter tractable algorithm for this problem. Such
algorithm obtains the desirable set (if any) in time O(3k ·kn(n+m)) [34]. Note that when
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k is a constant such a algorithm is performed in O(n2 + n ·m) time. Thus, in order to
identify the vertices that should be moved to the dense part (if any), we first must check,
in O(n2 +n ·m) time, whether G[I1 ∪ I2 ∪ I3] has an odd cycle transversal of size at most
six. If the minimum odd cycle transversal of G[I1 ∪ I2 ∪ I3] has size greater than three
then we are dealing with a no-instance.

Now, suppose that G has a (2, 2)-partition I ′, I ′′, K ′, K ′′. Let S be the set of vertices
to be moved from the tripartition to the dense part, i.e. S = (I1 ∪ I2 ∪ I3) ∩ (K ′ ∪K ′′).
Let S ′ = S ∩K ′ and S ′′ = S ∩K ′′. Now, we discuss how to find S = S ′ ∪ S ′′:

1. If |S ′| = 3 or |S ′′| = 3 then G[I1 ∪ I2 ∪ I3] has triangles. In particular, S contains a
minimal triangle vertex deletion set (also known as triangle transversal). Therefore,
we first “guess” such a minimal triangle vertex deletion set of size at most six. Thus,
we can reduce our problem to the case where |S ′| ≤ 2 and |S ′′| ≤ 2, by applying
the first steps of a simple FPT algorithm for Triangle-free Vertex Deletion
parameterized by k = 6 as follows:

• find a triangle Ti (if G[I1 ∪ I2 ∪ I3] has no triangle, there is no solution with
|S ′| = 3 or |S ′′| = 3);

• at least one vertex of Ti must be in S, so we can “guess” such a vertex by
branching recursively and looking for a solution of size k − 1 in the graph
resulting from the removal of the guessed vertex.

• the previously described step is applied until we obtain graphs without triangles
or k = 0;

Note that the previously described procedure can be performed in O(3k · n ·m) time.
And, since k = 6, it holds that the previous step is performed in O(n · m) time. Also,
observe that the previous procedure enumerate every minimal triangle vertex deletion set
of size at most k (here k = 6) of the input, and there are O(3k) minimal triangle vertex
deletion set of size at most k.

In addition, since we are looking for a minimal triangle vertex deletion set R contained
in S, it holds that R must induce a co-bipartite graph (R ⊆ S ⊆ (K ′ ∪ K ′′)). At this
point, we proceed as follows:

1 For each triangle vertex deletion set R of G[I1∪I2∪I3] such that G[R] is co-bipartite
and |R| ≤ 6 do
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2 For each co-bipartition R′, R′′ of R such that |R′|, |R′′| ≤ 3 do

3 Enumerate each pair S ′ ⊇ R′, S ′′ ⊇ R′′ such that
|S ′ \R′|, |S ′′ \R′′| ≤ 2;
|S ′|, |S ′′| ≤ 3;
S ′, S ′′ are cliques.

At this point, since k = 6 it holds that steps 1 and 2 are performed in O(1). After
that, given R′ and R′′, since |S ′ \ R′|, |S ′′ \ R′′| must be at most two, and S ′, S ′′ should
be cliques, it holds that each pair S ′ \R′, S ′′ \R′′ can be enumerate in O(n2 +m2) time.
Note that S ′ \R′ and S ′′ \R′′ are either single vertices or edges. Therefore, each possible
S = S ′ ∪ S ′′ can be enumerate in O(n2 +m2) time.

Similarly, let X be the set of vertices to be moved from the co-tripartition to the
sparse part, i.e. X = (K1 ∪K2 ∪K3) ∩ (I ′ ∪ I ′′). Let X ′ = X ∩ I ′ and X ′′ = X ∩ I ′′.

Now, notice that at most 4 vertices can be moved from the co-tripartition to the
sparse part, otherwise X introduces a triangle in the bipartition. So, at most 2 vertices
from G[K1 ∪K2 ∪K3] should be in the same independent set of the resulting bipartition
(if any). Thus, similar to the previous Step 3, we can enumerate in O(m2) such vertices.

