
UNIVERSIDADE FEDERAL FLUMINENSE

SÉRGIO DE MELO BARRETO JUNIOR

SENTIMENT ANALYSIS IN TWEETS:

AN ASSESSMENT STUDY FROM

CLASSICAL TO MODERN TEXT

REPRESENTATION MODELS

NITERÓI

2021



UNIVERSIDADE FEDERAL FLUMINENSE

SÉRGIO DE MELO BARRETO JUNIOR

SENTIMENT ANALYSIS IN TWEETS:

AN ASSESSMENT STUDY FROM

CLASSICAL TO MODERN TEXT

REPRESENTATION MODELS

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Ciência da Computação

Orientador:
ALEXANDRE PLASTINO DE CARVALHO

Coorientadora:
ALINE MARINS PAES CARVALHO

NITERÓI

2021



Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

B273s Barreto junior, Sérgio de Melo
  Sentiment analysis in tweets: An assessment study from
classical to modern text representation models / Sérgio de
Melo Barreto junior ; ALEXANDRE PLASTINO DE CARVALHO,
orientador ; ALINE MARINS PAES CARVALHO, coorientadora.
Niterói, 2021.
  133 f.

  Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2021.

DOI: http://dx.doi.org/10.22409/PGC.2021.m.13122652722

  1. Sentiment analysis. 2. Text representations. 3. Language
models. 4. Natural language processing. 5. Produção
intelectual. I. CARVALHO, ALEXANDRE PLASTINO DE, orientador.
II. CARVALHO, ALINE MARINS PAES, coorientadora. III.
Universidade Federal Fluminense. Instituto de Computação.
IV. Título.

                                      CDD -



SÉRGIO DE MELO BARRETO JUNIOR

SENTIMENT ANALYSIS IN TWEETS:
AN ASSESSMENT STUDY FROM CLASSICAL TO MODERN TEXT

REPRESENTATION MODELS

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Ciência da Computação

Aprovada em Julho de 2021.

BANCA EXAMINADORA

Prof. D.Sc. ALEXANDRE PLASTINO DE CARVALHO -
Orientador, PGC/UFF

Profa. D.Sc. ALINE MARINS PAES CARVALHO -
Coorientadora, PGC/UFF

Profa. D.Sc. VIVIANE PEREIRA MOREIRA, UFRGS

Prof. D.Sc. JOSÉ VITERBO FILHO, PGC/UFF

Niterói
2021





Acknowledgments

The author would like to thank the Brazilian research agencies FAPERJ and CNPq
for their financial support. The author would also like to thank his family and his fiancée
for all the support that made the whole journey possible.



Resumo

Com o crescimento das mídias sociais, como o Twitter, muitos dados gerados pelos usuários
surgem diariamente. Os textos curtos publicados no Twitter – os tweets – têm ganhado
atenção significativa como uma fonte rica de informações para auxiliar na tomada de
decisão. No entanto, as características inerentes dos tweets, como o tamanho reduzido
e o estilo linguístico informal e ruidoso, continuam sendo um desafio para muitas tare-
fas de processamento de linguagem natural (PLN), incluindo a análise de sentimentos.
A classificação de sentimentos em textos é abordada principalmente por classificadores
baseados em aprendizado de máquina. Para transformar tweets em entradas baseadas
em vetores para alimentar classificadores de sentimento, a literatura tem adotado repre-
sentações de palavras de naturezas distintas. A geração das representações vetoriais são
obtidas desde por métodos simples baseados em contagem, como bag-of-words, até por
métodos mais sofisticados que geram embeddings, como o BERTweet, construído sobre
a notável arquitetura BERT. No entanto, a maioria dos estudos concentra-se principal-
mente na avaliação desses modelos de representação usando apenas um número reduzido
de bases de dados. Apesar do progresso feito nos últimos anos na construção de modelos
de linguagem, ainda há uma lacuna em relação a uma avaliação robusta de embeddings
aplicados à análise de sentimento em tweets. Além disso, enquanto o ajuste do modelo
visando a tarefa final tem se tornado popular, pouca atenção tem sido dada aos ajustes
com base no estilo linguístico específico dos textos. Neste contexto, este estudo realiza
uma avaliação dos modelos de linguagem existentes para a análise de sentimento expresso
em tweets, usando uma rica coleção de 22 bases de dados de domínios distintos e cinco
algoritmos de classificação. A avaliação inclui representações vetoriais estáticas e contex-
tualizadas, totalizando 280 diferentes combinações de estratégias para extrair sentimentos
de textos. Os contextos são identificados a partir de modelos de autoencoder baseados
em Transformer, que também são ajustados com base na tarefa intermediária de modelo
de linguagem mascarada, usando uma vasta quantidade de estratégias.

Palavras-chave:análise de sentimento, representação de texto, modelos de linguagem,
processamento de linguagem natural, Twitter



Abstract

With the growth of social medias, such as Twitter, plenty of user-generated data emerge
daily. The short texts published on Twitter – the tweets – have earned significant attention
as a rich source of information to guide many decision-making processes. However, their
inherent characteristics, such as the informal and noisy linguistic style, remain challenging
to many natural language processing (NLP) tasks, including sentiment analysis. Senti-
ment classification is tackled mainly by machine learning-based classifiers. The literature
has adopted word representations from distinct natures to transform tweets to vector-
based inputs to feed sentiment classifiers. The representations come from simple count-
based methods, such as bag-of-words, to more sophisticated ones, such as BERTweet, built
upon the trendy BERT architecture. Nevertheless, most studies mainly focus on evalu-
ating those models using only a small number of datasets. Despite the progress made
in recent years in language modelling, there is still a gap regarding a robust evaluation
of induced embeddings applied to sentiment analysis on tweets. Furthermore, while fine-
tuning the model from downstream tasks is prominent nowadays, less attention has been
given to adjustments based on the specific linguistic style of the data. In this context,
this study fulfils an assessment of existing language models in distinguishing the sentiment
expressed in tweets by using a rich collection of 22 datasets from distinct domains and five
classification algorithms. The evaluation includes static and contextualized representa-
tions, assessing in total 280 different combinations of strategies for extracting sentiments
from text. Contexts are assembled from Transformer-based autoencoder models that are
also fine-tuned based on the masked language model task, using a plethora of strategies.

Keywords: sentiment analysis, text representations, language models, natural language
processing, Twitter
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Chapter 1

Introduction

In recent years, the use of social media networks, such as Twitter1, has been growing
exponentially. It is estimated that about 500 million tweets – the short informal messages
sent by Twitter users – are published daily2. Unlike other text styles, tweets have an
informal linguistic style, misspelled words, careless use of grammar, URL links, user
mentions, hashtags, and more. Due to these inherent characteristics, discovering patterns
from tweets represents a challenge and opportunities for machine learning and natural
language processing (NLP) tasks, such as sentiment analysis.

Sentiment analysis is the field of study that analyzes people’s opinions, sentiments, ap-
praisals, attitudes, and emotions toward entities and their attributes expressed in written
text [30]. Usually, one reduces the sentiment analysis task to find out the polarity clas-
sification, i.e., whether they carry a positive or negative connotation. One of the biggest
challenges concerning the sentiment classification of tweets is that people often express
their sentiments and opinions using a casual linguistic style, resulting in the presence of
misspelled words and the careless use of grammar. Consequently, the automated analysis
of tweets’ content requires machines to build a deep understanding of natural text to deal
effectively with its informal structure [3]. However, before discovering patterns from text,
it is essential to define a more fundamental step: how automatic methods can numerically
represent textual content.

Vector space models (VSMs) [21] are one of the earliest and most common strategies
adopted in text classification literature to allow machines to deal with texts and their
structures. The VSM represents each document in a corpus as a point in a vector space.
Points that are close together in this space are semantically similar, and points that are far

1http://www.twitter.com
2https://www.dsayce.com/social-media/tweets-day/
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apart are semantically distant [55]. The firsts VSM approaches are count-based methods,
such as Bag-of-Words (BoW) [33] and BoW with TF-IDF [33]. Although VSMs have been
extensively used in the literature, they cannot deal with the curse of dimensionality. More
clearly, considering the inherent characteristics of tweets, a corpus of tweets may contain
different spellings for each unique word leading to an extensive vocabulary, making the
vector representation of those tweets very large and often sparse.

To tackle the curse of dimensionality inherent from BOW-based approaches, in the
last years it has become a standard practice to learn dense vectors to represent words
and texts, the embeddings. Methods such as such as Word2Vec [53], Fast-Text [54], and
others [2, 20, 51, 58] have been used with relative success to address a plethora of NLP
tasks. Nevertheless, in general, the performance of such techniques is still unsatisfactory
to solve sentiment analysis from tweets, taking into account the dynamic vocabulary used
by Twitter users to express themselves. Specifically, in tweets, the ironic and sarcas-
tic content expressed in a limited space, regularly out of context and informal, makes
even more challenging to retrieve meaning from the words. Such attributes may degrade
the performance of traditional word embeddings methods if not handled properly. In this
context, contextualized word representations have recently emerged in the literature, aim-
ing at allowing the vector representation of words to adapt to the context they appear.
Contextual embedding techniques, including ELMo [42] and Transformer-based autoen-
coder methods, such as BERT [14], RoBERTa [31], and BERTweet [39], capture not only
complex characteristics of word usage, such as syntax and semantics, but also how the
word usage vary across linguistic contexts. Those methods have achieved state-of-the-art
results on various NLP tasks, including sentiment analysis [4, 12, 22, 1].

Much effort in recent language modeling research is focused on scalability issues of
existing word embedding methods. On this basis, inductive transfer learning strategies
and pre-trained embedding models have gained important application in the literature,
especially when the amount of labeled data to train a model is relatively small. With
that, models obtained from the aforementioned contextual embeddings methods are rarely
trained from scratch but are instead fine-tuned from models pre-trained on datasets with
a huge amount of texts [27, 42, 45]. Pre-trained models reduce the use of computational
resources and tend to increase the classification performance of several NLP tasks, senti-
ment analysis included.

Despite the successful achievements in developing efficient word representation meth-
ods in NLP literature, there is still a gap regarding a robust evaluation of existing lan-
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guage models applied to the sentiment analysis task on tweets. Most studies are mainly
focused on evaluating those models for different NLP tasks using only a small number of
datasets [43, 28, 31, 26, 58]. Our main goal is to identify appropriate embeddings-based
text representations for the sentiment analysis of English tweets in this study. For this
purpose, we evaluate embeddings of different natures, including: i) static embeddings
learned from generic texts [2, 34, 35, 41]; ii) static embeddings learned from datasets of
Twitter sentiment analysis [5, 8, 20, 41, 51, 58]; iii) contextualized embeddings learned
from transformer-based autoencoders with generic texts with no adjustments [14, 31]; iv)
contextualized embeddings learned from Transformer-based autoencoders with a dataset
of tweets with no adjustments [39]; v) contextualized embeddings fine-tuned to the tweets
language; and vi) contextualized embeddings fine-tuned to the tweets sentiment language.
In all assessments, we use a representative set of twenty-two sentiment datasets [11] as
input to five classifiers to evaluate the predictive performance of the embeddings. To the
best of our knowledge, there is no previous study that has conducted such a robust evalua-
tion regarding language models of several flavors and a large number of datasets, assessing
280 different strategies of extracting sentiment from short texts, such as tweets. In order
to identify the most appropriate text embeddings, we conduct this study to answer the
following four research questions.

RQ1. Which static embeddings are the most effective in the sentiment classification
of tweets? Our motivation to evaluate those models is that many state-of-the-art deep
learning models can require a lot of computational power, such as memory usage and
storage. Thus, running those models locally on some devices may be difficult for mass-
market applications that depend on low-cost hardware. To overcome this limitation,
embeddings generated by language models can be gathered by simply looking up at the
embedding table to achieve a static representation of textual content. We intend to assess
how these static representations work and which are the most appropriate in this context.
We answer this research question by evaluating a rich set of text representations from the
literature [2, 5, 8, 14, 20, 34, 35, 39, 41, 51, 58, 59]. To achieve a good overview of the
static representations, we conduct an experimental evaluation in the sentiment analysis
task with five different classifiers and 22 datasets.

RQ2. Considering state-of-the-art Transformer-based autoencoder models, which are
the most effective in the sentiment classification of tweets? Regarding recent advances in
language modeling, Transformer-based architectures have achieved state-of-the-art perfor-
mances in many NLP tasks. Specifically, BERT [14] is the first method that successfully
uses the encoders components of the Transformer architecture [57] to learn contextualized
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embeddings from texts. Shortly after that, RoBERTa [31] was introduced by Facebook as
an extension of BERT that uses an optimized training methodology. Next, BERTweet [39]
was proposed as an alternative to RoBERTa for NLP tasks focusing on tweets. While
RoBERTa was trained on traditional English texts, such as Wikipedia, BERTweet was
trained from scratch using a massive corpus of 850M English tweets. In this context, to an-
swer this research question, we conduct an experimental evaluation of BERT, RoBERTa,
and BERTweet models in the sentiment analysis task with five different classifiers and 22
datasets to obtain a comprehensive analysis of their predictive performances. By evaluat-
ing these models we may obtain a robust overview of the Transformer-based autoencoder
representations that better fit tweet’s style.

RQ3. Can Transformer-based autoencoder models benefit from a fine-tuning procedure
with a large set of English tweets? One of the benefits of pre-trained language models,
such as the Transformer-based models exploited in this study, is the possibility to adjust
the language model to a specific domain by applying a fine-tuning procedure. We aim
at assessing whether the sentiment analysis of tweets can benefit from fine-tuning BERT,
RoBERTa and BERTweet language models with a vast, generic, and unlabeled set of
around 6.7M English tweets from distinct domains. To that, we fine-tuned the pre-trained
language model using the intermediate masked-language model task. Besides, considering
that the fine-tuning procedure can be a very data-intensive task that may demand a lot
of computational power, in addition to the large corpus of 6.7M tweets, we use in the fine-
tuning process nine other samples with different sizes, varying from 500 to 1.5M tweets.
We conduct an experimental evaluation with all models in the sentiment analysis task
with five different classifiers and 22 datasets as in the previous questions.

RQ4. Can Transformer-based autoencoder models benefit from a fine-tuning procedure
with tweets from sentiment analysis datasets? Although using unlabeled generic tweets
to adjust a language model seems to be promising regarding the availability of data, we
believe that the fine-tuning procedure may benefit from the sentiment information that
tweets from labeled datasets contain. In this context, we aim at identifying whether fine-
tuning models with positive and negative tweets can boost the sentiment classification
of tweets. We perform this evaluation by assessing three distinct strategies in order to
simulate three real-world situations, as follows. In the first strategy, we use a specific
sentiment dataset itself as the target domain dataset to fine-tune a language model. The
second strategy simulates the case where a collection of general sentiment dataset is
available to fine-tune a language model. In the third and last strategy, we combine the
two previous situations. In short, we put together tweets from a target dataset and from
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a collection of sentiment datasets in the fine-tuning procedure. Finally, we present a
comparison between the predictive performances achieved by these three evaluations and
the fine-tuned models evaluated in RQ3. As in the previous questions, we conduct the
experiments with five different classifiers and 22 datasets.

In summation, given the large number of language models exploited in this study, our
main contributions are: (i) a comparative study of a rich collection of publicly available
static representations generated from distinct deep learning methods, and with different
dimensions, vocabulary size, and from various kinds of corpora; (ii) an assessment of state-
of-the-art contextualized language models from the literature, that is, Transformer-based
autoencoder models, including BERT, RoBERTa, and BERTweet; (iii) an evaluation of
distinct strategies for fine-tuning Transformer-based autoencoder language models; and
(iv) a general comparison over static, Transformer-based autoencoder, and fine-tuned
language models, aiming at determining the most suitable ones for detecting the sentiment
expressed in tweets3.

In order to present our contributions, we organized this work as follows. Chapter 2
presents a literature review related to the language models examined in this study. In
Chapter 3, we describe the experimental methodology we followed in the computational
experiments, which are reported in Chapters 4, 5, 6, and 7, responding the four research
question, respectively. Finally, in Chapter 8, we present the conclusions and directions
for future research.

3The code and detailed results from our investigation are publicly available at https://github.com/
MeLL-UFF/tuning_sentiment



Chapter 2

Literature Review

Sentiment analysis is an automated process used to predict people’s opinions, sentiments,
evaluations, appraisals, attitudes, and emotions towards entities such as products, ser-
vices, organizations, individuals, issues, events, topics, and their attributes [30]. Recently,
sentiment analysis has been recognized as a suitcase research problem [9], which involves
solving different NLP classification sub-tasks, including sarcasm, subjectivity, and polarity
detection, which is the focus of this study.

Pioneer works in the sentiment classification of tweets mainly focused on the polar-
ity detection task, which aims at categorizing a piece of text as carrying a positive or
negative connotation. For example, Go et al. [24] define sentiment as a personal posi-
tive or negative feeling. There, they used unigrams as features to train different machine
learning classifiers, using tweets with emoticons as training data. The unigram model, or
bag-of-words (BoW), is the most basic representation in text classification problems.

Over the years, different techniques have been developed in NLP literature in an effort
to make natural language easily triable by computers. Vector Space Models (VSMs) [21]
are one of the earliest strategies used to represent the knowledge extracted from a given
corpus. Earlier approaches to build VSMs are grounded on count-based methods, such as
BoW [56] with TF-IDF (Term Frequency-Inverse Document Frequency) [49] representa-
tion, which measures how important a word is to a document, relying on its frequency of
occurrence in a corpus.

The BoW model, which assumes word order is not important, is based on the hy-
pothesis that the frequencies of words in a document tend to indicate the relevance of the
document to a query [21]. This hypothesis expresses the belief that a column vector in a
term-document matrix captures an aspect of the meaning of the corresponding document
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or phrase. Precisely, Let X be a term-document matrix. Suppose the document collection
contains n documents and m unique terms. The matrix X will then have m rows (one
row for each unique term in the vocabulary) and n columns (one column for each docu-
ment). Let wi be the i-th term in the vocabulary and let dj be the j-th document in the
collection. The i-th row in X is the row vector xi: and the j-th column in X is the column
vector x:j. The row vector xi: contains n elements, one element for each document, and
the column vector x:j contains m elements, one element for each term. Suppose X is a
simple matrix of frequencies, then the element xij in X is the frequency of the i-th term
wi in the j-th document dj [56].

Such a simple way of creating numeric representations from texts have motivated early
studies in detecting the sentiment expressed in tweets [6, 24, 40]. However, though widely
adopted, this kind of feature representation leads to the curse of dimensionality due to
the large number of uncommon words tweets contain [47].

Thus, with the revival and success of neural-based learning techniques, several meth-
ods that learn dense real-valued low dimensional vectors to represent words have been
proposed, such as Word2Vec [53], FastText [54], and GloVe [41]. Word2Vec [53] is one of
the pioneer models to become popular taking advantage from the development of neural
networks over the years. Wor2Vec is actually a software package composed of two distinct
implementations of language-models, both based on a feed-forward neural architecture,
namely Continuous Bag-Of-Words (CBOW) and Skip-gram. The CBOW model aims at
predicting a word given its surrounding context words. Conversely, the Skip-gram model
predicts the words in the surrounding context given a target word. Both architectures
consist of input, a hidden layer and an output layer. The input layer has the size of the
vocabulary and encodes the context by combining the one-hot vector representations of
surrounding words of a given target word. The output layer has the same size as the input
layer and contains a one-hot vector of the target word obtained during the training. How-
ever, one of the main disadvantages of those models is that they usually struggle to deal
with out-of-vocabulary (OOV) words, i.e., words that have not been seen in the training
data before. To address this weakness, more complex approaches have been proposed,
such as FastText [54].

FastText [54] is based on the Skip-gram model [53], still it considers each word as a
bag of character n-grams, which are contiguous sequences of n characters from a word,
including the word itself. A dense vector is learned to each character n-gram and the
dense vector associated to a word is taken from the sum of those representations. Thus,
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FastText can deal with different morphological structure of words that covers the words
not seen in the training phase, i.e., OOV words. For that reason, FastText is also able
to deal with tweets, considering the huge number of uncommon and unique words in this
kind of text.

Going to another direction, the GloVe model [41] attempts at making efficient use of
statistics of word occurrences in a corpus to learn better word representations. In [41],
Pennington et al. present a model that rely on the insight that ratios of co-occurrences,
rather than raw counts, encode semantic information about pair of words. This rela-
tionship is used to derive a suitable loss function for a log-linear model, which is then
trained to maximize the similarity of every word pair, as measured by the ratios of co-
occurrences. Given a probe word, the ratio can be small, large or equal to one depending
on their correlations. This ratio gives hints on the relations between three different words.
For example, given a probe word and two others wi and wj, if the ratio is large, the probe
word is related to wi but not wj.

In general, methods for learning word embeddings deal well with the the syntactic
context of words but ignore the potential sentiment they carry. In the context of sentiment
analysis, words with similar syntactic structure but opposite sentiment polarity, such as
good and bad, are usually mismapped to neighbouring word vectors. To address this
issue, Tang et al. [51] proposed the Sentiment-Specific Word Embedding model (SSWE),
which encodes the sentiment information in the embeddings. Specifically, they developed
neural networks that incorporate the supervision from sentiment polarity of texts in their
loss function. To that, they slide the window of n-gram across a sentence, and then
predict the sentiment polarity based on each n-gram with a shared neural network. In
addition to SSWE, other methods have been proposed in order to improve the quality
of word representations in sentiment analysis, by leveraging the sentiment information in
the training phase, such as DeepMoji [20], Emo2Vec [58], and EWE [2].

The aforementioned word embedding models have been used as standard components
in most sentiment analysis methods. However, they pre-compute the representation for
each word independently from the context they are going to appear. This static nature
of these models results in two problems: (i) they ignore the diversity of meaning each
word may have, and (ii) they suffer from learning long-term dependencies of meaning.
Different from those static word embedding techniques, contextualized embeddings are not
fixed, adapting the word representation to the context it appears. Precisely, at training
time, for each word in a given input text, the learning model analyzes the context, usually
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using sequence-based models, such as recurrent neural networks (RNNs), and adjusts the
representation of the target word by looking at the context. These context-awareness
embeddings are actually the internal states of a deep neural network trained in an self-
supervised setting. Thus, the training phase is carried out independently from the primary
task on an extensive unlabeled data. Depending on the sequence-based model adopted,
these contextualized models can be divided into two main groups, namely RNN-based [43]
and Transformers-based [29, 31, 39, 28, 57].

Transfer learning strategies have also been emerging to improve the quality of word
representation, such as ULMFit (Universal Language Model Fine-tuning) [27]. ULMFit is
an effective transfer learning method that can be applied to any NLP task, and introduces
key techniques for fine-tuning a language model, consisting of three stages, described as
follows. First, the language model is trained on a general-domain corpus to capture generic
features of the language in different layers. Next, the full language model is fine-tuned on
the target task data using discriminative fine-tuning and slanted triangular learning rates
(STLR) to learn task-specific features. Lastly, the model is fine-tuned on the target task
using gradual unfreezing and STLR to preserve low-level representations and to adapt
high-level ones.

Fine-tuning techniques enable the development and availability of pre-trained contex-
tualized language models using massive amounts of data. For example, Peters et al. [42]
introduced ELMo (Embeddings from Language Models), a deep contextualized model for
word representation. ELMo comprises a Bi-directional Long-Short-Term-Memory Recur-
rent Neural Network (BiLSTM) to combine a forward model, looking at the sequence in
the traditional order, and a backward model, looking at the sequence in the reverse order.
ELMo is composed of two layers of BiLSTM sequence encoder responsible for capturing
the semantics of the context. Besides, some weights are shared between the two directions
of the language modeling unit and there is also a residual connection between the LSTM
layers to accommodate the deep connections without the gradient vanishing issue. ELMo
also makes use of the character-based technique for computing embeddings. Therefore, it
benefits from the characteristics of character-based representations to avoid OOV words.

Although ELMo is more effective as compared to static pre-trained models, its per-
formance may be degraded when dealing with long texts, exposing a trade-off between
efficient learning by gradient descent and latching on information for long periods [7].

Transformer-based language models, on the other hand, have been proposed to solve
the gradient propagation problems described in [7]. Compared to RNNs, which process
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the input sequentially, Transformers work in parallel, which brings benefits when dealing
with large corpora. Moreover, while RNNs by default process the input in one direction,
Transformers-based models can attend to the context of a word from distant parts of
a sentence and pay attention to the part of the text that really matters, using self-
attention [57].

The OpenAI Generative Pre-Training Transformer model (GPT) [45] is one of the
first attempts to learn representations using Transformers. It encompasses only the de-
coder component of the Transformer architecture with some adjustments, discarding the
encoder part. Therefore, instead of having a source and a target sentence for the sequence
transduction model, a single sentence is given to the decoder. GPT’s objective function
targets at predicting the next word given a sequence of words, as a standard language
modeling goal. To comply with the standard language model task, while reading a to-
ken, GPT can only attend to previously seen tokens in the self-attention layers. This
setting can be limiting for encoding sentences, since understanding a word might require
processing the ones coming after it in the sentence.

Devlin et al. [14] addressed the unidirectional nature of GPTs by presenting an strat-
egy called BERT (Bidirectional Encoder Representations from Transformers) that, as the
name says, encodes sentences by looking them at both directions. BERT is also based on
the Transformer architecture but, contrary to the GPT, it is based on the encoder com-
ponent of that architecture. The essential improvement over GPT is that BERT provides
a solution for making Transformers bidirectional by applying masked language models,
which randomly masks some percentage of the input tokens, and the objective is to pre-
dict those masked tokens based on their context. Also, in [14], they use a next sentence
prediction task for predicting whether two text segments follow each other. Figure 2.1
presents a representation of the BERT model architecture. The language model receives
as input a pair of sentences separated by the special tokens [CLS] and [SEP], as shown in
the figure, and corrupted by the masks. The model seeks to reconstruct the sentences and
learn the relationship between the sentences. All those improvements have made BERT
to achieve state-of-the-art results in various NLP tasks when it was published.

Later, Liu et al. [31] proposed RoBERTa (Robustly optimized BERT approach),
achieving even better results than BERT. RoBERTa is an extension of BERT with some
modifications, such as: (i) training the model for a longer period of time, with bigger
batches, over more data, (ii) removing the next sentence prediction objective, (iii) train-
ing on longer sequences, and (iv) dynamically changing the masking pattern applied to
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Figure 2.1: BERT model architecture [14]

the training data.

Recently, Nguyen et al. [39] introduced BERTweet, an extension of RoBERTa trained
from scratch with tweets. BERTweet has also the same architecture as BERT, but it is
trained using the same RoBERTa pre-training procedure instead. BERTweet consumes
a corpus of 850M English tweets, which is a concatenation of two corpora. The first
corpus contains 845M English tweets from the Twitter Stream dataset and the second
one contains 5M English tweets related to the COVID-19 pandemic. In [39], the proposed
BERTweet model outperformed RoBERTa baselines in some tasks on tweets, including
sentiment analysis.

As far as we know, most studies in language modeling focus on designing new ef-
fective models in order to improve the predictive performance of distinct NLP tasks.
For example, Devlin et al. [14] and Liu et al. [31] have respectively introduced BERT
and RoBERTa, which achieved state-of-the-art results in many NLP tasks. Nevertheless,
they did not evaluate the performance of such methods on the sentiment classification of
tweets. Nguyen et al. [39], on the other hand, used only a unique generic collection of
tweets when evaluating their BERTweet strategy. In this context, we fulfill a robust eval-
uation of existing language models from distinct natures, including static representations,
Transformer-based autoencoder models, and fine-tuned models, by using a significant set
of 22 datasets of tweets from different domains and sizes. In the following chapters, we
present the assessment of such models.



Chapter 3

Experimental Methodology

This section presents the experimental methodology we followed in this work. We begin
by describing, in Section 3.1, the twenty-two benchmark datasets used to evaluate the
different language models we investigate in this study. In Section 3.2, we present the
experimental protocol we followed. Then, in Section 3.3, we describe the computational
experiments reported in Chapters 4, 5, 6, and 7.

3.1 Datasets

We used a large set of twenty-two English datasets [10] to assess the effectiveness of
the distinct language models described in Section 21. Table 3.1 summarizes the main
characteristics of these datasets, namely the abbreviation we use when reporting the
experimental results to save space (Abbrev. column), the domain they belong (Domain
column), number of positive tweets (#pos. column), proportion of positive tweets (%pos.
column), number of negative tweets (#neg. column), proportion of negative tweets (%neg.
column), and the total number of tweets (Total column).

Those datasets have been extensively used in the literature of Twitter sentiment anal-
ysis and we believe they provide a diverse scenario in evaluating embeddings of tweets in
the sentiment classification task, regarding a variety of domains, sizes, and class balance.
For example, while datasets SemEval13, SemEval16, SemEval17, and SemEval18 contain
generic tweets, other datasets, such as iphone6, movie, and archeage, contain tweets of
a particular domain. Also, the datasets vary a lot in size, with some of them contain-
ing only dozens of tweets, such as irony and sarcasm. We believe that this diverse and

1The datasets are publicly available at https://github.com/joncarv/air-datasets
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Table 3.1: Characteristics of the Twitter sentiment datasets ordered by size (Total column)

Dataset Abbrev. Domain #pos. %pos. #neg. %neg. Total

irony [25] iro Irony 22 34% 43 66% 65
sarcasm [25] sar Sarcasm 33 46% 38 54% 71
aisopos2 ntu Generic 159 57% 119 43% 278
SemEval-Fig3 S15 Irony/Metaphors 47 15% 274 85% 321
sentiment140 [24] stm Generic 182 51% 177 49% 359
person [13] per Towards a Person 312 71% 127 29% 439
hobbit [32] hob Movies 354 68% 168 32% 522
iphone6 [32] iph Products 371 70% 161 30% 532
movie [13] mov Movies 460 82% 101 18% 561
sanders4 san Business 570 47% 654 53% 1,224
Narr [38] Nar Generic 1,739 60% 488 40% 1,227
archeage [32] arc Games 724 42% 994 58% 1,718
SemEval18 [36] S18 Equity Evaluation Corpus 865 47% 994 53% 1,859
OMD [15] OMD Presidential Debate 710 37% 1,196 63% 1,906
HCR [50] HCR Health Care Reform 539 28% 1,369 72% 1,908
STS-gold [48] STS Generic 632 31% 1,402 69% 2,034
SentiStrength [52] SSt Generic 1,340 59% 949 41% 2,289
Target-dependent [18] Tar Celebrities 1,734 50% 1,733 50% 3,467
Vader [23] vad Generic 2,897 69% 1,299 31% 4,196
SemEval135 S13 Generic 3,183 73% 1,195 23% 4,378
SemEval17 [46] S17 Generic 2,375 37% 3,972 63% 6,347
SemEval16 [37] S16 Generic 8,893 73% 3,323 27% 12,216

large collection of datasets may help drawing more concise and robust conclusions on the
effectiveness of distinct language models in the sentiment analysis task.

