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Resumo

Inicialmente, este trabalho aborda o relaxed correlation clustering (RCC), que é um prob-
lema NP-difícil de particionamento de vértices que busca minimizar o desequilíbrio relax-
ado em grafos de sinais, tendo aplicações em análise de redes sociais. Para resolvê-lo, são
propostas duas novas formulações de programação linear inteira e uma meta-heurística
baseada em busca local. Esta última usa estruturas de dados auxiliares para realizar,
de forma eficiente, avaliações de movimentos durante o processo de busca. Experimen-
tos computacionais em instâncias existentes e em novas instâncias geradas demonstram a
superioridade das abordagens propostas quando comparadas com métodos da literatura.
Enquanto as abordagens exatas obtiveram soluções ótimas para instâncias em aberto,
a meta-heurística proposta foi capaz de encontrar soluções de alta qualidade em tempo
razoável de CPU.

A segunda parte deste trabalho é sobre o problema de roteamento de veículos com
coleta na volta (VRPB, do inglês vehicle routing problem with backhauls), que é uma
variante clássica de roteamento de veículos que considera dois tipos de clientes: entrega
e coleta. No VRPB, uma rota precisa visitar clientes de entrega antes de clientes de
coleta. Para resolver o VRPB de forma exata, são propostos dois algoritmos do tipo
branch-cut-and-price (BCP). O primeiro deles segue o modelo tradicional com apenas um
subproblema de princing, enquanto o segundo explora o particionamento dos clientes em
entrega e coleta e define dois subproblemas. Experimentos computacionais mostram que
os algoritmos de BCP são capazes de obter soluções ótimas, muitas delas sendo inéditas,
para todas as instâncias da literatura, que possuem até 200 clientes. Foi observado que
a abordagem com dois subproblemas de pricing é mais eficiente que a tradicional. Além
disso, novas instâncias com até 1000 clientes foram geradas para as quais bons limitantes
foram encontrados. Também foram avaliadas três meta-heurísticas efetivas, onde duas
delas exploram, em níveis diferentes, informações específicas do problema.

A última parte deste trabalho propõe um Partial OPtimization Metaheuristic Un-
der Special Intensification Conditions (POPMUSIC) para o clássico problema de rotea-
mento de veículos capacitado (CVRP). A abordagem proposta usa um algoritmo de BCP
como uma heurística para resolver subproblemas com dimensões que geralmente variam
entre 25 e 200 clientes. Experimentos foram realizados em instâncias tendo entre 302
e 1000 clientes. Partindo de soluções iniciais obtidas por algumas das melhores meta-
heurísticas da literatura, o POPMUSIC foi capaz de obter consistentemente melhores
soluções para execuções longas de até 32 horas. Ao começar da melhor solução disponível
na CVRP library, o POPMUSIC foi capaz de encontrar novas melhores soluções para
várias instâncias, incluindo algumas muito grandes. Em um experimento final, o POP-
MUSIC foi aplicado com sucesso para o VRP com frota heterogênea e o VRPB.

Palavras-chave: Correlação de Clusters Relaxado, Roteamento de Veículos com Coleta
na Volta, Roteamento de Veículos Capacitado, POPMUSIC.



Abstract

At first, this work approaches the relaxed correlation clustering (RCC), which is a vertex
partitioning NP-Hard problem that aims at minimizing the relaxed imbalance in signed
graphs, having applications in social network analysis. To solve it, we propose two linear
integer programming formulations and a local search-based heuristic. The latter relies
on auxiliary data structures to efficiently perform move evaluations during the search
process. Computational experiments on existing and newly proposed benchmark instances
demonstrate the superior performance of the proposed approaches when compared to
those available in the literature. While the exact approaches obtained optimal solutions
for open problems, the proposed heuristic was capable of finding high quality solutions
within a reasonable CPU time.

The second part of this work is about the vehicle routing problem (VRP) with
backhauls (VRPB), which is a VRP with two types of customers: linehaul and backhaul
ones. In the VRPB, a route must visit linehaul customers before backhaul customers.
To solve VRPB exactly, we propose two branch-cut-and-price (BCP) algorithms. The
first of them follows the traditional approach with one pricing subproblem, whereas the
second one exploits the linehaul/backhaul customer partitioning and defines two pricing
subproblems. Computational experiments show that the BCP algorithms are capable of
obtaining optimal solutions for all existing benchmark instances with up to 200 customers,
many of them for the first time. It is observed that the approach involving two pricing
subproblems is more efficient computationally than the traditional one. Moreover, new
instances with up to 1000 customers are also proposed for which were provided tight
bounds. Three effective heuristics were also evaluated, where two of them take advantage,
at different levels, of problem-specific information.

The last part of this work proposes a Partial OPtimization Metaheuristic Un-
der Special Intensification Conditions (POPMUSIC) for the classical capacitated vehicle
routing problem (CVRP). The proposed approach uses a BCP algorithm as a powerful
heuristic to solve subproblems whose dimensions are typically between 25 and 200 cus-
tomers. Computational experiments were carried out on instances having between 302
and 1000 customers. Using initial solutions generated by some of the best heuristics for
the problem, POPMUSIC was able to obtain consistently better solutions for long runs
of up to 32 hours. Starting from the best known solutions in CVRP library, POPMUSIC
was able to find new best solutions for several instances, including some very large ones.
In a final experiment, POPMUSIC was successfully applied to tackle the heterogeneous
fleet VRP and the VRPB.

Keywords: Relaxed Correlation Clustering, Vehicle Routing With Backhauls, Capaci-
tated Vehicle Routing Problem, POPMUSIC.



List of Figures

1.1 A signed graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 A VRP solution with three routes. . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Structural balance in a network with mutually hostile mediators. . . . . . . 23

2.2 (a) A small RCC instance with unitary weights and k = 3. (b) A feasible

solution P = {{1, 2}, {3, 4}, {5, 6}} with relaxed imbalance RI(P ) = 4. (c)

An optimal solution P ∗ = {{1, 4}, {2, 5}, {3, 6}} with relaxed imbalance

RI(P ) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Example of an Insertion move. The incoming arcs of i are in dashed lines

to illustrate the separation of the weights in SumIntra and SumInter. For

the sake of simplicity, the signs were omitted and all arcs have unitary

weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Example of a Swap move. Arcs (i, j) and (j, i) are in dashed lines to

illustrate their importance w.r.t. the ADSs. For the sake of simplicity, the

signs were omitted and all arcs have unitary weight. . . . . . . . . . . . . 37

2.5 Example of a Split move. For the sake of simplicity, all arcs have unitary

weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 An example of sign inversion for an intracluster imbalance. For the sake of

simplicity, all arcs have unitary weight. . . . . . . . . . . . . . . . . . . . . 39

2.7 Impact of the parameter maxPert. Each point represents a configuration

and points with no fill represent those dominated by one or more settings. 51

2.8 Impact of the neighborhood operations for all 100-vertex random instances.

Each point represents a configuration and points with no fill represent those

dominated by one or more settings. N1, N2 and N3 denote neighborhoods

Insert, Swap and Split, respectively. . . . . . . . . . . . . . . . . . . . . . . 52



List of Figures viii

2.9 Impact of the perturbation operations. Each point represents a configu-

ration and points with no fill represent those dominated by one or more

settings. P1, P2 and P3 denote perturbations Insert, Split and Sign In-

version, respectively. Part (a) does not include the neighborhood Swap

whereas part (b) does. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.10 Average gap performance according to characteristics of the instance. . . . 56

2.11 Impact of the ADSs on the average CPU time (semi-log plot). . . . . . . . 57

3.1 Illustration of Algorithm 5. Obtaining the values for λ̄p, such that p ∈ Ω

and the connecting vertex of p is i ∈ L. In Figure 3.1a, paths p3 and p2

are chosen according to the lines 7 and 12, respectively. Next, the value for

λp2⊕p3 = 0.1 is defined, the pair (p3, 0.1) is removed from γi and (p2, 0.2) is

updated to (p2, 0.1). Figures 3.1b, 3.1c and 3.1d illustrate the continuation

of the algorithm, until γi is empty. The algorithm performs this process

for every vertex i ∈ L as connecting vertex. . . . . . . . . . . . . . . . . . . 70

3.2 Example of rank-1 cut with both types of customers, where the hexagon

represents the backhaul customer. Note that the cut in 3.2a is effective,

but 3.2b is not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 RCSP graph for BCPF1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 RCSP graphs for BCPF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Average gaps for the X instances. In Figure 3.5a, the value reported is given

for each value of |V | as the average gap of the three related instances. The

other figures show the gap of the instances associated with the correspond-

ing percentage of linehauls. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Average gaps with respect to the size of the route. . . . . . . . . . . . . . 89

3.7 Average CPU time (s) for the GJB instances . . . . . . . . . . . . . . . . . 93

3.8 Average CPU time (s) for the TV instances . . . . . . . . . . . . . . . . . . 95

3.9 Average gap (%) for the X instances . . . . . . . . . . . . . . . . . . . . . . 96

3.10 Average CPU time (s) for the X instances . . . . . . . . . . . . . . . . . . 96

4.1 Constructing and solving a subproblem. Depot is the yellow square, and

customers are circles with diameter proportional to its demand. For the

sake of visualization, the edges adjacent to the depot are not depicted. . . 103



List of Figures ix

4.2 POP1
0.5 with three different parameterizations of VRPSolver. The time axis

is on a log2 scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Convergence curves of POP1 and HGSr. . . . . . . . . . . . . . . . . . . . 110

4.4 Convergence curves of POP2 and HGS20. . . . . . . . . . . . . . . . . . . . 114

4.5 Convergence curves of HILS and POPh0.5 for the XH instances of the HFVRP.121

4.6 Convergence curves of ILSB-SPB and POPb0.5 for the XB instances of the

VRPB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

H.1 RCSP graphs for the VRPSolver model of F2 . . . . . . . . . . . . . . . . 177

L.1 Comparison of HGS and HGSr w.r.t. the convergence curve based on the

average gap for all X instances over 8 hours. The time axis is on a log2

scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



List of Tables

2.1 Number of variables and constraints of formulations F1 and F2 . . . . . . . 31

2.2 Description of the proposed ADSs . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Complexity summary of the neighborhoods considering both EBI and NBI

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Differences between ILSRCC and ILS [76] . . . . . . . . . . . . . . . . . . . 40

2.5 Small-size instance attributes . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Results obtained for instances House A Sum, House B Sum and House C

Sum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Results obtained for instances MonkT2, MonkT3, MonkT4, and MonkT4

Sum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Results obtained for instances McKinney and NewComb. . . . . . . . . . . 48

2.9 Comparison of optimal solutions for RCC and CC in small instances. . . . 50

2.10 Comparison of two constructive heuristics in ILSRCC for different values of k. 51

2.11 Aggregate results for each digraph. Each row reports statistics on the

average gaps obtained for the group of four instances (one for each value

of k ∈ {3, 5, 7, 9}). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.12 Summary of results for SRCC benchmarks . . . . . . . . . . . . . . . . . . 57

3.1 The most important approaches in the literature for the VRPB. . . . . . . 61

3.2 Results obtained for the GJB instances . . . . . . . . . . . . . . . . . . . . 82

3.3 Results obtained for the TV instances . . . . . . . . . . . . . . . . . . . . . 84

3.4 Results obtained for the FTV instances . . . . . . . . . . . . . . . . . . . . 85

3.5 Comparison between the two BCP algorithms for the X instances. Only

the first 45 instances of X were considered. . . . . . . . . . . . . . . . . . . 86



List of Tables xi

3.6 Summary of the results obtained by BCPF2 for the 300 instances of group

X, considering the percentage of linehaul customers. . . . . . . . . . . . . . 88

3.7 Impact of the initial upper bounds on the number of optimal solutions

found by the BCP algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Results for the T instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.9 Results for GDDS instances . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.10 Summary of the results found for the GJB instances . . . . . . . . . . . . . 92

3.11 Comparison with the literature: GJB instances up to 150 customers. The

columns “Avg. best sol. cost" and “Avg. sol. cost" allow to compare with

Cuervo et al. [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.12 Detailed results for the 200-customer GJB instances . . . . . . . . . . . . . 93

3.13 Summary of the results found for the TV instances . . . . . . . . . . . . . 94

3.14 Comparison with the literature: TV instances . . . . . . . . . . . . . . . . 94

3.15 Detailed results for the 100-customer TV instances . . . . . . . . . . . . . 94

3.16 Summary of the results found for the X instances . . . . . . . . . . . . . . 95

3.17 Summary of the results found for the X instances with 50%, 66% and 80%

linehauls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.18 Ranking of the strategies according to the criteria defined by Cordeau et al.

[30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Avg. gap (%) of POP1
0.5 on XR instances for different values of α and δ. . . 108

4.2 Average gap (%) of HGSr and POP1 executions at different times. . . . . 109

4.3 Best solutions found by ILS-SP, HGSr, and POP1 after 32 hours. . . . . . 111

4.4 Average gap (%) of HGS20 and POP2 executions at different times. . . . . 115

4.5 Detailed statistics for HGS20 and POP2
2. Best gaps for 20 hours are un-

derlined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 BKSs directly improved by POP . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Average gap (%) of HILS and POPh executions at different times for the

XH instances of the HFVRP. . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Tables xii

4.8 Average gap (%) of ILSB-SPB and POPb0.5 at different times for the XB

instances of the VRPB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.1 Relaxed imbalance obtained by ILSRCC and ILSadapt . . . . . . . . . . . . . 149

E.1 Symmetric relaxed imbalance obtained by ILSRCC and ILS Levorato et al.

[76]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

F.1 Results for X instances by the BCPF2 with a time limit of 60 hours. The

results which were already reported in Table 3.5 were omitted. The final

lower bound is denoted by LBf . . . . . . . . . . . . . . . . . . . . . . . . . 157

G.1 Results obtained for the GJB instances when no upper bound is given as

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

G.2 Results obtained for the TV instances when no upper bound is given as input166

G.3 Results obtained for the FTV instances when no upper bound is given as

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

G.4 Comparison between the two BCP algorithms for the X instances when

no upper bound is given as input. Only the first 45 instances of X were

considered. The value time is not given for executions which stopped by

the time limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

G.5 Results for X instances by the BCPF2 with a time limit of 60 hours and no

upper bound given as input. The results which were already reported in

Table 12 were omitted. The value time is not given for executions which

stopped by the time limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

J.1 Detailed information on works considered for comparison. . . . . . . . . . . 182

J.2 Detailed results of the best heuristics for the GJB instances. The costs

were divided by 103 and the CPU times (in seconds) were scaled to the

machine of Cuervo et al. [32] for a fair comparison. For ILS-1000, Avg.

and CPU were not reported by the authors. . . . . . . . . . . . . . . . . . 183

J.3 New best solution of O1. The last linehaul customer of a route is high-

lighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

J.4 Detailed results for the TV instances. CPU times (measured in seconds)

were scaled to the machine of Cuervo et al. [32] for a fair comparison. For

ILS-1000, Avg. and CPU were not reported by the authors. . . . . . . . . 186



List of Tables xiii

J.5 Detailed results for the X instances . . . . . . . . . . . . . . . . . . . . . . 187

M.1 Default and used parameters of the VRPSolver CVRP application. . . . . 197

M.2 Additional parameters for obtaining BCPH . . . . . . . . . . . . . . . . . . 198

N.1 Best solutions found by HILS and POPh0.5 after 32 hours. The column

BKS reports the best upper bound in Pessoa, Sadykov, and Uchoa [90].

Instances with the substring “FSM" in their names belong to XH-FSM,

while the other ones belong to XH-HVRP. . . . . . . . . . . . . . . . . . . 199

N.2 Best solutions found by ILSB-SPB and POPb0.5 after 32 hours. . . . . . . . 200



Contents

1 Introduction 18

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Relaxed Correlation Clustering 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 A small RCC example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Symmetric RCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Mathematical formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Formulation F1: a cluster-indexed formulation . . . . . . . . . . . . 27

2.4.2 Formulation F2: a representatives formulation . . . . . . . . . . . . 29

2.5 Proposed local search-based heuristic . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Auxiliary data structures . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Neighborhood structures . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Perturbation mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Differences between ILSRCC and ILS [76] . . . . . . . . . . . . . . . 39

2.6 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Results for the ILP formulations . . . . . . . . . . . . . . . . . . . . 43

2.6.3 ILS implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Contents xv

3 Vehicle Routing Problem with Backhauls 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Problem definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 VRPB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 VRPBTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 HFFVRPB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Set partitioning formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Formulation F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Formulation F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Strengthening the formulations . . . . . . . . . . . . . . . . . . . . 67

3.3.4 Comparing F1 and F2 . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Branch-cut-and-price algorithms . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Pricing subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Cut generation, branching and path enumeration . . . . . . . . . . 75

3.4.3 VRPBTW and HFFVRPB . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Heuristic solution strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 First strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.2 Second strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.3 Third strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.2 Results for the BCP algorithms . . . . . . . . . . . . . . . . . . . . 81

3.6.3 Results for the ILS-SP matheuristics . . . . . . . . . . . . . . . . . 92

3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 A POPMUSIC matheuristic for the capacitated vehicle routing problem 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Contents xvi

4.2 A POPMUSIC matheuristic for the CVRP . . . . . . . . . . . . . . . . . . 101

4.3 A branch-cut-and-price heuristic to solve subproblems . . . . . . . . . . . . 104

4.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.2 Obtaining an initial solution . . . . . . . . . . . . . . . . . . . . . . 107

4.4.3 Parameterization of the subproblem solver . . . . . . . . . . . . . . 107

4.4.4 Calibrating parameters α and δ . . . . . . . . . . . . . . . . . . . . 108

4.4.5 Comparison of the algorithms ILS-SP, HGSr, and POP1 over 32 hours109

4.4.6 Comparison of the algorithms HGS20 and POPMUSIC over 32 hours112

4.4.7 Directly improving BKSs in CVRPLIB . . . . . . . . . . . . . . . . 119

4.4.8 Results for HFVRP and VRPB . . . . . . . . . . . . . . . . . . . . 119

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Concluding remarks 125

Bibliography 127

Appendix A -- Updating the ADSs after an insertion move 139

Appendix B -- Computing the cost for a swap move and updating the ADSs142

Appendix C -- Best improvement algorithm for the split neighborhood 146

Appendix D -- Detailed results for the random RCC instances 149

Appendix E -- Detailed results for the SRCC instances 154

Appendix F -- Detailed results of the BCP algorithms for the X instances157

Appendix G -- Results of BCP algorithms when no upper bound is given

as input 164



Contents xvii

Appendix H -- VRPSolver models 175

H.1 Formulation F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

H.2 Formulation F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Appendix I -- Comparing F1, F2 and Mingozzi, Giorgi, and Baldacci [82]

formulations 178

Appendix J -- Detailed results of the heuristic approaches for VRPB 182

J.1 Comparison with the literature . . . . . . . . . . . . . . . . . . . . . . . . 182

J.2 Detailed results for the X instances . . . . . . . . . . . . . . . . . . . . . . 187

Appendix K -- A representative small subset of X 194

Appendix L -- Comparison of HGS and HGSr 196

Appendix M -- VRPSolver Parameterizations 197

Appendix N -- Detailed results for the HFVRP and VRPB 199



Chapter 1

Introduction

Graphs are mathematical structures composed by a set of vertices (a.k.a. nodes) and a set

of edges (or arcs) which connect pairs of vertices. There is a class of problems called graph

clustering, which is related to the task of finding groups (a.k.a. clusters) of vertices in a

graph. Among these problems, there are those that consider signed graphs – graphs whose

the edges (or arcs) have a positive (+) or a negative (-) label (such as the one illustrated in

Figure 1.1). The first part of this thesis is dedicated to the relaxed correlation clustering

(RCC) [48], which is a signed graph clustering problem with applications in social network

analysis. In this work, the RCC—an NP-Hard combinatorial optimization problem—is

studied from a methodological point of view through intensive experimentation, where

different exact and heuristic approaches are investigated.

a b

c

d

+

−

+

−

+−

Figure 1.1: A signed graph.

The remainder of this thesis is related to another very important class of problems:

vehicle routing problems (VRPs). VRPs are combinatorial optimization problems linked

to a critical issue faced by the transportation industry: What are the best routes for a

fleet of vehicles visiting a set of customers? Figure 1.2 illustrates a VRP solution via a

directed graph, where a fleet of three vehicles leaves the depot (vertex 0) to visit the nine

customers, and then returns to the same depot. This work approaches two VRP variants:
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67
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Figure 1.2: A VRP solution with three routes.

the VRP with backhauls (VRPB) and the capacitated VRP (CVRP). For the VRPB—a

well-known VRP variant that considers two types of customers—, exact and heuristic

algorithms are investigated, whereas a decomposition-based heuristic (that explores the

re-optimization of parts of a solution) is proposed to tackle the CVRP—the most widely

studied VRP variant—and its extensions.

In fact, this thesis is a compilation of three publications [97, 98, 105] and a sub-

mitted manuscript (available as a technical report in Queiroga, Sadykov, and Uchoa [96]),

so the chapters are almost self-contained, and the reader would have no difficulty reading

them independently.

1.1 Objectives

The objectives of this work are as follows.

• Develop new mathematical formulations and an effective local-search based heuristic

for the RCC.

• Propose exact algorithms for the VRPB which are capable of solving all the literature

instances.

• Generate a novel and more challenging benchmark instances for the VRPB.

• Study different heuristic strategies for the VRPB, and the benefits of considering

problem-specific information during their executions.
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• Develop a decomposition-based heuristic for the CVRP (and its extensions) for

medium and long runs.

1.2 Thesis outline

The remainder of this work is organized as follows.

• Chapter 2 presents the new formulations and local-search based heuristic for the

RCC.

• Chapter 3 presents the proposed exact and heuristic approaches for the VRPB.

• Chapter 4 presents the proposed decomposition-based heuristic for the CVRP and

its extensions.

• Chapter 5 contains the concluding remarks of this thesis.



Chapter 2

Relaxed Correlation Clustering

2.1 Introduction

In graph theory, signed graphs are those where each arc (or edge) has a positive or negative

sign [128, 129]. This type of graph has been extensively used for modeling problems in

various fields including biology [35], economy [57, 118], chemistry [79], ecology [33], image

segmentation [64], linguistics [116], but mainly in social network analysis [3, 5, 20, 39,

41, 44]. One of these problems is correlation clustering (CC) [11], which is a well-known

unsupervised learning problem that aims at finding a vertex partitioning in a signed graph

so as to minimize the disagreements, given by negative arcs (or edges) within a cluster

and positive arcs (or edges) between clusters. Before formally defining the CC problem

on a directed signed graph, we shall introduce some notation.

• Let G = (V,A, s) be a signed digraph, where V = {1, 2, . . . , n} is the vertex set,

A ⊆ V × V is the arc set, and s : A → {+,−} is a function that assigns a sign to

each arc.

• An arc a ∈ A is called negative if s(a) = − and positive if s(a) = +.

• For each arc a ∈ A, let wa be an associated non-negative weight. We will also use

wij and wji to denote the weight of the arcs (i, j) and (j, i), respectively.

• The set of positive and negative arcs are denoted, respectively, as A+ and A−; thus

A = A− ∪ A+.

• A partition of V into l disjoint subsets P = {S1, S2, . . . , Sl} is called a l-partition of

V .
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• For 1 ≤ p, q ≤ l, let A[Sp : Sq] = {(i, j) ∈ A | i ∈ Sp, j ∈ Sq}.

• Ω+(Sp, Sq) =
∑

a∈A+∩A[Sp:Sq ] wa and Ω−(Sp, Sq) =
∑

a∈A−∩A[Sp:Sq ] wa.

The imbalance I(P ) of a l-partition P is defined as

I(P ) =
∑

1≤p≤l
Ω−(Sp, Sp) +

∑
1≤p≤l,
1≤q≤l,
p 6=q

Ω+(Sp, Sq) (2.1)

The CC problem consists of determining a partition P which minimizes I(P ).

One of the applications of CC is related to the analysis of structural balance on social

networks. In such networks, the arcs represent social relations between actors (i.e. the

vertices of the network), whereas the sign represents feelings such as like/dislike and

agreement/disagreement. According to the structural balance theory of Heider [26, 58],

a network is balanced if there is a bipartition of the vertex set so that every positive arc

joins actors in a same group and every negative arc joins actors in different groups. Later,

Davis [36] generalized the structural balance to support a partition with more than two

groups, which is fully compatible with the criterion optimized by the CC. Indeed, an

algorithm for CC is a useful tool for evaluating how balanced a social network is. Note

that a signed graph is balanced if there is a partition P such that I(P ) = 0.

Although traditional structural balance works in several scenarios, Doreian and

Mrvar [40] pointed out that this concept could not be appropriate for some networks.

They argued that Equation (2.1) penalizes patterns in the partitions associated with

relevant social psychological processes. For example, the network in Figure 2.1a represents

a scenario with three groups, where one of them is a group of mutually hostile mediators

(vertices 8, 9, and 10). Figure 2.1b illustrates why CC is not suitable in this case: it is

not capable of detecting the group of mediators or any type of subgroup internal hostility.

This was illustrated in practice by Levorato et al. [76], where positive/negative mediation

was detected in networks describing the United Nations General Assembly Voting Data.

The equivalent was also verified for the case of differential popularity (a process in which

some actors receive more positive links than others in a group) detected in benchmark

instances from the literature [42], and for internal hostility detected in networks describing

voting activity of members of the European Parliament [5].

Still in [40], Doreian and Mrvar introduced the concept of generalized structural

balance giving rise to a new definition for the imbalance of a vertex partition which
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Figure 2.1: Structural balance in a network with mutually hostile mediators.

corrects the partition patterns penalized in Equation (2.1). The relaxed imbalance of a

l-partition partition P , denoted here RI(P ), is defined as

RI(P ) =
∑

1≤p≤l
min{Ω+(Sp, Sp),Ω−(Sp, Sp)}+

∑
1≤p≤l,
1≤q≤l,
p 6=q

min{Ω+(Sp, Sq),Ω−(Sp, Sq)}. (2.2)

The main subject of this chapter is the RCC problem [40, 48], which is a relaxed

version of the CC. In the RCC, given an integer parameter 1 ≤ k ≤ n, one aims at finding

a partition P ∈ ∪kl=1P l that minimizes the relaxed imbalance given by Equation (2.2),

such that P l is the set of all l-partitions of V . The optimal value of the RCC problem

determines how balanced a network is w.r.t. the relaxed structural balance introduced by

Doreian and Mrvar[40]. For example, the partition in Figure 2.1a is an optimal solution

for RCC because RI(P ) = 0. Both CC and RCC problems were proven NP-hard by

Bansal, Blum, and Chawla [11] and Figueiredo and Moura [48], respectively.

Doreian and Mrvar [40] tackled the RCC by applying a relocation algorithm to

analyze four real data sets related to relaxed structural balance, with up to 20 vertices.

The authors adapted a heuristic method proposed in Doreian and Mrvar [39] for the CC

problem with a fixed number of clusters, which optimizes a generic and parameterized

function called criterion function. Later, Brusco et al. [19] proposed a branch-and-bound

algorithm for solving RCC to optimality. This algorithm was capable of solving instances

with up to 29 vertices (hereafter referred to as small-sized instances) and k varying from

2 to 7. Moreover, an additional set of instances with up to 40 vertices was considered



2.2 A small RCC example 24

for experiments with k = {3, 5}. Figueiredo and Moura [48] developed an integer linear

programming (ILP) formulation that was capable of solving some small-sized instances

when k = {2, 3} and for high values of k, concluding that the proposed ILP formulation

and the existing branch-and-bound algorithm are somewhat complementary approaches.

The authors also proposed a symmetrical version of RCC (SRCC). Although different

heuristic procedures were proposed in the literature for CC (see [13, 39, 76, 123, 125],

among others), to the best of our knowledge, only one metaheuristic based procedure has

been applied to the RCC. Levorato et al. [76] adapted their iterated local search (ILS)

algorithm, originally developed for CC, to solve SRCC. Thus, there are no heuristics

specifically proposed for RCC problem.

The two main contributions can be summarized as follows:

• We present two novel integer programming formulations for the RCC problem and

we investigate their empirical performance in comparison to an existing formulation.

The results show that the new formulations appear to produce better results in

practice.

• We propose a local search-based heuristic that relies on a series of auxiliary data

structures to efficiently recalculate the relaxed imbalance after applying an operation

that modifies a partition, as well as on a novel perturbation mechanism. The results

obtained suggest that the developed algorithm is superior to an existing approach,

producing, on average, high quality solutions in a limited amount of CPU time, not

only for RCC instances but also for SRCC instances. Finally, we also demonstrate

the practical benefits of implementing the move evaluation in an efficient way.

The remainder of this chapter is organized as follows. Section 2.2 presents a small

instance for the RCC problem. Section 2.3 defines the symmetric version of the problem.

Section 2.4 introduces two novel mathematical formulations for the RCC. Section 2.5

explains the proposed efficient local search-based heuristic including the efficient move

evaluation schemes. Section 2.6 presents the results of the computational experiments.

Finally, the conclusions are discussed in Section 2.7.

2.2 A small RCC example

A small RCC example involving 6 vertices is depicted in Figure 2.2. In Figure 2.2(a), the

signed graph to be partitioned is illustrated, and we consider all weights equal to one. In
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Figure 2.2(b), a feasible solution P = {S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6}} is presented.
This solution has relaxed imbalance RI(P ) = 4 obtained by adding the following terms.
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Figure 2.2: (a) A small RCC instance with unitary weights and k = 3. (b) A feasible
solution P = {{1, 2}, {3, 4}, {5, 6}} with relaxed imbalance RI(P ) = 4. (c) An optimal
solution P ∗ = {{1, 4}, {2, 5}, {3, 6}} with relaxed imbalance RI(P ) = 1.

• min{Ω+(S1, S1),Ω−(S1, S1)} = min{∅, w12} = min{0, 1} = 0

• min{Ω+(S2, S2),Ω−(S2, S2)} = min{w34, ∅} = min{1, 0} = 0

• min{Ω+(S3, S3),Ω−(S3, S3)} = min{w65, w56} = min{1, 1} = 1

• min{Ω+(S1, S2),Ω−(S1, S2)} = min{w14, w23} = min{1, 1} = 1

• min{Ω+(S2, S1),Ω−(S2, S1)} = min{∅, ∅} = min{0, 0} = 0

• min{Ω+(S1, S3),Ω−(S1, S3)} = min{∅, ∅} = min{0, 0} = 0

• min{Ω+(S3, S1),Ω−(S3, S1)} = min{w52 + w62, w61} = min{2, 1} = 1

• min{Ω+(S2, S3),Ω−(S2, S3)} = min{∅, ∅} = min{0, 0} = 0

• min{Ω+(S3, S2),Ω−(S3, S2)} = min{w53, w54} = min{1, 1} = 1
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Figure 2.2(c) depicts an optimal solution P ∗ = {S1 = {1, 4}, S2 = {2, 5}, S3 =

{3, 6}} for the problem with RI(P ∗) = min{Ω+(S3, S1),Ω−(S3, S1)} = min{w34, w61} =

min{1, 1} = 1.

2.3 Symmetric RCC

In this work, we also consider the symmetric version of RCC (SRCC) introduced in

Figueiredo and Moura [48]. The relaxed imbalance, as given by Equation (2.2), penalizes

non-predominant relations (w.r.t. the signs) inside each cluster q and non-predominant

relations from a cluster p to a cluster q. The difference in the symmetric relaxed imbalance

defined in Figueiredo and Moura [48] is that it penalizes non-predominant relations among

pairs of clusters, i.e., it considers simultaneously all positive (all negative) relations from

Sp to Sq and from Sq to Sp. Thus, the SRCC can be defined on an undirected graph in

which parallel edges with opposite signs are allowed.

Let G′ = (V,E, s′) be an undirected signed graph with a positive weight w′ij as-

sociated to each edge {i, j} ∈ E. Let us denote E+ and E−, respectively, the sets of

positive and negative edges in E; thus E = E+ ∪ E−. In this work, we transform the

SRCC instance defined on G′ = (V,E, s′) into a RCC instance defined on a directed

signed graph Gd = (V,A, s) in which: A = {(i, j), (j, i) : {i, j} ∈ E}; for each (i, j) ∈ A,
s((i, j)) = s((j, i)) = s′({i, j}) and the associated weight wij = wji =

w′ij
2
. In other words,

for each edge {i, j} ∈ E, one creates two arcs (i, j), (j, i) ∈ A with the same signal and

half of the weight.

Let E[Sp : Sq] be the set of edges connecting the vertices in Sp and those in Sq.
We denote Ω′+(Sp, Sq) =

∑
e∈E+∩E[Sp:Sq ] w

′
e and Ω′−(Sp, Sq) =

∑
e∈E−∩E[Sp:Sq ] w

′
e. The

symmetric relaxed imbalance SRI(P ) of a l-partition P is defined as

SRI(P ) =
∑

1≤p≤l
min{Ω′+(Sp, Sp),Ω′−(Sp, Sp)}+

∑
1≤p<q≤l

min{Ω′+(Sp, Sq),Ω′−(Sp, Sq)} (2.3)

The following result relates Equations (2.2) and (2.3).

Proposition 1. Consider an undirected signed graph G′ and the directed signed graph Gd

described above. Given any partitioning P , then SRI(P ) = RI(P ).

Proof. First, we will show the equivalence of the first terms in (2.2) and (2.3), i.e. the

intracluster imbalance. Then we will do the same for the second terms, i.e. for the

intercluster imbalance. Let Sp be any cluster in P . We have Ω′+(Sp, Sp) = Ω+(Sp, Sp)
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since, for each e = {i, j} ∈ E+∩E[Sp : Sp], (i, j), (j, i) ∈ A+∩A[Sp : Sp] with w′ij = wij +

wji. The same can be argued for Ω′−(Sp, Sp) and these two facts imply the equivalence of

the first terms in (2.2) and (2.3). Now, let Sp and Sq be two clusters in P . By the definition

of the directed graph Gd, we have e = {i, j} ∈ E+ ∩ E[Sp : Sq] iff (i, j) ∈ A+ ∩ A[Sp : Sq]

and (j, i) ∈ A+ ∩ A[Sq : Sp]. Since, for each e = {i, j} ∈ E, w′ij = wij + wji, we have

that Ω+(Sp, Sq) = Ω+(Sq, Sp) = Ω′+(Sp, Sq)/2. The same holds for Ω−(Sp, Sq) and, since

the second term in (2.3) is written only for p < q, the equivalence of the second terms in

(2.2) and (2.3) follows.

As a consequence of Proposition 1, solving the RCC over graph Gd is equivalent

to solving SRCC over G′.

2.4 Mathematical formulations

Integer linear programming (ILP) problem formulations have been used to solve CC and

other related problems defined on signed graphs [8, 24, 25, 47, 50]. For RCC, an ILP

formulation was presented in [48]. When modeling vertex-clustering problems, if there is a

need for keeping track the clusters used, two types of formulations can be adopted: cluster-

indexed formulation [15, 21, 45] or representatives formulation [2, 8, 25, 50]. Indeed, the

ILP formulation of Figueiredo and Moura [48] is a representatives one. Next, we introduce

two new formulations for RCC, one of each type.

2.4.1 Formulation F1: a cluster-indexed formulation

Let K = {1, . . . , k} be the set of possible cluster indexes. For each vertex i ∈ V and

p ∈ K we define,

xpi =

{
1, if vertex i belongs to cluster Sp,

0, otherwise.

A set of binary variables is used to describe the set of arcs that will be penalized

once the predominant relations are defined (according to Equation (2.2)). For each arc

(i, j) ∈ A, we define,

tij =

{
1, if arc (i, j) is penalized,

0, otherwise.
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For example, if the predominant sign in a cluster Sp is − (i.e. Ω−(Sp, Sp) > Ω+(Sp, Sp)),

the variables associated to the arcs (i, j) ∈ A+ ∩A[Sp : Sp] should be penalized (tij = 1).

A set of binary variables is used to select if the imbalance from cluster Sp to

cluster Sq, with p, q ∈ K, is given by negative arcs (predominant relations are positive)

or positive arcs (predominant relations are negative). Notice that intracluster imbalance

is defined whenever p = q. For each pair of cluster indexes p, q ∈ K, we define,

spq =

{
1, if positive arcs from cluster Sp to cluster Sq are penalized,

0, if negative arcs from cluster Sp to cluster Sq are penalized.

The formulation can be written as

minimize
∑

(i,j)∈A

wijtij (2.4)

s.t:
∑
p∈K

xpi = 1, ∀i ∈ V, (2.5)

tij ≥ xpi + xqj − 2 + spq, ∀(i, j) ∈ A+,∀p, q ∈ K, (2.6)

tij ≥ xpi + xqj − 2 + (1− spq), ∀(i, j) ∈ A−,∀p, q ∈ K, (2.7)

xpi ∈ {0, 1}, ∀i ∈ V, ∀p ∈ K, (2.8)

tij ∈ {0, 1}, ∀(i, j) ∈ A, (2.9)

spq ∈ {0, 1}, ∀p, q ∈ K. (2.10)

Objective function (2.4) minimizes the total relaxed imbalance (i.e. the sum of

penalties). Constraints (2.5) ensure that each vertex is assigned exactly to one clus-

ter. Constraints (2.6) and (2.7) define, respectively, if a positive or negative arc will be

penalized due to assignment variables xpi , x
q
j and the penalizing variables spq. For ex-

ample, if p = q (intracluster case), spp = 1 (positive arcs are penalized), xpi = 1, and

xqj = 1 such that (i, j) ∈ A+ ∩ A[Sp : Sp], then the right hand side (RHS) of (2.6) will

be xpi + xqj − 2 + spq = 1 + 1 − 2 + 1 = 1, which leads tij = 1. On the other hand,

notice that constraints (2.7) will not force tij = 1 if (i, j) ∈ A− ∩ A[Sp : Sp] because
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(1 − spq) = 1 − 1 = 0 forbids the RHS to be greater than 0; hence tij = 0 because

the objective function will not “allow" penalized arcs which are not forced by constraint.

Finaly, constraints (2.8)–(2.10) define the domain of all variables.

Formulations that make use of cluster-indexed variables such as F1 are considered

to be symmetric, as there are a substantial number of ways to represent the same par-

titioning with a different permutation of indices. In view of this, we add the following

set of symmetry breaking inequalities introduced in Bulhões et al. [21] for the p-cluster

editing problem:

p∑
l=1

xli ≥

∑
j∈V
j<i

p−1∑
l=1

xlj

− (i− 2), ∀i ∈ V, ∀p ∈ K. (2.11)

The inequality above forbids the cluster containing i to use a label superior to p

whenever each vertex j < i is assigned to a cluster of index strictly smaller than p. For

example, if i = 5 and x2
1, x

1
2, x

1
3, x

2
4 = 1 (vertices 1,2,3, and 4 use at most cluster index 2),

then the cluster having the vertex 5 can use at most the index 3. The formulation in the

next section adopts a similar strategy in order to break symmetry in the solution space.

2.4.2 Formulation F2: a representatives formulation

A representatives formulation for the RCC is presented as follows. The idea behind this

kind of formulation [25] is the unique representation of a cluster by its vertex with the

lowest label. Hence, for each pair of vertices i, j ∈ V satisfying i ≤ j, we define,

xij =

{
1, if the vertex j is represented by vertex i,

0, otherwise.

Note that when i = j, variable xii indicates if i is a representative vertex.

Variables sij, with i, j ∈ V , used in F2 are equivalent to variables spq, with p, q ∈ K,

used in F1. However now, vertices i and j are used to identify two clusters (i 6= j) or

one cluster (i = j). Variables tij, with (i, j) ∈ A, are exactly the same as defined in F1.

Hence, formulation F2 can be expressed as follows.
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minimize
∑

(i,j)∈A

wijtij

s.t:
∑

i∈V : i≤j

xij = 1, ∀j ∈ V, (2.12)

xij ≤ xii, ∀i, j ∈ V, i < j, (2.13)∑
i∈V

xii ≤ k, (2.14)

tij ≥ xui + xvj − 2 + suv, ∀(i, j) ∈ A+,∀u, v ∈ V, (2.15)

u ≤ i, v ≤ j,

tij ≥ xui + xvj − 2 + (1− suv), ∀(i, j) ∈ A−,∀u, v ∈ V, (2.16)

u ≤ i, v ≤ j,

xij ∈ {0, 1}, ∀i, j ∈ V, i ≤ j, (2.17)

tij ∈ {0, 1}, ∀(i, j) ∈ A, (2.18)

sij ∈ {0, 1}, ∀i, j ∈ V. (2.19)

Constraints (2.12) impose that each vertex must be represented by exactly one

vertex: either by itself or by another one with a smaller index. Constraints (2.13) enforce

vertex i to be a representative one whenever a vertex j is represented by i. Constraint

(2.14) imposes k as an upper bound on the number of representative vertices, i.e., on

the number of clusters in the partition. Constraints (2.15) and (2.16) are, respectively,

equivalent to constraints (2.6) and (2.7) of formulation F1. Finally, constraints (2.17)–

(2.19) are the binary constraints.

The number of variables and constraints of formulations F1 and F2 are illustrated

in Table 2.1. Note that since the number of vertices of a graph is usually much greater

than the number of clusters, formulation F1 is more compact than F2. On the other hand,

formulation F2 succeeds in eliminating cluster indices from the representation which breaks

symmetry from formulation [25].
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Table 2.1: Number of variables and constraints of formulations F1 and F2

#Variables #Constraints
F1 O(nk + |A|+ k2) O(n+ k2|A+|+ k2|A−|)
F2 O(2n2 + |A|) O(n+ n2 + n2|A+|+ n2|A−|)

2.5 Proposed local search-based heuristic

In this section, we propose a heuristic algorithm for the RCC based on the iterated local

search (ILS) method [77]. The key concept of ILS is to combine local search strategies

and perturbation mechanisms to escape from local optima. The heuristic introduced in

Levorato et al. [76] for CC and adapted for the solution of SRCC instances is also an ILS

method. Different from Levorato et al. [76], in this work, we propose the use of several

complex neighborhoods and the use of advanced data structures which make the search

process more efficient.

Algorithm 1 presents a general framework of a multi-start ILS, hereafter referred

to as ILSRCC, which has the following input parameters:

a) IR is the number of restarts of the heuristic;

b) IILS is the maximum number of ILS iterations without improvements;

c) IP is the maximum number of moves performed by a perturbation mechanism.

For each restart, an initial solution is randomly generated (line 5) and such solution is

possibly improved by alternately applying local search (line 9) and perturbation (line

13) strategies until the maximum number of iterations (IILS) without improvement is

achieved. Finally, the best solution found among all restarts is returned (line 18).

The local search procedure is based on variable neighborhood descent (VND) [83],

which is a technique that systematically explores a sequence of neighborhood structures

(see Section 2.5.2), searching for better solutions. A neighborhood structure (or simply

neighborhood) defines a set of neighbor solutions from a current solution by applying a

so-called move. When VND finds an improving move using a particular neighborhood,

the solution is updated and the procedure restarts from the improved solution. The

procedure terminates when all neighborhoods fail to improve the current solution. The

best improvement strategy was adopted, i.e., a neighborhood is fully enumerated and the

best improving move (if there is any) is applied. In addition, the neighborhood ordering

is defined in a random fashion, which results in a strategy known as Randomized VND
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Algorithm 1: ILSRCC
1 Procedure ILSRCC(IR, IILS, IP )
2 RI∗ =∞
3 P ∗ = ∅
4 for iter = 1 . . . IR do
5 P = ConstructiveProcedure()
6 P ′ = P
7 iterILS = 0
8 while iterILS < IILS do
9 P = LocalSearch(P )

10 if RI(P ) < RI(P ′) then
11 P ′ = P
12 iterILS = 0

13 P =Perturb(P ′, IP )
14 iterILS = iterILS + 1

15 if RI(P ′) < RI∗ then
16 P ∗ = P ′

17 RI∗ = RI(P ′)

18 return P ∗

(RVND). The combination of ILS and RVND led to state-of-the-art methods for several

important combinatorial optimization problems, such as: split-delivery vehicle routing

problem [102], minimum latency problem [103] and minimizing weighted tardiness in

single machine scheduling with sequence-dependent setup times [104].

The perturbation procedure randomly chooses one of the implemented mechanisms

(see Section 2.5.3) in order to modify the local optimal solution P ′. The selected mech-

anism then applies IP random consecutive moves over P ′ in order to generate a solution

to continue the search.

In what follows, we provide a detailed description of the auxiliary data structures

used for performing efficient move evaluation, as well as on the neighborhood structures

and perturbations mechanisms.

2.5.1 Auxiliary data structures

Assuming that an adjacency matrix is used to access the signed digraph G, and a feasible

solution is represented by a set of subsets of indices (e.g. P = {S1, S2, S3}, such that S1 =

{1, 2}, S2 = {3, 4}, S3 = {5, 6} for a graph with 6 vertices; see Figure 2.2), the value of its

associated objective function can be straightforwardly computed in O(l2n2) operations,

where l = |P |. Note that this is due to the complexity of determining the intercluster
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imbalance. Consequently, performing the move evaluation of a neighbor solution from

scratch every time during the local search may turn out to be computationally expensive,

especially for large size instances. However, this can be done in a more efficient manner

by precomputing and storing information in auxiliary data structures (ADSs).

We thus propose to implement two classes of ADSs: SumIntra[Sp], which is a set of

ADSs that stores the sum of the weights for different subsets of A[Sp] (a.k.a. intracluster

arcs of Sp); and SumInter[Sp][Sq], which is a set of ADSs that stores the sum of the

weights for different subsets of A[Sp : Sq] (a.k.a. known as intercluster arcs from Sp to

Sq). The ADSs are divided according to the sign and arc direction as described in Table

2.2.

Table 2.2: Description of the proposed ADSs

ADS Description
SumIntra+[Sp] =

∑
a∈A+∩A[Sp]wa Sum of positive weights within Sp

SumIntra−[Sp] =
∑

a∈A−∩A[Sp]wa Sum of negative weights within Sp
SumIntra+[Sp][i][←] =

∑
ji∈A+,j∈Sp\iwji Sum of positive weights from Sp \ i to i ∈ Sp

SumIntra+[Sp][i][→] =
∑

ij∈A+,j∈Sp\iwij Sum of positive weights from i ∈ Sp to Sp \ i
SumIntra−[Sp][i][←] =

∑
ji∈A−,j∈Sp\iwji Sum of negative weights from Sp \ i to i ∈ Sp

SumIntra−[Sp][i][→] =
∑

ij∈A−,j∈Sp\iwij Sum of negative weights from i ∈ Sp to Sp \ i
SumInter+[Sp][Sq] =

∑
a∈A+∩A[Sp:Sq ]wa Sum of positive weights from Sp to Sq

SumInter−[Sp][Sq] =
∑

a∈A−∩A[Sp:Sq ]wa Sum of negative weights from Sp to Sq
SumInter+[Sp][i][Sq][→] =

∑
ij∈A+,j∈Sq

wij Sum of positive weights from i ∈ Sp to Sq
SumInter+[Sp][i][Sq][←] =

∑
ji∈A+,j∈Sq

wji Sum of positive weights from Sq to i ∈ Sp
SumInter−[Sp][i][Sq][→] =

∑
ij∈A−,j∈Sq

wij Sum of negative weights from i ∈ Sp to Sq
SumInter−[Sp][i][Sq][←] =

∑
ji∈A−,j∈Sq

wji Sum of negative weights from Sq to i ∈ Sp

Given a feasible solution, the SumIntra and SumInter ADSs can be initially built

in O(l2n2) operations as described in Algorithm 2.

2.5.2 Neighborhood structures

ILSRCC uses three neighborhood structures in the local search, namely: Insertion, Swap

and Split. In the following, each of them is described in detail.

Insertion The Insertion neighborhood moves a vertex from a cluster to another one,

thus yielding O(l2n) possible neighbor solutions to be evaluated.

Algorithm 3 describes how an Insertion move is evaluated using the ADSs. This

algorithm receives as input the solution P along with its associated cost (relaxed im-

balance) RIP , and the information regarding the move, i.e. Sp, i ∈ Sp and Sq. At first,
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Algorithm 2: Computing the auxiliary data structures
1 Algorithm ComputeADSs(P )
2 All ADSs are initialized with 0.0
3

. Computing the SumIntra ADSs
4 for ∀p ∈ {1, 2, . . . , l} do
5 for ∀i, j ∈ Sp, i < j do
6 if (i, j) ∈ A+ then
7 SumIntra+[Sp] = SumIntra+[Sp] + wij

8 SumIntra+[Sp][i][→] = SumIntra+[Sp][i][→] + wij

9 SumIntra+[Sp][j][←] = SumIntra+[Sp][j][←] + wij

10 else if (i, j) ∈ A− then
11 SumIntra−[Sp] = SumIntra−[Sp] + wij

12 SumIntra−[Sp][i][→] = SumIntra−[Sp][i][→] + wij

13 SumIntra−[Sp][j][←] = SumIntra−[Sp][j][←] + wij

14 if (j, i) ∈ A+ then
15 SumIntra+[Sp] = SumIntra+[Sp] + wji

16 SumIntra+[Sp][j][→] = SumIntra+[Sp][j][→] + wji

17 SumIntra+[Sp][i][←] = SumIntra+[Sp][i][←] + wji

18 else if (j, i) ∈ A− then
19 SumIntra−[Sp] = SumIntra−[Sp] + wji

20 SumIntra−[Sp][j][→] = SumIntra−[Sp][j][→] + wji

21 SumIntra−[Sp][i][←] = SumIntra−[Sp][i][←] + wji

22

. Computing the SumInter ADSs
23 for ∀p, q ∈ {1, 2, . . . , l}, p 6= q do
24 for ∀i ∈ Sp,∀j ∈ Sq do
25 if (i, j) ∈ A+ then
26 SumInter+[Sp][Sq] = SumInter+[Sp][Sq] + wij

27 SumInter+[Sp][i][Sq][→] = SumInter+[Sp][i][Sq][→] + wij

28 SumInter+[Sq][j][Sp][←] = SumInter+[Sq][j][Sp][←] + wij

29 else if (i, j) ∈ A− then
30 SumInter−[Sp][Sq] = SumInter−[Sp][Sq] + wij

31 SumInter−[Sp][i][Sq][→] = SumInter−[Sp][i][Sq][→] + wij

32 SumInter−[Sq][j][Sp][←] = SumInter−[Sq][j][Sp][←] + wij

33 if (j, i) ∈ A+ then
34 SumInter+[Sq][Sp] = SumInter+[Sq][Sp] + wji

35 SumInter+[Sq][j][Sp][→] = SumInter+[Sq][j][Sp][→] + wji

36 SumInter+[Sp][i][Sq][←] = SumInter+[Sp][i][Sq][←] + wji

37 else if (j, i) ∈ A− then
38 SumInter−[Sq][Sp] = SumInter−[Sq][Sp] + wji

39 SumInter−[Sq][j][Sp][→] = SumInter−[Sq][j][Sp][→] + wji

40 SumInter−[Sp][i][Sq][←] = SumInter−[Sp][i][Sq][←] + wji
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auxiliary variables sum+
Sp
, sum−Sp

, sum+
Sp,Sq

and sum−Sp,Sq
temporarily store, in O(1) steps,

the sum of the weights associated to the move (lines 2–13). Next, the value of the objec-

tive function of the neighbor solution under evaluation, denoted in the algorithm as cost,

is partially obtained (lines 14–17) by recomputing the penalty decisions using function

UpdateCost (see lines 31–36). In the loop from lines 18 to 30, a similar procedure is

performed for the intercluster cases involving the other clusters and the clusters Sp and

Sq. Finally, cost is returned and the move yields an improvement if cost < RIP .

Because Algorithm 3 performs O(l) steps (due to the loop), finding the best im-

proving move requires O(l3n) operations. Moreover, when P is modified, the ADSs must

be updated. However, instead of recomputing the ADSs from scratch in O(l2n2) opera-

tions, one only needs to update the ADSs affected by the vertex that was involved in the

move and this can be performed in O(n) steps, as detailed in the Appendix A.

Figure 2.3 illustrates an example of an Insertion move. Note that the separation of

the weights for the adjacent arcs of vertex i in SumIntra clearly facilitates the evaluation

of the intercluster sums from S1 to S2 and from S2 to S1. Otherwise, it would be necessary

to perform O(n) operations to compute the weights separately.

(a) Clusters before Insertion (b) Clusters after Insertion

Figure 2.3: Example of an Insertion move. The incoming arcs of i are in dashed lines
to illustrate the separation of the weights in SumIntra and SumInter. For the sake of
simplicity, the signs were omitted and all arcs have unitary weight.

Swap

The Swap neighborhood exchanges two vertices between two different clusters,

which leads to O(l2n2) neighbor solutions if one intends to enumerate all possibilities. The

pseudocodes presented in the Appendix B describe how a Swap move can be evaluated in

O(l) steps using a similar rationale employed in the Insertion neighborhood. Finding the

best improving Swap move thus require O(l3n2) operations and the ADSs can be updated

in O(n) steps as also described in the supplementary material.

Figure 2.4 depicts an example of a swap move, highlighting the arcs connecting
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Algorithm 3: Using the ADSs to evaluate an insertion move
1 Algorithm CompCostInsert(P,RIP , Sp, i, Sq)

. update the sum of the intracluster weights of Sp

2 sum+
Sp

= SumIntra+[Sp] − SumIntra+[Sp][i][←] − SumIntra+[Sp][i][→]

3 sum−Sp
= SumIntra−[Sp] − SumIntra−[Sp][i][←]− SumIntra−[Sp][i][→]

. update the sum of the intracluster weights of Sq

4 sum+
Sq

= SumIntra+[Sq] + SumInter+[Sp][i][Sq][←] + SumInter+[Sp][i][Sq][→]

5 sum−Sq
= SumIntra−[Sq] + SumInter−[Sp][i][Sq][←] + SumInter−[Sp][i][Sq][→]

. update the sum of the intercluster weights from Sp to Sq

6 sum+
Sp,Sq

= SumInter+[Sp][Sq] − SumInter+[Sp][i][Sq][→]

7 sum−Sp,Sq
= SumInter−[Sp][Sq] − SumInter−[Sp][i][Sq][→]

8 sum+
Sp,Sq

= sum+
Sp,Sq

+ SumIntra+[Sp][i][←]

9 sum−Sp,Sq
= sum−Sp,Sq

+ SumIntra−[Sp][i][←]

. update the sum of the intercluster weights from Sq to Sp

10 sum+
Sq,Sp

= SumInter+[Sq][Sp] − SumInter+[Sp][i][Sq][←]

11 sum−Sq,Sp
= SumInter−[Sq][Sp] − SumInter−[Sp][i][Sq][←]

12 sum+
Sq,Sp

= sum+
Sq,Sp

+ SumIntra+[Sp][i][→]

13 sum−Sq,Sp
= sum−Sq,Sp

+ SumIntra−[Sp][i][→]

. Recompute the penalty decisions and updates RIP ′

14 cost = UpdateCost(RIP , Sp, Sp, sum
+
Sp
, sum−Sp

)

15 cost = UpdateCost(cost, Sq, Sq, sum
+
Sq
, sum−Sq

)

16 cost = UpdateCost(cost, Sp, Sq, sum
+
Sp,Sq

, sum−Sp,Sq
)

17 cost = UpdateCost(cost, Sq, Sp, sum
+
Sq,Sp

, sum−Sq,Sp
)

. update the sum of the intercluster weights involving others clusters
18 for Sr ∈ P \ {Sp, Sq} do
19 sum+

Sr,Sp
= SumInter+[Sr][Sp] − SumInter+[Sp][i][Sr][←]

20 sum−Sr,Sp
= SumInter−[Sr][Sp] − SumInter−[Sp][i][Sr][←]

21 sum+
Sr,Sq

= SumInter+[Sr][Sq] + SumInter+[Sp][i][Sr][←]

22 sum−Sr,Sq
= SumInter−[Sr][Sq] + SumInter−[Sp][i][Sr][←]

23 sum+
Sp,Sr

= SumInter+[Sp][Sr] − SumInter+[Sp][i][Sr][→]

24 sum−Sp,Sr
= SumInter−[Sp][Sr] − SumInter−[Sp][i][Sr][→]

25 sum+
Sq,Sr

= SumInter+[Sq][Sr] + SumInter+[Sp][i][Sr][→]

26 sum−Sq,Sr
= SumInter−[Sq][Sr] + SumInter−[Sp][i][Sr][→]

27 cost = UpdateCost(cost, Sr, Sp, sum
+
Sr,Sp

, sum−Sr,Sp
)

28 cost = UpdateCost(cost, Sr, Sq, sum
+
Sr,Sq

, sum−Sr,Sq
)

29 cost = UpdateCost(cost, Sp, Sr, sum
+
Sp,Sr

, sum−Sp,Sr
)

30 cost = UpdateCost(cost, Sq, Sr, sum
+
Sq,Sr

, sum−Sq,Sr
)

31 return cost

32 Procedure UpdateCost(cost, Sp, Sq, sum
+, sum−)

33 if Sp = Sq then
34 return cost− (min{SumIntra+[Sp], SumIntra−[Sp]} −min{sum+, sum−})
35 else
36 return cost− (min{SumInter+[Sp][Sq], SumInter−[Sp][Sq]} −min{sum+, sum−})

exchanged vertices, as they must be treated separately with respect to some ADSs.
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(a) Clusters before Swap (b) Clusters after Swap

Figure 2.4: Example of a Swap move. Arcs (i, j) and (j, i) are in dashed lines to illustrate
their importance w.r.t. the ADSs. For the sake of simplicity, the signs were omitted and
all arcs have unitary weight.