At this point, it is enough to check for each pair S,X (there are O(n2 · m2 + m4))
whether

• G[((I1 ∪ I2 ∪ I3) \ S) ∪X] is bipartite;

• G[((K1 ∪K2 ∪K3) \X) ∪ S] is co-bipartite.

Recall that recognizing bipartite and co-bipartite graphs can be done in O(n + m),
and G has a (2, 2)-partition if and only if there are such pair S,X. Since we enumerate
all S,X that should be considered (amortizing some cases using triangle vertex deletion
sets), the correctness of our procedure is straightforward. Therefore, Theorem 16 holds.

Theorem 16. The recognition of (2, 2)-graphs can be performed in O(n3 ·m2 +m5) time.
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Table 3.4 shows the improved complexity map of the recognition of (2, 2)-graphs.

r
` 0 1 2 3 4 . . .

0 - O(n+m) O(n+m) NPc NPc . . .
1 O(n) O(n+m) O(n2 +m2) NPc NPc . . .
2 O(n+m) O(n2 +m2) O(n3 ·m2 +m5) NPc NPc . . .
3 NPc NPc NPc NPc NPc . . .
4 NPc NPc NPc NPc NPc . . .
... ... ... ... ... ... . . .

Table 3.4: Improved complexity map of the recognition of (r, `)-graphs.

Recall that O(n3 ·m2 +m5) is upper bounded by O(n10). Therefore, our algorithm is
faster than Brandstädt’s algorithm (O(n12)) even when m =O(n2).

3.3 Concluding Remarks

In this chapter we demonstrated how, by using algorithms well established in the literature
from the parameterized complexity framework one can improve known algorithms.

In our approach for a given graph G we first find either the (2, 2)-partition of G or a
(3, 3)-partition of it given it exists, otherwise, we guarantee that that are no (2, 2)-partition
of G. Once the (3, 3)-partition is found we developed a strategy using an parameterized
algorithm for triangle vertex deletion set to reallocate the partitions in a way tht a (2, 2)-
partition is found if and only if the graph accepts a (2, 2)-partition.

By using this strategy we were able to enhance the literature results for recognizing
graphs (2, 2), from O(n12) to O(n10). Our preliminary research on the recognition of
graphs (2, 1) is implying that the literature established complexity can be improved from
O(n2 +m2) to O(n ·m) by using a similar approach.



Chapter 4

Building obstructions of (2, 1)-graphs

An obstruction for a hereditary graph property Π is any subgraph that imposes a structure
where Π cannot be obtained. Although the class of (2, 1)-graphs and their characteristics
has been extensively studied [10, 3, 35, 36], few is known about the obstructions of this
class. In this chapter, for a given integer n, our goal is present a strategy to list all
the minimal obstructions of (2, 1)-graphs with at most n vertices. Our focus is to list all
obstructions of (2, 1)-graphs with at most nine vertices. Furthermore, we describe features
of (2, 1)-graphs that can be used to identify obstructions.

4.1 Overview

In order to be able to recognize minimal obstructions for the property of being a (2, 1)-
graph, we must identify characteristics that a (2, 1)-partition imposes on a graph and how
these conflict with obstructions. This section shows that by using some characteristics
and applying those to a certain number of vertices, we can build an algorithm to describe
all the obstructions in feasible time, in practice. Therefore, we shall start by showing
features of an obstruction and how can we use it to obtain all of them.

Theorem 17. If a graph G is a minimal obstruction of (2, 1)-graphs, then it has a (2, 2)-
partition and also a (3, 1)-partition, where one of the parts is a single vertex.

Proof. By definition, G is a minimal obstruction of (2, 1)-graphs if the removal of a vertex
v ∈ V (G) spawns a (2, 1)-partition of G (S1,S2,K). Therefore, G has a (2, 2)-partition
S1, S2, K, {v}, and also a (3, 1)-partition S1, S2, {v}, K.