3.2 Experimental Protocol

To assess the effect of different kinds of language models in the polarity classification
task, we follow the protocol of first extracting the features from the several vector-based
language representation mechanisms (BOW, static embeddings, contextualized embed-
dings, fine-tuned embeddings). Next, those features compose the input attribute space
for five distinct classifiers, namely Support Vector Machine (SVM), Logistic Regression
(LR), Random Forest (RF), XGBoost (XBG), and Multi-layer Perceptron (MLP). We
adopted scikit-learn’s6 implementations of those machine learning algorithms. Although
we have used the default parameters in most of the cases, it is important to mention that
we set the class balance parameter for SVM, LR, and RF (class_weight = balanced).
Also, for LR, we set the maximum number of iterations to 500 (max_iter = 500) and
the solver parameter to liblinear. Moreover, for MLP, we set the number of hidden layers
to 100. Table 3.2 shows a summary of the classification algorithms used in this study,
remarking their characteristics. We aim at determining which language models are the

6https://scikit-learn.org
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Table 3.2: Summary of the advantages and disadvantages of the classification algorithms
adopted in this study

Classifier Advantages Disadvantages

SVM

– Works well when there is a clear – Underperforms when the number of
margin of separation between classes features for each data point exceeds
– More effective in high dimensional spaces the number of training data samples
– Memory efficient

LR – Easy to interpretate – Non-linear problems cannot be solved
– Provides association directions – Needs that independent variables are i.i.d

– Linearly related to the log odds

RF – No feature scaling required – Long training period
– Handles non-linear parameters efficiently – Difficult to interpret

XGB – Highly scalable/parallelizable – More likely to overfit
– Quick to execute – Many parameters

MLP
– Learns non-linear and complex – Difficult to interpret parameters
relationships – Convergence of the weights can

be very slow

most effective ones in Twitter sentiment analysis by leveraging classifiers from distinct
natures, thus examining how they deal with the peculiarities of each evaluated model.
Furthermore, it is important to note that we do not aim at establishing the best clas-
sifier for the sentiment analysis task, which may require a specific study and additional
computational experiments.

Preprocessing is the first step in many text classification problems and the use of
appropriate techniques can reduce noise hence improving classification effectiveness [19].
As this manuscript’s main goal is to evaluate the performance of different models of tweet
representation, the preprocessing step is simple so that the focus is on the language models
and classifiers. Thus, for each tweet in a given dataset, we only replace URLs by the token
someurl, user mentions by the token someuser, and all tokens were lowercased.

In the experimental evaluation, the predictive performance of the sentiment classi-
fication is measured in terms of accuracy and F1-macro. Precisely, for each evaluated
dataset, the accuracy of the classification was computed as the ratio between the number
of correctly classified tweets and the total number of tweets, following a stratified ten-fold
cross-validation. F1-macro was computed as the unweighted average of the F1-score for
the positive and negative classes.

Moreover, all experiments were performed by using Tesla P100-SXM2 GPU within
Ubuntu operational system, running in a machine with Intel(R) Xeon(R) CPU E5-2698
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v4 processor.

3.3 Computational Experiments Details

In the next sections, we evaluate a significant collection of vector-based textual representa-
tions attempting to answer the research questions introduced in Chapter 1. Specifically,
we conduct a comparative study of vector-based language representation models from
distinct natures, including Bag of Words, as a classic baseline, static representations and
representations induced from Transformer-based autoencoder models, by fine-tuning or
not the intermediate masked language task, in order to acknowledge their effectiveness
in the polarity classification of English tweets. These language representation models are
incrementally evaluated throughout Chapters 4, 5, 6, and 7.

In Chapter 4, we begin by analyzing the predictive performance of the static rep-
resentations, which include 13 pretrained embeddings from the literature, as shown in
Table 3.3, as well as the classical BOW with TF-IDF representation schema. Regarding
the static embeddings described in Table 3.3, we have selected representations trained
on distinct kinds of texts (Corpus column) and built from different architectures (Ar-
chitecture column), from feedforward neural networks to Transformer-based ones. The
|D| and |V | columns refer to the dimension and vocabulary size of each pretrained em-
bedding, respectively. Although the most usual way of employing embeddings trained
from Transformer-based architectures is running the text trough the model to obtain con-
textualized representations, here we first investigate how these models behave when the
experimental protocol is the same as earlier embeddings models: pretrained embeddings
are collected from the embeddings layer and are the input of the classifiers.

Next, in Chapter 5, we present an evaluation of state-of-the-art Transformer-based
autoencoder models, including BERT [14], RoBERTa [31], and BERTweet [39]. In this
evaluation, for each assessed dataset, we represent their tweets as the average of the
concatenation of the last four layers for each token representation of the models. For the
sake of simplicity, the Transformer-based autoencoder models assessed in this study are
referred to hereafter as Transformer-based models.

Lastly, in Chapters 6 and 7, we evaluate the effectiveness of fine-tuning the aforemen-
tioned Transformer-based models regarding the intermediate masked-language task in two
different ways: (i) by using a huge collection of unlabeled, or non-sentiment, tweets, and
(ii) by using tweets from sentiment datasets.
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Table 3.3: Characteristics of the static pretrained embeddings ordered by the number of
dimensions

Embedding |D| |V | Architecture Corpus

SSWE [51] 50 137K Feed-forward network Twitter (10M tweets)
Emo2Vec [58] 100 1.2M Convolutional network Twitter (1.9M tweets)
GloVe-TWT [41] 200 1.2M log-bilinear model Twitter (27B tokens)
DeepMoji [20] 256 50K Recurrent network Twitter (1B tweets)
EWE [2] 300 183K Recurrent network Amazon reviews (200K reviews)
GloVe-WP [41] 300 400K log-bilinear model Wikipedia/Gigaword (6B tokens)
fastText [34] 300 1M Feed-forward network Wikipedia/web pages/news (16B tokens)
w2v-GN [35] 300 3M Feed-forward network Google news (100B tokens)
w2v-Edin [8] 400 259K Feed-forward network Twitter (10M tweets)
w2v-Araque [5] 500 57K Feed-forward network Twitter (1.28M tweets)
BERT [14] 768 30K Transformers BooksCorpus [59]/Eng. Wiki (3.3B words)
RoBERTa (RoB) [59] 768 50K Transformers 5 datasets [31] (161GB)
BERTweet (BTWT) [39] 768 64K Transformers Twitter (850M tweets)

In Chapter 6, regarding the non-sentiment fine-tuning approach, we adopted the gen-
eral purpose collection of unlabeled tweets from the Edinburgh corpus [44], which contains
97M tweets in multiple languages. Tweets written in languages other than English were
discarded, resulting in a final corpus of 6.7M English tweets, which was then used to
fine-tune BERT, RoBERTa, and BERTweet. In addition to the entire corpus of 6.7M
tweets, we used nine other samples with different sizes, varying from 500 to 1.5M tweets.
Specifically, we generated samples containing 500 (0.5K), 1K, 5K, 10K, 25K, 50K, 250K,
500K, and 1.5M non-sentiment tweets.

Conversely, in Chapter 7, we evaluated the sentiment fine-tuning procedure using pos-
itive and negative tweets from the twenty-two benchmark datasets described in Table 3.1.
For this purpose, we used each dataset once as the target dataset, while the others were
used as the source datasets. More clearly, for each assessed dataset, referred to as the tar-
get dataset, we explored three distinct strategies to fine-tune the masked-language model:
(i) by using only the tweets from the target sentiment dataset itself, (ii) by using the
tweets from the remaining 21 datasets, and (iii) by using the entire collection of tweets
from the 22 datasets, including the tweets from the target dataset.



Chapter 4

Evaluation of Static Text Represen-
tations

The computational experiments conducted in this section aim at answering the research
question RQ1, as follows:

RQ1. Which static embeddings are the most effective in the sentiment classification
of tweets?

We answer this question by assessing the predictive power of the 13 pretrained em-
beddings described in Table 3.3. These embeddings were generated from distinct neural
networks architectures, with different dimensions and vocabulary size, and trained on
various kinds of corpora. Recall that by static embeddings we mean that the features are
gathered from the embeddings layer working as a look-up table of tokens. In addition to
the pretrained embeddings, we evaluate the BoW model with the TF-IDF representation,
which is the most basic text representation used in Twitter sentiment analysis and text
classification tasks in general. For all tweet representation, we take the average of all
tokens representation of the tweet.

We begin by evaluating the predictive performance of the static representations for
each classification algorithm presented in Table 3.2. We report the computational results
in detail for SVM as an example of this evaluation (refer to Appendix A for the detailed
evaluation for each classifier). Tables 4.1 and 4.2 show the results achieved by using each
static representation to train an SVM classifier, in terms of classification accuracy and
unweighted F1-macro, respectively. The boldfaced values indicate the best results, and
the last three lines show the total number of wins for each static representation (#wins
row), as well as a ranking of the results (rank sums and position rows). Precisely, for
each dataset, we assign scores, from 1.0 to 14.0, to each assessed representation (each
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Table 4.1: Accuracies (%) achieved using the SVM classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 70.95 69.52 67.86 52.14 51.67 60.24 64.52 63.10 66.43 70.48 78.33 61.90 70.48 39.29
sar 68.75 68.75 61.61 68.75 67.32 70.54 54.64 71.79 68.93 87.32 73.04 67.50 56.07 57.68
ntu 79.15 88.47 73.04 70.54 73.70 83.47 74.40 77.71 93.15 93.53 81.28 91.73 89.91 81.98
S15 87.88 83.20 81.95 88.80 83.50 89.72 87.23 87.54 89.41 77.56 82.88 88.16 90.34 87.52
stm 85.22 83.02 83.56 83.01 83.56 81.06 81.59 82.71 87.74 80.75 85.24 81.34 84.94 71.59
per 83.37 76.75 76.77 74.69 73.56 73.32 80.18 74.93 79.03 72.44 76.09 76.98 80.40 69.23
hob 89.66 85.24 83.51 90.22 79.88 91.75 93.29 91.37 90.04 76.99 87.18 91.57 92.90 90.03
iph 78.00 75.57 76.13 72.17 73.88 79.33 80.07 80.46 78.01 76.49 81.57 78.56 80.08 76.51
mov 82.90 76.66 76.65 75.95 71.67 83.96 84.67 83.78 84.14 78.09 83.07 81.29 85.38 79.35
san 82.59 78.50 80.55 80.54 80.38 81.37 83.33 81.46 83.25 80.14 81.12 80.80 83.57 78.84
Nar 84.51 83.94 84.03 83.78 85.33 83.46 80.36 84.18 88.67 88.84 88.34 88.83 87.21 80.61
arc 85.45 83.59 85.16 84.05 85.27 86.61 87.54 85.16 86.67 79.63 83.35 86.09 87.43 84.87
S18 80.37 78.48 80.69 80.26 80.20 84.56 82.09 75.79 82.36 81.28 80.96 78.97 86.50 79.51
OMD 83.79 82.21 81.42 77.55 77.38 84.15 79.22 77.70 82.84 76.50 75.76 77.02 85.10 82.37
HCR 74.78 72.58 72.64 71.59 73.21 76.36 80.24 73.95 75.94 67.29 70.54 73.21 78.30 73.27
STS 85.94 83.19 85.74 84.71 84.90 86.97 83.97 86.92 87.02 88.99 86.19 88.69 87.86 83.09
SSt 77.98 75.10 76.98 77.76 77.24 78.51 73.48 76.28 79.56 79.77 84.93 79.64 80.21 73.00
Tar 83.67 81.92 83.82 83.18 82.81 83.44 82.35 81.40 83.39 79.18 82.98 82.90 84.42 80.36
Vad 88.25 84.51 87.01 86.44 85.96 87.51 83.27 85.30 87.73 85.70 85.94 86.77 89.32 81.82
S13 81.52 78.53 79.49 78.39 78.69 81.59 80.52 79.19 80.31 81.04 87.80 81.89 83.60 77.64
S17 88.61 86.34 88.29 87.22 87.71 88.47 87.95 84.53 87.96 81.63 85.60 85.47 89.03 86.01
S16 84.50 82.51 84.50 83.15 83.87 85.27 85.85 81.37 84.39 78.51 82.29 82.79 86.00 81.69
#wins 1 0 0 0 0 0 3 0 1 4 4 0 9 0
rank sums 116.5 221.0 183.5 212.0 216.0 117.0 155.0 185.5 95.0 200.5 154.0 152.5 56.5 245.0
position 3.0 13.0 8.0 11.0 12.0 4.0 7.0 9.0 2.0 10.0 6.0 5.0 1.0 14.0

column), in ascending order of accuracy (F1-macro), where the score 1.0 is assigned to
the representation with the highest accuracy (F1-macro). Thus, low score values indicate
better results. When two assessed representation has the same performance, we take an
average of their scores. If two assessed representations achieve the best performance, they
will receive a score of 1.5 ((1+2)/2). Finally, we sum up the assigned scores obtained
in each dataset for each assessed representation to calculate rank sums. With the rank
sum of each assessed representation, we rank the rank-sum result from the best (1) to the
worst (14), calculating the rank position.

As we can see in Tables 4.1 and 4.2, RoBERTa (RoBstatic column) achieved the best
performance in nine out of the 22 datasets in terms of accuracy, in 11 out of the 22 datasets
in terms of F1-macro, and was ranked first in the overall evaluation (position row). Re-
garding the number of wins (#wins row), we can note that Emo2Vec and SSWE achieved
the second best results, reaching the best performance in four out of the 22 datasets for
both accuracy and F1-macro. However, regarding the overall evaluation (position row),
w2v-Edin and w2v-GN were ranked among the top three best static representations along
with RoBERTa, in terms of accuracy. Regarding F1-macro, the top three best static
representations were RoBERTa, w2v-Edin and BERT (BERT-static column).

Tables 4.3 and 4.4 show a summary of the results by evaluating each static representa-
tion on the 22 datasets, for each classification algorithm. Each cell indicates the number
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Table 4.2: F1-macro scores (%) achieved by evaluating static representation using the
SVM classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 60.03 64.46 60.78 47.51 49.40 54.84 39.11 48.35 58.24 67.04 72.17 53.46 61.16 35.48
sar 66.00 67.75 60.22 67.55 63.32 69.29 51.68 69.97 66.70 86.93 70.72 64.72 50.28 52.69
ntu 78.79 87.81 72.46 70.19 73.02 83.15 71.55 76.72 92.99 93.29 80.99 91.53 89.42 81.22
S15 69.91 65.74 68.13 75.02 70.93 77.04 58.51 66.33 77.62 67.16 70.24 73.65 78.48 75.38
stm 85.18 82.94 83.46 82.96 83.51 80.96 81.46 82.60 87.67 80.71 85.18 81.28 84.87 71.50
per 80.58 74.31 74.86 73.03 71.80 70.85 72.27 71.59 76.97 70.46 74.16 74.46 77.30 67.53
hob 88.56 83.89 82.25 89.26 78.71 90.92 91.73 90.52 88.95 75.49 86.03 90.73 92.08 89.05
iph 75.96 74.31 74.96 71.00 72.63 77.34 71.55 77.92 76.18 74.93 79.97 76.62 78.00 74.70
mov 73.42 68.28 68.39 67.23 64.17 73.72 58.15 73.55 76.15 71.60 76.06 72.97 73.86 68.37
san 82.38 78.24 80.28 80.32 80.03 81.20 82.99 81.33 83.10 79.99 80.98 80.60 83.41 78.43
Nar 84.08 83.50 83.76 83.42 85.02 82.93 79.32 83.72 88.38 88.48 88.01 88.45 86.82 80.06
arc 85.14 83.27 84.84 83.80 84.87 86.37 87.11 84.90 86.34 78.88 82.84 85.61 87.19 84.56
S18 80.21 78.31 80.51 80.03 79.91 84.44 81.55 75.44 82.15 81.13 80.86 78.74 86.40 79.24
OMD 82.50 80.91 80.03 76.00 75.81 82.70 76.57 76.01 81.36 74.86 74.28 75.71 83.85 80.63
HCR 70.97 68.96 69.78 68.26 70.44 72.94 72.16 69.17 72.38 62.99 66.96 68.79 74.55 69.74
STS 84.12 81.29 83.99 82.93 83.26 84.99 79.56 84.95 85.20 87.62 84.49 87.08 85.95 80.67
SSt 77.69 74.90 76.69 77.59 77.07 78.20 72.49 75.89 79.27 79.49 84.68 79.36 79.83 72.74
Tar 83.67 81.91 83.81 83.18 82.80 83.43 82.33 81.39 83.38 79.13 82.96 82.87 84.42 80.32
Vad 86.68 82.62 85.33 84.82 84.23 85.76 78.48 83.38 86.14 84.08 84.28 85.14 87.80 79.66
S13 78.43 75.83 76.82 75.52 76.10 78.67 72.24 75.95 77.64 78.40 85.59 79.16 80.40 74.63
S17 88.02 85.67 87.69 86.61 87.05 87.75 86.9 83.52 87.30 80.51 84.89 84.69 88.37 85.13
S16 81.58 79.52 81.62 80.15 81.10 82.48 81.68 78.17 81.63 75.82 79.54 80.00 83.18 78.62
#wins 1 0 0 0 0 0 0 0 2 4 4 0 11 0
rank sums 123.5 215.0 168.0 206.0 202.0 111.0 212.0 198.0 89.0 193.0 143.5 153.0 56.0 240.0
position 4.0 13.0 7.0 11.0 10.0 3.0 12.0 9.0 2.0 8.0 5.0 6.0 1.0 14.0

of wins, the rank sums, and the rank position achieved by the related static representation
(each line) used to train the corresponding classifier (each column). The Total column
indicates the total number of wins, the total rank sums, and the total rank position, i.e.,
the sum of the rank positions presented in each cell for each assessed model. Moreover,
in the total column, we underline the top three best overall results in terms of total rank
position.

Regarding the overall evaluation (Total column), from Tables 4.3 and 4.4, we can
see that although Emo2Vec achieved the highest total number of wins (i.e., 27 wins in
terms of accuracy, and 29 wins in terms of F1-macro), w2v-Edin was ranked as the best
overall model, achieving the lowest total rank position for both accuracy (22.0) and F1-
macro (21.0). Nevertheless, considering each classifier (each column), we can note that
RoBERTa achieved the best performance when used to train LR, SVM, and MLP, for both
accuracy and F1-macro. Conversely, Emo2Vec achieved the best overall results when used
to train RF and XGB classifiers. Analyzing the overall results in terms of the total rank
position (Total column), we observe that Emo2Vec and w2v-GN, along with w2v-Edin,
are ranked as the top three best static representations. These results suggest that w2v-
Edin, Emo2Vec, and w2v-GN are well-suited static representations for Twitter sentiment
analysis.

In the previous evaluations, we analyzed the predictive performance achieved by each
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Table 4.3: Overview of the results (number of wins, rank sum, and rank position, re-
spectively) achieved by evaluating each static representation on the 22 datasets, for each
classification algorithm, in terms of accuracy

Representation LR SVM MLP RF XGB Total

w2v-GN 3/116.5/4.0 1/116.5/3.0 1/151.5/6.0 1/159.0/6.0 3/125.5/4.0 9/669.0/23.0
GloveWP 0/149.0/7.0 0/221.0/13.0 0/212.5/11.0 0/207.0/11.0 0/195.5/10.0 0/985.0/52.0
FastText 0/192.5/10.0 0/183.5/8.0 2/148.5/5.0 0/190.0/9.0 0/151.5/6.0 2/866.0/38.0
EWE 1/101.5/3.0 0/212.0/11.0 0/142.0/4.0 0/170.5/7.0 0/153.5/8.0 1/779.5/33.0
GloveTW 1/97.0/2.0 0/216.0/12.0 1/152.0/7.0 1/105.0/3.0 2/123.0/3.0 5/693.0/27.0
SSWE 4/152.0/8.0 4/200.5/10.0 1/234.0/14.0 6/79.5/2.0 4/153.0/7.0 19/819.0/41.0
TF-IDF 5/146.5/6.0 3/155.0/7.0 1/225.0/13.0 3/116.0/5.0 2/215.5/13.0 14/858.0/44.0
DeepMoji 0/174.0/9.0 0/152.5/5.0 1/167.5/8.0 0/171.0/8.0 1/144.0/5.0 2/809.0/35.0
w2v-Araque 0/204.0/11.0 0/185.5/9.0 0/221.0/12.0 0/202.5/10.0 0/214.5/12.0 0/1027.5/54.0
w2v-Edin 0/220.5/12.0 1/95.0/2.0 2/100.5/2.0 1/105.5/4.0 2/106.5/2.0 6/628.0/22.0

Emo2Vec 4/120.0/5.0 4/154.0/6.0 2/192.0/10.0 10/46.0/1.0 7/98.5/1.0 27/610.5/23.0
BERT-static 0/264.0/13.0 0/117.0/4.0 3/117.5/3.0 0/235.5/12.0 0/207.5/11.0 3/941.5/43.0
RoBERTa-static 5/82.5/1.0 9/56.5/1.0 8/74.0/1.0 0/244.0/13.0 1/167.5/9.0 23/624.5/25.0
BERTweet-static 0/290.0/14.0 0/245.0/14.0 0/172.0/9.0 0/278.5/14.0 0/254.0/14.0 0/1239.5/65.0

Table 4.4: Overview of the results (number of wins, rank sum, and rank position, re-
spectively) achieved by evaluating each static representation on the 22 datasets, for each
classification algorithm, in terms of F1-macro

Representation LR SVM MLP RF XGB Total

w2v-GN 3/113.0/4.0 1/123.5/4.0 1/146.5/5.0 1/161.5/6.0 3/129.0/4.0 9/673.5/23.0
GloveWP 0/152.0/6.5 0/215.0/13.0 1/213.0/11.0 0/208.0/11.0 0/195.5/10.0 1/983.5/51.5
FastText 0/189.0/10.0 0/168.0/7.0 1/149.5/6.0 0/200.0/9.0 0/153.0/7.0 1/859.5/39.0
EWE 1/102.5/3.0 0/206.0/11.0 0/144.0/4.0 0/165.5/7.0 0/160.5/8.0 1/778.5/33.0
GloveTW 1/96.0/2.0 0/202.0/10.0 1/152.0/7.0 0/109.5/5.0 1/123.0/3.0 3/682.5/27.0
SSWE 5/152.0/6.5 4/193.0/8.0 1/228.0/13.0 6/70.0/2.0 4/135.0/5.0 20/778.0/34.5
TF-IDF 3/166.0/8.0 0/212.0/12.0 1/243.0/14.0 4/106.5/4.0 3/211.5/11.0 11/939.0/49.0
DeepMoji 0/169.0/9.0 0/153.0/6.0 1/164.0/8.0 0/173.5/8.0 1/143.0/6.0 2/802.5/37.0
w2v-Araque 0/200.0/11.0 0/198.0/9.0 0/222.0/12.0 0/204.5/10.0 0/216.5/12.0 0/1041.0/54.0
w2v-Edin 0/221.0/12.0 2/89.0/2.0 2/95.0/2.0 0/105.0/3.0 2/110.0/2.0 6/620.0/21.0

Emo2Vec 4/117.5/5.0 4/143.5/5.0 2/191.0/10.0 11/42.0/1.0 8/81.5/1.0 29/575.5/22.0
BERT-static 0/261.0/13.0 0/111.0/3.0 3/112.5/3.0 0/234.0/12.0 0/217.5/13.0 3/936.0/44.0
RoBERTa-static 5/82.0/1.0 11/56.0/1.0 8/75.5/1.0 0/245.5/13.0 0/177.0/9.0 24/636.0/25.0
BERTweet-static 0/289.0/14.0 0/240.0/14.0 0/174.0/9.0 0/284.5/14.0 0/257.0/14.0 0/1244.5/65.0
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representation for one classification algorithm at a time, focusing on the individual con-
tribution of the text representations in the performance on the final task. Next, we
investigate the classification performance of the final sentiment analysis process, that is,
the combination of text representation and classifier. Considering that the final classifi-
cation is a combination of both representation and classifier, an appropriate choice of the
classification algorithm may affect the performance of a text representation. For this pur-
pose, we present an overall evaluation of all possible combinations of text representations
and classification algorithms, examining them as pairs {text representation, classifier}.
More clearly, we evaluate the classification effectiveness of 70 possible combinations of
text representations and classifiers (14 ⇥ 5) on the 22 datasets of tweets. Table 4.5
presents the top ten results in terms of the average rank position and 4.6 presents the
ten worst average rank position. Specifically, for each dataset, we calculate a rank of
the 70 combinations and then average the rank position of each combination over the 22
datasets. From Table 4.5, we can note that the best overall results were achieved by using
RoBERTa to train an SVM classifier for both accuracy and F1-macro. Also, w2v-Edin
+ SVM and RoBERTA + MLP appear in the top three results along with RoBERTa +

SVM. By Table 4.6, we can notice the high-frequency of RF in the pair Model-Classifier.

Tables 4.7 and 4.8 show a summary of the results for each text representation and
classifier, respectively, from best to worst, in terms of the average rank position. As
we can observe, Emo2Vec, RoBERTa, and w2v-Edin appear in the top three, being the
representations that achieved the best overall performances. Among the classifiers, we
can note that SVM and MLP seem to be good choices in Twitter sentiment analysis
regarding the usage of static text representations. Conversely, RF achieved the worst
overall performance across all evaluations.

In addition to the individual assessment of text representations and classifiers pre-
sented in Tables 4.7 and 4.8, Table 4.9 shows the best results achieved for each dataset.
We can see that RoBERTa achieved the highest accuracies in seven out of the 22 datasets,
and highest F1-macro scores in nine out of the 22 datasets. Furthermore, as highlighted in
Table 4.5, RoBERTA + SVM achieved the best performances in six out of the 22 datasets
in terms of accuracy, and in eight out of the 22 datasets in terms of F1-macro.

The top three static representations identified in the previous experiments, i.e., RoBERTa,
w2v-Edin, and Emo2Vec, are very different from each other. While w2v-Edin and Emo2Vec
were trained from scratch on tweets, RoBERTa was trained on traditional English texts.

The better performance of Emo2Vec and w2v-Edin can be caused by the inclusion of
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the sentiment analysis task in its training process. We also have other models built in
this same strategy and trained from scratch with tweets, such as Deepmoji and SSWE,
respectively, the seventh and eighth position by Table 4.7. The Emo2Vec better perfor-
mance may be a result of its multi-task learning approach. Considering another model
with the same architecture of w2v-Edin and also trained from scratch with tweets, the
differential performance between w2v-Edin and w2v-Araque (the fourteenth position by
Table 4.7) may lie in its volume of training data (w2v-Araque: 1.28M, and W2V-Edin:
10M) and the vocabulary size (w2v-Araque: 57K and w2v-Edin: 259K).

However, among these, RoBERTa is the only Transformer-based model, which holds
state-of-the-art performance in capturing context and semantics of terms from texts. Fur-
thermore, regarding w2v-Edin, although it was trained with a more straightforward ar-
chitecture (feedforward neural network) as compared to others, its training parameters
were optimized for the emotion detection task on tweets [8], which may have helped
determining the sentiment expressed in tweets.

Surprisingly, as shown in Table 4.7, BERTweet achieved the worst overall perfor-
mance among all assessed text representations, despite having been trained using the
same state-of-the-art Transformer-based architecture as RoBERTa while yet using tweets.
One possible explanation for this behavior is that BERTweet training procedure limits
the representation of its training tweets to 60 tokens only, while RoBERTa uses a limit of
512 tokens. For that reason, we believe that RoBERTa model is able to capture more se-
mantic information to the tokens from its training vocabulary as compared to BERTweet
when one collects the token representation from the embeddings layer.

Finally, regarding research question RQ1, we can highlight and suggest that: (i)
disregarding the classification algorithms, Emo2Vec, w2v-Edin, and RoBERTa seem to
be well-suited representations for determining the sentiment expressed in tweets, and (ii)
considering the combination of text representations and classifiers, RoBERTa + SVM
achieved the best overall performance, which may represent a good choice for Twitter
sentiment analysis in hardware-restricted environments, since the cost here is most due
to the classifier induction.
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Table 4.5: Top 10 average rank results achieved for each combination Model-Classifier

Representation Classifier
Accuracy

Representation Classifier
F1-macro

avg. rank pos. avg. rank pos.

RoBERTa-static SVM 9.32 RoBERTa-static SVM 8.59
RoBERTa-static MLP 11.57 W2V-Edin SVM 9.39
W2V-Edin SVM 14.50 RoBERTa-static MLP 12.52
W2V-Edin MLP 15.36 BERT-static SVM 14.70
BERT-static MLP 16.68 W2V-GN SVM 14.95
W2V-GN SVM 17.80 W2V-Edin MLP 15.55
BERT-static SVM 19.02 RoBERTa-static LR 16.02
Emo2Vec Xgb 21.23 BERT-static MLP 17.48
W2V-GN MLP 22.50 GloVe-TWT LR 17.91
fastText MLP 23.20 Emo2Vec SVM 18.05

Table 4.6: Tail 10 average rank results achieved for each combination Model-Classifier

Representation Classifier
Accuracy

Representation Classifier
F1-macro

avg. rank pos. avg. rank pos.

DeepMoji RF 51.41 EWE RF 56.86
BERTweet-static Xgb 52.14 DeepMoji RF 57.43
fastText RF 52.75 BERTweet-static LR 57.45
GloVe-WP RF 54.11 W2V-GN RF 58.02
W2V-Araque RF 54.68 fastText RF 60.36
BERT-static RF 57.18 W2V-Araque RF 61.00
RoBERTa-static RF 57.95 GloVe-WP RF 61.16
BERT-static LR 60.86 BERT-static RF 63.91
BERTweet-static RF 61.02 RoBERTa-static RF 64.11
BERTweet-static LR 66.09 BERTweet-static RF 67.32
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Table 4.7: Average Rank results achieved for each Embedding, evaluating static represen-
tations

Representation
Accuracy

Representation
F1-macro

avg. rank pos. avg. rank pos.

Emo2Vec 26.35 Emo2Vec 25.34
RoBERTa-static 27.93 RoBERTa-static 29.06
W2V-Edin 29.55 W2V-Edin 30.05
W2V-GN 30.05 W2V-GN 31.04
GloVe-TWT 32.00 GloVe-TWT 31.55
EWE 34.50 SSWE 33.40
SSWE 34.78 EWE 34.15
DeepMoji 35.93 DeepMoji 34.98
TF-IDF 36.21 fastText 36.34
fastText 37.00 BERT-static 39.38
BERT-static 39.43 GloVe-WP 39.43
GloVe-WP 40.25 TF-IDF 40.25
W2V-Araque 43.15 W2V-Araque 42.85
BERTweet-static 49.88 BERTweet-static 49.18

Table 4.8: Average Rank results achieved for each Classifier, evaluating static representa-
tions

Classifier
Accuracy

Classifier
F1-macro

avg. rank pos. avg. rank pos.