Split

The Split neighborhood splits a cluster into two, resulting in a total of O(ln)

neighbor solutions to be examined. Formally, given a cluster S = {v1, v2, . . . , v|S|} ∈ P
and an index c < |S|, the clusters S ′ = {v1, v2, . . . , vc} and S ′′ = {vc+1, . . . , v|S|} are

produced to replace S in P . Clearly, a Split move can only be applied when l < k. The

Pseudocodes presented in the Appendix C describes how a Split move can use previous

evaluations to speedup the next ones. The overall complexity of determining the best

improvement is O(ln2), as also described in the supplementary material. Because of

the considerable changes produced by the split move, all ADSs must be updated from

scratch using Algorithm 2. It is worth mentioning that implementing a specific procedure

to update the ADSs did not pay off the gains in CPU time. Moreover, note that a split

move never worsens a solution, since the imbalance decreases monotonically as k increases

[40]. Figure 2.5 shows an example of a split move considering a cluster with 5 vertices

that is split into two with 2 and 3 vertices, respectively.

++

(a) Cluster before Split

+

-

+

-

(b) Cluster after Split

Figure 2.5: Example of a Split move. For the sake of simplicity, all arcs have unitary
weight.

Complexity summary

A summary on the complexity of the neighborhoods is provided in Table 2.3. For

each neighborhood, we present its size, as well as the complexity of performing the move
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evaluation and the overall one using both the efficient best improvement (EBI) and the

naive best improvement (NBI) strategies. In EBI, the search for the best improvement

move is carried out as described in Section 2.5.2, whereas in NBI the objective function

must be computed from scratch (with no support of ADSs) after each move. We also

report the complexity of updating the ADSs in the case of EBI.

Table 2.3: Complexity summary of the neighborhoods considering both EBI and NBI
strategies

Neighborhood Size EBI NBI
Move eval. Overall Update Move eval. Overall

Insertion O(l2n) O(l) O(l3n) O(n) O(l2n2) O(l4n3)
Swap O(l2n2) O(l) O(l3n2) O(n) O(l2n2) O(l4n4)
Split O(ln) O(n) O(ln2) O(ln2) O(l2n2) O(l3n3)

2.5.3 Perturbation mechanisms

ILSRCC employs three diversification mechanisms to perturb local optimal solutions,

namely: Insertion, Merge and Sign inversion. The first one simply performs random

insertion moves. In the second, given two clusters S1 and S2 chosen at random, one

merges them to form a new cluster S3, that is, S3 = S1 ∪ S2. The latter perturbation is a

novel procedure that considers some RCC specific features, as described in the following.

The proposed Sign inversion mechanism enforces the penalized sign in one of the

decisions to be changed. More precisely, it modifies the solution in such a way that one

of the intracluster or intercluster imbalances becomes defined by the opposite sign. The

procedure randomly selects which case (i.e., intracluster or intercluster) is going to be

considered. Basically, this is achieved by removing vertices that contribute with the non-

penalized sign until the inversion happens. In what follows, we will explain the procedure

used to invert an intracluster decision.

Let + be the non-penalized sign for the intracluster imbalance of Sp (this also

applies for sign −). Formally, the contribution of a vertex i ∈ Sp is given by Equation

(2.20).

∆+(i) = Ω+({i}, Sp) + Ω+(Sp, {i})− Ω−({i}, Sp)− Ω−(Sp, {i}) (2.20)

At first, the vertices for which all incident arcs (indegree and outdegree arcs) are positive

are removed in non-increasing order of ∆+. The value of ∆+ must be updated after each

removal. If this does not suffice, the remaining vertices with ∆+ > 0 are removed using
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the same sorting criterion. Removals are performed while (i) Ω+(Sp, Sp) ≥ Ω−(Sp, Sp),

(ii) there are vertices with ∆+ > 0 and (iii) |Sp| > 2. The removed vertices are randomly

added to the other clusters. After applying the perturbation, if Ω+(Sp, Sp) ≥ Ω−(Sp, Sp)

(i.e. the sign was not inverted), then the removals are undone and the solution returns

to the initial state. Figure 2.6 illustrates an example involving the application of the sign

inversion mechanism.

The intercluster sign invertion, e.g., from Sp to Sq, may be easily derived by con-

sidering only the arcs A[Sp : Sq] that determine the vertices to be removed from Sp and

by changing the condition (iii) to |Sp| > 1. Note that no vertices are removed from Sq

but it may receive vertices from Sp.

 

At �rst, the vertices with 

all incident arcs belonging to

the non-penalized signal 

are removed

 
Only vertices 5 and 6 satisfy

the condition. As                        ,

vertex 6 should be removed.  

 

Note that the signal cannot

be inverted yet.

 

 

Now one should remove 

vertex 5.

 

The �rst phase did not succeed

to invert the signal. One or more

vertices should be removed.

Because                           , 

any of them can be removed. 

In this case, vertex 4 will be 

removed.  

 

The signal can 

now be inverted
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Figure 2.6: An example of sign inversion for an intracluster imbalance. For the sake of
simplicity, all arcs have unitary weight.

This perturbation allows for exploring some particular regions of the search space

that is difficult to be achieved by only using the other mechanisms, including the ran-

domized construction procedure, mainly when sign distribution on arcs is unbalanced and

small changes are not likely to invert the sign.

Each time the function Perturb is called, a perturbation mechanism is randomly

chosen. The selected perturbation then applies from two up to maxPert moves. The

number of moves is also chosen at random. If l = 2, Merge is not an eligible perturbation.

Therefore, when Sign inversion is chosen and no change could be performed, one of the

other two remaining mechanisms (or Insertion if l = 2) is randomly selected.

2.5.4 Differences between ILSRCC and ILS [76]

Table 2.4 presents the main differences between ILSRCC and the ILS by Levorato et al.

[76] which was developed for the SRCC.
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Table 2.4: Differences between ILSRCC and ILS [76]

ILSRCC ILS [76]
Initial solution Random Greedy randomized procedure

Local search Insertion, Swap and Split Insertion
Best improvement strategy First improvement strategy

Perturbation Insertion, Merge and Sign Inversion Insertion

It is worth mentioning that we tried to incorporate the constructive procedure

implemented in Levorato et al. [76] into our algorithm, but the experiments reported in

Section 2.6.3 indicated that its inclusion did not seem to significantly affect the overall

performance of ILSRCC both in terms of solution quality and CPU time.

2.6 Computational results

All algorithms have been implemented in C++ and executed using a single thread on a

PC Intel Core i7-2600 with 3.40 GHz and 16 GB of RAM running Ubuntu 16.04 LTS (64

bits). For results based on ILP formulations, CPLEX 12.7 is used as a MIP solver (single

thread) with all other parameters set to their default values.

2.6.1 Benchmark instances

Regarding the benchmark instances used in our testing, we first present the small-size

instances from the literature. Next, we introduce the newly proposed RCC instances and,

finally, we describe the existing SRCC instances.

Small-size instances from the literature

The small-size instances considered here were proposed in different works and to-

gether they compose a set of nine signed digraphs described as follows.

• House instances — In 1952, Lemann and Solomon [72] carried out a sociometric

study with students living in three different dormitories (denoted as House A, House

B and House C) and obtained four relationship networks per dormitory considering

the following information: date, friend, roommate and weekend. Doreian [38] later

summed the arc weights of the signed networks associated with each dormitory so

as to generate another three networks: House A Sum, House B Sum and House C

Sum. We have considered these last three in our experiments.
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• Monastery instances — In 1868, Sampson [101] studied, in different periods of time,

groups of young or novice postulants of a monastery, cataloging data for four types

of relationships: affect, esteem, influence, and sanction. From this data, networks

were generated for each period of time and type of relationship. Among them, we

considered those associated with the relationship affect for different periods of time,

namely MonkT2, MonkT3, and MonkT4. In addition, we considered the network

Mont4 Sum, generated in Doreian [38] by summing up the arc weights of the four

types of relationships in period T4.

• McKinney instance — This signed digraph was built by Brusco et al. [19] from the

data collected by McKinney [81] in a study about the relationship between children

in a classroom. In such study, children were submitted to a test in which they had

to choose between the “willing to serve with other children” (labeled as +1), “not

being willing to serve” (labeled as -1) and "indifferent" (labeled as 0), defining the

class relationship digraph.

• NewComb instance — In 1961, Newcomb [84] conducted a well-known sociometric

study with University students. A signed digraph was generated in Doreian and

Mrvar [40] by slightly modifying the data from this study.

The main characteristics of the aforementioned instances are described in Table

2.5, where d and d− indicate the digraph density (given by d = |A|/(|V |2 − |V |)) and

the percentage of negative arcs (given by d− = |A−|/|A|), respectively. For the sake of

convenience, we have specified an alias (in parentheses) for each instance.

Table 2.5: Small-size instance attributes

Name |V | d d− Author(s)
House A Sum (HAS) 21 0.50 0.56 Doreian [38] and Lemann and Solomon [72]
House B Sum (HBS) 17 0.59 0.52 Doreian [38] and Lemann and Solomon [72]
House C Sum (HCS) 20 0.52 0.53 Doreian [38] and Lemann and Solomon [72]

MonkT2 (MT2) 18 0.34 0.47 Sampson [101]
MonkT3 (MT3) 18 0.34 0.46 Sampson [101]
MonkT4 (MT4) 18 0.34 0.46 Sampson [101]

MonkT4 Sum (MT4S) 18 0.50 0.49 Doreian [38] and Sampson [101]
McKinney (MK) 18 0.34 0.10 Brusco et al. [19] and McKinney [81]
NewComb (NC) 17 0.44 0.43 Doreian and Mrvar [40] and Newcomb [84]

Random instances
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In order to test the ILS implementations on larger instances, we have generated 48

new signed digraphs with different values of |V |, d and d−. Let V|V | = {100, 200, 400, 600},
Vd = {0.1, 0.2, 0.5, 0.8} and Vd− = {0.1, 0.3, 0.5} be the set of values associated with |V |,
d and d−, respectively. For each setting obtained by the Cartesian product V|V |×Vd×Vd−
(represented by a 3-tuple), we have randomly built a signed digraph. Note that larger

values of d− are not used because they are equivalent with respect to the desired sign

distribution (e.g., if d− = 0.7, then the percentage of positive arcs will be 0.3). A RCC

instance consists of a digraph and a value for the parameter k (maximum number of

clusters). For each generated digraph, we consider one instance for each value of k in

{3, 5, 7, 9}. Therefore, this benchmark is composed of 192 instances.

The newly generated digraphs are available at http://www.ic.uff.br/~yuri/

files/rcc_random.zip.

Symmetric RCC instances

We also considered three sets of symmetric RCC benchmark instances, namely:

• UNGA instances —Generated by Levorato et al. [75] and composed of 63 undirected

graphs that were built from the voting data of the United Nations General Assembly

(UNGA) annual meetings between 1946 and 2008. These networks are weighted

versions of UNGA signed digraphs created by Figueiredo and Frota [46].

• Slashdot instances — Created by Levorato [73] from subgraphs of the social network

Slashdot Zoo containing 200 to 10000 vertices. Such subgraphs were transformed

into undirected graphs. Levorato [73] performed experiments with a parallel heuris-

tic for the SRCC. Since we are specifically interested in comparing the performance

of sequential implementations, it was thought advisable to consider the instances

with up to 2000 vertices.

• BR Congress instances — Set of undirected graphs generated by Levorato and

Frota [74] from voting sessions of the lower house of Brazilian National Congress.

They created two graphs per year between 2011 and 2016, resulting in a total of 12

instances.

The reader is referred to Figueiredo and Frota [46], Levorato [73], Levorato and

Frota [74], and Levorato et al. [75] for a more detailed description.

http://www.ic.uff.br/~yuri/files/rcc_random.zip
http://www.ic.uff.br/~yuri/files/rcc_random.zip
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2.6.2 Results for the ILP formulations

Tables 2.6, 2.7 and 2.8 present the results obtained by the formulation proposed in

Figueiredo and Moura [48], as well as those determined by F1 and F2. Column z repre-

sents the relaxed imbalance, given by RI(P ∗), where P ∗ is the solution (optimal or not)

found by the corresponding formulation, gap informs percentage gaps calculated between

best integer solutions found and final lower bounds (LB) as described in Equation (2.21), t

indicates the CPU time in seconds ("-" means the instance was not solved in the time limit

set), and nodes is the number of nodes that were solved during the search. Regarding the

ILP formulation proposed by Figueiredo and Moura [48], we report the original results

which were found using XPRESS 21.01.00 and also those determined by CPLEX 12.7 in or-

der to perform a fair comparison. Since Figueiredo and Moura [48] carried out their experi-

ments using a different machine (Intel Core 2 Duo 2.10 GHz), we scaled the XPRESS CPU

times by a factor of 0.48 according to the single-thread ratings reported in https://www.

cpubenchmark.net/compare/Intel-Core2-Duo-T6500-vs-Intel-i7-2600/995vs1. A

time limit of 3600 seconds was imposed for each run.

gap = 100× (BestInteger − LB)/BestInteger (2.21)

We followed the same procedure adopted in Figueiredo and Moura [48] in our

testing. For each digraph, we start the experiments with k = 2. If the instance is solved

to optimality, we then increase the value of k by one unit and attempt to solve the problem

again (forward phase). If an optimal solution with relaxed imbalance 0 is found, we then

interrupt the experiments for that particular digraph since this solution is also optimal

for instances with larger values of k. When an instance is not solved to optimality, a

similar procedure is carried out to solve instances from k = n − 1, where the value of

k is decreased by one unit after each successful optimization (backward phase). In the

backward phase, we use the value of the optimal solution found in the previous run (i.e.,

for k+ 1) as a lower bound for the instance with k. The backward phase is finished when

an instance is not solved to optimality or when the current instance was solved during

the forward phase.

https://www.cpubenchmark.net/compare/Intel-Core2-Duo-T6500-vs-Intel-i7-2600/995vs1
https://www.cpubenchmark.net/compare/Intel-Core2-Duo-T6500-vs-Intel-i7-2600/995vs1
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Table 2.6: Results obtained for instances House A Sum, House B Sum and House C Sum.

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

HAS

2 96 0 28 1579 96 57.3 – 14874 96 0 1 688 96 0 22 1362

3 57 78.9 – 31737 50 0 19 10921 50 0 2911 103801

4 31 0 92 31468 31 0 3115 118591

5 27 0 824 116453 27 78.2 – 94578

6 21 0 1931 185902

7 18 29.7 – 270282

10 6 33.3 – 99450 6 33.3 – 50536

11 4 0 1415 34689 4 0 501 8484

12 1 0 190 5535 1 0 73 1544

13 12 83.3 – 20945 0 0 109 2396 0 0 70 1240

14 2a 0 746 16703 0 0 61 1380 0 0 37 730

15 0 0 1721 30208 0 0 60 831 0 0 7 100

16 0 0 558 7358 0 0 18 320 0 0 9 210

17 0 0 288 2319 6 100 – 2499 0 0 91 1300 0 0 19 592

18 0 0 288 2634 0 0 921 1455 0 0 19 234 0 0 10 248

19 0 0 11 1 0 0 618 1180 0 0 1 1 0 0 10 260

20 0 0 < 1 1 0 0 408 1139 0 0 82 671 0 0 10 260

HBS

2 84 0 11 1115 84 69.6 – 28015 84 0 < 1 747 84 0 10 1381

3 75 47.5 – 9064 69 0 56 61150 69 0 867 99990

4 56 0 461 203765 56 39.3 – 286043

5 43 0 2161 514692

6 33 0 2595 383348

7 29 44.1 – 409051

9 15 26.7 – 138796 15 26.7 – 102548

10 11 0 2536 97956 11 0 2186 55691

11 8 0 592 17562 8 0 642 20574

12 5 60 – 80375 5 0 297 8618 5 0 185 6802

13 2 0 343 13538 2 0 67 2056 2 0 11 883

14 1 0 134 3761 1 0 14 631 1 0 9 690

15 0 0 41 584 0 0 28 1026 0 0 2 1

16 0 0 < 1 1 0 0 18 942 0 0 2 1
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Table 2.6 – Continued from previous page

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

HCS

2 64 0 12 615 64 0 1348 7266 64 0 1 363 64 0 8 555

3 60 83 – 42981 96 100 – 1323 53 0 27 19422 53 0 417 25068

4 43 0 341 137992 44 49.1 – 112782

5 35 0 2348 396810

6 31 44.2 – 344290

12 8 37.5 – 73495 8 37.5 – 81225

13 5 0 2340 37753 5 0 1961 40391

14 3 0 1301 18368 3 0 476 9800

15 3 66.7 – 35179 2 0 369 4734 2 0 84 1900

16 1 0 1007 12517 5 100 – 2556 1 0 103 2270 1 0 16 669

17 0 0 57 383 0 0 304 500 0 0 34 557 0 0 2 1

18 0 0 46 153 0 0 255 500 0 0 23 433 0 0 2 1

19 0 0 < 1 1 0 0 261 500 0 0 59 1024 0 0 2 1

aPossible typo

Table 2.7: Results obtained for instances MonkT2, MonkT3, MonkT4, and MonkT4 Sum.

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

MT2

2 43 0 6 733 43 0 37 1343 43 0 < 1 818 43 0 2 534

3 25 0 1074 70771 27 92.6 – 11388 25 0 5 7049 25 0 42 6271

4 20 85 – 121561 13 0 9 6998 13 0 212 26725

5 8 0 15 7077 8 0 116 11601

6 4 0 11 3765 4 0 76 8493

7 14 92.9 – 12097 2 0 4 1177 2 0 6 718

8 1 0 509 2497 1 0 2 236 1 0 4 488

9 0 0 666 3835 0 0 1 252 0 0 4 720

10 0 0 128 1484

11 2 100 – 176063 0 0 169 1781

12 0 0 1137 102937 0 0 80 1578

13 0 0 107 8881 0 0 19 278

14 0 0 23 593 0 0 54 1438

15 0 0 7 69 0 0 62 1543

16 0 0 3 1 0 0 61 1597

17 0 0 < 1 1 0 0 40 1082



2.6 Computational results 46

Table 2.7 – Continued from previous page

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

MT3

2 32 0 3 243 32 0 30 1404 32 0 < 1 126 32 0 2 109

3 21 0 93 4765 28 92.9 – 8924 21 0 1 876 21 0 7 1964

4 13 0 1089 54227 13 0 2 1835 13 0 13 2690

5 8 0 1596 85056 8 0 7 3460 8 0 10 2013

6 7 71.4 – 100613 6 0 4 1840 6 0 34 3979

7 5 60 – 140597 4 50 – 21250 4 0 4 1551 4 0 9 1749

8 2 0 1362 6725 2 0 675 6642 2 0 2 517 2 0 5 739

9 1 0 210 11577 1 0 56 1610 1 0 1 171 1 0 3 290

10 0 0 567 44984 0 0 50 1090 0 0 < 1 1 0 0 2 402

11 0 0 120 8439 0 0 32 989

12 0 0 249 21543 0 0 7 150

13 0 0 49 5335 0 0 7 143

14 0 0 24 1120 0 0 8 174

15 0 0 14 455 0 0 8 197

16 0 0 9 119 0 0 8 197

17 0 0 < 1 1 0 0 8 197

MT4

2 25 0 2 149 25 0 11 206 25 0 < 1 194 25 0 1 99

3 21 0 57 3381 21 75.2 – 12524 21 0 1 923 21 0 6 1459

4 10 0 270 13945 10 0 1 706 10 0 9 1864

5 6 0 702 42782 6 0 3 1283 6 0 64 6038

6 4 0 1148 68659 5 80 – 7519 4 0 2 719 4 0 47 4389

7 1 0 328 19452 1 0 141 1370 1 0 1 308 1 0 3 476

8 0 0 199 12469 0 0 31 691 0 0 1 61 0 0 2 331

9 0 0 66 537

10 0 0 35 756

11 0 0 4 1

12 0 0 11 1

13 0 0 11 1

14 0 0 9 1

15 0 0 8 1

16 0 0 9 1

17 0 0 8 1
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Table 2.7 – Continued from previous page

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

MT4S

2 86 0 7 347 86 0 66 518 86 0 < 1 217 86 0 2 229

3 54 0 739 25379 85 98.8 – 2941 54 0 1 988 54 0 80 5595

4 43 72.2 – 7483 36 0 8 3340 36 0 298 21034

5 25 0 23 6128 25 0 300 17832

6 16 0 42 7039 16 0 225 11659

7 12 0 41 5561 12 0 131 5068

8 9 66.7 – 9104 8 0 18 2281 8 0 58 2232

9 6 100 – 61861 3 0 3407 5188 3 0 7 590 3 0 8 525

10 2 0 1239 51491 2 0 3498 5701 2 0 3 172 2 0 6 372

11 0 0 835 25094 0 0 79 470 0 0 1 1 0 0 8 602

12 0 0 444 11838 0 0 126 935

13 0 0 28 240 0 0 108 935

14 0 0 144 3389 0 0 18 1

15 0 0 3 1 0 0 19 1

16 0 0 < 1 1 0 0 19 1

17 0 0 < 1 1 0 0 18 1
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Table 2.8: Results obtained for instances McKinney and NewComb.

Instance k

Literature ILP formulation F1 F2

XPRESS CPLEX
z gap t nodes z gap t nodes

z gap t nodes z gap t nodes

MK

2 8 0 57 6531 8 100 – 7559 8 0 < 1 28 8 0 112 2802

3 6 100 – 43762 2 0 < 1 197 2 0 227 7766

4 0 0 < 1 1 0 0 50 1567

13 2 100 – 1432

14 0 0 57 1

15 0 0 59 1

16 2 100 – 33562 0 0 53 1

17 0 0 39 169 0 0 53 1

18 0 0 1 1 0 0 52 1

19 0 0 9 1 0 0 53 1

20 0 0 < 1 1 0 0 55 1

21 0 0 8 1 0 0 58 1

22 0 0 1 1 0 0 55 1

23 0 0 2 1 0 0 60 1

24 0 0 3 1 0 0 58 1

25 0 0 < 1 1 0 0 53 1

26 0 0 46 49 0 0 57 1

27 0 0 1 1 0 0 59 1

28 0 0 < 1 1 0 0 54 1

NC

2 10 0 2 167 10 0 34 468 10 0 < 1 66 10 0 1 101

3 7 0 228 9869 8 100 – 4988 7 0 1 1193 7 0 43 6188

4 5 34.6 – 90604 5 0 7 5570 5 0 83 10538

5 6 83.3 – 9349 3 0 11 4690 3 0 80 8054

6 1 0 1299 6295 1 0 1 331 1 0 35 3561

7 0 0 2646 7542 0 0 3 1093 0 0 12 1177

8 1 100 – 146619 0 0 846 2861

9 0 0 83 9807 0 0 594 2624

10 0 0 59 5969 0 0 500 2276

11 0 0 13 405 0 0 46 1005

12 0 0 18 162 0 0 142 1815

13 0 0 4 1 0 0 294 2075

14 0 0 < 1 1 0 0 116 1172

15 0 0 < 1 1 0 0 85 1505

16 0 0 < 1 1 0 0 64 1505

The results obtained show that F1 outperforms the other formulations with respect

to the number of optimal solutions achieved. When a formulation obtained an optimal

solution with relaxed imbalance 0 for a given value of k, then we assume that all optima
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were found for executions with larger values of k (e.g., F1 and F2 solved instances from

MT2 to optimality). While this formulation found 38, 64, 27, 15 optimal solutions for

each group (House, Monastery, McKinney, NewComb), respectively, F2 found 29, 64, 27,

15, respectively, and the formulation by Figueiredo and Moura [48] obtained 18, 48, 13, 10

using XPRESS, and 7, 44, 15, 12 using CPLEX, respectively. Overall, a total of 40 new

optimal solutions (counting only once the optimal solutions with relaxed imbalance 0 for

each digraph) were found and all instances of 6 of the 9 groups were solved to optimality.

In addition, it can be observed that F1 is generally faster, but it is outrun by F2

on instances HAS, HBS and HCS for larger values of k. Note that for the latter two, F2

solves some instances at the root node. The formulation by Figueiredo and Moura [48] is

clearly slower than the proposed ones. In general, more nodes are solved when running

such formulation, but in some cases, F2 is the one to solve more nodes.

The results also demonstrate that RCC has the expected behavior for k-partition

problems, where problems with k close to 2 and n−1 are easier than those problems with

k close to n/2. This can be explained by the number of possible partitions, which is given

by the Stirling number of the second type [18] as described in Equation (2.22).

S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn (2.22)

Finally, we report in Table 2.9 a comparison between the optimal solutions for RCC

and CC. In addition to comparing I(P ) with RI(P ) and the correction δ = I(P )−RI(P )

obtained with RCC (recall that RCC was proposed in order to correct wrong penalties

in CC), we also decompose the total imbalance into minimum, average, and maximum

penalties for intracluster and intercluster cases. With the exception of one instance (MT4

with k = 3), a positive correction is obtained by RCC. It is worth mentioning that most

of the imbalance (and hence the correction) occurs in intercluster cases.

2.6.3 ILS implementations

We used the same values adopted in Subramanian and Farias [104] for the main parameters

of ILSRCC, that is, IR = 20 and IILS = min{100, 4 × n}. The only difference is that we

imposed a minimum value of 100 for the latter as in Silva et al. [103]. Moreover, we

set maxPert = 6 after conducting some experiments (see Section 2.6.3). The algorithms

were executed 10 times on each instance in all experiments. Hereafter, the percentage

gap of a solution P ′ is computed as gap = 100× (f(P ′)− f(Pbest))/f(P ′), such that f is



2.6 Computational results 50

Table 2.9: Comparison of optimal solutions for RCC and CC in small instances.

Name k

I(P ) RI(P )

δ
total

intra inter
total

intra inter
min avg max min avg max min avg max min avg max

HAS 4 64 0 4.8 16 0 7.5 19 31 0 2.3 5 0 1.8 5 33
HBS 4 81 0 3.5 14 1 11.2 23 56 0 5.8 11 0 2.8 10 25
HCS 3 59 0 5.3 10 4 14.3 27 53 3 5.7 8 3 6.0 10 6
MT2 3 35 0 0.7 1 3 11.0 16 25 0 0.3 1 1 4.0 7 10
MT3 3 22 0 0.3 1 4 7.0 11 21 0 1.0 3 0 3.0 7 1
MT4 3 21 0 1.7 5 3 5.3 9 21 0 1.7 5 0 2.7 6 0
MT4S 3 62 1 3.0 7 12 17.7 25 54 1 3.0 7 2 7.5 15 8
MK 2 12 0 3.0 6 6 6.0 6 8 0 2.0 4 2 2.0 2 4
NC 4 20 0 1.3 5 0 2.5 7 5 0 0.5 1 0 0.3 1 15

the objective function (i.e., f(P ) = RI(P ) for RCC and f(P ) = SRI(P ) for SRCC) and

Pbest is the best solution among all solutions found by the ILSRCC and the ILS of Levorato

et al. [76].

Impact of the different components of the algorithm

We evaluate the ILSRCC concerning the impact of: (i) using the greedy construc-

tive algorithm by Levorato et al. [76]; (ii) the parameter maxPert; (iii) the neighborhood

structures; (iv) perturbation mechanisms. To this end, we conducted experiments involv-

ing all 100-vertex random instances.

At first, we assess the impact of replacing the completely random construction

(line 5 in Algorithm 1) with the greedy construction of Levorato et al. [76]. Table 2.10

shows the average gaps and CPU times obtained by the two versions of ILSRCC (using

two different constructive procedures) for different values of k. It can be seen that none

of the two versions are significantly superior than the other w.r.t. both criteria. The only

exception occurs when k = 9, where using the completely random construction produces a

superior average gap and CPU time. In general, using the greedy construction in ILSRCC
leads to an improvement of only 0.01% in terms of average gap, and an increase of around

3% on the average CPU time. Therefore, it is reasonable to conclude that the effort to

implement a more sophisticated constructive procedure may not be worthwhile for the

RCC when the algorithm contains an effective local search.

The impact of varying the parameter maxPert is illustrated in Figure 2.7, where

values between 4 and 8 are considered to compare different versions of ILSRCC. The results

show that the values 5 and 7 are dominated by the remaining ones; the value 4 produces
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Table 2.10: Comparison of two constructive heuristics in ILSRCC for different values of k.

Construction k Avg. gap (%) Avg. time (s)

Greedy [76]

3 0.14 7.09
5 0.92 13.76
7 1.77 19.78
9 2.84 24.20

Mean 1.42 16.21

Random

3 0.17 6.83
5 1.03 13.36
7 1.96 19.20
9 2.56 23.31

Mean 1.43 15.68

the faster execution but with a poor average gap, whereas the value 8 achieves the best

average gap but the worst CPU time. Therefore, we decided to use maxPert = 6 because

it yields a good balance between solution quality and CPU time.
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Figure 2.7: Impact of the parameter maxPert. Each point represents a configuration and
points with no fill represent those dominated by one or more settings.

We assess the impact of the neighborhood operations by considering 7 different

configurations. In this case, we consider IR = 20 and IILS = 1 (i.e. only one iteration of

the RVND procedure is executed) and we measure the percentage improvement over the

initial solution. The average results are shown in Figure 2.8. We can observe that the

configurations that yields the most promising results are those 5 and 7. The difference

between both settings is that the latter includes the neighborhood Swap, which led to a

slight improvement despite the additional CPU time.
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Figure 2.8: Impact of the neighborhood operations for all 100-vertex random instances.
Each point represents a configuration and points with no fill represent those dominated
by one or more settings. N1, N2 and N3 denote neighborhoods Insert, Swap and Split,
respectively.

In order to measure the impact of the perturbation mechanisms, we run ILSRCC
using the default values of the parameters and store the percentage improvement over the

best solution found in the previous testing for each instance. To choose an interesting

configuration, we perform experiments considering two scenarios: with and without the

neighborhood swap. The average results obtained are depicted in Figure 2.9. The best

results are obtained by settings 6 and 7 for both scenarios. The scenario that considered

Swap achieves better improvements at the expense of CPU time. Although not reported

in Figure 2.9, the settings tested in the second scenario (i.e., the one including Swap)

systematically found more best solutions than their corresponding counterpart in the first

scenario. We, therefore, decided to select configuration 7 of the second scenario because

it appears to offer an interesting compromise between solution quality and CPU time.

Comparison with the literature

The implementation by Levorato et al. [76] was originally devised for the symmetric

version of the problem. Therefore, we had to slightly modify the source code, which was

provided by the authors, to cope with the asymmetric case. We will refer to this method

as ILSadapt.

Concerning the small-size instances considered in Section 2.6.1, it was observed

that ILSRCC and ILSadapt are capable of consistently finding the optimal solutions in a
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Figure 2.9: Impact of the perturbation operations. Each point represents a configuration
and points with no fill represent those dominated by one or more settings. P1, P2 and
P3 denote perturbations Insert, Split and Sign Inversion, respectively. Part (a) does not
include the neighborhood Swap whereas part (b) does.

fraction of a second.

Table 2.11 shows the aggregate results obtained by the ILS implementations on

the set of random instances. For each digraph, we report the minimum, average and

maximum values of the average percentage gaps (there is an average gap for each value of

k ∈ {3, 5, 7, 9}), as well as the average CPU time in seconds. Detailed results are reported

in Appendix D. Moreover, for an appropriate comparison, we have imposed the average

CPU time obtained by ILSRCC, for each instance, as a stopping criterion for ILSadapt.

Table 2.11: Aggregate results for each digraph. Each row reports statistics on the average
gaps obtained for the group of four instances (one for each value of k ∈ {3, 5, 7, 9}).

|V | d d−
ILSRCC ILSadapt

tavg
min avg max min avg max

100 0.1 0.1 0.82 5.02 11.00 3.23 17.65 34.73 8.99

100 0.1 0.3 0.02 1.57 2.49 1.18 8.17 16.24 12.60

100 0.1 0.5 0.02 2.27 4.59 0.76 6.29 10.99 13.25

100 0.2 0.1 0.69 1.35 1.66 1.62 4.92 7.46 10.57

100 0.2 0.3 0.00 0.71 1.36 0.10 2.78 4.56 15.64

100 0.2 0.5 0.11 1.14 2.67 0.62 3.08 5.73 15.19

100 0.5 0.1 0.12 0.35 0.69 0.35 1.33 2.53 12.23

100 0.5 0.3 0.00 0.21 0.53 0.00 0.93 1.98 21.70

100 0.5 0.5 0.15 0.43 0.74 0.27 1.27 2.17 20.98

100 0.8 0.1 0.00 0.11 0.28 0.22 0.95 1.88 8.91

100 0.8 0.3 0.05 0.22 0.37 0.03 0.53 1.08 23.18
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Table 2.11 – Continued from previous page

|V | d d−
ILSRCC ILSadapt

tavg
min avg max min avg max

100 0.8 0.5 0.00 0.21 0.34 0.29 1.10 1.81 24.85

200 0.1 0.1 0.52 0.87 1.13 1.23 6.24 13.75 66.34

200 0.1 0.3 0.03 0.81 1.29 0.94 2.75 3.65 97.29

200 0.1 0.5 0.39 0.60 0.88 1.03 3.13 5.10 91.26

200 0.2 0.1 0.15 0.73 1.40 0.37 2.34 4.23 73.44

200 0.2 0.3 0.16 0.28 0.41 0.18 1.35 2.12 116.49

200 0.2 0.5 0.19 0.44 0.67 0.73 1.47 2.01 102.96

200 0.5 0.1 0.04 0.20 0.32 0.22 0.78 1.11 66.67

200 0.5 0.3 0.05 0.13 0.21 0.07 0.52 0.81 155.52

200 0.5 0.5 0.05 0.21 0.33 0.34 0.75 1.05 142.09

200 0.8 0.1 0.01 0.11 0.19 0.12 0.52 0.84 44.26

200 0.8 0.3 0.01 0.15 0.35 0.14 0.50 0.83 161.70

200 0.8 0.5 0.04 0.19 0.28 0.52 0.85 1.47 165.27

400 0.1 0.1 0.34 0.56 0.73 0.34 1.01 1.49 508.86

400 0.1 0.3 0.16 0.31 0.57 0.09 0.84 1.45 870.00

400 0.1 0.5 0.09 0.42 0.71 0.32 1.26 2.56 699.45

400 0.2 0.1 0.07 0.17 0.20 0.12 0.38 0.65 394.25

400 0.2 0.3 0.04 0.17 0.26 0.08 0.81 1.83 988.04

400 0.2 0.5 0.11 0.23 0.32 0.26 0.59 0.76 778.40

400 0.5 0.1 0.05 0.10 0.17 0.14 0.26 0.41 312.75

400 0.5 0.3 0.03 0.06 0.07 0.06 0.14 0.24 978.23

400 0.5 0.5 0.08 0.12 0.18 0.21 0.47 0.92 1093.10

400 0.8 0.1 0.02 0.05 0.08 0.07 0.13 0.20 183.53

400 0.8 0.3 0.02 0.05 0.07 0.12 0.15 0.19 881.24

400 0.8 0.5 0.06 0.11 0.16 0.13 0.30 0.40 1304.41

600 0.1 0.1 0.27 0.40 0.52 0.20 0.65 1.03 1338.98

600 0.1 0.3 0.14 0.21 0.35 0.18 0.69 1.27 3173.07

600 0.1 0.5 0.15 0.29 0.50 0.94 1.43 1.94 2470.35

600 0.2 0.1 0.12 0.15 0.20 0.26 0.32 0.39 1034.79

600 0.2 0.3 0.06 0.11 0.14 0.10 0.42 0.76 3313.68

600 0.2 0.5 0.14 0.22 0.27 0.38 0.56 0.73 2824.27

600 0.5 0.1 0.03 0.07 0.10 0.06 0.16 0.25 782.57

600 0.5 0.3 0.02 0.05 0.08 0.05 0.12 0.17 2822.82

600 0.5 0.5 0.04 0.06 0.11 0.21 0.30 0.36 3866.90

600 0.8 0.1 0.02 0.04 0.06 0.03 0.06 0.10 474.08
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Table 2.11 – Continued from previous page

|V | d d−
ILSRCC ILSadapt

tavg
min avg max min avg max

600 0.8 0.3 0.02 0.05 0.06 0.04 0.08 0.11 2170.92

600 0.8 0.5 0.05 0.09 0.13 0.18 0.30 0.40 4681.35

The results obtained show that, on average, ILSRCC clearly outperforms ILSadapt.

When evaluating the performance of each individual instance, the ILSRCC found the best

solution (one with a gap of 0%) for 179 instances (93.2% of the cases), where among

them 166 (86.5% of the cases) are strictly better than the best ones achieved by ILSadapt.

Furthermore, we can also see that the average runtime increases with the value of d−.

Figure 2.10 illustrates how the average gap between the average solution and the

best known solution varies according to different values of d, d− and k. We can observe

that the instances appear to become easier when the value of d increases, as depicted

in Figure 2.10a. Furthermore, from Figure 2.10b, it is visible that the instances with a

smaller value of d− appear to be harder. In fact, a huge difference in the number of arcs

for each sign and the low number of total arcs seems to make the RCC decisions more

tricky, perhaps because there are fewer tie situations (e.g. when both signals produce the

same penalty in a cluster). Finally, larger values of k seem to increase the difficulty of

the instances, as clearly shown in Figure 2.10c.

In Appendix D, we also report many improved upper bounds w.r.t those obtained

in the experiment reported in Table 2.11. These improved solutions were found while

experimenting with different settings of the algorithm, and also during the preliminary

experiments described in Section 2.6.3.

Impact of the ADSs on the runtime performance

This section examines the average runtime performance of ILSRCC when incor-

porating the ADSs for efficiently computing the relaxed imbalance value of a neighbor

solution during the local search.

Figure 2.11 depicts the CPU time of the versions of the algorithm using EBI and

NBI, respectively, in the log scale. In Figure 2.11a, we illustrate the comparison for the

small-size Monastery instances. Despite the considerable runtime difference, it can be

seen that using NBI, i.e., the one that does not make use of ADSs to perform move
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Figure 2.10: Average gap performance according to characteristics of the instance.
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evaluation, is still doable in practice, as the average CPU time spent by the method is

fairly acceptable. However, for the 100-vertex instances, the difference is astonishing, and

visibly illustrates the benefits of incorporating the ADSs proposed in this work. Note that

the disparity is likely to become even more prominent for larger instances.
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(a) Monastery instances (18 vertices)
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(b) Random instances with 100 vertices

Figure 2.11: Impact of the ADSs on the average CPU time (semi-log plot).

Results for the symmetric RCC instances

Table 2.12 shows the summary of the results obtained for each set of benchmark

instances. In this case, because the original algorithm from the literature is used, we

refer to it as “ILS Levorato et al. [76]”. Detailed results are provided in Appendix E. We

report the number of strictly best solutions found by each version (#best), the number

of cases in which the best solution found by each algorithm were equal (ties), the average

percentage gap (gapavg) and the minimum, average and maximum CPU time, considering

the average values of 10 runs for each instance and a time limit of 7200 seconds. The

results illustrate that ILSRCC dominates ILS Levorato et al. [76] in terms of strictly best

known solutions found, especially in Slashdot and Brazilian Congress benchmarks. To

our knowledge, all best solutions found in this experiment are the best known.

Table 2.12: Summary of results for SRCC benchmarks

Benchmark total ILSRCC ILS Levorato et al. [76] ties time
#best gapavg #best gapavg min avg max

UNGA 63 1 0.02 0 1.72 62 0.5 4.6 13.0
Slashdot 7 7 9.72 0 40.08 0 16.9 2293.3 7200.0

BR Congress 14 8 0.59 0 1.16 6 61.3 232.7 534.1
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2.7 Concluding remarks

This chapter presented exact and heuristic approaches for the relaxed correlation clus-

tering (RCC) problem. In particular, we developed two integer linear programming for-

mulations that obtained a superior performance when compared to the existing one, as

well as an enhanced iterated local search (ILS) algorithm that substantially outperformed

the previous ILS implementation from the literature. One key factor of our ILS is the

efficient move evaluation scheme, which was crucial for improving the scalability of the

method. Moreover, we also put forward a novel perturbation mechanism for the problem

that helped the algorithm to find high quality solutions. The performance of ILS was

also assessed in benchmark instances of the symmetrical version of RCC (SRCC) and the

results achieved were always at least as good as the best known.

Future work includes the development of efficient parallel algorithms for tackling

very large instances that may arise in real-life social networks. In addition, as the current

integer linear programming formulations are still limited to small-size instances, there is

still room for developing enhanced exact algorithms, perhaps similar to the combinatorial

branch-and-bound of Brusco et al. [19], as an attempt to solve larger instances.



Chapter 3

Vehicle Routing Problem with Back-
hauls

In this chapter, two branch-cut-and-price (BCP) exact algorithms are depicted to solve

the well-known vehicle routing problem with backhauls (VRPB) [37]. For the first time,

all the literature instances are solved and BCP algorithms are proposed specifically to

this problem. For future methodological advances, we also propose larger and challenging

benchmark instances. Finally, we present three effective heuristics, where two of them

take advantage, at different levels, of problem-specific information. One of the main

contributions of this chapter is to show that it is worth considering specific characteristics

of VRPB, both in exact and heuristic algorithms, in opposition to the idea that generic

methods (e.g. algorithms for capacitated VRP or simultaneous pickup and delivery VRP)

already achieve the best performance for the VRPB through a straightforward adaptation.

3.1 Introduction

In the classical capacitated vehicle routing problem (CVRP), introduced by Dantzig and

Ramser [34], a homogeneous fleet of vehicles is considered to build a set of least-cost routes

such that: (i) all customers are visited once by exactly one route, (ii) the capacity of the

vehicles is respected, and (iii) each route starts and ends at the depot. Although some

applications in distribution can be modeled as a CVRP, there are many applications with

their own particularities such as those where customers require different types of services.

The VRPB considers two types of customers: linehaul and backhaul.

The linehaul customers have a delivery demand which is loaded at the depot,

whereas the backhaul customers have a pickup demand which should be transported to
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the depot. In the VRPB, necessarily a route must visit linehaul customers before backhaul

customers. Moreover, at least one linehaul customer must be visited before possible

backhaul customers, but a route may only be composed of linehauls. These restrictions

allow avoiding en-route load rearrangements. For example, in beverage distribution, the

collection of empty bottles should usually be performed after delivering full ones. Jacobs-

Blecha and Goetschalckx [61] discussed how the grocery industry could save millions of

dollars by exploiting backhauls. As in the CVRP, the objective is to minimize the total

travel cost.

Koç and Laporte [66] presented a recent literature review of the VRPB, also cover-

ing variants such as the mixed VRPB (MVRPB), VRPB with time windows (VRPBTW)

and the heterogeneous fixed fleet VRPB (HFFVRPB). Many studies have proposed

(meta)heuristics for the VRPB. Constructive procedures were suggested in Deif and Bodin

[37], Goetschalckx and Jacobs-Blecha [54], Jacobs-Blecha and Goetschalckx [61], and Toth

and Vigo [112]. Osman and Wassan [85], Wassan [124] and Brandão [17] devised tabu

search (TS) heuristics for the problem. Gajpal and Abad [51] proposed a heuristic called

multi-ant colony system (MACS), whereas Zachariadis and Kiranoudis [127], put for-

ward a local search-based heuristic that exploits a set of rich solution neighborhoods and

makes use of auxiliary data structures to accelerate the move evaluation. Cuervo et al.

[32] designed an iterated local search (ILS) algorithm that also makes use of auxiliary data

structures in an oscillating local search. This method transits between the feasible and

infeasible solution spaces through a dynamic mechanism of penalties. Brandão [16] im-

plemented a deterministic ILS that, according to the author, is simple, fast, and almost

parameter free. Belloso et al. [14] referred to VRPB as VRPCB (VRP with clustered

backhauls) and proposed a biased-randomized metaheuristic framework (BRMF) on top

of the popular Clarke and Wright heuristic [28]. Finally, unified VRP heuristics capable

of solving the VRPB were devised by Ropke and Pisinger [99], Vidal et al. [122], and

Christiaens and Vanden Berghe [27].

On the other hand, there are relatively few exact methods for the VRPB. Yano et

al. [126] introduced a branch-and-bound algorithm for a particular case of the problem in

which there should be at most four customers in a route. Goetschalckx and Jacobs-Blecha

[54] proposed an integer linear programming (ILP) formulation which extends the model

by Fisher and Jaikumar [49] for the CVRP. Toth and Vigo [113] proposed an ILP for the

VRPB which is similar to the two index vehicle flow formulation for the asymmetric VRP

by Laporte, Mercure, and Nobert [69]. The authors also devised a Lagrangian relaxation

scheme which is strengthened by cutting planes. This relaxation is combined with another
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The most important approaches in the literature for the VRPB.

Work Year Approach Type
Deif and Bodin [37] 1984 Savings algorithm Heuristic
Yano et al. [126] 1987 Branch-and-bound Exact

Goetschalckx and Jacobs-Blecha [54] 1989 Integer linear programming formulation Exact
Jacobs-Blecha and Goetschalckx [61] 1992 Generalized assignment-based heuristic Heuristic

Toth and Vigo [112] 1996 Cluster-first-route-second algorithm Heuristic
Toth and Vigo [113] 1997 Branch-and-bound + Lagrangian relaxation Exact

Mingozzi, Giorgi, and Baldacci [82] 1999 Set partitioning-based approach Exact
Geloğulları [53] 2001 Algorithm based on m-TSP relaxation Exact

Osman and Wassan [85] 2002 Tabu search Heuristic
Brandão [17] 2006 Tabu search Heuristic

Ropke and Pisinger [99] 2006 Unified heuristic Heuristic
Wassan [124] 2007 Tabu search Heuristic

Gajpal and Abad [51] 2009 Multi-ant colony system Heuristic
Zachariadis and Kiranoudis [127] 2012 Local search Heuristic

Cuervo et al. [32] 2014 Iterated local search Heuristic
Vidal et al. [122] 2014 Unified hybrid genetic search Heuristic
Brandão [16] 2016 Deterministic iterated local search Heuristic

Belloso et al. [14] 2017 Biased-randomized metaheuristic Heuristic
Granada-Echeverri, Toro, and Santa [56] 2019 Integer linear programming formulation Exact

Christiaens and Vanden Berghe [27] 2020 Ruin & recreate approach Heuristic

one obtained by disregarding the capacity constraints of the model, producing an overall

dual bounding procedure. Such procedure is used on a branch-and-bound algorithm

to solve the VRPB to optimality. Mingozzi, Giorgi, and Baldacci [82] proposed a set

partitioning (SP) formulation that makes use of variables for elementary paths over two

subgraphs induced by the linehaul and backhaul customers, respectively. Two heuristics

were combined to solve the dual problem and, through the resulting bound, they reduced

the number of paths (variables) of the model without loss of optimality. Since the number

of routes remained very large, an additional reduction was applied so that the resulting

ILP could be solved using a MIP solver. Geloğulları [53] presented an exact algorithm for

the asymmetric VRPB based on a relaxation named Multiple Traveling Salesman Problem

(m-TSP). The method was not compared with the literature but tested on new randomly

generated instances, involving up to 90 customers. Recently, an alternative mixed ILP

for the VRPB was put forward by Granada-Echeverri, Toro, and Santa [56]. Table 3.1

summarizes, in chronological order, the most important approaches in the literature for

the VRPB.

Koç and Laporte [66] pointed out the following future research perspective:

“The standard VRPB instances of Goetschalckx and Jacobs-Blecha [54] and

Toth and Vigo [113] have been effectively solved by heuristics. However, it is

our belief that further studies should focus on developing effective and pow-

erful exact methods, such as branch-and-cut-and-price, to solve all available

standard VRPB instances to optimality (see Poggi and Uchoa, 2014).”
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In view of this, this chapter proposes two BCP approaches for the VRPB. The algo-

rithms incorporate elements of state-of-the-art BCP algorithms, such as rounded capacity

cuts, limited-memory rank-1 cuts, strong branching, route enumeration, arc elimination

using reduced costs and dual stabilization. As visible in our experiments, these methods

can solve all instances from the literature to optimality, many of them for the first time.

As a consequence, we decided to generate a novel and more challenging benchmark dataset

with instances involving up to 1000 customers. Furthermore, we also report results for

the VRPBTW and HFFVRPB thanks to a simple extension of one of our algorithms.

Concerning the heuristic solution of the VRPB, we conducted a study to evaluate

the benefits of implementing specific procedures for the VRPB starting from a state-

of-the-art matheuristic for the asymmetric VRP with mixed backhauls (AVRPMB). In

other words, we are interested in investigating to what extent is it worth devising specific

approaches that exploit the particularities of the VRPB given that one has a very com-

petitive heuristic for the VRPMB. In this work, we implement three heuristic solution

strategies for the VRPB. Extensive computational experiments were performed on clas-

sical VRPB benchmark instances and the three approaches were capable of obtaining all

best known solutions and the result of one instance was improved. We also compare their

performance and scalability for the new generated instances with up to 1000 customers.

The remainder of this chapter is organized as follows. Section 3.2 formally defines

the problems considered in this chapter. Section 3.3 presents the set partitioning formu-

lations used by the exact algorithms. Section 3.4 presents the proposed BCP algorithms.

Section 3.5 presents the implemented heuristic strategies for the VRPB. Section 3.6 dis-

cusses the results of our extensive computational experiments on different benchmark

instances. Finally, Section 3.7 concludes.

3.2 Problem definitions

In this section, the VRPB variants approached in this chapter are formally defined.

3.2.1 VRPB

Let G = (V,A) be a directed graph and V = {0} ∪ L ∪ B, where vertex 0 represents the

depot, while L = {1, 2, . . . , n} and B = {n + 1, n + 2, . . . , n + m} are the set of linehaul

and backhaul vertices, respectively. Moreover, define L0 = L ∪ {0} and B0 = B ∪ {0},
thus A = AL ∪ ALB ∪ AB, such that:
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• AL = {(i, j) : i ∈ L0, j ∈ L, i 6= j},

• ALB = {(i, j) : i ∈ L, j ∈ B0},

• AB = {(i, j) : i ∈ B, j ∈ B0, i 6= j}.

Graph G is not complete, since there are no arcs from B to L and no arcs from

0 to B. For each arc a ∈ A there is a nonnegative traveling cost ca. Let V̄ = V \ {0}
be the set of customers. Each vertex j ∈ V̄ has a nonnegative dj demand delivery (when

j ∈ L) or pickup (when j ∈ B). Given a homogeneous fleet of K vehicles with capacity

Q, the VRPB aims at finding K routes (elementary cycles in G passing by the depot)

that minimize the total travel cost and satisfy the following constraints:

a) Each vertex j ∈ V̄ must be visited by exactly one route.

b) A route has to visit linehaul customers before backhaul customers, i.e., after visiting

a backhaul customer it is forbidden to visit a linehaul customer (implicit in the

definition of G).

c) A route may only be composed by linehaul customers, but it cannot only be com-

posed by backhaul customers (also implicit in the definition of G).

d) The sum of the delivery demands on a route does not exceed the vehicle capacity.

e) The sum of the pickup demands on a route does not exceed the vehicle capacity.

3.2.2 VRPBTW

The VRPBTW generalizes the VRPB by considering a time window [ai, bi] and a service

time si for each customer i ∈ V̄ . In the VRPBTW, the travel cost ca of an arc a is

interpreted as the travel time. A service can start to be performed from ai until bi, thus

vehicles that arrive early must wait. Unlike in the VRPB, previous VRPBTW studies

allowed routes containing only backhaul customers. Moreover, the number of vehicles

is not specified a priori. We considered the hierarchical objective usually adopted by

the main works in the literature [99, 111, 122], which prioritizes the minimization of the

number of vehicles, and then the minimization of the total travel time. This objective

is typical in situations where the fixed cost associated to vehicles or drivers is high.

Although the algorithm proposed to tackle the VRPBTW can cope with the objective

function adopted in the VRPB, the hierarchical objective allows for a fair comparison

with previous works.
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3.2.3 HFFVRPB

The HFFVRPB extends the VRPB by considering a finite set of vehicle types T , where

each type k ∈ T has uk available vehicles with capacity Qk and cost cka, ∀a ∈ A. The

composition of the heterogeneous fleet must respect the availability of each type of vehicle,

but without necessarily using all vehicle types. We follow the same objective function as

[114] and [89], which consists of minimizing the total travel cost.

3.3 Set partitioning formulations

Before introducing the SP-based formulations, we first present formulation F0 by Toth

and Vigo [113], in Equations (3.1)–(3.7). We define variable xa equal to 1 if the arc

a ∈ A is traversed by some vehicle, otherwise it is equal to 0. Given a subset S of L

or B, let r(S) =
⌈∑

i∈S di/Q
⌉
be a lower bound on the minimum number of vehicles

necessary to serve all customers in S. Also, let δ−(S) = {(i, j) ∈ A : i ∈ V \ S, j ∈ S}
and δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S}. For simplicity, let δ−({i}) = δ−(i) and

δ+({i}) = δ+(i), ∀i ∈ V .

(F0) Min
∑
a∈A

caxa (3.1)

s.t.
∑

a∈δ−(i)

xa = 1 ∀i ∈ V̄ , (3.2)

∑
a∈δ+(i)

xa = 1 ∀i ∈ V̄ , (3.3)

∑
a∈δ+(0)

xa = K, (3.4)

∑
a∈δ−(S)

xa ≥ r(S) ∀S ⊆ L, (3.5)

∑
a∈δ−(S)

xa ≥ r(S) ∀S ⊆ B, (3.6)

xa ∈ {0, 1} ∀a ∈ A. (3.7)

Constraints (3.2)–(3.3) ensure that each customer is visited exactly once, while

constraint (3.4) imposes that K vehicles must leave the depot. Constraints (3.5)–(3.6)

are the rounded capacity constraints (RCC) and also guarantee subtour elimination. They

are usually separated in a cutting plane fashion. Constraints (3.7) define the domain of

the variables.
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In what follows, we describe two SP formulations for the VRPB by extending F0.

Both formulations are compared in terms of linear relaxation and effectiveness of the

application of rank-1 cuts.

3.3.1 Formulation F1

Let Ω be the set of all q-routes in G, which are walks (paths that may be not elementary,

i.e., a customer can be visited more than once) starting and ending at the depot and

that do not violate the capacity constraints for both linehaul and backhaul customers. A

customer i ∈ V̄ visited k times consumes k×di load units. Let hpa be the number of times

a q-path p ∈ Ω traverses the arc a ∈ A and λp a binary variable which will take the value

1 if and only if q-route p belongs to the solution. F0 can be extended by adding variables

λ and constraints (3.8)–(3.9):

xa =
∑
p∈Ω

hpaλp ∀a ∈ A, (3.8)

λp ∈ {0, 1} ∀p ∈ Ω. (3.9)

Formulation F1 is then given by (3.1)–(3.9). Note that only elementary q-routes

can take part of integer solutions because of constraint (3.2). By replacing the x vari-

ables using (3.8) and relaxing the integrality constraints, one obtains the following linear

relaxation of F1:

Min
∑
p∈Ω

(∑
a∈A

cah
p
a

)
λp (3.10)

s.t.
∑

a∈δ−(i)

∑
p∈Ω

hpaλp = 1 ∀i ∈ V̄ , (3.11)

∑
a∈δ+(0)

∑
p∈Ω

hpaλp = K, (3.12)

∑
a∈δ−(S)

∑
p∈Ω

hpaλp ≥ r(S) ∀S ⊆ L, (3.13)

∑
a∈δ−(S)

∑
p∈Ω

hpaλp ≥ r(S) ∀S ⊆ B, (3.14)

λp ≥ 0 ∀p ∈ Ω. (3.15)

Constraints (3.13)–(3.14) are not necessary for correctness because any integer

solution satisfying (3.11)-(3.12) corresponds to K feasible elementary q-routes. Neverthe-

less, they can cut fractional solutions and are important to strengthen the formulation.
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Such constraints are added in a cutting plane fashion. On the other hand, the constraints

that would be obtained from (3.3) are now completely redundant and can be dropped.