Theorem 17 allow us to build an algorithm based on the following steps:
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• generate a graph H that has a (2, 1)-partition;

• creates the graph G, by inserting a vertex v to K;

• makes G an minimal obstruction by appropriately adding edges from v to V (H).

Notice that, our strategy shall not be a brute force testing the insertion of all subset
of edges between v and V (H). We use a smarter approach in order to reduce the number
of verifications of possible obstructions. In order to do so, we must pay attention to the
following lemmas.

Lemma 1. There are no obstruction of (2, 1)-graphs with less than six vertices.

Proof. A graph G has a (2, 1)-partition if and only if it contains a clique that intersects
every odd cycle in G [37]. Therefore, to complete our proof, we shall demonstrate that
every graph with at most 5 vertices is (2, 1).

Let G be a graph with 5 vertices. If G has aK3 then we can add such aK3 in the clique
part and the other two vertices induces a bipartite graph, so G has a (2, 1)-partition. Now
assume that G is K3-free and it is not bipartite (bipartite graphs are (2, 1)). Therefore, G
has only C5s as odd cycles, thus, by removing any vertex (the clique part), the remaining
vertices induce a bipartite graph, so G is (2, 1).

Lemma 2. If a graph G is a minimal obstruction of (2, 1)-graphs, then:

1. For any vertex v ∈ V (G) the graph G′ = G[V (G) \ {v}] can be partitioned in two
independent sets (S1, S2), and a clique (C), such as |V (C)| ≥ 2 and there is at least
one edge between S1 and S2;

2. There is no vertex v ∈ V (G) with d(v) ≤ 1.

Proof. Let G be a minimal obstruction of (2, 1)-graphs, and G′ be a subgraph of G
obtained by removing a single vertex v from G. Let S1, S2, C be a (2, 1)-partition of G′.

1. If that is no edge from S1 to S2 then S1 ∪ S2 is also an independent set, thus G′ a
(1, 1)-graph, which implies that G has a (2, 1)-partition where {v} is an independent
part, which is a contradiction.

Beside, if C = {u} then either:

• dG′(u) = 0 : In this case u can be allocated at any independent set. Therefore
G′ is bipartite and G is a (2, 1)-graph, which is a contradiction.
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• dG′(v) ≥ 1 : In this case we can select a vertex w ∈ N(u)(w 6= v) and reallocate
it to the clique, keeping an edge between S1 and S2, otherwise G would be a
(2, 1)-graph, which is a contradiction.

2. If G has a vertex v such that d(v) ≤ 1. By the minimality property, the graph
G′ = G[V \ {v}] has a (2, 1)-partition S1, S2, C. As v is connected to at most to
one vertex of S1 ∪ S2, then G[S1 ∪ S2{v}] is bipartite and therefore G would be a
(2, 1)-graph, which is a contradiction.

Theorem 17, Lemma 1 and Lemma 2 gives us the basic structure of a (2, 1)-graph
and its obstructions. Every obstruction then shall have a 2K2 as subgraph. One K2 in
the clique, and the other K2 between the independent sets. The following graphs are
the non-isomorphic graphs of size four having a such a 2K2 as subgraph. We call these
structures bases.

The structures illustrated in Figure 4.1 will be the starting point of our algorithm, by
using them we can incrementally add vertices and edges in order to form our obstructions.

Figure 4.1: Bases #0, . . . , #6, respectively.
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4.2 Building the obstructions

At this point, to build obstructions up to n vertices, we already know the configuration of
5 of those vertices: The vertex v vertex that will cause the obstruction and the 4 vertices
from the from a base as described in Section 4.1.

Our next step is to allocate the remaining n− 5 vertices. To achieve this, we list all
the non-isomorphic (2, 1)-graphs with n−5 vertices. We called those the external graphs.

After the generation of the external graphs is complete, we must now allocate the
vertices of a generated external H into the bases.