MLP 26.28 SVM 23.07
SVM 28.30 MLP 26.69
XGB 35.83 LR 31.27
LR 39.17 XGB 41.33
RF 47.92 RF 55.15
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Table 4.9: Best results achieved for each dataset

Dataset Accuracy Classifier Representation F1-macro Classifier Representation

iro 78.81 LR Emo2Vec 75.87 LR Emo2Vec
sar 87.50 LR SSWE 87.19 LR SSWE
ntu 95.30 MLP w2v-Edin 95.19 MLP w2v-Edin
S15 90.35 LR TF-IDF 78.48 SVM RoBERTa-static
stm 87.74 SVM w2v-Edin 87.67 SVM w2v-Edin
per 83.83 MLP w2v-GN 80.58 SVM w2v-GN
hob 94.82 MLP BERT-static 94.05 MLP BERT-static
iph 84.39 MLP GloVe-TWT 81.15 MLP GloVe-TWT
mov 88.78 XGB Emo2Vec 77.86 MLP fastText
san 84.71 MLP TF-IDF 84.56 MLP TF-IDF
Nar 89.00 LR SSWE 88.58 LR SSWE
arc 87.60 MLP RoBERTa-static 87.29 MLP RoBERTa-static
S18 86.50 SVM RoBERTa-static 86.40 SVM RoBERTa-static
OMD 85.10 SVM RoBERTa-static 83.85 SVM RoBERTa-static
HCR 80.24 SVM TF-IDF 74.55 SVM RoBERTa-static
STS 89.08 LR SSWE 87.70 LR SSWE
SST 85.06 LR Emo2Vec 84.77 LR Emo2Vec
Tar 84.42 SVM RoBERTa-static 84.42 SVM RoBERTa-static
Vad 89.32 SVM RoBERTa-static 87.80 SVM RoBERTa-static
S13 88.24 XGB Emo2Vec 85.59 LR Emo2Vec
S17 89.03 SVM RoBERTa-static 88.37 SVM RoBERTa-static
S16 86.00 SVM RoBERTa-static 83.18 SVM RoBERTa-static



Chapter 5

Evaluation of the Transformer-based
Text Representations

In this chapter, we address the research question RQ2, as follows:

RQ2.Considering state-of-the-art Transformer-based autoencoder models, which are
the most effective in the sentiment classification of tweets?

To answer that question, we conduct a thorough evaluation of the widely used BERT
and RoBERTa models and the BERT-based transformer trained from scratch with tweets,
namely, BERTweet. These models represent a set of the most recent Transformer-based
autoencoder language modeling techniques that have achieved state-of-the-art perfor-
mance in many NLP tasks. While BERT is the first Transformer-based autoenconder
model to appear in the literature, RoBERTa is an evolution of BERT with improved train-
ing methodology, due to the elimination of the Next Sentence Prediction task, which may
fit NLP tasks on tweets considering they are limited in size and self-contained in context.
Moreover, by evaluating BERTweet we analyze the performance of a Transformer-based
model trained from scratch on tweets.

In this set of experiments, we give an example tweet as input to the transformer
model and concatenate its last four layers to be the token representation and the tweet
representation is the average of the tokens representation. Next, those representations
collected from the whole dataset are given as input to the learning classifier method
together with the labels of the tweets. Finally, the learned classifier is employed to
perform the evaluation. In this way, we once again follow the feature extraction plus
classification strategy but now using the contextualized embedding from each tweet.

Table 5.1 presents the classification results when using the SVM classifier in terms
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Table 5.1: Accuracies and F1-macro scores (%) achieved by evaluating Transformer-
Autoencoder language models using the SVM classifier

Dataset
Accuracy F1-macro

RoBERTa BERT BERTweet RoBERTa BERT BERTweet

iro 46.67 71.43 69.52 31.0 66.51 61.22
sar 57.86 76.07 61.96 46.23 75.63 59.24
ntu 78.45 87.02 91.03 78.18 86.73 90.86

S15 86.31 90.03 91.59 73.33 77.58 82.06

stm 84.12 89.14 90.25 84.04 89.11 90.23

per 72.66 83.13 83.14 71.18 80.73 81.34

hob 69.15 83.52 83.13 68.62 81.76 81.53
iph 75.96 81.58 83.65 74.65 79.63 81.97

mov 74.35 84.14 86.47 68.61 77.58 80.55

san 83.66 85.54 89.87 83.43 85.47 89.81

Nar 89.73 91.6 95.35 89.48 91.34 95.22

arc 88.18 87.25 90.16 88.0 87.02 89.99

S18 86.28 87.25 88.97 86.07 87.16 88.87

OMD 82.16 85.62 87.36 81.2 84.71 86.4

HCR 76.67 78.61 79.82 72.89 74.75 76.22

STS 89.48 90.46 93.56 88.11 89.16 92.65

SSt 84.01 85.19 86.76 83.83 84.87 86.53

Tar 84.83 85.64 86.93 84.81 85.62 86.92

Vad 87.73 89.63 90.56 86.24 88.18 89.28

S13 84.26 86.62 88.15 82.0 84.21 86.13

S17 90.61 91.54 92.56 90.08 91.03 92.08

S16 87.62 88.77 90.72 85.5 86.59 88.86

#wins 0 3 19 0 3 19

rank sums 65.0 42.0 25.0 65.0 42.0 25.0

position 3.0 2.0 1.0 3.0 2.0 1.0

of accuracy and F1-macro, and Table 5.2 shows a summary of the complete evaluation
regarding all classifiers. As in previous chapter, to limit the number of tables in the
manuscript, we only report the computational results in detail for the LR classifier as
an example of this evaluation (refer to Appendix A for the detailed evaluation). From
Table 5.1, we can note that BERTweet achieved the best results in 18 out of the 22
datasets for both accuracy and F1-macro. Similarly, regarding all classifiers, Table 5.2
shows that BERTweet outperformed BERT and RoBERTa by a significant difference in
terms of the total number of wins for both accuracy and F1-macro.

Next, we present an overall analysis of using BERT, RoBERTa, and BERTweet models
to train each one of the five classification algorithms, examining them as pairs {language
model, classifier}. Table 5.3 presents the average rank position across all 15 possible
combinations (3 language models ⇥ 5 classification algorithms), from best to worst, as
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Table 5.2: Overview of the results (number of wins, rank sum, and rank position, respec-
tively) achieved by evaluating each Transformer-Autoencoder model on the 22 datasets,
for each classification algorithm

Embedding LR SVM MLP RF XGB Total

ACCURACY

BERT 2/45.0/2.0 0/65.0/3.0 3/47.0/2.0 4/46.5/2.0 3/43.5/2.0 12/247.0/11.0
RoBERTa 2/60.0/3.0 3/42.0/2.0 2/57.0/3.0 5/52.5/3.0 0/63.0/3.0 12/274.5/14.0
BERTweet 18/27.0/1.0 19/25.0/1.0 17/28.0/1.0 15/33.0/1.0 20/25.5/1.0 89/138.5/5.0

F1-MACRO

BERT 2/45.0/2.0 0/65.0/3.0 3/47.0/2.0 3/48.0/2.0 3/44.0/2.0 11/249.0/11.0
RoBERTa 2/60.0/3.0 3/42.0/2.0 2/57.0/3.0 5/52.5/3.0 0/61.0/3.0 12/272.5/14.0
BERTweet 18/27.0/1.0 19/25.0/1.0 17/28.0/1.0 15/31.5/1.0 19/27.0/1.0 88/138.5/5.0

explained in Chapter 4. We can observe that BERTweet combined with LR, MLP, and
SVM classifiers achieved the best overall performances for both accuracy and F1-macro.
Conversely, using RF to train the Transformer-based embeddings seems to harm the
performance of the models.

Tables 5.4 and 5.5 show a summary of the results for each model and classifier, respec-
tively, from best to worst, in terms of the average rank position. From Table 5.4, we can
see that BERTweet achieved the best overall classification effectiveness and was ranked
first. Also, RoBERTa and BERT achieved comparable overall performances for both ac-
curacy and F1-macro. Regarding the classifiers, as shown in Table 5.5, MLP and LR
achieved rather comparable performances and were ranked as the top two best classifiers
regarding the Transformer-based models, followed by SVM, XGB, and RF.

Regarding the results achieved for each dataset, Table 5.6 presents the best results
in terms of accuracy and F1-macro. As we can notice, BERTweet outperformed BERT
and RoBERTa in 17 out of the 22 datasets in terms of accuracy and in 18 out of the
22 datasets in terms of F1-macro. These results may confirm that Twitter sentiment
classification benefits most from contextualized language models trained from scratch on
Twitter data. Unlike BERT and RoBERTa, which were trained on traditional English
texts, BERTweet was trained on a huge amount of 850M tweets. This fact may have
helped BERTweet on learning the specificities of tweets, such as their morphological and
semantic characteristics.

For a better understanding of the results, we present an analysis of the difference
between the vocabulary embedded in the assessed models. For this purpose, Table 5.7
highlights the number of tokens shared between BERT, RoBERTa, and BERTweet. In
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Table 5.3: Average rank position results achieved for each combination Model-Classifier

Model Classifier
Accuracy

Model Classifier
F1-macro

avg. rank pos. avg. rank pos.

BERTweet LR 2.55 BERTweet LR 2.32
BERTweet MLP 2.68 BERTweet MLP 3.00
BERTweet SVM 4.16 BERTweet SVM 3.55
RoBERTa MLP 5.05 RoBERTa LR 4.98
RoBERTa LR 5.68 RoBERTa MLP 5.39
BERT MLP 6.23 BERT SVM 5.75
BERT SVM 6.86 BERT MLP 6.61
BERTweet Xgb 7.34 BERT LR 7.30
BERT LR 7.73 BERTweet Xgb 8.36
RoBERTa Xgb 9.57 RoBERTa Xgb 10.18
BERT Xgb 11.61 RoBERTa SVM 10.80
BERTweet RF 11.95 BERT Xgb 11.77
RoBERTa SVM 12.05 BERTweet RF 12.48
RoBERTa RF 12.98 RoBERTa RF 13.55
BERT RF 13.57 BERT RF 13.98

Table 5.4: Average rank position results achieved for each Embedding

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERTweet 5.74 BERTweet 5.94
RoBERTa 9.06 RoBERTa 8.98
BERT 9.20 BERT 9.08

Table 5.5: Average rank position results achieved for each Classifier

Classifier
Accuracy

Classifier
F1-macro

avg. rank pos. avg. rank pos.

MLP 4.65 LR 4.86
LR 5.32 MLP 5.00
SVM 7.69 SVM 6.70
XGB 9.51 XGB 10.11
RF 12.83 RF 13.33
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Table 5.6: Best results achieved for each dataset by evaluating the combination of language
model and classifier

Dataset Accuracy Classifier Model F1-macro Classifier Model

iro 80.48 LR BERT 73.08 LR BERT
sar 76.07 SVM BERT 75.63 SVM BERT
ntu 91.03 LR BERTweet 90.86 SVM BERTweet
S15 92.23 LR BERTweet 83.33 LR BERTweet
stm 90.79 LR RoBERTa 90.75 LR RoBERTa
per 87.69 LR BERTweet 85.29 LR BERTweet
hob 87.93 LR RoBERTa 86.29 LR RoBERTa
iph 87.59 MLP BERTweet 84.72 MLP BERTweet
mov 89.47 MLP RoBERTa 82.12 LR BERTweet
sand 91.17 MLP BERTweet 91.11 MLP BERTweet
Nar 95.60 MLP BERTweet 95.43 MLP BERTweet
arc 90.74 MLP BERTweet 90.51 MLP BERTweet
S18 88.97 SVM BERTweet 88.87 SVM BERTweet
OMD 87.36 SVM BERTweet 86.40 SVM BERTweet
HCR 81.55 XGB BERTweet 76.77 LR BERTweet
STS 93.90 LR BERTweet 92.98 LR BERTweet
SSt 86.76 SVM BERTweet 86.53 SVM BERTweet
Tar 86.93 SVM BERTweet 86.92 SVM BERTweet
Vad 90.80 LR BERTweet 89.38 LR BERTweet
S13 89.61 LR BERTweet 87.37 LR BERTweet
S17 92.56 SVM BERTweet 92.08 SVM BERTweet
S16 91.03 LR BERTweet 89.05 LR BERTweet



5 Evaluation of the Transformer-based Text Representations 31

Table 5.7: Percentage of vocabulary’s tokens of language model in the line that is also in
the vocabulary’s tokens of language model in the column.

BERT RoBERTa BERTweet

|V | = 30K |V | = 50K |V | = 64K

BERT � 61 62

RoBERTa 41 � 71

BERTweet 32 55 �

other words, we show the number of tokens (in %) embedded in the models presented
in each row that are also included in the models presented in each column, i.e., the in-
tersection between their vocabularies. For example, regarding BERT (first row), we can
see that 61% of its tokens can be found on RoBERTa (second column). The information
below each model name in the columns refers to their vocabulary size (number of em-
bedded tokens). It is possible to note that only 32% of the 64K tokens from BERTweet
vocabulary (i.e., about 20K tokens) can be found in BERT. It means that, when com-
pared to BERT, BERTweet contains about 44K (64� 20) specific tokens extracted from
tweets. Similarly, 55% of the tokens embedded in BERTweet (i.e., about 35K tokens)
can be found in RoBERTa, meaning that BERTweet holds about 29K (64 � 35) specific
tokens from tweets that are not included in RoBERTa. As a matter of fact, analyzing
the tokens embedded in BERTweet, we find some specific tokens, such as “Awww”, “ha-
haha”, “broo”, and other internet expressions and slang that social media users often use
to express themselves. While creating representations for these tokens is straightforward
in BERTweet, BERT and RoBERTa need to do some extras steps. Specifically, when
BERT and RoBERTa do not find a token in their vocabularies, they split the token into
subtokens until all of them are found. For example, the token “hahaha” would be split
into “ha”, “ha”, and “ha” to represent the original token. This analysis points out that
this particular vocabulary, combined with a language model that was trained focused on
learning the intrinsic structure of tweets, is the responsible for the BERTweet language
model’s best performance on tweet sentiment classification.

In this context, regarding RQ2, we believe BERTweet is an effective language mod-
eling technique in distinguishing the sentiment expressed in tweets. Also, regarding the
classifiers, in general, MLP and LR seem to be good choices when using Transformer-based
models.

Different from static representation, when we used only the embedding layer of the 13
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language models, in this chapter, we use the whole language model: the tweet goes from
the embedding layer up to the last layer to be transformed in a vector representation.
Attempting to understand the benefits from using the whole language model (embedding
layer and language model), we compare the predictive performance of Transformer-based
models evaluated in this chapter against all the static representations assessed in Chap-
ter 4. Table 5.8 presents the top ten results across all 85 possible combinations of models
and classifiers (17 models ⇥ 5 classification algorithms), and Table 5.9 shows an overall
evaluation of the models, from best to worst, in terms of the average rank position. In
addition, Table 5.10 shows the best results achieved for each dataset.

From Tables 5.8 and 5.9 we can notice that the Transformer-based BERTweet model
outperformed all other models and was ranked first in both evaluations. Also, Table 5.9
shows that the Transformed-based models achieved the best overall results against all
static models and were ranked as the top three best representations. Furthermore, from
Table 5.10, the Transformer-based BERTweet model achieved the best overall classifica-
tion effectiveness in 16 out of the 22 datasets in terms of accuracy and in 17 out of the
22 datasets in terms of F1-macro.

These results point out that learning language model parameters is essential in dis-
tinguishing the sentiment expressed in tweets. Static representations may lose a lot of
relevant information considering they ignore the diversity of meaning that words may
have depending on the context they appear. In contrast, Transformer-based models ben-
efit from learning how to encode the context information of a token in an embedding.
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Table 5.8: Top 10 average rank position results achieved for each combination Model-
Classifier by evaluating Transformer-Autoencoder model and static embeddings

Model Classifier
Accuracy

Model Classifier
F1-macro

avg. rank pos. avg. rank pos.

BERTweet LR 6.20 BERTweet LR 5.91
BERTweet MLP 6.32 BERTweet MLP 6.55
RoBERTa MLP 10.27 BERTweet SVM 9.14
BERT MLP 10.43 BERT SVM 10.00
BERTweet SVM 10.45 RoBERTa MLP 10.89
RoBERTa LR 12.23 RoBERTa LR 10.91
BERT LR 12.91 BERT MLP 10.91
BERT SVM 13.11 BERT LR 12.07
BERTweet XGB 17.02 RoBERTa-static SVM 17.32
RoBERTa-static SVM 18.66 W2V-Edin SVM 18.75

Table 5.9: Average rank position results achieved for each Embedding evaluating
Transformer-Autoencoder model and static embedding

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERTweet 14.84 BERTweet 17.38
BERT 20.86 BERT 23.42
RoBERTa 23.00 RoBERTa 24.94
Emo2Vec 37.49 Emo2Vec 36.09
RoBERTa-static 39.65 RoBERTa-static 40.37
W2V-Edin 41.50 W2V-Edin 41.54
W2V-GN 42.37 2V-GN 43.02
GloVe-TWT 44.64 GloVe-TWT 43.55
SSWE 46.75 SSWE 44.78
EWE 47.21 EWE 46.17
DeepMoji 48.35 DeepMoji 46.79
TF-IDF 49.09 fastText 48.95
fastText 50.18 GloVe-WP 51.55
BERT-static 52.30 BERT-static 51.67
GloVe-WP 53.01 TF-IDF 53.00
W2V-Araque 56.25 W2V-Araque 55.45
BERTweet-static 63.52 BERTweet-static 62.34
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Table 5.10: Best results achieved for each dataset by evaluating Transformer-Autoencoder
and static models

Dataset Accuracy Classifier Model F1-macro Classifier Model

iro 80.48 LR BERT 75.87 LR Emo2Vec
sar 87.50 LR SSWE 87.19 LR SSWE
ntu 95.30 MLP w2v-Edin 95.19 MLP w2v-Edin
S15 92.23 LR BERTweet 83.33 LR BERTweet
stm 90.79 LR RoBERTa 90.75 LR RoBERTa
per 87.69 LR BERTweet 85.29 LR BERTweet
hob 94.82 MLP BERT-static 94.05 MLP BERT-static
iph 87.59 MLP BERTweet 84.72 MLP BERTweet
mov 89.47 MLP RoBERTa 82.12 LR BERTweet
san 91.17 MLP BERTweet 91.11 MLP BERTweet
Nar 95.60 MLP BERTweet 95.43 MLP BERTweet
arc 90.74 MLP BERTweet 90.51 MLP BERTweet
S18 88.97 SVM BERTweet 88.87 SVM BERTweet
OMD 87.36 SVM BERTweet 86.40 SVM BERTweet
HCR 81.55 XGB BERTweet 76.77 LR BERTweet
STS 93.90 LR BERTweet 92.98 LR BERTweet
SST 86.76 SVM BERTweet 86.53 SVM BERTweet
Tar 86.93 SVM BERTweet 86.92 SVM BERTweet
Vad 90.80 LR BERTweet 89.38 LR BERTweet
S13 89.61 LR BERTweet 87.37 LR BERTweet
S17 92.56 SVM BERTweet 92.08 SVM BERTweet
S16 91.03 LR BERTweet 89.05 LR BERTweet



Chapter 6

Fine-tuning Transformer-based
Models Using a Large Collection of
English Tweets

In this chapter, we aim at performing computational experiments in order to answer the
research question RQ3, stated as follows:

RQ3. Can the fine-tuning of Transformer-based autoencoder models using a large set
of English tweets improve the sentiment classification performance?

To answer this research question, we evaluate the classification effectiveness of BERT,
RoBERTa, and BERTweet language models fine-tuned with tweets from a corpus of 6.7M
unlabeled, or generic unlabeled, tweets, as described in Chapter 3.3. Precisely, we use this
set of tweets to fine tuning the model weights using the intermediate masked language
model task as the training objective with the probability of 15% to (randomly) mask
tokens in the input. We also compare the fine-tuning results of such models against those
achieved by using the original weights of the Transformer-based models, as presented
in Chapter 5, in order to analyze whether the adjustment of the models via fine-tuning
improves the predictive performance of the sentiment classification.

In general, the performance of the fine-tuned models is very sensitive to different
random seeds [17]. For that reason, all the results presented in this chapter are the
average of three executions using different seeds (12,34,56) to account for the sensitivity
of the fine-tuning process regarding different seeds [16].

The first part of the experiments reported in this chapter consists in determining
whether the predictive performance of the Transformer-based models are affected by the
fine-tuning procedure using tweets from corpora of different sizes. For this purpose, in
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addition to the entire Edinburgh corpus of 6,657,700 tweets (around 6.7M tweets), we used
nine other smaller samples of tweets with different sizes, varying from 500 to 1.5M tweets.
Specifically, we generated samples containing 0.5K, 1K, 5K, 10K, 25K, 50K, 250K, 500K,
and 1.5M generic unlabeled tweets. In the fine-tuning processes, we performed three
training epochs, except for the tuned models with 6.7M tweets, when we used one epoch,
as there was a degradation of some models, such as BERTweet. In all fine-tuning process,
all layers are unfrozen. Regarding the batch size, we use the available hardware capacity
of eight instances per device. We used a learning rate of 5e-5 with a linear scheduler and
Adam optmizer with beta1 equal to 0.9, beta2, 0.999 ,and epsilon, 1e-8. We also use a
max gradient of 1 and with no weight decay.

Tables 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6 present the average classification accuracies and
F1-macro scores, respectively, when fine-tuning the Transformer-based models with the
different samples of tweets generated from the Edinburgh corpus. These results were
achieved by using the SVM classifier (refer to Appendix A for the detailed evaluation of
each classifier). Regarding the variance in performance across the different seeds, the mean
and maximum standard deviations are 0.05% and 0.5% for both accuracy and F1-macro,
respectively.

Note that BERT was most benefited when fine-tuned with samples of 250K tweets
(position row), for both accuracy and F1-macro. RoBERTa achieved the best overall
results when fine-tuned with samples of 1.5M and 250K tweets, in terms of accuracy and
F1-macro, respectively. On the other hand, BERTweet benefited from smaller samples,
achieving higher overall predictive performances when fine-tuned with samples of 25K and
5K tweets in terms of accuracy and F1-macro, respectively. This is an expected result as
BERTweet is already trained from scratch from tweets. As we are fine-tuning the language
model task, BERT and RoBERTa seems to require more samples to accommodate the
Twitter-based vocabulary into the weights’ model.

Next, we analyze the overall performance of the fine-tuned Transformer-based models
for each classification algorithm. Tables 6.7 and 6.8 summarize the results. Regarding
the variance across the different seeds, the mean and maximum standard deviations are
0.2% and 0.7% in terms of accuracy, and 0.26% and 0.98% in terms of F1-macro.

Interestingly, from Tables 6.7 and 6.8, we can note that when fine-tuning a language
model to fit a specific type of text, such as tweets, applying large corpora does not
guarantee better predictive performances. Specifically, the best overall results (Total
column) were achieved when fine-tuning BERT, RoBERTa, and BERTweet models with
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Table 6.1: Average classification accuracies (%) achieved by fine-tuning BERT with dif-
ferent samples of generic unlabeled tweets, using the SVM classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 73.81 74.05 72.38 66.19 76.43 73.57 76.67 61.19 62.07 56.74
sar 68.93 70.18 74.46 67.32 73.04 77.32 74.46 70.36 71.31 63.69
ntu 88.84 86.65 84.18 85.97 83.08 85.62 84.89 92.09 93.88 94.38

S15 90.35 89.4 90.02 90.64 88.78 90.03 87.22 87.23 85.96 87.13
stm 89.14 89.14 88.29 89.41 89.13 88.86 89.13 88.3 88.57 87.01
per 84.72 82.91 85.42 83.14 82.91 82.01 81.1 81.32 79.5 76.16
hob 83.9 85.24 86.39 86.78 86.18 84.85 84.29 83.72 84.15 80.89
iph 81.02 81.39 81.58 82.15 81.02 81.2 82.15 81.21 80.34 78.96
mov 82.72 83.43 84.49 85.2 84.5 85.03 85.91 83.26 82.41 82.71
san 86.19 86.19 85.87 87.01 86.27 87.42 87.66 87.0 86.98 87.6
Nar 91.93 91.44 92.42 91.52 91.6 91.28 92.5 92.83 93.67 93.5
arc 86.85 88.07 88.94 88.19 87.49 88.01 87.95 89.58 88.13 88.5
S18 87.25 86.82 86.45 86.45 86.5 86.61 86.5 86.82 87.09 86.0
OMD 85.68 85.99 85.26 85.15 84.73 84.31 85.79 84.84 85.43 84.58
HCR 78.56 78.82 78.4 78.35 78.35 79.5 78.82 77.98 77.32 76.56
STS 90.36 90.51 90.41 90.81 90.22 91.05 91.79 92.23 91.89 91.29
SSt 84.58 85.06 85.37 84.58 84.01 83.79 84.97 84.8 84.84 84.43
Tar 85.67 85.67 85.93 86.01 85.9 85.84 85.9 85.69 85.69 85.4
Vad 89.75 89.66 89.63 89.44 89.56 90.3 90.28 89.51 90.5 90.0
S13 86.52 86.66 87.64 87.05 87.39 86.96 87.23 86.98 87.07 86.32
S17 91.08 91.11 91.05 91.15 90.61 90.92 90.63 90.18 89.85 89.56
S16 88.45 88.34 89.24 88.83 88.83 88.82 88.9 88.29 88.01 87.93
#wins 1 1 4 5 0 2 3 2 2 1
rank sums 125.5 112.0 101.0 101.5 132.5 117.0 88.0 132.0 129.5 171.0
position 6.0 4.0 2.0 3.0 9.0 5.0 1.0 8.0 7.0 10.0
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Table 6.2: Average classification accuracies (%) achieved by fine-tuning RoBERTa with
different samples of generic unlabeled tweets, using the SVM classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 46.67 46.67 46.67 48.1 46.67 46.67 46.67 46.67 45.24 46.74
sar 60.71 59.29 65.0 57.86 62.14 60.71 65.0 62.14 63.57 64.7
ntu 81.69 81.31 79.15 81.34 82.06 85.63 87.08 90.67 91.75 90.41
S15 83.18 83.5 84.75 86.93 84.75 85.38 86.93 88.79 87.24 87.03
stm 85.23 86.35 89.7 85.24 87.75 88.04 88.03 87.48 90.81 86.35
per 69.92 69.68 70.38 68.33 71.74 71.28 72.66 74.26 76.32 77.0

hob 73.76 71.44 73.56 74.32 72.41 77.4 77.38 77.2 77.97 77.82
iph 78.41 78.41 77.46 78.96 78.78 79.71 79.89 80.09 79.15 79.02
mov 71.14 76.84 81.64 80.76 78.44 78.09 79.52 80.4 81.12 81.05
san 84.39 84.23 85.21 85.78 85.13 86.27 85.86 87.17 88.23 86.16
Nar 91.04 92.18 92.58 92.25 91.2 92.58 92.74 92.83 93.07 93.88

arc 88.88 88.53 89.0 87.72 88.48 89.23 88.59 89.64 89.47 88.57
S18 87.9 87.15 87.15 87.09 86.61 87.52 87.14 87.47 86.61 86.62
OMD 82.79 83.58 83.63 84.0 83.53 83.47 83.79 82.27 82.74 82.55
HCR 76.52 77.25 77.2 76.73 76.1 77.78 76.41 77.77 75.94 77.74
STS 89.62 90.71 91.39 90.95 91.84 92.08 92.08 92.52 92.92 92.0
SSt 84.67 86.28 85.93 85.98 85.67 86.06 85.8 86.02 86.02 85.22
Tar 85.43 85.67 86.36 85.78 85.95 85.41 85.52 85.23 85.98 84.33
Vad 88.25 89.56 89.82 89.73 89.3 89.63 89.85 90.4 91.11 89.87
S13 85.59 85.54 86.18 86.57 85.68 85.93 86.23 85.54 87.03 85.89
S17 90.77 91.0 91.37 91.29 91.07 91.15 91.02 90.86 90.63 89.68
S16 88.37 88.4 88.85 89.01 88.96 88.26 88.74 88.96 89.01 87.95
#wins 1 1 3 2 0 1 0 3 7 2
rank sums 174.0 161.0 111.0 124.0 148.0 105.5 101.5 92.0 78.5 114.5
position 10.0 9.0 5.0 7.0 8.0 4.0 3.0 2.0 1.0 6.0
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Table 6.3: Average classification accuracies (%) achieved by fine-tuning BERTweet with
different samples of generic unlabeled tweets, using the SVM classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 68.81 68.1 71.19 73.81 74.76 79.76 71.67 70.48 67.78 66.43
sar 64.82 69.11 67.68 73.21 73.21 68.93 70.36 70.36 72.26 71.79
ntu 89.95 91.4 91.03 92.82 93.17 92.09 93.16 93.16 94.38 92.45
S15 90.34 92.22 90.04 92.53 92.23 91.6 90.03 90.04 89.4 89.09
stm 90.52 91.92 93.04 91.36 91.07 91.9 92.19 93.02 91.45 90.52
per 84.28 84.04 85.64 86.77 86.79 85.41 86.1 85.87 83.14 81.32
hob 85.06 85.25 86.78 86.78 86.78 87.92 86.6 86.77 87.03 86.21
iph 84.04 83.84 83.47 85.35 84.78 84.22 83.47 85.55 82.22 82.34
mov 85.93 87.71 88.6 88.95 88.42 89.49 88.78 88.42 87.3 87.89
san 90.03 90.69 91.42 90.93 91.18 91.67 91.01 91.01 89.46 90.03
Nar 95.93 96.33 96.58 96.41 96.58 96.41 96.58 95.92 95.71 94.87
arc 90.05 90.39 90.63 90.34 91.09 90.45 91.21 90.98 91.12 90.74
S18 89.99 89.78 90.26 90.48 89.89 89.83 89.94 89.03 88.26 87.9
OMD 88.09 88.93 88.99 87.67 88.25 88.51 88.88 88.09 87.84 86.88
HCR 80.24 80.5 81.23 81.18 81.24 80.6 80.61 78.98 78.25 78.09
STS 94.35 95.23 95.08 94.99 94.84 95.13 94.49 94.15 93.97 94.3
SSt 87.64 88.16 88.73 89.6 88.99 88.03 87.51 87.59 86.98 87.68
Tar 87.02 87.83 87.68 87.54 87.68 87.6 87.28 86.79 86.38 85.84
Vad 90.8 92.42 92.56 92.66 92.23 92.59 92.71 92.18 92.11 92.09
S13 89.4 90.0 90.25 89.84 90.0 88.88 89.38 88.85 88.76 88.44
S17 92.75 93.37 93.35 93.49 93.4 92.97 92.75 92.01 91.31 91.16
S16 90.7 91.38 91.98 91.35 91.54 91.36 91.18 90.6 90.38 89.55
#wins 0 2 4 4 2 4 2 1 1 0
rank sums 165.0 116.5 84.5 82.0 70.0 94.5 103.5 135.0 169.0 190.0
position 8.0 6.0 3.0 2.0 1.0 4.0 5.0 7.0 9.0 10.0
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Table 6.4: Average F1-macro scores (%) achieved by fine-tuning BERT with different
samples of unlabeled tweets, using the SVM classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 71.8 59.35 57.57 58.71 55.4 58.55 62.92 49.72 55.0 49.95
sar 56.06 49.58 59.97 58.0 64.49 68.15 57.05 56.54 66.52 57.29
ntu 82.27 83.73 80.3 80.78 80.5 80.67 83.24 90.02 86.99 89.62
S15 65.69 62.12 60.62 65.57 63.82 64.1 64.6 61.86 62.76 66.05

stm 84.92 83.48 84.66 85.18 81.3 83.72 84.61 83.17 82.8 86.29

per 71.38 77.86 76.33 75.95 76.83 75.75 76.14 72.98 71.0 71.03
hob 79.14 80.33 80.63 78.85 83.11 80.32 81.6 80.79 82.09 81.83
iph 78.71 80.53 79.09 78.76 81.91 79.35 76.93 79.86 77.63 74.78
mov 60.89 60.98 64.29 60.29 57.75 58.49 63.56 66.66 60.49 67.71

san 85.75 85.4 84.66 85.03 83.38 85.66 86.45 85.5 85.44 85.46
Nar 88.81 88.71 88.52 89.31 88.58 88.79 89.79 90.29 90.81 91.36

arc 88.63 87.78 87.81 87.74 88.51 87.85 88.48 89.52 88.76 88.76
S18 83.83 84.66 83.8 83.52 83.42 83.31 83.04 83.57 83.31 84.03
OMD 82.77 82.03 80.68 79.83 81.66 79.66 82.59 81.9 81.81 80.56
HCR 72.62 72.99 71.85 72.68 72.31 71.46 72.48 71.03 69.89 68.45
STS 84.29 85.24 84.42 85.58 84.63 85.35 87.2 87.12 86.67 87.81