In this kind of SP-based formulation, it is common to use relaxations such as q-routes

instead of elementary routes, because the pricing subproblem becomes weakly NP-hard
and thus more computationally tractable [94]. The disadvantage, on the other hand, is

that this worsens the linear relaxation.

3.3.2 Formulation F2

In the SP-based formulation by Mingozzi, Giorgi, and Baldacci [82], there are variables

associated with paths with only linehaul or backhaul customers. There are additional

binary variables, one for each arc in ALB, used in constraints that ensure that linehaul and

backhaul paths should be connected to form a complete feasible route. We now describe a

new formulation F2 which follows a similar principle but does not use additional variables.

Let GL = (L0, AL) and GB = (L∪B0, ALB∪AB) be subgraphs of G and let ΩL and

ΩB be the sets of q-paths over GL and GB, respectively. For GL, the q-paths are walks

that start at the depot and end at some customer in L, not violating the linehaul capacity

constraint. For GB, the q-paths are walks that start at a linehaul customer and end at the

depot, not violating the backhaul capacity constraint. The q-paths in ΩB contain exactly

one linehaul customer, which will be interpreted as connecting vertices. Given i ∈ L, the
subset Ωi

L ⊆ ΩL is composed by paths ending at i and Ωi
B ⊆ ΩB by paths starting at i. A

binary variable λLp (λBp ) is equal to 1 if q-route p ∈ ΩL (p ∈ ΩB) belongs to the solution,

and equal to 0, otherwise. The constant hpa indicates how many times arc a appears in

q-path p (it is necessarily zero when a and p are associated with distinct graphs: a q-path

in a graph will never traverse an arc of the other graph). Formulation F0 can be extended

by including variables λL and λB, as well as constraints (3.16)–(3.19). Constraints (3.17),

in particular, ensures that the chosen paths are properly connected.

xa =
∑
p∈ΩL

hpaλ
L
p +

∑
p∈ΩB

hpaλ
B
p ∀a ∈ A, (3.16)

∑
p∈Ωi

L

λLp =
∑
p∈Ωi

B

λBp ∀i ∈ L, (3.17)

λLp ∈ {0, 1} ∀p ∈ ΩL, (3.18)

λBp ∈ {0, 1} ∀p ∈ ΩB. (3.19)

Hence, F2 is defined by (3.1)–(3.7) and (3.16)–(3.19). By eliminating the x vari-
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ables using (3.16), relaxing the integrality constraints and performing some simplifications,

it is possible to write the linear relaxation of F2 as follows:

Min
∑
p∈ΩL

(∑
a∈A

cah
p
a

)
λLp +

∑
p∈ΩB

(∑
a∈A

cah
p
a

)
λBp (3.20)

s.t.
∑

a∈δ−(i)

( ∑
p∈ΩL

hpaλ
L
p +

∑
p∈ΩB

hpaλ
B
p

)
= 1 ∀i ∈ V̄ , (3.21)

∑
a∈δ+(0)

∑
p∈ΩL

hpaλ
L
p = K, (3.22)

∑
p∈Ωi

L

λLp =
∑
p∈Ωi

B

λBp ∀i ∈ L, (3.23)

∑
a∈δ−(S)

∑
p∈ΩL

hpaλ
L
p ≥ r(S) ∀S ⊆ L, (3.24)

∑
a∈δ−(S)

∑
p∈ΩB

hpaλ
B
p ≥ r(S) ∀S ⊆ B, (3.25)

λLp ≥ 0 ∀p ∈ ΩL, (3.26)

λBp ≥ 0 ∀p ∈ ΩB. (3.27)

As in formulation F1, constraints (3.24)–(3.25) should be dynamically added via

cutting planes. The constraints that would be derived from (3.3) become redundant and

can be dropped.

3.3.3 Strengthening the formulations

Before comparing the formulations, we will describe how to strengthen them through

ng-routes and rank-1 cuts.

ng-routes

Strengthening the route relaxation without significantly affecting the complexity of

the pricing subproblem is a challenging task. One of the most successful route relaxation

schemes is the so-called ng-routes, introduced by Baldacci, Mingozzi, and Roberti [10]

as an alternative to q-routes. Analogously, ng-paths can be defined as an alternative to

q-paths. For each customer i ∈ V̄ , let Ni ⊆ V̄ be the neighborhood of i ∈ V̄ (a.k.a.

ng-set), where Ni is typically composed by the closest customers to i. In a ng-route (or

ng-path), a customer i can be revisited only after visiting a customer j such that i /∈ Nj.

The size of the ng-sets controls the level of elementarity obtained, since larger sets



3.3 Set partitioning formulations 68

allow fewer non-elementary routes. In one extreme, if ng-sets are empty, ng-routes are q-

routes. On the other extreme, if all ng-sets are equal to V̄ , then ng-routes are elementary.

In practice, ng-sets of size around 8 to 10 offer a good trade-off between formulation

strength and complexity of the column generation procedure.

In the VRPB, it only makes sense to define ng-sets with customers of the same type:

if i ∈ L then Ni ⊆ L, while if i ∈ B then Ni ⊆ B. Formulation F1 can be strengthened

by restricting Ω to ng-routes. Similarly, F2 can be strengthened by restricting ΩL and

ΩB to ng-paths.

Rank-1 cuts

By applying the Chvátal-Gomory rounding over the sum of inequalities (3.11)

multiplied by ρ ∈ R|V̄ |≥0 , we obtain the rank-1 cut (3.28), which is valid for F1.

∑
p∈Ω

∑
i∈V̄

∑
a∈δ−(i)

ρih
p
a

λp ≤ ⌊∑
i∈V̄

ρi

⌋
(3.28)

Analogously, the rank-1 cut (3.29), which is valid for F2, can be derived from

(3.21).

∑
p∈ΩL

∑
i∈L

∑
a∈δ−(i)

ρih
p
a

λLp +
∑
p∈ΩB

∑
i∈B

∑
a∈δ−(i)

ρih
p
a

λBp ≤
⌊∑
i∈V̄

ρi

⌋
(3.29)

Rank-1 cuts are a generalization of the Subset Row Cuts [62] and are known to

be very strong, but separating them makes the pricing subproblems significantly more

difficult. Hence, we use the limited memory technique proposed by [87] to mitigate their

impact on the pricing. This technique consists in using a memory mechanism to define the

coefficients of the variables of the cut. As a consequence, it becomes possible to control

the strength of the cut and its impact on the structure of the subproblem.

3.3.4 Comparing F1 and F2

In this subsection, we assume that F1 and F2 use ng-routes and ng-paths defined over

the same ng-sets.

Proposition 1. The linear relaxations of F1 and F2 are equally strong.

Proof. Let P1 and P2 be the polyhedra defined by the linear relaxations of F1 and F2,
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respectively. We show that for any solution of P1 there is a solution of P2 with the same

objective value, and vice versa.

Given a solution λ̄ ∈ P1, the function described in Algorithm 4 returns a solution

P2(λ̄) = (λ̄L, λ̄B) in F2 space. It is clear from lines 7–8 that constraints (3.17) are satisfied

by that solution. It can be verified through inequalities (3.8) and (3.16) that both λ̄ and

P2(λ̄) induce the same values for the arc variables x. This is true because an arc a ∈ A
can be part of paths either from ΩL or ΩB, but never from both sets. As λ̄ ∈ P1, then

the x solution satisfies (3.2)–(3.6). So, P2(λ̄) should satisfy the corresponding constraints

(3.21)–(3.25) and belongs to P2. Moreover, λ̄ and P2(λ̄) have the same cost.

Let (λ̄L, λ̄B) be a solution in P2. The function described in Algorithm 5 returns

a solution P1(λ̄L, λ̄B) = λ̄ in F1 space (Figure 3.1 illustrates how the algorithm works

for a certain connecting vertex i). Note that lines 9 and 12 (that assume the existence

of a suitable path p2 to complete path p1) are only correct because constraints (3.17) are

satisfied by (λ̄L, λ̄B). Again, it can be verified through inequalities (3.8) and (3.16) that

both solutions (λ̄L, λ̄B) and P1(λ̄L, λ̄B) yield the same values for the arc variables x, so

the latter solution belongs to P1 and they have the same cost.

Algorithm 4: Obtains the solution (λ̄L, λ̄B) ∈ P2 corresponding to λ̄ ∈ P1

1 Function P2(λ̄)
2 Let γ = {(p, λ̄p) : p ∈ Ω, λ̄p > 0} be the set that maps the routes to their values
3 Let L(p) ∈ ΩL and B(p) ∈ ΩB be the paths obtained by splitting route p ∈ Ω in its

connecting vertex (the last linehaul customer)
4 Let (λ̄L, λ̄B) be the solution to be built for P2, such that λ̄Lp is initially zero ∀p ∈ ΩL

and λ̄Bp is initially zero ∀p ∈ ΩB

5 while γ 6= ∅ do
6 Let (p, ζ) be a pair in γ
7 λ̄LL(p) = λ̄LL(p) + ζ

8 λ̄BB(p) = λ̄BB(p) + ζ

9 γ = γ \ {(p, ζ)} // Remove p

10 return (λ̄L, λ̄B)

The functions defined in Algorithm 4 and Algorithm 5 define a one-to-one corre-

spondence between solutions in P1 and P2. In fact, for all λ̄ ∈ P1, P1(P2(λ̄)) = λ̄; for all

(λ̄L, λ̄B) ∈ P2, P2(P1((λ̄L, λ̄B))) = (λ̄L, λ̄B). That correspondence will also be used in the

proof of the following result.

Proposition 2. Rank-1 cuts (3.28) are at least as strong as (3.29) and may be strictly

stronger.
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Figure 3.1: Illustration of Algorithm 5. Obtaining the values for λ̄p, such that p ∈ Ω
and the connecting vertex of p is i ∈ L. In Figure 3.1a, paths p3 and p2 are chosen
according to the lines 7 and 12, respectively. Next, the value for λp2⊕p3 = 0.1 is defined,
the pair (p3, 0.1) is removed from γi and (p2, 0.2) is updated to (p2, 0.1). Figures 3.1b, 3.1c
and 3.1d illustrate the continuation of the algorithm, until γi is empty. The algorithm
performs this process for every vertex i ∈ L as connecting vertex.
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Algorithm 5: Obtains the solution λ̄ ∈ P1 corresponding to (λ̄L, λ̄B) ∈ P2

1 Function P1(λ̄L, λ̄B)
2 Let γi = {(p, λ̄Lp ) : p ∈ Ωi

L, λ̄
L
p > 0} ∪ {(p, λ̄Bp ) : p ∈ Ωi

B , λ̄
B
p > 0}, i ∈ L, be the sets that

maps the paths related to each connecting vertex i to their values
3 Let pl ⊕ pb be the route in Ω obtained by concatenating the paths pl ∈ ΩL and pb ∈ ΩB

4 Let λ̄ be the solution to be built for P1, such that λ̄p is initially zero ∀p ∈ Ω
5 for i ∈ L do
6 while γi 6= ∅ do
7 Let (p1, ζ1) be a pair in γi whose ζ1 is minimum
8 if p1 ∈ Ωi

L then
9 Let (p2, ζ2) be any pair in γi such that p2 ∈ Ωi

B

10 λ̄p = ζ1, such that p = p1 ⊕ p2

11 else // p1 ∈ Ωi
B

12 Let (p2, ζ2) be any pair in γi such that p2 ∈ Ωi
L

13 λ̄p = ζ1, such that p = p2 ⊕ p1

14 γi = γi \ {(p1, ζ1), (p2, ζ2)} // Remove p1 and p2

15 if ζ2 − ζ1 > 0 then
16 γi = γi ∪ {(p2, ζ2 − ζ1)} // Reinsert p2 with updated value

17 return λ̄

Proof. Consider the rank-1 cuts (3.28) and (3.29) corresponding to the same vector of

multipliers ρ. Consider a path p ∈ Ω and its split paths L(p) ∈ ΩL and B(p) ∈ ΩB. It is

always true that:∑
i∈V̄

∑
a∈δ−(i)

ρih
p
a =

∑
i∈L

∑
a∈δ−(i)

ρih
L(p)
a +

∑
i∈B

∑
a∈δ−(i)

ρih
B(p)
a . (3.30)

If the condition∑
i∈V̄

∑
a∈δ−(i)

ρih
p
a

 =

∑
i∈L

∑
a∈δ−(i)

ρih
L(p)
a

+

∑
i∈B

∑
a∈δ−(i)

ρih
B(p)
a

 (3.31)

is true for all p ∈ Ω, then rank-1 cuts (3.28) and (3.29) are equally strong, in the sense that

a solution λ̄ ∈ P1 is cut by (3.28) if and only if the corresponding solution P2(λ̄) = (λ̄L, λ̄B)

is cut by (3.29). Otherwise, if for some p ∈ Ω the left-hand-side of (3.31) is strictly larger

than its right-hand-side, then (3.28) is strictly stronger than (3.29).

Let C = {i ∈ V̄ : ρi > 0}. If C ⊆ L, the second term in the right-hand-side of

(3.30) is zero. So (3.31) is true and (3.28) and (3.29) are equally strong. The coefficient

of λp in (3.28) will be identical to the coefficient of λLL(p) in (3.29), while the coefficient of

λBB(p) will be zero. A similar reasoning shows that when C ⊆ B, rank-1 cuts (3.28) and

(3.29) are also equally strong.

On the other hand, when C has customers of both types, (3.31) may not be true.
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Figure 3.2 illustrates an example of rank-1 cut (a 3-Subset Row Cut), when ρi = 1/2 for

i ∈ C, where C is composed by linehaul customers 1 and 2 and by backhaul customer 3.

In this example, (3.28) cuts the fractional solution λ̄ ∈ P1 (route p1 passes by customers

1 and 3, route p2 by 2 and 3, and route p3 by 2 and 1) but the corresponding solution

P2(λ̄) = (λ̄L, λ̄B) is not cut by (3.29).

1

2

3

λp1 = 0.5

λp3 = 0.5

λp2 = 0.5

(a) λp1 + λp2 + λp3 ≤ 1

1

2

3

λLL(p1) = 0.5

λBB(p1)
= 0.5

λLL(p3) = 0.5

λLL(p2) = 0.5

λBB(p2)
= 0.5

(b) λLL(p3)
≤ 1

Figure 3.2: Example of rank-1 cut with both types of customers, where the hexagon
represents the backhaul customer. Note that the cut in 3.2a is effective, but 3.2b is not.

In the Appendix I, we also show that F1, F2 and Mingozzi, Giorgi, and Baldacci

[82] SP formulations are equally strong.

3.4 Branch-cut-and-price algorithms

This section describes BCPF1 and BCPF2, two BCP algorithms for the VRPB based

on F1 and F2, respectively. More precisely, we discuss elements related to pricing, cut

generation, branching and path enumeration. Furthermore, we also describe how BCPF1

can be adapted to solve the HFFVRPB and VRPBTW.

3.4.1 Pricing subproblem

In both BCP algorithms, the pricing subproblems are modeled as a resource constrained

shortest path problem (RCSP) which is defined as follows. Let G = (V ,A) be a directed

graph, where V is the set of vertices, A the set of arcs and c̄a ∈ R is the cost of the

arc a ∈ A. V has special nodes vsource and vsink, they can be the same vertex or two



3.4 Branch-cut-and-price algorithms 73

distinct vertices. For each arc a ∈ A, there exists a resource consumption qa ∈ R+.

Also, an interval [li, ui] is associated with each vertex i ∈ V . A resource constrained path

p = (vsource = v0, v1, . . . , vk−1, vsink = vk) over G is feasible if k ≥ 1, vj 6= vsource, vj 6=
vsink, 1 ≤ j ≤ k − 1, and the accumulated resource consumption Sj at visit j, 0 ≤ j ≤ k,

where S0 = 0 and Sj = max{lvj , Sj−1 + q(vj−1,vj)}, does not exceed uvj . Note that this

definition allows to “drop out resources” (i.e., to consume lvj − Sj−1 + q(vj−1,vj) of the

resource) to satisfy the lower bound li at a vertex i, if lvj > Sj−1 + q(vj−1,vj). On the

other hand, the upper limits on accumulated resource consumption are strict. The RCSP

objective is to find a resource-constrained path with minimum cost.

RCSP graph for BCPF1

For BCPF1, the RCSP graph G = (V ,A) = (V,A) = G; vsource = vsink = 0. Each

arc a = (i, j) ∈ A has a capacity resource consumption given by qa = dj and each vertex

i ∈ V has a resource interval defined as:

[li, ui] =


[0, 2Q], i = 0

[di, Q], i ∈ L

[Q+ di, 2Q], i ∈ B

Figure 3.3 illustrates the RCSP graph for BCPF1. It can be seen that a resource

constrained path in that graph can visit customers in L until the capacity limit Q is

reached. However, when the path visits the first backhaul customer, the values of li for

i ∈ B force any unused linehaul capacity to be dropped. Therefore, the total backhaul

capacity is also limited by Q. The cost of an arc c̄a is the reduced cost calculated through

the dual variables associated with constraints (3.11)–(3.14).

RCSP graph for BCPF2

For BCPF2 there are two RCSP graphs. The first RCSP graph is GL = (VL,AL),

where VL = L0 ∪ {0′} and AL = AL ∪ {(i, 0′) : i ∈ L}; vsource = 0 and vsink = 0′. Each

arc a = (i, j) ∈ AL has a capacity resource consumption given by qa = dj (assuming that

d0′ = 0) and each vertex i ∈ VL has resource consumption interval [di, Q].

The second RCSP graph is GB = (VB,AB), where VB = {0′} ∪ L ∪ B0 and AB =

ALB ∪ AB ∪ {(0′, i) : i ∈ V̄ }; vsource = 0′ and vsink = 0. Each arc a = (i, j) ∈ AB has a

capacity resource consumption given by qa = dj (assuming that d0 = 0) and each vertex

i ∈ VB has a resource interval [di, Q].
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Figure 3.3: RCSP graph for BCPF1.

Figure 3.4 illustrates the two RCSP graphs for BCPF2. The cost of an arc c̄a for

both graphs is the reduced cost calculated through the dual variables associated with

constraints (3.21)–(3.25).
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Figure 3.4: RCSP graphs for BCPF2

Solving the pricing subproblems

The RCSP problems above defined are solved by a labeling algorithm, using the

bucket graph based variant proposed by Sadykov, Uchoa, and Pessoa [100]. Such algo-

rithm also handles ng-routes (for BCPF1) and ng-paths (for BCPF2). In both cases the
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ng-sets have cardinality 8. As mentioned before, the ng-set of a linehaul customer only

has linehaul customers, and the ng-set of a backhaul customer only has backhaul cus-

tomers. Moreover, the labeling algorithm also considers the modification in the reduced

costs induced by the dual variables of the limited memory rank-1 cuts added.

The big advantage of F2 over F1 is that it reduces the time spent solving pricing

problems, the usual bottleneck of the BCP algorithms. In a labeling algorithm for the

RCSP, the number of undominated labels grows more than linearly with the size of the

paths (in fact, exponentially in the worst case). Therefore, solving two RCSPs with

capacity limit Q (associated with the paths in ΩL and ΩB) is typically much faster than

solving a single RCSP with limit 2Q (associated with the longer routes in Ω).

3.4.2 Cut generation, branching and path enumeration

In both BCP algorithms, rounded capacity cuts are separated by the heuristic procedure

available in CVRPSEP [78]. Fractional solutions of F1 and F2 are first converted to arc

variables x in order to perform that separation.

Limited memory rank-1 cuts are separated for sets C, such that |C| ≤ 5, using

the optimal multipliers given in Pecin et al. [88]. As shown in Proposition 2, rank-1 cuts

for F2 where C has both linehaul and backhaul customers are weak and not likely to be

violated. This is the main potential disadvantage of F2 over F1.

In both BCP algorithms, branching is performed over aggregations of arc variables.

For a pair of vertices i and j in V , i < j, yij = xij + xji (if (j, i) /∈ A, yij = xij) should be

integer. A fractional yij is chosen by a strong branching procedure similar to the one in

Pecin et al. [88].

Both BCP algorithms may also perform route enumeration, as in Baldacci,

Christofides, and Mingozzi [9] and Contardo and Martinelli [29], when the gap between a

node lower bound and the upper bound is sufficiently small. This means that all elemen-

tary q-routes in Ω (for BCPF1) or all elementary q-paths in ΩL and ΩB (for BCPF1) with

reduced cost not higher than the gap are enumerated and stored in a pool. After that,

the pricing is performed by inspection, which can save a lot of time. As the lower bounds

increase, fixing by reduced cost reduces the size of the pools. Eventually, the pool size

becomes small enough so that the restricted F1 (or F2) can be solved using a MIP solver,

thus finishing the node. The enumeration is another significant potential advantage of

F2 over F1. As there are much fewer paths in ΩL and ΩB than in Ω, it is possible to
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perform enumeration in F2 earlier, with a larger gap.

3.4.3 VRPBTW and HFFVRPB

The BCPF1 approach can be directly adapted to solve the VRPBTW. This only requires

an additional time resource. For a given arc a = (i, j) in the RCSP graph, the consump-

tion of this resource is cij + si. The resource consumption interval for that resource in

each vertex is the associated customer time window. The hierarchical objective of the

VRPBTW can be handled by running the algorithm for different values of K. Initially,

K = K∗− 1, where K∗ is the number of vehicles for the best known solution (BKS). The

value of K is then iteratively decremented until the problem becomes infeasible (the last

feasible solution found is the optimal one). If no feasible solution is found for K < K∗,

the BCP algorithm must be executed with K∗ using the total travel time of the BKS as

upper bound (note that this bound is not valid if K < K∗).

On the other hand, F2 cannot be adapted to solve the VRPBTW. This is due to

the fact that the time resource is global, in the sense that it can not be split a priori

between linehaul and backhaul customers (in contrast, there are separated capacities Q

for linehaul and backhaul customers).

In order to adapt BCPF1 to the HFFVRPB, it is necessary to define a distinct

RCSP graph for each type of vehicle k ∈ T , where each graph has specific arc costs.

Constraints (3.12) should now limit the number of available vehicles for each vehicle type,

as specified in the problem instance. Moreover, the value of r(S) in the rounded capacity

cuts (3.13) and (3.14) must be defined by means of maxk∈T Q
k instead of Q.

Adapting BCPF2 to the HFFVRPB would require a larger number of connecting

constraints, like (3.23), to ensure that only linehaul and backhaul paths corresponding to

the same vehicle type are connected. We therefore decided not to test BCPF2 for this

variant.

3.5 Heuristic solution strategies

The VRPB can be seen as a special case of the asymmetric VRP with mixed backhauls

(AVRPMB) where, in the latter, the precedence constraints are relaxed (i.e., backhauls

can be visited before linehauls) and a non-empty route is allowed to have only backhauls.

Moreover, the AVRPMB is a particular case of the asymmetric VRP with simultaneous
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pickup and delivery (VRPSPD). A number of methods were proposed for the symmetric

version of these two problems. Note that a method capable of solving the AVRPMB, can

be directly applied to the VRPB by penalizing the infeasible arcs of the latter problem.

According to the survey by Battarra, Cordeau, and Iori [12], one of the best algorithms

proposed for such problems is the matheuristic by Subramanian, Uchoa, and Ochi [106],

hereafter referred to as ILS-SP, which combines ILS with a set partitioning (SP) approach.

This method was successfully tested on a variety of VRPs, including the capacitated VRP

(CVRP).

ILS-SP, which is thoroughly described in Subramanian, Uchoa, and Ochi [106], is a

multi-start algorithm that includes a Randomized variable neighborhood descent (RVND)

procedure with many classical local search operators. The inter-route neighborhood struc-

tures are Shift(λ1,0), Swap(λ1,λ2), λ1, λ2 ∈ [1, 2], and Cross (2-opt∗), resulting in a total of

6 operators disregarding symmetries. The intra-route neighborhood structures are Rein-

sertion, Or-opt2, Or-opt3, Exchange and 2-opt. Regarding the perturbation procedures,

at most two random Swap(1,1) and Shift(1,1) moves are consecutively applied to a local

optimal solution. The SP approach tries to find the best combination of routes stored

during the search using a mixed integer programming (MIP) solver. If the instance con-

tains less than or equal to 150 customers, i.e., the instance is not large, the SP procedure

is called at the end of the algorithm. Otherwise, the SP is called periodically during the

restarts. One key aspect of the matheuristic is that the ILS procedure is called every time

an incumbent solution is found by the MIP solver. This often improves the performance

of the solver, as not only improved solutions can be found, but also the SP problem can

be solved faster. The matheuristic also has an adaptive mechanism that dynamically

controls the size of the pool of routes and makes use of auxiliary data structures that are

crucial for improving local search performance.

The following subsections briefly describe three ILS-SP based matheuristics which

explore problem-specific information at different levels.

3.5.1 First strategy

The first strategy applies the original ILS-SP directly to the VRPB. Note that a VRPB

instance can be transformed into a AVRPMB instance by simply setting ca = ∞, ∀a /∈
A0L∪ALB∪AB. Consequently, infeasible solutions are allowed at any ILS step. Although

this may potentially increase the search space, unnecessary operations may be performed.

In particular, moves that do not yield improvement are evaluated when the current solu-
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tion is feasible. For example, the algorithm unnecessarily evaluates the cost of moving a

backhaul customer in between two linehauls even when the solution is already feasible.

3.5.2 Second strategy

The second strategy, called ILSB-SP, modifies ILS-SP to cope with the specific VRPB

characteristics during the ILS phase. The construction and perturbation phases only

allow feasible solutions to be generated. Furthermore, the search range of each of the 11

neighborhoods is limited to potential feasible moves regarding precedence constraints. It

is important to emphasize that this is arguably not so straightforward to code. Finally,

the algorithm considers a key additional auxiliary data structure that keeps track of the

position of the last linehaul customer of each route.

3.5.3 Third strategy

ILSB-SPB modifies ILSB-SP to cope with the specific VRPB characteristics during the SP

phase. Instead of building the model using complete routes, SPB considers linehaul and

backhaul paths separately. Hence, paths originated from different routes can be combined

to generate a new route. This allows for exploring further regions of the search space.

The SPB approach was formulated as in Mingozzi et al (1999).

Let P , L and B be the set of all paths, linehaul paths and backhaul paths stored

by ILS, respectively. Define B0 as the set of backhaul paths plus one path just with the

depot. Let Li and Bi be the set of linehaul paths containing customer i ∈ L and customer

i ∈ B, respectively. Define L′i and B′i as the set of linehaul paths ending at customer

i ∈ L and backhaul paths starting at customer i ∈ B, respectively. Each path p ∈ P has

an associated cost cp. Let yp be a binary variable that assumes value 1 if p ∈ P is chosen,

0 otherwise. Let xij be binary variable that assumes value 1 if arc (i, j) ∈ ALB is in the

solution, 0 otherwise.

The formulation can be written as follows:

min
∑
p∈L

cpyp +
∑
p∈B

cpyp +
∑

(i,j)∈ALB

cijxij (3.32)
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∑
p∈Li

yp = 1 i ∈ L, (3.33)

∑
p∈Bj

yp = 1 j ∈ B, (3.34)

∑
p∈L′i

yp =
∑
j∈B0

xij i ∈ L, (3.35)

∑
p∈B′j

yp =
∑
i∈L

xij j ∈ B, (3.36)

∑
p∈L

yp = K, (3.37)

yp ∈ {0, 1} p ∈ P , (3.38)

xij ∈ {0, 1} (i, j) ∈ ALB. (3.39)

Objective function (3.32) minimizes the sum of the costs. Constraints (3.33)–

(3.34) state that each customer must be exactly in one path. Constraints (3.35)–(3.36)

link variables x and y. Constraint (3.37) ensures that there are K routes are in the

solution. Finally, constraints (3.38)–(3.39) define the domain of the variables.

3.6 Computational experiments

The experiments were executed on a 2 Deca-core Haswell Intel Xeon E5-2680 v3 server

with 2.50 GHz and 128 GB of RAM. Each algorithm was run on a single thread for

each instance. To reduce the testing time, multiple runs (64) for different instances were

performed simultaneously on the same machine, effectively reducing the amount of RAM

allocated to each process. A time limit of 60 hours was imposed for the exact algorithms.

The three ILS-SP matheuristics were executed 50 times for each instance.

The BCP algorithms were coded in Julia 1.2 interface for the generic VRP-

Solver [92] which makes use of JuMP [43] and LightGraphs packages. The models used in

the implementation are described in Appendix H. The solver utilizes the BaPCod C++

library [117] as BCP framework combined with the C++ implementations by Sadykov,

Uchoa, and Pessoa [100] which contain: (i) a labeling algorithm for solving the pricing

subproblems based on bucket graphs; (ii) path enumeration; (iii) a bucket arc elimi-

nation routine; (iv) a routine for separating limited-memory rank-1 cuts; and (v) dual

price smoothing stabilization [93]. Moreover, CVRPSEP package [78] is used in the RCC

separators and CPLEX 12.8 is used to solve the LP relaxations and the MIPs over the
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enumerated paths.

The ILS-SP metheuristics were coded in C++, where the same parameters used

in Uchoa et al. [115] were adopted. The SP formulations were solved with CPLEX 12.4.

3.6.1 Benchmark instances

We considered four sets of VRPB instances. The first three are classical small and medium

size datasets, whereas the fourth one is introduced in this work to test the limits of our

methods on instances of larger scale.

• GJB. This dataset consists of 68 symmetric instances proposed by Goetschalckx

and Jacobs-Blecha [54] including between 25 and 200 customers. The fleet size K

is fixed and any feasible solution should have exactly K non-empty routes. We use

double precision for the distance matrix.

• TV. This group is composed of 33 symmetric instances suggested by Toth and Vigo

[113] varying between 21 and 100 customers. The convention regarding the number

of vehicles is the same as in the previous dataset. The values of the distance matrix

were rounded to the nearest integer.

• FTV. This group is composed of 24 asymmetric instances suggested by Toth and

Vigo [113] varying between 33 and 70 customers. The convention regarding the

number of vehicles is the same as in GJB and TV. The values of the distance

matrix were rounded to the nearest integer.

• X. This new benchmark dataset contains 300 symmetric instances varying be-

tween 100 and 1000 customers. They were generated based on the CVRP in-

stances proposed by Uchoa et al. [115]. For each CVRP instance, we created

3 VRPB ones with 50%, 66% and 80% of linehaul customers, respectively, fol-

lowing the same scheme as Toth and Vigo [113]. For example, we used the

CVRP instance X-n101-k25 to generate the VRPB instances X-n101-50-k13, X-

n101-66-k17, X-n101-80-k21. It is important to emphasize that the fleet size

is not fixed for this dataset. We adopted the nearest integer precision conven-

tion for the distance matrix. This newly proposed benchmark is available at

http://www.vrp-rep.org/datasets/download/queiroga-et-al-2019.zip.

VRPBTW and HFFVRPB instances

http://www.vrp-rep.org/datasets/download/queiroga-et-al-2019.zip
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The experiments on the VRPBTW and HFFVRPB were conducted with the fol-

lowing benchmarks:

• GDDS. This dataset contains 15 instances proposed by Gélinas et al. [52] for the

VRPBTW, all of them with 100 customers. All distances are calculated with double

precision. The vehicle capacity and the time window of the depot were set to 200

and [0, 230], respectively.

• T. This benchmark is composed of 18 instances proposed by Tütüncü [114] and

contain between 50 to 100 customers. The double precision convention for the

distance matrix was also adopted.

3.6.2 Results for the BCP algorithms

Now, we will present the results obtained by BCPF1 and BCPF2 algorithms for the VRPB,

VRPBTW and HFFVRPB problems, respectively.

Results for the VRPB

In the tables presented hereafter, UB is the initial upper bound provided to the

exact algorithms, timeub denotes the CPU time required by the heuristic(s) to obtain UB;

z(IP ) indicates the value of the optimal solution or an improved upper bound, LBf
root

corresponds to the final lower bound (LB) found at the root node; time is the total CPU

time, timeprc is the total pricing time, and nodes represents the number of nodes in the

tree.

Table 3.2 presents the results obtained by BCPF1 and BCPF2 for the GJB in-

stances. The upper bounds are those from the best solutions found by ILSB-SP (hence

timeub is the sum of its 50 executions). All instances were solved to optimality by both

algorithms. Note that almost all instances were solved to optimality at the root node, in-

cluding most of the 200-customer ones. Regarding the CPU time, BCPF2 is clearly faster

than BCPF1, except for very few cases (instances G4 and G5). BCPF2 can be around

7 times faster as it happened on instance O1. Hence, although the LBf
root obtained by

BCPF2 can be occasionally slightly weaker than the one achieved by BCPF1, it appears

that the first has a better overall performance than the latter. Nonetheless, in practice,

the bound LBf
root obtained by F2 can be better than the one obtained by F1. This is

possible because the cut generation may be interrupted early in BCPF1 due to the high

CPU time required to solve the pricing subproblems. This is one of the criteria used by



3.6 Computational experiments 82

the BCP framework to stop the cut generation and perform branching.

Table 3.2: Results obtained for the GJB instances
Problem data

z(IP )
BCPF1 BCPF2

Instance n+m n m K UB timeub LBf
root time nodes LBf

root time nodes
(s) (s) (s)

A1 25 20 5 8 229,885.65 10 229,885.65 229,885.65 < 1 1 229,885.65 < 1 1

A2 25 20 5 5 180,119.21 9 180,119.21 180,119.21 < 1 1 180,119.21 < 1 1

A3 25 20 5 4 163,405.38 10 163,405.38 163,405.38 < 1 1 163,405.38 < 1 1

A4 25 20 5 3 155,796.41 7 155,796.41 155,796.41 < 1 1 155,796.41 < 1 1

B1 30 20 10 7 239,080.16 12 239,080.16 239,080.16 < 1 1 239,080.16 < 1 1

B2 30 20 10 5 198,047.77 11 198,047.77 198,047.77 < 1 1 198,047.77 < 1 1

B3 30 20 10 3 169,372.29 7 169,372.29 169,372.29 < 1 1 169,372.29 < 1 1

C1 40 20 20 7 250,556.77 20 250,556.77 250,556.77 < 1 1 250,556.77 < 1 1

C2 40 20 20 5 215,020.23 18 215,020.23 215,020.23 2 1 215,020.23 < 1 1

C3 40 20 20 5 199,345.96 19 199,345.96 199,345.96 < 1 1 199,345.96 < 1 1

C4 40 20 20 4 195,366.63 17 195,366.63 195,366.63 < 1 1 195,366.63 < 1 1

D1 38 30 8 12 322,530.13 29 322,530.13 322,530.13 < 1 1 322,530.13 < 1 1

D2 38 30 8 11 316,708.86 24 316,708.86 316,708.86 < 1 1 316,708.86 < 1 1

D3 38 30 8 7 239,478.63 21 239,478.63 239,478.63 < 1 1 239,478.63 < 1 1

D4 38 30 8 5 205,831.94 22 205,831.94 205,831.94 6 1 205,831.94 2 1

E1 45 30 15 7 238,879.58 23 238,879.58 238,879.58 < 1 1 238,879.58 < 1 1

E2 45 30 15 4 212,263.11 26 212,263.11 212,263.11 < 1 1 212,263.11 < 1 1

E3 45 30 15 4 206,659.17 32 206,659.17 206,659.17 1 1 206,659.17 < 1 1

F1 60 30 30 6 263,173.96 55 263,173.96 263,173.96 5 1 263,173.96 3 1

F2 60 30 30 7 265,214.16 55 265,214.16 265,214.16 2 1 265,214.16 < 1 1

F3 60 30 30 5 241,120.78 52 241,120.78 241,120.78 2 1 241,120.78 1 1

F4 60 30 30 4 233,861.85 56 233,861.85 233,861.85 3 1 233,861.85 2 1

G1 57 45 12 10 306,305.40 73 306,305.40 306,305.40 5 1 306,305.40 5 1

G2 57 45 12 6 245,440.99 54 245,440.99 245,440.99 3 1 245,440.99 3 1

G3 57 45 12 5 229,507.48 49 229,507.48 229,507.48 3 1 229,507.48 2 1

G4 57 45 12 6 232,521.25 56 232,521.25 232,521.25 3 1 232,521.25 5 1

G5 57 45 12 5 221,730.35 61 221,730.35 221,730.35 3 1 221,730.35 4 1

G6 57 45 12 4 213,457.45 65 213,457.45 213,457.45 3 1 213,457.45 2 1

H1 68 45 23 6 268,933.06 99 268,933.06 268,933.06 8 1 268,933.06 7 1

H2 68 45 23 5 253,365.50 92 253,365.50 253,365.50 5 1 253,365.50 2 1

H3 68 45 23 4 247,449.04 94 247,449.04 247,449.04 4 1 247,449.04 3 1

H4 68 45 23 5 250,220.77 105 250,220.77 250,220.77 4 1 250,220.77 3 1

H5 68 45 23 4 246,121.31 101 246,121.31 246,121.31 5 1 246,121.31 3 1

H6 68 45 23 5 249,135.32 107 249,135.32 249,135.32 5 1 249,135.32 3 1

I1 90 45 45 10 350,245.28 240 350,245.28 350,245.28 19 1 350,245.28 5 1

(Continues on the next page)
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Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K UB timeub LBf
root time nodes LBf

root time nodes
(s) (s) (s)

I2 90 45 45 7 309,943.84 181 309,943.84 309,943.84 16 1 309,943.84 3 1

I3 90 45 45 5 294,507.38 206 294,507.38 294,507.38 37 1 294,507.38 12 1

I4 90 45 45 6 295,988.45 191 295,988.45 295,988.45 22 1 293,840.10 9 3

I5 90 45 45 7 301,236.01 192 301,236.01 301,236.01 12 1 301,236.01 4 1

J1 94 75 19 10 335,006.68 223 335,006.68 335,006.68 13 1 335,006.68 12 1

J2 94 75 19 8 310,417.21 272 310,417.21 310,417.21 48 1 310,417.21 33 1

J3 94 75 19 6 279,219.21 251 279,219.21 279,219.21 19 1 279,219.21 12 1

J4 94 75 19 7 296,533.16 299 296,533.16 294,480.85 367 5 294,168.05 309 7

K1 113 75 38 10 394,071.17 705 394,071.17 394,071.17 52 1 394,071.17 23 1

K2 113 75 38 8 362,130.00 407 362,130.00 362,130.00 36 1 362,130.00 14 1

K3 113 75 38 9 365,694.08 420 365,694.08 365,694.08 26 1 365,694.08 12 1

K4 113 75 38 7 348,949.39 402 348,949.39 348,949.39 67 1 348,949.39 29 1

L1 150 75 75 10 417,896.72 988 417,896.71 417,896.71 82 1 417,896.71 44 1

L2 150 75 75 8 401,228.80 1,089 401,228.80 401,228.80 110 1 401,228.80 57 1

L3 150 75 75 9 402,677.72 833 402,677.72 402,677.72 76 1 402,677.72 35 1

L4 150 75 75 7 384,636.33 854 384,636.33 384,636.33 67 1 384,636.33 28 1

L5 150 75 75 8 387,564.55 882 387,564.55 387,564.55 55 1 387,564.55 23 1

M1 125 100 25 11 398,593.19 1,627 398,593.19 398,593.19 95 1 398,593.19 56 1

M2 125 100 25 10 396,916.97 4,977 396,916.97 396,916.97 112 1 395,706.60 85 3

M3 125 100 25 9 375,695.42 1,558 375,695.42 373,010.93 6,210 41 372,016.21 4,139 39

M4 125 100 25 7 348,140.16 743 348,140.16 348,140.16 181 1 347,010.67 160 3

N1 150 100 50 11 408,100.62 1,323 408,100.62 408,100.62 112 1 406,628.97 56 3

N2 150 100 50 10 408,065.44 1,538 408,065.44 408,065.44 124 1 406,269.57 77 3

N3 150 100 50 9 394,337.86 1,045 394,337.86 394,337.86 169 1 394,337.86 46 1

N4 150 100 50 10 394,788.36 1,177 394,788.36 394,788.36 193 1 394,788.36 50 1

N5 150 100 50 7 373,476.30 1,053 373,476.30 373,476.30 247 1 373,476.30 80 1

N6 150 100 50 8 373,758.65 1,138 373,758.65 373,758.65 189 1 373,758.65 65 1

O1 200 100 100 10 478,126.75 2,035 478,126.75 475,781.67 14,629 29 476,500.02 1,823 11

O2 200 100 100 11 477,256.15 1,874 477,256.15 477,256.15 285 1 477,256.15 77 1

O3 200 100 100 9 457,294.48 2,046 457,294.48 457,294.48 207 1 457,294.48 80 1

O4 200 100 100 10 458,874.87 1,896 458,874.87 458,874.87 130 1 458,874.87 39 1

O5 200 100 100 7 436,974.20 2,041 436,974.20 436,974.20 524 1 436,974.20 168 1

O6 200 100 100 8 438,004.69 2,006 438,004.69 438,004.69 269 1 438,004.69 108 1

Mean 365.9 105.3

Geometric mean 14.4 8.5

Table 3.3 reports the results obtained by BCPF1 and BCPF2 for the TV instances.

Here, we also use the upper bounds produced by ILSB-SP. Once again, all instances were

solved to optimality by both algorithms, where 9 of them were proven optimal for the
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first time. Except for instance E-n101-B-66, all other cases were solved at the root node.

Note that the values of LBf
root are integer in this table because ca ∈ Z+, ∀a ∈ A, thus

enabling the lower bounds to be rounded up, as the objective value of all feasible solutions

are integer.

Table 3.3: Results obtained for the TV instances
Problem data

z(IP )
BCPF1 BCPF2

Instance n+m n m K UB timeub LBf
root time nodes LBf

root time nodes
(s) (s) (s)

E-n22-50 21 10 11 3 371 4 371 371 2 1 371 2 1

E-n22-66 21 14 7 3 366 4 366 366 2 1 366 2 1

E-n22-80 21 17 4 3 375 4 375 375 2 1 375 3 1

E-n23-50 22 11 11 2 682 4 682 682 3 1 682 3 1

E-n23-66 22 15 7 2 649 4 649 649 3 1 649 3 1

E-n23-80 22 18 4 2 623 5 623 623 3 1 623 3 1

E-n30-50 29 14 15 2 501 7 501 501 4 1 501 3 1

E-n30-66 29 19 10 3 537 9 537 537 3 1 537 3 1

E-n30-80 29 23 6 3 514 9 514 514 3 1 514 5 1

E-n33-50 32 16 16 3 738 10 738 738 3 1 738 3 1

E-n33-66 32 21 11 3 750 11 750 750 3 1 750 3 1

E-n33-80 32 26 6 3 736 11 736 736 3 1 736 3 1

E-n51-50 50 25 25 3 559 34 559 559 4 1 559 3 1

E-n51-66 50 33 17 4 548 37 548 548 4 1 548 3 1

E-n51-80 50 40 10 4 565 52 565 565 4 1 565 6 1

E-n76-A-50 75 38 37 6 739 99 739 739 8 1 739 6 1

E-n76-A-66 75 50 25 7 768 100 768 768 6 1 768 5 1

E-n76-A-80 75 60 15 8 781 140 781∗ 781 5 1 781 4 1

E-n76-B-50 75 38 37 8 801 94 801 801 4 1 801 4 1

E-n76-B-66 75 50 25 10 873 119 873 873 6 1 873 7 1

E-n76-B-80 75 60 15 12 919 126 919 919 4 1 919 4 1

E-n76-C-50 75 38 37 5 713 106 713 713 13 1 713 8 1

E-n76-C-66 75 50 25 6 734 101 734 734 11 1 734 9 1

E-n76-C-80 75 60 15 7 733 151 733∗ 733 23 1 733 26 1

E-n76-D-50 75 38 37 4 690 103 690 690 6 1 690 4 1

E-n76-D-66 75 50 25 5 715 107 715∗ 715 26 1 715 15 1

(Continues on the next page)
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Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K UB timeub LBf
root time nodes LBf

root time nodes
(s) (s) (s)

E-n76-D-80 75 60 15 6 694 127 694∗ 694 14 1 694 10 1

E-n101-A-50 100 50 50 4 831 242 831∗ 831 39 1 831 15 1

E-n101-A-66 100 66 34 6 846 283 846 846 14 1 846 9 1

E-n101-A-80 100 80 20 6 856 837 856∗ 856 114 1 856 72 1

E-n101-B-50 100 50 50 7 923 733 923∗ 923 28 1 923 22 1

E-n101-B-66 100 66 34 9 982 3,012 982∗ 977 1,020 6 974 243 7

E-n101-B-80 100 80 20 11 1,008 870 1, 008∗ 1,008 44 1 1,008 45 1

Average 43.3 16.8

Geometric mean 7.7 6.5

New proven optimal solutions are marked with an asterisk.

Table 3.4 reports the results obtained by BCPF1 and BCPF2 for the FTV asym-

metric instances. Again, we use the upper bounds produced by ILSB-SP. All instances

were solved at the root node by both algorithms, where 3 of them were proven optimal

for the first time.

Table 3.4: Results obtained for the FTV instances
Problem data

z(IP )
BCPF1 BCPF2

Instance n+m n m K UB
timeub

LBf
root

time
nodes LBf

root

time
nodes

(s) (s) (s)

FTV33_50 33 17 16 2 1,841 < 1 1,841 1,841 2 1 1,841 2 1

FTV33_66 33 22 11 2 1,899 < 1 1,899 1,899 2 1 1,899 < 1 1

FTV33_80 33 27 6 2 1,704 < 1 1,704 1,704 < 1 1 1,704 < 1 1

FTV35_50 35 18 17 2 2,077 < 1 2,077 2,077 2 1 2,077 < 1 1

FTV35_66 35 24 11 2 2,150 < 1 2,150 2,150 3 1 2,150 < 1 1

FTV35_80 35 28 7 2 1,996 < 1 1,996 1,996 2 1 1,996 < 1 1

FTV38_50 38 19 19 2 2,162 < 1 2,162 2,162 < 1 1 2,162 < 1 1

FTV38_66 38 26 12 2 2,132 < 1 2,132 2,132 7 1 2,132 1 1

FTV38_80 38 31 7 3 1,982 < 1 1,982 1,982 1 1 1,982 1 1

FTV44_50 44 22 22 2 2,348 < 1 2,348 2,348 44 1 2,348 4 1

FTV44_66 44 30 14 2 2,225 < 1 2,225 2,225 30 1 2,225 10 1

FTV44_80 44 36 8 3 2,184 < 1 2,184 2,184 6 1 2,184 5 1

FTV47_50 47 24 23 2 2,343 1 2,343 2,343 9 1 2,343 3 1

FTV47_66 47 32 15 2 2,427 1 2,427 2,427 3 1 2,427 2 1

FTV47_80 47 38 9 2 2,312 < 1 2,312 2,312 3 1 2,312 2 1

FTV55_50 55 28 27 2 2,425 2 2,425 2,425 40 1 2,425 7 1

FTV55_66 55 37 18 2 2,246 2 2,246 2,246 54 1 2,246 12 1

(Continues on the next page)
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Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K UB
timeub

LBf
root

time
nodes LBf

root

time
nodes

(s) (s) (s)

FTV55_80 55 44 11 2 2,264 2 2,264 2,264 13 1 2,264 5 1

FTV64_50 64 32 32 2 2,728 3 2,728 2,728 74 1 2,728 13 1

FTV64_66 64 43 21 2 2,673 3 2,673 2,673 43 1 2,673 15 1

FTV64_80 64 52 12 3 2,659 2 2,659∗ 2,659 32 1 2,659 18 1

FTV70_50 70 35 35 2 2,934 4 2,934∗ 2,934 145 1 2,934 20 1

FTV70_66 70 47 23 2 2,808 5 2,808 2,808 44 1 2,808 10 1

FTV70_80 70 56 14 2 2,684 3 2,684∗a 2,684 25 1 2,684 15 1

Average 24.3 6.2

Geometric mean 8.9 3.4

New proven optimal solutions are marked with an asterisk.
aThis value is different from the value 2, 688 reported by Toth and Vigo [113]. We found that the heuristic

LKH-3 [59] also reports a cost of 2, 684.

Table 3.5 provides a comparison between BCPF1 and BCPF2 for the first 45 in-

stances of the X set. They were solved to optimality by both methods. The upper bounds

for these instances were the best ones provided by Vidal [120] by running the algorithm

proposed in Vidal et al. [122] and the ILSB-SP (timeub is the sum of the time for both

methods). Note that instances X-n125-80-k23 and X-n162-66-k8 are particularly difficult

and required more than 10,000 seconds to be solved, regardless of the method. Overall,

BCPF2 visibly had a superior runtime performance than BCPF1, more specifically, the

former was, on average, approximately 4 times faster than the latter.

Table 3.5: Comparison between the two BCP algorithms for the X instances. Only the
first 45 instances of X were considered.

Instance UB timeub z(IP )

BCPF1 BCPF2

LBf
root time timeprc nodes LBf

root time timeprc nodes
(s) (s) (s) (s) (s)

X-n101-50-k13 19,033 6,239 19,033 18,944 246 19 11 18,926 73 3 5

X-n101-66-k17 20,490 4,801 20,490 20,367 465 39 23 20,357 162 4 5

X-n101-80-k21 23,305 4,296 23,305 23,305 63 7 1 23,305 33 2 1

X-n106-50-k7 15,413 7,169 15,413 15,413 81 27 1 15,413 20 4 1

X-n106-66-k9 18,984 14,268 18,984 18,984 146 37 1 18,984 40 8 1

X-n106-80-k11 22,131 14,599 22,131 22,103 1,242 239 11 22,099 397 28 7

X-n110-50-k7 13,103 5,147 13,103 13,103 22 7 1 13,103 10 2 1

X-n110-66-k9 13,598 5,527 13,598 13,598 23 11 1 13,598 9 3 1

X-n110-80-k11 14,302 7,094 14,302 14,226 414 42 5 14,215 281 21 7

X-n115-50-k8 13,927 5,234 13,927 13,927 35 16 1 13,927 22 7 1

(Continues on the next page)
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Instance UB timeub z(IP )

BCPF1 BCPF2

LBf
root time timeprc nodes LBf

root time timeprc nodes
(s) (s) (s) (s) (s)

X-n115-66-k8 14,032 5,353 14,032 14,032 48 20 1 14,032 25 9 1

X-n115-80-k9 13,536 5,776 13,536 13,536 50 19 1 13,536 31 13 1

X-n120-50-k3 12,416 9,110 12,416 12,416 243 81 1 12,416 73 17 1

X-n120-66-k4 13,145 10,729 13,145 13,100 1,377 545 3 13,145 325 137 1

X-n120-80-k5 13,528 9,082 13,528 13,476 3,052 1,707 15 13,465 2,737 1,575 17

X-n125-50-k16 32,224 15,163 32,224 32,079 3,688 310 79 32,065 915 56 39

X-n125-66-k19 36,400 18,016 36,400 36,351 1,098 362 9 36,349 271 34 3

X-n125-80-k23 43,960 18,973 43,960 43,825 10,323 2,341 129 43,823 11,877 1,306 245

X-n129-50-k10 19,468 18,579 19,468 19,429 1,358 143 9 19,409 335 29 7

X-n129-66-k12 22,606 14,108 22,606 22,556 946 141 11 22,554 226 19 7

X-n129-80-k14 24,575 18,091 24,575 24,562 308 51 3 24,553 108 22 3

X-n134-50-k7 8,369 14,267 8,369 8,271 15,713 10,160 105 8,316 868 390 5

X-n134-66-k9 8,974 22,858 8,974 8,913 5,796 3,749 65 8,891 621 353 15

X-n134-80-k11 9,699 14,118 9,699 9,637 4,606 2,478 65 9,637 1,222 714 27

X-n139-50-k5 13,281 9,149 13,281 13,229 1,639 656 5 13,237 290 41 3

X-n139-66-k7 13,512 8,461 13,512 13,512 153 63 1 13,512 51 15 1

X-n139-80-k8 13,662 8,118 13,662 13,662 65 29 1 13,662 40 19 1

X-n143-50-k4 14,539 13,448 14,539 14,539 1,592 941 1 14,539 214 76 1

X-n143-66-k4 14,310 11,172 14,310 14,310 233 128 1 14,310 82 41 1

X-n143-80-k5 14,447 11,338 14,447 14,396 3,148 2,244 5 14,397 2,822 1,714 13

X-n148-50-k25 28,210 18,782 28,210 28,174 112 13 3 28,210 30 4 1

X-n148-66-k29 30,482 17,414 30,482 30,404 421 40 13 30,392 112 6 3

X-n148-80-k36 35,430 18,421 35,430 35,334 394 22 13 35,333 318 5 3

X-n153-50-k19 20,536 14,665 20,536 20,536 53 32 1 20,536 23 11 1

X-n153-66-k20 20,613 14,645 20,613 20,613 68 34 1 20,613 31 12 1

X-n153-80-k21 20,819 11,360 20,819 20,813 77 40 3 20,811 57 24 3

X-n157-50-k7 11,727 15,033 11,727 11,727 333 150 1 11,727 37 12 1

X-n157-66-k9 13,651 10,979 13,651 13,651 123 49 1 13,651 43 14 1

X-n157-80-k11 15,264 39,145 15,264 15,257 1,186 252 3 15,246 733 164 7

X-n162-50-k6 12,812 10,780 12,812 12,785 1,310 762 3 12,812 157 55 1

X-n162-66-k8 13,450 10,916 13,417 13,290 137,067 80,154 607 13,301 19,365 8,164 85

X-n162-80-k9 13,854 11,032 13,854 13,820 2,294 1,016 3 13,854 812 329 1

X-n167-50-k5 16,489 22,046 16,489 16,489 1,989 1,058 1 16,489 336 91 1

X-n167-66-k7 17,827 20,356 17,827 17,736 11,480 6,049 21 17,717 3,411 1,813 17

X-n167-80-k8 19,415 24,099 19,415 19,375 1,554 740 3 19,383 770 348 3

Average 4,814.1 2,600.5 27.6 1,120.3 393.6 12.2

Geometric mean 540.2 163.5 4.5 177.8 38.1 3.0

Because of the overall superior performance of BCPF2, we decided to run only this
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algorithm for the remaining X instances. Table 3.6 presents a summary of the results

obtained by this method considering all instances of set X, while the table provided in the

Appendix F shows the detailed results (except for those already reported in Table 3.5). On

average, the results suggest the average gap does not seem to substantially vary according

to the percentage of linehaul customers, but the average CPU time increases with the

percentage of linehaul customers (instances with 80% of linehaul customers lasted four

hours more than those with 50%). On the other hand, the more the instance is balanced,

the higher the number of proven optimal solutions. Finally, one can observe that 14 best-

known solutions were improved, considering the cases where their optimality was proven

or not.

Table 3.6: Summary of the results obtained by BCPF2 for the 300 instances of group X,
considering the percentage of linehaul customers.

50% 66% 80% All
Average gap (%) 0.53 0.46 0.50 0.50
Average time (min) 2,110.3 2,244.0 2,359.7 2,238.0
#Optima 46 40 37 123
#BKS improvements 6 3 5 14

Figure 3.5 shows the gaps for each instance, according to the percentage of linehaul

customers. It is possible to verify that all instances involving up to 237 customers were

solved to optimality for 50%, whereas this number decreases to 186 customers for 66%

and 80%. Furthermore, one can observe that the average gaps were generally below 2.5%,

even for the larger instances, but in the vast majority of the cases they were below 2.0%,

thus ratifying the high quality of the bounds reported.

Figure 3.6 illustrates the behavior of the average gaps as the estimated size of the

routes increases. The instances are classified as in Uchoa et al. [115] for the CVRP, where

the desired values of n/Kmin (n is the number of customers and Kmin is the minimum

number of routes) for the generated instances were partitioned into quintiles, classifying

the group of instances as “very small”, “small”, “medium”, “long” and “very long”. Hence,

if three instances of VRPB are derived from a “very small” instance of CVRP, then they

are also classified as “very small”. The box plots suggest that the smaller the size of the

routes, the smaller the gaps and the higher the robustness obtained. In addition, note

that at least 25% of the instances of each group were solved to optimality.