For example let’s assume that we want to generate all the obstructions with n = 7
vertices. In this case, we must generate all non-isomorphic graphs H of size exactly 2,
Figure 4.2 illustrates these graphs.

Figure 4.2: Externals #0 and #1 for n=7

After generating the external graphs we must merge the graphs H into the bases I.
Such merging shall obey the following constraints:

• If a vertex v ∈ V (H) is allocated to the clique C of I then for every vertex u ∈ C
an edge (v, u) must be added in E(I);

• If a vertex v ∈ V (H) is allocated to the clique C of I, then only its neighbors can
also be allocated in C;

• If a vertex v ∈ V (H) is allocated to one of the independent sets of I, then only
non-neighbors of v can be allocated to the same independent set.

After the allocation is complete we have one more step before introducing the ob-
structive vertex. We must enumerate all graphs formed by the addition of allowed edges
(those that do not break the properties of the partitions) between the vertices of I and H.
We named these graphs the composite graphs. Notice that, if any vertex in the composite
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graph has a degree equal 0 then we can forwent this graph as it will not be a viable
candidate as seem in Lemma 2. Figure 4.3 show us one valid composite graph for n = 7.

Figure 4.3: A viable composite of External #1 into Base #0

After the development of all the composite graphs we must allocate the obstructive
vertex v. To do so, for each composite J we add v to the vertex set of J ; After that, we
enumerate every possible combination of edges from v to V (J) without regard with the
partitioning. The graphs generated by this step was called candidates. The final step in
generating all minimal obstructions of size n is applying the recognition of (2, 1)-graphs
to every candidate and selecting those who fail.

Continuing our example, after the allocation of v, on the subset showed by Figure 4.4
only second candidate would be selected, as it is an obstruction.

Figure 4.4: Two viable candidates, with one being an obstruction for n = 7

Therefore, the only remain step is to demonstrate that this algorithm generates all
the minimal obstructions.
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Theorem 18. The algorithm generate all the minimal obstructions for graphs with at
most n vertices.

Proof. Theorem 17 shows that all the minimal obstructions of a (2, 1)-graph is at the same
time in (3, 1)-graph and (2, 2)-graph, where one of the parts contains only one vertex v
such that G′ = G[V (G) \ v] is a (2, 1)-graph.

Our algorithm uses the features shown at Lemma 1 and Lemma 2 to enumerates
all possible G′, then the obstructive vertex v is added to G′ and we generate all graphs
formed from additions of edges from v to V (G′) and test the result using Brändstadt’s
algorithm for (2, 1)-recognition. Therefore, in order to be correct we must demonstrate
that all possible G′ are generated.

The graphs shown at Figure 4.1 are all the non-isomorphic graphs with 4 vertex
having a 2K2, the bases. As any obstruction contains one of these bases as a subgraph,
the algorithm aim to enumerate all obstructions formed by addition of vertices and edges
from those vertices of these bases.

In order to do so, we enumerate all the non-isomorphic (2, 1)-graphs H with |V | =
n − 5, allocate the vertices of H into the bases I and add all the possible edges from H

to I in a manner that the partitions are not violated.

Notice that if any vertex has degree at most one after the introduction of v then it is
removed from G′, that guarantees that all the candidates with n − 1 . . . 6 are generated
and so on all G′ are generated therefore all obstructions are generated.

4.3 Results for n = 9

Our algorithm is an approach that aim to reduce the set of possible obstructions to be
tested using the Brändstadt algorithm, to demonstrate the impact of our strategy we will
show our results for n = 9.

Notice that are 236 distinct graphs with at most 9 vertices and therefore the enumer-
ation and analysis using Brändstadt’s algorithm does not provide an adequate approach.
First we performer a naive implementation, without use our bases of size at most four
and remove vertices with degree smaller than 2. We obtain about 8GB of data taking
approximately 6h to complete.

A second implementation used the bases of size 4, remove duplicates, and removed
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the vertices of degree at most 1. This run took 94min to complete, generating about 8MB
of data with a count of 22 thousands of obstructions, a smaller set of graphs.