SSt 82.87 82.27 82.04 81.74 80.77 82.1 82.94 81.86 82.62 81.13
Tar 83.18 83.96 84.22 84.19 83.0 83.9 83.64 83.32 83.59 83.71
Vad 85.11 84.66 85.11 85.59 84.7 85.31 85.3 85.47 85.83 85.85

S13 82.45 82.15 82.67 80.76 81.98 82.26 82.84 82.43 82.35 81.75
S17 89.12 88.76 88.98 88.47 88.66 88.69 88.71 87.77 87.73 87.68
S16 84.65 84.86 84.59 85.0 84.64 84.63 84.64 84.08 83.75 83.64
#wins 3 3 1 1 2 1 3 2 0 6
rank sums 105.5 112.0 129.5 126.0 146.5 131.5 95.5 120.0 128.0 115.5
position 2.0 3.0 8.0 6.0 10.0 9.0 1.0 5.0 7.0 4.0
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Table 6.5: Average F1-macro scores (%) achieved by fine-tuning RoBERTa with different
samples of unlabeled tweets, using the SVM classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 54.77 61.69 47.99 58.14 57.59 67.22 42.02 54.39 53.42 54.93
sar 53.42 56.62 59.94 73.89 64.55 54.6 68.13 49.36 50.89 67.67
ntu 83.63 83.39 75.86 81.64 79.9 84.13 88.92 88.63 91.87 87.65
S15 67.46 63.75 74.11 66.24 62.03 73.59 67.08 69.26 61.61 66.92
stm 86.32 86.0 85.21 85.77 87.43 86.61 86.58 84.32 83.77 83.63
per 72.78 73.45 75.6 75.1 76.31 74.48 77.13 74.92 74.8 76.17
hob 76.79 79.35 77.42 76.73 80.1 79.58 80.82 80.22 78.26 82.06

iph 77.2 79.94 80.96 82.27 81.08 79.67 75.66 79.93 78.21 78.86
mov 64.06 70.45 73.38 66.84 68.1 66.22 69.41 72.07 68.51 68.91
san 86.56 87.22 86.8 88.14 86.99 87.8 86.24 87.12 87.73 86.33
Nar 89.57 91.0 92.06 90.61 90.4 91.92 91.4 91.76 91.21 91.42
arc 89.53 88.65 89.29 89.06 89.84 89.56 90.22 89.88 88.94 88.84
S18 85.46 87.06 85.68 86.27 86.86 86.33 86.7 85.68 84.43 84.61
OMD 83.23 83.07 84.4 83.69 83.75 82.83 83.73 81.68 80.76 81.73
HCR 71.23 74.87 72.89 72.13 72.09 73.59 72.17 73.06 71.71 70.58
STS 87.5 88.8 88.7 88.46 88.84 89.61 89.71 89.14 88.95 88.6
SSt 83.38 83.23 84.71 83.78 84.34 84.21 84.43 84.5 84.8 82.36
Tar 83.84 84.13 85.14 84.47 85.0 84.51 83.78 83.49 84.79 83.27
Vad 85.85 85.72 86.89 86.75 86.44 87.19 88.04 88.13 87.98 86.75
S13 82.03 82.75 83.57 83.82 83.63 83.73 84.38 83.54 83.73 82.31
S17 89.72 89.98 90.07 90.17 89.69 90.2 90.21 90.01 89.31 87.6
S16 85.29 85.99 86.44 86.27 86.59 86.3 86.31 86.06 86.4 84.46
#wins 0 2 5 3 2 1 5 1 2 1
rank sums 171.0 132.0 100.5 118.5 105.0 92.5 87.0 110.5 136.5 156.5
position 10.0 7.0 3.0 6.0 4.0 2.0 1.0 5.0 8.0 9.0
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Table 6.6: Average F1-macro scores (%) achieved by fine-tuning BERTweet with different
samples of unlabeled tweets, using the SVM classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 54.36 61.9 53.1 49.09 51.4 53.28 62.24 66.75 53.0 42.85
sar 49.87 53.96 59.51 53.78 62.33 62.79 54.39 55.69 56.94 55.57
ntu 83.16 89.22 85.29 87.38 85.11 87.31 85.77 88.22 87.64 86.64
S15 71.56 77.95 73.8 69.48 73.47 70.08 63.77 63.21 61.07 58.37
stm 85.2 85.99 86.81 85.72 85.73 88.27 85.71 87.71 87.42 86.28
per 82.43 81.37 77.92 81.86 78.86 77.46 77.25 78.55 77.76 74.77
hob 77.56 84.41 81.24 81.87 80.0 81.5 79.35 80.79 80.85 78.1
iph 81.95 82.07 84.28 80.85 80.71 80.71 81.08 82.04 78.76 81.09
mov 71.91 73.18 76.03 75.34 73.91 78.82 70.84 72.74 73.3 70.2
san 88.62 89.79 90.55 90.87 88.88 88.46 88.7 88.29 88.19 86.71
Nar 91.39 94.35 93.48 93.12 92.72 92.78 92.88 92.83 92.26 91.6
arc 89.52 90.66 91.59 90.76 90.81 90.04 90.35 90.4 89.33 90.62
S18 87.25 88.09 88.26 87.55 87.99 87.03 87.35 85.32 85.07 84.41
OMD 83.01 83.39 85.56 84.26 83.75 83.14 85.0 83.56 82.72 82.69
HCR 73.08 72.69 74.28 74.31 73.16 73.97 74.0 73.57 70.16 69.09
STS 89.3 90.18 90.85 90.69 90.47 89.82 89.35 89.98 88.91 88.98
SSt 84.74 85.88 86.41 86.7 84.54 84.48 83.79 85.15 83.59 84.18
Tar 85.13 85.54 85.8 85.31 85.34 84.3 84.21 84.64 83.67 82.8
Vad 85.68 87.98 88.26 87.9 87.32 87.14 87.89 87.45 87.55 86.75
S13 83.74 84.73 85.43 84.33 83.94 83.48 83.49 83.42 82.51 81.36
S17 90.76 91.27 91.79 91.77 91.71 90.88 90.74 90.09 88.76 88.9
S16 87.16 88.07 88.43 88.06 87.94 87.26 87.4 86.3 86.11 85.17
#wins 1 4 10 3 0 3 0 1 0 0
rank sums 153.0 74.0 53.0 83.0 108.5 122.5 136.0 121.0 169.0 190.0
position 8.0 2.0 1.0 3.0 4.0 6.0 7.0 5.0 9.0 10.0
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Table 6.7: Overview of the results (number of wins, rank sum, and rank position, respec-
tively) achieved by each classifier when fine-tuning the Transformer-Autoencoder models
with different samples of unlabeled tweets in terms of accuracy

ACCURACY

Sample LR SVM MLP RF XGB Total

BERT

0.5k 3/127.5/5.5 1/125.5/6.0 1/129.0/7.0 1/153.0/10.0 5/108.0/2.0 11/643.0/30.5
1k 0/134.0/7.0 1/112.0/4.0 1/139.5/8.0 3/114.0/3.5 2/113.5/3.0 7/613.0/25.5
5k 3/115.0/4.0 4/101.0/2.0 3/114.5/5.0 1/120.5/6.0 1/128.0/8.0 12/579.0/25.0
10k 0/143.5/9.0 5/101.5/3.0 1/142.0/10.0 4/119.0/5.0 2/125.5/7.0 12/631.5/34.0
25k 0/136.0/8.0 0/132.5/9.0 0/141.0/9.0 1/134.0/8.0 2/146.0/10.0 3/689.5/44.0
50k 0/146.0/10.0 2/117.0/5.0 2/121.5/6.0 3/113.5/2.0 0/131.5/9.0 7/629.5/32.0
250k 0/127.5/5.5 3/88.0/1.0 3/101.5/1.0 2/73.5/1.0 2/97.5/1.0 10/488.0/9.5

500k 1/110.5/3.0 2/132.0/8.0 2/108.0/4.0 1/114.0/3.5 2/119.5/5.0 8/584.0/23.5
1.5M 4/96.0/2.0 2/129.5/7.0 3/107.0/3.0 1/131.5/7.0 1/122.0/6.0 11/586.0/25.0
6.7M 10/74.0/1.0 1/171.0/10.0 6/106.0/2.0 4/137.0/9.0 5/118.5/4.0 26/606.5/26.0

RoBERTa

0.5k 1/140.0/9.0 1/174.0/10.0 0/165.5/9.0 0/171.5/9.0 0/173.0/10.0 2/824.0/47.0
1k 2/137.0/8.0 1/161.0/9.0 2/143.0/8.0 0/165.0/8.0 2/130.5/7.0 7/736.5/40.0
5k 3/92.0/1.0 3/111.0/5.0 0/99.5/3.5 4/104.0/5.0 4/100.0/4.0 14/506.5/18.5
10k 1/125.0/7.0 2/124.0/7.0 4/111.5/6.0 1/120.0/7.0 3/118.5/6.0 11/599.0/33.0
25k 4/103.0/3.0 0/148.0/8.0 2/107.5/5.0 1/104.5/6.0 2/98.0/3.0 9/561.0/25.0
50k 4/100.5/2.0 1/105.5/4.0 3/85.5/1.0 4/85.0/2.0 1/97.0/2.0 13/473.5/11.0

250k 0/124.0/6.0 0/101.5/3.0 3/131.5/7.0 8/77.5/1.0 4/88.5/1.0 15/523.0/18.0
500k 3/113.5/5.0 3/92.0/2.0 2/99.5/3.5 3/100.5/4.0 2/109.5/5.0 13/515.0/19.5
1.5M 3/109.0/4.0 7/78.5/1.0 3/91.5/2.0 1/98.5/3.0 2/136.0/8.0 16/513.5/18.0
6.7M 0/166.0/10.0 2/114.5/6.0 2/175.0/10.0 0/183.5/10.0 1/159.0/9.0 5/798.0/45.0

BERTweet

0.5k 1/143.0/7.0 0/165.0/8.0 0/167.0/9.0 0/174.5/8.0 0/152.5/8.0 1/802.0/40.0
1k 5/78.5/2.0 2/116.5/6.0 3/95.0/4.0 0/99.0/4.0 4/76.5/2.0 14/465.5/18.0
5k 5/69.5/1.0 4/84.5/3.0 3/75.5/1.0 10/42.5/1.0 10/56.0/1.0 32/328.0/7.0

10k 2/92.0/3.0 4/82.0/2.0 4/95.5/5.0 2/72.5/3.0 4/81.0/3.0 16/423.0/16.0
25k 1/95.0/4.0 2/70.0/1.0 3/78.5/2.0 5/71.0/2.0 0/112.0/4.0 11/426.5/13.0
50k 2/110.0/5.0 4/94.5/4.0 6/91.0/3.0 2/117.0/5.5 3/119.5/6.0 17/532.0/23.5
250k 2/114.5/6.0 2/103.5/5.0 0/128.0/6.0 0/117.0/5.5 0/138.0/7.0 4/601.0/29.5
500k 0/162.0/8.0 1/135.0/7.0 0/150.0/7.0 2/138.0/7.0 1/117.0/5.0 4/702.0/34.0
1.5M 0/172.5/9.0 1/169.0/9.0 0/174.0/10.0 0/176.0/9.0 0/171.0/9.0 1/862.5/46.0
6.7M 1/173.0/10.0 0/190.0/10.0 3/155.5/8.0 0/202.5/10.0 0/186.5/10.0 4/907.5/48.0

samples of 250K, 50K, and 5K tweets, respectively, for both accuracy and F1-macro.

Regarding the results achieved for each dataset, Table 6.9 shows the best predictive
performances in terms of accuracy and F1-macro. We can see that BERTweet achieved the
best results for most datasets when fine-tuned with fewer number of tweets. More specif-
ically, BERTweet outperformed the other models when fine-tuned with samples varying
from 1K to 25K tweets in 14 out of the 22 datasets for both accuracy and F1-macro.

As in previous chapters, we also present an overall evaluation of combining all fine-
tuned models and classifiers across the 22 datasets, in terms of the average rank position.
Table 6.10 shows the top ten results among all 150 possible combinations (3 models ⇥ 10
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Table 6.8: Overview of the results (number of wins, rank sum, and rank position, respec-
tively) achieved by each classifier when fine-tuning the Transformer-Autoencoder models
with different samples of unlabeled tweets in terms of F1-macro

F1-MACRO

Sample LR SVM MLP RF XGB Total

BERT

0.5k 3/128.0/6.0 1/127.0/6.0 1/132.0/7.0 0/155.0/10.0 3/105.5/2.0 8/647.5/31.0
1k 1/140.5/8.0 1/113.0/4.0 1/141.0/9.0 3/113.5/3.0 3/112.0/3.0 9/620.0/27.0
5k 2/120.0/4.0 4/99.5/2.0 3/115.5/5.0 1/118.5/5.0 1/129.5/8.0 11/583.0/24.0
10k 0/144.5/9.0 5/104.5/3.0 1/146.5/10.0 1/124.5/6.0 1/126.0/6.0 8/646.0/34.0
25k 0/140.0/7.0 0/131.0/8.0 0/139.0/8.0 1/136.5/8.0 2/146.5/10.0 3/693.0/41.0
50k 0/148.5/10.0 2/115.0/5.0 2/119.0/6.0 4/106.0/2.0 1/131.5/9.0 9/620.0/32.0
250k 0/122.0/5.0 4/92.0/1.0 3/96.5/1.0 6/68.0/1.0 3/95.5/1.0 16/474.0/9.0

500k 1/108.0/3.0 2/132.0/9.0 2/113.5/4.0 1/116.0/4.0 2/120.0/5.0 8/589.5/25.0
1.5M 4/87.5/2.0 2/129.5/7.0 3/104.0/3.0 1/135.0/7.0 0/128.0/7.0 10/584.0/26.0
6.7M 11/71.0/1.0 1/166.5/10.0 6/103.0/2.0 3/137.0/9.0 6/115.5/4.0 27/593.0/26.0

RoBERTa

0.5k 1/140.0/9.0 1/175.0/10.0 0/163.0/9.0 0/170.5/9.0 0/171.0/10.0 2/819.5/47.0
1k 3/132.5/8.0 1/160.0/9.0 2/142.0/8.0 0/165.0/8.0 2/132.0/7.0 8/731.5/40.0
5k 3/90.0/1.0 3/114.0/5.0 0/102.5/3.0 4/105.5/5.0 5/100.5/3.0 15/512.5/17.0
10k 1/125.5/6.0 1/129.0/7.0 3/112.0/6.0 1/118.5/7.0 3/118.5/6.0 9/603.5/32.0
25k 3/103.5/3.0 0/151.0/8.0 2/109.0/5.0 1/108.5/6.0 2/105.0/4.0 8/577.0/26.0
50k 4/99.0/2.0 1/106.5/4.0 4/85.5/1.0 4/83.0/2.0 1/92.5/2.0 14/466.5/11.0

250k 0/128.0/7.0 0/98.5/3.0 3/126.0/7.0 8/71.0/1.0 5/87.0/1.0 16/510.5/19.0
500k 2/115.0/5.0 3/88.0/2.0 1/104.0/4.0 4/102.0/4.0 1/110.5/5.0 11/519.5/20.0
1.5M 4/108.5/4.0 8/72.0/1.0 4/87.0/2.0 0/101.0/3.0 2/136.5/8.0 18/505.0/18.0
6.7M 0/168.0/10.0 4/116.0/6.0 2/179.0/10.0 0/185.0/10.0 1/156.5/9.0 7/804.5/45.0

BERTweet

0.5k 1/142.0/7.0 0/166.5/8.0 0/169.0/9.0 0/174.0/8.0 1/153.0/8.0 2/804.5/40.0
1k 7/79.5/2.0 2/112.0/6.0 3/89.0/3.0 0/99.5/4.0 4/74.0/2.0 16/454.0/17.0
5k 4/71.0/1.0 5/80.0/3.0 3/74.0/1.0 12/39.5/1.0 10/53.0/1.0 34/317.5/7.0

10k 3/89.5/3.0 5/79.0/2.0 4/95.0/5.0 1/76.5/3.0 3/83.0/3.0 16/423.0/16.0
25k 1/94.0/4.0 1/73.5/1.0 3/77.0/2.0 5/71.0/2.0 0/108.5/4.0 10/424.0/13.0
50k 2/110.5/5.0 4/96.5/4.0 6/94.0/4.0 2/117.0/6.0 3/122.5/6.0 17/540.5/25.0
250k 2/116.5/6.0 1/106.0/5.0 0/126.5/6.0 0/116.0/5.0 0/136.0/7.0 3/601.0/29.0
500k 0/163.0/8.0 0/135.5/7.0 1/151.5/7.0 2/135.5/7.0 1/121.0/5.0 4/706.5/34.0
1.5M 0/173.0/10.0 1/170.0/9.0 0/175.0/10.0 0/178.0/9.0 0/169.0/9.0 1/865.0/47.0
6.7M 2/171.0/9.0 0/191.0/10.0 2/159.0/8.0 0/203.0/10.0 0/190.0/10.0 4/914.0/47.0
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Table 6.9: Best results achieved for each dataset by fine-tuning the Transformer-based
models with different samples of generic tweets

Dataset Accuracy Classifier Model F1-macro Classifier Model

iro 82.30 MLP BERTweet-50K 75.87 LR BERT-500K
sar 77.32 SVM BERT-50K 75.85 SVM BERT-50K
ntu 94.38 SVM BERTweet-1.5M 94.26 SVM BERTweet-1.5M
S15 94.18 MLP BERTweet-1K 86.22 MLP BERTweet-1K
stm 93.04 SVM BERTweet-5K 93.02 SVM BERTweet-5K
per 89.51 LR BERTweet-10K 87.53 LR BERTweet-10K
hob 89.83 MLP BERTweet-50K 88.30 MLP BERTweet-50K
iph 88.16 MLP RoBERTa-25K 85.85 MLP RoBERTa-25K
mov 93.29 MLP BERTweet-50K 88.27 LR BERTweet-50K
san 91.83 LR BERTweet-10K 91.77 LR BERTweet-10K
Nar 97.04 MLP BERTweet-1K 96.91 MLP BERTweet-1K
arc 92.08 LR BERTweet-25K 91.92 LR BERTweet-25K
S18 90.48 SVM BERTweet-10K 90.40 SVM BERTweet-10K
OMD 88.99 SVM BERTweet-5K 88.17 SVM BERTweet-5K
HCR 82.18 XGB RoBERTa-1K 78.18 LR BERTweet-250K
STS 95.38 MLP BERTweet-50K 94.59 MLP BERTweet-50K
SSt 89.60 SVM BERTweet-10K 89.36 SVM BERTweet-10K
Tar 87.83 SVM BERTweet-1K 87.82 SVM BERTweet-1K
Vad 92.80 LR BERTweet-1K 91.64 LR BERTweet-1K
S13 90.70 LR BERTweet-5K 88.59 LR BERTweet-5K
S17 93.49 SVM BERTweet-10K 93.07 SVM BERTweet-10K
S16 91.98 SVM BERTweet-5K 90.30 SVM BERTweet-5K
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Table 6.10: Top 10 average rank position results achieved for each combination Model-
Classifier by evaluating Transformer-Autoencoder models

Model Classifier
Accuracy

Model Classifier
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-5K LR 11.95 BERTweet-5K LR 11.18
BERTweet-5K MLP 14.05 BERTweet-25K SVM 13.43
BERTweet-25K MLP 14.64 BERTweet-10K SVM 13.95
BERTweet-25K LR 16.14 BERTweet-10K LR 14.20
BERTweet-50K MLP 16.43 BERTweet-25K LR 14.32
BERTweet-1K MLP 16.77 BERTweet-1K LR 15.11
BERTweet-10K LR 16.82 BERTweet-5K MLP 15.95
BERTweet-25K SVM 17.02 BERTweet-25K MLP 16.11
BERTweet-1K LR 17.68 BERTweet-50K LR 16.80
BERTweet-10K SVM 17.93 BERTweet-50K SVM 17.43

samples of tweets ⇥ 5 classification algorithms). As we can see in Table 6.10, fine-tuned
BERTweet embeddings achieved the best overall performances when used to train LR,
MLP, and SVM, mastering the top ten results. Also, note that by using LR, MLP, and
SVM, BERTweet outperformed all other models when fine-tuned with samples containing
50K tweets or less.

Tables 6.11 and 6.12 show the top ten results among all fine-tuned models and a
summary of the results for each classifier, from best to worst, respectively, in terms of
the average rank position. From Table 6.11, we can notice that all BERTweet fine-tuned
models (0.5K, 1K, 5K, 10K, 25K, 50K, 250K, 500K, 1.5M, and 6.7M) were ranked in the
top ten results. Furthermore, neither BERT nor RoBERTa appear in the top results,
even when they are fine-tuned with the entire corpus of 6.7M tweets. RoBERTa appears
only in the top 24 accuracy score with an average rank of 37.02 tuned with 50K tweets
and combined MLP classifier and in top 28 F1-macro score with an average rank of 37.27
tuned with 50K tweets and combined LR classifier. BERT appears only in the top 56
accuracy score with an average rank of 66.05 tuned with 1.5M tweets and combined MLP
classifier and in top 51 F1-macro score with an average rank of 60.77 tuned with 6.7M
tweets and combined LR classifier. Among the classifiers, as we can see in Table 6.12,
MLP and LR achieved the best predictive performances and were ranked as the top two
best classifiers. Conversely, RF was ranked as the worst classifier.

From all previous evaluations, we can note that as the size of the samples increases,
the fine-tuning procedure seems to be less effective. It may be due to the adjustment of
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Table 6.11: Top 10 average rank position results achieved for each Embedding evaluating
Transformer-Autoencoder model

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-5K 37.76 BERTweet-5K 40.13
BERTweet-10K 40.81 BERTweet-10K 43.27
BERTweet-25K 41.24 BERTweet-25K 43.80
BERTweet-1K 43.09 BERTweet-1K 44.78
BERTweet-50K 45.22 BERTweet-50K 47.42
BERTweet-250K 48.65 BERTweet-250K 50.19
BERTweet-500K 53.96 BERTweet-500K 55.59
BERTweet-0.5K 58.00 BERTweet-0.5K 59.59
BERTweet-1.5M 66.63 BERTweet-1.5M 66.48
BERTweet-6.7M 71.09 BERTweet-6.7M 70.46

Table 6.12: Average rank position results achieved for each Classifier evaluating
Transformer-Autoencoder model

Classifier
Accuracy

Classifier
F1-macro

avg. rank pos. avg. rank pos.

MLP 48.52 LR 48.71
LR 53.17 MLP 49.92
SVM 70.74 SVM 60.83
XGB 84.90 XGB 93.16
RF 120.18 RF 124.87
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the weights of the models’ layers during the back-propagation process. Considering that
the fine-tuning procedure consists in unfreezing the entire model obtained previously and
adjusting their weights with the new data, the original model and the semantic and syn-
tactic knowledge learned in its layers are changed. In that case, we believe that after some
training iterations, the adjustment of the weights starts to damage the original knowl-
edge embedded in the models’ layers. The aforementioned conclusion may further explain
why BERTweet achieved improved classification performance by using smaller samples of
tweets as compared to BERT and RoBERTa. Our hypothesis is that, considering that
the weights in BERTweet’s layers are specifically adjusted to fit tweets’ language style,
using more data to fine-tune the model means only continue the initial training. It may
be that lots of data may harm the learned weights of the model. Thus, we suggest that
when fine-tuning Transformer-based models, such as BERT, RoBERTa, and BERTweet,
samples of different sizes may be exploited instead of adopting a dataset with a massive
number of instances.

Additionally, we present a comparison among all fine-tuned Transformer-based models
against their original versions. Tables 6.13, 6.14, and 6.15 report this comparison in
terms of the average rank position for BERT, RoBERTa, and BERTweet, respectively.
We can see that the fine-tuned versions achieved meaningful predictive performances as
compared to their original models, which indicates that fine-tuning strategies can boost
classification performance in Twitter sentiment analysis. Moreover, from Tables 6.13
and 6.14, we note that the fine-tuned versions of BERT and RoBERTa benefited most from
samples containing a large number of tweets. Conversely, as pointed out before, BERTweet
achieved better overall performances by using smaller samples, as shown in Table 6.15.

Addressing research question RQ3, we could see that fine-tuning Transformer-based
models improves the classification effectiveness in Twitter sentiment analysis. Never-
theless, using large sets of tweets does not guarantee better predictive performances,
particularly for those models trained from scratch on tweets, such as BERTweet. We
could observe that BERTweet benefited most from samples of tweets containing 50K
tweets or less. Furthermore, regarding the classifiers, in general, MLP and LR seem to
be good choices of classifiers to be employed after extracting the features from fine-tuned
Transformer-based models.
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Table 6.13: Average rank position results achieved for BERT model and its tuned models

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERT-250K 25.62 BERT-250K 25.62
BERT-5K 26.95 BERT-1.5M 26.45
BERT-1.5M 26.96 BERT-6.7M 26.69
BERT-500K 27.09 BERT-500K 26.70
BERT-6.7M 27.67 BERT-5K 27.69
BERT-0.5K 28.16 BERT-50K 28.36
BERT-50K 28.38 BERT-0.5K 28.40
BERT-1K 28.46 BERT-1K 28.95
BERT-10K 29.52 BERT (original) 29.50
BERT (original) 29.52 BERT-10K 29.68
BERT-25K 29.66 BERT-25K 29.95

Table 6.14: Average rank position results achieved for RoBERTa model and its tuned
models

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

RoBERTa-50K 24.34 RoBERTa-50K 24.24
RoBERTa-500K 24.69 RoBERTa-1.5M 24.61
RoBERTa-1.5M 24.82 RoBERTa-500K 24.95
RoBERTa-5K 25.44 RoBERTa-5K 25.54
RoBERTa-250K 25.53 RoBERTa-250K 25.66
RoBERTa-25K 26.49 RoBERTa-25K 27.05
RoBERTa-10K 27.28 RoBERTa-10K 27.50
RoBERTa-1K 29.84 RoBERTa-1K 29.65
RoBERTa-0.5K 32.01 RoBERTa-0.5K 31.78
RoBERTa-6.7M 32.75 RoBERTa-6.7M 31.96
RoBERTa (original) 34.81 RoBERTa (original) 35.06
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Table 6.15: Average rank position results achieved for BERTweet model and its tuned
models

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-5K 20.74 BERTweet-5K 21.38
BERTweet-25K 22.62 BERTweet-25K 22.94
BERTweet-10K 22.85 BERTweet-10K 23.10
BERTweet-1K 23.73 BERTweet-1K 23.93
BERTweet-50K 25.25 BERTweet-50K 25.55
BERTweet-250K 26.67 BERTweet-250K 26.66
BERTweet-500K 30.31 BERTweet-500K 30.48
BERTweet-0.5K 31.70 BERTweet-0.5K 31.72
BERTweet (original) 33.80 BERTweet (original) 33.35
BERTweet-1.5M 34.80 BERTweet-1.5M 34.05
BERTweet-6.7M 35.53 BERTweet-6.7M 34.85



Chapter 7

Fine-tuning Transformer-based
Models Using Sentiment Datasets

The experiments conducted in this chapter aim at answering the research question RQ4,
stated as follows:

RQ4. Can Transformer-based autoencoder models benefit from a fine-tuning procedure
with tweets from sentiment analysis datasets?

We address this research question by evaluating whether the sentiment classification
of tweets benefits from fine-tuned language models using tweets from sentiment analysis
datasets. For this purpose, we use the same collection of 22 benchmark datasets pre-
sented in Chapter 3 (Table 3.1). We perform this evaluation by assessing three distinct
strategies to simulate three real-world scenarios. In addition, as done in Chapter 6, all
experiments were performed three times using different seeds (12,34,56), with all the same
hyperparameter and we report the average of the results.

The first fine-tuning strategy we investigate, referred to as InData, simulates the usage
of a specific sentiment dataset itself as the new domain dataset to fine-tune a pre-trained
language model. Precisely, each one of the 22 datasets is used once as the target dataset.
For each of the 22 datasets, we use a 10-fold cross-validation procedure. In each of the
ten executions, we use the tweets from nine folds as the source data (i.e., the training
data) used to adjust a language model, which is then validated on the one remaining part
of the data, referred to as the target dataset (i.e., the test data).

The second strategy, referred to as LOO (Leave One dataset Out), aims at simulating
the situation where a collection of general sentiment datasets is available to fine-tune the
language model. We use each dataset once as the target dataset while the tweets from
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the remaining 21 datasets are combined to tune the language model. Although the target
dataset contains sentiment labels for each tweet, these labels are not used in the fine-
tuning process as we leverage the intermediate self-supervised masked language model
task to fine-tune the network parameters.

The third and last strategy, referred to as AllData, is a combination of the two others.
Specifically, as for strategy InData, for each assessed dataset (target dataset), and for each
of the nine folds in the 10-fold cross-validation procedure, we combine the tweets from the
nine folds (i.e., the training data of the target dataset) with the tweets from the remaining
21 datasets to fine-tune a language model. This last strategy evaluates the benefits of
combining the tweets from a specific sentiment target dataset with a representative general
sentiment dataset corpus in the fine-tuning process.

Table 7.1, 7.2, and 7.3 present the predictive performances achieved by fine-tuning
each language model with strategies InData, LOO, and AllData, one at a time, by us-
ing the SVM classifier. As in previous chapters, for space constraints, we only report
the detailed evaluation using the SVM classifier (refer to Appendix A for the detailed
assessment of each classifier).