Furthermore, in order to assess the impact of the initial UBs, we report in Table

3.7 the amount of optimal solutions found by each BCP algorithm using such bounds or

not. While the BCP algorithms could solve all classical instances even without the initial
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Figure 3.5: Average gaps for the X instances. In Figure 3.5a, the value reported is given
for each value of |V | as the average gap of the three related instances. The other figures
show the gap of the instances associated with the corresponding percentage of linehauls.
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UBs, the latter play an important role when it comes to proving the optimality of some

instances of set X. Detailed results are provided in Appendix G.

Table 3.7: Impact of the initial upper bounds on the number of optimal solutions found
by the BCP algorithms

Benchmark #Opt with UBs #Opt without UBs
BCPF1 BCPF2 BCPF1 BCPF2

GJB 68 68 68 68
TV 33 33 33 33
Xa 45 45 42 41
Xb – 78 – 49

aFirst 45 instances
bLast 255 instances

Results for the HFFVRPB and VRPBTW

Table 3.8 shows the results obtained for the HFFVRPB instances. All optimal so-

lutions were found by the proposed algorithm. The instances with up to 75 customers were

solved to optimality at the root node in a matter of seconds, whereas the 100-customer

instances were solved in at most 1,983 seconds. The proposed algorithm was capable

of improving the BKS of 6 instances, including all the 100-customer ones. Moreover,

we also confirmed the observation made by Penna et al. [89] and proved that instances

HFFVRPB3, HFFVRPB6, HFFVRPB8, HFFVRPB12 and HFFVRPB14 are indeed in-

feasible. For some instances, there is no value for timeub because their upper bounds were

obtained from Tütüncü [114], whose CPU times were not reported.

The results obtained for the VRPBTW instances can be found in Table 3.9. In

this table, LBf
root and nodes stand for the final LB at the root node and the number

of nodes for the iteration which considers the optimal number of vehicles (as described

in Section 3.4.3, the BCP algorithm is executed iteratively for different fleet sizes). In

contrast, time aggregates the CPU time for all iterations. The optimality of all instances

was proven, where new improved solutions were found for instances BHR104A, BHR104B

and BHR104C. Almost all instances were solved to optimality at the root node, most of

them in a matter of seconds. We can also highlight that all iterations for non-optimal

fleet sizes were concluded at the root node. Instance BHR104A appears to be the most

challenging one, where the algorithm required more than 1,300 seconds to solve it.
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Table 3.8: Results for the T instances

Problem data BCP

Instance n+m n m UB timeub LBt
root z(IP )

time
nodes

(s) (s)
HFFVRPB1 50 25 25 874.60 < 1 874.60 874.60 4 1
HFFVRPB2 50 34 16 911.20 < 1 911.20 911.20 5 1
HFFVRPB3 50 40 10 998.22 – – – – –
HFFVRPB4 50 25 25 1,050.60 < 1 1,050.60 1,050.60 23 1
HFFVRPB5 50 34 16 1,051.30 < 1 1,051.30 1,051.30 5 1
HFFVRPB6 50 40 10 1,183.36 – – – – –
HFFVRPB7 75 37 38 1,073.90 2 1,070.00 1070.00 25 1
HFFVRPB8 75 50 25 1,182.66 – – – –
HFFVRPB9 75 60 15 1,003.20 2 1,003.20 1,003.20 8 1
HFFVRPB10 75 37 38 1,553.00 2 1,553.00 1,553.00 7 1
HFFVRPB11 75 50 25 1,659.80 2 1,659.80 1,659.80 27 1
HFFVRPB12 75 60 15 1,917.54 – – – – –
HFFVRPB13 100 50 50 1,181.70 6 1,167.43 1,180.30 1,983 5
HFFVRPB14 100 67 33 1,109.02 – – – – –
HFFVRPB15 100 80 20 1,114.90 5 1,097.36 1,105.10 1,349 8
HFFVRPB16 100 50 50 1,314.50 5 1,305.98 1,312.80 879 2
HFFVRPB17 100 67 33 1,585.30 – 1,211.70 1,211.70 252 1
HFFVRPB18 100 80 20 1,615.08 – 1,279.36 1,282.00 448 2

Table 3.9: Results for GDDS instances

Problem data BCP

Instance %BH UB timeub
LBf

root z(IP )
time

nodes
(s) (s)

BHR101A 10 22/1,818.86 77 1,818.86 22/1,818.86 4 1
BHR101B 30 23/1,959.52 103 1,959.52 23/1,959.52 3 1
BHR101C 50 24/1,939.10 76 1,939.10 24/1,939.10 3 1
BHR102A 10 19/1,653.18 79 1,653.18 19/1,653.18 7 1
BHR102B 30 22/1,750.70 70 1,750.70 22/1,750.70 4 1
BHR102C 50 22/1,775.76 71 1,775.76 22/1,775.76 4 1
BHR103A 10 15/1,385.38 84 1,385.38 15/1,385.38 6 1
BHR103B 30 15/1,390.32 86 1,390.32 15/1,390.32 8 1
BHR103C 50 17/1,456.48 79 1,456.48 17/1,456.48 5 1
BHR104A 10 10/1,203.44 110 1,182.87 10/1,202.53 1,330 11
BHR104B 30 11/1,154.84 104 1,258.48 10/1,258.48 55 1
BHR104C 50 11/1,191.38 143 1,188.78 11/1,188.78 23 1
BHR105A 10 15/1,560.15 123 1,547.48 15/1,560.15 83 3
BHR105B 30 16/1,583.30 104 1,583.30 16/1,583.30 16 1
BHR105C 50 16/1,709.66 128 1,709.66 16/1,709.66 52 1
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3.6.3 Results for the ILS-SP matheuristics

In the tables presented hereafter, Gapavg is the gap between the average solution and the

best known solution (BKS) and CPU (s) is the average CPU time in seconds. In what

follows, we report aggregate results for each benchmark set. Detailed results are provided

in Appendix J.

Results for the GJB and TV instances

Table 3.10 shows the results obtained on the GJB instances. All strategies found

the BKSs and improved the result of one instance. Their performance in terms of solution

quality was, on average, similar but ILSB-SPB had a subtle advantage. Concerning the

CPU time, ILSB-SP was, on average, slightly faster.

Table 3.10: Summary of the results found for the GJB instances

ILS-SP ILSB-SP ILSB-SPB
Gapavg (%) 0.015 0.015 0.005
CPU (s) 15.25 11.24 12.07
#Ties 67 67 67

#Improvements 1 1 1

Table 3.11 presents a comparison between our three strategies and best existing

heuristics, namely, MACS [51], RPA [127], ILS-400 [32], ILS-1000 [32], unified hybrid

genetic search (UHGS) [122], BRMF [14], and slack induction by string removals (SISRs)

[27]. It can be observed that the proposed algorithms achieved similar performance than

SISRs and outperformed those other ones from the literature both regarding solution

quality as well as CPU time, which in turn were scaled (when possible) to the machine

used in Cuervo et al. [32].

Table 3.12 provides the detailed results obtained on the GJB 200-customer in-

stances. In this case, it can be clearly observed that ILSB-SPB had the best performance

in terms of solution quality, whereas ILSB-SP was visibly the fastest in terms of CPU

time.

Figure 3.7 illustrates how the CPU time increase with the number of customers on

the GJB instances. It is possible to verify that they are similar up to 113 customers and

then the strategies seem to have a distinct performance from that point onwards. The

non-monotonic behavior of the runtime is because the performance does not only depend

on the number of customers, but also on the average number of customers per route.

Table 3.13 shows the aggregate results obtained on the TV instances, whereas Table
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Table 3.11: Comparison with the literature: GJB instances up to 150 customers. The
columns “Avg. best sol. cost" and “Avg. sol. cost" allow to compare with Cuervo et al.
[32]

Method #Best Avg. best sol. cost Avg. sol. cost Gapavg (%) CPU (s)
MACS 46/62 290,655.29 290,920.90 0.093 37.35
RPA 62/62 290,576.06 291,927.72 0.354 35.08
ILS-400 58/62 290,593.84 291,332.41 – 14.31
ILS-1000 62/62 290,576.22 291,170.16 – 22.89
UHGSa 61/61 – – 0.009 51.20
BRMFb 52/62 ≈290,741.53 ≈292,485.47 0.526 46.00c

SISRsb 62/62 ≈290,577.10 ≈290,586.29 0.003 2.56
ILS-SP 62/62 290,576.22 290,591.23 0.004 10.47
ILSB-SP 62/62 290,576.22 290,588.41 0.003 7.71
ILSB-SPB 62/62 290,576.22 290,585.62 0.002 8.28
aInstance G1 was disregarded

bApproximate value because the authors reported the costs divided by 103

cIntel Core i7 CPU 2.79 GHz

Table 3.12: Detailed results for the 200-customer GJB instances

ILS-SP ILSB-SP ILSB-SPB

Instance BKS Best Gapavg CPU Best Gapavg CPU Best Gapavg CPU
(%) (s) (%) (s) (%) (s)

O1 478,347.72 478,126.75 0.13 58.57 478,126.75 0.11 40.71 478,126.75 0.01 76.52
O2 477,256.15 477,256.15 0.00 57.02 477,256.15 0.00 37.49 477,256.15 0.00 42.52
O3 457,294.48 457,294.48 0.28 61.26 457,294.48 0.29 40.91 457,294.48 0.10 43.98
O4 458,874.87 458,874.87 0.24 59.31 458,874.87 0.34 37.92 458,874.87 0.07 42.32
O5 436,974.20 436,974.20 0.05 69.48 436,974.20 0.04 40.82 436,974.20 0.01 45.39
O6 438,004.69 438,004.69 0.11 68.21 438,004.69 0.07 40.13 438,004.69 0.02 44.62

Average 0.13 62.31 0.14 39.66 0.03 49.23
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Figure 3.7: Average CPU time (s) for the GJB instances
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3.14 presents a comparison between our three strategies and the best known heuristics and

Table 3.15 provides the detailed results achieved on the TV 100-customer instances. The

overall performance is quite similar to those observed for the GJB instances. Moreover,

Figure 3.8 shows that the CPU time only starts to be distinct for the instances involving

more than 75 customers.

Table 3.13: Summary of the results found for the TV instances

ILS-SP ILSB-SP ILSB-SPB
Gapavg (%) 0.07 0.04 0.03
CPU (s) 4.86 4.58 5.94
#Ties 33 33 33

#Improvements 0 0 0

Table 3.14: Comparison with the literature: TV instances

Method #Best Avg. best sol. cost Avg. sol. cost Gapavg (%) CPU (s)
MACS 27/33 701.49 702.35 0.193 14.17
ILS-400 31/33 700.72 704.42 – 3.83
ILS-1000 32/33 700.64 703.52 – 7.35
BRMF 33/33 700.61 704.76 0.49 20c

ILS-SP 33/33 700.61 701.32 0.069 3.34
ILSB-SP 33/33 700.61 700.95 0.038 3.14
ILSB-SPB 33/33 700.61 700.91 0.034 4.08
cIntel Core i7 CPU 2.79 GHz

Table 3.15: Detailed results for the 100-customer TV instances

ILS-SP ILSB-SP ILSB-SPB

Instance BKS Best Gapavg CPU Best Gapavg CPU Best Gapavg CPU
(%) (s) (%) (s) (%) (s)

E-n101-A-50-k4 831 831 0.11 7.71 831 0.00 4.84 831 0.00 4.95
E-n101-A-66-k6 846 846 0.00 7.78 846 0.00 5.66 846 0.00 5.58
E-n101-A-80-k6 856 856 0.78 17.87 856 0.49 16.74 856 0.47 18.28
E-n101-B-50-k7 923 923 0.19 16.26 923 0.14 14.66 923 0.02 21.27
E-n101-B-66-k9 982 982 0.86 57.35 982 0.36 60.24 982 0.34 94.11
E-n101-B-80-k11 1,008 1,008 0.01 16.66 1,008 0.00 17.40 1,008 0.00 19.82
Average 0.32 20.60 0.16 19.92 0.14 27.34
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Figure 3.8: Average CPU time (s) for the TV instances

Results for the X instances

Table 3.16 contains the results achieved on the X instances. In this table, Gapbest
denotes the average gap between the best solution and the BKS. ILSB-SPB obtained the

best performance in terms of solution quality, especially when analyzing the behavior of

average gaps depicted in Figure 3.9, as well as the number of ties and improved solutions.

The Figure 3.9 has a cyclic behavior because the X benchmark is cyclical w.r.t. the

percentage of linehaul customers (from 50% to 80%), which is an attribute correlated

with the difficulty of the problem. Although not reported in the table, we highlight that

ILSB-SPB obtained the best Gapavg in 173 instances, against 111 and 35 of ILSB-SP and

ILS-SP, respectively. On the other hand, ILSB-SP was, on average, clearly the fastest

strategy, as can also be seen in Figure 3.10. Nonetheless, it is interesting to observe in

Table 3.17 that the differences between the strategies tend to decrease as the number of

linehaul customers increase.

Table 3.16: Summary of the results found for the X instances

ILS-SP ILSB-SP ILSB-SPB
Gapbest (%) 0.29 0.26 0.25
Gapavg (%) 0.67 0.59 0.56
CPU (s) 2,600 2,005 2,660
#Ties 71 75 83

#Improvements 31 27 33
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Figure 3.9: Average gap (%) for the X instances

101 143 186 228 270 313 367 449 548 670 819 1001

0

0.5

1

1.5

2

2.5

·104

n+m

S
ec
on

d
s

ILS-SP
ILSB-SP
ILSB-SPB

Figure 3.10: Average CPU time (s) for the X instances
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Table 3.17: Summary of the results found for the X instances with 50%, 66% and 80%
linehauls

50%
ILS-SP ILSB-SP ILSB-SPB

Gapbest (%) 0.38 0.36 0.33
Gapavg (%) 0.79 0.72 0.66
CPU (s) 2,788 1,991 2,775
#Ties 27 28 33

#Improvements 6 5 12
66%

Gapbest (%) 0.27 0.23 0.23
Gapavg (%) 0.64 0.56 0.52
CPU (s) 2,490 1,858 2,528
#Ties 22 26 28

#Improvements 13 10 11
80%

Gapbest (%) 0.23 0.19 0.19
Gapavg (%) 0.57 0.49 0.48
CPU (s) 2,521 2,168 2,677
#Ties 22 21 22

#Improvements 12 12 10

3.7 Concluding remarks

In this chapter, we proposed two branch-cut-and-price (BCP) approaches based on differ-

ent mathematical formulations for the vehicle routing problem with backhauls (VRPB).

While in one formulation the columns are based on complete routes (F1), in the other

one the columns are based on separate linehaul and backhauls paths (F2). The BCP

algorithms were implemented using the VRPSolver and they contain several successful

methodological ingredients such as ng-routes/paths, limited memory rank-1 cuts, rounded

capacity cuts, strong branching, route enumeration, arc elimination using reduced costs

and dual stabilization.

Although it was proven that the linear relaxations of the formulations are equally

strong, we demonstrated that rank-1 cuts for F1 may be stronger than the same type

of cuts for F2. However, computational experiments on well-known benchmark instances

revealed that the BCP algorithm over F2 has a better overall performance in practice.

Nevertheless, both algorithms were capable of finding the optimal solutions for all in-

stances, some of them for the first time. We also performed tests on a newly proposed

set of instances that were derived from the X dataset of Uchoa et al. [115]. The BCP

implementation based on F2 yielded better results than the one based on F1, confirming

the efficiency of using separate variables for linehaul and backhaul paths. Finally, we con-
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ducted experiments on benchmark instances for the HFFVRPB, and of the VRPBTW.

For these two problems, all benchmark instances were solved to optimality.

We also proposed three heuristic strategies for the VRPB. The first transforms

a VRPB instance into an AVRPMB instance and then the ILS-SP is directly applied.

The second adapts ILS-SP for the VRPB itself by only allowing feasible solutions to be

explored in all steps of the algorithm. The third extends the second strategy by modifying

the SP formulation used in the matheuristic to specifically tackle the VRPB. Their overall

performance can be ranked according to the criteria presented in Table 3.18.

Table 3.18: Ranking of the strategies according to the criteria defined by Cordeau et al.
[30]

Criterion ILS-SP ILSB-SP ILSB-SPB
Simplicity 1st 2nd 3rd

Flexibility 1st 2nd 3rd

Speed 2nd 1st 2nd

Accuracy 3rd 2nd 1st

Despite its generality, ILS-SP still seems a promising alternative for solving the

VRPB. ILSB-SP offers an interesting compromise between speed and accuracy. ILSB-

SPB is useful to systematically find high quality solutions, especially for more challenging

instances. Overall, all strategies managed to achieve extremely competitive results, out-

performing the best methods on classical benchmark instances and even obtaining two

new improved solutions. They also found high quality solutions for the newly introduced

dataset involving up to 1,000 customers, with aggregate average gaps less than or equal

to 0.67%.

In future studies, we suggest to extend the proposed BCP algorithms to other

VRPB variants considering, for example, multiple depots and mixed routes (when the

linehaul-backhaul precedence constraint is relaxed) [99]. An effective extension for prob-

lems with mixed routes might be especially challenging because of the existence of suc-

cessful approaches for the VRP with simultaneous pickup and delivery [107, 108], which

generalizes the VRP with mixed backhauls. On the other hand, variants with multiple

depot and without mixed routes can take advantage of pricing via two graphs (inspired

by formulation F2).



Chapter 4

A POPMUSIC matheuristic for the
capacitated vehicle routing problem

4.1 Introduction

The CVRP is one of the most widely studied problems in combinatorial optimization

and operations research. The CVRP is the prototypical vehicle routing problem. New

ideas are often first proposed and tested on CVRP and then generalized to other routing

variants. It can be formally defined as follows. Let G = (V,E) be a complete undirected

graph, such that V = {0, 1, . . . , n} is the set of vertices and E is the set of edges, where

vertex 0 represents a depot and V+ = {1, . . . , n} a set of customers. There is a non-

negative cost cij for each edge {i, j} ∈ E and a demand di for each customer i ∈ V+. The

vehicle capacity is denoted by Q. A route is a path that begins and ends at the depot. A

solution consists of a set of routes that respect the following constraints: (i) each customer

must be visited exactly once by one of the routes; (ii) the sum of the customer demands

in a route can not exceed the vehicle capacity. The objective is to find a set of routes

with the minimum total cost.

Given that CVRP is NP-hard, most of the algorithms proposed for this problem

are heuristics [70]. The best performing published algorithms are: the iterated local search

with set partitioning (ILS-SP) [106], knowledge-guided local search (KGLS) [7], hybrid ge-

netic search (HGS) [121], slack induction by string removals (SISRs) [27], fast ILS localized

optimization (FILO) [1], and adaptive iterated local search with path-relinking (AILS-PR)

[80]. ILS-SP combines the well-known ILS [77] with a set partitioning (SP) model. The

SP model attempts to build unexplored solutions from the set of routes associated with

the local minima found by previous runs of the local search. KGLS presents an efficient
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guided local search (GLS) with three complementary operators using ideas from sequen-

tial search and pruning, as well as a problem-specific knowledge to penalize “bad" edges.

HGS is a population-based evolutionary search that also makes use of local search (in a

step called education) and a sophisticated mechanism for controlling population diversity.

Among the key components of HGS, we can mention the management of a subpopulation

with infeasible solutions, as well as the individual evaluation (a.k.a. fitness) driven by

the solution cost and its contribution to population diversity. More recently, Vidal [119]

introduced a new neighborhood called SWAP∗ to the HGS, which significantly boosted

the original method for the CVRP. SIRS is a ruin & recreate local search guided by sim-

ulated annealing (SA) [65]. The ruin procedure removes strings (sequence of consecutive

customers) from routes (inducing a capacity slack), whereas the recreate procedure rein-

serts the removed customers in the ruined solution in a greedy manner. FILO is a scalable

heuristic that employs novel and existing acceleration techniques during the main iterative

part based on ILS, whereas it uses an SA-based acceptance criterion to get a continuous

diversification. Finally, AILS-PR is a new hybridization of ILS with path-relinking, which

is equipped with an automatic mechanism to control the diversity step to escape from

local optima.

On the other hand, the exact methods for CVRP have advanced considerably in

recent years [31, 95]. The state-of-the-art results are achieved by branch-cut-and-price

algorithms [87, 92], which combine column and cut generation with several additional

mechanisms. According to the experiments carried out in Uchoa et al. [115], this type

of algorithm is able to produce optimal solutions for almost all instances with up to 250

customers, and in some cases, it can solve even larger instances (the largest one already

solved has 654 customers). An important observation on the behavior of modern branch-

cut-and-price algorithms for CVRP, explored in this work, is the following: while instances

with more than 200 customers usually take hours or even days to be solved, many instances

with up to 150 customers can be solved in few minutes, and many instances with up to

100 customers can be solved in seconds.

The algorithms that hybridize metaheuristics with mathematical programming ap-

proaches [63] are often known as matheuristics. Such methods have already been proposed

for several optimization problems, including vehicle routing [4, 71]. According to Archetti

and Speranza [4], one of the types of matheuristics is based on the decomposition of the

original problem into smaller subproblems that can be solved (optimally or sub-optimally)

through mathematical programming models. This chapter proposes a simple Partial OP-

timization Metaheuristic Under Special Intensification Conditions (POPMUSIC) [110]
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for the CVRP that uses a modern branch-cut-and-price algorithm to solve subproblems

(exactly or heuristically). The general idea of POPMUSIC is to optimize subproblems,

defined by parts of a solution until a local minimum is reached. This type of algorithm has

been shown to be effective for different problems [110], including vehicle routing variants

[67, 86] and the famous traveling salesman problem [109]. The main difference between

the proposed POPMUSIC and the existing ones for VRP (like Ostertag et al. [86] and

Lalla-Ruiz and Voß [67]) is the use of the generic and state-of-the-art exact algorithm by

Pessoa et al. [92] as subproblem solver.

The remainder of this chapter is organized as follows. In Section 4.2, the proposed

POPMUSIC matheuristic for the CVRP is presented. Section 4.3 describes the modifica-

tions to the published branch-cut-and-price algorithm used for solving the subproblems.

Section 4.4 presents and analyses the results of extensive computational experiments,

including those ones for two extensions of the CVRP: heterogeneous fleet vehicle rout-

ing problem (HFVRP) and vehicle routing problem with backhauls (VRPB). Finally, in

Section 4.5, the final conclusions are presented, as well as suggestions for future work.

4.2 A POPMUSIC matheuristic for the CVRP

Algorithm 6 shows the pseudocode of the proposed POPMUSIC matheuristic for the

CVRP, which has four inputs: (i) an initial solution S; (ii) an algorithm A to solve

subproblems; (iii) initial value α for the current target dimension dimsp (upper limit on

the dimension of subproblems); (iv) step size δ to increase dimsp. The algorithm’s output

is a (possibly) improved solution S obtained after solving a sequence of subproblems. A

solution S is a set {r1, . . . , rK} of K routes, whereas the set of customers visited by a route

r is denoted by C(r). A set Vsp ⊆ V+ represents the CVRP subproblem associated with

the subgraph G[{0} ∪ Vsp]. We will refer to solutions for subproblems as subsolutions. In

addition, in the description of the algorithm, we will consider that cji = cij, ∀{i, j} ∈ E,

and cii = 0, ∀i ∈ V+.

The algorithm keeps the current target dimension dimsp, which is the upper limit

for |Vsp|. dimsp is initialized to α at line 4. The set Π, initialized at line 5, keeps all sub-

problems already explored during the search together with their subsolutions. Formally,

Π is a set of all pairs (V ′, S ′), such that subproblem with set V ′ ⊂ V+ of vertices is already

solved, and S ′ is its subsolution. At first, a random permutation of the customers in V+

produces the array L (line 7). For a given value of dimsp, each customer i ∈ V+ is used
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Algorithm 6: A POPMUSIC matheuristic for the CVRP
1 Data: V,E, c, d,Q
2 Input parameters: initial solution S, algorithm A, α, δ
3 Output: (Possibly) improved solution S
4 dimsp ← α
5 Π← ∅
6 while time limit is not exceeded and dimsp ≤ |V+| do
7 L← a vector with a random order of V+

8 for z = 1, 2, . . . , n do
9 i← L[z]
10 /* Build the subproblem for seed i */
11 Vsp ← ∅
12 R← ∅
13 while |Vsp| < dimsp do
14 r̂ ← argmin

r∈S,r/∈R

{
minj∈C(r) cij

}
15 if |Vsp|+ |C(r̂)| ≤ dimsp then
16 Vsp ← Vsp ∪ C(r̂)
17 R← R ∪ {r̂}
18 else
19 Go to the line 21

20 /* If the same or a larger subproblem has not yet been solved, solve Vsp */
21 if Vsp 6⊆ V ′ for all (V ′, S′) ∈ Π then
22 Let Ssp be the subsolution for Vsp in S
23 Π← Π ∪ (Vsp, Ssp)
24 Solve Vsp with the algorithm A using cost(Ssp) as the initial upper bound
25 Let S′sp be the subsolution found by the algorithm A, if any
26 if S′sp is found and cost(S′sp) < cost(Ssp) then
27 Replace (Vsp, Ssp) by (Vsp, S

′
sp) in Π

28 Update S by replacing subsolution Ssp by S′sp
29 Go to the line 7

30 /* Increase the current target dimension */
31 dimsp ← dimsp + δ

as a seed to construct a subproblem Vsp at lines 11–19. A subproblem Vsp with at most

dimsp customers is constructed iteratively by including the routes in the current solution

S that are closest to vertex i. The distance from i to each route r ∈ S is determined by

the smallest cost of edges connecting i and the vertices in r (line 14). The routes already

included in Vsp are stored in R to avoid repetitions (line 17). The construction of subprob-

lem Vsp is finished when the next selected route r̂ cannot be included in subproblem due

to the upper limit dimsp on the subprobem dimension (line 19). Figure 4.1a illustrates

the construction of the subproblem for an instance having 109 customers and the current

target dimension dimsp = 30. First, the route containing the seed (in black) is included
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in the subproblem. The second selected route is the red one, while the third is the blue

one, and the fourth is the purple one. Adding a fifth route would exceed dimsp, so the

obtained subproblem has 24 customers.

(a) Initial solution and a constructed subproblem.
Seed customer is marked in black.

(b) Improved solution after finding a better subso-
lution

Figure 4.1: Constructing and solving a subproblem. Depot is the yellow square, and cus-
tomers are circles with diameter proportional to its demand. For the sake of visualization,
the edges adjacent to the depot are not depicted.

The algorithm solves generated subproblem Vsp only if it is neither equal nor con-

tained in any subproblem V ′ already solved before (line 21). Indeed, the Π-based condi-

tion avoids wasting time on subproblems, i.e., current subsolutions of which are unlikely

to be improved because the same or a larger subproblem has been solved already. The

solved subproblems together with their solutions are added to set Π at line 23. At line

24, the algorithm A tries to improve the subsolution Ssp of S for current subproblem

Vsp. As algorithm A, we use a branch-cut-and-price based heuristic described in Section

4.3. It is important here to use the cost of the known solution Ssp for subproblem Vsp to

improve the performance of the branch-cut-and-price algorithm. Finally, if the solution

S ′sp found by A is better than Ssp, then S is updated, and the search is restarted for the

same target dimension dimsp: all customers will be used again as seeds without increasing

dimsp. Figure 4.1b depicts an example of such an improved solution. If all seeds fail to

produce an improving subsolution, then the target dimension dimsp is increased by δ, so

that larger subproblems can be explored (line 31). The algorithm is interrupted when the

time limit is reached or when the target dimension exceeds the number of customers (line

6). From now on, we refer to Algorithm 6 as POP.
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4.3 A branch-cut-and-price heuristic to solve subprob-
lems

The algorithm A in POP, used for solving the subproblems, is an adaptation of the

generic Branch-Cut-and-Price (BCP) algorithm proposed by Pessoa et al. [92], which is a

state-of-the-art exact algorithm for many VRP variants, including the CVRP. BCP is a

well-known technique that incorporates column and cut generation in a branch-and-bound

procedure. In particular, the BCP by Pessoa et al. [92] includes advanced elements, such

as: (i) ng-path relaxation [10]; (ii) rank-1 cuts with limited memory [22, 62, 88]; (iii) path

enumeration [9, 29]; (iv) rounded capacity cuts [68]; (v) bucket graph based bi-directional

labeling algorithm [100]; (vi) edge elimination based on reduced costs [60, 100]. The

reader is referred to Pessoa et al. [92] for more details about the BCP algorithm.

Since the methodology proposed in this work is a matheuristic, optimality does

not need to be preserved by the BCP. Thus, we turn the BCP algorithm into a heuristic

(named BCPH) by:

• Imposing a branch-and-bound node limit of 10 and time limit of 3,600 seconds;

• Using the false gap mechanism, described next;

• Using a restricted master heuristic, described below.

As mentioned above, the BCP algorithm uses an elimination procedure that re-

moves edges from graph G by exploiting reduced cost arguments. In particular, if the

minimum reduced cost of a path passing by an edge e ∈ E is not smaller than the gap

between the current upper bound and the lower bound obtained by the column generation

procedure, then edge e can safely be removed from the graph G, as no improving solution

contains this edge. Removing edges makes subsequent calls to the labeling algorithm used

for solving the pricing problem faster.

In addition to the edge elimination, path enumeration is also dependent on the

gap. This procedure tries to enumerate all possible paths with reduced cost smaller than

the current gap between upper and lower bounds. If path enumeration is successful (i.e.,

the number of enumerated paths is less than, say, one million; enough to store them in

a table), the pricing problem from now on is solved by inspection. The inspection of

enumerated paths is usually much faster to perform than to call the labeling algorithm.

If the number of enumerated routes is sufficiently small (less than 10,000), the current
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node in the search tree can be finished by adding all enumerated routes to the restricted

master and solving it as an IP (using a general solver like CPLEX).

The previous two paragraphs show the importance of having very good upper

bounds (and, therefore, smaller gaps) for reducing the running time of the BCP algorithm.

In fact, that is why POP solves smaller subproblems first (easy even with not so good

upper bounds), so the solution of larger subproblems can benefit from already improved

upper bounds. To further reduce the running time, the false gap mechanism artificially

decreases the gaps when performing edge elimination and route enumeration. The false

gap is defined as FG = (UB − LB)/FGF , where the false gap factor FGF > 1 is a

parameter. Application of the false gap mechanism can result in removing edges or paths

which participate in an improving solution. However, experiments indicate that such an

outcome occurs rarely when one uses a moderate value for FGF (we tested FGF = 3).

Another difference from the default BCP algorithm by Pessoa et al. [92] consists

in using an additional heuristic (similar to the one proposed in [91]). It is called after the

convergence of column and cut generation at every node of the search tree. The idea is to

further decrease the false gap (dividing it by two in each iteration) until it is possible to

complete the path enumeration. Then, the 10,000 routes with smaller reduced costs are

used to create an IP that is solved by CPLEX.

4.4 Computational experiments

The proposed algorithm POP was coded in Julia language version 1.4.2. The algorithm

BCPH to solve subproblems was obtained by parameterizing the CVRP demo application

of VRPSolver [23]. The parameters are described in Section 4.4.3. VRPSolver, freely

available for academic use, implements the generic BCP algorithm proposed by Pessoa

et al. [92]. It makes use of the BaPCod C++ library [117] as a BCP framework combined

with the C++ implementations by [100] for solving pricing problems, route enumeration,

and separation of rank-1 cuts. It also uses CVRPSEP package [78] for separating rounded

capacity cuts. Finally, VRPSolver uses CPLEX 12.9 to solve the LP relaxations and the

MIPs over the enumerated paths.

All experiments with POP were performed on a 2 Deca-core Haswell Intel Xeon E5-

2680 v3 server with 2.50 GHz and 128 GB of RAM, where each algorithm was executed

on a single thread for each instance. Parallel runs for several different instances were

performed on the same machine to speed up the experiments, effectively reducing the
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amount of memory allocated to each process.

4.4.1 Benchmark instances

The tests were performed on the 57 largest instances of the benchmark set X [115], ranging

from 303 to 1001 vertices. Indeed, set X is currently the main benchmark used to assess

the performance of all recent exact and heuristic algorithms for the CVRP. We skipped

the 43 instances with less than 300 customers because most of those instances are now

relatively easy for modern heuristics and even for modern exact algorithms. In fact, 39

of them have proved optimal solutions.

For a deeper analysis of some experiments, we split the 57 instances into two

subsets: the subset XS of 29 instances with n/Kmin ≤ 10.8 (i.e., instances with short

routes), and the subset XL composed by the other 28 instances (i.e., instances with long

routes). TheKmin value is an instance attribute that means the minimum possible number

of routes that a solution can have. For example, the instance X-n561-k42 belongs to

XL because n/Kmin = 561/42 = 13.6 > 10.8. Extensive experiments presented in [87]

indicate that modern branch-cut-and-price algorithms for CVRP, like the one we use to

solve subproblems in POP, perform considerably better on instances with shorter routes.

Therefore, route size is a factor that is likely to affect the overall performance of POP.

Moreover, in the preliminary experiments used for calibration, we consider a small

representative subset XR having only seven instances. The choice of XR is described in

Appendix K.

The gap of a solution S is calculated as 100 · ((cost(S)−BKS)/BKS), where BKS

is the best known solution in the CVRPLIB1, only disregarding the solutions found by

executions based on the proposed POP approach. Several optimization groups compete

for improving the best known solutions for the instances in CVRPLIB. In fact, there were

24 updates in 2020 by seven distinct groups. Updating a BKS in CVRPLIB does not

require the publication of an article; one only has to send the improved solution to be

checked, even if the improvement is by only one unit. It is not necessary to describe

how the solution was obtained. The competing groups may perform long runs of their

methods, try several random number seeds, and even resort to special calibration. Thus,

those BKSs are likely to be very close to optimum values.
1BKSs available in the CVRP Library (http://vrp.atd-lab.inf.puc-rio.br/) on October 31, 2020

http://vrp.atd-lab.inf.puc-rio.br/
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4.4.2 Obtaining an initial solution

The initialization of POP is a critical issue. Preliminary experiments showed that it did

not work so well as a stand-alone algorithm. It means that if it is initialized with a low-

quality solution S obtained by a simple constructive heuristic, the overall performance of

POP is not competitive with the best existing heuristics. In fact, we are proposing POP

essentially as an effective way of improving solutions that are already reasonably good,

possibly obtained by running some heuristic.

We report results obtained by different variants of POP1, which uses the HGS

heuristic by [121] to obtain the initial solution. However, as shown in Appendix L, the

HGS is more effective if the entire algorithm is restarted (with a different random number

seed) after 50, 000 iterations without any improvement (a method hereafter called HGSr).

Notation POP1
t defines the variant that starts POP with the solution obtained by HGSr

in t hours. We tested 4 values for t: 0.01 (36 seconds), 0.125 (450 seconds), 0.5 (1800

seconds), and 2 (7,200 seconds). Of course, the initialization time is included in the overall

time. For example, in variant POP1
0.5, which is run for 32 hours per instance, HGSr obtains

the initial solution in 0.5 hours, and then POP spends 31.5 hours improving the initial

solution.

The results obtained by several variants POP1 over the time horizon of 32 hours

are compared with those by HGSr itself. We also perform some comparisons with a

second heuristic, the ILS-SP proposed by [106]. As shown in [115], although the HGS is

on average substantially better than the ILS-SP, there are some instances (usually those

with very short routes) where the ILS-SP is superior.

4.4.3 Parameterization of the subproblem solver

The default parameterization of the VRPSolver CVRP demo is calibrated to find optimal

solutions for hard instances having around 200-300 customers. As POP needs to solve

many smaller problems, we propose an alternative parameterization that works better

inside POP. Appendix M presents the default and the proposed parameterizations, whose

performances are compared in Figure 4.2 by running POP1
0.5 on the XR instances over

8 hours (per instance). The convergence curves of the algorithms show the average gap

found at different times.

The figure shows the superior performance obtained when the heuristic ver-

sion BCPH is used to solve the subproblems. BCPH is obtained from the exact
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BCP using the proposed parameterization and by setting three additional parameters:

RCSPfalseGapFactor to 3 (this activates the false gap mechanism described in Section

4.3), MaxNbOfBBtreeNodeTreated to 10 (maximum number of nodes in the branch-and-

bound tree), and GlobalTimeLimit to 3600 seconds (maximum time for solving a subprob-

lem) in the proposed parameterization. All POPMUSIC results hereafter are obtained

using algorithm BCPH as the subproblem solver.
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POP10.5 (Exact BCP – default params)

POP10.5 (Exact BCP – modified params)

POP10.5 (BCPH)

Figure 4.2: POP1
0.5 with three different parameterizations of VRPSolver. The time axis

is on a log2 scale.

4.4.4 Calibrating parameters α and δ

Table 4.1 shows the performance of POP1
0.5 for different values of parameters α and δ.

Each setting was applied to the XR instances over the horizon of 8 hours. The setting

(α = 50, δ = 40) achieved the best performance for 2, 4, and 8 hours. Therefore, all

POPMUSIC results below are obtained with parameterization (α = 50, δ = 40).

Table 4.1: Avg. gap (%) of POP1
0.5 on XR instances for different values of α and δ.

Time (h) α = 25 α = 25 α = 25 α = 50 α = 50 α = 50 α = 75 α = 75 α = 75
δ = 10 δ = 25 δ = 40 δ = 10 δ = 25 δ = 40 δ = 10 δ = 25 δ = 40

1 0.399 0.380 0.448 0.387 0.390 0.383 0.475 0.460 0.440
2 0.327 0.303 0.294 0.310 0.308 0.263 0.344 0.328 0.326
4 0.272 0.245 0.244 0.274 0.242 0.209 0.241 0.236 0.248
8 0.198 0.170 0.165 0.213 0.193 0.162 0.183 0.214 0.198
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4.4.5 Comparison of the algorithms ILS-SP, HGSr, and POP1 over
32 hours

Figure 4.3 and Table 4.2 show the gap convergence curves for HGSr and POP1 over the

horizon of 32 hours.

Table 4.2: Average gap (%) of HGSr and POP1 executions at different times.

Instances Time (h) HGSr POP1
0.01 POP1

0.125 POP1
0.5 POP1

2

All

0.01 1.996 1.996 – – –
0.125 0.836 1.180 0.836 – –
0.25 0.626 0.931 0.564 – –
0.5 0.484 0.708 0.457 0.484 –
1 0.396 0.579 0.355 0.317 –
2 0.330 0.420 0.271 0.240 0.330
4 0.283 0.293 0.206 0.182 0.171
8 0.236 0.201 0.164 0.138 0.126
16 0.210 0.137 0.117 0.099 0.090
32 0.184 0.091 0.084 0.076 0.064

XS

0.01 1.790 1.790 – – –
0.125 0.704 0.754 0.704 – –
0.25 0.547 0.524 0.398 – –
0.5 0.425 0.350 0.303 0.425 –
1 0.345 0.268 0.228 0.232 –
2 0.298 0.196 0.163 0.178 0.298
4 0.262 0.101 0.114 0.131 0.108
8 0.196 0.058 0.069 0.084 0.081
16 0.176 0.039 0.048 0.056 0.055
32 0.162 0.017 0.022 0.036 0.037

XL

0.01 2.209 2.209 – – –
0.125 0.973 1.621 0.973 – –
0.25 0.708 1.354 0.735 – –
0.5 0.546 1.080 0.617 0.546 –
1 0.448 0.902 0.487 0.404 –
2 0.363 0.652 0.383 0.305 0.363
4 0.306 0.492 0.301 0.235 0.237
8 0.278 0.349 0.263 0.193 0.173
16 0.244 0.238 0.190 0.144 0.127
32 0.206 0.167 0.149 0.117 0.092

The performance of POP1
0.01 deserves a separate analysis. It illustrates the behavior

of POP as an “almost stand-alone” matheuristic, starting from a medium quality solution.

Such solutions can be rapidly obtained by any modern heuristic for the CVRP. The initial

solutions provided by running HGSr for 36 seconds have an average gap of about 2% from

the BKS.

• The performance of POP1
0.01 on instances with shorter routes (set XS) is very good.

After 900 seconds, it already provides solutions that are significantly better than

those from HGSr. After 4 hours, it is also consistently better than POP1
0.125, POP1

0.5,

and POP1
2 and reaches the excellent average gap of 0.017% in 32 hours. It is quite



4.4 Computational experiments 110

0

0.2

0.4

0.6

0.8

1
All instances HGSr

POP10.01

POP10.125

POP10.5

POP12

0

0.2

0.4

0.6

0.8

1

av
g.

ga
p

(%
)

XS instances

0.125 0.25 0.5 1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

time (h)

XL instances

Figure 4.3: Convergence curves of POP1 and HGSr.
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Table 4.3: Best solutions found by ILS-SP, HGSr, and POP1 after 32 hours.

Instance BKS ILS-SP HGSr POP1
0.01 POP1

0.125 POP1
0.5 POP1

2
X-n303-k21 21736 21840 21739 21863 21837 21750 21751
X-n308-k13 25859 25881 25861 25876 25876 25876 25862
X-n313-k71 94044 94105 94046 94053 94053 94046 94046
X-n317-k53 78355∗ 78355 78355 78355 78355 78355 78355
X-n322-k28 29834∗ 29872 29848 29887 29887 29887 29880
X-n327-k20 27532 27743 27555 27573 27576 27573 27576
X-n331-k15 31102∗ 31108 31103 31103 31103 31103 31103
X-n336-k84 139135 139253 139210 139164 139111 139175 139125
X-n344-k43 42056 42096 42069 42055 42050 42050 42056
X-n351-k40 25919 26131 25935 25896 25896 25896 25896
X-n359-k29 51505 51997 51521 51583 51583 51583 51505
X-n367-k17 22814 22912 22814 22814 22821 22821 22814
X-n376-k94 147713∗ 147713 147713 147713 147713 147713 147713
X-n384-k52 65941 66382 66048 65941 65999 65956 65947
X-n393-k38 38260∗ 38273 38260 38260 38260 38260 38260
X-n401-k29 66163 66614 66222 66181 66220 66257 66156
X-n411-k19 19718 19811 19717 19712 19718 19712 19712
X-n420-k130 107798∗ 107798 107813 107798 107798 107798 107798
X-n429-k61 65449 65759 65489 65527 65467 65467 65455
X-n439-k37 36391∗ 36402 36395 36395 36395 36395 36395
X-n449-k29 55233 56131 55336 55332 55236 55259 55258
X-n459-k26 24139 24421 24184 24193 24208 24209 24160
X-n469-k138 221824∗ 221940 222203 221824 221824 221824 221824
X-n480-k70 89458 89821 89542 89449 89449 89449 89449
X-n491-k59 66510 67128 66633 66555 66539 66572 66514
X-n502-k39 69230 69315 69254 69232 69232 69232 69232
X-n513-k21 24201 24275 24201 24248 24249 24201 24201
X-n524-k153 154593∗ 154698 154774 154593 154593 154593 154593
X-n536-k96 94921 95697 95059 94948 94915 95205 95205
X-n548-k50 86700∗ 86710 86737 86701 86701 86701 86701
X-n561-k42 42717 43016 42744 42758 42773 42758 42758
X-n573-k30 50673 51074 50782 50807 50882 50742 50735
X-n586-k159 190423 190767 190581 190365 190340 190375 190379
X-n599-k92 108489 109147 108781 108498 108558 108517 108462
X-n613-k62 59535 60318 59671 59561 59544 59606 59656
X-n627-k43 62164 62762 62369 62182 62213 62245 62266
X-n641-k35 63694 64449 64019 63773 63989 63919 63863
X-n655-k131 106780∗ 106780 106810 106780 106780 106780 106780
X-n670-k130 146332 147286 147144 146346 146340 146411 146461
X-n685-k75 68205 68682 68436 68260 68315 68318 68354
X-n701-k44 81934 82907 82310 82085 81984 81970 82021
X-n716-k35 43412 44091 43572 43443 43491 43498 43489
X-n733-k159 136250 136900 136365 136245 136237 136278 136223
X-n749-k98 77365 78177 77706 77380 77399 77360 77342
X-n766-k71 114454 115413 114701 114573 114707 114640 114682
X-n783-k48 72445 73627 72809 72696 72592 72605 72704
X-n801-k40 73305 73939 73548 73446 73445 73368 73362
X-n819-k171 158247 159249 158696 158128 158191 158222 158211
X-n837-k142 193810 194901 194264 193820 193793 193800 193822
X-n856-k95 88965 89143 89062 89030 89030 89030 89030
X-n876-k59 99299 100357 99748 99583 99437 99479 99428
X-n895-k37 53860 54777 54266 54112 54080 54125 54045
X-n916-k207 329247 330773 329902 329305 329213 329305 329289
X-n936-k151 132725 134564 133440 132859 132882 132863 132942
X-n957-k87 85465 85887 85633 85485 85468 85492 85473
X-n979-k58 118987 120015 119339 119430 119059 119073 119040
X-n1001-k43 72359 73810 72766 72714 72506 72460 72486
Avg. gap (%) 0.629 0.184 0.091 0.084 0.076 0.064
Median gap (%) 0.607 0.117 0.027 0.031 0.032 0.009
Avg. gap (%) in XS 0.468 0.162 0.017 0.022 0.036 0.037
Median gap (%) in XS 0.474 0.117 0.005 0.000 0.002 0.000
Avg. gap (%) in XL 0.796 0.206 0.167 0.149 0.117 0.092
Median gap (%) in XL 0.779 0.138 0.150 0.135 0.091 0.073

interesting to note that the final gap after 32 hours obtained by POP1
t on instances

XS gets worse as t increases. It seems that worse initial solutions used in POP1
0.01
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are still flexible enough to be transformed into good final solutions by the POP local

search mechanism. On the other hand, the much better initial solutions used by

POP1
0.5, and POP1

2 seem to be biased towards certain local minima that may not be

so globally good.

• On the other hand, POP1
0.01 performs poorly on instances with long routes (set

XL). It takes 4 hours to obtain an average gap of 0.492%, and it reaches the

performance of HGSr only after 16 hours. It is also consistently worse than POP1
t ,

for t ∈ {0.125, 0.5, 2}.

The variants POP1
0.125, POP1

0.5, and POP1
2 have a more robust performance. When

the complete instance set X is considered, all of them are consistently better than HGSr

alone (i.e., after POP starts, their average gaps are smaller at all times). This is also true

when XS and XL instances are considered separately. The only exception is the variant

POP1
0.125, which requires four hours to overcome HGSr on XL instances.

Table 4.3 reports the best solutions found by the algorithms ILS-SP, HGSr, and

POP1 in 32 hours. BKSs marked with a ∗ are proven optimal solutions. Solutions marked

in bold are improvements over the BKSs. The variant POP1
2 achieved the best average

and median final gaps, with the exception of the average gap for instances XS, where it

is worse than the variants POP1
0.01, POP1

0.125, and POP1
0.5.

4.4.6 Comparison of the algorithms HGS20 and POPMUSIC over 32
hours

When the work described in this chapter was already advanced, we were told2 about the

existence of a new implementation of HGS [119]. The new version, specialized to CVRP,

is faster and includes one additional neighborhood called SWAP*. We will refer to that

algorithm as HGS20. In fact, the performance of HGS20 is much superior to HGSr,

and thus it can definitely be considered as a state-of-the-art heuristic for CVRP. In this

section, we test if POP can still improve HGS20 solutions.

On September 17, 2020, Thibaut Vidal kindly sent us the detailed results of ten 20-

hour runs of the algorithm HGS20 on each of the X instances. Those runs are performed

on Intel Xeon Gold 6148 @2.40GHz processors (PassMark single thread rating 2056) that

are roughly equivalent to our processors (PassMark single thread rating 1840). Moreover,

we have also received the solutions obtained after 0.125, 0.5, and 2 hours. Thus, we use
2Personal communication from Thibaut Vidal.
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them as initial solutions in the variant POP2
t . Figure 4.4 depicts the performance of the

HGS20 and the variants POP2 over 32 hours (note that HGS stops at 20 hours). We now

analyze these results.

• For each running time, HGS20 obtains solutions with about half of the average gap

of the solutions obtained by HGSr, which is a remarkable improvement.

• Considering all X instances, the variant POP2
0.125 is consistently worse than HGS20

alone, producing inferior solutions for all times.

• Considering all X instances, the variant POP2
0.5 is slightly better than the HGS20

alone. On XL instances, it only starts to be better at 16 hours.

• Finally, the variant POP2
2 is clearly better than the HSG20 alone, even on XL

instances. This indicates that the proposed approach POP is indeed powerful. It is

able to improve solutions obtained by a highly performing heuristic, at least in long

runs (more than 2 hours).

Table 4.5 reports instance-by-instance statistics on the solutions found by the

HGS20 (after 20 hours) and the variants POP2 (after 20 and 32 hours). For the HGS20,

the average cost and the best cost among ten runs are provided. For the variant POP2
2,

we give the average cost and the best cost for three runs. We did not have computational

resources for running each instance ten times. In order to provide a direct comparison

between methods, we also computed the average cost and the best cost of the first three

runs of the HGS20.

It is obvious that one can always obtain better solutions by performing multiple

runs of any randomized method and picking the best one. But it is still interesting to

note that the variant POP2
2 seems to be particularly well suited for performing multiple

runs. In fact, for this variant, the average gap for a single 32-hour run is 0.042%, while

the average gap for the best of only three runs decreases to 0.018%, a very substantial

decrease. For the instances in the set XS, the approach produces a remarkable gap of

-0.001%.
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Table 4.4: Average gap (%) of HGS20 and POP2 executions at different times.

Instances Time (h) HGS20 POP2
0.125 POP2

0.5 POP2
2

All

0.125 0.407 0.407 – –
0.25 0.298 0.320 – –
0.5 0.222 0.273 0.222 –
1 0.177 0.231 0.173 –
2 0.136 0.191 0.145 0.136
4 0.115 0.154 0.127 0.095
8 0.095 0.128 0.096 0.075
16 0.083 0.094 0.071 0.056
20 0.077 0.084 0.064 0.052
32 – 0.072 0.050 0.039

XS

0.125 0.352 0.352 – –
0.25 0.258 0.242 – –
0.5 0.206 0.201 0.206 –
1 0.166 0.167 0.145 –
2 0.127 0.139 0.124 0.127
4 0.110 0.105 0.104 0.070
8 0.079 0.088 0.077 0.048
16 0.074 0.063 0.055 0.035
20 0.066 0.047 0.051 0.029
32 – 0.038 0.033 0.018

XL

0.125 0.465 0.465 – –
0.25 0.339 0.400 – –
0.5 0.239 0.346 0.239 –
1 0.188 0.298 0.201 –
2 0.145 0.245 0.167 0.145
4 0.120 0.204 0.149 0.121
8 0.111 0.169 0.116 0.104
16 0.093 0.126 0.087 0.079
20 0.090 0.122 0.078 0.077
32 – 0.107 0.068 0.060
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Table 4.5: Detailed statistics for HGS20 and POP2
2. Best gaps for 20 hours are underlined.

Instance BKS

HGS20 POP2
2

20 hours 20 hours 32 hours

avg. cost (10×) best (10×) avg cost (3×) best (3×) avg cost (3×) best (3×) avg cost (3×) best (3×)
X-n303-k21 21736 21737.4 21736 21737.3 21736 21738.0 21738 21738.0 21738

X-n308-k13 25859 25859.0 25859 25859.0 25859 25859.7 25859 25859.7 25859

X-n313-k71 94044 94044.0 94044 94044.0 94044 94044.0 94044 94044.0 94044

X-n317-k53 78355∗ 78355.0 78355 78355.0 78355 78355.0 78355 78355.0 78355

X-n322-k28 29834∗ 29834.0 29834 29834.0 29834 29834.0 29834 29834.0 29834

X-n327-k20 27532 27532.0 27532 27532.0 27532 27532.0 27532 27532.0 27532

X-n331-k15 31102∗ 31102.0 31102 31102.0 31102 31102.3 31102 31102.3 31102

X-n336-k84 139135 139155.8 139137 139156.0 139137 139147.3 139125 139147.3 139125

X-n344-k43 42056 42053.6 42050 42051.7 42050 42052.0 42050 42052.0 42050

X-n351-k40 25919 25925.2 25909 25917.3 25909 25903.7 25896 25903.7 25896

X-n359-k29 51505 51535.2 51513 51534.0 51513 51518.7 51505 51518.7 51505

X-n367-k17 22814 22814.0 22814 22814.0 22814 22814.0 22814 22814.0 22814

X-n376-k94 147713∗ 147713.0 147713 147713.0 147713 147713.0 147713 147713.0 147713

X-n384-k52 65941 65977.1 65957 65979.3 65978 65971.0 65941 65971.0 65941

X-n393-k38 38260∗ 38260.0 38260 38260.0 38260 38260.0 38260 38260.0 38260

X-n401-k29 66163 66196.9 66180 66203.7 66192 66188.7 66180 66185.0 66178

X-n411-k19 19718 19712.8 19712 19712.0 19712 19713.7 19712 19713.7 19712

X-n420-k130 107798∗ 107804.7 107798 107802.0 107798 107822.0 107798 107798.0 107798

X-n429-k61 65449 65455.4 65449 65451.7 65449 65459.0 65455 65459.0 65455

X-n439-k37 36391∗ 36394.5 36391 36395.0 36395 36395.0 36395 36395.0 36395

X-n449-k29 55233 55294.1 55265 55282.7 55268 55291.3 55272 55288.0 55262

X-n459-k26 24139 24140.1 24139 24141.0 24139 24157.3 24139 24157.3 24139

Continued on next page
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Table 4.5 – continued from previous page

Instance BKS

HGS20 POP2
2

20 hours 20 hours 32 hours

avg. cost (10×) best (10×) avg cost (3×) best (3×) avg cost (3×) best (3×) avg cost (3×) best (3×)
X-n469-k138 221824∗ 221939.6 221848 221936.7 221855 221839.3 221824 221839.3 221824

X-n480-k70 89458 89459.2 89457 89461.3 89457 89457.0 89449 89449.0 89449

X-n491-k59 66510 66561.2 66521 66560.3 66521 66520.7 66489 66520.7 66489

X-n502-k39 69230 69228.5 69227 69229.3 69228 69226.0 69226 69226.0 69226

X-n513-k21 24201 24201.0 24201 24201.0 24201 24201.0 24201 24201.0 24201

X-n524-k153 154593∗ 154605.0 154605 154605.0 154605 154593.0 154593 154593.0 154593

X-n536-k96 94921 94991.5 94940 94991.0 94972 94948.0 94915 94943.0 94915

X-n548-k50 86700∗ 86710.0 86704 86706.0 86704 86700.7 86700 86700.7 86700

X-n561-k42 42717 42720.7 42717 42720.3 42717 42717.0 42717 42717.0 42717

X-n573-k30 50673 50747.1 50736 50742.0 50739 50741.0 50739 50738.3 50733

X-n586-k159 190423 190398.9 190340 190422.0 190407 190359.7 190349 190337.0 190316

X-n599-k92 108489 108554.2 108490 108562.0 108518 108486.0 108457 108484.7 108453

X-n613-k62 59535 59619.0 59549 59636.0 59602 59586.7 59536 59582.0 59536

X-n627-k43 62164 62273.3 62241 62275.3 62264 62264.7 62224 62254.0 62223

X-n641-k35 63694 63789.4 63738 63791.7 63758 63815.0 63763 63798.7 63763

X-n655-k131 106780∗ 106787.6 106780 106789.7 106786 106780.0 106780 106780.0 106780

X-n670-k130 146332 146641.3 146510 146642.7 146624 146514.3 146404 146514.0 146404

X-n685-k75 68205 68312.0 68272 68324.0 68317 68295.0 68257 68281.0 68257

X-n701-k44 81934 82107.6 81998 82152.0 82123 82115.3 82030 82080.0 82030

X-n716-k35 43412 43468.3 43446 43481.0 43460 43455.7 43445 43433.3 43409

X-n733-k159 136250 136306.9 136281 136304.0 136298 136213.7 136195 136213.7 136195

X-n749-k98 77365 77563.4 77463 77543.0 77463 77379.3 77350 77342.0 77294

X-n766-k71 114454 114687.2 114635 114689.0 114640 114678.7 114658 114627.0 114597

Continued on next page
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Table 4.5 – continued from previous page

Instance BKS

HGS20 POP2
2

20 hours 20 hours 32 hours

avg. cost (10×) best (10×) avg cost (3×) best (3×) avg cost (3×) best (3×) avg cost (3×) best (3×)
X-n783-k48 72445 72649.8 72550 72665.0 72620 72572.0 72524 72563.7 72515

X-n801-k40 73305 73377.2 73308 73366.7 73353 73387.3 73385 73349.0 73313

X-n819-k171 158247 158331.3 158263 158318.0 158263 158328.7 158298 158298.3 158225

X-n837-k142 193810 194023.3 193973 193985.0 193973 193822.0 193756 193813.7 193739

X-n856-k95 88965 88986.4 88966 88983.7 88966 88989.7 88989 88989.7 88989

X-n876-k59 99299 99557.8 99490 99540.0 99510 99447.0 99428 99419.7 99405

X-n895-k37 53860 54041.2 54007 54028.3 54007 54021.3 53969 54000.0 53960

X-n916-k207 329247 329565.5 329481 329552.7 329539 329325.0 329288 329304.0 329249

X-n936-k151 132725 133116.7 132998 133161.7 133124 132933.7 132900 132898.0 132861

X-n957-k87 85465 85505.4 85473 85504.3 85496 85496.0 85492 85494.3 85487

X-n979-k58 118987 119154.9 119120 119159.0 119130 119146.0 119038 119125.7 119022

X-n1001-k43 72359 72614.5 72541 72625.7 72541 72485.7 72449 72458.0 72427

Avg. gap (%) 0.079 0.043 0.080 0.060 0.052 0.027 0.042 0.018

Median gap (%) 0.047 0.008 0.045 0.014 0.016 0.000 0.011 0.000

Avg. gap (%) in XS 0.068 0.031 0.068 0.048 0.029 0.007 0.021 -0.001

Median gap (%) in XS 0.042 0.008 0.040 0.010 0.009 0.000 0.002 0.000

Avg. gap (%) in XL 0.092 0.055 0.093 0.073 0.076 0.048 0.064 0.037

Median gap (%) in XL 0.049 0.007 0.051 0.026 0.038 0.018 0.034 0.010
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4.4.7 Directly improving BKSs in CVRPLIB

In the final experiment, we run algorithm POP using the BKS in CVRPLIB as the initial

solution. Besides testing the open X instances, we also test very large instances with up

to 30,000 customers in the XXL set [6] and also the open instances in the Golden set [55].