The third and final implementation is the one described in this chapter, we use the
strategies of the second implementation and remove the isomorphic graphs along the way,
resulting in an execution time of 80min generating 1026 graphs in a file of size 500KB.

The implementation was made using the framework JGrapht[38], and Java. The
algorithm to generate only non-isomorphic graphs was the one proposed VF2 algorithm
by Cordella[39] as made available by JGrapht. The machine in wich the experiments were
executed is a Lenovo e431 with an Intel i5 CPU and 4GB of RAM.

The result of the third run is available at

http://www2.ic.uff.br/~ueverton/obstrucao21/Apendice.pdf

and the visualizations of the results using vis.js[40] can be found at

http://www2.ic.uff.br/~ueverton/obstrucao21/obstrucoes_html/obstrucoes.html

4.4 Concluding Remarks

This chapter present an algorithm that correctly generates all the minimal obstruction of
(r, `) graphs up to n vertices. Such algorithm is based both on structural properties that
are common to all obstructions of this kind and structural properties of (r, `) graphs.

By identifying such properties and developing tailored approaches to vertex allocation
we were able to greatly improve the execution time to generate all the obstructions up to
n vertices. As stated on section 4.3 we elaborated test cases with n = 9 to demonstrate
the impact of our approach, the table 4.1 show these results.

Algorithm generation 1st 2nd Final
File Size 8GB 8MB 500KB

Execution Time 6h 94Min 80Min
Generated Graphs - 22000 1026

Table 4.1: Obstructions generation algorithm comparison

http://www2.ic.uff.br/~ueverton/obstrucao21/Apendice.pdf
http://www2.ic.uff.br/~ueverton/obstrucao21/obstrucoes_html/obstrucoes.html


Chapter 5

Final remarks

In this dissertation several discoveries was made about the (r, `)-graphs: How the proper
coloring of an (r, `)-graph relates to the list-coloring of it’s (r, ` − 1)-graph counterpart;
the P × NP-complete dichotomy of Graph Coloring on such classes; a parameterized
ways to find a proper coloring for a given (2, 1)-graph; an improvement in the recognition
of the (2, 2)-graphs; and a program to build minimal obstructions of (2, 1)-graphs up to a
given number n of vertices. In chapter 2, we unveil the complexity of the Graph Col-
oring problem (and consequently to clique cover problem) establishing an P vs NPc
dichotomy for (r, `)-graphs. We also provided a link between the graph coloring of a
(r, `)-graph and the List-Coloring of it’s (r, ` − 1)-graph counterpart. By analysing the
(2, 1) class we determined how the problem behaves using the size of each partition as a
parameter under the parameterized complexity approach; Although the size of the dense
part is not useful as a parameter to produce a FPT algorithm and that the problem re-
mains NPc even with a maximum clique of size 3, we demonstrated how the neighborhood
of the clique (under the optics of list coloring, the size of the list for each vertex in
the bipartition) plays an important role in finding an FPT algorithm.

The third chapter of this work demonstrated how building up on the Brandstädt
algorithm that checks the neighborhood of each vertex, one can in polynomial time discard
the graph as a (2, 2)-graph, finding a (2, 2)-partition or a (3, 3)-partition that can be used
to determine if the found (3, 3)-graph allows a (2, 2)-partition or not. Once the (3, 3)-
partition is found we demonstrated how, by how using an FPT algorithm for triangle-
free vertex deletion problem as subroutine to find the vertex set in the sparse part
that should be reallocated in the dense part of the desired (2, 2)-partition, one can build
an O(n10) algorithm to recognize graphs in the (2, 2)-class. Such algorithm plays an
important role, since the former algorithm for recognition of graphs in such class was



49

O(n12) and lacked proper publication.

Lastly, we studied the structural properties of graphs in the (2, 1) class, and how these
properties can be used to create an obstruction of such class. We demonstrated by using
n = 9 how the execution time to generate all the 1026 minimal obstructions can go from
6 hours to 80 minutes by using our approach.