From Tables 7.1, 7.2, and 7.3, we can observe that BERT benefited most from strat-
egy InData, which uses only the target dataset itself to adjust the language models.
Conversely, fine-tuning RoBERTa and BERTweet models using strategies that combine
tweets from distinct sentiment analysis corpora achieved the best results for most datasets.
More clearly, AllData, which combines the tweets from the target dataset and tweets from
a collection of sentiment datasets, achieved the best overall results with both RoBERTa
and BERTweet. Also, regarding BERTweet, note that strategy LOO achieved compara-
ble performances to AllData. It is also noteworthy that smaller datasets seem to have
benefited most from fine-tuning RoBERTa and BERTweet by using strategy LOO. On
the other hand, larger datasets achieved higher predictive performances when using strat-
egy AllData to fine-tune RoBERTa and BERTweet. Table 7.4 shows a summary of the
complete evaluation regarding all classifiers.

Regarding the overall results achieved for each dataset, Table 7.5 presents the best
results. We can note that when fine-tuning the Transformer-based models with tweets
from sentiment datasets, BERTweet outperformed BERT and RoBERTa for all datasets,
except for datasets sarcasm (sar) and hobbit (hob). Interestingly, as mentioned before,
while strategy LOO achieved the best results for smaller datasets, larger datasets seem
to benefit from strategy AllData. Precisely, strategy AllData achieved the best overall
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Table 7.1: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO, and
AllData fine-tuning strategies using the SVM classifier and BERT

Accuracy F1-macro

Dataset
BERT

AllData LOO InData AllData LOO InData

iro 74.40 78.81 67.90 65.40 70.55 59.60
sar 71.0 70.18 64.10 68.50 68.58 60.20
ntu 85.00 82.74 88.10 84.70 82.39 87.80

S15 89.70 88.14 89.80 77.50 77.11 77.80

stm 88.80 90.25 89.90 88.70 90.24 89.80
per 84.40 85.66 82.00 82.20 83.49 80.00
hob 84.60 84.46 82.30 82.90 83.08 80.70
iph 82.70 83.09 83.00 80.80 81.07 81.40

mov 85.80 86.46 84.60 79.40 80.14 78.10
san 87.60 87.49 87.80 87.50 87.43 87.70

Nar 92.20 92.50 94.90 92.00 92.25 94.70

arc 89.10 88.42 89.90 88.90 88.20 89.80

S18 87.70 87.36 89.70 87.60 87.26 89.60

OMD 85.90 85.73 87.30 85.00 84.74 86.40

HCR 79.30 79.03 79.60 75.70 75.25 75.90

STS 91.70 90.71 93.50 90.50 89.35 92.60

SSt 84.70 84.71 87.50 84.30 84.39 87.20

Tar 85.70 86.24 86.90 85.70 86.23 86.90

Vad 89.90 90.16 91.50 88.50 88.84 90.30

S13 87.50 87.60 88.70 85.20 85.31 86.60

S17 91.80 91.56 92.90 91.30 91.04 92.40

S16 89.50 89.07 90.70 87.40 86.93 88.80

#wins 2 5 15 0 6 16

rank sums 49.0 49.0 34.0 51.0 48.0 33.0

position 2.5 2.5 1.0 3.0 2.0 1.0
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Table 7.2: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO, and
AllData fine-tuning strategies using the SVM classifier and RoBERTa

Dataset
RoBERTa

AllData LOO InData AllData LOO InData

iro 46.70 46.67 46.70 31.00 31.00 31.00
sar 64.00 65.00 64.00 52.90 53.49 54.20

ntu 84.30 83.48 81.20 83.90 83.07 80.80
S15 87.20 86.31 86.20 74.90 74.28 72.40
stm 90.00 90.25 87.60 89.90 90.21 87.60
per 71.10 70.38 65.50 70.20 69.17 64.90
hob 72.80 73.94 71.30 71.90 73.10 70.50
iph 79.90 78.96 78.60 78.60 77.72 77.20
mov 81.50 79.87 72.10 75.30 74.01 66.50
san 87.50 87.17 85.50 87.40 87.04 85.30
Nar 93.10 92.50 92.10 92.90 92.35 91.90
arc 89.40 89.47 89.00 89.30 89.27 88.70
S18 88.40 88.54 88.00 88.30 88.44 87.80
OMD 85.60 84.58 85.70 84.50 83.60 84.70

HCR 76.90 76.04 78.10 73.20 72.59 74.20

STS 92.60 92.13 91.50 91.60 90.97 90.30
SSt 86.40 85.63 85.90 86.10 85.41 85.70
Tar 85.90 85.87 86.30 85.90 85.85 86.30

Vad 89.80 89.37 89.90 88.60 88.10 88.60
S13 86.60 86.41 86.10 84.60 84.41 83.90
S17 92.00 91.71 91.60 91.50 91.21 91.10
S16 89.50 89.71 89.30 87.60 87.75 87.40
#wins 12 6 5 13 4 5
rank sums 33.0 44.0 55.0 32.5 45.0 54.5
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table 7.3: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO, and
AllData fine-tuning strategies using the SVM classifier and BERTweet

Dataset
BERTweet

AllData LOO InData AllData LOO InData

iro 74.60 83.10 66.70 66.50 77.24 60.10
sar 68.60 67.50 61.80 65.50 64.32 56.40
ntu 92.10 93.54 90.10 91.80 93.33 89.80
S15 90.70 92.84 90.20 80.00 84.76 78.60
stm 92.70 92.75 90.50 92.60 92.73 90.50
per 86.10 86.55 82.50 84.10 84.48 80.70
hob 87.10 87.17 82.50 85.60 85.62 80.80
iph 85.10 83.48 83.30 83.50 81.79 81.80
mov 89.90 88.42 87.00 84.50 81.99 80.90
san 91.40 91.34 89.00 91.40 91.27 88.90
Nar 97.00 96.66 96.20 96.80 96.54 96.00
arc 91.40 90.57 90.70 91.30 90.40 90.50
S18 90.90 90.26 90.60 90.80 90.19 90.50
OMD 89.20 89.77 88.40 88.40 88.99 87.50
HCR 81.50 81.27 80.40 77.90 77.79 76.70
STS 95.20 94.99 94.70 94.50 94.21 93.90
SSt 89.10 88.51 88.80 88.90 88.25 88.50
Tar 87.70 87.63 87.30 87.70 87.62 87.30
Vad 92.50 92.73 92.30 91.40 91.70 91.20
S13 90.00 89.52 89.40 88.00 87.49 87.40
S17 93.60 93.59 93.20 93.10 93.17 92.80
S16 91.80 91.62 91.50 90.10 89.90 89.80
#wins 14 8 0 13 9 0
rank sums 30.0 39.0 63.0 31.0 39.0 62.0
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table 7.4: Overview of the results (number of wins, rank sum, and rank position, respec-
tively) achieved by each classifier when fine-tuning the Transformer-Autoencoder models
using strategies InData, LOO, and AllData in terms of accuracy and F1-macro

ACCURACY

Strategy LR SVM MLP RF XGB Total

BERT

AllData 1/51.0/2.0 2/49.0/2.5 3/43.5/2.0 5/42.0/2.0 2/47.5/2.0 13/233.0/10.5
LOO 1/56.0/3.0 5/49.0/2.5 3/56.5/3.0 6/49.0/3.0 3/53.0/3.0 18/263.5/14.5
InData 20/25.0/1.0 15/34.0/1.0 14/32.0/1.0 9/41.0/1.0 14/31.5/1.0 72/163.5/5.0

RoBERTa

AllData 11/32.0/1.0 11/33.0/1.0 10/35.0/1.0 11/34.0/1.0 12/35.0/1.0 55/169.0/5.0

LOO 6/48.0/2.0 6/44.0/2.0 9/42.0/2.0 10/37.0/2.0 8/41.0/2.0 39/212.0/10.0
InData 3/52.0/3.0 4/55.0/3.0 2/55.0/3.0 1/61.0/3.0 2/56.0/3.0 12/279.0/15.0

BERTweet

AllData 10/36.5/1.0 14/30.0/1.0 9/34.5/1.0 13/31.0/1.0 12/33.5/1.0 58/165.5/5.0

LOO 9/39.5/2.0 8/39.0/2.0 11/37.0/2.0 8/39.5/2.0 8/39.0/2.0 44/194.0/10.0
InData 2/56.0/3.0 0/63.0/3.0 1/60.5/3.0 1/61.5/3.0 1/59.5/3.0 5/300.5/15.0

F1-MACRO

Strategy LR SVM MLP RF XGB Total

BERT

AllData 1/51.0/2.0 0/51.0/3.0 3/45.0/2.0 6/41.0/2.0 3/48.5/2.0 13/236.5/11.0
LOO 2/56.0/3.0 6/48.0/2.0 4/55.0/3.0 5/51.0/3.0 3/52.0/3.0 20/262.0/14.0
InData 19/25.0/1.0 16/33.0/1.0 15/32.0/1.0 11/40.0/1.0 15/31.5/1.0 76/161.5/5.0

RoBERTa

AllData 13/31.0/1.0 12/32.5/1.0 9/35.5/1.0 11/34.0/1.0 12/35.0/1.0 57/168.0/5.0

LOO 5/49.0/2.0 4/45.0/2.0 10/42.0/2.0 10/36.0/2.0 8/40.0/2.0 37/212.0/10.0
InData 4/52.0/3.0 4/54.5/3.0 2/54.5/3.0 1/62.0/3.0 2/57.0/3.0 13/280.0/15.0

BERTweet

AllData 10/35.5/1.0 13/31.0/1.0 13/31.0/1.0 13/31.0/1.0 10/35.0/1.0 59/163.5/5.0

LOO 10/37.5/2.0 9/39.0/2.0 9/39.0/2.0 8/39.5/2.0 10/37.5/2.0 46/192.5/10.0
InData 1/59.0/3.0 0/62.0/3.0 0/62.0/3.0 1/61.5/3.0 0/59.5/3.0 2/304.0/15.0
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Table 7.5: Best results achieved for each dataset by fine-tuning the Transformer-
Autoencoder models using strategies InData, LOO, and AllData

Dataset Accuracy Classifier Embedding F1-macro Classifier Embedding

iro 83.33 LR BERTweet-LOO 77.24 SVM BERTweet-LOO
sar 80.66 MLP RoBERTa-LOO 79.35 MLP RoBERTa-LOO
ntu 93.89 LR BERTweet-LOO 93.66 LR BERTweet-LOO
S15 94.39 MLP BERTweet-LOO 87.31 MLP BERTweet-LOO
stm 92.75 SVM BERTweet-LOO 92.73 SVM BERTweet-LOO
per 88.52 MLP BERTweet-LOO 86.14 LR BERTweet-LOO
hob 89.50 MLP RoBERTa-InData 88.00 MLP RoBERTa-InData
iph 87.80 LR BERTweet-InData 85.80 LR BERTweet-AllData
mov 91.10 LR BERTweet-AllData 85.40 LR BERTweet-AllData
san 91.60 LR BERTweet-AllData 91.50 LR BERTweet-AllData
Nar 97.00 SVM BERTweet-AllData 96.80 MLP BERTweet-AllData
arc 92.10 MLP BERTweet-AllData 91.90 MLP BERTweet-AllData
S18 90.90 SVM BERTweet-AllData 90.80 SVM BERTweet-AllData
OMD 89.77 SVM BERTweet-LOO 88.99 SVM BERTweet-LOO
HCR 82.21 XGB BERTweet-LOO 77.90 SVM BERTweet-AllData
STS 95.20 SVM BERTweet-AllData 94.50 SVM BERTweet-AllData
SSt 89.10 SVM BERTweet-AllData 88.90 SVM BERTweet-AllData
Tar 87.70 SVM BERTweet-AllData 87.70 SVM BERTweet-AllData
Vad 93.14 LR BERTweet-LOO 92.05 LR BERTweet-LOO
S13 90.40 LR BERTweet-InData 88.30 LR BERTweet-InData
S17 93.60 SVM BERTweet-AllData 93.17 SVM BERTweet-LOO
S16 91.80 SVM BERTweet-AllData 90.10 SVM BERTweet-AllData

performances in ten out of the 22 datasets in terms of accuracy and in 11 out of the 22
datasets in terms of F1-macro. Strategy LOO achieved the best results in nine out of the 22
datasets for both accuracy and F1-macro. The better performance of the AllData strategy
for larger target datasets indicates that the significant amount of information present
in the target dataset is indispensable for the fine-tuning process, while the information
present in smaller datasets seems not to contribute to the fine-tuning process, making the
LOO strategy adequate for datasets with a limited amount of tweets.

Conversely, strategy InData did not achieve meaningful results. The inferior perfor-
mance of the InData strategy in almost all datasets shows that, regardless of the size of
the dataset, the use of external and more extensive data brings more information to the
fine-tuning process, improving the final performance.

Next, we present an overall evaluation of combining all fine-tuned models and classi-
fiers across the 22 datasets, in terms of the average rank position. Table 7.6 reports the top
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Table 7.6: Top 10 average rank position results achieved for each combination Model-
Classifier by evaluating Transformer-Autoencoder model

Model Classifier
Accuracy

Model Classifier
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-AllData LR 4.86 BERTweet-AllData LR 4.18
BERTweet-AllData MLP 5.57 BERTweet-LOO LR 5.34
BERTweet-LOO MLP 6.07 BERTweet-AllData MLP 5.45
BERTweet-LOO LR 6.16 BERTweet-AllData SVM 6.11
BERTweet-AllData SVM 7.36 BERTweet-LOO MLP 6.75
BERTweet-LOO SVM 8.64 BERTweet-LOO SVM 6.86
BERTweet-InData LR 9.11 BERTweet-InData LR 8.36
BERTweet-InData MLP 11.27 RoBERTa-AllData LR 11.89
RoBERTa-AllData MLP 13.09 BERTweet-InData MLP 11.95
RoBERTa-AllData LR 13.48 BERTweet-InData SVM 12.93

ten results among all 45 possible combinations (3 language models ⇥ 3 fine-tuning strate-
gies ⇥ 5 classification algorithms). We can observe that the LR classifier trained with
BERTweet embeddings fine-tuned via strategy AllData achieved the best overall predic-
tive performances. Also, note that the fine-tuned BERTweet embeddings with strategies
AllData and LOO, combined with LR, MLP, and SVM, appear at the top of the ranking
(top six results). Another point worth highlighting is that BERTweet masters the top ten
results, appearing in eight out of the ten positions in terms of accuracy and in nine out
of the ten positions in terms of F1-macro.

Tables 7.7 and 7.8 show the results among all fine-tuned models and a summary of
the results for each classifier, from best to worst, respectively, in terms of the average rank
position. Once again, from Table 7.7, we can notice that all BERTweet fine-tuned models
(InData, LOO, and AllData) were ranked in the top three results. Among the classifiers,
as we can see in Table 7.8, MLP and LR achieved the best predictive performances and
were ranked as the top two best classifiers. Conversely, RF was ranked as the worst
classifier.

To evaluate the effectiveness of fine-tuning the Transformer-based models using tweets
from sentiment datasets, we present a comparison among all fine-tuning strategies assessed
in this study for each language model. Specifically, we compare the fine-tuned models
presented in this chapter, by using strategies InData, LOO, and AllData, against the
best fine-tuned models identified in Chapter 6, i.e., BERT-250K, RoBERTa-50K, and
BERTweet-5K. Tables 7.9, 7.10, and 7.11 report these results in terms of the average rank
position for BERT, RoBERTa, and BERTweet, respectively.
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Table 7.7: Average position results achieved for each Embedding

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-AllData 12.99 BERTweet-AllData 13.51
BERTweet-LOO 14.04 BERTweet-LOO 14.46
BERTweet-InData 19.59 BERTweet-InData 19.95
RoBERTa-AllData 22.76 RoBERTa-AllData 22.70
RoBERTa-LOO 24.46 RoBERTa-LOO 24.00
BERT-InData 24.53 BERT-InData 24.32
RoBERTa-InData 27.90 RoBERTa-InData 27.70
BERT-AllData 30.12 BERT-AllData 29.85
BERT-LOO 30.61 BERT-LOO 30.51

Table 7.8: Average rank position results achieved for each Classifier

Classifier
Accuracy

Classifier
F1-macro

avg. rank pos. avg. rank pos.

MLP 14.83 LR 14.41
LR 15.73 MLP 15.28
SVM 22.42 SVM 19.77
XGB 25.70 XGB 28.13
RF 36.32 RF 37.41
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Table 7.9: Average rank position results achieved for BERT models

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERT-InData 8.04 BERT-InData 8.10
BERT-AllData 10.61 BERT-AllData 10.66
BERT-LOO 11.24 BERT-LOO 11.29
BERT-250K 12.12 BERT-250K 11.95

Table 7.10: Average rank position results achieved for RoBERTa models

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

RoBERTa-AllData 8.81 RoBERTa-AllData 8.85
RoBERTa-LOO 9.89 RoBERTa-LOO 9.84
RoBERTa-50K 11.61 RoBERTa-50K 11.52
RoBERTa-InData 11.68 RoBERTa-InData 11.80

Regarding BERT, as shown in Table 7.9, note that all fine-tuning strategies using
tweets from sentiment datasets achieved better overall results than using the sample of
250K generic tweets. Moreover, strategy InData appears at the top of the ranking as
the best fine-tuning strategy. It is worth mentioning that strategy InData uses only the
tweets from the target dataset itself to adjust the language model. This means that the
strategy InData used a number of tweets much smaller than the 250K tweets contained
in the sample.

On the other hand, as we can see in Tables 7.10 and 7.11, strategy InData did not
achieve meaningful results for RoBERTa and BERTweet models. Nevertheless, for these
models, strategies AllData and LOO, which also use tweets from sentiment datasets,
achieved rather comparable performances and were ranked as the top two best fine-tuning
strategies.

To acknowledge the effectiveness of fine-tuning the Transformer-based models using
tweets from sentiment datasets, we present an overall comparison among all fine-tuning
strategies and all 47 models previously assessed in this study. Tables 7.12 and 7.13
present, respectively, the 10 best and the 10 worst overall combination of model and
classifier, assessing the average rank position of all 280 (56 models and five classifier) model
and classifier combinations. We note that BERTweet tuned with tweets from sentiment
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Table 7.11: Average rank position results achieved for BERTweet models

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-AllData 9.00 BERTweet-AllData 9.11
BERTweet-LOO 9.76 BERTweet-LOO 9.76
BERTweet-5K 10.19 BERTweet-5K 10.20
BERTweet-InData 13.05 BERTweet-InData 12.93

datasets and combined with LR and MLP had the four best results, in terms of accuracy,
and the two best results, in terms of F1-macro. These combinations were followed by
BERTweet tuned with generic tweets. More specifically, combinations with the strategy
AllData and LOO achieved better overall results. Independently of the language model,
LR and MLP were the most frequent classifier in the top 10 results. Conversely, all the ten
worst combinations are static representations combined with RF, which was unanimous
in the worst model and classifiers combinations.

Assessing only the different kinds of embeddings, Tables 7.14 and 7.15 present, re-
spectively, the best and the worst average rank position comparing all 56 representations
(the nine models tuned with sentiment datasets and the 47 previous representations).
This analysis confirms the good performance of fine-tuning the Transformer-based mod-
els using tweets from sentiment datasets. More specifically, the strategies AllData and
LOO obtained the two best results. It is possible to notice that tuning BERTweet with
generic tweets also brings performance improvement to BERTweet. Regarding the worst
behaviors, presented in Table 7.15, it is possible to note that all the ten strategies are
again static representations.

Lastly, regarding research question RQ4, we can highlight that fine-tuning Transformer-
based models using tweets from sentiment datasets seems to boost classification perfor-
mance in Twitter sentiment analysis. As a matter of fact, the strategies AllData and
LOO exploited in this chapter, which use a collection of sentiment tweets to adjust a lan-
guage model, achieved better overall results than using samples of unlabeled, or generic
unlabeled, tweets. Although we do not use the labels of those tweets in the fine-tuning
procedure, they may carry a lot of sentiment information as compared to the tweets from
the Edinburgh corpus, which originated the samples of generic unlabeled tweets used in
the experiments. Furthermore, BERTweet embeddings fine-tuned with strategy AllData
seems to be very effective in determining the sentiment expressed in tweets, especially
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Table 7.12: Top 10 average rank position results achieved for each combination Model-
Classifier by evaluating all assessed model in this study

Model Classifier
Accuracy

Model Classifier
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-LOO LR 17.30 BERTweet-LOO LR 15.52
BERTweet-AllData LR 18.16 BERTweet-AllData LR 16.30
BERTweet-LOO MLP 18.55 BERTweet-5K LR 18.64
BERTweet-AllData MLP 19.36 BERTweet-AllData MLP 20.68
BERTweet-5K LR 20.64 BERTweet-LOO MLP 21.00
BERTweet-5K MLP 23.14 BERTweet-25K SVM 22.48
BERTweet-25K MLP 24.30 BERTweet-10K SVM 23.16
BERTweet-25K LR 26.23 BERTweet-25K LR 23.30
BERTweet-1K MLP 26.91 BERTweet-10K LR 23.86
BERTweet-50K MLP 27.02 BERTweet-AllData SVM 24.82

when used to train LR, MLP, and SVM classifiers.
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Table 7.13: Tail 10 average rank position results achieved for each combination Model-
Classifier by evaluating all assessed model in this study

Model Classifier
Accuracy

Model Classifier
F1-macro

avg. rank pos. avg. rank pos.

EWE RF 247.23 DeepMoji RF 252.86
W2V-Araque RF 249.75 BERTweet-static LR 253.14
W2V-GN RF 250.00 EWE RF 256.48
GloVe-WP RF 253.68 W2V-Araque RF 259.80
fastText RF 255.75 W2V-GN RF 261.70
BERT-static RF 257.32 GloVe-WP RF 263.11
RoBERTa-static RF 259.70 fastText RF 266.95
BERT-static LR 263.34 BERT-static RF 267.75
BERTweet-static RF 265.91 RoBERTa-static RF 269.93
BERTweet-static LR 274.43 BERTweet-static RF 275.43

Table 7.14: Top 10 average rank position results achieved comparing all assessed models
in this study

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

BERTweet-AllData 53.83 BERTweet-AllData 60.67
BERTweet-LOO 56.52 BERTweet-LOO 62.59
BERTweet-5K 60.56 BERTweet-5K 66.21
BERTweet-25K 65.38 BERTweet-25K 71.07
BERTweet-10K 65.51 BERTweet-10K 71.17
BERTweet-1K 68.59 BERTweet-1K 73.32
BERTweet-50K 72.31 BERTweet-50K 77.50
BERTweet-250K 78.13 BERTweet-250K 82.90
BERTweet-InData 83.80 BERTweet-InData 87.93
BERTweet-500K 86.10 BERTweet-500K 90.85
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Table 7.15: Tail 10 average rank position results achieved comparing all assessed models
in this study

Model
Accuracy

Model
F1-macro

avg. rank pos. avg. rank pos.

SSWE 209.69 W2V-GN 204.38
GloVe-TWT 215.62 GloVe-TWT 207.22
DeepMoji 217.13 DeepMoji 208.08
EWE 217.46 EWE 208.43
TF-IDF 220.83 GloVe-WP 215.45
BERT-static 224.61 fastText 218.05
GloVe-WP 225.94 BERT-static 218.40
fastText 227.80 w2v-Araque 222.85
W2V-Araque 230.56 TF-IDF 224.34
BERTweet-static 244.21 BERTweet-static 237.01



Chapter 8

Conclusions and Future Works

In this work, we presented an extensive assessment of modern and classical word represen-
tations when used for the task of Twitter sentiment analysis. Specifically, we assessed the
classification performance of 14 static representations, the most recent Transformer-based
autoencoder models, including BERT, RoBERTa, and BERTweet, as well as different
fine-tuning strategies of the language representation tasks in such models. All models
were evaluated in the context of Twitter sentiment analysis using a rich set of 22 datasets
and five classifiers from distinct natures. The main focus of this study was on identifying
the most appropriate word representations for the sentiment analysis of English tweets.

Based on the results of the experiments performed in this study, we can highlight the
following conclusions:

• Considering the static representations in limited resource scenario, we could note
that Emo2Vec, w2v-Edin, and RoBERTa models seem to be well-suited represen-
tations for determining the sentiment expressed in tweets. The good performance
achieved by Emo2Vec and w2v-Edin indicates that being trained from scratch with
tweets can boost the classification performance of static representations when ap-
plied in Twitter sentiment analysis. Although RoBERTa was not trained from
scratch with tweets, it is a Transformer-based autoencoder model, which holds state-
of-the-art performance in several NLP tasks. Regarding the classifiers, we could see
that SVM and MLP achieved the best overall performances, especially when used
to train RoBERTa’s static embeddings.

• Regarding the Transformer-based models, we could observe that BERTweet is the
most appropriate language model to be used in the sentiment classification of tweets.
Specifically, the particular vocabulary tweets contain, combined with a language
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model that was trained focused on learning their intrinsic structure, can effectively
improve the performance of the Twitter sentiment analysis task. Considering the
combination of language models and classifiers, we can point out that BERTweet
achieved the best overall results when combined with LR and MLP. Furthermore, by
comparing the Transformer-based models and the static representations, we could
notice that the adaptation of the tokens’ embeddings to the context they appear
performed by the Transformer-based models benefits the sentiment classification
task.

• When fine-tuning the Transformer-based models with a large set of English unla-
beled tweets we could note that although it improves the classification performance,
using as many tweets as possible does not necessarily means better results. In
this context, we presented an extensive evaluation of sets of tweets with different
sizes, varying from 0.5K to 1.5M. These results have shown that while BERT and
RoBERTa achieved better predictive performances when tuned with sets of 250K
and 50K tweets, respectively, BERTweet outperformed all fine-tuned models using
only 5K tweets. This result indicates that models trained from scratch with tweets,
such as BERTweet, needs less tweets to have its performance improved. Moreover,
by comparing all fine-tuned models taking into account the classifiers, BERTweet
combined with MLP, LR, and SVM achieved the best overall performances.

• Analyzing the fine-tuning of the language model based on Transformers autoen-
coders with sentiment analysis datasets, i.e., with tweets that express polarity, we
can see that the tuned models’ performance is better than when tuned with generic
tweets. All fine-tuning strategies with sentiment analysis datasets performed bet-
ter than the best-tuned models adjusted with generic tweets. We conclude then
that it is worth fine-tuning a model based on Transformer autoencoders using a set
of sentiment tweets. Among the fine-tuning strategies – using sentiment analysis
tweets – explored in the study, it was possible to perceive that each Transformer
model presented a better performance with different adjustment methods. The use
of only the target dataset, for example, was a good option to be used with BERT.
For RoBERTa and BERTweet, the combination of the target dataset with a set of
tweets from other datasets presented a good strategy for fine-tuning the language
model. In a general comparison, we noticed that BERTweet tuned with the union
of the target dataset and the set of sentiment analysis tweets (BERTweet_AllData)
performed better than the other adjusted models. Besides, we could observe that
BERTweet_AllData presented a good performance when combined with LR and
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MLP classifiers.

• After answering our research questions, we can briefly state that: (i) Transformer-
based autoencoder models perform better than static representation, (ii) Trans-
former autoencoder models fine-tuned with English tweets behavior better than
the respective original models and, finally, (iii) it is worth fine-tuning a language
model originally trained with generic English tweets with tweets from sentiment
analysis datasets. Considering all original and fine-tuned models, the best over-
all performance for the English tweets sentiment analysis task was achieved by the
Transformer-Autoencoder model trained from scratch with generic tweets (BERTweet)
when fine-tuned with tweets from a target sentiment dataset added by tweets from a
large set of other sentiment datasets. This strategy was called BERTweet_AllData,
which we consider a good suggestion for sentiment classification of English tweets,
mainly when combined with MLP or LR classifiers.

For future work, we plan to investigate other methods for fine-tuning language models,
mainly considering the polarity classification as the downstream tuning task. Transformer-
Autoencoder pre-trained models, like BERT, RoBERTa and BERTweet, can have its
weights adjusted looking for becoming more accurate in a specific task, like sentiment
analysis. This adjustment is made by adding an extra classification layer in the top of
the model and back-propagating the error in the final task through language models’
weights. We intend then to compare the best results obtained in this study with the ones
achieved by this specific-task category of fine-tuning. Some limitations and threats of the
present work are the absence of statistical test concerning models performance assessment,
a concentration on BERT-based architectures relative to the modern language models
evaluated and the absence of classifier hyperparameters fine-tuning.
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APPENDIX A -- Extra Experimental Results

This appendix presents a complement to the experimental results reported in the previous
chapters. Section A.1 presents experimental results complementary to those presented in
Chapter 4. Section A.2 complements Chapter 5, Section A.3 refers to Chapter 6, and
Section A.4 to Chapter 7.