Table 4.6 presents the improved BKSs found by POP after 32 hours for X and Golden

instances, and after 96 hours for the XXL instances.

Table 4.6: BKSs directly improved by POP

Instance BKS Improved BKS
X-n536-k96 94868 94864
X-n733-k159 136190 136188
X-n766-k71 114454 114418
X-n783-k48 72394 72393
X-n936-k151 132725 132715
X-n979-k58 118987 118976
X-n1001-k43 72359 72355
Antwerp1 477306 477277
Brussels1 501854 501771
Flanders1 7241290 7240874
Ghent1 469586 469532
Leuven1 192851 192848
Golden_16 1611.70 1611.28

4.4.8 Results for HFVRP and VRPB

The generality of the proposed POPMUSIC framework was tested by applying it to solve

the HFVRP and VRPB, which are two classical extensions of the CVRP.

HFVRP

HFVRP extends the CVRP by considering a setM = {1, . . . ,m} of different types
of vehicles. For each u ∈ M , there are Ku available vehicles, an integer capacity Qu, a

fixed cost fu per vehicle, and a travel cost cuij associated to the edge {i, j} ∈ E which is

obtained by multiplying cij by a factor Fu. The objective is to minimize the sum of fixed

and travel costs.

The proposed algorithm for the HFVRP will be referred to as POPh. POPh makes

use of the state-of-the-art hybrid ILS (HILS) matheuristic proposed by Penna et al. [89] to

produce the initial solutions and the VRPSolver HFVRP application [23, 92] as algorithm
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A (subproblem solver). For POPh, Algorithm 6 should be adapted as follows. The

(M,Q,K, f, F ) data inputs are now available, such that M is used to index the other

ones to support different types of vehicles. A route ri of a solution (or subsolution)

has now an extra information M(ri) to indicate its vehicle type. Let pu be the total

number of vehicles of type u used by the routes in S (current solution) and qu the same

for R (selected routes to build the subproblem), then the HFVRP subproblem will have

K ′u = Ku − pu + qu available vehicles of type u. To avoid additional algorithmic changes,

we use the original costs cij instead of cuij to build the subproblems. POPh uses the same

VRPSolver and POP parameterizations as the proposed algorithm for the CVRP, i.e., the

setting described in Appendix M and (α = 50, δ = 40).

We conducted experiments on the large benchmark instances XH (based on the X

instances) proposed by Pessoa, Sadykov, and Uchoa [90]. As in the CVRP, we considered

only the 57 largest instances of XH (hereafter XH means this subset). In XH, there

are 35 fleet size and mix (FSM) instances (denoted by XH-FSM) whose the available

fleet is unlimited (i.e. Ku = ∞, ∀u ∈ M), and 22 instances (named XH-HVRP) with a

potentially limited fleet. As usual in the HFVRP literature, there is no rounding applied

to the travel costs.

Here, the BKS column for instances with up to 490 customers is set to the best

upper bound reported by Pessoa, Sadykov, and Uchoa [90]. To our knowledge, there is

no upper bound available in the literature for the other instances, so we set the BKS

as the best solution found by the HILS in 32 hours. To force HILS to run up to 32h,

we set the parameter IMS = ∞ (number of restarts). Table 4.7 and Figure 4.5 show

the comparison of HILS with POPh0.5. POPh0.5 was clearly superior than HILS, in such a

way that its curve was dominant during all its execution. Notice that POPh0.5 managed

to achieve a negative average gap in about four hours of execution (∼12% of the total

time) for XH-FSM, and two hours of execution (∼6% of the total time) for XH-HVRP.

Also, 46 new best solutions were found, including a remarkable gap of -8.46% obtained

for the instance X670-FSMF. On the other hand, HILS found the new best solutions for

four instances: X401-FSMFD, X627-HVRP, X876-FSMF, and X979-HVRP. The detailed

results are reported in Appendix N.

VRPB

The proposed algorithm for the VRPB will be referred to as POPb. In POPb, we

use the ILSB-SPB described in Section 3.5.3 to produce the initial solutions. The algorithm
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Figure 4.5: Convergence curves of HILS and POPh0.5 for the XH instances of the HFVRP.
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Table 4.7: Average gap (%) of HILS and POPh executions at different times for the XH
instances of the HFVRP.

Time (h) XH XH-FSM XH-HVRP
HILS POPh

0.5 HILS POPh
0.5 HILS POPh

0.5

0.125 1.63 2.20 0.72
0.25 1.17 1.61 0.48
0.5 0.88 0.88 1.25 1.25 0.30 0.30
1 0.68 0.49 0.97 0.76 0.22 0.06
2 0.55 0.05 0.79 0.14 0.15 -0.11
4 0.37 -0.25 0.52 -0.27 0.13 -0.21
8 0.20 -0.59 0.27 -0.72 0.08 -0.38
16 0.12 -0.87 0.16 -1.11 0.06 -0.50
32 0.09 -1.13 0.11 -1.49 0.06 -0.57

A is the best BCP algorithm proposed in Section 3.4 using the same parameterization

of the CVRP and HFVRP, as well as (α = 50, δ = 40). Note that when |B| = 0, the

subproblem can be seen exactly as a CVRP subproblem, and then we used the original

solver A (BCPH).

As in the HVRP, the experiments were performed on the X-based instances pro-

posed in Chapter 3 for the VRPB (hereafter named XB). Again, the experiments are

limited only to instances with more than 300 customers, totaling 171 instances (since XH

has 3 instances for each original one in X). In XB, the costs are rounded as in the X in-

stances. For comparison, ILSB-SPB was forced to run up to 32h by setting maxIter =∞
(number of restarts). The column BKS is defined by the best upper bound reported in

Chapter 3. Table 4.8 and Figure 4.6 show a clear advantage of POPb0.5 w.r.t. ILSB-SPB,

where a negative gap of -0.01% was achieved by the former at 32 hours of execution.

According to the detailed results in Appendix N, POPb0.5 found 84 new best solutions,

whereas ILSB-SPB found only 5 ones.

Table 4.8: Average gap (%) of ILSB-SPB and POPb0.5 at different times for the XB instances
of the VRPB.

Time (h) ILSB-SPB POPb0.5
0.125 1.27
0.25 1.01
0.5 0.90 0.90
1 0.83 0.58
2 0.75 0.42
4 0.69 0.28
8 0.64 0.15
16 0.60 0.06
32 0.54 -0.01
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Figure 4.6: Convergence curves of ILSB-SPB and POPb0.5 for the XB instances of the
VRPB.

4.5 Concluding remarks

In this chapter, we propose a POPMUSIC matheuristic for the classical and highly com-

petitive CVRP. The algorithm is designed to improve a reasonably good initial solution

given as an input. The results show that our approach outperforms one of the best pub-

lished heuristics for the CVRP in medium and long runs. POP matheuristic is also com-

petitive in long runs with a state-of-the-art heuristic, which is specialized to the CVRP.

The results are especially good for instances with relatively short routes. Moreover, several

best known solutions were improved for literature instances with up to 20,000 customers.

This shows a very good scalability of the approach. The generality of the proposed POP-

MUSIC framework was shown through experiments with the HFVRP and VRPB, which

are well-known extensions of the CVRP. Indeed, several new best solutions were found by

POP for large instances based on the X benchmark, even using the same parameterization

of the CVRP. These results revealed that POP is a promising approach to tackle similar

problems by replacing the initial solution generator and the subproblem solver, along with

possible small changes.

POP matheuristic exploits a characteristic of the modern exact algorithms for

vehicle routing problems, and in particular, those for the CVRP. If a tight upper bound

on the optimum value is provided, those exact algorithms are usually capable of solving

to optimality medium-size instances with up to 100–150 customers in a few minutes.

Instances with less than 100 customers are usually solved in seconds. Thus, exact (or

heuristics such as BCPH) approaches become competitive with the best heuristics for
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solving such instances. An important advantage of exact approaches is that they “know”

when to stop after proving that an improving solution does not exist, whereas traditional

metaheuristics do not possess that information.

POP has interesting features that may be explored in future works:

• It is very different from other existing and well-performing heuristics for the CVRP.

This means that their strengths and weaknesses may be complementary. This opens

possibilities for many types of hybridization. It could be something simple, like just

determining the instance characteristics (besides route size) that make it more or

less suited to POP, in order to decide which method should be applied. But it could

be something deeper, a full integration where POP and some traditional heuristic

could take turns on improving parts of a solution and exchange information. This

seems to be quite a promising direction for research.

• It is easy to implement, provided that an exact code (and hence the heuristics

derived from it) for solving the subproblems is at hand. Given that VRPSolver

branch-cut-and-price algorithm is available for academic use and can solve many

routing variants other than CVRP, it is natural to try algorithms similar POP on

those variants. Of course, there is no guarantee that a straightforward adaptation

will obtain good results. Thus, there is room for research on extensions of POP that

are more suited for other particular routing problems.

• It is naturally parallelizable. The current sequential version of POP may take a few

hours to obtain high-quality solutions and can not be used in practical situations

that require faster solutions. That limitation could be much reduced by solving

several subproblems in parallel, a natural feature of any POPMUSIC approach. In

fact, the larger the instance, the more parallelizable the method becomes.

The last remark is that the underlying implementation of the BCP solver used in POP was

not changed by us other than by modifying external parameters. Thus, there is a large

potential to improve the efficiency of POP by “going inside the black box”. A property

that may be exploited is that the subproblems to be solved are often very similar to some

already solved subproblem. Keeping information from previous runs, like the generated

columns and cuts, may accelerate the algorithm.



Chapter 5

Concluding remarks

This thesis presented exact and heuristic approaches for different combinatorial optimiza-

tion problems.

For the relaxed correlation clustering (RCC) problem—an NP-Hard problem with

applications in social networks—, the two new integer linear programming formulations

obtained a superior performance when compared to the existing one. Also, the developed

heuristic based on iterated local search (ILS) substantially outperformed the previous ILS

implementation from the literature.

For the vehicle routing problem with backhauls (VRPB)—a VRP problem with

two types of customers —, the two depicted branch-cut-and-price (BCP) algorithms were

able to find, for the first time, optimal solutions for all instances in the literature. Tests

performed on a newly proposed set of instances showed that the more specialized BCP

algorithm yielded better results than the other BCP implementation. Also, the three

evaluated ILS-based heuristic strategies achieved extremely competitive results, and the

more specialized method (the one using a customized set partitioning) was able to sys-

tematically find high quality solutions, especially for more challenging instances.

For the capacitated vehicle routing problem (CVRP), the proposed Partial OPti-

mization Metaheuristic Under Special Intensification Conditions (POPMUSIC) outper-

formed one of the best published metaheuristics in medium and long runs. The proposed

POPMUSIC uses a generic state-of-the-art exact algorithm for the CVRP (and similar

problems) to solve subproblems during its execution. Several best known solutions were

improved for literature instances with up to 20,000 customers. Moreover, the method

was successfully applied, after straightforward modifications, to the heterogeneous fleet

vehicle routing problem (HFVRP) and VRPB.
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As for future work, the following lines of research are suggested: (i) development

of parallel heuristics and enhanced exact algorithms to solve larger RCC instances; (ii)

extension of the proposed BCP algorithms to other VRPB variants considering, for ex-

ample, multiple depots and mixed routes; (iii) hybridization of the proposed POPMUSIC

with well-performing metaheuristics for CVRP and its extensions; (iv) parallelization of

subproblem solving within the proposed POPMUSIC.
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APPENDIX A -- Updating the ADSs after an
insertion move

The following pseudocodes describe in detail how to update the ADSs after performing

an insertion move.

1 Algorithm UpdateADSsAfterInsert(P, Sp, i, Sq)
. Note that, after the move, i ∈ Sq

2 CreateADSs(P, Sq , i, Sp) . Create the new ADSs indexed by i
3 DestroyADSsInsert(P, Sp, i) . Destroy old ADSs indexed by i
4 UpdateADSsSp(P, Sp, i, Sq) . Update ADSs related to Sp

5 UpdateADSsSq(P, Sp, i, Sq) . Update ADSs related to Sq

6 UpdateADSsOtherClusters(P, Sp, i, Sq) . Update ADSs related to other clusters

1 Algorithm CreateADSs(P, Sq, i, Sp)
2 SumIntra+[Sq ][i][←] = 0.0

3 SumIntra−[Sq ][i][←] = 0.0

4 SumIntra+[Sq ][i][→] = 0.0

5 SumIntra−[Sq ][i][→] = 0.0
. transfer old values to the new ADSs

6 for Sr ∈ P \ {Sp, Sq} do
7 SumInter+[Sq ][i][Sr][←] = SumInter+[Sp][i][Sr][←]

8 SumInter−[Sq ][i][Sr][←] = SumInter−[Sp][i][Sr][←]

9 SumInter+[Sq ][i][Sr][→] = SumInter+[Sp][i][Sr][→]

10 SumInter−[Sq ][i][Sr][→] = SumInter−[Sp][i][Sr][→]

11 SumInter+[Sq ][i][Sp][←] = 0.0

12 SumInter−[Sq ][i][Sp][←] = 0.0

13 SumInter+[Sq ][i][Sp][→] = 0.0

14 SumInter−[Sq ][i][Sp][→] = 0.0

1 Algorithm DestroyADSs(P, Sp, i)
2 Destroy SumIntra+[Sp][i][←], SumIntra−[Sp][i][←], SumIntra+[Sp][i][→] and SumIntra−[Sp][i][→]
3 for Sr ∈ P \ {Sp} do
4 Destroy SumInter+[Sp][i][Sr][←], SumInter−[Sp][i][Sr][←], SumInter+[Sp][i][Sr][→] and

SumInter−[Sp][i][Sr][→]
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1 Algorithm UpdateADSsSp(P, Sp, i, Sq)
2 for j ∈ Sp do
3 if (j, i) ∈ A+ then
4 SumIntra+[Sp][j][→] = SumIntra+[Sp][j][→]− wji

5 SumInter+[Sp][j][Sq ][→] = SumInter+[Sp][j][Sq ][→] + wji

6 SumInter+[Sq ][i][Sp][←] = SumInter+[Sq ][i][Sp][←] + wji

7 SumInter+[Sp][Sq ] = SumInter+[Sp][Sq ] + wji

8 SumIntra+[Sp] = SumIntra+[Sp]− wji

9 else if (j, i) ∈ A− then
10 SumIntra−[Sp][j][→] = SumIntra−[Sp][j][→]− wji

11 SumInter−[Sp][j][Sq ][→] = SumInter−[Sp][j][Sq ][→] + wji

12 SumInter−[Sq ][i][Sp][←] = SumInter−[Sq ][i][Sp][←] + wji

13 SumInter−[Sp][Sq ] = SumInter−[Sp][Sq ] + wji

14 SumIntra−[Sp] = SumIntra−[Sp]− wji

15 if (i, j) ∈ A+ then
16 SumIntra+[Sp][j][←] = SumIntra+[Sp][j][←]− wij

17 SumInter+[Sp][j][Sq ][←] = SumInter+[Sp][j][Sq ][←] + wij

18 SumInter+[Sq ][i][Sp][→] = SumInter+[Sq ][i][Sp][→] + wij

19 SumInter+[Sq ][Sp] = SumInter+[Sq ][Sp] + wij

20 SumIntra+[Sp] = SumIntra+[Sp]− wij

21 else if (i, j) ∈ A− then
22 SumIntra−[Sp][j][←] = SumIntra−[Sp][j][←]− wij

23 SumInter−[Sp][j][Sq ][←] = SumInter−[Sp][j][Sq ][←] + wij

24 SumInter−[Sq ][i][Sp][→] = SumInter−[Sq ][i][Sp][→] + wij

25 SumInter−[Sq ][Sp] = SumInter−[Sq ][Sp] + wij

26 SumIntra−[Sp] = SumIntra−[Sp]− wij

1 Algorithm UpdateADSsSq(P, Sp, i, Sq)
2 for j ∈ Sq do
3 if (j, i) ∈ A+ then
4 SumIntra+[Sq ][j][→] = SumIntra+[Sq ][j][→] + wji

5 SumIntra+[Sq ][i][←] = SumIntra+[Sq ][i][←] + wji

6 SumInter+[Sq ][j][Sp][→] = SumInter+[Sq ][j][Sp][→]− wji

7 SumInter+[Sq ][Sp] = SumInter+[Sq ][Sp]− wji

8 SumIntra+[Sq ] = SumIntra+[Sq ] + wji

9 else if (j, i) ∈ A− then
10 SumIntra−[Sq ][j][→] = SumIntra−[Sq ][j][→] + wji

11 SumIntra−[Sq ][i][←] = SumIntra−[Sq ][i][←] + wji

12 SumInter−[Sq ][j][Sp][→] = SumInter−[Sq ][j][Sp][→]− wji

13 SumInter−[Sq ][Sp] = SumInter−[Sq ][Sp]− wji

14 SumIntra−[Sq ] = SumIntra−[Sq ] + wji

15 if (i, j) ∈ A+ then
16 SumIntra+[Sq ][j][←] = SumIntra+[Sq ][j][←] + wij

17 SumIntra+[Sq ][i][→] = SumIntra+[Sq ][i][→] + wij

18 SumInter+[Sq ][j][Sp][←] = SumInter+[Sq ][j][Sp][←]− wij

19 SumInter+[Sp][Sq ] = SumInter+[Sp][Sq ]− wij

20 SumIntra+[Sq ] = SumIntra+[Sq ] + wij

21 else if (i, j) ∈ A− then
22 SumIntra−[Sq ][j][←] = SumIntra−[Sq ][j][←] + wij

23 SumIntra−[Sq ][i][→] = SumIntra−[Sq ][i][→] + wij

24 SumInter−[Sq ][j][Sp][←] = SumInter−[Sq ][j][Sp][←]− wij

25 SumInter−[Sp][Sq ] = SumInter−[Sp][Sq ]− wij

26 SumIntra−[Sq ] = SumIntra−[Sq ] + wij
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1 Algorithm UpdateADSsOtherClusters(P, Sp, i, Sq)
2 for Sr ∈ P \ {Sp, Sq} do
3 for j ∈ Sr do
4 if (j, i) ∈ A+ then
5 SumInter+[Sr][j][Sp][→] = SumInter+[Sr][j][Sp][→]− wji

6 SumInter+[Sr][j][Sq ][→] = SumInter+[Sr][j][Sq ][→] + wji

7 SumInter+[Sr][Sp] = SumInter+[Sr][Sp]− wji

8 SumInter+[Sr][Sq ] = SumInter+[Sr][Sq ] + wji

9 else if (j, i) ∈ A− then
10 SumInter−[Sr][j][Sp][→] = SumInter−[Sr][j][Sp][→]− wji

11 SumInter−[Sr][j][Sq ][→] = SumInter−[Sr][j][Sq ][→] + wji

12 SumInter−[Sr][Sp] = SumInter−[Sr][Sp]− wji

13 SumInter−[Sr][Sq ] = SumInter−[Sr][Sq ] + wji

14 if (i, j) ∈ A+ then
15 SumInter+[Sr][j][Sp][←] = SumInter+[Sr][j][Sp][←]− wij

16 SumInter+[Sr][j][Sq ][←] = SumInter+[Sr][j][Sq ][←] + wij

17 SumInter+[Sp][Sr] = SumInter+[Sr][Sp]− wij

18 SumInter+[Sq ][Sr] = SumInter+[Sr][Sq ] + wij

19 else if (i, j) ∈ A− then
20 SumInter−[Sr][j][Sp][←] = SumInter−[Sr][j][Sp][←]− wij

21 SumInter−[Sr][j][Sq ][←] = SumInter−[Sr][j][Sq ][←] + wij

22 SumInter−[Sp][Sr] = SumInter−[Sr][Sp]− wij

23 SumInter−[Sq ][Sr] = SumInter−[Sr][Sq ] + wij



142

APPENDIX B -- Computing the cost for a
swap move and updating the
ADSs

The following pseudocodes describe in detail how to compute the cost of a swap move

and how to update the ADSs after performing a move.
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1 Algorithm CompCostSwap(P,RIP , Sp, i, Sq, j)
2 RemoveWeightsfromADSs(Sp, i, Sq , j) . Remove wij and wji from ADSs
3 sum+

Sp
= SumIntra+[Sp] − SumIntra+[Sp][i][←] − SumIntra+[Sp][i][→]

4 sum−Sp
= SumIntra−[Sp] − SumIntra−[Sp][i][←]− SumIntra−[Sp][i][→]

5 sum+
Sp

= sum+
Sp

+ SumInter+[Sq ][j][Sp][←] + SumInter+[Sq ][j][Sp][→]

6 sum−Sp
= sum−Sp

+ SumInter−[Sq ][j][Sp][←] + SumInter−[Sq ][j][Sp][→]

7 sum+
Sq

= SumIntra+[Sq ] − SumIntra+[Sq ][j][←] − SumIntra+[Sq ][j][→]

8 sum−Sq
= SumIntra−[Sq ] − SumIntra−[Sq ][j][←]− SumIntra−[Sq ][j][→]

9 sum+
Sq

= sum+
Sq

+ SumInter+[Sp][i][Sq ][←] + SumInter+[Sp][i][Sq ][→]

10 sum−Sq
= sum−Sq

+ SumInter−[Sp][i][Sq ][←] + SumInter−[Sp][i][Sq ][→]

11 sum+
Sp,Sq

= SumInter+[Sp][Sq ] − SumInter+[Sp][i][Sq ][→]

12 sum+
Sp,Sq

= sum+
Sp,Sq

− SumInter+[Sq ][j][Sp][←]

13 if (i, j) ∈ A+ then sum+
Sp,Sq

= sum+
Sp,Sq

− wij

14 sum−Sp,Sq
= SumInter−[Sp][Sq ] − SumInter−[Sp][i][Sq ][→]

15 sum−Sp,Sq
= sum−Sp,Sq

− SumInter−[Sq ][j][Sp][←]

16 if (i, j) ∈ A− then sum−Sp,Sq
= sum−Sp,Sq

− wij

17 sum+
Sp,Sq

= sum+
Sp,Sq

+ SumIntra+[Sp][i][←]

18 sum−Sp,Sq
= sum−Sp,Sq

+ SumIntra−[Sp][i][←]

19 sum+
Sp,Sq

= sum+
Sp,Sq

+ SumIntra+[Sq ][j][→]

20 sum−Sp,Sq
= sum−Sp,Sq

+ SumIntra−[Sq ][j][→]

21 sum+
Sq,Sp

= SumInter+[Sq ][Sp] − SumInter+[Sp][i][Sq ][←]

22 sum+
Sq,Sp

= sum+
Sq,Sp

− SumInter+[Sq ][j][Sp][→]

23 if (j, i) ∈ A+ then sum+
Sq,Sp

= sum+
Sq,Sp

− wji

24 sum−Sq,Sp
= SumInter−[Sq ][Sp] − SumInter−[Sp][i][Sq ][←]

25 sum−Sq,Sp
= sum−Sq,Sp

− SumInter−[Sq ][j][Sp][→]

26 if (j, i) ∈ A− then sum−Sq,Sp
= sum−Sq,Sp

− wji

27 sum+
Sq,Sp

= sum+
Sq,Sp

+ SumIntra+[Sp][i][→]

28 sum−Sq,Sp
= sum−Sq,Sp

+ SumIntra−[Sp][i][→]

29 sum+
Sq,Sp

= sum+
Sq,Sp

+ SumIntra+[Sq ][j][←]

30 sum−Sq,Sp
= sum−Sq,Sp

+ SumIntra−[Sq ][j][←]

31 cost = UpdateCost(RIP , Sp, Sp, sum
+
Sp
, sum−Sp

)

32 cost = UpdateCost(cost, Sq , Sq , sum
+
Sq
, sum−Sq

)

33 cost = UpdateCost(cost, Sp, Sq , sum
+
Sp,Sq

, sum−Sp,Sq
)

34 cost = UpdateCost(cost, Sq , Sp, sum
+
Sq,Sp

, sum−Sq,Sp
)

35 cost = UpdateCostOtherClustersSwap(cost, P, Sp, i, Sq , j)
36 AddWeightsToADSs(Sp, i, Sq , j) . Add wij and wji to ADSs
37 return cost
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1 Algorithm RemoveWeightsfromADSs(Sp, i, Sq, j)
2 if ij ∈ A+ then
3 SumInter+[Sp][Sq ] = SumInter+[Sp][Sq ]− wij

4 SumInter+[Sp][i][Sq ][→] = SumInter+[Sp][i][Sq ][→]− wij

5 SumInter+[Sq ][j][Sp][←] = SumInter+[Sq ][j][Sp][←]− wij

6 else if ij ∈ A− then
7 SumInter−[Sp][Sq ] = SumInter−[Sp][Sq ]− wij

8 SumInter−[Sp][i][Sq ][→] = SumInter−[Sp][i][Sq ][→]− wij

9 SumInter−[Sq ][j][Sp][←] = SumInter−[Sq ][j][Sp][←]− wij

10 if ji ∈ A+ then
11 SumInter+[Sq ][Sp] = SumInter+[Sq ][Sp]− wji

12 SumInter+[Sq ][j][Sp][→] = SumInter+[Sq ][j][Sp][→]− wji

13 SumInter+[Sp][i][Sq ][←] = SumInter+[Sp][i][Sq ][←]− wji

14 else if ji ∈ A− then
15 SumInter−[Sq ][Sp] = SumInter−[Sq ][Sp]− wji

16 SumInter−[Sq ][j][Sp][→] = SumInter−[Sq ][j][Sp][→]− wji

17 SumInter−[Sp][i][Sq ][←] = SumInter−[Sp][i][Sq ][←]− wji

1 Algorithm UpdateCostOtherClustersSwap(cost, P, Sp, i, Sq, j)
2 for Sr ∈ P \ {Sp, Sq} do
3 sum+

Sr,Sp
= SumInter+[Sr][Sp] − SumInter+[Sp][i][Sr][←]

4 sum−Sr,Sp
= SumInter−[Sr][Sp] − SumInter−[Sp][i][Sr][←]

5 sum+
Sr,Sq

= SumInter+[Sr][Sq ] + SumInter+[Sp][i][Sr][←]

6 sum−Sr,Sq
= SumInter−[Sr][Sq ] + SumInter−[Sp][i][Sr][←]

7 sum+
Sr,Sq

= sum+
Sr,Sq

− SumInter+[Sq ][j][Sr][←]

8 sum−Sr,Sq
= sum−Sr,Sq

− SumInter−[Sq ][j][Sr][←]

9 sum+
Sr,Sp

= sum+
Sr,Sp

+ SumInter+[Sq ][j][Sr][←]

10 sum−Sr,Sp
= sum−Sr,Sp

+ SumInter−[Sq ][j][Sr][←]

11 sum+
Sp,Sr

= SumInter+[Sp][Sr] − SumInter+[Sp][i][Sr][→]

12 sum−Sp,Sr
= SumInter−[Sp][Sr] − SumInter−[Sp][i][Sr][→]

13 sum+
Sq,Sr

= SumInter+[Sq ][Sr] + SumInter+[Sp][i][Sr][→]

14 sum−Sq,Sr
= SumInter−[Sq ][Sr] + SumInter−[Sp][i][Sr][→]

15 sum+
Sq,Sr

= sum+
Sq,Sr

− SumInter+[Sq ][j][Sr][→]

16 sum−Sq,Sr
= sum−Sq,Sr

− SumInter−[Sq ][j][Sr][→]

17 sum+
Sp,Sr

= sum+
Sp,Sr

+ SumInter+[Sq ][j][Sr][→]

18 sum−Sp,Sr
= sum−Sq,Sr

+ SumInter−[Sq ][j][Sr][→]

19 cost = UpdateCost(cost, Sr, Sp, sum
+
Sr,Sp

, sum−Sr,Sp
)

20 cost = UpdateCost(cost, Sr, Sq , sum
+
Sr,Sq

, sum−Sr,Sq
)

21 cost = UpdateCost(cost, Sp, Sr, sum
+
Sp,Sr

, sum−Sp,Sr
)

22 cost = UpdateCost(cost, Sq , Sr, sum
+
Sq,Sr

, sum−Sq,Sr
)

23 return cost
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1 Algorithm AddWeightsToADSs(Sp, i, Sq, j)
2 if (i, j) ∈ A+ then
3 SumInter+[Sp][Sq ] = SumInter+[Sp][Sq ] + wij

4 SumInter+[Sp][i][Sq ][→] = SumInter+[Sp][i][Sq ][→] + wij

5 SumInter+[Sq ][j][Sp][←] = SumInter+[Sq ][j][Sp][←] + wij

6 else if (i, j) ∈ A− then
7 SumInter−[Sp][Sq ] = SumInter−[Sp][Sq ] + wij

8 SumInter−[Sp][i][Sq ][→] = SumInter−[Sp][i][Sq ][→] + wij

9 SumInter−[Sq ][j][Sp][←] = SumInter−[Sq ][j][Sp][←] + wij

10 if (j, i) ∈ A+ then
11 SumInter+[Sq ][Sp] = SumInter+[Sq ][Sp] + wji

12 SumInter+[Sq ][j][Sp][→] = SumInter+[Sq ][j][Sp][→] + wji

13 SumInter+[Sp][i][Sq ][←] = SumInter+[Sp][i][Sq ][←] + wji

14 else if (j, i) ∈ A− then
15 SumInter−[Sq ][Sp] = SumInter−[Sq ][Sp] + wji

16 SumInter−[Sq ][j][Sp][→] = SumInter−[Sq ][j][Sp][→] + wji

17 SumInter−[Sp][i][Sq ][←] = SumInter−[Sp][i][Sq ][←] + wji

1 Algorithm UpdateADSsAfterSwap(P, Sp, i, Sq, j)
. Note that, after the move, j ∈ Sp and i ∈ Sq

2 CreateADSs(P, Sp, j, Sq) . Create the new ADSs indexed by j
3 CreateADSs(P, Sq , i, Sp) . Create the new ADSs indexed by i
4 DestroyADSs(P, Sp, i) . Destroy old ADSs indexed by j
5 DestroyADSs(P, Sq , j) . Destroy old ADSs indexed by i
6 UpdateADSsSi(P, Sp, i, Sq)

. Destroy old ADSs indexed by j
7 UpdateADSsSj(P, Sp, i, Sq)
8 UpdateADSsSi(P, Sq , j, Sp)
9 UpdateADSsSj(P, Sq , j, Sp)

. Update ADSs due to arcs (i, j) and (j, i)

10 if (i, j) ∈ A+ then
11 SumInter+[Sq ][i][Sp][→] = SumInter+[Sq ][i][Sp][→] + wij

12 SumInter+[Sp][j][Sq ][←] = SumInter+[Sp][j][Sq ][←] + wij

13 SumInter+[Sq ][Sp] = SumInter+[Sq ][Sp] + wij

14 SumInter+[Sp][Sq ] = SumInter+[Sp][Sq ]− wij

15 else if (i, j) ∈ A− then
16 SumInter−[Sq ][i][Sp][→] = SumInter−[Sq ][i][Sp][→] + wij

17 SumInter−[Sp][j][Sq ][←] = SumInter−[Sp][j][Sq ][←] + wij

18 SumInter−[Sq ][Sp] = SumInter−[Sq ][Sp] + wij

19 SumInter−[Sp][Sq ] = SumInter−[Sp][Sq ]− wij

20 if (j, i) ∈ A+ then
21 SumInter+[Sp][j][Sq ][→] = SumInter+[Sp][j][Sq ][→] + wji

22 SumInter+[Sq ][i][Sp][←] = SumInter+[Sq ][i][Sp][←] + wji

23 SumInter+[Sp][Sq ] = SumInter+[Sp][Sq ] + wji

24 SumInter+[Sq ][Sp] = SumInter+[Sq ][Sp]− wji

25 else if (j, i) ∈ A− then
26 SumInter−[Sp][j][Sq ][→] = SumInter−[Sp][j][Sq ][→] + wji

27 SumInter−[Sq ][i][Sp][←] = SumInter−[Sq ][i][Sp][←] + wji

28 SumInter−[Sp][Sq ] = SumInter−[Sp][Sq ] + wji

29 SumInter−[Sq ][Sp] = SumInter−[Sq ][Sp]− wji

30 UpdateADSsOtherClusters(P, Sp, i, Sq)
31 UpdateADSsOtherClusters(P, Sq , j, Sp)
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APPENDIX C -- Best improvement algorithm
for the split neighborhood

The following pseudocodes describe an efficient implementation of the Split neighbor-

hood. The best improvement strategy makes use of local data structures to speedup the

subsequent evaluations by taking advantage of the information obtained in the previous

iteration. The efficient move evaluation is also presented using local and global ADSs.

1 Algorithm BestSplitMove(P,RIP , k)
2 if |P | = k then return P
3 Let Sb and cb be a cluster and an index that represent the best split move
4 bestimp = 0 . Improvement value obtained by applying the best split move

. For each cluster, evaluate all possible splits
5 for Sp ∈ P do
6 if |Sp| > 1 then

. Creating local structures over S′p and S′′p (resulting clusters) to speed up
subsequent evaluations

7 LocalSumIntra+[S′p] = 0.0 . S′p is initially empty
8 LocalSumIntra−[S′p] = 0.0

9 LocalSumIntra+[S′′p ] = SumIntra+[Sp] . S′′p is initially Sp

10 LocalSumIntra−[S′′p ] = SumIntra−[Sp]

. Sum of weights between clusters to the new ones
11 for Sr ∈ P \ Sp do
12 LocalSumInter+[Sr][S′p] = 0.0; LocalSumInter+[S′p][Sr] = 0.0

13 LocalSumInter−[Sr][S′p] = 0.0; LocalSumInter−[S′p][Sr] = 0.0

14 LocalSumInter+[Sr][S′′p ] = SumInter+[Sr][Sp]

15 LocalSumInter+[S′′p ][Sr] = SumInter+[Sp][Sr]

16 LocalSumInter−[Sr][S′′p ] = SumInter−[Sr][Sp]

17 LocalSumInter−[S′′p ][Sr] = SumInter−[Sp][Sr]

18 LocalSumInter+[S′p][S′′p ] = 0.0

19 LocalSumInter−[S′p][S′′p ] = 0.0

20 LocalSumInter+[S′′p ][S′p] = 0.0

21 LocalSumInter−[S′′p ][S′p] = 0.0

. Evaluate move and adjusts the local structures for the next one
22 for c ∈ {0, 1, . . . , |Sp| − 1} do
23 imp = CompCostSplit(P,RIP , Sp, c, LocalSumIntra, LocalSumInter)
24 if imp > bestimp then
25 Sb = Sp

26 cb = c
27 bestimp = imp

28 Perform the split move (Sb, cb) over P
29 return P
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1 Algorithm CompCostSplit(P,RIP , Sp, c, LocalSumIntra, LocalSumInter)
. Let Sp = {v1, v2, . . . , v|Sp|}, such as the resulting clusters are S′p = {v1, v2, . . . , vc} and
S′′p = {vc+1, . . . , v|Sp|}

2 sum+
vc,← = 0.0, sum−vc,← = 0.0, sum+

vc,→ = 0.0, sum−vc,→ = 0.0
. Sweep arcs between vc and the S′p of the previous move evaluation

3 for vi ∈ {v1, v2, . . . , vc−1} do
4 if (vi, vc) ∈ A+ then
5 LocalSumIntra+[S′p] = LocalSumIntra+[S′p] + wvi,vc

6 sum+
vc,← = sum+

vc,← + wvi,vc

7 else if (vi, vc) ∈ A− then
8 LocalSumIntra−[S′p] = LocalSumIntra−[S′p] + wvi,vc

9 sum−vc,← = sum−vc,← + wvi,vc

10 if (vc, vi) ∈ A+ then
11 LocalSumIntra+[S′p] = LocalSumIntra+[S′p] + wvc,vi

12 sum+
vc,→ = sum+

vc,→ + wvc,vi

13 else if (vc, vi) ∈ A− then
14 LocalSumIntra−[S′p] = LocalSumIntra−[S′p] + wvc,vi

15 sum−vc,→ = sum−vc,→ + wvc,vi

. Update LocalSumIntra for S′′p using global ADSs and auxiliary variables
16 LocalSumIntra+[S′′p ] = SumIntra+[Sp][←] + SumIntra+[Sp][→]− sum+

vc,← − sum
+
vc,→

17 LocalSumIntra−[S′′p ] = SumIntra−[Sp][←] + SumIntra−[Sp][→]− sum−vc,← − sum
−
vc,→

. Update LocalSumInter using global ADSs and auxiliary variables
18 sum+

S′
p,S

′′
p

= (SumIntra+[Sp][vc][→]− sum+
vc,→)− sum+

vc,←

19 LocalSumInter+[S′p][S′′p ] = LocalSumInter+[S′p][S′′p ] + sum+
S′
p,S

′′
p

20 sum−
S′
p,S

′′
p

= (SumIntra−[Sp][vc][→]− sum−vc,→)− sum−vc,←
21 LocalSumInter−[S′p][S′′p ] = LocalSumInter−[S′p][S′′p ] + sum−

S′
p,S

′′
p

22 sum+
S′′
p ,S′

p
= (SumIntra+[Sp][vc][←]− sum+

vc,←)− sum+
vc,→

23 LocalSumInter+[S′′p ][S′p] = LocalSumInter+[S′′p ][S′p] + sum+
S′′
p ,S′

p

24 sum−
S′′
p ,S′

p
= (SumIntra−[Sp][vc][←]− sum−vc,←)− sum−vc,→

25 LocalSumInter−[S′′p ][S′p] = LocalSumInter−[S′′p ][S′p] + sum−
S′′
p ,S′

p

. Get relaxed imbalance and update the cost
26 RISp = min{SumIntra+[Sp], SumIntra−[Sp]}
27 RIS′

p
= min{LocalSumIntra+[S′p], LocalSumIntra−[S′p]}

28 RIS′′
p

= min{LocalSumIntra+[S′′p ], LocalSumIntra−[S′′p ]}
29 RIS′

p,S
′′
p

= min{LocalSumInter+[S′p][S′′p ], LocalSumInter−[S′p][S′′p ]}
30 RIS′′

p ,S′
p

= min{LocalSumInter+[S′′p ][S′p], LocalSumInter−[S′′p ][S′p]}
31 cost = RIP − (RISp − (RIS′

p
+RIS′′

p
+RIS′

p,S
′′
p

+RIS′′
p ,S′

p
))

32 cost = UpdateCostOtherClustersSplit(cost, P, Sp, vc, LocalSumIntra, LocalSumInter)
33 return cost
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1 Algorithm UpdateCostOtherClustersSplit(cost, P, Sp, vc ,LocalSumIntra, LocalSumInter)
2 for Sr ∈ P \ Sp do
3 LocalSumInter+[Sr][S′p] = LocalSumInter+[Sr][S′p] + SumInter+[Sp][vc][Sr][←]

4 LocalSumInter−[Sr][S′p] = LocalSumInter−[Sr][S′p] + SumInter−[Sp][vc][Sr][←]

5 LocalSumInter+[S′p][Sr] = LocalSumInter+[S′p][Sr] + SumInter+[Sp][vc][Sr][→]

6 LocalSumInter−[S′p][Sr] = LocalSumInter−[S′p][Sr] + SumInter−[Sp][vc][Sr][→]

7 LocalSumInter+[Sr][S′′p ] = LocalSumInter+[Sr][S′′p ]− SumInter+[Sp][vc][Sr][←]

8 LocalSumInter−[Sr][S′′p ] = LocalSumInter−[Sr][S′′p ]− SumInter−[Sp][vc][Sr][←]

9 LocalSumInter+[S′′p ][Sr] = LocalSumInter+[S′′p ][Sr]− SumInter+[Sp][vc][Sr][→]

10 LocalSumInter−[S′′p ][Sr] = LocalSumInter−[S′′p ][Sr]− SumInter−[Sp][vc][Sr][→]

11 RISr,Sp = min{SumInter+[Sr][Sp], SumInter−[Sr][Sp]}
12 RISp,Sr = min{SumInter+[Sp][Sr], SumInter−[Sp][Sr]}
13 RISr,S′

p
= min{LocalSumInter+[Sr][S′p], LocalSumInter−[Sr][S′p]}

14 RIS′
p,Sr

= min{LocalSumInter+[S′p][Sr], LocalSumInter−[S′p][Sr]}
15 RISr,S′′

p
= min{LocalSumInter+[Sr][S′′p ], LocalSumInter−[Sr][S′′p ]}

16 RIS′′
p ,Sr

= min{LocalSumInter+[S′′p ][Sr], LocalSumInter−[S′′p ][Sr]}
17 cost = cost− (RISr,Sp +RISp,Sr − (RISr,S′

p
+RIS′

p,Sr
+RISr,S′′

p
+RIS′′

p ,Sr
))

18 return cost
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APPENDIX D -- Detailed results for the
random RCC instances

Table D.1: Relaxed imbalance obtained by ILSRCC and ILSadapt .

|V | d d− k
ILSRCC ILSadapt tavg

min avg max min avg max

100 0.1 0.1 3 131 132.10 134 133 135.40 139 2.82

100 0.1 0.1 5 94 98.20 101 103 108.50 112 6.71

100 0.1 0.1 7 68 70.90 74 78 84.40 89 11.80

100 0.1 0.1 9 45 50.70 54 66 69.00 73 14.65

100 0.1 0.3 3 408 408.10 409 409 412.90 416 5.73

100 0.1 0.3 5 323 327.50 333 335 342.60 348 11.05

100 0.1 0.3 7 270 276.70 284 280 294.00 305 15.84

100 0.1 0.3 9 233 239.00 247 252 257.60 263 17.78

100 0.1 0.5 3 533 533.10 534 533 537.10 546 6.93

100 0.1 0.5 5 427 430.70 435 435 446.60 457 11.98

100 0.1 0.5 7 352 365.30 371 380 387.10 397 15.10

100 0.1 0.5 9 298 312.50 324 325 334.90 341 18.99

100 0.2 0.1 3 327 329.30 333 327 332.40 336 2.83

100 0.2 0.1 5 284 288.80 291 293 297.00 302 7.22

100 0.2 0.1 7 253 256.70 261 263 269.90 275 13.10

100 0.2 0.1 9 227 230.70 233 234 245.40 252 19.12

100 0.2 0.3 3 1032 1032.00 1032 1032 1033.00 1035 5.88

100 0.2 0.3 5 913 914.90 917 927 937.10 948 14.35

100 0.2 0.3 7 833 843.70 854 847 866.80 876 19.09

100 0.2 0.3 9 775 785.70 799 797 812.10 821 23.22

100 0.2 0.5 3 1341 1342.50 1344 1346 1349.40 1358 7.87

100 0.2 0.5 5 1162 1171.40 1177 1182 1194.90 1204 13.43

100 0.2 0.5 7 1057 1067.60 1075 1070 1092.30 1105 17.56

100 0.2 0.5 9 955 981.30 998 994 1013.10 1023 21.90

100 0.5 0.1 3 940 941.10 943 940 943.30 947 3.81

100 0.5 0.1 5 899 901.00 903 902 906.50 910 8.74

100 0.5 0.1 7 864 867.30 873 871 878.20 883 14.85

100 0.5 0.1 9 833 838.80 843 844 854.70 871 21.54

100 0.5 0.3 3 2741 2741.00 2741 2741 2741.10 2742 7.57

100 0.5 0.3 5 2629 2631.20 2634 2632 2636.70 2642 19.69

100 0.5 0.3 7 2532 2537.90 2556 2555 2568.80 2581 28.54

100 0.5 0.3 9 2459 2472.10 2487 2497 2508.60 2524 31.01

100 0.5 0.5 3 3939 3944.90 3958 3939 3949.80 3966 12.35

100 0.5 0.5 5 3659 3677.70 3693 3697 3713.10 3729 19.50

100 0.5 0.5 7 3507 3518.90 3529 3537 3548.70 3559 25.56
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Table D.1 – Continued from previous page

|V | d d− k
ILSRCC ILSadapt tavg

min avg max min avg max

100 0.5 0.5 9 3343 3367.90 3382 3399 3417.10 3435 26.51

100 0.8 0.1 3 1537 1538.00 1541 1537 1540.40 1546 2.82

100 0.8 0.1 5 1502 1502.00 1502 1503 1509.50 1515 6.08

100 0.8 0.1 7 1470 1471.30 1474 1473 1484.00 1493 10.41

100 0.8 0.1 9 1439 1443.10 1445 1448 1456.40 1465 16.35

100 0.8 0.3 3 4599 4601.50 4606 4599 4600.60 4604 7.17

100 0.8 0.3 5 4462 4468.90 4476 4468 4478.60 4488 18.14

100 0.8 0.3 7 4364 4377.30 4385 4369 4391.50 4403 30.49

100 0.8 0.3 9 4270 4286.10 4308 4303 4316.60 4332 36.91

100 0.8 0.5 3 6676 6676.00 6676 6676 6695.60 6741 16.14

100 0.8 0.5 5 6319 6330.80 6347 6343 6376.80 6401 23.40

100 0.8 0.5 7 6095 6115.60 6141 6136 6166.90 6195 28.12

100 0.8 0.5 9 5921 5939.60 5959 5973 5989.00 6008 31.76

200 0.1 0.1 3 691 694.60 700 695 699.60 703 16.03

200 0.1 0.1 5 602 606.70 611 615 624.30 634 42.44

200 0.1 0.1 7 539 545.20 550 565 576.10 582 85.12

200 0.1 0.1 9 499 504.30 511 524 535.90 544 121.75

200 0.1 0.3 3 1993 1993.50 1995 2002 2011.90 2024 32.91

200 0.1 0.3 5 1782 1799.30 1812 1823 1834.90 1848 90.46

200 0.1 0.3 7 1659 1680.70 1695 1712 1719.70 1730 123.25

200 0.1 0.3 9 1574 1589.70 1607 1619 1633.60 1645 142.54

200 0.1 0.5 3 2716 2726.60 2744 2732 2744.20 2754 56.06

200 0.1 0.5 5 2403 2414.90 2435 2435 2465.90 2484 81.47

200 0.1 0.5 7 2226 2240.50 2260 2274 2299.50 2327 108.14

200 0.1 0.5 9 2104 2122.70 2135 2151 2173.70 2189 119.36

200 0.2 0.1 3 1515 1517.30 1526 1516 1520.70 1524 15.82

200 0.2 0.1 5 1422 1433.80 1445 1437 1452.50 1461 43.79

200 0.2 0.1 7 1357 1364.40 1371 1384 1394.30 1410 88.66

200 0.2 0.1 9 1293 1311.50 1326 1328 1350.10 1357 145.51

200 0.2 0.3 3 4376 4383.10 4387 4377 4384.10 4392 32.41

200 0.2 0.3 5 4136 4144.30 4154 4161 4176.80 4194 102.09

200 0.2 0.3 7 3957 3971.30 3988 4027 4042.70 4054 163.24

200 0.2 0.3 9 3856 3871.90 3885 3916 3938.90 3960 168.21

200 0.2 0.5 3 6142 6153.80 6178 6172 6187.30 6206 66.70

200 0.2 0.5 5 5689 5715.00 5729 5740 5772.30 5818 92.31

200 0.2 0.5 7 5436 5460.90 5501 5449 5528.80 5558 114.75

200 0.2 0.5 9 5229 5264.30 5283 5298 5336.40 5362 138.09

200 0.5 0.1 3 3950 3951.50 3957 3952 3958.90 3963 20.22

200 0.5 0.1 5 3876 3887.10 3899 3893 3903.90 3912 43.74

200 0.5 0.1 7 3814 3826.40 3835 3835 3855.60 3869 77.27

200 0.5 0.1 9 3769 3774.70 3782 3802 3811.20 3824 125.47

200 0.5 0.3 3 11624 11629.30 11639 11624 11632.30 11643 43.78

200 0.5 0.3 5 11368 11384.70 11398 11398 11416.20 11436 112.73

200 0.5 0.3 7 11169 11193.00 11217 11227 11254.90 11273 213.97

200 0.5 0.3 9 11052 11066.70 11089 11122 11142.10 11175 251.60

200 0.5 0.5 3 17090 17098.40 17124 17121 17147.80 17192 104.95

200 0.5 0.5 5 16367 16401.30 16462 16434 16496.40 16540 136.04

200 0.5 0.5 7 15969 16006.10 16038 16054 16099.80 16137 157.54

200 0.5 0.5 9 15621 15673.30 15710 15734 15787.00 15821 169.82

200 0.8 0.1 3 6348 6348.80 6350 6348 6355.50 6366 14.59

200 0.8 0.1 5 6284 6291.10 6295 6297 6310.60 6322 29.45



Appendix D -- Detailed results for the random RCC instances 151

Table D.1 – Continued from previous page

|V | d d− k
ILSRCC ILSadapt tavg

min avg max min avg max

200 0.8 0.1 7 6226 6237.90 6247 6243 6263.90 6279 52.70

200 0.8 0.1 9 6181 6189.70 6202 6199 6214.10 6234 80.28

200 0.8 0.3 3 18810 18811.80 18816 18817 18823.60 18831 41.21

200 0.8 0.3 5 18546 18556.70 18569 18573 18588.90 18612 116.73

200 0.8 0.3 7 18339 18374.70 18400 18381 18415.50 18450 197.81

200 0.8 0.3 9 18148 18211.30 18241 18261 18291.50 18319 291.05

200 0.8 0.5 3 28291 28301.70 28311 28305 28364.70 28410 129.39

200 0.8 0.5 5 27342 27400.10 27458 27497 27544.10 27589 157.90

200 0.8 0.5 7 26793 26867.10 26911 26921 27000.30 27078 180.17

200 0.8 0.5 9 26416 26474.00 26534 26521 26591.40 26676 193.61

400 0.1 0.1 3 2989 2996.30 3006 2986 2996.10 3003 104.42

400 0.1 0.1 5 2812 2826.60 2839 2813 2833.70 2853 284.54

400 0.1 0.1 7 2669 2688.60 2711 2687 2708.50 2756 625.85

400 0.1 0.1 9 2569 2586.10 2605 2578 2608.00 2633 1020.60

400 0.1 0.3 3 8843 8851.50 8862 8837 8845.30 8854 233.79

400 0.1 0.3 5 8360 8374.40 8383 8389 8413.10 8475 811.53

400 0.1 0.3 7 8022 8047.40 8074 8040 8119.80 8206 1280.75

400 0.1 0.3 9 7835 7880.20 7934 7893 7950.30 7990 1153.92

400 0.1 0.5 3 12523 12532.80 12544 12522 12562.00 12610 508.94

400 0.1 0.5 5 11611 11648.60 11679 11622 11734.00 11783 660.74

400 0.1 0.5 7 11099 11178.80 11209 11179 11243.30 11309 815.20

400 0.1 0.5 9 10807 10868.90 10928 10869 10929.00 10985 812.93

400 0.2 0.1 3 6296 6300.10 6306 6296 6303.30 6315 91.57

400 0.2 0.1 5 6147 6159.20 6170 6157 6167.90 6186 247.20

400 0.2 0.1 7 6028 6039.90 6071 6035 6054.00 6085 462.77

400 0.2 0.1 9 5912 5923.90 5934 5927 5950.60 5975 775.45

400 0.2 0.3 3 18278 18284.70 18298 18277 18291.60 18305 235.19

400 0.2 0.3 5 17735 17758.10 17779 17764 17802.00 17849 786.29

400 0.2 0.3 7 17385 17431.00 17467 17509 17555.30 17597 1370.41

400 0.2 0.3 9 17163 17207.10 17236 17244 17321.80 17373 1560.29

400 0.2 0.5 3 26898 26921.80 26941 26892 26960.90 27041 567.47

400 0.2 0.5 5 25577 25655.80 25711 25707 25774.00 25805 749.25

400 0.2 0.5 7 24947 24994.40 25055 25016 25108.90 25199 846.28

400 0.2 0.5 9 24472 24550.60 24590 24530 24639.40 24727 950.62

400 0.5 0.1 3 15853 15860.50 15867 15865 15875.60 15885 100.59

400 0.5 0.1 5 15758 15767.10 15777 15775 15786.70 15811 208.04

400 0.5 0.1 7 15642 15668.50 15684 15665 15689.90 15717 361.93

400 0.5 0.1 9 15561 15580.80 15610 15602 15625.00 15641 580.47

400 0.5 0.3 3 47486 47500.60 47521 47488 47516.40 47536 228.52

400 0.5 0.3 5 47004 47020.20 47038 46996 47035.40 47074 666.00

400 0.5 0.3 7 46604 46636.50 46677 46632 46682.40 46759 1295.69

400 0.5 0.3 9 46319 46352.50 46381 46353 46429.70 46474 1722.73

400 0.5 0.5 3 71795 71852.80 71898 71858 71969.60 72029 955.35

400 0.5 0.5 5 69825 69888.40 69958 69973 70148.90 70274 1105.49

400 0.5 0.5 7 68747 68873.20 68939 68945 69082.80 69205 1116.31

400 0.5 0.5 9 68093 68167.30 68262 68103 68239.80 68522 1195.26

400 0.8 0.1 3 25285 25289.20 25293 25295 25302.50 25310 68.99

400 0.8 0.1 5 25192 25203.60 25210 25205 25220.40 25242 134.38

400 0.8 0.1 7 25086 25106.80 25124 25095 25135.10 25170 209.22

400 0.8 0.1 9 25027 25038.30 25051 25054 25064.40 25081 321.54

400 0.8 0.3 3 76029 76044.80 76075 76039 76084.70 76157 214.40
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|V | d d− k
ILSRCC ILSadapt tavg

min avg max min avg max

400 0.8 0.3 5 75601 75627.60 75674 75605 75673.40 75748 547.72

400 0.8 0.3 7 75228 75280.40 75332 75237 75315.60 75396 1099.86

400 0.8 0.3 9 74910 74954.10 74982 74960 75032.90 75096 1662.96

400 0.8 0.5 3 117476 117543.50 117626 117527 117631.00 117773 1109.08

400 0.8 0.5 5 114831 114990.90 115126 115077 115261.10 115489 1294.47

400 0.8 0.5 7 113596 113681.80 113790 113660 113938.50 114126 1407.46

400 0.8 0.5 9 112546 112725.80 112904 112836 112996.20 113288 1406.61

600 0.1 0.1 3 6842 6854.10 6861 6833 6847.00 6858 317.03

600 0.1 0.1 5 6621 6632.10 6643 6614 6642.60 6678 736.46

600 0.1 0.1 7 6405 6438.80 6474 6438 6464.60 6501 1656.70

600 0.1 0.1 9 6251 6283.30 6298 6291 6316.40 6359 2645.73

600 0.1 0.3 3 20349 20382.00 20398 20356 20385.00 20412 783.90

600 0.1 0.3 5 19655 19682.20 19706 19712 19755.70 19788 2518.19

600 0.1 0.3 7 19168 19201.50 19228 19238 19324.00 19372 4519.86

600 0.1 0.3 9 18775 18840.30 18875 18913 19016.70 19078 4870.33

600 0.1 0.5 3 29305 29349.80 29379 29379 29451.00 29516 2034.70

600 0.1 0.5 5 27696 27765.20 27866 27923 27959.40 28017 2364.64

600 0.1 0.5 7 26880 26956.00 27029 27007 27129.90 27196 2621.14

600 0.1 0.5 9 26244 26374.90 26442 26352 26501.40 26600 2860.93

600 0.2 0.1 3 14166 14171.30 14180 14154 14172.20 14178 262.04

600 0.2 0.1 5 13976 13996.50 14030 13969 14007.40 14053 626.76

600 0.2 0.1 7 13812 13830.10 13862 13830 13866.80 13894 1196.27

600 0.2 0.1 9 13662 13683.90 13707 13674 13711.30 13758 2054.11

600 0.2 0.3 3 42106 42129.40 42160 42115 42149.60 42189 751.15

600 0.2 0.3 5 41340 41395.50 41442 41425 41464.50 41531 2294.29

600 0.2 0.3 7 40801 40856.90 40912 40951 41016.00 41092 4377.53

600 0.2 0.3 9 40406 40450.90 40490 40584 40716.60 40825 5831.76

600 0.2 0.5 3 62367 62455.70 62532 62487 62603.90 62704 2301.21

600 0.2 0.5 5 60041 60203.50 60337 60316 60483.90 60597 2740.62

600 0.2 0.5 7 58939 59089.90 59212 59165 59296.90 59363 3095.99

600 0.2 0.5 9 58124 58245.80 58399 58270 58433.80 58576 3159.25

600 0.5 0.1 3 35888 35897.40 35910 35893 35911.10 35920 265.25

600 0.5 0.1 5 35748 35764.60 35779 35784 35799.60 35814 574.68

600 0.5 0.1 7 35614 35649.50 35677 35659 35678.20 35701 874.83

600 0.5 0.1 9 35493 35527.30 35551 35543 35580.60 35608 1415.54

600 0.5 0.3 3 106944 106962.10 106982 106940 106989.50 107042 664.15

600 0.5 0.3 5 106282 106328.70 106368 106297 106375.70 106493 1943.99

600 0.5 0.3 7 105701 105777.80 105879 105767 105879.30 106002 3598.85

600 0.5 0.3 9 105256 105341.80 105417 105298 105424.20 105562 5084.31

600 0.5 0.5 3 165124 165197.50 165260 165337 165464.60 165612 3580.68

600 0.5 0.5 5 161478 161564.70 161669 161907 162056.50 162160 3874.33

600 0.5 0.5 7 159537 159707.10 159876 159824 160116.70 160347 3929.42

600 0.5 0.5 9 158301 158384.50 158506 158513 158763.00 159063 4083.18

600 0.8 0.1 3 57334 57346.90 57357 57333 57352.90 57369 166.32

600 0.8 0.1 5 57208 57225.60 57248 57231 57242.50 57251 352.95

600 0.8 0.1 7 57044 57075.50 57106 57044 57099.50 57179 524.58

600 0.8 0.1 9 56968 56990.30 57006 56971 57003.20 57061 852.47

600 0.8 0.3 3 172024 172049.90 172084 172064 172094.00 172142 575.18

600 0.8 0.3 5 171515 171559.10 171605 171459 171590.80 171695 1375.56

600 0.8 0.3 7 170996 171088.70 171165 171044 171165.60 171259 2608.47

600 0.8 0.3 9 170559 170648.70 170738 170651 170742.30 170905 4124.47
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|V | d d− k
ILSRCC ILSadapt tavg

min avg max min avg max

600 0.8 0.5 3 269158 269304.00 269465 269353 269646.40 269850 4247.83

600 0.8 0.5 5 264210 264560.20 264822 265003 265276.20 265560 4722.79

600 0.8 0.5 7 261978 262158.00 262388 262582 262903.30 263149 4998.81

600 0.8 0.5 9 260310 260584.20 260937 260654 260983.80 261283 4755.96
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APPENDIX E -- Detailed results for the SRCC
instances

Table E.1: Symmetric relaxed imbalance obtained by ILSRCC and ILS Levorato et al. [76].