Although several discoveries were made, in this dissertation, we hypothesized some
improvements that can be researched to find newer and better results.

5.1 Further research

In addition to providing an upper bound for the chromatic number of (2, 1)-graphs, The-
orem 1 also shows that ω(G) ≤ χ(G) ≤ ω(G) + 1 for a (1, 2)-graph G.

For any graph G with a (1, 2)-partition S1, K1, K2, it holds that

max{|K1|, |K2|} ≤ ω(G) ≤ 2 ·max{|K1|, |K2|}+ 1.

Thus, for (1, 2)-graphs we can assume parameterization by ω(G) instead of max{|K1|, |K2|}.

Since the maximum clique of a (1, 2)-graph G can be obtained in polynomial time,
we can assume ω(G) = |K2| because we can add ω(G) − |K2| new vertices to K2 having
no neighbor in S1 ∪ K1, which preserves the chromatic number of G. Therefore, from
Theorem 2 and Theorem 3, it holds that given a (1, 2)-graphG, the problem of determining
the chromatic number of G is equivalent to List Coloring on split graphs where ω(G)
is the number of colors of the of the palette (|P |).

A similar analysis to the one we developed for Graph Coloring on (2, 1)-graphs
and List Coloring on bipartite graphs also seems interesting for (1, 2)-graphs and split
graphs.

Besides, a multivariate analysis of the parameterized complexity of Graph Coloring
on (0, 3)-graphs and (4, 0)-graphs is suitable. Finally, to map the P vs. NPc dichotomy
regarding the values of r and ` of (r, `)-graphs for other classical NP-hard graph problems
is an interesting research topic.

A better approach on the obstruction algorithm

In chapter 4 we stated a program to generate all the obstructions up to n vertex.
However, an analysis of the execution showed us that there may be a reuse of the discarded
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candidates of an obstruction of n vertex in the identification of obstructions of n+1 vertex.
We conjecture that there is a dynamic programing approach that yield even better results.

On the recognition of (1, 2) and (2, 1)-graphs

A major part of our focus through this work was in the recognition part of it. Besides
the results declared in chapter 3 we heavily studied a strategy to get better results for
the (1, 2) and (2, 1) classes, this study leaded us to some exciting insights.

The Brandstäd algorithm show us that, when identifying a (2, 1)-graph the neighbor-
hood of each vertex plays an important role. During Brandstadt execution there are two
checks that should be performed for each vertex:

• (N1) If the neighborhood of the vertex is a split graph, then the vertex could belong
to the sparse part.

• (N2) If the complement of the neighborhood of the vertex is a bipartite graph, the
the vertex could belong to the clique.

If every vertex is compliant to exactly one of this requirements, then the graph is a
(2, 1)-graph. However, if any vertex does not fit N1 nor N2 then the graph is guaranteed
not in the (2, 1) class; When there is a vertex that meets both N1 and N2 then the graph
is guaranteed to be an (3, 1)-graph spawned by the neighborhood and it’s complement
spawned by this vertex.

Since we have an (3, 1)-graph, if we can reallocate the vertices in the tripartition to
coalesce with the found clique in a way that the sparse part becomes a bipartition then
we can find the (2, 1) partition of the given graph (and if no reallocation is possible then
we can assure that the graph is not in the (2, 1) class).

This leaded us to search for an algorithm that can properly move the vertices between
partitions to find a proper (2, 1) partition. In order to do so, the first step was to find a way
to make the tripartition a bipartition; This problem can be treated partially as the Odd
Cycle Transverse problem, as it can dismantle the tripartition. Even knowing that
OCT is in the NP class, we demonstrated that, by using the parameterized complexity
framework we can obtain such answer in polynomial time for our instances.

By identifying this vertices one can determine strategies to reallocate they to the dense
part of the pretended (2, 1) partition. Our efforts towards such strategies using a modified
version of the Annotated bipartition problem heavily indicates that the complexity
of the recognition for the (2, 1) and (1, 2)-graphs can be improved to be O(n ·m).
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