A.1 Static Text Representation

Table A.1: Accuracies (%) achieved using the RF classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 69.29 66.43 66.19 63.33 67.86 69.52 66.19 62.86 67.86 72.62 72.38 64.76 67.86 64.52
sar 57.32 63.21 64.46 66.07 68.75 60.71 62.14 71.61 66.07 73.21 74.46 64.64 51.96 57.68
ntu 72.65 84.87 69.39 68.31 72.99 76.57 69.76 72.29 90.65 93.51 78.02 89.91 84.15 76.55
S15 85.36 85.67 85.36 85.36 85.67 85.36 89.1 85.36 85.67 85.98 85.98 85.36 85.36 85.36
stm 79.96 77.72 79.94 82.46 82.16 74.94 76.57 78.55 81.33 81.03 83.57 76.03 76.89 68.53
per 74.94 74.48 75.61 74.95 74.04 72.89 76.75 71.52 76.31 77.47 78.83 72.43 71.06 71.53
hob 83.13 80.26 79.11 87.16 82.94 80.85 92.72 84.87 81.42 81.24 86.59 84.47 79.5 80.64
iph 77.44 78.38 78.55 79.32 79.87 77.07 77.82 79.5 78.55 78.94 80.64 77.63 76.14 77.09
mov 82.0 82.0 82.0 82.0 82.18 82.18 82.89 82.0 82.36 83.41 87.17 82.53 82.0 82.0
san 79.9 75.98 78.83 78.75 78.99 74.03 79.17 77.93 79.49 81.86 80.55 79.74 73.94 73.87
Nar 78.97 75.47 79.38 78.16 82.8 72.54 78.49 80.44 83.21 88.67 88.35 83.05 74.58 70.99
arc 82.13 81.49 83.64 82.59 84.17 80.67 84.34 82.13 84.52 81.72 83.64 80.79 81.55 80.21
S18 76.81 74.02 77.3 76.71 77.41 72.94 78.59 72.08 77.67 80.1 79.93 75.31 74.07 68.86
OMD 78.44 77.07 74.97 75.39 75.55 76.7 76.29 73.19 78.18 76.34 76.71 73.66 76.18 76.28
HCR 74.16 73.38 73.95 74.58 75.1 74.32 78.46 74.11 74.58 74.95 74.69 74.11 74.21 73.27
STS 76.84 75.96 75.71 77.63 79.45 74.19 80.29 78.72 78.81 88.59 86.58 80.29 73.84 72.22
SSt 71.52 68.42 71.04 69.72 73.79 68.37 71.21 71.47 73.09 80.78 83.66 73.22 69.24 64.53
Tar 79.95 76.98 79.92 80.07 80.1 74.01 80.36 77.62 79.03 78.14 81.37 79.44 76.32 71.68
Vad 79.69 77.41 78.53 78.93 80.98 74.52 80.15 78.24 81.08 85.82 85.94 80.15 75.07 71.88
S13 76.22 74.99 75.35 75.33 77.59 74.6 77.59 75.54 76.68 83.23 87.46 76.91 74.62 73.85
S17 83.17 80.9 83.65 83.13 84.67 77.2 83.87 78.0 82.84 81.03 84.35 79.63 77.67 72.48
S16 80.54 79.76 80.05 80.48 81.96 76.56 81.5 77.77 80.84 80.75 82.98 78.48 76.56 73.94
#wins 1 0 0 0 1 0 3 0 1 6 10 0 0 0
rank sums 159.0 207.0 190.0 170.5 105.0 235.5 116.0 202.5 105.5 79.5 46.0 171.0 244.0 278.5
position 6.0 11.0 9.0 7.0 3.0 12.0 5.0 10.0 4.0 2.0 1.0 8.0 13.0 14.0
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Table A.2: F1-macro scores (%) achieved by evaluating static representation using the
RF classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 46.41 43.02 39.77 41.72 45.8 49.66 39.77 38.44 45.88 58.33 57.46 39.24 43.55 39.11
sar 55.42 59.85 60.6 64.08 65.79 55.44 61.34 68.91 64.05 71.65 72.87 61.88 47.6 51.59
ntu 70.52 83.96 65.88 64.28 70.21 74.73 66.47 69.28 90.26 93.29 77.35 89.37 82.96 74.07
S15 46.05 48.13 46.05 46.05 48.13 46.05 68.41 46.05 48.13 49.54 49.87 46.05 46.05 46.05
stm 79.9 77.58 79.77 82.42 82.02 74.82 76.1 78.49 81.11 81.01 83.51 75.9 76.79 68.32
per 55.83 57.89 57.99 59.07 56.55 48.74 70.06 48.16 60.96 66.79 70.75 51.34 44.26 44.52
hob 77.38 72.56 70.21 83.63 77.67 73.56 91.68 80.09 74.2 75.99 84.05 79.59 69.66 72.15
iph 67.42 69.35 68.24 70.11 70.78 66.53 67.49 69.61 69.64 72.87 74.96 68.44 64.27 66.23
mov 45.05 45.05 45.05 45.05 46.01 46.01 50.42 45.05 46.96 60.17 70.78 48.66 45.05 45.05
san 79.38 75.23 78.19 78.24 78.52 73.35 78.72 77.33 79.06 81.65 80.19 79.26 73.1 73.05
Nar 76.75 72.43 76.87 75.61 81.54 67.47 77.12 78.89 81.85 88.19 87.78 81.6 69.78 64.43
arc 80.94 80.12 82.48 81.55 83.25 79.34 83.82 80.71 83.52 80.69 82.72 79.01 80.37 78.82
S18 76.09 73.21 76.5 75.99 76.76 71.86 77.8 71.01 77.02 79.77 79.69 74.49 73.24 67.09
OMD 73.66 71.23 68.51 69.09 70.15 71.05 72.03 65.57 72.88 72.63 72.32 67.13 70.36 70.05
HCR 51.44 48.73 50.2 52.15 55.03 53.89 65.84 50.79 53.36 57.39 56.34 50.6 51.52 48.94
STS 64.53 63.21 61.79 66.08 70.38 58.24 73.01 68.82 69.21 86.14 83.25 71.65 56.87 52.8
SSt 68.21 64.4 67.36 66.25 71.64 64.04 69.48 68.11 71.01 80.07 82.99 70.67 64.88 58.86
Tar 79.94 76.97 79.91 80.06 80.09 73.98 80.34 77.6 79.02 78.09 81.33 79.4 76.3 71.63
Vad 70.25 65.06 67.25 68.26 73.08 58.05 73.23 67.7 73.31 82.54 82.69 71.59 59.68 50.69
S13 56.68 53.67 53.21 54.63 61.79 50.41 62.33 56.11 59.79 77.03 83.22 59.61 49.56 46.52
S17 80.86 77.91 81.37 80.74 82.72 72.22 82.2 73.53 80.62 78.74 82.76 75.89 73.43 64.49
S16 68.87 67.26 67.27 68.55 72.33 56.99 72.11 63.27 70.23 72.86 76.29 64.26 57.04 47.18
#wins 1 0 0 0 0 0 4 0 0 6 11 0 0 0
rank sums 161.5 208.0 200.0 165.5 109.5 234.0 106.5 204.5 105.0 70.0 42.0 173.5 245.5 284.5
position 6.0 11.0 9.0 7.0 5.0 12.0 4.0 10.0 3.0 2.0 1.0 8.0 13.0 14.0

Table A.3: Accuracies (%) achieved using the MLP classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 75.48 75.95 77.38 76.19 69.29 64.29 53.33 64.52 67.86 69.52 74.05 65.24 70.95 65.95
sar 70.36 60.36 58.93 64.82 77.32 65.0 51.96 70.36 67.5 83.04 61.96 57.5 59.11 53.39
ntu 80.2 88.84 77.02 73.73 76.98 86.72 75.89 79.17 95.3 92.46 79.46 91.76 88.81 90.95
S15 84.13 84.43 86.92 84.46 83.19 90.04 86.91 85.97 89.74 86.92 87.23 87.55 88.16 89.1
stm 80.5 80.78 80.49 81.88 81.34 85.76 80.76 79.92 82.99 79.1 81.05 76.34 84.1 76.62
per 83.83 80.63 83.39 82.0 81.77 79.27 80.19 79.73 79.95 75.64 79.5 79.73 79.49 77.43
hob 89.84 88.5 89.08 92.33 88.87 94.82 87.74 90.79 89.47 85.82 88.71 90.03 94.44 92.72
iph 81.02 80.82 79.68 81.57 84.39 81.37 78.93 80.64 78.57 78.55 81.78 81.95 81.94 82.14
mov 83.96 85.21 88.24 86.98 85.21 86.28 84.85 86.45 87.17 85.03 85.91 86.46 86.81 85.03
san 81.77 78.51 82.51 82.76 82.76 81.53 84.71 82.43 83.33 79.41 80.06 80.72 82.92 82.27
Nar 85.57 83.12 83.94 83.86 87.04 85.09 80.77 82.89 88.51 86.06 87.77 88.26 86.64 82.97
arc 84.75 84.4 84.81 85.45 86.26 85.97 85.51 83.76 87.14 79.81 83.12 84.23 87.6 85.57
S18 76.98 75.79 79.45 78.38 78.27 82.84 81.71 73.0 80.69 76.44 78.16 78.32 84.56 80.31
OMD 83.0 80.11 80.48 78.28 76.02 81.95 76.81 75.97 81.95 73.19 73.92 75.6 83.79 80.75
HCR 76.93 75.94 76.15 77.3 77.83 77.67 76.62 75.68 76.57 67.61 72.59 74.11 78.25 75.37
STS 85.16 83.68 86.82 86.73 86.92 87.02 84.61 86.28 88.1 87.86 85.25 88.35 87.46 85.79
SSt 77.06 72.13 76.37 76.23 76.98 77.11 71.43 73.7 79.12 75.67 82.13 77.63 78.29 73.75
Tar 81.48 78.34 80.99 80.53 79.58 80.33 78.51 80.04 80.39 74.47 79.67 79.87 81.57 79.95
Vad 87.18 86.53 85.56 85.89 85.75 87.37 82.55 85.37 88.18 84.72 84.46 86.73 89.2 85.41
S13 81.89 79.69 81.52 80.9 81.48 81.98 79.6 79.65 82.09 80.58 87.12 82.23 83.58 81.86
S17 87.25 85.68 87.43 86.42 86.66 87.13 85.71 82.24 85.57 77.52 83.19 83.55 87.65 86.92
S16 83.71 83.21 83.97 84.13 83.8 84.06 83.66 80.93 83.96 78.92 80.98 82.11 85.26 84.13
#wins 1 0 2 0 1 3 1 0 2 1 2 1 8 0
rank sums 151.5 212.5 148.5 142.0 152.0 117.5 225.0 221.0 100.5 234.0 192.0 167.5 74.0 172.0
position 6.0 11.0 5.0 4.0 7.0 3.0 13.0 12.0 2.0 14.0 10.0 8.0 1.0 9.0
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Table A.4: F1-macro scores (%) achieved by evaluating static representation using the
MLP classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 66.46 69.14 67.3 66.61 60.04 52.77 38.3 52.65 57.52 63.39 65.85 55.16 60.77 50.22
sar 69.56 57.48 56.76 63.38 76.49 59.85 49.12 68.59 64.74 82.58 61.3 51.48 56.76 49.76
ntu 79.77 88.39 76.33 72.38 76.14 86.45 74.92 78.58 95.19 92.26 78.95 91.51 88.52 90.76
S15 65.78 66.09 68.7 66.13 60.05 76.15 59.64 64.68 76.06 69.72 69.59 72.38 70.24 70.84
stm 80.4 80.69 80.38 81.8 81.31 85.73 80.67 79.81 82.91 78.97 80.95 76.18 84.05 76.48
per 80.23 75.31 79.88 77.39 77.42 73.81 73.57 74.74 75.33 70.19 74.49 74.65 74.45 71.14
hob 88.38 86.58 87.46 91.29 87.27 94.05 84.82 89.55 87.89 83.56 87.0 88.53 93.63 91.57
iph 77.51 76.75 76.16 77.32 81.15 77.63 73.61 76.88 74.66 73.92 77.76 78.26 78.2 78.46
mov 70.74 72.76 77.86 76.15 71.93 75.07 68.27 74.61 77.11 73.42 74.73 75.63 75.61 71.03
san 81.62 78.38 82.37 82.65 82.64 81.36 84.56 82.35 83.21 79.24 79.95 80.53 82.81 82.16
Nar 84.9 82.2 83.17 83.06 86.46 84.37 79.48 82.05 87.99 85.4 87.16 87.71 85.93 82.12
arc 84.33 83.94 84.39 85.05 85.9 85.6 85.04 83.32 86.8 79.28 82.65 83.74 87.29 85.22
S18 76.88 75.65 79.33 78.28 78.14 82.78 81.49 72.85 80.59 76.29 78.02 78.19 84.48 80.19
OMD 81.59 78.48 78.96 76.27 73.95 80.39 75.03 73.92 80.58 70.91 71.77 73.73 82.51 79.42
HCR 70.89 69.1 70.07 71.2 71.87 71.39 70.02 68.07 70.59 58.39 65.86 67.01 72.59 69.49
STS 82.37 80.75 84.48 84.32 84.38 84.72 81.23 83.85 86.04 85.85 82.34 86.27 85.2 83.05
SSt 76.36 71.2 75.52 75.4 76.15 76.36 70.23 72.86 78.47 74.95 81.63 76.87 77.55 72.83
Tar 81.47 78.33 80.98 80.52 79.57 80.3 78.5 80.04 80.38 74.44 79.65 79.85 81.56 79.94
Vad 84.85 83.85 82.92 83.22 83.14 85.14 78.86 82.72 86.16 82.15 81.66 84.39 87.32 82.82
S13 76.81 73.46 76.37 75.24 76.17 77.55 72.75 74.03 77.47 75.12 83.67 77.48 79.2 77.06
S17 86.35 84.7 86.53 85.51 85.73 86.22 84.65 80.91 84.57 75.82 82.09 82.4 86.74 85.99
S16 79.27 78.55 79.42 79.63 79.45 79.82 78.89 75.33 79.69 73.28 75.76 76.99 81.05 79.83
#wins 1 1 1 0 1 3 1 0 2 1 2 1 8 0
rank sums 146.5 213.0 149.5 144.0 152.0 112.5 243.0 222.0 95.0 228.0 191.0 164.0 75.5 174.0
position 5.0 11.0 6.0 4.0 7.0 3.0 14.0 12.0 2.0 13.0 10.0 8.0 1.0 9.0

Table A.5: Accuracies (%) achieved using the LR classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 70.0 70.71 66.9 66.9 69.05 60.95 57.86 65.71 59.76 71.43 78.81 61.43 62.62 52.14
sar 74.46 67.32 64.46 71.61 73.04 67.68 54.64 70.36 70.36 87.5 74.64 60.36 56.25 53.39
ntu 79.52 89.54 71.6 74.09 76.94 73.74 73.7 73.76 88.85 93.16 80.21 92.46 89.93 71.28
S15 81.32 81.32 74.81 85.08 77.59 84.72 90.35 79.74 82.55 76.03 80.4 84.43 86.6 81.3
stm 84.94 83.29 82.74 84.11 84.67 76.06 80.2 80.51 81.9 82.15 84.13 80.22 83.0 71.02
per 82.01 81.32 77.21 80.17 80.86 70.14 76.52 73.11 71.75 76.09 77.46 75.84 77.21 68.1
hob 84.47 88.32 76.82 91.56 87.54 80.82 91.37 88.5 75.09 80.07 86.61 88.31 90.79 79.3
iph 74.62 78.0 73.12 76.88 77.81 69.36 76.31 74.81 72.18 73.85 79.32 75.56 77.64 72.95
mov 79.51 80.57 77.72 81.64 81.29 75.24 84.31 78.62 72.21 82.53 82.35 77.9 82.53 69.72
san 80.14 79.0 76.63 80.63 80.79 70.19 81.86 78.19 77.69 80.88 80.15 79.73 80.47 72.63
Nar 84.19 84.35 82.64 84.43 87.37 77.59 80.44 83.29 83.05 89.0 88.26 87.29 85.33 74.91
arc 83.18 83.0 83.7 84.05 85.27 77.24 86.5 83.0 83.29 79.11 81.72 81.55 86.5 78.87
S18 80.31 78.75 80.1 80.53 82.04 75.53 82.3 75.68 78.48 81.23 81.23 77.94 84.89 75.52
OMD 81.58 80.48 79.07 78.33 77.38 73.55 78.59 75.81 76.55 75.34 76.28 75.02 81.53 75.92
HCR 72.43 71.9 68.92 73.0 74.26 65.2 78.09 68.86 66.77 65.09 67.55 68.34 74.36 65.77
STS 85.25 83.48 84.12 86.09 86.67 78.86 84.42 86.18 82.1 89.08 85.45 87.71 85.79 76.5
SSt 77.5 76.06 75.58 80.12 78.42 71.17 73.57 76.32 76.85 80.26 85.06 79.29 79.73 68.33
Tar 82.49 80.94 82.38 82.64 83.44 76.92 81.63 81.08 79.52 78.22 82.38 81.94 83.07 73.93
Vad 87.13 84.87 86.13 87.32 86.3 80.39 83.65 83.91 82.65 85.7 85.46 85.58 88.92 76.62
S13 80.36 78.78 78.42 79.67 80.24 72.77 78.73 77.25 76.06 81.75 87.83 79.99 81.11 71.13
S17 87.54 86.23 86.95 87.19 87.36 82.87 87.14 82.4 84.78 79.97 85.43 84.17 87.88 81.68
S16 83.69 82.43 83.22 83.46 83.79 79.54 84.18 78.57 80.3 79.19 82.28 80.89 84.61 76.19
#wins 3 0 0 1 1 0 5 0 0 4 4 0 5 0
rank sums 116.5 149.0 192.5 101.5 97.0 264.0 146.5 204.0 220.5 152.0 120.0 174.0 82.5 290.0
position 4.0 7.0 10.0 3.0 2.0 13.0 6.0 11.0 12.0 8.0 5.0 9.0 1.0 14.0
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Table A.6: F1-macro scores (%) achieved by evaluating static representation using the LR
classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 63.88 65.27 62.4 59.61 63.7 56.53 36.27 57.73 53.05 68.67 75.87 55.74 56.27 46.16
sar 74.02 66.17 62.88 70.84 71.25 66.16 50.32 68.0 68.45 87.19 73.32 57.75 54.23 52.23
ntu 79.2 89.21 71.0 73.22 76.14 73.46 72.77 73.25 88.71 92.99 79.87 92.27 89.57 70.89
S15 67.06 66.39 61.94 73.19 64.38 72.61 75.63 65.1 70.26 63.92 67.94 71.54 74.79 67.76
stm 84.89 83.21 82.62 84.08 84.65 75.95 80.1 80.33 81.71 82.12 84.08 80.13 82.92 70.79
per 79.75 78.36 74.63 77.56 77.71 66.57 73.01 70.55 69.58 73.02 75.21 73.51 75.24 64.82
hob 83.17 86.79 75.42 90.61 86.39 79.66 90.2 87.5 73.98 78.31 85.38 87.33 89.96 77.93
iph 72.53 76.05 71.69 74.98 75.59 68.06 72.07 72.84 70.8 71.27 77.33 73.85 75.55 71.42
mov 71.37 71.11 68.56 73.23 73.34 65.78 70.61 70.68 63.91 75.4 75.11 70.04 74.01 59.89
san 79.91 78.88 76.34 80.51 80.67 69.61 81.58 77.94 77.33 80.78 80.05 79.57 80.17 71.99
Nar 83.75 83.79 82.27 83.95 86.99 77.14 79.82 82.88 82.65 88.58 87.91 86.93 84.88 74.37
arc 82.84 82.6 83.32 83.75 84.94 76.66 86.11 82.62 82.78 78.62 81.23 80.98 86.15 78.27
S18 80.16 78.62 79.91 80.42 81.91 75.22 82.03 75.43 78.15 81.12 81.13 77.71 84.78 75.21
OMD 80.34 79.32 77.58 77.14 76.26 71.78 77.02 74.41 74.91 74.19 75.05 73.85 80.33 73.6
HCR 69.42 68.56 66.04 69.58 71.17 62.42 73.37 64.9 64.45 61.89 64.29 64.59 71.24 63.03
STS 83.57 81.63 82.17 84.38 85.04 76.3 81.73 84.47 79.85 87.7 83.74 86.1 84.05 74.02
SSt 77.16 75.68 75.25 79.79 78.05 70.94 72.99 75.94 76.66 79.91 84.77 78.98 79.36 68.08
Tar 82.49 80.92 82.37 82.63 83.43 76.9 81.61 81.06 79.51 78.21 82.36 81.9 83.06 73.89
Vad 85.52 83.02 84.47 85.71 84.55 78.28 81.18 82.1 81.02 84.0 83.74 83.92 87.45 74.57
S13 77.46 75.75 75.71 76.61 77.21 70.19 74.35 74.39 73.47 78.91 85.59 77.31 78.24 68.25
S17 86.92 85.54 86.3 86.56 86.7 81.94 86.32 81.39 83.98 78.99 84.69 83.27 87.22 80.63
S16 80.72 79.46 80.19 80.54 80.96 76.55 81.04 75.68 77.31 76.16 79.38 78.08 81.8 73.03
#wins 3 0 0 1 1 0 3 0 0 5 4 0 5 0
rank sums 113.0 152.0 189.0 102.5 96.0 261.0 166.0 200.0 221.0 152.0 117.5 169.0 82.0 289.0
position 4.0 6.5 10.0 3.0 2.0 13.0 8.0 11.0 12.0 6.5 5.0 9.0 1.0 14.0

Table A.7: Accuracies (%) achieved using the XGB classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 72.38 67.62 58.57 61.9 62.62 66.67 42.38 59.52 69.76 65.48 71.19 66.43 55.24 65.71
sar 63.57 63.21 66.25 70.54 71.79 58.93 51.96 58.93 57.5 73.21 70.36 56.25 46.25 49.29
ntu 75.22 82.37 68.73 71.24 75.19 76.59 62.61 75.2 89.92 92.08 76.22 87.79 82.75 78.4
S15 85.36 86.6 85.05 86.31 85.98 86.92 88.78 87.23 86.93 86.6 85.99 88.48 86.91 88.17
stm 80.49 75.49 81.33 77.15 79.95 74.11 69.09 79.91 81.34 81.05 83.56 76.05 78.0 67.41
per 77.21 79.27 78.82 79.5 78.12 73.58 73.57 76.08 77.91 77.0 79.05 78.35 79.95 69.7
hob 82.96 85.04 81.6 90.99 86.19 87.73 92.71 88.31 84.68 80.28 88.89 87.53 86.97 88.51
iph 79.13 81.38 81.0 79.5 81.94 77.82 73.3 80.64 82.12 78.74 81.59 80.83 78.96 76.32
mov 85.56 82.17 84.85 84.85 83.78 83.6 83.79 83.07 84.14 83.78 88.78 86.1 84.49 82.89
san 80.71 79.33 79.81 80.06 81.03 79.9 77.86 75.97 81.29 81.95 80.71 82.43 79.65 76.8
Nar 82.72 80.2 81.08 83.05 85.57 80.44 77.6 81.09 84.19 88.83 87.78 87.04 81.1 76.86
arc 84.34 82.71 85.62 84.17 85.86 82.71 83.99 83.88 87.14 82.77 84.46 82.95 84.75 82.48
S18 78.16 76.22 78.16 76.17 78.16 77.3 80.42 71.0 78.7 80.26 80.58 78.05 79.02 73.37
OMD 80.59 80.38 79.12 77.7 77.49 80.17 75.5 75.44 80.43 77.28 75.97 76.08 79.9 80.27
HCR 78.93 76.36 76.99 77.41 79.29 77.72 78.93 75.36 78.04 74.42 75.26 76.57 78.98 76.15
STS 83.97 81.81 84.07 83.88 83.97 81.61 81.61 84.96 83.38 88.89 86.93 86.18 81.32 78.56
SSt 76.58 72.7 74.97 73.96 76.01 72.87 70.12 74.71 76.32 79.86 83.92 76.89 73.92 68.98
Tar 80.33 79.98 80.93 80.24 81.22 78.31 79.98 79.15 80.18 78.28 81.86 79.64 78.91 76.15
Vad 85.7 83.13 85.51 84.03 85.6 81.7 81.63 83.53 85.87 86.15 86.8 85.37 84.08 78.93
S13 81.02 79.26 80.4 80.45 81.04 79.19 78.8 79.58 81.84 83.33 88.24 81.73 79.95 75.95
S17 87.32 85.05 87.16 85.58 87.06 85.28 85.19 82.07 85.33 81.24 85.03 83.52 85.33 80.73
S16 84.31 83.46 84.96 84.29 85.01 82.33 83.47 81.01 84.11 81.66 83.49 82.15 83.54 79.91
#wins 3 0 0 0 2 0 2 0 2 4 7 1 1 0
rank sums 125.5 195.5 151.5 153.5 123.0 207.5 215.5 214.5 106.5 153.0 98.5 144.0 167.5 254.0
position 4.0 10.0 6.0 8.0 3.0 11.0 13.0 12.0 2.0 7.0 1.0 5.0 9.0 14.0
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Table A.8: F1-macro scores (%) achieved by evaluating static representation using the
XGB classifier

Dataset

w2v GloVe Fast EWE GloVe BERT TF- w2v w2v SSWE Emo2 Deep RoB BTWT

GN WP Text TWT static IDF Araque Edin Vec Moji static static

iro 63.3 54.98 42.49 46.16 47.46 53.86 30.21 46.16 61.54 56.22 62.7 53.71 41.13 54.88
sar 61.87 61.94 65.06 69.41 70.85 53.87 49.32 56.77 56.1 72.17 68.52 55.59 43.19 44.94
ntu 74.12 81.55 66.91 69.66 73.9 75.17 60.93 73.57 89.58 91.87 75.41 87.35 82.05 77.55
S15 51.77 56.34 48.79 56.35 54.95 62.95 72.27 57.46 58.18 59.58 61.55 67.55 60.93 61.85
stm 80.43 75.24 81.25 77.05 79.83 73.94 68.8 79.87 81.18 80.97 83.47 75.98 77.95 66.91
per 68.33 71.55 71.29 72.1 69.99 60.54 66.27 66.93 69.67 69.02 73.31 70.46 72.51 55.75
hob 79.57 81.82 77.25 89.31 83.48 85.24 91.77 86.16 81.81 76.1 87.0 85.37 84.46 85.99
iph 73.42 75.1 75.54 73.28 77.1 70.45 65.9 74.83 77.84 73.31 77.2 75.39 71.69 68.78
mov 64.5 54.7 61.87 61.59 59.34 54.96 64.42 55.64 61.04 69.46 77.58 67.72 61.38 53.12
san 80.51 79.12 79.6 79.84 80.83 79.62 77.56 75.72 81.07 81.79 80.54 82.25 79.38 76.37
Nar 81.72 79.02 79.66 81.93 84.81 78.8 76.49 80.0 83.41 88.34 87.21 86.42 79.73 74.88
arc 83.75 82.06 85.08 83.7 85.38 82.02 83.56 83.24 86.65 82.0 83.82 82.16 84.25 81.82
S18 77.9 75.94 77.94 75.9 77.88 77.02 79.92 70.49 78.51 80.06 80.42 77.78 78.75 72.94
OMD 78.38 77.75 76.48 74.75 74.88 77.39 72.54 72.16 77.86 74.5 73.11 73.29 77.31 77.39
HCR 69.14 64.37 65.49 66.73 69.81 67.54 71.02 61.49 67.75 63.33 63.49 64.4 69.19 63.49
STS 79.78 77.0 79.72 79.74 80.07 75.87 76.91 81.37 79.07 86.79 84.4 82.98 75.01 70.87
SSt 75.52 71.24 73.8 72.62 74.82 71.15 68.54 73.53 75.22 79.26 83.38 75.9 72.42 67.16
Tar 80.32 79.97 80.92 80.24 81.21 78.29 79.97 79.13 80.17 78.26 81.83 79.62 78.9 76.12
Vad 82.16 78.77 81.87 79.96 82.17 76.04 75.91 79.41 82.42 83.53 84.22 82.11 79.45 71.12
S13 72.81 70.13 71.94 71.78 73.47 68.52 68.47 71.18 75.01 78.28 84.81 74.72 70.23 61.56
S17 86.31 83.75 86.09 84.37 85.98 83.81 83.79 80.09 84.07 79.46 83.82 81.92 83.94 78.51
S16 78.67 77.17 79.33 78.33 79.72 75.1 76.43 73.62 78.36 75.68 78.23 75.61 76.84 69.99
#wins 3 0 0 0 1 0 3 0 2 4 8 1 0 0
rank sums 129.0 195.5 153.0 160.5 123.0 217.5 211.5 216.5 110.0 135.0 81.5 143.0 177.0 257.0
position 4.0 10.0 7.0 8.0 3.0 13.0 11.0 12.0 2.0 5.0 1.0 6.0 9.0 14.0
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A.2 Transformer-based Text Representation

Table A.9: Accuracies and F1-macro scores (%) achieved by evaluating Transformer-
Autoencoder language models using the RF classifier

Dataset
Accuracy F1-macro

RoBERTa BERT BERTweet RoBERTa BERT BERTweet

iro 66.19 67.62 67.62 39.77 43.48 43.48
sar 66.07 67.32 64.64 61.2 64.83 62.33
ntu 83.1 83.06 84.88 82.09 81.77 83.58

S15 85.67 85.36 86.29 47.79 46.05 51.62

stm 86.62 83.02 88.31 86.58 82.97 88.26

per 76.08 77.23 76.09 59.57 61.8 60.49
hob 78.37 77.4 80.66 68.92 67.02 72.74

iph 80.06 80.25 82.13 71.21 71.96 75.55

mov 82.18 82.35 82.17 46.01 46.89 45.93
san 84.97 82.6 85.05 84.74 82.3 84.9

Nar 87.37 85.41 90.14 86.34 84.25 89.4

arc 88.36 86.09 88.36 87.9 85.51 87.93

S18 83.54 80.69 83.76 83.17 80.17 83.42

OMD 79.07 79.28 80.43 74.79 75.07 76.63

HCR 75.63 75.89 76.89 55.65 56.58 59.47

STS 82.89 81.71 82.4 76.1 74.36 75.04
SSt 80.08 78.68 79.12 78.63 77.15 77.45
Tar 81.83 82.35 82.72 81.82 82.34 82.71

Vad 82.41 82.55 81.08 75.51 75.67 72.66
S13 81.11 79.88 80.22 69.45 66.9 67.55
S17 87.52 86.54 87.84 86.2 85.1 86.57

S16 84.41 84.01 84.87 76.83 76.1 77.55

#wins 4 5 15 3 5 15
rank sums 46.5 52.5 33.0 48.0 52.5 31.5
position 2.0 3.0 1.0 2.0 3.0 1.0
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Table A.10: Accuracies and F1-macro scores (%) achieved by evaluating Transformer-
Autoencoder language models using the MLP classifier

Dataset
Accuracy F1-macro

RoBERTa BERT BERTweet RoBERTa BERT BERTweet

iro 70.71 80.48 73.33 63.36 70.87 64.96
sar 68.75 71.79 70.54 66.95 70.21 69.75
ntu 86.35 88.82 90.32 85.96 88.52 90.08

S15 88.48 91.89 92.23 70.62 78.77 82.42

stm 88.57 87.2 89.43 88.53 87.12 89.4

per 86.8 84.75 86.55 83.71 81.6 83.35
hob 87.74 85.06 86.0 85.73 82.9 83.65
iph 85.54 83.47 87.59 82.57 80.06 84.72

mov 89.47 88.41 87.69 81.11 78.5 78.11
san 88.88 87.58 91.17 88.78 87.5 91.11

Nar 91.2 91.12 95.6 90.8 90.73 95.43

arc 89.75 88.89 90.74 89.52 88.6 90.51

S18 87.41 85.85 88.65 87.34 85.77 88.57

OMD 85.15 84.84 87.15 83.98 83.73 86.12

HCR 80.76 79.56 81.08 75.53 74.03 76.14

STS 91.94 90.66 93.71 90.54 89.02 92.7

SSt 84.93 84.36 85.8 84.46 83.89 85.3

Tar 83.53 83.7 85.61 83.53 83.7 85.6

Vad 90.04 89.2 90.61 88.25 87.32 88.97

S13 87.44 87.09 89.54 84.0 83.67 86.87

S17 90.74 91.07 92.09 90.08 90.43 91.52

S16 89.75 88.53 90.96 86.99 85.43 88.5

#wins 3 2 17 3 2 17
rank sums 47.0 57.0 28.0 47.0 57.0 28.0
position 2.0 3.0 1.0 2.0 3.0 1.0



A.2 Transformer-based Text Representation 80

Table A.11: Accuracies and F1-macro scores (%) achieved by evaluating Transformer-
Autoencoder language models using the LR classifier

Dataset
Accuracy F1-macro

RoBERTa BERT BERTweet RoBERTa BERT BERTweet

iro 65.95 80.48 72.14 57.55 73.08 65.1
sar 70.18 71.79 69.11 68.52 70.79 67.41
ntu 85.99 87.75 91.03 85.71 87.41 90.8