Instance |V | d d− k
ILSRCC ILS Levorato et al. [76]

tavg
min avg max min avg max

UNGA-1946 54 0.484 0.27 2 9.338 9.338 9.338 9.338 9.338 9.338 0.5

UNGA-1947 57 0.490 0.42 3 18.698 18.697 18.698 18.698 18.697 18.698 0.7

UNGA-1948 59 0.494 0.34 4 4.399 4.399 4.399 4.399 4.399 4.399 1.2

UNGA-1949 59 0.496 0.28 2 37.748 37.748 37.748 37.748 37.748 37.748 0.6

UNGA-1950 60 0.496 0.25 2 25.028 25.028 25.028 25.028 25.028 25.028 0.6

UNGA-1951 60 0.490 0.37 2 58.960 58.960 58.960 58.960 58.960 58.960 0.8

UNGA-1952 60 0.495 0.26 2 46.099 46.099 46.099 46.099 46.099 46.099 0.6

UNGA-1953 60 0.488 0.34 2 31.288 31.288 31.288 31.288 31.288 31.288 0.8

UNGA-1954 60 0.492 0.30 2 32.823 32.823 32.823 32.823 32.823 32.823 0.8

UNGA-1955 65 0.464 0.11 4 5.377 5.377 5.377 5.377 5.377 5.377 1.5

UNGA-1956 81 0.480 0.30 4 17.181 17.181 17.181 17.181 17.181 17.181 2.3

UNGA-1957 82 0.495 0.32 3 37.512 37.512 37.512 37.512 37.512 37.512 2.0

UNGA-1958 82 0.489 0.25 2 122.536 122.536 122.536 122.536 122.536 122.536 1.2

UNGA-1959 82 0.497 0.35 2 102.881 102.881 102.881 102.881 102.881 102.881 2.2

UNGA-1960 100 0.488 0.39 3 45.464 45.464 45.464 45.464 45.464 45.464 3.4

UNGA-1961 106 0.467 0.35 3 37.395 37.395 37.395 37.395 37.395 37.395 3.9

UNGA-1962 110 0.468 0.33 2 154.412 154.412 154.412 154.412 154.412 154.412 4.4

UNGA-1963 113 0.490 0.18 4 20.639 20.639 20.639 20.639 20.639 20.639 3.7

UNGA-19641 115 0.500 0.28 3 0.000 0.000 0.000 0.000 31.200 39.000 1.0

UNGA-1965 117 0.495 0.21 4 29.482 29.482 29.482 29.482 29.482 29.482 6.3

UNGA-1966 122 0.484 0.23 2 213.680 213.680 213.680 213.680 213.680 213.680 2.3

UNGA-1967 124 0.490 0.29 4 42.298 42.298 42.298 42.298 42.298 42.298 7.4

UNGA-1968 126 0.490 0.25 3 86.239 86.239 86.239 86.239 86.239 86.239 6.1

UNGA-1969 126 0.495 0.21 3 66.277 66.277 66.277 66.277 66.277 66.277 4.9

UNGA-1970 127 0.497 0.21 3 69.316 69.316 69.316 69.316 69.316 69.316 4.9

UNGA-1971 133 0.493 0.09 4 19.306 19.306 19.306 19.306 19.306 19.306 4.8

UNGA-1972 132 0.499 0.04 2 16.294 16.294 16.294 16.294 16.294 16.294 1.4

UNGA-1973 135 0.499 0.09 3 14.142 14.142 14.142 14.142 14.142 14.142 2.5

UNGA-1974 138 0.499 0.10 3 18.608 18.608 18.608 18.608 18.608 18.608 3.1

UNGA-1975 143 0.472 0.21 4 53.707 53.707 53.707 53.707 53.707 53.707 6.6

UNGA-1976 144 0.460 0.16 4 34.606 34.606 34.606 34.606 34.606 34.606 5.6

UNGA-1977 146 0.465 0.09 6 15.548 15.548 15.548 15.548 15.548 15.548 12.7

UNGA-1978 148 0.483 0.14 3 74.755 74.755 74.755 75.445 76.629 77.812 3.1

1In the 19th session, voting occurred on only one resolution which explains the signed digraph with
very low relaxed imbalance.
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Instance |V | d d− k
ILSRCC ILS Levorato et al. [76]

tavg
min avg max min avg max

UNGA-1979 150 0.470 0.16 5 21.520 21.520 21.520 21.520 21.520 21.520 9.6

UNGA-1980 151 0.474 0.18 6 29.303 29.303 29.303 29.303 30.054 31.807 11.7

UNGA-1981 155 0.477 0.18 5 29.121 29.121 29.121 29.121 29.121 29.121 11.3

UNGA-1982 156 0.432 0.15 4 31.378 31.378 31.378 31.378 31.378 31.378 9.8

UNGA-1983 157 0.474 0.22 4 29.523 29.523 29.523 29.523 36.168 62.750 7.4

UNGA-1984 158 0.439 0.20 4 14.033 14.033 14.033 14.033 17.197 45.679 6.9

UNGA-1985 158 0.431 0.12 2 53.630 53.630 53.630 53.630 53.630 53.630 2.9

UNGA-1986 158 0.499 0.08 2 44.673 44.673 44.673 44.673 44.673 44.673 2.4

UNGA-1987 158 0.499 0.05 3 9.119 9.119 9.119 9.119 9.119 9.119 2.8

UNGA-1988 158 0.499 0.08 2 33.905 33.905 33.905 33.905 33.905 33.905 2.5

UNGA-1989 158 0.500 0.05 2 17.302 17.302 17.302 17.302 17.302 17.302 2.3

UNGA-1990 158 0.498 0.10 3 15.024 15.024 15.024 15.024 15.024 15.024 3.5

UNGA-1991 178 0.467 0.10 3 15.480 15.480 15.480 15.480 15.569 15.692 3.6

UNGA-1992 180 0.493 0.08 4 12.201 12.201 12.201 12.201 12.770 17.889 8.0

UNGA-1993 184 0.496 0.09 3 24.689 24.972 25.003 24.689 24.689 24.689 4.4

UNGA-1994 185 0.497 0.13 3 23.573 23.573 23.573 23.573 23.573 23.573 5.5

UNGA-1995 185 0.489 0.11 3 27.624 27.624 27.624 27.624 28.248 28.663 5.1

UNGA-1996 185 0.499 0.07 3 9.541 9.541 9.541 9.541 9.541 9.541 5.6

UNGA-1997 176 0.471 0.16 5 27.018 27.018 27.018 27.018 27.018 27.018 13.0

UNGA-1998 177 0.492 0.14 4 39.300 39.300 39.300 39.300 39.300 39.300 11.2

UNGA-1999 182 0.487 0.10 4 14.375 14.375 14.375 14.375 14.386 14.412 9.0

UNGA-2000 189 0.495 0.13 4 25.099 25.100 25.099 25.099 25.100 25.099 8.6

UNGA-2001 191 0.495 0.16 2 33.531 33.531 33.531 33.531 33.531 33.531 6.8

UNGA-2002 192 0.495 0.10 3 12.687 12.687 12.687 12.687 12.687 12.687 4.1

UNGA-2003 191 0.489 0.06 2 7.466 7.466 7.466 7.466 7.466 7.466 4.2

UNGA-2004 191 0.498 0.05 2 20.638 20.638 20.638 20.638 20.638 20.638 3.6

UNGA-2005 192 0.482 0.06 3 25.516 25.516 25.516 25.516 25.516 25.516 6.0

UNGA-2006 192 0.498 0.05 2 28.954 28.955 28.954 28.954 28.955 28.954 3.6

UNGA-2007 192 0.498 0.06 2 45.570 45.570 45.570 45.570 45.570 45.570 3.7

UNGA-2008 192 0.495 0.06 2 36.889 36.889 36.889 36.889 36.889 36.889 3.8

Slashdot1 200 0.022 0.07 5 11.0 11.700 12.0 16.0 17.30 19.0 16.9

Slashdot2 300 0.012 0.08 8 4.0 4.600 5.0 8.0 11.10 12.0 61.1

Slashdot3 400 0.008 0.07 4 15.0 16.100 18.0 20.0 22.20 24.0 67.7

Slashdot4 600 0.005 0.08 9 8.0 10.700 13.0 16.0 19.20 21.0 438.5

Slashdot5 800 0.005 0.11 20 14.0 16.300 20.0 32.0 35.60 41.0 2161.5

Slashdot6 1000 0.006 0.14 11 182.0 187.200 194.0 206.0 211.10 218.0 6107.6

Slashdot7 2000 0.005 0.15 43 626.0 650.700 686.0 712.0 751.90 777.0 7200.0

BR-2010-v1 545 0.490 0.01 4 309.692 309.692 309.692 316.091 375.860 596.137 135.3

BR-2010-v2 545 0.490 0.02 4 332.493 332.493 332.493 338.836 343.849 345.102 160.9

BR-2011-v1 553 0.488 0.20 4 562.540 562.541 562.541 562.540 584.250 589.677 534.2

BR-2011-v2 553 0.486 0.21 4 566.950 566.950 566.950 566.950 594.462 601.993 517.5

BR-2012-v1 555 0.489 0.04 4 658.613 658.613 658.613 672.986 755.450 1072.030 202.8

BR-2012-v2 555 0.488 0.04 4 681.168 681.168 681.168 697.567 703.277 704.705 202.2

BR-2013-v1 540 0.489 0.04 4 483.511 503.611 514.011 483.511 757.230 1266.900 117.1

BR-2013-v2 540 0.489 0.04 4 504.918 522.200 539.912 631.341 692.390 732.912 115.6

BR-2014-v1 556 0.496 0.01 4 130.020 131.001 131.968 131.973 136.706 168.493 61.3

BR-2014-v2 556 0.495 0.01 4 137.165 137.629 138.326 140.349 148.078 182.796 65.4

BR-2015-v1 552 0.486 0.12 4 536.724 536.724 536.724 536.724 676.785 1147.860 271.7
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Instance |V | d d− k
ILSRCC ILS Levorato et al. [76]

tavg
min avg max min avg max

BR-2015-v2 552 0.484 0.18 4 585.038 585.038 585.038 585.038 707.996 830.955 294.7

BR-2016-v1 544 0.484 0.10 4 1241.520 1241.520 1241.520 1241.520 1411.645 1610.620 291.9

BR-2016-v2 544 0.482 0.11 4 1285.950 1285.950 1285.950 1377.020 1511.614 1677.130 287.7
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APPENDIX F -- Detailed results of the BCP
algorithms for the X
instances

Table F.1: Results for X instances by the BCPF2 with a time limit of 60 hours. The
results which were already reported in Table 3.5 were omitted. The final lower bound is
denoted by LBf .

Instance UB
timeub

LBf z(IP ) LBf
root

time timeprc
nodes

(h) (s) (s)

X-n172-50-k27 30,634 4.1 30,634 30,634 30,535 270 41 19

X-n172-66-k31 31,864 3.6 31,864 31,864 31,808 161 20 7

X-n172-80-k39 36,803 3.2 36,803 36,803 36,746 560 37 15

X-n176-50-k23 45,239 4.4 45,239 45,239 45,162 437 60 37

X-n176-66-k24 46,416 4.3 46,416 46,416 46,337 736 122 65

X-n176-80-k25 47,033 6.1 47,033 47,033 46,987 341 61 11

X-n181-50-k12 16,549 5.6 16,549 16,549 16,549 57 15 1

X-n181-66-k15 18,832 4.9 18,832 18,832 18,832 41 14 1

X-n181-80-k18 21,241 4.4 21,241 21,241 21,241 54 15 1

X-n186-50-k8 17,978 4.3 17,978 17,978 17,868 9,088 1,721 41

X-n186-66-k10 19,751 4.1 19,751 19,751 19,751 302 118 1

X-n186-80-k12 21,754 5.3 21,754 21,754 21,631 21,953 9,826 113

X-n190-50-k4 11,552 7.6 11,552 11,552 11,493 9,096 4,850 29

X-n190-66-k5 12,784 14.1 12,738 – 12,719 – 177,686 231

X-n190-80-k6 14,410 11.4 14,345 – 14,340 – 191,111 237

X-n195-50-k27 29,470 4.0 29,470 29,470 29,376 698 46 25

X-n195-66-k34 33,137 4.4 33,137 33,137 33,077 166 20 7

X-n195-80-k42 38,629 5.2 38,629 38,629 38,629 186 27 1

X-n200-50-k18 34,416 11.8 34,408 34,408 34,291 81,125 4,131 1,269

X-n200-66-k24 40,474 12.6 40,342 – 40,321 – 21,542 4,435

X-n200-80-k29 47,741 8.9 47,741 47,741 47,714 585 76 5

X-n204-50-k10 15,877 5.0 15,877 15,877 15,841 1,349 269 7

X-n204-66-k12 16,703 5.1 16,703 16,703 16,564 24,018 4,998 179

(Continues on the next page)
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Instance UB
timeub

LBf z(IP ) LBf
root

time timeprc
nodes

(h) (s) (s)

X-n204-80-k15 17,832 5.3 17,832 17,832 17,791 1,394 411 5

X-n209-50-k8 21,837 7.3 21,837 21,837 21,649 52,058 6,891 205

X-n209-66-k11 24,378 8.8 24,378 24,378 24,209 75,385 38,246 327

X-n209-80-k13 27,177 11.2 27,001 – 26,983 – 115,022 661

X-n214-50-k6 9,574 7.1 9,574 9,574 9,550 3,422 1,118 9

X-n214-66-k8 10,001 7.4 10,001 10,001 9,964 2,356 1,490 9

X-n214-80-k9 10,457 6.8 10,457 10,457 10,406 18,255 10,668 63

X-n219-50-k37 64,691 10.8 64,691 64,691 64,620 50 10 3

X-n219-66-k48 80,405 7.9 80,405 80,405 80,405 40 14 1

X-n219-80-k59 95,845 7.5 95,845 95,845 95,845 36 16 1

X-n223-50-k18 27,449 10.0 27,442 27,442 27,327 11,835 1,069 139

X-n223-66-k23 30,717 8.4 30,717 30,717 30,568 35,662 3,976 407

X-n223-80-k27 34,440 8.1 34,440 34,440 34,336 15,291 1,752 161

X-n228-50-k19 23,128 7.1 23,128 23,128 23,079 1,022 327 23

X-n228-66-k20 24,114 10.2 24,113 24,113 24,052 5,511 2,057 39

X-n228-80-k21 24,592 6.4 24,592 24,592 24,592 724 319 1

X-n233-50-k10 17,186 7.1 17,186 17,186 17,053 93,406 71,427 159

X-n233-66-k12 18,026 5.7 18,026 18,026 17,966 2,328 1,394 9

X-n233-80-k14 18,885 6.4 18,662 – 18,642 – 174,564 793

X-n237-50-k7 20,745 10.1 20,745 20,745 20,676 23,322 13,874 33

X-n237-66-k9 22,471 13.0 22,471 22,471 22,380 83,074 66,372 105

X-n237-80-k11 24,357 12.0 24,357 24,357 24,308 2,593 1,530 7

X-n242-50-k25 47,949 18.3 47,722 – 47,672 – 19,577 2,899

X-n242-66-k32 57,197 14.0 57,197 57,197 57,044 84,515 9,241 1,559

X-n242-80-k39 68,969 19.4 68,965 68,965 68,828 63,924 8,640 895

X-n247-50-k42 36,701 10.0 36,701 36,701 36,701 76 42 1

X-n247-66-k43 36,994 10.6 36,994 36,994 36,994 84 41 1

X-n247-80-k45 37,220 11.7 37,205 37,205 37,200 293 130 3

X-n251-50-k14 24,968 20.3 24,968 24,968 24,876 25,557 3,127 127

X-n251-66-k18 27,817 13.6 27,817 27,817 27,713 72,575 8,566 355

X-n251-80-k22 32,170 15.5 32,027 – 32,007 – 50,325 965

X-n256-50-k8 15,922 6.9 15,922 15,922 15,922 404 189 1

X-n256-66-k11 17,250 7.4 17,250 17,250 17,250 521 290 1

X-n256-80-k13 18,189 8.7 18,073 – 18,041 – 142,662 819

X-n261-50-k7 21,555 13.0 21,555 21,555 21,457 63,665 40,112 37

X-n261-66-k9 23,065 12.2 22,885 – 22,856 – 187,116 61

X-n261-80-k11 25,128 16.5 24,913 – 24,867 – 180,864 281

X-n266-50-k30 47,815 35.1 47,783 47,783 47,649 101,191 13,933 1,461

X-n266-66-k39 55,962 24.4 55,794 55,945 55,782 – 34,684 3,563

X-n266-80-k47 63,880 25.5 63,780 – 63,731 – 24,218 3,147

(Continues on the next page)
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Instance UB
timeub

LBf z(IP ) LBf
root

time timeprc
nodes

(h) (s) (s)

X-n270-50-k18 24,776 14.0 24,751 24,751 24,654 45,333 6,267 237

X-n270-66-k24 26,377 7.5 26,377 26,377 26,329 1,941 272 21

X-n270-80-k29 29,789 7.9 29,692 – 29,659 – 30,397 1,377

X-n275-50-k14 15,561 13.6 15,561 15,561 15,515 5,294 832 21

X-n275-66-k19 16,944 10.7 16,944 16,944 16,930 513 113 3

X-n275-80-k22 18,690 13.0 18,688 18,688 18,659 3,719 681 29

X-n280-50-k13 29,132 11.4 29,132 29,132 29,005 128,359 93,994 71

X-n280-66-k15 31,315 19.7 31,138 – 31,111 – 158,023 407

X-n280-80-k16 32,332 15.3 32,030 – 32,013 – 192,361 147

X-n284-50-k8 15,944 20.6 15,944 15,944 15,834 93,999 43,893 209

X-n284-66-k10 17,277 16.3 17,226 – 17,196 – 190,019 21

X-n284-80-k12 18,830 19.5 18,693 – 18,676 – 184,435 127

X-n289-50-k34 57,957 34.0 57,573 – 57,530 – 33,748 1,775

X-n289-66-k38 63,446 26.9 63,207 – 63,187 – 42,435 2,423

X-n289-80-k47 75,963 33.8 75,645 – 75,628 – 40,762 1,739

X-n294-50-k26 30,859 9.1 30,859 30,859 30,747 4,905 468 45

X-n294-66-k33 34,636 11.5 34,636 34,636 34,543 12,903 1,056 143

X-n294-80-k40 39,269 11.5 39,096 – 39,077 – 22,714 1,951

X-n298-50-k16 25,081 8.5 25,081 25,081 24,959 35,865 3,878 173

X-n298-66-k21 27,643 15.8 27,521 – 27,471 – 54,914 899

X-n298-80-k25 30,222 16.2 30,222 30,222 30,108 85,792 22,231 305

X-n303-50-k11 17,763 14.5 17,669 – 17,647 – 128,405 101

X-n303-66-k13 18,120 8.9 18,120 18,120 18,048 54,891 34,827 91

X-n303-80-k16 19,603 12.0 19,480 – 19,457 – 172,877 249

X-n308-50-k9 22,544 15.6 22,319 – 22,305 – 194,203 5

X-n308-66-k11 24,154 20.5 24,001 – 23,991 – 194,915 29

X-n308-80-k12 25,164 22.4 24,860 – 24,845 – 209,695 13

X-n313-50-k39 57,762 30.7 57,476 – 57,445 – 41,082 2,765

X-n313-66-k44 60,089 31.8 59,936 60,069 59,915 – 28,091 2,901

X-n313-80-k56 73,834 28.0 73,672 – 73,655 – 37,558 2,661

X-n317-50-k27 43,396 60.8 43,391 43,391 43,368 1,290 236 17

X-n317-66-k35 54,502 40.9 54,502 54,502 54,486 1,018 233 15

X-n317-80-k43 63,683 24.6 63,683 63,683 63,666 626 250 9

X-n322-50-k14 23,309 11.9 23,309 23,309 23,140 132,954 23,529 349

X-n322-66-k19 25,034 10.7 25,034 25,034 24,952 6,100 1,703 21

X-n322-80-k23 27,500 14.7 27,500 27,500 27,376 184,907 63,083 453

X-n327-50-k10 21,610 25.2 21,379 – 21,347 – 107,246 145

X-n327-66-k13 23,322 17.7 23,197 – 23,186 – 159,555 69

X-n327-80-k16 24,990 21.4 24,751 – 24,729 – 186,367 221

X-n331-50-k8 24,152 21.7 23,905 – 23,855 – 156,722 103
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Instance UB
timeub

LBf z(IP ) LBf
root

time timeprc
nodes

(h) (s) (s)

X-n331-66-k10 26,247 26.8 26,082 – 26,057 – 162,636 81

X-n331-80-k12 28,265 29.9 28,052 – 28,039 – 185,486 35

X-n336-50-k45 81,760 48.7 81,349 – 81,324 – 34,124 2,331

X-n336-66-k57 99,226 46.1 98,879 – 98,862 – 40,186 2,861

X-n336-80-k68 116,185 48.8 115,893 – 115,871 – 36,471 2,555

X-n344-50-k22 28,527 19.8 28,527 28,527 28,409 65,642 10,809 245

X-n344-66-k29 31,845 23.8 31,701 – 31,676 – 33,287 1,215

X-n344-80-k35 35,743 27.0 35,648 – 35,633 – 40,381 921

X-n351-50-k21 18,584 25.1 18,481 – 18,444 – 51,270 937

X-n351-66-k26 19,758 23.8 19,699 – 19,682 – 71,277 859

X-n351-80-k32 22,158 26.5 22,065 – 22,054 – 99,086 703

X-n359-50-k15 33,255 49.4 33,000 – 32,958 – 102,315 183

X-n359-66-k19 37,695 47.7 37,440 – 37,419 – 160,781 161

X-n359-80-k23 43,412 49.3 43,274 – 43,261 – 143,353 193

X-n367-50-k12 20,526 36.9 20,361 – 20,345 – 184,200 9

X-n367-66-k14 21,479 26.8 21,398 – 21,398 – 192,713 3

X-n367-80-k15 22,386 26.8 22,202 – 22,180 – 201,875 17

X-n376-50-k47 80,736 45.6 80,736 80,736 80,685 705 139 11

X-n376-66-k62 100,613 44.8 100,613 100,613 100,574 2,125 510 33

X-n376-80-k75 119,581 32.5 119,581 119,581 119,581 363 213 1

X-n384-50-k27 41,206 54.4 40,828 – 40,803 – 43,174 1,045

X-n384-66-k35 47,373 38.6 47,150 – 47,103 – 37,375 1,199

X-n384-80-k42 55,386 47.5 55,102 – 55,086 – 50,940 871

X-n393-50-k19 30,005 58.6 29,859 – 29,848 – 72,360 235

X-n393-66-k25 29,340 37.1 29,167 – 29,144 – 84,039 307

X-n393-80-k31 32,619 42.5 32,492 – 32,486 – 106,245 289

X-n401-50-k15 39,746 67.3 39,298 – 39,264 – 199,911 47

X-n401-66-k20 47,658 90.9 47,268 – 47,254 – 202,207 43

X-n401-80-k23 54,270 69.3 53,935 – 53,920 – 205,753 41

X-n411-50-k14 17,959 30.4 17,871 – 17,871 – 99,554 3

X-n411-66-k15 18,785 31.5 18,645 – 18,630 – 135,572 7

X-n411-80-k17 19,496 35.3 19,158 – 19,151 – 206,181 19

X-n420-50-k67 75,527 185.8 75,351 – 75,328 – 57,441 2,107

X-n420-66-k86 76,079 69.2 75,898 – 75,880 – 57,456 1,719

X-n420-80-k105 89,381 59.8 89,356 89,356 89,269 72,223 10,370 707

X-n429-50-k31 41,284 39.3 40,989 – 40,967 – 37,302 953

X-n429-66-k40 47,793 51.1 47,516 – 47,493 – 42,041 987

X-n429-80-k48 54,835 50.2 54,522 – 54,505 – 51,458 749

X-n439-50-k19 27,011 36.1 26,969 – 26,943 – 107,470 25

X-n439-66-k25 28,883 32.0 28,826 – 28,804 – 103,337 235
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Instance UB
timeub

LBf z(IP ) LBf
root

time timeprc
nodes

(h) (s) (s)

X-n439-80-k30 32,074 38.3 31,999 – 31,986 – 135,395 165

X-n449-50-k15 36,929 55.1 36,498 – 36,469 – 137,845 125

X-n449-66-k20 41,846 75.8 41,323 – 41,313 – 192,684 93

X-n449-80-k23 46,738 65.7 46,082 – 46,061 – 203,178 49

X-n459-50-k14 18,891 39.7 18,724 – 18,691 – 181,996 11

X-n459-66-k18 20,561 39.6 20,159 – 20,132 – 182,592 49

X-n459-80-k21 22,047 52.8 21,733 – 21,719 – 197,129 55

X-n469-50-k70 123,817 154.8 122,783 123,773 122,730 – 45,176 2,703

X-n469-66-k90 148,455 96.2 148,185 – 148,164 – 27,860 2,595

X-n469-80-k109 178,511 93.8 178,067 – 178,048 – 30,321 2,083

X-n480-50-k36 52,309 95.7 51,933 – 51,897 – 51,958 507

X-n480-66-k47 63,577 80.1 63,314 – 63,297 – 76,292 563

X-n480-80-k56 73,993 100.9 73,650 – 73,632 – 105,667 313

X-n491-50-k30 43,952 117.2 43,512 – 43,489 – 132,730 121

X-n491-66-k39 49,627 87.7 49,299 – 49,151 – 91,111 339

X-n491-80-k47 56,141 80.6 55,610 – 55,566 – 137,699 303

X-n502-50-k20 40,591 130.6 40,454 – 40,444 – 122,851 11

X-n502-66-k26 49,285 113.2 49,204 – 49,194 – 107,574 27

X-n502-80-k31 56,997 96.5 56,937 – 56,922 – 177,770 11

X-n513-50-k11 21,675 44.2 21,417 – 21,417 – 132,874 3

X-n513-66-k14 22,426 35.7 22,133 – 22,133 – 145,374 3

X-n513-80-k17 23,448 35.3 23,081 – 23,081 – 206,960 3

X-n524-50-k125 154,137 80.5 154,137 154,137 154,080 1,829 778 39

X-n524-66-k129 154,416 99.9 154,416 154,416 154,360 12,384 4,118 255

X-n524-80-k132 154,497 90.1 154,446 154,446 154,413 3,549 1,782 45

X-n536-50-k49 54,658 116.3 54,249 – 54,193 – 104,940 303

X-n536-66-k64 66,032 114.7 65,688 – 65,668 – 114,173 385

X-n536-80-k77 77,811 140.8 77,513 – 77,495 – 149,699 297

X-n548-50-k25 53,049 147.7 52,681 – 52,649 – 122,148 73

X-n548-66-k33 61,421 134.8 61,259 – 61,243 – 142,637 89

X-n548-80-k40 71,867 161.2 71,761 – 71,749 – 155,396 139

X-n561-50-k22 31,826 64.4 31,336 – 31,307 – 190,355 43

X-n561-66-k28 34,370 59.8 34,129 – 34,100 – 190,425 43

X-n561-80-k34 38,053 71.1 37,637 – 37,588 – 187,865 87

X-n573-50-k22 40,239 110.4 40,003 – 40,003 – 117,244 1

X-n573-66-k25 44,151 166.1 43,765 – 43,765 – 181,946 1

X-n573-80-k27 47,054 189.2 46,580 – 46,580 – 200,243 3

X-n586-50-k80 122,632 515.9 121,890 – 121,857 – 128,653 585

X-n586-66-k105 140,396 204.3 140,017 – 139,991 – 71,338 821

X-n586-80-k127 160,390 178.2 160,006 – 159,982 – 79,723 613
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Instance UB
timeub

LBf z(IP ) LBf
root

time timeprc
nodes

(h) (s) (s)

X-n599-50-k47 65,292 151.3 64,384 – 64,334 – 137,453 197

X-n599-66-k61 76,472 115.8 76,040 – 76,018 – 94,481 339

X-n599-80-k74 89,844 145.7 89,234 – 89,220 – 135,692 243

X-n613-50-k32 40,838 89.2 40,375 – 40,356 – 141,694 75

X-n613-66-k41 46,074 94.9 45,445 – 45,358 – 188,735 95

X-n613-80-k50 52,096 125.0 51,385 – 51,376 – 192,914 151

X-n627-50-k22 38,096 211.2 37,734 – 37,717 – 154,012 71

X-n627-66-k29 44,782 296.3 44,201 – 44,186 – 194,269 61

X-n627-80-k35 52,429 323.5 51,775 – 51,768 – 198,419 53

X-n641-50-k18 42,333 160.8 41,579 – 41,565 – 183,134 39

X-n641-66-k23 47,501 151.1 46,866 – 46,858 – 199,661 19

X-n641-80-k28 54,116 171.0 53,398 – 53,390 – 204,268 13

X-n655-50-k66 59,442 200.6 59,233 – 59,217 – 124,641 515

X-n655-66-k87 72,456 160.8 72,424 – 72,418 – 91,208 787

X-n655-80-k105 86,564 158.6 86,564 86,564 86,542 50,660 23,748 165

X-n670-50-k112 144,707 165.6 144,637 – 144,627 – 122,379 45

X-n670-66-k117 144,990 165.0 144,846 – 144,819 – 136,613 27

X-n670-80-k120 145,275 194.2 145,054 – 145,036 – 193,090 17

X-n685-50-k43 48,023 150.5 47,498 – 47,479 – 170,949 73

X-n685-66-k54 53,240 146.2 52,595 – 52,580 – 196,578 55

X-n685-80-k62 59,301 130.1 58,697 – 58,692 – 202,085 51

X-n701-50-k23 51,390 332.9 50,714 – 50,657 – 187,874 39

X-n701-66-k30 58,844 277.9 58,042 – 58,033 – 200,435 9

X-n701-80-k36 68,618 278.6 67,735 – 67,722 – 207,724 7

X-n716-50-k18 29,757 217.6 29,195 – 29,189 – 162,933 7

X-n716-66-k23 32,527 269.4 31,905 – 31,905 – 200,782 1

X-n716-80-k28 37,976 264.4 37,338 – 37,338 – 191,495 1

X-n733-50-k83 80,585 202.9 79,856 – 79,821 – 116,949 267

X-n733-66-k102 92,156 200.8 91,757 – 91,723 – 74,442 455

X-n733-80-k125 110,659 225.0 110,238 – 110,223 – 128,547 197

X-n749-50-k49 47,740 295.5 47,110 – 47,082 – 150,513 91

X-n749-66-k63 55,560 251.0 54,765 – 54,754 – 196,196 75

X-n749-80-k78 63,991 265.7 63,189 – 63,182 – 200,628 95

X-n766-50-k58 95,674 341.3 94,819 – 94,819 – 165,150 1

X-n766-66-k62 101,566 390.6 100,651 – 100,633 – 196,948 5

X-n766-80-k65 106,758 406.3 105,675 – 105,665 – 205,395 15

X-n783-50-k24 49,027 263.3 47,777 – 47,758 – 198,844 19

X-n783-66-k31 53,429 243.3 52,496 – 52,496 – 177,559 3

X-n783-80-k38 60,937 302.2 59,880 – 59,873 – 196,223 3

X-n801-50-k20 48,459 369.0 48,024 – 48,015 – 180,780 5
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Instance UB
timeub

LBf z(IP ) LBf
root

time timeprc
nodes

(h) (s) (s)

X-n801-66-k27 54,929 425.8 54,193 – 54,193 – 184,590 3

X-n801-80-k32 62,698 398.0 62,000 – 62,000 – 180,045 3

X-n819-50-k86 89,296 332.4 88,170 – 88,144 – 128,254 189

X-n819-66-k112 108,431 338.2 107,726 – 107,688 – 132,300 187

X-n819-80-k136 128,617 354.4 127,891 – 127,874 – 144,472 151

X-n837-50-k71 116,553 639.6 115,016 – 114,975 – 124,162 111

X-n837-66-k94 129,183 463.3 128,236 – 128,203 – 157,542 137

X-n837-80-k114 154,966 476.1 154,098 – 154,084 – 173,868 177

X-n856-50-k48 57,777 368.6 57,543 – 57,529 – 128,258 53

X-n856-66-k63 63,542 296.5 63,241 – 63,222 – 157,856 37

X-n856-80-k76 73,802 279.1 73,549 – 73,534 – 168,100 57

X-n876-50-k30 58,780 460.2 57,903 – 57,891 – 186,246 35

X-n876-66-k38 69,617 447.8 68,489 – 68,480 – 203,526 11

X-n876-80-k46 80,983 548.0 80,204 – 80,204 – 207,511 3

X-n895-50-k19 40,668 252.7 39,807 – 39,807 – 161,965 3

X-n895-66-k25 44,059 277.5 43,052 – 43,052 – 132,947 1

X-n895-80-k30 48,451 338.5 47,375 – 47,375 – 188,132 1

X-n916-50-k105 190,108 644.1 187,568 – 187,527 – 107,633 165

X-n916-66-k136 222,807 597.7 221,570 – 221,517 – 122,939 143

X-n916-80-k165 263,885 596.4 262,762 – 262,720 – 138,277 123

X-n936-50-k132 127,497 240.2 127,347 – 127,323 – 164,181 25

X-n936-66-k138 128,871 320.1 128,475 – 128,444 – 199,818 33

X-n936-80-k143 130,808 396.8 129,839 – 129,818 – 204,051 61

X-n957-50-k44 57,019 620.3 56,340 – 56,298 – 162,896 23

X-n957-66-k58 62,593 459.0 62,087 – 62,070 – 190,143 29

X-n957-80-k70 71,855 470.8 71,277 – 71,240 – 203,048 29

X-n979-50-k30 69,739 671.7 68,032 – 68,011 – 183,342 5

X-n979-66-k39 84,499 657.6 83,100 – 83,100 – 212,646 1

X-n979-80-k47 99,605 681.1 98,338 – 98,338 – 195,325 1

X-n1001-50-k22 49,978 505.6 48,927 – 48,927 – 152,333 1

X-n1001-66-k28 56,126 503.8 55,093 – 55,093 – 174,370 1

X-n1001-80-k34 63,278 600.7 62,097 – 62,097 – 161,585 1
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APPENDIX G -- Results of BCP algorithms
when no upper bound is
given as input

Table G.1: Results obtained for the GJB instances when no upper bound is given as input

Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K LBf
root time nodes LBf

root time nodes
(s) (s)

A1 25 20 5 8 229,885.65 229,885.65 2 1 229,885.65 2 1

A2 25 20 5 5 180,119.21 180,119.21 5 1 179,954.01 7 3

A3 25 20 5 4 163,405.38 163,405.38 2 1 163,405.38 2 1

A4 25 20 5 3 155,796.41 155,796.41 3 1 155,796.41 2 1

B1 30 20 10 7 239,080.16 239,080.16 2 1 239,080.16 2 1

B2 30 20 10 5 198,047.77 198,047.77 10 1 197,763.04 5 3

B3 30 20 10 3 169,372.29 169,372.29 3 1 169,372.29 2 1

C1 40 20 20 7 250,556.77 250,556.77 7 1 250,556.77 3 1

C2 40 20 20 5 215,020.23 215,020.23 12 1 215,020.23 4 1

C3 40 20 20 5 199,345.96 199,345.96 2 1 199,345.96 3 1

C4 40 20 20 4 195,366.63 195,366.63 2 1 195,366.63 2 1

D1 38 30 8 12 322,530.13 322,530.13 2 1 322,530.13 3 1

D2 38 30 8 11 316,708.86 316,708.86 3 1 316,708.86 3 1

D3 38 30 8 7 239,478.63 239,478.63 6 1 238,777.54 12 3

D4 38 30 8 5 205,831.94 204,542.88 14 3 204,497.82 18 3

E1 45 30 15 7 238,879.58 238,879.58 3 1 238,879.58 2 1

E2 45 30 15 4 212,263.11 212,263.11 3 1 212,263.11 3 1

E3 45 30 15 4 206,659.17 206,659.17 6 1 206,659.17 4 1

F1 60 30 30 6 263,173.96 263,173.96 5 1 262,966.91 17 3

F2 60 30 30 7 265,214.16 265,214.16 3 1 265,214.16 3 1

F3 60 30 30 5 241,120.78 241,120.78 3 1 241,120.78 4 1

F4 60 30 30 4 233,861.85 233,861.85 11 1 233,861.85 7 1

G1 57 45 12 10 306,305.40 306,305.40 7 1 305,866.21 15 3
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Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K LBf
root time nodes LBf

root time nodes
(s) (s)

G2 57 45 12 6 245,440.99 245,440.99 5 1 245,440.99 6 1

G3 57 45 12 5 229,507.48 229,507.48 13 1 229,043.53 19 3

G4 57 45 12 6 232,521.25 232,521.25 8 1 232,347.93 24 3

G5 57 45 12 5 221,730.35 221,440.66 33 3 221,726.90 86 3

G6 57 45 12 4 213,457.45 213,457.45 7 1 213,457.45 6 1

H1 68 45 23 6 268,933.06 268,933.06 70 1 268,933.06 17 1

H2 68 45 23 5 253,365.50 253,365.50 14 1 253,365.50 7 1

H3 68 45 23 4 247,449.04 247,449.04 21 1 247,449.04 9 1

H4 68 45 23 5 250,220.77 250,220.77 41 1 250,220.77 6 1

H5 68 45 23 4 246,121.31 246,121.31 20 1 246,121.31 7 1

H6 68 45 23 5 249,135.32 249,135.32 16 1 249,135.32 6 1

I1 90 45 45 10 350,245.28 349,824.74 51 3 349,993.59 36 3

I2 90 45 45 7 309,943.84 309,943.84 22 1 309,943.84 12 1

I3 90 45 45 5 294,507.38 294,407.06 105 3 294,433.79 49 3

I4 90 45 45 6 295,988.45 295,256.19 154 3 293,883.49 38 5

I5 90 45 45 7 301,236.01 301,236.01 46 1 300,603.94 24 5

J1 94 75 19 10 335,006.68 335,006.68 28 1 334,384.98 70 3

J2 94 75 19 8 310,417.21 309,987.63 284 3 308,968.01 185 3

J3 94 75 19 6 279,219.21 279,219.21 130 1 279,068.01 191 3

J4 94 75 19 7 296,533.16 293,734.75 2,789 19 293,776.18 8,041 59

K1 113 75 38 10 394,071.17 394,071.17 41 1 392,638.99 76 5

K2 113 75 38 8 362,130.00 362,130.00 47 1 362,130.00 27 1

K3 113 75 38 9 365,694.08 365,694.08 53 1 365,694.08 36 1

K4 113 75 38 7 348,949.39 348,949.39 68 1 347,968.14 165 5

L1 150 75 75 10 417,896.71 417,896.71 322 1 417,332.11 220 3

L2 150 75 75 8 401,228.80 401,220.82 591 3 400,645.23 288 3

L3 150 75 75 9 402,677.72 402,677.72 250 1 402,677.72 71 1

L4 150 75 75 7 384,636.33 384,636.33 139 1 384,636.33 60 1

L5 150 75 75 8 387,564.55 387,564.55 126 1 387,564.55 59 1

M1 125 100 25 11 398,593.19 398,430.30 773 3 397,620.41 434 3

M2 125 100 25 10 396,916.97 396,466.48 347 3 395,706.60 506 3

M3 125 100 25 9 375,695.42 372,231.71 51,574 299 371,764.59 48,057 311

M4 125 100 25 7 348,140.16 347,865.37 423 3 346,956.35 610 3

N1 150 100 50 11 408,100.62 408,060.05 191 3 406,628.97 328 7

N2 150 100 50 10 408,065.44 407,596.22 362 3 406,213.20 411 9

N3 150 100 50 9 394,337.86 394,155.99 235 3 393,510.41 336 3

N4 150 100 50 10 394,788.36 394,678.28 312 3 394,006.39 614 5

N5 150 100 50 7 373,476.30 373,300.81 329 3 372,444.74 289 5

N6 150 100 50 8 373,758.65 373,629.92 281 3 372,753.43 237 5
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Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K LBf
root time nodes LBf

root time nodes
(s) (s)

O1 200 100 100 10 478,126.75 474,563.78 133,107 201 475,203.15 7,189 27

O2 200 100 100 11 477,256.15 476,353.83 1,833 9 476,890.24 292 3

O3 200 100 100 9 457,294.48 457,108.58 725 3 457,294.48 288 1

O4 200 100 100 10 458,874.87 458,874.87 235 1 458,874.87 101 1

O5 200 100 100 7 436,974.20 435,987.58 6,361 19 436,531.84 11,314 9

O6 200 100 100 8 438,004.69 437,496.80 899 3 437,827.10 698 3

Mean 2,994.1 1,201.0

Geometric mean 45.6 36.1

Table G.2: Results obtained for the TV instances when no upper bound is given as input

Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K LBf
root time nodes LBf

root time nodes
(s) (s)

E-n22-50 21 10 11 3 371 371 7 1 371 2 1

E-n22-66 21 14 7 3 366 366 6 1 366 2 1

E-n22-80 21 17 4 3 375 375 7 1 375 2 1

E-n23-50 22 11 11 2 682 682 7 1 682 2 1

E-n23-66 22 15 7 2 649 646 17 3 649 5 1

E-n23-80 22 18 4 2 623 623 11 1 623 3 1

E-n30-50 29 14 15 2 501 501 8 1 501 4 1

E-n30-66 29 19 10 3 537 537 17 1 537 2 1

E-n30-80 29 23 6 3 514 514 8 1 514 3 1

E-n33-50 32 16 16 3 738 738 8 1 738 6 1

E-n33-66 32 21 11 3 750 750 8 1 750 2 1

E-n33-80 32 26 6 3 736 736 8 1 736 2 1

E-n51-50 50 25 25 3 559 559 8 1 559 5 1

E-n51-66 50 33 17 4 548 548 9 1 548 4 1

E-n51-80 50 40 10 4 565 565 17 1 565 5 1

E-n76-A-50 75 38 37 6 739 738 39 3 739 12 1

E-n76-A-66 75 50 25 7 768 768 17 1 768 10 1

E-n76-A-80 75 60 15 8 781 781 20 1 781 8 1

E-n76-B-50 75 38 37 8 801 801 17 1 801 7 1

E-n76-B-66 75 50 25 10 873 872 26 3 873 20 3

E-n76-B-80 75 60 15 12 919 919 18 1 919 6 1

E-n76-C-50 75 38 37 5 713 710 30 3 713 30 1

E-n76-C-66 75 50 25 6 734 734 33 1 734 19 1

E-n76-C-80 75 60 15 7 733 731 628 15 731 528 9

E-n76-D-50 75 38 37 4 690 690 17 1 690 6 1
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Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K LBf
root time nodes LBf

root time nodes
(s) (s)

E-n76-D-66 75 50 25 5 715 713 55 3 715 50 1

E-n76-D-80 75 60 15 6 694 694 177 3 694 147 1

E-n101-A-50 100 50 50 4 831 831 52 1 831 61 1

E-n101-A-66 100 66 34 6 846 846 25 1 846 22 1

E-n101-A-80 100 80 20 6 856 853 2,364 21 853 1,191 9

E-n101-B-50 100 50 50 7 923 921 201 5 923 134 3

E-n101-B-66 100 66 34 9 982 973 3,621 65 974 4,106 37

E-n101-B-80 100 80 20 11 1,008 1,004 850 17 1,006 222 5

Average 252.6 200.8

Geometric mean 29.9 13.4

Table G.3: Results obtained for the FTV instances when no upper bound is given as
input.

Problem data
z(IP )

BCPF1 BCPF2

Instance n+m n m K LBf
root time nodes LBf

root time nodes
FTV33_50 33 17 16 2 1,841 1,841 10 1 1,841 2 1
FTV33_66 33 22 11 2 1,899 1,899 11 1 1,899 3 1
FTV33_80 33 27 6 2 1,704 1,704 10 1 1,704 3 1
FTV35_50 35 18 17 2 2,077 2,077 21 1 2,077 12 1
FTV35_66 35 24 11 2 2,150 2,150 18 1 2,141 12 3
FTV35_80 35 28 7 2 1,996 1,996 17 1 1,996 6 1
FTV38_50 38 19 19 2 2,162 2,162 17 1 2,162 3 1
FTV38_66 38 26 12 2 2,132 2,132 20 1 2,122 14 3
FTV38_80 38 31 7 3 1,982 1,982 11 1 1,982 4 1
FTV44_50 44 22 22 2 2,348 2,336 140 3 2,336 62 3
FTV44_66 44 30 14 2 2,225 2,213 181 3 2,210 222 5
FTV44_80 44 36 8 3 2,184 2,184 68 1 2,178 66 3
FTV47_50 47 24 23 2 2,343 2,342 88 3 2,343 16 1
FTV47_66 47 32 15 2 2,427 2,427 20 1 2,427 4 1
FTV47_80 47 38 9 2 2,312 2,312 20 1 2,312 9 1
FTV55_50 55 28 27 2 2,425 2,423 190 3 2,425 18 1
FTV55_66 55 37 18 2 2,246 2,240 395 3 2,238 186 3
FTV55_80 55 44 11 2 2,264 2,264 104 1 2,264 21 1
FTV64_50 64 32 32 2 2,728 2,728 142 1 2,728 36 1
FTV64_66 64 43 21 2 2,673 2,670 297 3 2,671 142 3
FTV64_80 64 52 12 3 2,659 2,724 91 1 2,659 55 1
FTV70_50 70 35 35 2 2,934 2,914 207 3 2,934 58 1
FTV70_66 70 47 23 2 2,808 2,808 69 1 2,808 24 1
FTV70_80 70 56 14 2 2,684 2,684 168 1 2,684 81 1
Average 96.4 44.1
Geometric mean 51.1 18.4
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Table G.4: Comparison between the two BCP algorithms for the X instances when no
upper bound is given as input. Only the first 45 instances of X were considered. The
value time is not given for executions which stopped by the time limit.

Instance

BCPF1 BCPF2

z(IP ) LBf LBf
root time timeprc nodes z(IP ) LBf LBf

root time timeprc nodes
(s) (s) (s) (s)

X-n101-50-k13 19,033 19,033 18,940 538 83 21 19,033 19,033 18,913 378 55 29

X-n101-66-k17 20,490 20,490 20,347 1,822 333 119 20,490 20,490 20,343 818 138 53

X-n101-80-k21 23,305 23,305 23,227 142 39 15 23,305 23,305 23,225 323 47 17

X-n106-50-k7 15,413 15,413 15,413 52 22 1 15,413 15,413 15,413 31 12 1

X-n106-66-k9 18,984 18,984 18,972 300 84 3 18,984 18,984 18,972 174 49 3

X-n106-80-k11 22,131 22,131 22,084 9,317 2,875 75 22,131 22,131 22,090 3,816 910 43

X-n110-50-k7 13,103 13,103 13,103 36 12 1 13,103 13,103 13,103 28 9 1

X-n110-66-k9 13,598 13,598 13,598 31 14 1 13,598 13,598 13,598 27 9 1

X-n110-80-k11 14,302 14,302 14,200 2,377 631 33 14,302 14,302 14,201 3,229 720 45

X-n115-50-k8 13,927 13,927 13,927 62 25 1 13,927 13,927 13,927 37 11 1

X-n115-66-k8 14,032 14,032 14,032 75 30 1 14,032 14,032 14,031 122 32 3

X-n115-80-k9 13,536 13,536 13,536 101 51 1 13,536 13,536 13,536 50 29 1

X-n120-50-k3 12,416 12,416 12,392 1,092 659 3 12,416 12,416 12,398 291 97 5

X-n120-66-k4 13,145 13,145 13,097 4,297 2,641 13 13,145 13,145 13,106 776 438 5

X-n120-80-k5 13,528 13,528 13,457 15,336 10,713 57 13,528 13,528 13,464 3,855 2,325 15

X-n125-50-k16 32,224 32,224 32,075 11,558 1,875 249 32,224 32,224 32,061 2,312 305 81

X-n125-66-k19 36,400 36,400 36,330 3,743 2,185 33 36,400 36,400 36,326 1,160 532 13

X-n125-80-k23 43,960 43,960 43,787 211,149 71,657 2,249 44,795 43,825 43,779 – 74,880 2,659

X-n129-50-k10 19,468 19,468 19,402 6,611 1,220 25 19,468 19,468 19,395 929 174 17

X-n129-66-k12 22,606 22,606 22,532 7,687 1,512 99 22,606 22,606 22,541 2,115 383 45

X-n129-80-k14 24,575 24,575 24,550 2,835 898 25 24,575 24,575 24,546 606 178 9

X-n134-50-k7 8,369 8,369 8,310 37,341 23,991 121 8,369 8,369 8,324 2,664 1,700 19

X-n134-66-k9 9,132 8,918 8,909 – 114,867 1,515 8,974 8,974 8,900 7,248 5,564 81

X-n134-80-k11 9,699 9,699 9,634 168,426 111,455 703 9,945 9,640 9,610 – 143,661 2,539

X-n139-50-k5 13,281 13,281 13,199 21,818 11,624 67 13,281 13,281 13,198 1,192 608 9

X-n139-66-k7 13,512 13,512 13,505 292 141 3 13,512 13,512 13,486 332 129 7

X-n139-80-k8 13,662 13,662 13,662 133 78 1 13,662 13,662 13,662 116 68 1

X-n143-50-k4 14,539 14,539 14,484 13,463 9,486 29 14,539 14,539 14,502 1,365 705 5

X-n143-66-k4 14,310 14,310 14,310 498 324 1 14,310 14,310 14,310 262 192 1

X-n143-80-k5 14,506 14,143 14,127 – 151,022 597 – 14,149 14,130 – 201,798 139

X-n148-50-k25 28,210 28,210 28,165 1,334 249 67 28,210 28,210 28,142 290 54 17

X-n148-66-k29 30,482 30,482 30,376 563 124 23 30,482 30,482 30,367 2,136 408 81

X-n148-80-k36 35,430 35,430 35,327 766 174 39 35,430 35,430 35,316 2,947 484 81

X-n153-50-k19 20,536 20,536 20,536 62 34 1 20,536 20,536 20,536 44 17 3

X-n153-66-k20 20,613 20,613 20,609 181 81 5 20,613 20,613 20,610 128 40 5

X-n153-80-k21 20,819 20,819 20,811 99 61 3 20,819 20,819 20,813 120 55 3

X-n157-50-k7 11,727 11,727 11,727 500 94 1 11,727 11,727 11,727 82 30 1

X-n157-66-k9 13,651 13,651 13,651 94 45 1 13,651 13,651 13,651 80 31 1

X-n157-80-k11 15,264 15,264 15,240 941 412 5 15,264 15,264 15,237 2,896 1,035 15

X-n162-50-k6 12,812 12,812 12,772 23,249 15,383 61 12,812 12,812 12,780 1,939 1,300 5

X-n162-66-k8 13,668 13,315 13,286 – 128,290 953 13,417 13,417 13,311 77,117 52,893 315

X-n162-80-k9 13,854 13,854 13,808 12,292 8,266 47 13,854 13,854 13,815 28,871 19,791 89

X-n167-50-k5 16,489 16,489 16,433 4,877 2,848 9 16,489 16,489 16,436 1,457 524 7

X-n167-66-k7 17,827 17,827 17,738 50,869 30,683 115 – 17,763 17,703 – 181,044 69

X-n167-80-k8 19,415 19,415 19,367 5,216 3,665 17 19,415 19,415 19,367 10,573 7,390 57

Average 28,226.1 16,588.6 134.0 22,820.9 15,574.5 146.6
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Instance

BCPF1 BCPF2

z(IP ) LBf LBf
root time timeprc nodes z(IP ) LBf LBf

root time timeprc nodes
(s) (s) (s) (s)

Geometric mean 1,940.0 798.7 15.7 1,028.4 379.8 13.1

Table G.5: Results for X instances by the BCPF2 with a time limit of 60 hours and no
upper bound given as input. The results which were already reported in Table 12 were
omitted. The value time is not given for executions which stopped by the time limit.

Instance LBf z(IP ) LBf
root time timeprc nodes

X-n172-66-k31 31,864 31,864 31,799 4,927 711 137

X-n172-80-k39 36,803 36,803 36,738 18,997 3,568 357

X-n176-50-k23 45,239 45,239 45,151 1,656 357 57

X-n176-66-k24 46,416 46,416 46,324 2,218 604 61

X-n176-80-k25 47,033 47,033 46,966 1,798 797 15

X-n181-50-k12 16,549 16,549 16,540 250 56 3

X-n181-66-k15 18,832 18,832 18,832 118 42 1

X-n181-80-k18 21,241 21,241 21,236 152 53 3

X-n186-50-k8 17,978 17,978 17,829 28,946 15,245 71

X-n186-66-k10 19,751 19,751 19,706 20,320 16,431 45

X-n186-80-k12 21,630 – 21,609 – 192,394 179

X-n190-50-k4 11,552 11,552 11,467 13,607 9,852 27

X-n190-66-k5 12,727 – 12,717 – 160,121 53

X-n190-80-k6 14,336 – 14,290 – 199,173 81

X-n195-50-k27 29,470 29,470 29,359 2,238 476 49

X-n195-66-k34 33,137 33,137 33,062 1,639 330 35

X-n195-80-k42 38,629 38,629 38,554 1,828 410 29

X-n200-50-k18 34,316 34,416 34,284 – 67,417 1,967

X-n200-66-k24 40,335 40,525 40,310 – 51,793 2,373

X-n200-80-k29 47,741 47,741 47,697 5,073 1,104 59

X-n204-50-k10 15,858 – 15,804 – 159,889 49

X-n204-66-k12 16,573 – 16,540 – 178,723 229

X-n204-80-k15 17,832 17,832 17,779 7,159 4,377 31

X-n209-50-k8 21,728 – 21,623 – 162,003 87

X-n209-66-k11 24,264 – 24,196 – 180,544 67

X-n209-80-k13 26,981 – 26,956 – 199,446 155

X-n214-50-k6 9,574 9,574 9,536 5,760 3,371 9

X-n214-66-k8 9,986 – 9,966 – 135,415 37

X-n214-80-k9 10,374 – 10,321 – 198,525 49

X-n219-50-k37 64,691 64,691 64,619 554 136 19

X-n219-66-k48 80,405 80,405 80,315 602 119 23

X-n219-80-k59 95,845 95,845 95,743 987 169 21

X-n223-50-k18 27,442 27,442 27,304 24,716 5,521 153

X-n223-66-k23 30,717 30,717 30,537 130,095 20,136 691

X-n223-80-k27 34,341 – 34,314 – 156,173 365

X-n228-50-k19 23,128 23,128 23,067 7,585 4,263 63

X-n228-66-k20 24,113 24,113 24,048 26,733 10,889 129

X-n228-80-k21 24,592 24,592 24,561 4,811 3,233 29

X-n233-50-k10 17,120 – 17,065 – 198,842 29

X-n233-66-k12 18,026 18,026 17,921 56,478 46,735 119

X-n233-80-k14 18,634 – 18,509 – 202,953 119

X-n237-50-k7 20,745 20,745 20,626 21,627 10,739 35
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Instance LBf z(IP ) LBf
root time timeprc nodes

X-n237-66-k9 22,409 22,474 22,379 – 143,449 35

X-n237-80-k11 24,309 – 24,285 – 184,129 63

X-n242-50-k25 47,719 48,755 47,652 – 116,477 1,133

X-n242-66-k32 57,044 57,424 57,018 – 56,575 1,295

X-n242-80-k39 68,849 – 68,806 – 157,604 409

X-n247-50-k42 36,701 36,701 36,701 102 59 1

X-n247-66-k43 36,994 36,994 36,991 244 96 3

X-n247-80-k45 37,205 37,205 37,196 672 314 5

X-n251-50-k14 24,895 25,049 24,836 – 100,502 507

X-n251-66-k18 27,710 – 27,663 – 158,894 177

X-n251-80-k22 32,015 32,684 31,964 – 170,608 263

X-n256-50-k8 15,922 15,922 15,905 1,490 822 3

X-n256-66-k11 17,250 17,250 17,226 3,036 2,088 7

X-n256-80-k13 18,065 – 18,031 – 200,350 159

X-n261-50-k7 21,467 – 21,418 – 178,362 27

X-n261-66-k9 22,836 – 22,657 – 198,780 49

X-n261-80-k11 24,707 – 24,675 – 202,201 87

X-n266-50-k30 47,677 48,003 47,642 – 51,584 1,629

X-n266-66-k39 55,776 56,213 55,746 – 45,164 1,367

X-n266-80-k47 63,708 64,282 63,668 – 61,812 1,211

X-n270-50-k18 24,751 24,751 24,639 100,563 35,402 253

X-n270-66-k24 26,377 26,377 26,307 14,158 4,865 77

X-n270-80-k29 29,677 30,031 29,627 – 124,368 411

X-n275-50-k14 15,561 15,561 15,491 84,543 39,864 135

X-n275-66-k19 16,944 16,944 16,918 1,456 519 11

X-n275-80-k22 18,688 18,688 18,643 45,886 26,882 65

X-n280-50-k13 29,054 – 28,979 – 187,073 51

X-n280-66-k15 31,082 – 31,045 – 196,817 85

X-n280-80-k16 31,756 – 31,736 – 201,582 75

X-n284-50-k8 15,860 – 15,822 – 181,874 87

X-n284-66-k10 17,220 – 17,185 – 182,809 59

X-n284-80-k12 18,676 – 18,656 – 200,106 75

X-n289-50-k34 57,558 – 57,514 – 141,794 373

X-n289-66-k38 63,191 64,136 63,160 – 176,127 357

X-n289-80-k47 75,619 – 75,603 – 163,495 391

X-n294-50-k26 30,859 30,859 30,711 16,360 2,660 109

X-n294-66-k33 34,544 34,976 34,508 – 166,014 215

X-n294-80-k40 39,070 39,364 39,032 – 46,358 1,039

X-n298-50-k16 24,956 25,119 24,897 – 149,917 199

X-n298-66-k21 27,502 – 27,435 – 186,681 125

X-n298-80-k25 30,113 30,223 30,062 – 112,642 355

X-n303-50-k11 17,664 – 17,614 – 187,344 43

X-n303-66-k13 18,049 – 18,016 – 192,353 45

X-n303-80-k16 19,416 – 19,374 – 200,219 155

X-n308-50-k9 22,302 – 22,288 – 184,265 9

X-n308-66-k11 23,623 – 23,607 – 191,971 19

X-n308-80-k12 24,404 – 24,371 – 206,654 29

X-n313-50-k39 57,489 – 57,450 – 169,743 453

X-n313-66-k44 59,928 60,193 59,897 – 53,724 1,505

X-n313-80-k56 73,658 75,274 73,633 – 151,610 457

X-n317-50-k27 43,391 43,391 43,363 3,696 914 31

X-n317-66-k35 54,502 54,502 54,470 3,929 1,118 33
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Instance LBf z(IP ) LBf
root time timeprc nodes

X-n317-80-k43 63,683 63,683 63,656 1,721 679 11

X-n322-50-k14 23,159 23,314 23,070 – 137,205 103

X-n322-66-k19 25,034 25,034 24,906 153,564 125,925 131

X-n322-80-k23 27,353 – 27,315 – 191,199 279

X-n327-50-k10 21,378 – 21,334 – 179,999 75

X-n327-66-k13 23,148 – 23,131 – 189,678 49

X-n327-80-k16 24,590 – 24,537 – 200,928 99

X-n331-50-k8 23,961 – 23,910 – 181,875 37

X-n331-66-k10 26,108 – 26,072 – 177,596 41

X-n331-80-k12 28,007 – 27,965 – 195,745 39

X-n336-50-k45 81,346 82,173 81,302 – 150,804 377

X-n336-66-k57 98,880 99,755 98,842 – 179,016 587

X-n336-80-k68 115,881 – 115,840 – 164,639 451

X-n344-50-k22 28,424 28,542 28,358 – 74,562 379

X-n344-66-k29 31,679 – 31,631 – 162,020 155

X-n344-80-k35 35,639 – 35,590 – 179,234 285

X-n351-50-k21 18,475 – 18,429 – 161,461 135

X-n351-66-k26 19,688 – 19,669 – 197,745 121

X-n351-80-k32 22,045 – 22,031 – 191,584 243

X-n359-50-k15 32,992 – 32,911 – 166,992 73

X-n359-66-k19 37,418 – 37,399 – 189,679 127

X-n359-80-k23 43,219 – 43,195 – 200,330 75

X-n367-50-k12 20,095 – 20,021 – 188,261 11

X-n367-66-k14 21,147 – 21,134 – 191,684 23

X-n367-80-k15 21,979 – 21,969 – 200,625 33

X-n376-50-k47 80,736 80,736 80,672 13,337 2,721 125

X-n376-66-k62 100,613 100,613 100,553 7,391 1,713 57

X-n376-80-k75 119,581 119,581 119,525 2,054 557 15

X-n384-50-k27 40,836 – 40,756 – 127,902 257

X-n384-66-k35 47,133 – 47,051 – 162,590 175

X-n384-80-k42 55,078 – 55,029 – 179,261 243

X-n393-50-k19 29,849 – 29,803 – 146,486 159

X-n393-66-k25 29,139 – 29,092 – 175,430 183

X-n393-80-k31 32,412 – 32,390 – 188,887 159

X-n401-50-k15 39,286 – 39,237 – 201,035 31

X-n401-66-k20 47,112 – 47,096 – 196,960 85

X-n401-80-k23 53,793 – 53,781 – 204,671 61

X-n411-50-k14 17,889 – 17,889 – 168,742 1

X-n411-66-k15 18,548 – 18,524 – 165,919 9

X-n411-80-k17 19,165 – 19,159 – 192,544 31

X-n420-50-k67 75,270 – 75,234 – 170,116 255

X-n420-66-k86 75,886 – 75,851 – 146,454 415

X-n420-80-k105 89,256 89,361 89,211 – 21,841 817

X-n429-50-k31 40,967 – 40,910 – 143,608 163

X-n429-66-k40 47,490 – 47,442 – 157,309 173

X-n429-80-k48 54,500 – 54,444 – 155,847 307

X-n439-50-k19 26,939 – 26,896 – 155,140 23

X-n439-66-k25 28,792 – 28,748 – 174,003 63

X-n439-80-k30 31,987 – 31,954 – 194,597 125

X-n449-50-k15 36,469 – 36,425 – 180,475 87

X-n449-66-k20 41,184 – 41,175 – 194,528 75

X-n449-80-k23 46,118 – 46,106 – 204,928 39
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Instance LBf z(IP ) LBf
root time timeprc nodes

X-n459-50-k14 18,716 – 18,663 – 188,181 15

X-n459-66-k18 20,160 – 20,134 – 199,722 27

X-n459-80-k21 21,729 – 21,715 – 202,383 43

X-n469-50-k70 122,782 – 122,739 – 124,900 715

X-n469-66-k90 148,155 148,644 148,118 – 30,066 1,111

X-n469-80-k109 178,031 – 177,972 – 96,065 625

X-n480-50-k36 51,912 – 51,856 – 100,624 207

X-n480-66-k47 63,301 – 63,264 – 126,718 177

X-n480-80-k56 73,637 – 73,591 – 139,247 181

X-n491-50-k30 43,505 – 43,452 – 161,965 113

X-n491-66-k39 49,243 – 49,202 – 183,503 187

X-n491-80-k47 55,546 – 55,430 – 196,367 145

X-n502-50-k20 40,451 – 40,412 – 148,349 21

X-n502-66-k26 49,197 – 49,179 – 173,587 41

X-n502-80-k31 56,923 – 56,902 – 197,501 47

X-n513-50-k11 21,304 – 21,304 – 152,033 1

X-n513-66-k14 22,072 – 22,059 – 155,223 7

X-n513-80-k17 22,990 – 22,975 – 185,413 5

X-n524-50-k125 154,137 154,137 154,071 4,683 1,417 49

X-n524-66-k129 154,416 154,416 154,348 13,052 2,413 153

X-n524-80-k132 154,446 154,446 154,403 5,161 1,282 43

X-n536-50-k49 54,244 – 54,164 – 176,542 235

X-n536-66-k64 65,675 – 65,637 – 172,730 235

X-n536-80-k77 77,495 – 77,479 – 189,184 243

X-n548-50-k25 52,675 – 52,589 – 145,190 59

X-n548-66-k33 61,233 – 61,190 – 177,050 53

X-n548-80-k40 71,734 – 71,692 – 195,468 59

X-n561-50-k22 31,331 – 31,288 – 182,596 71

X-n561-66-k28 34,002 – 33,927 – 197,346 63

X-n561-80-k34 37,609 – 37,595 – 198,839 61

X-n573-50-k22 39,993 – 39,993 – 163,363 1

X-n573-66-k25 43,893 – 43,893 – 159,842 1

X-n573-80-k27 46,597 – 46,591 – 202,900 9

X-n586-50-k80 121,875 – 121,829 – 118,335 323

X-n586-66-k105 139,982 – 139,934 – 97,273 357

X-n586-80-k127 159,944 – 159,887 – 116,518 251

X-n599-50-k47 64,358 – 64,292 – 135,566 121

X-n599-66-k61 75,998 – 75,916 – 158,683 221

X-n599-80-k74 89,160 – 89,136 – 167,541 213

X-n613-50-k32 40,352 – 40,284 – 164,930 97

X-n613-66-k41 45,516 – 45,456 – 193,379 81

X-n613-80-k50 51,445 – 51,435 – 195,546 123

X-n627-50-k22 37,671 – 37,642 – 175,239 59

X-n627-66-k29 44,028 – 43,700 – 194,965 37

X-n627-80-k35 51,303 – 51,295 – 200,357 41

X-n641-50-k18 41,646 – 41,632 – 183,553 37

X-n641-66-k23 46,725 – 46,714 – 202,733 17

X-n641-80-k28 53,271 – 53,261 – 203,571 17

X-n655-50-k66 59,234 – 59,216 – 155,546 163

X-n655-66-k87 72,406 – 72,348 – 174,320 75

X-n655-80-k105 86,527 – 86,486 – 183,137 75

X-n670-50-k112 144,621 144,688 144,602 – 140,047 89

(Continues on the next page)
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Instance LBf z(IP ) LBf
root time timeprc nodes

X-n670-66-k117 144,839 144,882 144,813 – 165,461 183

X-n670-80-k120 145,035 – 145,010 – 202,974 21

X-n685-50-k43 47,407 – 47,342 – 170,246 53

X-n685-66-k54 52,587 – 52,579 – 204,370 25

X-n685-80-k62 58,596 – 58,585 – 203,097 39

X-n701-50-k23 50,681 – 50,213 – 192,061 27

X-n701-66-k30 58,062 – 58,052 – 198,252 11

X-n701-80-k36 67,740 – 67,729 – 199,734 7

X-n716-50-k18 29,173 – 29,163 – 191,038 5

X-n716-66-k23 31,916 – 31,916 – 195,583 1

X-n716-80-k28 37,349 – 37,345 – 208,194 3

X-n733-50-k83 79,844 – 79,781 – 112,174 183

X-n733-66-k102 91,742 – 91,693 – 131,939 119

X-n733-80-k125 110,192 – 110,066 – 144,296 131

X-n749-50-k49 47,096 – 47,049 – 164,098 105

X-n749-66-k63 54,774 – 54,757 – 196,229 55

X-n749-80-k78 63,201 – 63,184 – 201,468 49

X-n766-50-k58 94,883 – 94,883 – 179,499 1

X-n766-66-k62 100,629 – 100,609 – 195,474 11

X-n766-80-k65 105,601 – 105,599 – 201,160 15

X-n783-50-k24 47,790 – 47,767 – 194,547 19

X-n783-66-k31 52,525 – 52,525 – 191,591 1

X-n783-80-k38 59,840 – 59,840 – 212,236 1

X-n801-50-k20 47,967 – 47,946 – 159,575 7

X-n801-66-k27 54,024 – 54,024 – 173,590 5

X-n801-80-k32 61,987 – 61,987 – 172,834 3

X-n819-50-k86 88,189 – 88,113 – 126,840 95

X-n819-66-k112 107,696 – 107,642 – 112,531 107

X-n819-80-k136 127,889 – 127,837 – 111,957 165

X-n837-50-k71 115,003 – 114,946 – 112,370 87

X-n837-66-k94 128,204 – 128,137 – 170,597 71

X-n837-80-k114 154,027 – 154,010 – 170,493 133

X-n856-50-k48 57,518 – 57,447 – 142,210 27

X-n856-66-k63 63,213 – 63,170 – 170,993 61

X-n856-80-k76 73,510 – 73,477 – 190,204 71

X-n876-50-k30 57,908 – 57,894 – 187,424 25

X-n876-66-k38 68,494 – 68,484 – 198,796 11

X-n876-80-k46 80,098 – 80,093 – 209,728 3

X-n895-50-k19 39,754 – 39,738 – 176,623 3

X-n895-66-k25 42,952 – 42,952 – 211,581 1

X-n895-80-k30 47,389 – 47,389 – 167,800 1

X-n916-50-k105 187,565 – 187,501 – 92,046 119

X-n916-66-k136 221,521 – 221,445 – 89,710 99

X-n916-80-k165 262,715 – 262,631 – 101,187 71

X-n936-50-k132 127,340 – 127,287 – 174,810 5

X-n936-66-k138 128,306 – 128,138 – 205,809 15

X-n936-80-k143 129,904 – 129,895 – 204,086 39

X-n957-50-k44 56,298 – 56,213 – 156,715 23

X-n957-66-k58 62,060 – 62,049 – 194,368 29

X-n957-80-k70 71,312 – 71,282 – 203,391 19

X-n979-50-k30 68,030 – 68,016 – 182,505 2

X-n979-66-k39 74,118 – 74,118 – 209,674 1

(Continues on the next page)
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Instance LBf z(IP ) LBf
root time timeprc nodes

X-n979-80-k47a – – – – – 1

X-n1001-50-k22 48,896 – 48,896 – 174,534 1

X-n1001-66-k28 55,122 – 55,122 – 162,503 1

X-n1001-80-k34 62,131 – 62,131 – 180,291 1
aNot even the first lower bound of the root node has been solved
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APPENDIX H -- VRPSolver models

VRPSolver is a framework for building BCP algorithms for VRP and related problems,

available at vrpsolver.math.u-bordeaux.fr. It was used to implement our proposed

VRPB algorithms, BCPF1 and BCPF2. We present here the VRPSolver models used. This

appendix is not self-contained, important concepts used in these models, such as main

resources, packing sets, mapping between variables and arcs, and Rounded Capacity Cuts

(RCC) separators, are discussed in Pessoa et al. [92]. The parameterization of the solver

for all problems and formulations is the same: τ soft = 5 sec., τhard = 10 sec., φbidir = 1,

ωlabels = 2 · 105, ωroutes = 2 · 106, ηmax = 20, δgap = 1.5%, ζnum
1 = 50, ζestim

1 = 1.0. The

meaning of these parameters is also explained in Pessoa et al. [92].

H.1 Formulation F1

We first give the model corresponding to formulation F1 for the VRPB. The RCSP graph

is exactly the graph G = (V ,A) = (V,A) = G together with the consumption and intervals

defined in Section 4.1.1 ; vsource = vsink = 0. The capacity resource is defined as a main

resource. Define an integer variable xa for each a ∈ A (exactly the same arc variables

defined in formulation F0). The formulation is:

Min
∑
a∈A

caxa (H.1)

S.t.
∑

a∈δ−(i)

xa = 1, i ∈ V̄ . (H.2)

The number of paths in the solution is fixed to K (L = U = K). Each variable xa
is mapped to arc a (M(xa) = {a}, a ∈ A). Packing sets are defined on vertices BV =

∪i∈V̄ {{i}}. There are two RCC separators, the first is defined on (∪i∈L{({i}, di)}, Q), and

the second is defined on (∪i∈B{({i}, di)}, Q). Branching is performed on the aggregation

of x variables corresponding to opposite arcs. Enumeration is activated.

vrpsolver.math.u-bordeaux.fr
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To adapt the model to the VRPBTW, we add a second main resource corresponding

to the time, so R = RM = {1, 2}. The arc resource consumption for the second resource

equals the travelling time plus the service time: qa=(i,j),2 = cij + si, a ∈ A, where s0 = 0.

The resource consumption intervals for the second resource are equal to customer time

windows (or to the time horizon for the depot). Otherwise, the model is the same as for

the VRPB.

The model for the HFFVRPB, considering a set T of vehicle types, is the following.

We define graphs Gk = (Vk,Ak), k ∈ T , all of them isomorphic to G. However, the

intervals are defined using the capacity Qk of each type. We denote vertex i in graph Gk

as ik. Define δ−(ik) as the set of arcs in Ak entering ik. Define an integer variable xka per

vehicle type k ∈ T and per arc a ∈ Ak. The formulation is:

Min
∑
k∈T

∑
a∈Ak

ckax
k
a (H.3)

S.t.
∑
k∈T

∑
e∈δ−(ik)

xka = 1, i ∈ V̄ . (H.4)

where cka are the type dependent costs. The bounds for the number of paths from graph Gk,
k ∈ T , in the solution are [0, Uk]. Each variable xk

a=(ik,jk)
is mapped to arc (ik, jk). Packing

sets are defined on vertices BV = ∪i∈V̄ {{ik : k ∈ T}}. We have two RCC separators, the

first is defined on (∪i∈L{({ik : k ∈ T}, di)},maxk∈T Q
k), and the second is defined on

(∪i∈B{({ik : k ∈ T}, di)},maxk∈T Q
k). Branching is performed on variable expressions:

i) on the number of used vehicles of each type
∑

i∈L x
k
(0,i), k ∈ T ; ii) on assignment

of customers to vehicle types
∑

a∈δ−(ik) x
k
a, k ∈ T , i ∈ L ∪ B; iii) on aggregated edges∑

k∈T x
k
(ik,jk)

+ xk
(jk,ik)

, i, j ∈ V , i < j.

H.2 Formulation F2

We now give the model corresponding to formulation F2 for the VRPB. It is less direct

than the model for F1, some tricks are needed to apply VRPSolver to this case.

There are two RCSP graphs. The backhaul graph GB = (VB,AB) is exactly the one

defined in Section 4.1.2. However, the linehaul graph G ′L = (V ′L,A′L) is a bit different:

V ′L = L0 ∪ {i′ : i ∈ L0} and A′L = AL ∪ {(i, i′) : i ∈ L} ∪ {(i′, 0′) : i ∈ L}; vsource = 0

and vsink = 0′. Each arc a = (i, j) ∈ AL has a capacity resource consumption given by

qa = dj, the other arcs in A′L have zero consumption. Each vertex i ∈ V ′L has resource

interval [0, Q]. The additional copies of the linehaul vertices in G ′L are introduced in order
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to be able to use path enumeration in it. Without them, the necessary condition to use

enumeration defined in Pessoa et al. [92] would not be satisfied.

Define an integer variable xa for each a ∈ A (again, exactly the same arc variables

defined in formulation F0). In addition, there are two integer variables zi, wi for every

linehaul customer i ∈ L. The formulation is:

Min
∑
a∈A

caxa (H.5)

S.t.
∑

a∈δ−(i)

xa = 1, i ∈ V̄ , (H.6)

zi = wi, i ∈ L. (H.7)

The number of paths from both G ′L and GB in the solution is fixed to K. Each variable

xa, a = (i, j) ∈ AL, is mapped to arc (i, j) in A′L. Each variable xa, a = (i, j) ∈ ALB,
is mapped to arc (i′, j) in A′B. Each variable xa, a = (i, j) ∈ AB, is mapped to arc

(i, j) in A′B. A variable zi, i ∈ L, is mapped to arc (i, i′) in A′L. Finally, variables

wi, i ∈ L, is mapped to arc (0′, i′) in A′B. Packing sets are defined on vertices, one

packing set is defined for each vertex in the both graphs, except for the depot vertices.

Branching is performed on the aggregation of x variables corresponding to opposite arcs

and z variables. Enumeration is activated. Figure H.1 illustrates RCSP graphs GL and

GB, the consumptions and variables mapped to each arc are also depicted.
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Figure H.1: RCSP graphs for the VRPSolver model of F2
.

The Julia code corresponding to the above VRPB model is available on the VRP-

Solver webpage vrpsolver.math.u-bordeaux.fr.

vrpsolver.math.u-bordeaux.fr
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APPENDIX I -- Comparing F1, F2 and
Mingozzi, Giorgi, and
Baldacci [82] formulations

We first present the SP formulation by Mingozzi, Giorgi, and Baldacci [82]. Although

that formulation was originally defined with elementary routes, here we will compare all

formulations as using ng-paths defined over the same ng-sets. This is more general, as

elementary routes correspond to the case where ng-sets contain all vertices.

Let G′B = (B0, AB), Ω′B be the set of all ng-paths over G′B, and Ω′iB ⊆ Ω′B be the

set of ng-paths in Ω′B starting at i ∈ B. Let yp be a binary variable that assumes 1 if

p ∈ Ω′L ∪Ω′B is chosen, 0 otherwise. Let ξij be a binary variable that assumes 1 if the arc

(i, j) ∈ ALB is in the optimal solution, 0 otherwise.

The SP formulation by Mingozzi, Giorgi, and Baldacci [82], which we will denote

byM, can be written as follows:

min
∑
p∈ΩL

(∑
a∈A

cah
p
a

)
yp +

∑
p∈Ω′B

(∑
a∈A

cah
p
a

)
yp +

∑
(i,j)∈ALB

cijξij (I.1)
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S.t.
∑

a∈δ−(i)

∑
p∈ΩL

hpayp = 1 i ∈ L, (I.2)

∑
a∈δ−(j)

∑
p∈Ω′B

hpayp = 1 j ∈ B, (I.3)

∑
a∈δ+(0)

∑
p∈ΩL

hpayp = K, (I.4)

∑
p∈Ωi

L

yp =
∑
j∈B0

ξij i ∈ L, (I.5)

∑
p∈Ω′jB

yp =
∑
i∈L

ξij j ∈ B, (I.6)

yp ∈ {0, 1} p ∈ ΩL ∪ Ω′B, (I.7)

ξij ∈ {0, 1} (i, j) ∈ ALB. (I.8)

Constraints (I.2) require that each linehaul customer must be visited once by a

linehaul route. Constraints (I.3) require that each backhaul customer must be visited

once by a backhaul route. Constraint (I.4) forces the existence of K linehaul routes in

the solution. Constraints (I.5)–(I.6) force linehaul and backhaul routes to be connected

by an arc. Finally, the domain of the variables are defined in constraints (I.7)–(I.8).

In the following proof we consider F1 and F2 without rounded capacity cuts,

(13-14) and (24-25) respectively, sinceM was proposed without such cuts.

Proposition 3. F1, F2 (both without rounded capacity cuts) andM formulations are

equally strong.

Proof. It is sufficient to prove that F1 andM are equally strong because the equivalence

between F1 and F2 was already proved in Section 3.4.

Let P1 and PM be the polyhedra defined by the linear relaxations of F1 andM,

respectively. We show that for any solution of P1 there is a solution of PM with the same

objective value, and vice versa.

Given a solution λ̄ ∈ P1, the function described in Algorithm 3 returns a solution

PM(λ̄) = (ȳ, ξ̄) in PM . It is clear from lines 7–10 that constraints (I.5) and (I.6) are

satisfied by that solution. One can verify that PM(λ̄) also satisfies the constraints (I.2)–

(I.4) and has the same cost as λ̄ (during the algorithm, all cost is "transferred" from λ̄ to

PM(λ̄)).

Given a solution (ȳ, ξ̄) ∈ PM , the function described in Algorithm 4 returns a

solution P1(λ̄) = λ̄ in F1 space. The procedure is very similar to Algorithm 2, where the
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Algorithm 3: Obtains the solution (ȳ, ξ̄) ∈ PM corresponding to λ̄ ∈ P1

1 Function PM(λ̄)
2 Let γ = {(p, λ̄p) : p ∈ Ω, λ̄p > 0} be the set that maps the routes to their values
3 Let L(p) ∈ ΩL and B(p) ∈ Ω′B be the ng-paths obtained by splitting route p ∈ Ω into

linehaul and backhaul parts, respectively.
4 Let (ȳ, ξ̄) be the solution to be built for PM , such that ȳp is initially zero ∀p ∈ ΩL ∪Ω′B

and ξ̄ij is initially zero ∀(i, j) ∈ ALB

5 while γ 6= ∅ do
6 Let (p, ζ) be a pair in γ
7 ȳL(p) = ȳL(p) + ζ
8 ȳB(p) = ȳB(p) + ζ
9 Let (i, j) be the arc connecting L(p) with B(p) in p

10 ξ̄ij = ξ̄ij + ζ
11 γ = γ \ {(p, ζ)} // Remove p

12 return (λ̄L, λ̄B)

minimum value variable is iteratively selected to build routes in Ω. Hence, one can verify

that P1(λ̄) satisfies all the constraints and has the same cost as (ȳ, ξ̄).

Although formulations F2 and M are quite similar and are equally strong, F2

avoids a quadratic number of variables by incorporating the cost of arcs between linehaul

and backhaul customers in the cost of ng-paths in ΩB. Sets ΩB has |L| times more ng-

paths than Ω′B, but, since path variables are dynamically priced, this is not a significant

drawback.
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Algorithm 4: Obtains the solution λ̄ ∈ P1 corresponding to (ȳ, ξ̄) ∈ PM
1 Function P1(ȳ, ξ̄)
2 Let γ = {(p, ȳp) : p ∈ ΩL ∪ Ω′B , ȳp > 0} ∪ {((i, j), ξ̄ij) : (i, j) ∈ ALB , ξ̄ij > 0}, be the

sets that maps the ng-paths (which can be just one arc) to their values
3 Let pl ⊕ pb be the route in Ω obtained by concatenating the paths pl ∈ ΩL and pb ∈ Ω′B
4 Let λ̄ be the solution to be built for P1, such that λ̄p is initially zero ∀p ∈ Ω
5 while γ 6= ∅ do
6 Let (p1, ζ1) be a pair in γ whose ζ1 is minimum
7 if p1 ∈ ΩL then
8 Let l ∈ L be the last vertex in p1
9 Let (p2, ζ2) be any pair in γ such that p2 = (l, k) ∈ {(l, j) : j ∈ B0}

10 if k ∈ B then
11 Let (p3, ζ3) be any pair in γ such that p3 ∈ Ω′kB
12 λ̄p = ζ1, such that p = p1 ⊕ p3

13 else // ng-path with only linehaul customers
14 λ̄p = ζ1, such that p = p1 ⊕ 0 // just add the depot to p1

15 else if p1 = (i, j) ∈ ALB then
16 Let (p2, ζ2) be any pair in γ such that p2 ∈ Ωi

L

17 if j ∈ B then
18 Let (p3, ζ3) be any pair in γ such that p3 ∈ Ω′jB
19 λ̄p = ζ1, such that p = p2 ⊕ p3

20 else
21 λ̄p = ζ1, such that p = p2 ⊕ 0

22 else // p1 ∈ Ω′B
23 Let b ∈ B be the first vertex in p1
24 Let (p2, ζ2) be any pair in γ such that p2 = (k, b) ∈ {(i, b) : i ∈ L}
25 Let (p3, ζ3) be any pair in γ such that p3 ∈ Ωk

L

26 λ̄p = ζ1, such that p = p3 ⊕ p1

27 γ = γ \ {(p1, ζ1), (p2, ζ2)} // Remove p1, p2

28 if ζ2 − ζ1 > 0 then
29 γ = γ ∪ {(p2, ζ2 − ζ1)} // Reinsert p2 with updated value

30 if (p3, ζ3) was defined then
31 γ = γ \ {(p3, ζ3)} // Remove p3

32 if ζ3 − ζ1 > 0 then
33 γ = γ ∪ {(p3, ζ3 − ζ1)} // Reinsert p3 with updated value

34 return λ̄
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APPENDIX J -- Detailed results of the
heuristic approaches for
VRPB

J.1 Comparison with the literature

Table J.1: Detailed information on works considered for comparison.

Method Machine #Runs Benchmarks
MACS Intel Xeon 2.4 GHz 8 TV, GJB (up to 150 vertices)
ILS-1000 Intel Core i7 2.93 GHz 10 TV, GJB
UHGS Opteron 250 2.4 GHz 10 GJB (up to 150 vertices)
SISRs Xeon E5-2650 v2 CPU 2.60 GHz 10 GJB (up to 150 vertices)

Our ILS-SP approaches Intel Xeon E5-2680 2.50 GHz 50 TV, GJB



Table J.2: Detailed results of the best heuristics for the GJB instances. The costs were divided by 103 and the CPU times (in seconds) were scaled to the machine of Cuervo et al. [32] for
a fair comparison. For ILS-1000, Avg. and CPU were not reported by the authors.

MACS ILS-1000 UHGS SISRs ILS-SP ILSB-SP ILSB-SPB

Instance n+m K Best Avg. CPU Best Best Avg. CPU Best Avg. CPU Best Avg. CPU Best Avg. CPU Best Avg. CPU

A1 25 8 229.89 229.89 0.6 229.89 229.89 229.89 0 229.89 229.89 0.4 229.89 229.89 0.1 229.89 229.89 0.1 229.89 229.89 0.1

A2 25 5 180.12 180.12 1 180.12 180.12 180.12 5.8 180.12 180.12 0.4 180.12 180.12 0.1 180.12 180.12 0.1 180.12 180.12 0.1

A3 25 4 163.41 163.41 1.7 163.41 163.41 163.41 6.3 163.41 163.41 0.4 163.41 163.41 0.1 163.41 163.41 0.1 163.41 163.41 0.1

A4 25 3 155.80 155.80 1 155.80 155.80 155.80 7.8 155.80 155.80 0.4 155.80 155.80 0.1 155.80 155.80 0.1 155.80 155.80 0.1

B1 30 7 239.08 239.08 1.2 239.08 239.08 239.08 6.8 239.08 239.08 0.5 239.08 239.08 0.1 239.08 239.08 0.2 239.08 239.08 0.2

B2 30 5 198.05 198.05 1.4 198.05 198.05 198.05 7.3 198.05 198.05 0.5 198.05 198.05 0.2 198.05 198.05 0.1 198.05 198.05 0.1

B3 30 3 169.37 169.37 1.1 169.37 169.37 169.37 8.7 169.37 169.37 0.5 169.37 169.37 0.1 169.37 169.37 0.1 169.37 169.37 0.1

C1 40 7 250.56 250.56 2.1 250.56 250.56 250.56 10.7 250.56 250.56 0.7 250.56 250.56 0.3 250.56 250.56 0.3 250.56 250.56 0.3

C2 40 5 215.02 215.02 2.3 215.02 215.02 215.02 11.6 215.02 215.02 0.7 215.02 215.02 0.3 215.02 215.02 0.2 215.02 215.02 0.3

C3 40 5 199.35 199.35 2.7 199.35 199.35 199.35 11.1 199.35 199.35 0.8 199.35 199.35 0.4 199.35 199.35 0.3 199.35 199.35 0.3

C4 40 4 195.37 195.37 2.1 195.37 195.37 195.37 11.6 195.37 195.37 0.8 195.37 195.37 0.4 195.37 195.37 0.2 195.37 195.37 0.2

D1 38 12 322.53 322.53 3.4 322.53 322.53 322.53 8.7 322.53 322.53 0.7 322.53 322.53 0.3 322.53 322.53 0.4 322.53 322.53 0.4

D2 38 11 316.71 316.71 3.5 316.71 316.71 316.71 8.2 316.71 316.71 0.7 316.71 316.71 0.3 316.71 316.71 0.3 316.71 316.71 0.3

D3 38 7 239.48 239.48 3.1 239.48 239.48 239.48 9.2 239.48 239.48 0.6 239.48 239.48 0.3 239.48 239.48 0.3 239.48 239.48 0.3

D4 38 5 205.83 205.83 3.6 205.83 205.83 205.83 11.6 205.83 205.83 0.7 205.83 205.83 0.3 205.83 205.83 0.3 205.83 205.83 0.3

E1 45 7 238.88 238.88 3.7 238.88 238.88 238.88 13.1 238.88 238.88 0.8 238.88 238.88 0.3 238.88 238.88 0.3 238.88 238.88 0.3

E2 45 4 212.26 212.26 3.6 212.26 212.26 212.26 15.5 212.26 212.26 0.8 212.26 212.26 0.5 212.26 212.26 0.4 212.26 212.26 0.4

E3 45 4 206.66 206.66 5.7 206.66 206.66 206.66 17.5 206.66 206.66 0.8 206.66 206.66 0.6 206.66 206.66 0.4 206.66 206.66 0.5

F1 60 6 263.17 263.17 6.2 263.17 263.17 263.17 18.4 263.17 263.17 1.2 263.17 263.17 0.9 263.17 263.17 0.8 263.17 263.17 0.8

F2 60 7 265.21 265.21 5.1 265.21 265.21 265.21 18.9 265.21 265.21 1.3 265.21 265.21 1 265.21 265.21 0.8 265.21 265.21 0.8

F3 60 5 241.12 241.48 6.2 241.12 241.12 241.12 23.8 241.12 241.12 1.4 241.12 241.12 1.1 241.12 241.12 0.7 241.12 241.12 0.8

F4 60 4 233.86 233.86 8.3 233.86 233.86 233.86 26.2 233.86 233.86 1.4 233.86 233.86 1.2 233.86 233.86 0.8 233.86 233.86 0.8

G1 57 10 306.31 307.01 10 306.31 – – – 306.31 306.31 1.1 306.31 306.31 0.9 306.31 306.31 1 306.31 306.31 1.0

G2 57 6 245.44 245.44 5.7 245.44 245.44 245.44 18.4 245.44 245.44 1.1 245.44 245.44 0.8 245.44 245.44 0.7 245.44 245.44 0.7

G3 57 5 229.51 229.51 7.9 229.51 229.51 229.51 20.8 229.51 229.51 1.1 229.51 229.51 0.8 229.51 229.51 0.7 229.51 229.51 0.7

G4 57 6 232.52 232.52 12 232.52 232.52 232.52 21.8 232.52 232.52 1.2 232.52 232.52 0.8 232.52 232.52 0.8 232.52 232.52 0.8

G5 57 5 221.73 221.73 11.3 221.73 221.73 221.73 22.3 221.73 221.73 1.3 221.73 221.73 1 221.73 221.73 0.8 221.73 221.73 0.8

G6 57 4 213.46 213.46 11.4 213.46 213.46 213.46 26.2 213.46 213.46 1.4 213.46 213.46 1.1 213.46 213.46 0.9 213.46 213.46 0.9

H1 68 6 268.93 269.00 13.6 268.93 268.93 268.93 30.1 268.93 268.93 1.4 268.93 268.93 1.7 268.93 268.93 1.4 268.93 268.93 1.4

H2 68 5 253.37 253.37 11.9 253.37 253.37 253.37 27.6 253.37 253.37 1.5 253.37 253.37 1.8 253.37 253.37 1.3 253.37 253.37 1.3
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MACS ILS-1000 UHGS SISRs ILS-SP ILSB-SP ILSB-SPB

Instance n+m K Best Avg. CPU Best Best Avg. CPU Best Avg. CPU Best Avg. CPU Best Avg. CPU Best Avg. CPU

H3 68 4 247.45 247.45 11.2 247.45 247.45 247.45 31 247.45 247.45 1.7 247.45 247.45 2 247.45 247.45 1.3 247.45 247.45 1.4

H4 68 5 250.22 250.22 15 250.22 250.22 250.22 28.6 250.22 250.22 1.7 250.22 250.22 1.9 250.22 250.22 1.4 250.22 250.22 1.5

H5 68 4 246.12 246.12 14.4 246.12 246.12 246.12 30.1 246.12 246.12 1.7 246.12 246.12 2.2 246.12 246.12 1.4 246.12 246.12 1.4

H6 68 5 249.14 249.14 16.7 249.14 249.14 249.14 28.6 249.14 249.14 1.7 249.14 249.14 2.3 249.14 249.14 1.5 249.14 249.14 1.5

I1 90 10 350.25 350.40 23 350.25 350.25 350.37 43.1 350.25 350.25 2.3 350.25 350.25 3.7 350.25 350.25 3.3 350.25 350.25 3.8

I2 90 7 309.94 310.32 20.7 309.94 309.94 309.94 41.2 309.94 309.94 2.4 309.94 309.94 3.4 309.94 309.94 2.5 309.94 309.94 2.6

I3 90 5 294.51 294.84 24.3 294.51 294.51 294.51 48 294.51 294.51 2.5 294.51 294.51 4.2 294.51 294.51 2.8 294.51 294.51 2.9

I4 90 6 295.99 296.13 25.8 295.99 295.99 295.99 44.6 295.99 295.99 2.8 295.99 295.99 4.3 295.99 295.99 2.6 295.99 295.99 2.7

I5 90 7 301.24 301.83 26.2 301.24 301.24 301.24 39.7 301.24 301.24 2.9 301.24 301.24 4.3 301.24 301.24 2.6 301.24 301.24 2.7

J1 94 10 335.01 335.12 36.9 335.01 335.01 335.01 40.2 335.01 335.01 2.3 335.01 335.01 3.3 335.01 335.01 3.1 335.01 335.01 3.1

J2 94 8 310.42 310.42 32.8 310.42 310.42 310.42 40.7 310.42 310.42 2.6 310.42 310.42 5 310.42 310.42 3.7 310.42 310.42 4.2

J3 94 6 279.22 279.34 42.9 279.22 279.22 279.22 45.1 279.22 279.22 2.7 279.22 279.22 4.5 279.22 279.22 3.4 279.22 279.22 3.6

J4 94 7 296.53 296.58 34.7 296.53 296.53 296.53 54.3 296.53 296.53 2.7 296.53 296.54 4.9 296.53 296.53 4.1 296.53 296.53 4.8

K1 113 10 394.07 396.14 58 394.07 394.07 394.35 64.5 394.07 394.09 3.4 394.07 394.07 10 394.07 394.07 9.7 394.07 394.07 8.1

K2 113 8 362.13 362.56 53.6 362.13 362.13 362.13 67.9 362.13 362.13 3.5 362.13 362.13 7.7 362.13 362.13 5.6 362.13 362.13 5.7

K3 113 9 365.69 366.71 63.2 365.69 365.69 365.69 63 365.69 365.69 3.7 365.69 365.69 7.5 365.69 365.69 5.8 365.69 365.69 6.0

K4 113 7 348.95 350.32 58.6 348.95 348.95 348.95 62.5 348.95 348.95 4.0 348.95 348.95 8.1 348.95 348.95 5.5 348.95 348.95 5.8

L1 150 10 417.90 420.06 82.1 417.90 417.90 418.16 191 417.90 417.90 6.1 417.90 417.90 19.2 417.90 417.90 13.6 417.90 417.90 14.2

L2 150 8 401.23 401.36 78.6 401.23 401.23 401.23 143.5 401.23 401.23 6.1 401.23 401.23 20.3 401.23 401.23 15 401.23 401.23 16.3

L3 150 9 402.68 404.32 88.9 402.68 402.68 402.68 132.3 402.68 402.68 6.2 402.68 402.68 17.9 402.68 402.68 11.4 402.68 402.68 12.6

L4 150 7 384.64 384.83 88.2 384.64 384.64 384.64 113.9 384.64 384.64 6.9 384.64 384.64 19.6 384.64 384.64 11.7 384.64 384.64 12.2

L5 150 8 387.56 390.33 87.4 387.56 387.56 387.56 131.8 387.56 387.56 6.9 387.56 387.57 20.6 387.56 387.56 12.1 387.56 387.58 12.5

M1 125 11 398.59 399.12 127 398.59 398.59 398.66 76.6 398.59 398.59 3.9 398.59 398.80 21.4 398.59 398.84 22.3 398.59 398.77 20.2

M2 125 10 396.92 398.16 101.4 396.92 396.92 396.93 115.9 396.92 397.24 3.7 396.92 397.09 64.7 396.92 397.08 68.3 396.92 397.05 48.5

M3 125 9 375.70 377.81 101.6 375.70 375.70 375.93 130.9 375.70 375.76 4.5 375.70 376.18 28.7 375.70 375.96 21.4 375.70 375.93 29.2

M4 125 7 348.14 348.46 90.8 348.14 348.14 348.20 83.4 348.14 348.31 4.8 348.14 348.14 13.3 348.14 348.14 10.2 348.14 348.14 11.6

N1 150 11 408.10 408.17 118.3 408.10 408.10 408.10 131.8 408.10 408.10 6.1 408.10 408.10 22.4 408.10 408.10 18.2 408.10 408.10 19.6

N2 150 10 408.07 408.25 118.6 408.07 408.07 408.13 123.6 408.07 408.07 5.9 408.07 408.07 24.8 408.07 408.07 21.1 408.07 408.07 20.4

N3 150 9 394.34 394.70 110.5 394.34 394.34 394.94 119.2 394.34 394.34 6.9 394.34 394.34 20.3 394.34 394.34 14.3 394.34 394.34 15.2

N4 150 10 394.79 394.87 121.1 394.79 394.79 395.13 114.9 394.79 394.79 6.9 394.79 394.79 22 394.79 394.79 16.2 394.79 394.79 17.1

N5 150 7 373.48 374.12 150.5 373.48 373.48 373.55 151.2 373.48 373.48 6.8 373.48 373.52 20.8 373.48 373.56 14.5 373.48 373.49 16.5

N6 150 8 373.76 374.79 141.1 373.76 373.76 373.76 165.8 373.76 373.76 6.5 373.76 373.76 22.2 373.76 373.76 15.6 373.76 373.76 17.3

O1 200 10 – – – 478.35 – – – – – – 478.13 478.95 40.2 478.13 478.88 27.9 478.13 478.38 52.5
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MACS ILS-1000 UHGS SISRs ILS-SP ILSB-SP ILSB-SPB

Instance n+m K Best Avg. CPU Best Best Avg. CPU Best Avg. CPU Best Avg. CPU Best Avg. CPU Best Avg. CPU

O2 200 11 – – – 477.26 – – – – – – 477.26 477.26 39.1 477.26 477.26 25.7 477.26 477.26 29.2

O3 200 9 – – – 457.29 – – – – – – 457.29 458.55 42 457.29 458.62 28.1 457.29 457.75 30.2

O4 200 10 – – – 458.87 – – – – – – 458.87 459.98 40.7 458.87 460.44 26 458.87 459.19 29.1

O5 200 7 – – – 436.97 – – – – – – 436.97 437.21 47.7 436.97 437.16 28 436.97 437.02 31.2

O6 200 8 – – – 438.00 – – – – – – 438.00 438.47 46.8 438.00 438.31 27.5 438.00 438.09 30.6

Average (up to N6) 37.4 51.2 2.6 10.5 7.7 8.3
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Table J.3: New best solution of O1. The last linehaul customer of a route is highlighted
in bold.

Cost Routes

478, 126.75

0 127 128 145 195 153 152 187 180 148 116 168 15 90 100 87 84 54 25 19 6 65 0
0 138 190 112 113 129 146 123 115 32 80 24 52 12 58 27 70 0
0 111 110 132 165 107 131 194 114 177 136 143 119 124 46 56 1 77 14 30 83 2 79 92 38 0
0 166 151 159 192 122 117 125 191 175 118 164 99 64 50 13 61 3 73 4 7 75 0
0 147 140 188 189 198 120 106 156 172 200 60 72 94 97 78 81 66 48 67 62 17 0
0 184 163 158 197 149 178 186 170 183 68 89 11 8 51 43 33 63 39 0
0 109 108 196 155 162 193 181 199 23 82 10 34 71 22 5 69 42 0
0 134 174 182 104 169 137 144 102 37 96 91 26 18 57 41 76 44 74 93 0
0 126 133 130 135 167 142 173 103 160 121 176 154 59 40 16 29 45 98 21 53 85 95 55 28 0
0 150 139 179 101 157 141 171 185 161 105 9 20 36 47 49 86 35 88 31 0

Table J.4: Detailed results for the TV instances. CPU times (measured in seconds) were scaled to the
machine of Cuervo et al. [32] for a fair comparison. For ILS-1000, Avg. and CPU were not reported by
the authors.

MACS ILS-1000 ILS-SP ILSB-SP ILSB-SPB

Instance BKS n+mK Best Avg. CPU Best Best Avg. CPU Best Avg. CPU Best Avg. CPU

E-n22-50-k3 371 22 3 371 371 0.6 371 371 371 0.08 371 371 0.081 371 371 0.081

E-n22-66-k3 366 22 3 366 366 0.1 366 366 366 0.07 366 366 0.074 366 366 0.073

E-n22-80-k3 375 22 3 375 375 0.3 375 375 375 0.08 375 375 0.079 375 375 0.082

E-n23-50-k2 682 23 2 682 682 0.8 682 682 682 0.11 682 682 0.071 682 682 0.072

E-n23-66-k2 649 23 2 649 649 0.3 649 649 649 0.09 649 649 0.071 649 649 0.075

E-n23-80-k2 623 23 2 623 623 1.7 623 623 623 0.10 623 623 0.09 623 623 0.094

E-n30-50-k2 501 30 2 501 501 0.8 501 501 501 0.19 501 501 0.146 501 501 0.149

E-n30-66-k3 537 30 3 537 537 1.1 537 537 537 0.22 537 537 0.183 537 537 0.186

E-n30-80-k3 514 30 3 514 514 1.7 514 514 514 0.19 514 514 0.176 514 514 0.179

E-n33-50-k3 738 33 3 738 738 2.4 738 738 738 0.25 738 738 0.205 738 738 0.201

E-n33-66-k3 750 33 3 750 750 1.6 750 750 750 0.24 750 750 0.21 750 750 0.208

E-n33-80-k3 736 33 3 736 736 1.1 736 736 736 0.21 736 736 0.227 736 736 0.232

E-n51-50-k3 559 51 3 559 559 4.6 559 559 559 0.94 559 559 0.677 559 559 0.668

E-n51-66-k4 548 51 4 548 548 5.9 548 548 548 0.97 548 548 0.73 548 548 0.759

E-n51-80-k4 565 51 4 565 565 7.3 565 565 565 1.05 565 565 1.037 565 565 1.03

E-n76-A-50-k6 739 76 6 739 739.25 10.5 739 739 739 2.49 739 739 1.983 739 739 2.017

E-n76-A-66-k7 768 76 7 768 768 13.1 768 768 768 2.31 768 768 2.001 768 768 1.965

E-n76-A-80-k8 781 76 8 781 782.63 29.6 781 781 782.48 2.74 781 782 2.807 781 782.34 2.832

E-n76-B-50-k8 801 76 8 801 801 11.8 801 801 801 2.16 801 801 1.887 801 801 1.963

E-n76-B-66-k10 873 76 10 873 873.13 14.0 873 873 873 2.51 873 873 2.374 873 873 2.353

E-n76-B-80-k12 919 76 12 919 920.13 21.2 919 919 919 2.45 919 919 2.516 919 919 2.48

E-n76-C-50-k5 713 76 5 713 713 10.4 713 713 713 2.86 713 713 2.126 713 713 2.138

E-n76-C-66-k6 734 76 6 734 734 15.4 734 734 734.02 2.54 734 734.08 2.013 734 734.02 2.072

E-n76-C-80-k7 733 76 7 733 736.13 19.9 733 733 733.08 3.24 733 733.12 3.016 733 733.06 3.24

E-n76-D-50-k4 690 76 4 690 690 15.4 690 690 690 2.97 690 690 2.052 690 690 2.03

E-n76-D-66-k5 715 76 5 715 715 16.0 715 715 715 2.86 715 715 2.148 715 715 2.203

E-n76-D-80-k6 694 76 6 694 698.63 23.3 694 694 694.22 2.86 694 694 2.545 694 694.04 2.719

E-n101-A-50-k4 831 101 4 831 834.75 31.1 831 831 831.88 7.71 831 831 4.841 831 831.02 4.954

E-n101-A-66-k6 846 101 6 846 846 32.7 846 846 846 7.78 846 846 5.66 846 846 5.577

E-n101-A-80-k6 856 101 6 857 866.88 48.8 856 856 862.7 17.87 856 860.16 16.742 856 860.06 18.284

E-n101-B-50-k7 923 101 7 923 927.63 37.1 923 923 924.74 16.26 923 924.32 14.661 923 923.22 21.27

E-n101-B-66-k9 982 101 9 988 1,008.88 47.0 983 982 991.44 57.35 982 986.5 60.235 982 986.3 94.113

E-n101-B-80-k11 1,008 101 11 1,008 1,008.5 40.9 1,008 1,008 1,008.06 16.66 1,008 1,008.02 17.398 1,008 1,008.04 19.819

Average 14.19 3.34 3.14 4.08
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J.2 Detailed results for the X instances

Table J.5: Detailed results for the X instances

ILS-SP ILSB-SP ILSB-SPB

Instance BKS n+m Best Avg.
CPU

Best Avg.
CPU

Best Avg.
CPU

(s) (s) (s)

X-n101-50-k13 19,033 101 19,033 19,036.18 15,21 19,033 19,034.30 24.56 19,033 19,033.10 31.99

X-n101-66-k17 20,490 101 20,490 20,490.48 6,78 20,490 20,490.00 7.32 20,490 20,490.00 9.21

X-n101-80-k21 23,305 101 23,305 23,307.40 8,14 23,305 23,308.84 9.24 23,305 23,307.28 9.99

X-n106-50-k7 15,413 106 15,413 15,413.00 9,06 15,413 15,413.00 9.83 15,413 15,413.00 8.97

X-n106-66-k9 18,984 106 18,984 18,996.36 109,37 18,984 19,004.96 92.12 18,984 18,991.60 110.99

X-n106-80-k11 22,131 106 22,155 22,177.90 69,76 22,151 22,167.90 70.60 22,139 22,167.98 76.09

X-n110-50-k7 13,103 110 13,103 13,103.00 7,38 13,103 13,103.00 5.44 13,103 13,103.00 5.49

X-n110-66-k9 13,598 110 13,598 13,598.00 8,38 13,598 13,598.00 6.53 13,598 13,598.00 8.41

X-n110-80-k11 14,302 110 14,302 14,315.90 19,64 14,302 14,316.48 17.61 14,302 14,315.22 27.24

X-n115-50-k8 13,927 115 13,927 14,061.96 10,16 13,927 13,927.00 6.68 13,927 13,927.00 8.84

X-n115-66-k8 14,032 115 14,032 14,033.92 9,64 14,032 14,032.78 7.54 14,032 14,033.56 8.94

X-n115-80-k9 13,536 115 13,536 13,536.12 10,29 13,536 13,540.10 8.72 13,536 13,536.84 8.71

X-n120-50-k3 12,416 120 12,421 12,437.32 16,15 12,416 12,443.94 9.40 12,416 12,425.52 13.25

X-n120-66-k4 13,145 120 13,145 13,159.28 15,4 13,145 13,156.92 10.85 13,145 13,157.06 11.83

X-n120-80-k5 13,528 120 13,532 13,533.28 16,34 13,532 13,532.64 13.83 13,532 13,532.86 18.41

X-n125-50-k16 32,224 125 32,224 32,230.82 115,99 32,224 32,234.98 103.05 32,224 32,236.86 96.63

X-n125-66-k19 36,400 125 36,464 36,609.66 129,45 36,478 36,628.18 129.92 36,450 36,547.24 158.51

X-n125-80-k23 43,960 125 43,963 44,004.78 162,83 43,960 44,023.34 155.53 43,962 44,025.66 142.49

X-n129-50-k10 19,468 129 19,468 19,486.52 117,17 19,468 19,479.82 116.57 19,468 19,469.14 88.63

X-n129-66-k12 22,606 129 22,625 22,749.14 128,98 22,606 22,763.36 79.42 22,606 22,676.70 130.61

X-n129-80-k14 24,575 129 24,575 24,639.64 120,37 24,575 24,628.16 130.82 24,575 24,598.60 120.49

X-n134-50-k7 8,369 134 8,369 8,375.66 82,52 8,369 8,387.26 89.29 8,369 8,371.16 105.31

X-n134-66-k9 8,974 134 8,993 9,032.08 73,48 8,999 9,029.02 113.94 8,974 9,004.82 70.11

X-n134-80-k11 9,699 134 9,699 9,703.68 65,59 9,699 9,704.24 66.71 9,699 9,704.30 53.63

X-n139-50-k5 13,281 139 13,293 13,340.98 29,62 13,281 13,316.44 21.04 13,281 13,293.52 58.35

X-n139-66-k7 13,512 139 13,512 13,514.24 19,4 13,512 13,512.00 14.30 13,512 13,512.00 15.98

X-n139-80-k8 13,662 139 13,662 13,672.08 21,52 13,662 13,667.10 15.90 13,662 13,667.96 23.75