S15 86.93 90.66 92.23 69.44 78.66 83.33

stm 90.79 85.8 88.31 90.75 85.74 88.29
per 86.34 84.97 87.69 83.6 82.27 85.29

hob 87.93 86.01 87.16 86.29 84.27 85.4
iph 85.53 83.09 86.09 82.94 79.65 83.63

mov 88.93 87.7 88.95 81.2 78.63 82.12

san 89.05 87.01 91.01 88.95 86.93 90.95

Nar 91.11 91.04 95.11 90.73 90.67 94.95

arc 89.0 88.59 90.57 88.75 88.32 90.36

S18 87.04 83.76 88.54 86.96 83.65 88.47

OMD 84.37 84.15 87.15 83.34 83.09 86.26

HCR 80.45 79.24 80.5 76.42 74.75 76.77

STS 92.43 90.51 93.9 91.23 88.92 92.98

SSt 84.67 83.66 86.46 84.27 83.2 86.1

Tar 83.91 82.32 85.95 83.9 82.32 85.95

Vad 89.97 89.3 90.8 88.43 87.59 89.38

S13 87.89 86.78 89.61 85.15 83.7 87.37

S17 90.88 90.18 92.31 90.32 89.57 91.8

S16 89.39 88.63 91.03 87.08 86.06 89.05

#wins 2 2 18 2 2 18
rank sums 45.0 60.0 27.0 45.0 60.0 27.0
position 2.0 3.0 1.0 2.0 3.0 1.0
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Table A.12: Accuracies and F1-macro scores (%) achieved by evaluating Transformer-
Autoencoder language models using the XGB classifier

Dataset
Accuracy F1-macro

RoBERTa BERT BERTweet RoBERTa BERT BERTweet

iro 61.67 60.24 61.9 48.3 48.24 47.05
sar 64.64 62.14 68.93 63.08 60.37 67.47

ntu 83.08 82.72 85.62 82.54 82.24 85.04

S15 89.1 87.84 90.03 67.85 58.92 71.62

stm 86.6 82.46 81.02 86.57 82.43 80.97
per 81.09 80.87 82.0 73.83 74.16 75.37

hob 82.95 80.27 83.9 79.03 75.67 80.29

iph 83.09 80.82 83.09 77.99 75.27 78.88

mov 85.21 84.49 87.88 64.4 59.81 72.09

san 85.14 85.05 88.15 85.03 84.91 88.06

Nar 90.63 88.59 91.6 90.16 88.01 91.19

arc 89.47 87.31 90.63 89.18 86.93 90.4

S18 85.37 84.62 86.12 85.24 84.45 85.98

OMD 83.58 83.63 84.73 81.69 81.74 82.94

HCR 81.39 79.92 81.55 73.07 71.37 74.11

STS 89.92 87.86 90.51 87.73 85.04 88.36

SSt 83.62 82.79 82.83 82.99 82.06 82.08
Tar 83.36 83.33 84.51 83.34 83.32 84.5

Vad 87.63 87.61 88.01 84.85 84.75 85.13

S13 86.52 85.47 87.07 81.79 80.39 82.6

S17 89.85 89.93 90.53 89.06 89.13 89.78

S16 88.99 88.42 89.74 85.52 84.64 86.51

#wins 3 0 20 3 0 19
rank sums 43.5 63.0 25.5 44.0 61.0 27.0
position 2.0 3.0 1.0 2.0 3.0 1.0
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A.3 Transformer-based Text Representation tuned With
a Large Collection of English Tweets

Table A.13: Average classification accuracies (%) achieved by fine-tuning BERT with
different samples of generic unlabeled tweets, using the RF classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 68.89 69.52 67.7 67.7 68.81 69.44 67.86 66.19 66.75 66.11
sar 68.33 65.53 72.14 68.33 70.24 75.42 67.8 70.36 68.93 65.24
ntu 82.1 82.58 80.07 80.7 77.57 79.61 82.36 88.84 88.24 89.67

S15 85.46 85.46 85.36 85.57 85.67 85.98 85.88 85.56 85.46 85.77
stm 83.66 85.71 84.12 84.04 84.22 83.12 84.97 85.62 84.95 83.57
per 76.69 77.3 77.83 78.59 77.83 78.3 78.51 76.46 74.87 74.42
hob 79.82 79.64 79.57 80.21 81.1 81.3 80.73 81.42 81.1 82.12

iph 82.14 82.51 82.25 82.57 82.2 81.5 81.26 80.81 81.38 82.19
mov 82.12 82.06 82.06 82.06 82.06 82.36 82.18 82.36 82.23 82.3
san 82.79 83.17 84.69 84.07 83.28 84.72 84.61 83.41 83.39 83.01
Nar 86.63 87.64 87.01 87.91 86.55 87.91 89.0 89.0 89.65 88.8
arc 86.56 86.77 86.77 87.21 86.59 87.25 88.01 87.99 87.58 88.69

S18 81.78 81.96 81.89 81.75 82.12 82.27 82.97 82.39 82.3 82.48
OMD 80.08 80.84 80.26 79.69 79.7 78.87 80.31 78.91 78.26 79.22
HCR 76.27 76.29 76.13 76.48 75.61 76.07 76.36 75.91 75.64 75.23
STS 82.56 82.73 83.02 82.66 82.81 83.27 84.7 84.96 84.88 84.6
SSt 80.76 80.4 80.56 80.05 79.67 79.54 80.63 79.35 79.87 79.56
Tar 82.45 82.6 83.1 82.35 82.22 82.22 82.47 81.81 81.92 81.53
Vad 82.97 83.14 83.65 83.09 83.01 83.65 84.32 83.95 84.29 84.33

S13 81.19 81.7 81.95 81.72 81.82 81.6 82.42 82.07 81.38 81.31
S17 86.6 87.12 87.02 87.1 87.38 87.08 87.27 86.38 85.12 85.07
S16 84.49 84.83 84.74 84.91 84.72 84.49 84.79 84.16 83.35 83.26
#wins 1 3 1 4 1 4 2 2 1 4
rank sums 153.0 114.0 120.5 119.0 134.0 113.5 73.5 114.0 131.5 137.0
position 10.0 3.5 6.0 5.0 8.0 2.0 1.0 3.5 7.0 9.0
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Table A.14: Average F1-macro scores (%) achieved by fine-tuning BERT with different
samples of unlabeled tweets, using the RF classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 46.05 46.81 46.33 44.26 45.46 47.31 43.55 39.77 41.03 41.54
sar 66.11 63.16 70.12 65.15 67.11 73.87 65.32 67.88 66.63 60.38
ntu 80.83 81.62 78.65 79.53 75.96 78.55 81.65 88.43 87.68 89.24

S15 46.63 46.63 46.05 47.21 47.79 49.54 48.96 47.21 46.63 48.48
stm 83.6 85.67 84.04 83.99 84.17 83.03 84.89 85.57 84.85 83.48
per 61.1 61.98 63.27 65.02 63.84 64.73 65.32 60.55 56.95 55.83
hob 71.4 71.1 71.37 72.28 74.3 74.42 73.21 75.01 74.18 76.11

iph 75.45 76.04 75.57 75.77 75.24 74.4 73.69 73.22 74.19 75.05
mov 45.66 45.67 45.34 45.34 45.37 46.94 45.98 46.94 46.27 46.87
san 82.51 82.94 84.46 83.84 83.04 84.5 84.37 83.2 83.11 82.69
Nar 85.59 86.72 86.02 86.98 85.5 87.15 88.32 88.28 88.97 87.99
arc 85.93 86.13 86.18 86.67 85.97 86.72 87.56 87.46 87.03 88.24

S18 81.28 81.51 81.49 81.34 81.7 81.82 82.61 81.93 81.84 82.04
OMD 76.24 77.24 76.43 75.81 75.69 74.74 76.52 74.46 73.5 74.79
HCR 57.72 57.87 57.67 58.59 56.1 57.35 58.83 57.08 56.32 55.11
STS 75.97 76.32 76.8 76.17 76.68 77.33 79.64 79.67 79.57 78.96
SSt 79.54 79.21 79.24 78.83 78.47 78.31 79.63 78.18 78.7 78.21
Tar 82.43 82.59 83.09 82.34 82.2 82.2 82.44 81.79 81.89 81.51
Vad 76.53 77.06 77.72 76.92 76.77 78.01 79.15 78.28 78.77 78.82
S13 70.02 71.53 71.73 71.24 71.5 71.69 73.23 72.2 70.71 70.88
S17 85.11 85.74 85.64 85.74 86.03 85.67 85.9 84.82 83.33 83.27
S16 76.96 77.8 77.55 77.84 77.57 77.21 77.63 76.38 74.74 74.61
#wins 0 3 1 1 1 5 6 2 1 3
rank sums 155.0 113.5 118.5 124.5 136.5 106.0 68.0 116.0 135.0 137.0
position 10.0 3.0 5.0 6.0 8.0 2.0 1.0 4.0 7.0 9.0
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Table A.15: Average classification accuracies (%) achieved by fine-tuning BERT with
different samples of generic unlabeled tweets, using the LR classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 74.05 70.71 70.95 66.67 75.24 72.14 76.43 81.9 75.0 76.35
sar 63.21 66.07 61.79 63.21 64.64 68.93 67.5 69.11 71.19 72.86

ntu 89.54 89.18 85.97 84.19 83.49 85.62 87.04 92.06 93.87 93.75
S15 91.89 91.59 90.96 88.47 89.08 90.97 88.14 90.68 88.16 88.37
stm 86.09 85.81 85.51 87.48 86.34 87.46 87.74 88.02 88.3 87.38
per 85.65 84.74 84.74 84.51 85.19 84.51 82.69 84.05 83.07 82.56
hob 86.97 86.78 89.27 87.73 88.11 86.4 88.51 88.31 87.61 88.95
iph 84.02 83.83 85.15 84.77 83.64 82.89 83.83 84.01 83.71 84.83
mov 86.64 88.06 88.23 88.05 87.34 87.16 86.98 86.99 88.53 89.37

san 87.01 86.03 86.19 86.27 86.68 87.09 88.06 86.6 87.31 88.18

Nar 90.38 90.54 90.71 91.04 90.87 90.87 92.75 93.32 93.97 93.29
arc 88.77 88.71 89.0 88.42 88.42 87.2 89.06 89.0 88.22 89.1

S18 85.21 83.76 84.56 83.7 84.62 83.59 84.99 85.48 85.91 85.87
OMD 83.42 84.15 83.52 84.0 84.63 83.21 83.95 83.95 84.07 84.94

HCR 78.82 77.67 79.66 77.93 78.56 78.77 77.56 77.78 78.33 77.51
STS 90.71 90.41 90.22 89.92 89.62 91.25 91.44 90.81 91.87 92.34

SSt 83.01 83.18 82.96 82.35 82.61 82.0 81.83 81.96 83.29 84.07

Tar 82.64 83.13 83.07 83.3 82.95 83.36 82.69 83.13 83.69 83.92

Vad 88.97 89.23 89.42 88.78 89.11 89.18 89.44 89.23 90.13 90.71

S13 86.96 86.71 87.6 86.3 87.0 87.07 86.93 87.6 87.46 87.79

S17 89.76 90.14 90.14 90.01 89.81 89.73 89.68 89.7 88.98 89.43
S16 88.83 88.56 88.68 88.71 88.38 87.8 88.56 87.84 87.96 88.17
#wins 3 1 4 0 0 0 0 1 4 10
rank sums 127.5 134.0 115.0 143.5 136.0 146.0 127.5 110.5 96.0 74.0
position 5.5 7.0 4.0 9.0 8.0 10.0 5.5 3.0 2.0 1.0
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Table A.16: Average F1-macro scores (%) achieved by fine-tuning BERT with different
samples of unlabeled tweets, using the LR classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 65.37 60.93 59.85 57.44 64.84 64.25 67.52 75.87 68.01 67.32
sar 61.96 64.44 60.36 62.09 63.52 66.89 66.9 68.12 70.54 71.87

ntu 89.27 88.9 85.62 83.83 82.98 85.26 86.78 91.86 93.72 93.6
S15 80.13 79.03 78.24 73.86 75.57 78.95 75.2 79.71 75.72 74.85
stm 86.05 85.75 85.44 87.45 86.27 87.4 87.69 87.97 88.27 87.34
per 82.87 81.54 81.74 81.59 82.14 81.48 79.08 80.83 79.75 79.29
hob 85.15 84.77 87.84 85.99 86.54 84.49 86.88 86.75 85.9 87.49
iph 81.0 80.74 82.15 81.76 80.83 79.63 81.01 81.35 80.66 82.24

mov 77.9 79.57 80.68 80.17 78.38 78.93 78.65 77.88 81.4 82.7

san 86.93 85.94 86.09 86.17 86.61 87.01 88.0 86.52 87.24 88.12

Nar 89.99 90.15 90.35 90.66 90.51 90.51 92.46 93.05 93.73 93.04
arc 88.51 88.46 88.74 88.18 88.18 86.91 88.82 88.75 87.96 88.86

S18 85.13 83.66 84.47 83.61 84.53 83.48 84.89 85.39 85.83 85.79
OMD 82.41 83.07 82.47 82.97 83.63 82.23 82.94 82.98 83.08 84.0

HCR 74.51 73.02 74.95 73.39 74.0 74.5 73.21 73.11 74.04 73.36
STS 89.26 88.86 88.7 88.33 87.95 89.86 90.03 89.42 90.58 91.16

SSt 82.48 82.67 82.42 81.88 82.13 81.48 81.29 81.49 82.79 83.64

Tar 82.63 83.12 83.07 83.29 82.95 83.35 82.69 83.12 83.69 83.92

Vad 87.26 87.56 87.72 87.06 87.42 87.48 87.77 87.53 88.61 89.33

S13 83.99 83.73 84.71 83.1 84.12 84.18 83.93 84.72 84.72 85.17

S17 89.13 89.53 89.51 89.39 89.2 89.08 89.05 89.07 88.33 88.81
S16 86.37 86.04 86.18 86.23 85.83 85.13 86.09 85.2 85.41 85.7
#wins 3 1 2 0 0 0 0 1 4 11
rank sums 128.0 140.5 120.0 144.5 140.0 148.5 122.0 108.0 87.5 71.0
position 6.0 8.0 4.0 9.0 7.0 10.0 5.0 3.0 2.0 1.0



A.3 Transformer-based Text Representation tuned With a Large Collection of English Tweets86

Table A.17: Average classification accuracies (%) achieved by fine-tuning BERT with
different samples of generic unlabeled tweets, using the MLP classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 74.53 70.88 72.06 69.68 73.81 79.52 76.11 78.57 77.86 75.0
sar 69.88 68.45 68.45 67.02 64.64 73.57 68.39 72.68 71.67 73.75

ntu 89.3 88.59 85.61 85.74 83.6 86.59 87.64 92.06 93.27 93.52

S15 92.21 91.89 90.97 90.12 90.24 91.06 89.29 89.94 89.2 89.92
stm 85.9 86.45 86.53 86.36 86.89 86.81 88.21 87.28 88.76 86.92
per 85.8 86.18 84.59 84.66 84.81 85.35 83.37 83.37 83.22 83.76
hob 86.72 86.78 88.06 87.29 87.92 87.55 89.73 89.08 87.62 89.21
iph 84.96 84.21 84.53 84.97 84.02 83.33 84.59 84.07 84.4 85.7

mov 87.76 87.94 87.99 87.7 87.28 87.58 88.23 88.24 88.89 89.6

san 87.01 86.79 87.36 87.53 87.5 87.5 89.0 86.74 87.47 88.83
Nar 90.14 89.86 90.73 90.87 91.06 91.12 92.28 93.21 93.86 92.99
arc 88.59 88.77 89.37 89.14 89.29 88.2 89.21 89.31 88.67 88.75
S18 85.48 84.62 85.5 84.8 85.55 84.56 84.76 85.62 85.3 85.01
OMD 84.9 84.8 85.33 86.36 84.96 84.68 84.84 85.66 85.75 84.61
HCR 79.44 78.93 79.38 79.1 78.63 79.57 79.31 78.65 79.73 78.28
STS 91.22 91.07 90.61 90.97 90.52 91.54 91.97 91.71 91.92 92.08

SSt 83.55 83.54 83.47 83.09 83.3 82.6 83.14 83.49 83.94 84.0

Tar 83.45 84.03 84.1 84.43 83.68 84.5 84.34 83.31 83.22 83.53
Vad 89.54 89.5 89.58 89.13 89.78 89.86 90.57 89.78 90.13 90.41
S13 87.39 87.62 87.92 87.48 87.65 88.12 88.08 88.24 87.99 87.58
S17 90.78 90.71 90.85 90.63 90.5 89.98 90.04 89.55 88.81 88.86
S16 88.46 88.74 88.85 88.42 88.41 88.56 88.59 87.77 87.96 87.74
#wins 1 1 3 1 0 2 3 2 3 6
rank sums 129.0 139.5 114.5 142.0 141.0 121.5 101.5 108.0 107.0 106.0
position 7.0 8.0 5.0 10.0 9.0 6.0 1.0 4.0 3.0 2.0
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Table A.18: Average F1-macro scores (%) achieved by fine-tuning BERT with different
samples of unlabeled tweets, using the MLP classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 64.35 59.96 60.1 59.76 62.98 72.36 66.84 70.86 70.15 66.15
sar 68.35 66.81 66.92 65.93 63.26 72.51 67.51 71.96 71.12 72.85

ntu 89.0 88.3 85.26 85.31 83.1 86.22 87.35 91.86 93.1 93.37

S15 80.21 78.89 76.36 75.15 76.32 78.0 75.22 76.34 74.53 74.66
stm 85.84 86.39 86.48 86.33 86.81 86.7 88.16 87.22 88.73 86.85
per 82.5 83.03 81.04 81.32 81.49 81.92 79.41 79.4 79.55 79.87
hob 84.59 84.6 86.12 85.51 86.22 85.58 88.08 87.44 85.7 87.52
iph 81.88 80.94 80.98 81.82 80.84 79.82 81.31 80.81 81.15 82.73

mov 77.55 77.84 78.31 77.39 76.62 77.95 79.03 78.51 80.25 81.18

san 86.92 86.71 87.28 87.44 87.41 87.43 88.94 86.66 87.39 88.77
Nar 89.71 89.42 90.33 90.48 90.69 90.73 91.94 92.92 93.61 92.69
arc 88.3 88.47 89.1 88.88 89.02 87.91 88.94 89.03 88.37 88.49
S18 85.38 84.51 85.4 84.68 85.45 84.45 84.65 85.5 85.2 84.91
OMD 83.62 83.58 84.11 85.23 83.72 83.46 83.66 84.52 84.67 83.51
HCR 73.71 73.11 73.87 72.96 72.82 73.91 73.48 72.43 74.49 72.61
STS 89.69 89.46 89.01 89.33 88.83 90.04 90.54 90.29 90.49 90.71

SSt 83.0 83.04 82.97 82.6 82.77 82.08 82.6 82.97 83.43 83.48

Tar 83.45 84.03 84.09 84.42 83.68 84.5 84.33 83.31 83.22 83.52
Vad 87.73 87.69 87.75 87.24 88.0 88.09 88.93 87.98 88.4 88.78
S13 84.13 84.4 84.73 84.22 84.47 85.06 84.91 85.2 84.9 84.39
S17 90.13 90.06 90.2 89.96 89.84 89.28 89.35 88.81 88.04 88.08
S16 85.41 85.8 85.86 85.32 85.3 85.5 85.56 84.37 84.69 84.46
#wins 1 1 3 1 0 2 3 2 3 6
rank sums 132.0 141.0 115.5 146.5 139.0 119.0 96.5 113.5 104.0 103.0
position 7.0 9.0 5.0 10.0 8.0 6.0 1.0 4.0 3.0 2.0
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Table A.19: Average classification accuracies (%) achieved by fine-tuning BERT with
different samples of generic unlabeled tweets, using the XGB classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 78.33 72.38 69.05 69.05 67.86 71.9 74.29 64.05 68.02 62.38
sar 57.32 50.54 63.04 58.93 66.07 68.93 60.36 57.86 69.4 59.52
ntu 83.11 84.48 80.95 81.31 81.26 81.28 83.82 90.29 87.53 89.92
S15 88.47 87.84 87.86 89.09 88.16 87.54 88.16 87.22 88.48 88.68
stm 84.96 83.56 84.69 85.24 81.32 83.85 84.69 83.27 82.92 86.35

per 79.28 83.38 82.23 82.46 83.15 82.01 82.46 79.95 78.44 78.82
hob 83.52 83.9 84.1 83.14 85.99 83.72 84.88 83.92 85.25 84.85
iph 82.89 84.2 83.46 83.08 85.53 83.63 81.95 84.4 82.82 80.51
mov 84.31 84.49 85.21 84.31 83.43 83.78 84.67 85.56 83.78 85.81

san 85.87 85.53 84.8 85.13 83.57 85.78 86.59 85.62 85.59 85.59
Nar 89.4 89.24 89.08 89.81 89.08 89.32 90.3 90.71 91.2 91.77

arc 88.94 88.13 88.13 88.07 88.83 88.19 88.77 89.81 89.06 89.04
S18 84.02 84.83 83.97 83.7 83.65 83.54 83.22 83.76 83.54 84.24
OMD 84.47 83.84 82.58 81.9 83.47 81.64 84.32 83.74 83.75 82.69
HCR 81.13 80.87 79.98 80.66 80.55 80.24 80.56 79.77 79.29 78.37
STS 87.27 87.95 87.37 88.15 87.46 88.1 89.43 89.48 89.12 90.05

SSt 83.57 82.92 82.74 82.44 81.52 82.74 83.53 82.53 83.24 81.84
Tar 83.18 83.96 84.22 84.19 83.01 83.91 83.65 83.33 83.61 83.72
Vad 87.82 87.46 87.82 88.25 87.65 87.94 87.96 88.08 88.35 88.38

S13 86.89 86.71 87.0 85.63 86.64 86.75 87.07 86.91 86.72 86.3
S17 89.92 89.6 89.76 89.3 89.49 89.55 89.52 88.7 88.7 88.64
S16 88.34 88.5 88.32 88.67 88.37 88.35 88.29 87.98 87.71 87.69
#wins 5 2 1 2 2 0 2 2 1 5
rank sums 108.0 113.5 128.0 125.5 146.0 131.5 97.5 119.5 122.0 118.5
position 2.0 3.0 8.0 7.0 10.0 9.0 1.0 5.0 6.0 4.0
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Table A.20: Average F1-macro scores (%) achieved by fine-tuning BERT with different
samples of unlabeled tweets, using the XGB classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 71.8 59.35 57.57 58.71 55.4 58.55 62.92 49.72 55.0 49.95
sar 56.06 49.58 59.97 58.0 64.49 68.15 57.05 56.54 66.52 57.29
ntu 82.27 83.73 80.3 80.78 80.5 80.67 83.24 90.02 86.99 89.62
S15 65.69 62.12 60.62 65.57 63.82 64.1 64.6 61.86 62.76 66.05

stm 84.92 83.48 84.66 85.18 81.3 83.72 84.61 83.17 82.8 86.29

per 71.38 77.86 76.33 75.95 76.83 75.75 76.14 72.98 71.0 71.03
hob 79.14 80.33 80.63 78.85 83.11 80.32 81.6 80.79 82.09 81.83
iph 78.71 80.53 79.09 78.76 81.91 79.35 76.93 79.86 77.63 74.78
mov 60.89 60.98 64.29 60.29 57.75 58.49 63.56 66.66 60.49 67.71

san 85.75 85.4 84.66 85.03 83.38 85.66 86.45 85.5 85.44 85.46
Nar 88.81 88.71 88.52 89.31 88.58 88.79 89.79 90.29 90.81 91.36

arc 88.63 87.78 87.81 87.74 88.51 87.85 88.48 89.52 88.76 88.76
S18 83.83 84.66 83.8 83.52 83.42 83.31 83.04 83.57 83.31 84.03
OMD 82.77 82.03 80.68 79.83 81.66 79.66 82.59 81.9 81.81 80.56
HCR 72.62 72.99 71.85 72.68 72.31 71.46 72.48 71.03 69.89 68.45
STS 84.29 85.24 84.42 85.58 84.63 85.35 87.2 87.12 86.67 87.81

SSt 82.87 82.27 82.04 81.74 80.77 82.1 82.94 81.86 82.62 81.13
Tar 83.18 83.96 84.22 84.19 83.0 83.9 83.64 83.32 83.59 83.71
Vad 85.11 84.66 85.11 85.59 84.7 85.31 85.3 85.47 85.83 85.85

S13 82.45 82.15 82.67 80.76 81.98 82.26 82.84 82.43 82.35 81.75
S17 89.12 88.76 88.98 88.47 88.66 88.69 88.71 87.77 87.73 87.68
S16 84.65 84.86 84.59 85.0 84.64 84.63 84.64 84.08 83.75 83.64
#wins 3 3 1 1 2 1 3 2 0 6
rank sums 105.5 112.0 129.5 126.0 146.5 131.5 95.5 120.0 128.0 115.5
position 2.0 3.0 8.0 6.0 10.0 9.0 1.0 5.0 7.0 4.0
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Table A.21: Average classification accuracies (%) achieved by fine-tuning RoBERTa with
different samples of generic unlabeled tweets, using the RF classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 67.7 67.3 66.11 66.83 70.4 67.22 66.59 67.7 66.67 65.63
sar 64.58 63.81 70.78 67.08 65.95 65.65 68.45 64.23 66.07 61.31
ntu 82.6 83.8 81.32 81.17 81.4 86.35 87.67 91.96 91.11 87.87
S15 85.46 85.46 85.88 85.67 85.77 85.57 85.46 86.08 86.09 85.88
stm 86.64 86.62 87.94 88.21 89.24 89.79 88.96 88.03 86.73 85.9
per 75.92 76.47 77.83 77.22 76.99 77.45 76.32 76.47 77.22 75.17
hob 79.31 80.15 79.83 79.89 79.89 80.91 79.69 79.07 80.34 80.86
iph 81.25 81.13 81.94 81.5 81.95 82.26 81.95 81.32 80.95 79.63
mov 82.24 82.18 82.42 82.41 82.24 82.36 82.48 82.18 82.41 82.12
san 85.46 85.75 86.3 86.71 86.0 86.46 86.22 86.47 86.52 84.23
Nar 86.96 88.21 89.08 88.56 88.83 89.84 90.93 90.84 90.27 89.76
arc 88.09 87.79 88.14 88.22 88.44 89.06 88.88 89.52 89.06 88.11
S18 85.17 84.17 84.92 84.97 84.49 85.19 85.38 84.83 84.2 83.05
OMD 80.89 81.01 80.73 80.99 80.69 80.01 81.3 79.48 79.4 77.68
HCR 75.1 76.22 76.22 76.38 76.71 76.57 76.47 76.94 76.43 74.93
STS 82.98 83.84 84.91 83.73 84.68 85.82 86.56 86.09 86.2 84.09
SSt 80.73 81.74 82.5 81.58 81.8 81.64 83.2 83.18 83.01 80.37
Tar 82.59 82.59 83.86 82.79 83.38 82.94 83.2 82.79 83.34 81.35
Vad 82.9 83.1 84.0 83.33 83.57 85.7 86.6 85.98 85.76 84.23
S13 81.1 81.55 81.88 82.18 82.07 82.5 83.39 81.99 82.68 80.96
S17 87.46 87.08 88.4 88.07 88.26 88.52 88.14 88.13 87.6 85.6
S16 84.65 84.73 85.34 85.02 85.26 84.94 85.11 84.94 84.61 83.2
#wins 0 0 4 1 1 4 8 3 1 0
rank sums 171.5 165.0 104.0 120.0 104.5 85.0 77.5 100.5 98.5 183.5
position 9.0 8.0 5.0 7.0 6.0 2.0 1.0 4.0 3.0 10.0
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Table A.22: Average F1-macro scores (%) achieved by fine-tuning RoBERTa with different
samples of unlabeled tweets, using the RF classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 42.94 42.29 40.51 42.08 48.41 42.27 41.46 42.94 40.73 39.55
sar 60.06 60.18 67.56 64.17 62.26 62.9 65.85 60.86 62.89 57.94
ntu 81.69 82.97 80.47 80.24 80.44 85.77 87.25 91.67 90.72 87.2
S15 46.63 46.63 49.18 48.02 48.37 47.21 46.63 50.23 49.96 49.29
stm 86.6 86.58 87.89 88.19 89.22 89.77 88.9 87.99 86.7 85.82
per 59.21 59.93 64.06 62.69 62.4 62.44 60.38 60.56 62.58 56.82
hob 71.01 72.51 71.95 72.12 72.26 74.07 72.38 70.76 73.2 74.01
iph 73.53 73.47 74.83 74.53 74.9 75.68 75.33 73.34 73.48 70.95
mov 46.27 46.01 47.23 47.23 46.27 46.96 47.52 46.01 47.18 45.69
san 85.23 85.53 86.09 86.53 85.8 86.24 86.01 86.23 86.28 83.99
Nar 85.93 87.37 88.32 87.72 88.11 89.22 90.38 90.27 89.64 89.05
arc 87.6 87.28 87.66 87.77 88.01 88.67 88.5 89.14 88.63 87.59
S18 84.9 83.88 84.67 84.68 84.22 84.88 85.11 84.52 83.87 82.68
OMD 76.99 77.43 76.93 77.3 76.88 76.07 77.86 75.35 74.98 72.56
HCR 54.58 57.97 57.86 58.71 59.2 59.14 59.01 60.05 58.8 54.14
STS 76.25 77.68 79.48 77.63 79.14 80.95 82.32 81.43 81.58 78.05
SSt 79.41 80.53 81.39 80.42 80.75 80.64 82.31 82.29 82.06 79.13
Tar 82.58 82.58 83.84 82.78 83.38 82.92 83.18 82.77 83.31 81.33
Vad 76.5 76.61 78.21 77.18 77.63 81.05 82.44 81.45 81.09 78.61
S13 69.59 70.44 71.45 71.9 71.74 72.89 74.51 71.84 73.12 69.39
S17 86.06 85.61 87.17 86.83 87.03 87.34 86.88 86.85 86.29 83.87
S16 77.21 77.24 78.43 77.9 78.34 77.78 78.0 77.71 77.2 74.43
#wins 0 0 4 1 1 4 8 4 0 0
rank sums 170.5 165.0 105.5 118.5 108.5 83.0 71.0 102.0 101.0 185.0
position 9.0 8.0 5.0 7.0 6.0 2.0 1.0 4.0 3.0 10.0
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Table A.23: Average classification accuracies (%) achieved by fine-tuning RoBERTa with
different samples of generic unlabeled tweets, using the LR classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 73.81 72.38 74.05 68.57 78.57 78.33 74.05 76.9 75.0 64.21
sar 67.5 70.36 71.79 71.79 74.64 73.04 71.79 74.46 67.5 63.15
ntu 87.79 87.42 88.52 85.98 87.79 89.95 90.3 92.8 92.79 92.2
S15 85.39 85.06 87.25 87.54 88.48 89.42 87.84 88.78 89.75 88.68
stm 88.57 89.13 90.81 89.67 90.25 90.82 89.42 87.75 89.42 87.38
per 84.29 86.79 86.79 87.71 83.61 85.66 84.52 85.9 87.26 85.34
hob 88.12 89.09 86.98 88.89 87.35 89.46 87.54 87.16 86.78 86.21
iph 86.28 86.84 86.47 84.97 86.86 85.15 85.71 85.71 85.53 82.83
mov 89.47 91.07 88.4 89.48 88.94 86.8 88.58 86.81 89.3 86.93
san 89.62 88.89 90.6 89.46 89.05 89.46 88.55 89.87 90.11 88.89
Nar 93.48 93.23 94.21 93.31 93.72 94.54 93.97 92.83 94.54 94.27
arc 90.57 90.1 90.63 89.64 88.88 89.7 90.05 90.34 89.87 89.95
S18 87.58 88.76 87.79 87.31 87.95 87.74 88.17 87.84 87.04 86.84
OMD 85.78 84.78 86.31 85.99 85.52 85.94 85.36 84.84 83.95 85.08
HCR 80.24 79.45 79.24 79.03 79.4 79.19 78.46 78.56 79.92 79.61
STS 93.02 93.31 93.9 92.82 93.51 92.77 93.51 94.3 93.71 92.81
SSt 84.75 86.19 85.54 85.1 86.15 86.28 85.32 86.46 85.1 84.75
Tar 84.02 83.53 84.57 84.51 84.08 84.31 84.42 84.37 85.09 84.38
Vad 90.99 91.21 91.23 91.3 91.37 91.71 91.13 91.83 91.94 91.24
S13 88.94 88.24 89.01 88.88 89.04 89.13 88.99 88.56 88.63 88.78
S17 91.41 91.44 91.6 91.82 91.67 91.89 91.79 90.91 91.35 89.89
S16 89.74 89.69 90.05 90.02 90.26 89.74 89.94 89.99 89.91 89.21
#wins 1 2 3 1 4 5 0 3 4 0
rank sums 140.0 137.0 92.0 125.0 103.0 100.5 124.0 113.5 109.0 166.0
position 9.0 8.0 1.0 7.0 3.0 2.0 6.0 5.0 4.0 10.0
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Table A.24: Average F1-macro scores (%) achieved by fine-tuning RoBERTa with different
samples of unlabeled tweets, using the LR classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 66.95 67.21 67.2 59.58 74.6 71.86 67.04 71.31 68.34 56.94
sar 66.7 68.85 71.17 70.99 73.96 72.0 70.81 73.11 66.1 62.01
ntu 87.54 87.1 88.3 85.68 87.62 89.79 90.1 92.6 92.65 92.02
S15 68.91 68.25 71.89 73.63 75.69 77.69 73.93 77.11 78.8 76.42
stm 88.55 89.12 90.76 89.62 90.23 90.78 89.36 87.7 89.41 87.32
per 81.02 84.02 84.01 85.29 80.69 82.91 81.33 83.45 84.93 82.41
hob 86.65 87.67 85.15 87.41 85.57 87.96 85.91 85.51 84.98 84.44
iph 83.85 84.66 84.15 82.55 84.65 82.58 83.04 83.1 82.87 79.71
mov 82.27 85.1 79.87 82.85 81.43 78.01 79.86 77.48 81.0 77.63
san 89.55 88.82 90.54 89.4 88.96 89.4 88.48 89.8 90.05 88.82
Nar 93.22 92.95 93.99 93.03 93.46 94.32 93.73 92.55 94.32 94.06
arc 90.37 89.89 90.42 89.39 88.63 89.47 89.85 90.12 89.65 89.74
S18 87.51 88.7 87.71 87.23 87.89 87.67 88.11 87.77 86.96 86.77
OMD 84.79 83.8 85.43 85.07 84.56 84.94 84.4 83.93 82.94 84.1
HCR 76.07 75.14 74.72 74.65 74.99 74.67 74.0 74.26 75.96 75.62
STS 91.88 92.21 92.9 91.71 92.49 91.65 92.51 93.38 92.67 91.66
SSt 84.38 85.82 85.16 84.69 85.78 85.89 84.96 86.08 84.73 84.34
Tar 84.01 83.52 84.56 84.51 84.07 84.3 84.41 84.36 85.08 84.37
Vad 89.53 89.85 89.86 89.94 90.03 90.42 89.73 90.51 90.67 89.86
S13 86.38 85.62 86.5 86.34 86.5 86.69 86.49 85.93 86.06 86.3
S17 90.87 90.92 91.09 91.31 91.15 91.39 91.29 90.35 90.81 89.29
S16 87.49 87.44 87.81 87.8 88.08 87.48 87.72 87.77 87.68 86.87
#wins 1 3 3 1 3 5 0 2 5 0
rank sums 140.0 132.5 90.0 125.5 103.5 99.0 128.0 115.0 108.5 168.0
position 9.0 8.0 1.0 6.0 3.0 2.0 7.0 5.0 4.0 10.0
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Table A.25: Average classification accuracies (%) achieved by fine-tuning RoBERTa with
different samples of generic unlabeled tweets, using the MLP classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 70.24 71.59 73.01 77.3 74.6 76.67 73.01 74.68 76.51 65.71
sar 67.98 67.02 74.16 70.84 76.07 73.51 67.68 73.99 69.41 64.58
ntu 88.6 87.3 86.83 87.9 87.67 90.19 90.66 92.21 92.67 92.8