X-n143-50-k4 14,539 143 14,539 14,544.80 28,54 14,539 14,546.40 17.04 14,539 14,540.00 17.52

X-n143-66-k4 14,310 143 14,310 14,320.22 28,3 14,310 14,310.54 19.62 14,310 14,310.00 18.06

X-n143-80-k5 14,447 143 14,447 14,447.54 26,56 14,447 14,447.16 20.46 14,447 14,447.02 19.28

X-n148-50-k25 28,210 148 28,210 28,231.96 119,79 28,210 28,272.86 128.76 28,210 28,210.42 109.91

X-n148-66-k29 30,482 148 30,484 30,513.80 79,36 30,482 30,509.66 84.73 30,482 30,499.56 100.18

X-n148-80-k36 35,442 148 35,430 35,475.78 101,65 35,430 35,482.36 97.26 35,430 35,472.94 129.91

X-n153-50-k19 20,536 153 20,536 20,604.26 22,32 20,610 20,610.20 21.90 20,610 20,610.52 26.03

X-n153-66-k20 20,613 153 20,632 20,684.62 22,38 20,680 20,681.74 21.91 20,680 20,681.22 23.53

X-n153-80-k21 20,819 153 20,819 21,000.40 23,44 20,874 21,024.32 23.92 20,819 21,007.12 27.77

X-n157-50-k7 11,727 157 11,727 11,727.86 30,18 11,727 11,727.26 20.26 11,727 11,727.00 21.82

X-n157-66-k9 13,651 157 13,651 13,658.62 32,56 13,651 13,653.08 26.10 13,651 13,651.18 31.78

X-n157-80-k11 15,264 157 15,264 15,274.76 269,18 15,264 15,272.44 314.51 15,264 15,267.34 942.22

X-n162-50-k6 12,812 162 12,812 12,813.40 34,27 12,812 12,812.50 20.08 12,812 12,812.20 21.58

X-n162-66-k8 13,450 162 13,443 13,451.56 29,89 13,450 13,450.40 19.28 13,450 13,452.00 21.14

X-n162-80-k9 13,854 162 13,854 13,862.72 29,81 13,854 13,857.76 22.81 13,854 13,855.16 24.61

X-n167-50-k5 16,489 167 16,489 16,515.66 41,33 16,489 16,544.04 26.45 16,489 16,502.10 28.18

X-n167-66-k7 17,827 167 17,827 17,876.42 39,84 17,827 17,856.82 28.29 17,827 17,853.26 47.24

X-n167-80-k8 19,415 167 19,440 19,587.88 41,08 19,443 19,568.34 35.11 19,429 19,532.08 56.29

X-n172-50-k27 30,634 172 30,634 30,638.12 28,93 30,634 30,641.36 31.81 30,634 30,634.12 55.66
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X-n172-66-k31 31,864 172 31,864 31,882.08 33,69 31,864 31,877.82 35.69 31,864 31,886.92 53.78

X-n172-80-k39 36,803 172 36,803 36,821.78 30,99 36,803 36,815.42 32.51 36,803 36,822.18 42.26

X-n176-50-k23 45,239 176 45,239 45,371.04 41,35 45,239 45,406.60 41.13 45,239 45,353.10 41.74

X-n176-66-k24 46,416 176 46,532 46,796.86 46,88 46,655 46,852.54 44.12 46,561 46,835.86 47.62

X-n176-80-k25 47,033 176 47,293 47,448.68 45,44 47,288 47,469.24 49.53 47,288 47,474.02 77.99

X-n181-50-k12 16,549 181 16,549 16,573.92 38,06 16,549 16,565.74 30.92 16,549 16,562.36 47.31

X-n181-66-k15 18,832 181 18,832 18,832.00 38,84 18,832 18,832.00 31.15 18,832 18,832.00 45.46

X-n181-80-k18 21,241 181 21,241 21,241.00 42,01 21,241 21,241.00 37.33 21,241 21,241.00 52.67

X-n186-50-k8 17,978 186 18,040 18,084.38 46,66 17,990 18,037.80 31.03 18,040 18,060.86 52.43

X-n186-66-k10 19,751 186 19,751 19,803.66 47,32 19,751 19,797.02 35.45 19,751 19,781.00 38.76

X-n186-80-k12 21,754 186 21,770 21,825.78 57,15 21,773 21,806.44 51.56 21,761 21,801.00 61.38

X-n190-50-k4 11,552 190 11,552 11,562.72 75,83 11,552 11,558.36 43.36 11,552 11,554.08 44.47

X-n190-66-k5 12,784 190 12,823 12,929.02 73,38 12,843 12,918.36 46.82 12,824 12,890.10 51.29

X-n190-80-k6 14,410 190 14,410 14,508.44 80,19 14,410 14,472.04 66.68 14,416 14,469.16 90.33

X-n195-50-k27 29,470 195 29,470 29,530.90 62,18 29,470 29,488.10 37.93 29,470 29,478.78 112.84

X-n195-66-k34 33,137 195 33,137 33,211.60 44,22 33,137 33,215.60 43.08 33,137 33,199.28 60.27

X-n195-80-k42 38,629 195 38,629 38,660.30 41,94 38,629 38,652.72 45.16 38,629 38,660.90 62.86

X-n200-50-k18 34,416 200 34,843 34,870.50 113,15 34,828 34,882.52 181.50 34,799 34,836.18 473.69

X-n200-66-k24 40,474 200 40,474 40,494.76 479,69 40,485 40,492.74 509.35 40,474 40,489.68 719.47

X-n200-80-k29 47,741 200 47,743 47,784.60 240,15 47,763 47,785.00 253.97 47,763 47,783.30 413.55

X-n204-50-k10 15,877 204 15,877 15,910.92 61,78 15,886 15,925.72 43.77 15,877 15,890.14 82.16

X-n204-66-k12 16,703 204 16,745 16,754.74 51,18 16,745 16,754.50 36.49 16,745 16,746.88 40.15

X-n204-80-k15 17,832 204 17,832 17,853.38 60 17,832 17,849.70 54.45 17,832 17,839.76 93.34

X-n209-50-k8 21,837 209 21,840 21,963.40 81,54 21,880 21,953.16 59.25 21,840 21,911.42 119.24

X-n209-66-k11 24,378 209 24,384 24,507.14 75,33 24,378 24,502.62 57.57 24,378 24,462.50 101.09

X-n209-80-k13 27,177 209 27,178 27,293.14 99,86 27,178 27,266.78 93.81 27,180 27,261.38 194.29

X-n214-50-k6 9,574 214 9,580 9,589.26 103 9,580 9,590.86 64.56 9,580 9,583.14 64.08

X-n214-66-k8 10,001 214 10,033 10,121.08 99,52 10,048 10,112.88 63.15 10,044 10,099.72 76.04

X-n214-80-k9 10,457 214 10,513 10,601.06 100,13 10,484 10,563.80 80.86 10,500 10,562.10 91.65

X-n219-50-k37 64,691 219 64,691 64,694.64 64,68 64,691 64,692.92 72.27 64,691 64,691.08 183.76

X-n219-66-k48 80,405 219 80,405 80,405.00 59,38 80,405 80,405.00 64.14 80,405 80,405.00 106.82

X-n219-80-k59 95,845 219 95,845 95,845.00 47,17 95,845 95,845.00 56.19 95,845 95,845.00 65.38

X-n223-50-k18 27,449 223 27,449 27,522.26 151,16 27,449 27,499.46 152.61 27,442 27,477.70 1,397.53

X-n223-66-k23 30,717 223 30,717 30,796.70 138,76 30,720 30,798.00 125.23 30,719 30,769.96 351.74

X-n223-80-k27 34,440 223 34,440 34,480.92 111,99 34,440 34,478.56 108.98 34,440 34,481.94 293.65

X-n228-50-k19 23,128 228 23,128 23,130.90 88,69 23,128 23,131.40 63.94 23,128 23,128.90 75.37

X-n228-66-k20 24,114 228 24,160 24,208.64 79,46 24,184 24,208.34 61.77 24,160 24,204.50 65.51

X-n228-80-k21 24,592 228 24,664 24,687.68 84,28 24,664 24,679.34 77.87 24,612 24,672.40 81.86

X-n233-50-k10 17,186 233 17,233 17,460.78 104,13 17,190 17,243.10 62.00 17,186 17,317.66 87.78

X-n233-66-k12 18,026 233 18,026 18,048.18 95,02 18,026 18,038.28 61.20 18,026 18,031.34 64.96

X-n233-80-k14 18,885 233 18,885 18,923.22 88,82 18,888 18,913.80 72.65 18,885 18,910.86 81.47

X-n237-50-k7 20,745 237 20,745 20,785.32 133,58 20,760 20,782.14 81.68 20,749 20,776.16 87.10

X-n237-66-k9 22,471 237 22,471 22,569.24 133,74 22,471 22,525.68 90.39 22,471 22,497.40 115.04

X-n237-80-k11 24,357 237 24,392 24,544.30 146,4 24,423 24,511.20 121.45 24,357 24,456.00 137.34

X-n242-50-k25 47,949 242 47,976 48,255.26 515,17 47,988 48,236.08 466.37 47,981 48,180.62 1,975.12

X-n242-66-k32 57,197 242 57,197 57,248.86 256,14 57,197 57,234.48 243.08 57,197 57,242.94 956.72

X-n242-80-k39 68,978 242 68,984 69,052.20 630,77 68,969 69,038.78 602.84 68,989 69,058.16 1,144.40

X-n247-50-k42 36,701 247 36,701 36,707.36 89,95 36,701 36,714.34 87.50 36,701 36,708.90 90.33

X-n247-66-k43 36,994 247 36,999 37,071.32 92,77 36,996 37,072.56 95.06 36,996 37,066.16 100.36

X-n247-80-k45 37,220 247 37,286 37,379.90 87,33 37,286 37,360.06 101.49 37,239 37,316.90 99.60
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X-n251-50-k14 24,968 251 25,052 25,333.02 340,93 25,142 25,343.96 489.02 25,065 25,200.68 1,241.92

X-n251-66-k18 27,817 251 27,922 28,064.48 197,36 27,916 28,048.40 162.24 27,881 27,994.04 792.93

X-n251-80-k22 32,170 251 32,229 32,351.90 296,74 32,196 32,333.86 311.08 32,197 32,321.50 596.30

X-n256-50-k8 15,922 256 15,922 15,923.70 127,15 15,922 15,927.02 77.35 15,922 15,922.00 96.10

X-n256-66-k11 17,250 256 17,250 17,276.70 124,73 17,250 17,291.30 85.73 17,250 17,263.12 114.44

X-n256-80-k13 18,189 256 18,213 18,359.98 122,43 18,216 18,421.86 94.96 18,201 18,325.74 147.60

X-n261-50-k7 21,555 261 21,627 21,770.38 201,99 21,635 21,771.94 119.59 21,652 21,743.28 129.13

X-n261-66-k9 23,065 261 23,328 23,436.48 194,33 23,284 23,405.08 128.11 23,214 23,348.52 156.96

X-n261-80-k11 25,128 261 25,204 25,558.70 196,41 25,287 25,481.62 167.72 25,213 25,472.14 261.23

X-n266-50-k30 47,815 266 47,845 47,949.86 828,73 47,815 47,934.00 808.08 47,783 47,839.68 978.74

X-n266-66-k39 55,962 266 55,961 55,997.80 769,31 55,963 56,003.08 770.33 55,938 55,970.88 856.93

X-n266-80-k47 63,947 266 63,885 63,961.14 786,81 63,880 63,944.92 731.49 63,880 63,949.20 930.69

X-n270-50-k18 24,776 270 24,844 24,887.46 227,59 24,843 24,890.46 293.42 24,844 24,858.60 1,639.11

X-n270-66-k24 26,377 270 26,377 26,385.14 110,32 26,377 26,386.48 78.59 26,377 26,382.32 227.09

X-n270-80-k29 29,789 270 29,789 29,817.14 132,03 29,789 29,811.76 115.62 29,789 29,811.54 267.58

X-n275-50-k14 15,561 275 15,563 15,638.78 172,78 15,563 15,663.62 132.98 15,561 15,587.78 612.28

X-n275-66-k19 16,944 275 16,970 16,993.00 174,05 16,970 16,989.72 132.38 16,944 16,966.76 268.04

X-n275-80-k22 18,690 275 18,694 18,721.08 241,31 18,697 18,713.52 241.90 18,689 18,703.94 669.37

X-n280-50-k13 29,132 280 29,170 29,396.66 249,45 29,198 29,353.50 159.74 29,200 29,316.26 211.75

X-n280-66-k15 31,315 280 31,438 31,692.14 254,39 31,461 31,661.28 196.68 31,427 31,603.18 414.69

X-n280-80-k16 32,332 280 32,409 32,547.06 246,96 32,405 32,529.32 223.05 32,412 32,508.26 411.12

X-n284-50-k8 15,944 284 15,969 16,052.64 252,94 15,997 16,051.28 145.35 15,944 16,019.60 159.20

X-n284-66-k10 17,277 284 17,341 17,434.18 241,5 17,316 17,391.62 155.19 17,312 17,371.68 165.56

X-n284-80-k12 18,830 284 18,868 18,951.34 237,78 18,871 18,944.92 192.76 18,873 18,926.52 270.90

X-n289-50-k34 57,957 289 58,008 58,259.72 764,55 57,971 58,220.34 791.97 57,950 58,073.66 1,791.63

X-n289-66-k38 63,446 289 63,496 63,801.58 896,65 63,496 63,775.36 937.29 63,441 63,657.52 1,458.47

X-n289-80-k47 75,963 289 75,970 76,225.44 1072,58 76,040 76,236.38 1,156.53 76,023 76,216.14 1,805.94

X-n294-50-k26 30,859 294 30,859 30,925.00 157,24 30,859 30,932.14 101.57 30,859 30,881.50 1,095.26

X-n294-66-k33 34,636 294 34,669 34,742.14 146,12 34,636 34,722.56 127.60 34,644 34,709.48 260.96

X-n294-80-k40 39,269 294 39,265 39,313.98 226,59 39,269 39,318.62 227.60 39,269 39,333.10 688.80

X-n298-50-k16 25,081 298 25,081 25,138.86 178,44 25,081 25,104.80 124.72 25,081 25,085.50 219.47

X-n298-66-k21 27,644 298 27,694 27,836.76 337,08 27,643 27,783.76 242.42 27,678 27,770.98 1,497.88

X-n298-80-k25 30,222 298 30,222 30,345.24 402,56 30,222 30,325.88 460.03 30,222 30,330.16 1,479.26

X-n303-50-k11 17,763 303 17,771 17,802.50 248,23 17,776 17,834.54 150.57 17,739 17,789.78 283.20

X-n303-66-k13 18,120 303 18,121 18,159.22 224,91 18,120 18,152.22 145.73 18,122 18,142.56 176.79

X-n303-80-k16 19,603 303 19,772 19,950.94 265,08 19,660 19,727.10 186.91 19,710 19,814.04 305.20

X-n308-50-k9 22,544 308 22,637 22,903.52 365,33 22,699 22,868.00 199.52 22,673 22,827.48 231.64

X-n308-66-k11 24,154 308 24,315 24,592.12 368,26 24,225 24,422.92 235.34 24,227 24,436.34 303.74

X-n308-80-k12 25,164 308 25,291 25,419.10 355,99 25,172 25,382.26 284.34 25,172 25,356.98 437.52

X-n313-50-k39 57,762 313 57,774 57,884.38 930,09 57,765 57,869.64 934.92 57,778 57,864.74 2,042.98

X-n313-66-k44 60,089 313 60,216 60,485.46 953,36 60,282 60,481.82 1,054.46 60,204 60,357.74 1,586.63

X-n313-80-k56 73,869 313 73,856 73,987.34 723,01 73,834 74,022.44 847.19 73,893 74,019.74 1,335.42

X-n317-50-k27 43,396 317 43,397 43,440.44 1431,88 43,397 43,430.44 1,686.92 43,391 43,411.72 2,972.38

X-n317-66-k35 54,505 317 54,502 54,520.60 993,88 54,502 54,521.56 1,059.65 54,502 54,508.80 1,202.35

X-n317-80-k43 63,687 317 63,683 63,683.46 359,6 63,683 63,683.20 330.54 63,683 63,683.36 792.75

X-n322-50-k14 23,309 322 23,310 23,427.12 217 23,309 23,385.46 144.01 23,309 23,334.18 415.75

X-n322-66-k19 25,034 322 25,034 25,078.82 206,69 25,034 25,074.00 152.75 25,034 25,057.62 239.81

X-n322-80-k23 27,500 322 27,526 27,638.46 337,69 27,519 27,633.82 315.24 27,506 27,619.74 1,030.98

X-n327-50-k10 21,610 327 21,781 21,930.52 398,71 21,755 21,890.16 255.32 21,728 21,827.26 603.45

X-n327-66-k13 23,322 327 23,413 23,605.34 353,95 23,423 23,544.16 247.27 23,340 23,483.22 410.57
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X-n327-80-k16 24,990 327 25,109 25,281.66 432,69 25,106 25,227.88 420.18 25,046 25,205.80 1,078.86

X-n331-50-k8 24,152 331 24,207 24,342.08 405,82 24,259 24,345.72 234.77 24,152 24,316.32 271.64

X-n331-66-k10 26,247 331 26,369 26,599.16 401,49 26,366 26,536.16 269.38 26,305 26,496.74 395.80

X-n331-80-k12 28,265 331 28,366 28,534.74 456,33 28,358 28,478.10 361.27 28,284 28,428.66 524.12

X-n336-50-k45 81,760 336 81,850 82,095.26 1081,79 81,818 82,134.74 1,116.63 81,783 82,003.10 2,226.02

X-n336-66-k57 99,283 336 99,275 99,459.48 981,19 99,226 99,471.24 1,084.34 99,251 99,410.14 1,701.81

X-n336-80-k68 116,238 336 116,186 116,321.62 906,6 116,185 116,353.78 1,050.20 116,207 116,353.74 1,750.12

X-n344-50-k22 28,527 344 28,574 28,700.04 412,95 28,602 28,702.36 344.90 28,527 28,595.74 2,181.79

X-n344-66-k29 31,873 344 31,845 31,926.54 620,53 31,845 31,936.72 597.92 31,837 31,933.62 2,465.84

X-n344-80-k35 35,743 344 35,743 35,832.54 541,29 35,751 35,830.96 575.11 35,761 35,844.06 1,079.15

X-n351-50-k21 18,584 351 18,702 18,793.56 553,03 18,658 18,765.62 514.01 18,635 18,776.72 2,474.45

X-n351-66-k26 19,758 351 19,799 20,011.68 794,5 19,842 19,942.80 546.97 19,865 19,963.38 2,018.64

X-n351-80-k32 22,158 351 22,258 22,371.74 728,46 22,257 22,326.64 604.08 22,236 22,318.52 1,184.00

X-n359-50-k15 33,255 359 33,640 33,934.24 645,79 33,581 33,878.76 568.40 33,679 33,884.38 2,375.60

X-n359-66-k19 37,695 359 37,886 38,181.78 778,39 37,835 38,074.14 637.55 37,748 38,083.38 2,207.93

X-n359-80-k23 43,412 359 43,585 43,907.40 1309,93 43,566 43,818.50 1,321.96 43,561 43,864.46 2,520.75

X-n367-50-k12 20,526 367 20,804 20,911.18 560,39 20,799 20,842.52 313.23 20,700 20,866.94 586.92

X-n367-66-k14 21,479 367 21,493 21,567.02 542,85 21,491 21,549.08 333.22 21,479 21,535.12 382.21

X-n367-80-k15 22,386 367 22,439 22,568.58 566,03 22,405 22,531.80 482.80 22,408 22,487.54 492.41

X-n376-50-k47 80,794 376 80,736 80,791.48 539,89 80,736 80,780.16 537.80 80,736 80,748.24 1,352.74

X-n376-66-k62 100,616 376 100,613 100,613.64 895,45 100,613 100,613.36 885.54 100,613 100,613.30 1,141.06

X-n376-80-k75 119,581 376 119,581 119,581.00 303,21 119,581 119,581.00 306.14 119,581 119,581.00 533.75

X-n384-50-k27 41,206 384 41,365 41,682.84 1703,4 41,380 41,684.14 1,748.78 41,384 41,740.80 3,284.00

X-n384-66-k35 47,373 384 47,422 47,675.94 1058,74 47,484 47,701.86 1,105.37 47,436 47,670.76 2,009.43

X-n384-80-k42 55,386 384 55,490 55,658.10 1481,68 55,442 55,658.40 1,434.17 55,469 55,667.08 2,401.40

X-n393-50-k19 30,005 393 30,212 30,352.56 1076,38 30,093 30,324.08 1,102.95 30,089 30,256.02 3,119.32

X-n393-66-k25 29,340 393 29,441 29,582.04 932,81 29,450 29,568.14 850.72 29,444 29,618.16 2,903.91

X-n393-80-k31 32,619 393 32,644 32,787.78 1364,19 32,640 32,783.20 1,305.44 32,675 32,840.76 3,055.94

X-n401-50-k15 39,746 401 40,074 40,230.80 1199,5 39,987 40,196.74 1,029.33 39,995 40,203.66 3,128.46

X-n401-66-k20 47,658 401 47,703 47,920.88 1473,83 47,707 47,871.76 1,164.73 47,681 47,909.92 2,730.72

X-n401-80-k23 54,270 401 54,512 54,666.08 1957,54 54,343 54,569.58 1,977.74 54,329 54,572.30 2,858.43

X-n411-50-k14 17,959 411 18,095 18,245.82 752,56 18,128 18,256.42 445.36 18,083 18,233.06 546.56

X-n411-66-k15 18,785 411 18,835 18,919.08 776,96 18,816 18,903.40 473.03 18,810 18,880.10 649.76

X-n411-80-k17 19,496 411 19,552 19,759.92 816,08 19,607 19,735.88 708.86 19,553 19,688.90 1,176.16

X-n420-50-k67 75,549 420 75,598 75,869.72 2792,19 75,527 75,895.58 2,887.30 75,497 75,747.30 3,213.14

X-n420-66-k86 76,109 420 76,095 76,171.24 1712,09 76,079 76,176.68 1,717.76 76,079 76,125.50 2,328.46

X-n420-80-k105 89,391 420 89,383 89,494.78 1255,12 89,381 89,478.40 1,270.78 89,396 89,533.20 2,273.54

X-n429-50-k31 41,284 429 41,448 41,632.10 1389,94 41,378 41,587.28 1,274.06 41,364 41,640.98 3,175.85

X-n429-66-k40 47,793 429 47,850 48,106.62 1291,78 47,893 48,101.72 1,296.19 47,872 48,143.34 2,482.53

X-n429-80-k48 54,835 429 54,924 55,086.28 1653,12 54,908 55,066.92 1,597.41 54,969 55,114.06 2,496.20

X-n439-50-k19 27,011 439 27,086 27,225.32 739,34 27,039 27,256.48 530.80 27,010 27,086.82 1,784.11

X-n439-66-k25 28,895 439 28,882 28,978.92 662,31 28,883 28,961.24 511.33 28,878 28,935.20 1,824.67

X-n439-80-k30 32,074 439 32,098 32,155.42 1143,67 32,084 32,138.72 1,039.67 32,085 32,160.06 2,709.43

X-n449-50-k15 36,929 449 37,311 37,563.18 1187,05 37,108 37,545.92 848.72 37,230 37,534.04 2,685.97

X-n449-66-k20 41,846 449 42,265 42,612.38 1350,9 42,228 42,503.98 1,020.04 42,047 42,545.54 2,576.99

X-n449-80-k23 46,738 449 47,146 47,450.20 1676,76 47,103 47,378.96 1,662.08 47,140 47,413.96 2,899.36

X-n459-50-k14 18,891 459 18,931 19,024.18 1058,5 18,947 19,017.32 679.52 18,879 18,965.78 1,170.96

X-n459-66-k18 20,561 459 20,632 20,739.32 1068,7 20,594 20,716.60 776.70 20,575 20,682.48 1,611.84

X-n459-80-k21 22,047 459 22,108 22,263.16 1491,7 22,060 22,233.86 1,369.07 22,102 22,233.30 2,502.88

X-n469-50-k70 123,817 469 123,890 124,428.98 3074,85 124,190 124,541.22 3,161.39 123,980 124,426.44 3,645.45

(Continues on the next page)
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ILS-SP ILSB-SP ILSB-SPB

Instance BKS n+m Best Avg.
CPU

Best Avg.
CPU

Best Avg.
CPU

(s) (s) (s)

X-n469-66-k90 148,455 469 148,568 148,891.42 1831,76 148,476 148,873.36 1,826.92 148,571 148,779.38 2,657.46

X-n469-80-k109 178,511 469 178,602 178,814.22 1794,86 178,538 178,739.34 1,691.35 178,570 178,793.60 2,569.95

X-n480-50-k36 52,309 480 52,645 52,954.58 2865,16 52,697 52,951.36 2,722.02 52,751 53,030.64 3,660.36

X-n480-66-k47 63,577 480 63,639 63,737.90 1974,21 63,605 63,714.20 1,820.70 63,624 63,741.30 2,847.27

X-n480-80-k56 73,993 480 74,132 74,444.18 2142,54 74,200 74,438.86 2,115.58 74,326 74,465.44 2,884.06

X-n491-50-k30 43,952 491 44,392 44,595.46 3248,68 44,310 44,506.04 2,916.42 44,400 44,602.40 3,870.00

X-n491-66-k39 49,627 491 49,903 50,308.20 3392,14 49,901 50,275.68 3,202.94 50,012 50,322.60 4,059.82

X-n491-80-k47 56,141 491 56,304 56,676.46 2336,32 56,309 56,613.76 2,197.72 56,472 56,662.86 2,904.17

X-n502-50-k20 40,591 502 40,632 40,662.88 1794,59 40,633 40,674.18 2,861.03 40,616 40,677.42 3,589.01

X-n502-66-k26 49,285 502 49,338 49,393.10 3662,14 49,318 49,382.86 3,368.36 49,307 49,420.56 3,965.62

X-n502-80-k31 56,997 502 57,015 57,059.56 1593,09 57,001 57,043.12 1,454.89 56,992 57,039.66 2,807.98

X-n513-50-k11 21,675 513 21,812 21,985.32 1661,12 21,769 21,947.04 832.33 21,696 21,819.24 1,184.20

X-n513-66-k14 22,426 513 22,585 22,824.26 1387,65 22,475 22,660.12 794.47 22,454 22,595.84 1,050.45

X-n513-80-k17 23,448 513 23,600 23,718.48 1204,13 23,502 23,625.76 911.95 23,509 23,597.46 1,111.15

X-n524-50-k125 154,162 524 154,137 154,144.54 678,33 154,137 154,158.18 988.64 154,137 154,160.76 1,238.25

X-n524-66-k129 154,454 524 154,416 154,464.34 806,6 154,416 154,463.12 1,041.80 154,416 154,458.44 1,145.98

X-n524-80-k132 154,534 524 154,497 154,653.56 755,12 154,497 154,631.56 1,003.81 154,497 154,597.94 969.52

X-n536-50-k49 54,658 536 54,846 55,077.56 2562,37 54,873 55,077.36 2,289.58 55,012 55,175.32 3,558.97

X-n536-66-k64 66,032 536 66,143 66,316.66 2727 66,131 66,303.52 2,589.26 66,133 66,308.34 3,254.26

X-n536-80-k77 77,811 536 78,384 78,501.72 3300,44 78,370 78,479.58 3,263.29 78,384 78,500.94 3,887.19

X-n548-50-k25 53,049 548 53,353 53,627.02 3078,13 53,295 53,554.26 2,677.05 53,259 53,576.74 4,519.00

X-n548-66-k33 61,421 548 61,415 61,722.52 3454,66 61,434 61,646.08 2,823.55 61,429 61,664.46 4,751.30

X-n548-80-k40 71,962 548 71,887 72,132.12 4068,65 71,867 72,065.58 3,589.45 71,969 72,161.58 4,335.31

X-n561-50-k22 31,826 561 32,090 32,233.24 1790,98 32,115 32,237.62 1,251.14 32,060 32,232.40 3,479.13

X-n561-66-k28 34,370 561 34,599 34,791.48 1660,66 34,550 34,764.54 1,384.45 34,461 34,744.88 2,863.92

X-n561-80-k34 38,053 561 38,197 38,380.08 2227,36 38,066 38,341.00 2,190.15 38,160 38,351.94 3,456.24

X-n573-50-k22 40,239 573 40,769 41,268.12 2935,02 40,660 41,183.74 2,133.38 40,582 41,009.34 3,793.69

X-n573-66-k25 44,151 573 44,320 44,501.82 2668,17 44,247 44,444.28 1,954.25 44,347 44,483.16 3,244.08

X-n573-80-k27 47,054 573 47,266 47,408.86 2967,32 47,175 47,328.12 2,776.15 47,190 47,366.70 4,155.16

X-n586-50-k80 122,632 586 122,876 123,085.80 4637,98 122,954 123,147.68 4,715.40 122,849 123,119.72 5,036.44

X-n586-66-k105 140,396 586 140,673 140,920.64 3822,45 140,678 140,954.28 3,828.81 140,535 140,913.58 4,217.18

X-n586-80-k127 160,460 586 160,419 160,744.00 3482 160,390 160,713.00 3,599.47 160,463 160,768.56 3,980.49

X-n599-50-k47 65,292 599 65,687 65,916.96 4529,38 65,549 65,873.08 4,156.63 65,547 65,899.96 4,401.40

X-n599-66-k61 76,472 599 76,706 77,012.96 3076,46 76,604 77,003.66 2,887.26 76,700 77,069.50 3,588.14

X-n599-80-k74 89,844 599 90,101 90,376.66 3464,39 89,981 90,357.60 3,426.41 90,162 90,416.94 3,908.59

X-n613-50-k32 40,838 613 41,255 41,467.54 2872,82 41,074 41,406.48 2,410.45 41,126 41,512.40 4,137.92

X-n613-66-k41 46,074 613 46,284 46,553.70 3298,62 46,181 46,509.32 2,943.49 46,212 46,594.26 4,913.78

X-n613-80-k50 52,096 613 52,389 52,637.52 4082,34 52,241 52,585.86 3,889.53 52,365 52,640.62 4,145.17

X-n627-50-k22 38,096 627 38,423 38,644.90 4552,96 38,430 38,598.54 3,529.69 38,418 38,586.82 4,997.05

X-n627-66-k29 44,782 627 44,996 45,171.46 5412,62 44,792 45,100.38 4,484.16 45,002 45,125.86 5,073.93

X-n627-80-k35 52,429 627 52,622 52,785.20 6363,34 52,530 52,721.26 5,625.66 52,576 52,730.08 5,843.21

X-n641-50-k18 42,333 641 42,631 42,927.80 4200,11 42,544 42,901.22 2,937.90 42,645 42,892.36 4,734.33

X-n641-66-k23 47,501 641 47,859 48,228.18 4085,35 47,819 48,118.08 3,086.13 47,940 48,159.38 6,379.56

X-n641-80-k28 54,116 641 54,313 54,820.84 4871,43 54,332 54,695.14 4,267.43 54,352 54,727.50 5,157.62

X-n655-50-k66 59,442 655 59,416 59,516.02 3407,75 59,451 59,536.32 3,379.35 59,442 59,552.12 4,281.04

X-n655-66-k87 72,491 655 72,457 72,503.16 2679,14 72,456 72,504.62 2,585.18 72,456 72,494.64 3,757.15

X-n655-80-k105 86,588 655 86,564 86,575.20 2742,04 86,564 86,571.10 2,588.08 86,564 86,579.58 3,595.05

X-n670-50-k112 144,707 670 144,688 144,823.88 1623,14 144,723 144,846.36 1,850.98 144,720 144,830.58 1,930.46

X-n670-66-k117 144,990 670 144,981 145,162.10 1631,79 144,991 145,218.66 1,732.61 144,960 145,122.54 1,762.80

X-n670-80-k120 145,490 670 145,247 145,627.30 1756,92 145,275 145,585.36 2,086.33 145,151 145,484.72 2,035.45

(Continues on the next page)
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ILS-SP ILSB-SP ILSB-SPB

Instance BKS n+m Best Avg.
CPU

Best Avg.
CPU

Best Avg.
CPU

(s) (s) (s)

X-n685-50-k43 48,023 685 48,300 48,615.42 4438,54 48,228 48,574.98 3,864.07 48,312 48,656.68 4,683.08

X-n685-66-k54 53,240 685 53,353 53,787.34 4323,23 53,508 53,798.82 3,806.79 53,610 53,906.20 4,357.33

X-n685-80-k62 59,301 685 59,644 59,898.34 3576,4 59,624 59,808.76 2,406.18 59,656 59,999.52 5,352.39

X-n701-50-k23 51,390 701 52,231 52,523.78 6718,85 52,254 52,469.70 4,644.50 52,274 52,482.38 6,259.41

X-n701-66-k30 58,844 701 59,760 60,042.74 6379,35 59,642 59,920.98 4,636.17 59,688 59,912.80 5,541.16

X-n701-80-k36 68,618 701 69,104 69,607.76 6830,29 69,187 69,496.60 5,824.26 69,160 69,464.48 6,188.58

X-n716-50-k18 29,757 716 30,201 30,453.44 7945,31 30,110 30,334.56 4,224.00 30,145 30,428.84 6,362.58

X-n716-66-k23 32,527 716 32,966 33,156.66 6669,41 32,886 33,077.10 4,576.08 32,953 33,076.46 6,520.48

X-n716-80-k28 37,976 716 38,313 38,541.02 7,431 38,358 38,469.24 6,179.14 38,330 38,461.72 8,122.80

X-n733-50-k83 80,585 733 80,874 81,245.28 4,253 80,774 81,258.44 3,936.58 80,904 81,277.36 5,120.46

X-n733-66-k102 92,156 733 92,345 92,664.86 4,157 92,435 92,689.20 4,113.29 92,358 92,751.70 4,608.45

X-n733-80-k125 110,659 733 110,801 111,106.86 4,308 110,806 111,105.88 4,415.33 110,868 111,174.84 4,698.41

X-n749-50-k49 47,740 749 48,341 48,570.72 7,018 48,360 48,549.62 5,824.83 48,318 48,588.18 6,573.66

X-n749-66-k63 55,560 749 55,964 56,168.42 6,393 55,985 56,151.42 5,615.70 56,017 56,170.76 5,694.44

X-n749-80-k78 63,991 749 64,437 64,612.10 5,058 64,284 64,564.26 4,729.02 64,439 64,588.46 5,157.63

X-n766-50-k58 95,674 766 96,639 97,017.38 8,543 96,599 96,985.94 6,209.82 96,500 96,997.04 6,909.81

X-n766-66-k62 101,566 766 101,999 102,747.22 8,667 102,178 102,504.40 6,471.67 102,189 102,569.92 7,226.96

X-n766-80-k65 106,758 766 107,191 107,955.82 9,077 107,427 107,707.64 7,701.13 107,327 107,759.82 8,838.75

X-n783-50-k24 49,027 783 49,835 50,738.66 8,815 49,987 50,263.96 5,078.68 49,876 50,259.10 6,859.64

X-n783-66-k31 53,429 783 54,392 54,985.58 8,178 54,063 54,593.00 5,016.52 54,190 54,579.58 7,539.50

X-n783-80-k38 60,937 783 61,670 61,930.74 7,847 61,411 61,797.92 6,433.57 61,505 61,786.18 7,056.14

X-n801-50-k20 48,459 801 49,338 49,670.18 14,236 49,258 49,541.04 7,231.37 49,177 49,610.44 10,468.79

X-n801-66-k27 54,929 801 55,385 55,638.34 12,269 55,232 55,478.34 7,216.42 55,238 55,501.48 9,612.64

X-n801-80-k32 62,698 801 63,089 63,262.94 12,984 62,858 63,127.84 9,598.68 62,900 63,131.66 11,655.50

X-n819-50-k86 89,296 819 89,536 89,831.50 5,797 89,594 89,837.82 5,173.58 89,533 89,926.40 6,294.31

X-n819-66-k112 108,431 819 108,587 108,840.12 5,362 108,636 108,837.12 5,190.30 108,655 108,911.72 5,784.03

X-n819-80-k136 128,617 819 128,925 129,279.64 5,732 128,901 129,259.10 5,793.37 128,922 129,327.80 6,198.00

X-n837-50-k71 116,553 837 116,759 117,029.56 11,938 116,868 117,128.60 10,212.23 116,934 117,107.84 11,242.33

X-n837-66-k94 129,183 837 129,593 129,910.02 7,090 129,691 129,894.46 5,929.24 129,708 129,914.60 8,160.78

X-n837-80-k114 154,966 837 155,536 155,719.52 6,565 155,390 155,667.52 6,302.08 155,412 155,695.90 7,267.38

X-n856-50-k48 57,777 856 57,911 58,109.54 9,024 57,936 58,114.44 7,317.24 57,855 58,100.26 8,018.41

X-n856-66-k63 63,550 856 63,602 63,892.90 7,086 63,542 63,862.26 6,039.45 63,735 63,923.24 7,136.64

X-n856-80-k76 73,802 856 73,881 74,094.48 7,030 73,848 74,068.40 6,252.84 73,958 74,091.12 6,739.03

X-n876-50-k30 58,780 876 59,261 59,547.24 14,926 59,268 59,512.92 8,585.59 59,434 59,588.10 10,245.76

X-n876-66-k38 69,617 876 70,052 70,271.38 14,095 70,038 70,184.76 8,916.99 70,018 70,239.02 9,764.81

X-n876-80-k46 80,983 876 81,439 81,749.62 14,126 81,462 81,635.70 10,611.29 81,512 81,704.26 12,270.26

X-n895-50-k19 40,668 895 41,302 41,735.88 13,365 41,324 41,580.46 6,593.86 41,204 41,779.64 9,787.44

X-n895-66-k25 44,059 895 44,642 44,935.04 11,116 44,353 44,792.08 6,539.38 44,658 44,858.92 10,614.66

X-n895-80-k30 48,451 895 49,073 49,399.70 12,030 49,063 49,324.66 9,666.41 48,858 49,233.60 11,600.48

X-n916-50-k105 190,413 916 189,911 190,140.22 11,686 190,108 190,290.92 10,371.39 190,040 190,302.86 12,541.55

X-n916-66-k136 222,807 916 223,211 223,586.82 9,129 223,229 223,575.76 8,378.68 223,227 223,576.68 9,829.22

X-n916-80-k165 263,885 916 264,488 264,994.44 8,082 264,625 264,902.78 8,232.98 264,577 264,924.12 8,702.22

X-n936-50-k132 127,522 936 127,479 127,696.88 4,301 127,497 127,787.32 3,967.18 127,445 127,745.36 4,251.39

X-n936-66-k138 128,871 936 128,832 129,387.84 4,890 128,978 129,385.34 4,626.05 128,899 129,232.64 4,946.79

X-n936-80-k143 130,808 936 130,935 131,333.48 5,205 130,823 131,229.32 5,339.50 130,736 131,274.98 5,783.04

X-n957-50-k44 57,019 957 57,282 57,490.40 18,072 57,189 57,380.88 12,446.31 57,234 57,438.90 13,523.84

X-n957-66-k58 62,593 957 62,782 62,942.70 12,316 62,756 62,890.16 8,805.03 62,760 62,891.56 9,927.86

X-n957-80-k70 71,855 957 72,008 72,118.86 12,881 71,931 72,084.92 9,895.91 71,990 72,094.30 11,658.77

X-n979-50-k30 69,739 979 70,367 71,219.92 26,013 70,124 70,736.52 13,812.99 70,194 70,633.06 18,093.25

X-n979-66-k39 84,499 979 84,967 85,415.90 22,968 84,979 85,268.60 13,699.44 84,994 85,225.58 17,756.82

(Continues on the next page)
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ILS-SP ILSB-SP ILSB-SPB

Instance BKS n+m Best Avg.
CPU

Best Avg.
CPU

Best Avg.
CPU

(s) (s) (s)

X-n979-80-k47 99,605 979 100,252 100,642.08 22,511 100,107 100,442.10 17,266.25 99,983 100,315.92 16,338.46

X-n1001-50-k22 49,978 1,001 51,158 51,542.36 26,543 51,132 51,501.80 11,818.16 51,279 51,558.32 14,322.40

X-n1001-66-k28 56,126 1,001 57,418 57,645.24 25,849 56,850 57,473.24 12,371.27 56,930 57,498.82 14,946.78

X-n1001-80-k34 63,278 1,001 64,208 64,650.36 24,643 64,218 64,421.96 17,155.69 64,110 64,412.80 18,572.64

Average 2,599.77 2,005.48 2,660.19
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APPENDIX K -- A representative small subset
of X

A minimum subset of the instances X which covers all the characteristics considered in

Uchoa et al. [115] is described below:

• Route size (interval for n/Kmin):

– [3, 5]: X-n469-k138

– (5, 8]: X-n670-k130

– (8, 11]: X-n393-k38

– (11, 14]: X-n561-k42

– (14, 17]: X-n979-k58

– (17, 20]: X-n801-k40

– (20, 25]: X-n716-k35

• Depot positioning:

– Random: X-n670-k130, X-n716-k35

– Center: X-n393-k38, X-n561-k42

– Corner: X-n469-k138, X-n801-k40, X-n979-k58

• Customers distribution:

– Random: X-n469-k138, X-n670-k130, X-n801-k40

– Clustered: X-n716-k35, X-n979-k58

– Random-clustered: X-n393-k38, X-n561-k42

• Customers demands:

– Unitary: X-n801-k40
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– Small values, large CV1: X-n561-k42

– Small values, small CV: X-n393-k38

– Large values, large CV: X-n716-k35

– Large values, small CV: X-n469-k138

– Depending on quadrant: X-n979-k58

– Many small values, few large values: X-n670-k130

Thus, the subset XR is composed by: X-n393-k38, X-n469-k138, X-n561-k42, X-

n670-k130, X-n716-k35, X-n801-k40, X-n979-k58. The reader is referred to Uchoa et al.

[115] for a detailed description of all characteristics.

1Coefficient of variation
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APPENDIX L -- Comparison of HGS and
HGSr

Figure L.1 compares the performance of a single execution of HGS and HGSr for all X

instances over 8 hours. The convergence curves of both algorithms report the average

gap (considering the gap obtained for each instance) found at different times. The final

average gaps obtained by HGS and HGSr were 0.295% and 0.236%, respectively.
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Figure L.1: Comparison of HGS and HGSr w.r.t. the convergence curve based on the
average gap for all X instances over 8 hours. The time axis is on a log2 scale.
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APPENDIX M -- VRPSolver
Parameterizations

Table M.1 shows the default VRPSolver CVRP parameterization, as well as the changed

parameterization in the version used to solve subproblems in POP. The reader is referred

to the documentation of Bulhões et al. [23] to obtain the description of each parameter.

The parameters which have special notation indicated in the second column of Table M.1

are also described in Pessoa et al. [92]. Default values for the last four parameters are

not defined because these parameters are not active when the restricted master heuris-

tic is not used. RCSPmaxNumOfEnumSolsForEndOfNodeMIP is a previously undocumented

VRPSolver parameter. If the number of enumerated routes gets becomes smaller than

RCSPmaxNumOfEnumSolutionsForMIP, at any point of a node solution, then the node is

immediately solved by MIP.

Table M.1: Default and used parameters of the VRPSolver CVRP application.

Parameter Notation Default value Used value
RCSPhardTimeThresholdInPricing τhard 25 secs 8 secs

RCSPstopCutGenTimeThresholdInPricing τ soft 10 secs 3 secs
RCSPnumberOfBucketsPerVertex τhard 25 50

RCSPmaxNumOfLabelsInEnumeration ωlabels 5 · 106 3 · 105

RCSPmaxNumOfEnumeratedSolutions ωroutes 5 · 106 106

RCSPmaxNumOfEnumSolutionsForMIP ωMIP 104 5 · 103

RCSPmaxNumOfEnumSolsForEndOfNodeMIP – 104 104

RCSPuseBidirectionalSearch φbidir 2 1
RCSPrankOneCutsMemoryType θmem 0 0
CutTailingOffThreshold δgap 0.015 0.03

StrongBranchingPhaseOneCandidatesNumber ζnum1 100 50
StrongBranchingPhaseOneTreeSizeEstimRatio ζestim1 0.2 0.2
StrongBranchingPhaseTwoCandidatesNumber ζnum2 5 3

StrongBranchingPhaseTwoTreeSizeEstimRatio ζestim2 0.02 0.02
MaxTimeForRestrictedMasterIpHeur χrm -1 (off) 40

CallFrequencyOfRestrictedMasterIpHeur – – 1
MIPemphasisInRestrictedMasterIpHeur – – 1
RCSPmaxNumOfLabelsInHeurEnumeration – – 105

MaxNumEnumSolsInRestrictedMasterIpHeur – – 104

Table M.2 shows the additional parameters used for obtaining BCPH . While they
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reduce running times, the optimal solution of a subproblem may be missed.

Table M.2: Additional parameters for obtaining BCPH

Parameter Notation Default value Used value
GlobalTimeLimit – ∞ 3600 secs

MaxNbOfBBtreeNodeTreated – ∞ 10
RCSPfalseGapFactor – 0 (off) 3
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APPENDIX N -- Detailed results for the
HFVRP and VRPB

Table N.1: Best solutions found by HILS and POPh
0.5 after 32 hours. The column BKS reports the best

upper bound in Pessoa, Sadykov, and Uchoa [90]. Instances with the substring “FSM" in their names
belong to XH-FSM, while the other ones belong to XH-HVRP.

Instance BKS HILS POPh
0.5

X303-FSMFD 35993.50 36112.06 35960.75
X308-FSMF 51965.10 52057.16 52438.06

X313-FSMD 93361.60 93337.55 93325.55
X317-HVRP 165763.00 165763.39 165763.39

X322-HD 33507.80 33521.93 33535.29

X327-FSMFD 38672.80 38748.57 38340.48
X331-FSMF 63082.70 63750.1 63232.26

X336-FSMF 212635.90 211357.4 210312.95
X344-FSMD 42369.70 42370.48 42369.72

X351-HVRP 54124.90 54240.66 53936.57
X359-HD 60737.70 60923.07 59947.73
X367-FSMFD 51605.00 51627.35 51592.72
X376-HD 161394.20 161394.21 161394.21

X384-FSMF 105143.60 105381.32 100719.64
X393-HVRP 72748.10 73180.22 72230.09
X401-FSMFD 89755.70 89716.66 90000.85

X411-FSMD 18430.90 18461.53 18219.79
X420-FSMD 112984.80 112753.18 112622.13
X429-HVRP 91732.20 92114.81 91547.96
X439-FSMF 71877.00 72859.22 70320.17
X449-FSMFD 113204.30 113399.96 112857.46
X459-HD 25359.10 25356.2 25009.24
X469-HD 217177.80 217233.11 216780.09
X480-FSMD 100583.50 100697.55 100561.86
X491-FSMF 131315.50 131013.31 126177.75
X502-FSMFD – 89935.24 88014.99
X513-HVRP – 41586.54 41480.64
X524-HD – 122415.92 120964.77
X536-FSMFD – 199346 199268.21
X548-FSMF – 135027.05 126883.21
X561-FSMD – 46949.38 46648.97
X573-HVRP – 105451.71 105129.49
X586-FSMF – 367195.62 359094.43
X599-FSMD – 133243.14 133225.46
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Instance BKS HILS POPh
0.5

X613-HD – 63591.25 62406.85
X627-HVRP – 108524.69 108571.75

X641-FSMFD – 100590.06 100146.59
X655-HD – 96607.45 96589.42
X670-FSMF – 233678.54 213111.59
X685-FSMD – 81197.95 80877.56
X701-HVRP – 173635.78 172527.97
X716-FSMFD – 59128.97 59108.63
X733-FSMFD – 291937.39 289248.44
X749-FSMF – 128356.03 124994.19
X766-FSMD – 115751.08 114536.82
X783-HD – 87217.09 84600.07
X801-HVRP – 131696.8 130860.09
X819-FSMD – 137333.07 128516.50
X837-HD – 209229.81 208995.91
X856-HVRP – 122669.55 122683.39
X876-FSMF – 160588.86 161002.45

X895-FSMFD – 75033.11 74645.13
X916-FSMFD – 700308.45 683329.86
X936-FSMD – 127111.15 125923.09
X957-HD – 83611.04 82995.84
X979-HVRP – 218473.55 219745.05

X1001-FSMF – 88567.65 84233.42

Table N.2: Best solutions found by ILSB-SPB and POPb
0.5 after 32 hours.

Instance BKS ILSB-SPB POPb
0.5

X-n303-50-k11 17739 17728 17728
X-n303-66-k13 18120 18120 18120

X-n303-80-k16 19603 19737 19613

X-n308-50-k9 22544 22615 22655

X-n308-66-k11 24154 24218 24131
X-n308-80-k12 25164 25243 25251

X-n313-50-k39 57762 57805 57711
X-n313-66-k44 60069 60028 60018
X-n313-80-k56 73834 73899 73850

X-n317-50-k27 43391 43397 43391

X-n317-66-k35 54502 54502 54502

X-n317-80-k43 63683 63683 63683

X-n322-50-k14 23309 23309 23309

X-n322-66-k19 25034 25034 25034

X-n322-80-k23 27500 27557 27500

X-n327-50-k10 21610 21731 21684

X-n327-66-k13 23322 23322 23315
X-n327-80-k16 24990 25089 25032

X-n331-50-k8 24152 24152 24152

X-n331-66-k10 26247 26302 26247

X-n331-80-k12 28265 28271 28189
X-n336-50-k45 81760 81823 81650
X-n336-66-k57 99226 99101 99146

X-n336-80-k68 116185 116216 116298
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Instance BKS ILSB-SPB POPb
0.5

X-n344-50-k22 28527 28563 28532

X-n344-66-k29 31837 31936 31871

X-n344-80-k35 35743 35765 35743

X-n351-50-k21 18584 18768 18621

X-n351-66-k26 19758 19854 19767

X-n351-80-k32 22158 22292 22130
X-n359-50-k15 33255 33833 33241
X-n359-66-k19 37695 37943 37766

X-n359-80-k23 43412 43785 43494

X-n367-50-k12 20526 20784 20784

X-n367-66-k14 21479 21491 21479

X-n367-80-k15 22386 22411 22397

X-n376-50-k47 80736 80736 80736

X-n376-66-k62 100613 100613 100613

X-n376-80-k75 119581 119581 119581

X-n384-50-k27 41206 41667 41214

X-n384-66-k35 47373 47315 47246
X-n384-80-k42 55386 55361 55373

X-n393-50-k19 30005 30273 30008

X-n393-66-k25 29340 29536 29392

X-n393-80-k31 32619 32755 32576
X-n401-50-k15 39746 40099 39814

X-n401-66-k20 47658 47737 47603
X-n401-80-k23 54270 54554 54293

X-n411-50-k14 17959 18020 17959

X-n411-66-k15 18785 18832 18801

X-n411-80-k17 19496 19635 19483
X-n420-50-k67 75497 75559 75442
X-n420-66-k86 76079 76099 76126

X-n420-80-k105 89356 89450 89356

X-n429-50-k31 41284 41545 41191
X-n429-66-k40 47793 48057 47763
X-n429-80-k48 54835 55084 54873

X-n439-50-k19 27010 27010 27010

X-n439-66-k25 28878 28883 28895

X-n439-80-k30 32074 32111 32080

X-n449-50-k15 36929 37394 36922
X-n449-66-k20 41846 42361 41846

X-n449-80-k23 46738 47224 46714
X-n459-50-k14 18879 18940 18925

X-n459-66-k18 20561 20635 20521
X-n459-80-k21 22047 22077 21961
X-n469-50-k70 123773 124309 123360
X-n469-66-k90 148455 148518 148442
X-n469-80-k109 178511 178461 178511

X-n480-50-k36 52309 52730 52428

X-n480-66-k47 63577 63733 63522
X-n480-80-k56 73993 74450 74252

X-n491-50-k30 43952 44454 43907
X-n491-66-k39 49627 50234 49637

X-n491-80-k47 56141 56546 56036
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Instance BKS ILSB-SPB POPb
0.5

X-n502-50-k20 40591 40641 40557
X-n502-66-k26 49285 49355 49251
X-n502-80-k31 56992 57001 56977
X-n513-50-k11 21675 21779 21687

X-n513-66-k14 22426 22467 22582

X-n513-80-k17 23448 23501 23468

X-n524-50-k125 154137 154137 154137

X-n524-66-k129 154416 154416 154446

X-n524-80-k132 154446 154446 154446

X-n536-50-k49 54658 55089 54697

X-n536-66-k64 66032 66335 65937
X-n536-80-k77 77811 78445 77822

X-n548-50-k25 53049 53160 52898
X-n548-66-k33 61415 61572 61346
X-n548-80-k40 71867 71907 71803
X-n561-50-k22 31826 32074 31860

X-n561-66-k28 34370 34717 34475

X-n561-80-k34 38053 38277 38060

X-n573-50-k22 40239 40763 40278

X-n573-66-k25 44151 44320 44179

X-n573-80-k27 47054 47286 47104

X-n586-50-k80 122632 122947 122326
X-n586-66-k105 140396 140693 140284
X-n586-80-k127 160390 160791 160311
X-n599-50-k47 65292 65744 65093
X-n599-66-k61 76472 76935 76432
X-n599-80-k74 89844 90263 89663
X-n613-50-k32 40838 41321 40873

X-n613-66-k41 46074 46483 46023
X-n613-80-k50 52096 52458 52084
X-n627-50-k22 38096 38483 38217

X-n627-66-k29 44782 44998 44499
X-n627-80-k35 52429 52550 52223
X-n641-50-k18 42333 42584 42449

X-n641-66-k23 47501 48000 47410
X-n641-80-k28 54116 54544 54030
X-n655-50-k66 59416 59542 59388
X-n655-66-k87 72456 72511 72456

X-n655-80-k105 86564 86575 86564

X-n670-50-k112 144688 144685 144685
X-n670-66-k117 144960 144960 144882
X-n670-80-k120 145151 145317 145221

X-n685-50-k43 48023 48489 48037

X-n685-66-k54 53240 53715 53279

X-n685-80-k62 59301 59825 59358

X-n701-50-k23 51390 52259 51668

X-n701-66-k30 58844 59626 58816
X-n701-80-k36 68618 69311 68400
X-n716-50-k18 29757 30210 29638
X-n716-66-k23 32527 32941 32632

X-n716-80-k28 37976 38270 38117
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Instance BKS ILSB-SPB POPb
0.5

X-n733-50-k83 80585 81110 80408
X-n733-66-k102 92156 92646 92162

X-n733-80-k125 110659 111008 110536
X-n749-50-k49 47740 48385 47811

X-n749-66-k63 55560 56064 55398
X-n749-80-k78 63991 64417 63758
X-n766-50-k58 95674 96805 95981

X-n766-66-k62 101566 102295 101574

X-n766-80-k65 106758 107612 106644
X-n783-50-k24 49027 50112 49043

X-n783-66-k31 53429 54424 54021

X-n783-80-k38 60937 61613 60834
X-n801-50-k20 48459 49377 48404
X-n801-66-k27 54929 55205 54816
X-n801-80-k32 62698 63054 62605
X-n819-50-k86 89296 89788 89151
X-n819-66-k112 108431 108682 108216
X-n819-80-k136 128617 129220 128265
X-n837-50-k71 116553 116842 115892
X-n837-66-k94 129183 129826 128883
X-n837-80-k114 154966 155395 154678
X-n856-50-k48 57777 58007 57676
X-n856-66-k63 63550 63791 63355
X-n856-80-k76 73802 74013 73663
X-n876-50-k30 58780 59411 58657
X-n876-66-k38 69617 70154 69483
X-n876-80-k46 80983 81569 80753
X-n895-50-k19 40668 41380 40669

X-n895-66-k25 44059 44680 44153

X-n895-80-k30 48451 48996 48501

X-n916-50-k105 189911 190197 188372
X-n916-66-k136 222807 223260 222357
X-n916-80-k165 263885 264590 263723
X-n936-50-k132 127445 127425 127416
X-n936-66-k138 128832 128863 128588
X-n936-80-k143 130736 131176 130267
X-n957-50-k44 57019 57289 56719
X-n957-66-k58 62593 62700 62431
X-n957-80-k70 71855 72036 71725
X-n979-50-k30 69739 70460 69660
X-n979-66-k39 84499 85163 84392
X-n979-80-k47 99605 100287 99581
X-n1001-50-k22 49978 51452 50462

X-n1001-66-k28 56126 57315 56667

X-n1001-80-k34 63278 64319 63233
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