S15 87.23 87.45 89.0 89.1 89.32 90.05 88.9 90.75 91.28 90.14
stm 88.48 88.49 88.75 88.94 89.97 90.16 88.21 88.02 89.14 87.66
per 84.96 86.64 85.19 86.71 84.52 85.73 83.31 84.23 86.66 84.52
hob 88.76 89.15 87.43 87.94 87.16 87.87 86.59 88.12 87.74 87.04
iph 87.9 87.1 87.54 85.15 88.16 84.96 86.27 87.46 86.96 83.89
mov 88.64 91.97 88.47 88.18 88.71 88.17 87.87 88.34 88.58 88.23
san 89.3 89.0 90.06 89.62 89.05 90.14 88.85 90.11 90.38 89.19
Nar 92.91 92.85 94.19 93.39 93.45 94.08 93.75 92.94 94.18 94.24

arc 89.89 89.19 89.93 90.24 89.09 90.14 90.51 90.16 90.34 89.68
S18 87.09 88.17 87.7 87.5 87.95 88.31 88.58 87.61 87.36 86.77
OMD 84.91 85.17 85.99 85.45 85.63 85.4 86.41 85.45 84.94 84.86
HCR 79.99 80.29 80.35 79.45 80.08 80.83 79.02 80.87 80.33 79.12
STS 91.84 92.85 93.44 92.36 93.23 92.89 93.15 93.9 93.49 92.98
SSt 85.06 86.16 85.36 85.1 85.9 86.6 85.39 86.24 85.52 84.24
Tar 83.96 84.05 84.12 84.7 84.59 84.74 84.44 84.67 84.74 83.96
Vad 90.43 91.01 91.5 91.07 91.28 91.89 91.35 91.4 92.08 90.89
S13 88.18 88.23 88.85 88.75 88.81 89.0 88.68 88.58 88.56 88.33
S17 91.13 91.35 91.78 91.88 91.47 91.7 91.77 91.29 91.18 90.18
S16 89.49 89.99 90.19 90.31 90.12 90.01 90.27 90.0 89.97 89.15
#wins 0 2 0 4 2 4 3 2 4 2
rank sums 165.5 143.0 99.5 111.5 107.5 85.5 131.5 99.5 91.5 175.0
position 9.0 8.0 3.5 6.0 5.0 1.0 7.0 3.5 2.0 10.0
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Table A.26: Average F1-macro scores (%) achieved by fine-tuning RoBERTa with different
samples of unlabeled tweets, using the MLP classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 61.23 63.53 63.54 68.53 64.24 68.09 64.29 63.35 68.07 54.57
sar 66.38 63.82 73.37 70.2 75.45 72.9 66.1 72.69 68.01 63.81
ntu 88.26 87.0 86.5 87.61 87.42 89.99 90.45 92.01 92.51 92.62

S15 68.2 69.48 72.79 73.63 74.01 75.23 73.49 77.97 78.76 76.05
stm 88.44 88.47 88.69 88.88 89.93 90.11 88.14 87.97 89.11 87.6
per 81.15 83.42 81.6 83.74 80.96 82.46 79.7 81.02 83.76 80.63
hob 87.04 87.47 85.43 86.13 85.05 85.76 84.73 86.3 85.82 85.03
iph 85.26 84.53 85.09 82.29 85.85 82.08 83.29 84.71 84.22 80.53
mov 78.97 85.29 78.93 78.63 78.98 78.21 77.33 78.31 78.94 78.18
san 89.22 88.93 89.98 89.55 88.97 90.08 88.78 90.04 90.32 89.11
Nar 92.59 92.53 93.94 93.1 93.17 93.83 93.49 92.64 93.94 94.01

arc 89.65 88.91 89.69 90.0 88.8 89.91 90.29 89.93 90.11 89.44
S18 87.02 88.09 87.62 87.42 87.87 88.25 88.52 87.53 87.28 86.68
OMD 83.78 84.1 84.95 84.35 84.51 84.24 85.34 84.4 83.82 83.68
HCR 75.14 74.76 74.78 73.41 74.43 75.82 73.68 75.35 75.25 72.92
STS 90.43 91.58 92.3 91.1 92.06 91.67 91.97 92.82 92.33 91.76
SSt 84.63 85.76 84.92 84.66 85.47 86.18 84.98 85.81 85.09 83.76
Tar 83.95 84.04 84.11 84.7 84.58 84.74 84.42 84.67 84.74 83.96
Vad 88.73 89.43 90.03 89.55 89.77 90.5 89.85 89.9 90.65 89.28
S13 85.06 85.14 85.93 85.8 85.84 86.21 85.71 85.54 85.58 85.28
S17 90.5 90.74 91.2 91.31 90.86 91.12 91.18 90.68 90.56 89.49
S16 86.7 87.34 87.64 87.75 87.52 87.32 87.65 87.35 87.17 86.27
#wins 0 2 0 3 2 5 3 1 5 2
rank sums 163.0 142.0 102.5 112.0 109.0 85.5 126.0 104.0 87.0 179.0
position 9.0 8.0 3.0 6.0 5.0 1.0 7.0 4.0 2.0 10.0
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Table A.27: Average classification accuracies (%) achieved by fine-tuning RoBERTa with
different samples of generic unlabeled tweets, using the XGB classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 69.29 72.62 64.29 70.71 72.62 73.81 58.33 67.38 68.1 67.94
sar 55.89 58.93 61.96 74.46 66.25 56.43 70.36 50.71 54.64 68.51
ntu 84.15 83.81 76.61 82.37 80.58 84.55 89.22 88.88 92.06 88.02
S15 88.48 88.48 90.97 88.78 87.85 90.34 89.1 89.73 87.55 88.68
stm 86.36 86.05 85.25 85.79 87.48 86.63 86.63 84.4 83.85 83.76
per 80.17 81.32 82.0 81.32 82.68 80.62 82.7 81.79 81.12 82.24
hob 81.01 83.33 81.6 81.42 83.54 83.34 84.09 83.92 81.98 85.05

iph 81.96 84.4 84.78 85.71 84.77 83.65 80.65 84.2 83.08 83.26
mov 85.03 86.99 87.87 85.91 86.99 84.84 86.63 87.88 86.45 86.69
san 86.68 87.33 86.93 88.23 87.09 87.9 86.35 87.25 87.83 86.46
Nar 90.06 91.44 92.42 91.03 90.87 92.26 91.77 92.09 91.61 91.8
arc 89.81 89.0 89.58 89.35 90.1 89.81 90.45 90.16 89.23 89.14
S18 85.58 87.2 85.8 86.39 86.98 86.5 86.82 85.8 84.62 84.76
OMD 84.94 84.79 85.99 85.26 85.36 84.62 85.36 83.58 82.74 83.72
HCR 80.03 82.18 81.08 80.4 80.5 81.45 80.5 81.13 80.19 79.75
STS 89.68 90.76 90.76 90.46 90.81 91.45 91.49 91.05 90.86 90.66
SSt 84.01 83.88 85.23 84.4 84.93 84.75 85.02 85.06 85.37 83.0
Tar 83.85 84.14 85.15 84.48 85.0 84.51 83.79 83.5 84.8 83.28
Vad 88.44 88.27 89.28 89.16 88.85 89.39 90.16 90.18 90.06 89.13
S13 86.64 87.12 87.67 87.83 87.76 87.62 88.24 87.57 87.71 86.82
S17 90.47 90.72 90.8 90.88 90.42 90.91 90.91 90.74 90.09 88.56
S16 88.84 89.37 89.62 89.51 89.78 89.55 89.55 89.4 89.67 88.31
#wins 0 2 4 3 2 2 5 2 2 1
rank sums 173.0 130.5 100.0 118.5 98.0 97.0 88.5 109.5 136.0 159.0
position 10.0 7.0 4.0 6.0 3.0 2.0 1.0 5.0 8.0 9.0
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Table A.28: Average F1-macro scores (%) achieved by fine-tuning RoBERTa with different
samples of unlabeled tweets, using the XGB classifier

RoBERTa

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 54.77 61.69 47.99 58.14 57.59 67.22 42.02 54.39 53.42 54.93
sar 53.42 56.62 59.94 73.89 64.55 54.6 68.13 49.36 50.89 67.67
ntu 83.63 83.39 75.86 81.64 79.9 84.13 88.92 88.63 91.87 87.65
S15 67.46 63.75 74.11 66.24 62.03 73.59 67.08 69.26 61.61 66.92
stm 86.32 86.0 85.21 85.77 87.43 86.61 86.58 84.32 83.77 83.63
per 72.78 73.45 75.6 75.1 76.31 74.48 77.13 74.92 74.8 76.17
hob 76.79 79.35 77.42 76.73 80.1 79.58 80.82 80.22 78.26 82.06

iph 77.2 79.94 80.96 82.27 81.08 79.67 75.66 79.93 78.21 78.86
mov 64.06 70.45 73.38 66.84 68.1 66.22 69.41 72.07 68.51 68.91
san 86.56 87.22 86.8 88.14 86.99 87.8 86.24 87.12 87.73 86.33
Nar 89.57 91.0 92.06 90.61 90.4 91.92 91.4 91.76 91.21 91.42
arc 89.53 88.65 89.29 89.06 89.84 89.56 90.22 89.88 88.94 88.84
S18 85.46 87.06 85.68 86.27 86.86 86.33 86.7 85.68 84.43 84.61
OMD 83.23 83.07 84.4 83.69 83.75 82.83 83.73 81.68 80.76 81.73
HCR 71.23 74.87 72.89 72.13 72.09 73.59 72.17 73.06 71.71 70.58
STS 87.5 88.8 88.7 88.46 88.84 89.61 89.71 89.14 88.95 88.6
SSt 83.38 83.23 84.71 83.78 84.34 84.21 84.43 84.5 84.8 82.36
Tar 83.84 84.13 85.14 84.47 85.0 84.51 83.78 83.49 84.79 83.27
Vad 85.85 85.72 86.89 86.75 86.44 87.19 88.04 88.13 87.98 86.75
S13 82.03 82.75 83.57 83.82 83.63 83.73 84.38 83.54 83.73 82.31
S17 89.72 89.98 90.07 90.17 89.69 90.2 90.21 90.01 89.31 87.6
S16 85.29 85.99 86.44 86.27 86.59 86.3 86.31 86.06 86.4 84.46
#wins 0 2 5 3 2 1 5 1 2 1
rank sums 171.0 132.0 100.5 118.5 105.0 92.5 87.0 110.5 136.5 156.5
position 10.0 7.0 3.0 6.0 4.0 2.0 1.0 5.0 8.0 9.0
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Table A.29: Average classification accuracies (%) achieved by fine-tuning BERTweet with
different samples of generic unlabeled tweets, using the RF classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 66.19 66.67 67.14 66.19 68.1 66.19 67.14 66.67 65.71 65.71
sar 68.45 67.56 69.88 70.42 72.38 67.02 69.46 66.67 68.57 69.88
ntu 84.64 86.7 87.79 87.3 87.66 88.26 88.63 89.58 88.02 87.18
S15 86.4 86.4 86.71 86.6 86.81 86.19 85.88 86.09 85.67 85.36
stm 87.37 88.3 89.98 89.14 88.22 88.95 88.39 89.32 89.42 87.18
per 79.12 79.95 81.17 80.56 80.71 78.59 79.34 77.44 77.45 74.72
hob 79.5 80.98 81.24 81.17 80.14 80.71 80.34 81.62 81.56 80.28
iph 82.21 83.08 83.33 83.21 83.52 83.77 83.03 82.96 80.02 81.34
mov 82.29 82.77 82.89 82.89 82.77 82.65 82.77 82.65 82.12 82.12
san 86.84 88.43 88.97 89.13 88.54 88.81 88.21 87.15 85.81 85.46
Nar 90.52 91.91 92.77 92.42 92.28 91.33 91.91 91.19 89.97 89.41
arc 89.33 90.07 90.26 90.04 90.63 89.87 90.32 90.03 89.13 89.54
S18 85.42 86.34 87.32 86.7 87.09 85.51 85.6 84.62 83.97 83.22
OMD 80.41 82.18 82.42 81.76 82.06 82.57 81.29 80.87 79.91 79.56
HCR 76.05 76.78 77.34 77.74 77.81 77.1 76.52 76.45 75.37 74.95
STS 84.38 86.78 86.89 86.95 86.61 86.09 85.51 86.22 85.24 84.24
SSt 80.59 82.61 83.86 82.65 82.36 81.96 82.07 81.85 80.98 80.79
Tar 83.46 83.95 84.0 83.89 83.9 83.47 83.11 83.36 82.14 81.03
Vad 82.3 84.5 85.01 84.43 84.97 84.5 84.34 84.36 83.97 83.6
S13 81.37 82.37 83.0 82.66 82.41 81.38 81.7 81.63 81.1 80.51
S17 88.76 89.49 89.8 89.77 89.46 88.82 88.83 88.04 86.29 86.36
S16 85.08 85.66 86.35 85.91 86.02 85.1 85.24 84.7 83.91 83.41
#wins 0 0 11 3 5 2 0 2 0 0
rank sums 174.5 99.0 42.5 72.5 71.0 117.0 117.0 138.0 176.0 202.5
position 8.0 4.0 1.0 3.0 2.0 5.5 5.5 7.0 9.0 10.0
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Table A.30: Average F1-macro scores (%) achieved by fine-tuning BERTweet with different
samples of unlabeled tweets, using the RF classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 39.77 41.51 41.68 40.55 43.28 40.55 41.68 40.73 39.59 39.59
sar 66.13 66.1 67.19 66.67 69.79 64.23 66.92 61.76 65.65 66.39
ntu 83.74 85.86 87.08 86.75 86.97 87.55 87.81 89.05 87.43 86.45
S15 51.39 51.82 53.47 53.2 54.26 50.77 49.18 50.19 47.9 46.05
stm 87.35 88.27 89.96 89.09 88.17 88.91 88.33 89.29 89.37 87.12
per 67.18 69.57 71.54 70.5 70.95 66.74 67.67 63.21 63.49 56.65
hob 71.22 74.03 74.23 74.13 72.82 73.42 72.93 74.63 74.5 73.0
iph 75.59 76.75 77.22 76.69 77.37 77.72 76.43 76.78 71.69 73.92
mov 46.59 48.89 49.66 49.37 48.98 48.38 49.01 48.31 45.69 45.69
san 86.66 88.28 88.85 89.01 88.41 88.7 88.07 86.99 85.58 85.24
Nar 89.81 91.36 92.35 91.95 91.79 90.72 91.38 90.64 89.27 88.62
arc 88.9 89.71 89.92 89.72 90.31 89.55 90.0 89.7 88.69 89.1
S18 85.13 86.1 87.1 86.46 86.87 85.23 85.33 84.3 83.6 82.85
OMD 76.56 78.88 79.29 78.61 78.76 79.36 77.72 77.06 75.85 75.16
HCR 57.46 59.43 61.11 62.03 62.36 60.45 58.81 58.71 55.23 54.09
STS 78.43 82.26 82.6 82.56 82.17 81.31 80.33 81.44 80.04 78.34
SSt 79.26 81.45 82.85 81.53 81.23 80.74 80.85 80.69 79.87 79.56
Tar 83.45 83.94 83.99 83.87 83.89 83.47 83.09 83.34 82.12 81.02
Vad 74.93 78.75 79.67 78.65 79.58 78.75 78.51 78.56 77.97 77.22
S13 70.31 72.52 73.74 73.1 72.59 70.41 71.0 71.0 69.81 68.3
S17 87.61 88.44 88.83 88.82 88.43 87.71 87.74 86.87 84.82 84.89
S16 78.17 79.09 80.35 79.59 79.74 78.12 78.28 77.44 75.89 74.9
#wins 0 0 12 1 5 2 0 2 0 0
rank sums 174.0 99.5 39.5 76.5 71.0 117.0 116.0 135.5 178.0 203.0
position 8.0 4.0 1.0 3.0 2.0 6.0 5.0 7.0 9.0 10.0
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Table A.31: Average classification accuracies (%) achieved by fine-tuning BERTweet with
different samples of generic unlabeled tweets, using the LR classifier

BERT

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 67.62 67.62 75.24 73.81 70.24 72.14 72.14 66.19 67.14 64.52
sar 67.68 66.25 70.36 68.93 73.04 73.21 73.04 67.5 67.98 73.21
ntu 88.89 90.67 91.39 92.45 91.73 91.38 93.15 92.8 92.67 92.45
S15 91.9 93.47 93.14 91.9 93.47 90.64 88.79 90.66 90.96 88.18
stm 90.54 91.64 91.65 89.14 90.53 91.09 90.81 91.92 91.27 92.2

per 89.05 88.83 88.6 89.51 88.37 87.46 86.55 86.34 83.97 83.83
hob 89.25 89.45 89.26 89.45 89.27 88.11 87.35 88.1 88.37 87.73
iph 87.6 86.84 87.22 87.59 86.65 87.22 86.47 87.41 85.21 86.84
mov 89.49 90.73 90.37 90.2 90.19 92.87 90.2 89.84 89.6 89.3
san 90.44 91.74 91.17 91.83 90.93 91.75 91.34 90.36 89.4 90.77
Nar 96.01 96.98 96.82 96.57 96.49 96.49 96.74 95.92 95.79 94.7
arc 90.92 91.04 91.56 91.21 92.08 91.38 91.27 90.86 91.27 91.97
S18 89.4 89.56 89.19 88.92 88.92 87.63 88.38 86.82 86.73 86.5
OMD 86.83 88.3 88.56 86.99 87.83 88.04 87.83 87.41 86.95 86.04
HCR 81.45 81.18 81.55 81.02 81.6 81.18 81.97 80.03 77.93 77.88
STS 94.69 95.08 94.94 94.4 95.08 95.18 94.98 94.3 93.86 93.76
SSt 86.89 88.34 88.38 87.94 88.07 87.29 87.42 87.37 86.51 87.29
Tar 85.55 86.53 85.84 85.98 85.64 85.72 85.43 85.09 85.39 84.8
Vad 91.21 92.8 92.61 92.59 92.37 92.16 92.73 91.99 92.19 92.4
S13 89.81 90.36 90.7 90.36 90.29 89.56 90.04 88.67 89.39 88.81
S17 92.6 93.21 92.89 93.0 93.08 92.66 92.41 91.63 91.16 91.13
S16 90.82 91.34 91.63 91.47 91.58 91.29 90.99 90.53 90.38 89.73
#wins 1 7 5 3 2 3 2 0 0 2
rank sums 143.0 78.5 69.5 92.0 95.0 110.0 114.5 162.0 172.5 173.0
position 7.0 2.0 1.0 3.0 4.0 5.0 6.0 8.0 9.0 10.0
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Table A.32: Average F1-macro scores (%) achieved by fine-tuning BERTweet with different
samples of unlabeled tweets, using the LR classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 61.52 60.15 67.29 67.48 63.67 65.71 66.28 59.57 60.79 55.21
sar 66.75 65.08 69.42 67.88 72.02 72.03 72.0 66.32 67.32 72.08

ntu 88.63 90.5 91.2 92.29 91.53 91.14 92.95 92.6 92.51 92.23
S15 82.86 86.05 84.98 83.7 85.7 80.63 76.14 80.2 80.17 76.85
stm 90.51 91.61 91.63 89.11 90.48 91.04 90.79 91.91 91.24 92.18

per 87.07 86.71 86.51 87.53 86.01 84.98 84.05 83.86 81.25 80.9
hob 87.8 87.94 87.65 87.83 87.87 86.73 85.59 86.52 86.81 86.18
iph 85.4 84.58 84.91 85.36 84.34 85.06 84.17 85.31 82.83 84.63
mov 82.7 84.93 84.35 84.33 83.89 88.27 83.79 83.27 83.31 82.35
san 90.38 91.68 91.12 91.77 90.86 91.7 91.27 90.29 89.32 90.7
Nar 95.85 96.87 96.7 96.44 96.35 96.35 96.61 95.76 95.63 94.51
arc 90.73 90.85 91.38 91.04 91.92 91.2 91.09 90.67 91.08 91.8
S18 89.34 89.5 89.11 88.84 88.84 87.56 88.3 86.73 86.65 86.41
OMD 86.0 87.48 87.76 86.09 87.0 87.23 87.0 86.56 86.07 85.06
HCR 77.77 77.36 78.02 77.26 77.83 77.19 78.18 76.05 73.64 73.63
STS 93.85 94.3 94.12 93.55 94.3 94.41 94.21 93.42 92.9 92.79
SSt 86.54 88.02 88.05 87.59 87.72 86.94 87.1 87.04 86.18 86.97
Tar 85.54 86.53 85.83 85.98 85.63 85.72 85.43 85.08 85.38 84.79
Vad 89.81 91.64 91.43 91.4 91.15 90.89 91.56 90.72 90.97 91.24
S13 87.56 88.18 88.59 88.2 88.1 87.26 87.81 86.22 87.1 86.4
S17 92.13 92.76 92.43 92.56 92.64 92.19 91.91 91.1 90.61 90.58
S16 88.81 89.43 89.75 89.57 89.68 89.35 89.01 88.47 88.3 87.54
#wins 1 7 4 3 1 2 2 0 0 2
rank sums 142.0 79.5 71.0 89.5 94.0 110.5 116.5 163.0 173.0 171.0
position 7.0 2.0 1.0 3.0 4.0 5.0 6.0 8.0 10.0 9.0
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Table A.33: Average classification accuracies (%) achieved by fine-tuning BERTweet with
different samples of generic unlabeled tweets, using the MLP classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 73.73 72.06 75.64 72.54 75.4 82.3 75.4 69.53 67.14 65.08
sar 67.2 71.96 72.32 70.89 72.09 72.85 69.41 66.61 68.45 72.32
ntu 89.0 91.86 91.99 91.84 92.34 90.77 92.44 93.28 92.69 93.4

S15 92.12 94.18 92.01 92.64 93.15 91.58 91.07 92.21 92.1 90.03
stm 89.69 91.27 90.72 89.41 89.78 90.16 89.69 90.81 90.43 91.73

per 86.91 87.69 87.85 88.9 87.45 87.38 87.31 87.01 83.9 84.07
hob 87.98 89.32 88.62 87.98 88.69 89.83 86.83 87.91 88.43 88.06
iph 87.08 86.35 87.35 86.52 87.16 87.16 86.67 87.72 85.71 87.9

mov 90.25 90.97 90.07 91.38 90.55 93.29 91.32 89.96 90.02 91.03
san 90.25 91.12 91.61 91.58 91.55 91.75 91.01 90.28 89.32 90.96
Nar 95.95 97.04 96.66 96.52 95.92 96.25 96.63 95.95 95.68 94.84
arc 90.94 91.13 91.46 91.19 91.92 91.0 90.59 90.52 91.21 91.64
S18 89.01 89.04 89.13 89.08 88.76 87.22 88.27 87.11 86.84 86.43
OMD 86.17 86.97 88.29 86.04 87.56 87.01 87.51 87.06 86.34 86.53
HCR 80.9 81.53 81.91 81.62 81.57 81.41 80.85 81.01 78.81 78.7
STS 94.33 94.76 94.92 94.09 94.86 95.38 94.49 94.46 94.2 93.1
SSt 86.26 87.23 87.51 87.87 87.57 87.81 87.65 87.04 86.12 86.59
Tar 85.62 86.54 85.92 86.24 86.23 86.23 85.95 85.63 84.78 84.57
Vad 90.9 92.3 92.32 92.45 92.57 92.37 92.31 91.52 91.78 91.98
S13 89.29 90.14 90.12 90.39 90.3 89.91 90.08 89.36 89.42 88.85
S17 92.06 92.65 92.82 92.83 92.85 92.51 92.23 91.4 90.73 90.69
S16 90.53 91.02 91.16 91.44 91.31 91.13 90.68 90.53 90.3 89.87
#wins 0 3 3 4 3 6 0 0 0 3
rank sums 167.0 95.0 75.5 95.5 78.5 91.0 128.0 150.0 174.0 155.5
position 9.0 4.0 1.0 5.0 2.0 3.0 6.0 7.0 10.0 8.0
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Table A.34: Average F1-macro scores (%) achieved by fine-tuning BERTweet with different
samples of unlabeled tweets, using the MLP classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 65.37 63.53 66.75 62.64 67.86 73.99 67.83 59.79 57.83 55.25
sar 66.56 71.03 71.34 69.94 71.17 71.48 68.11 63.92 67.17 70.95
ntu 88.7 91.65 91.81 91.66 92.11 90.54 92.17 93.09 92.49 93.21

S15 81.41 86.22 81.45 83.07 84.09 80.54 79.26 80.56 80.26 75.31
stm 89.65 91.23 90.69 89.37 89.75 90.11 89.66 90.79 90.4 91.71

per 83.83 84.87 84.88 86.38 84.47 84.31 84.27 84.03 79.88 80.62
hob 85.96 87.59 86.83 86.17 86.92 88.3 84.65 86.07 86.54 86.25
iph 84.06 83.56 84.84 83.75 84.64 84.55 84.06 85.42 82.88 85.37
mov 81.79 83.64 82.29 84.63 82.98 87.66 84.27 82.06 82.37 83.27
san 90.19 91.06 91.55 91.51 91.49 91.7 90.94 90.21 89.24 90.89
Nar 95.78 96.91 96.52 96.38 95.74 96.08 96.48 95.78 95.5 94.62
arc 90.74 90.94 91.26 90.99 91.74 90.79 90.37 90.28 91.0 91.42
S18 88.95 88.97 89.06 89.01 88.67 87.14 88.19 87.01 86.76 86.33
OMD 85.17 86.03 87.32 85.09 86.62 86.0 86.57 86.06 85.27 85.45
HCR 76.53 76.79 77.33 76.92 76.5 76.17 76.14 75.98 73.23 73.44
STS 93.36 93.87 94.05 93.07 93.99 94.59 93.57 93.51 93.22 91.87
SSt 85.83 86.82 87.11 87.49 87.17 87.42 87.27 86.63 85.69 86.17
Tar 85.61 86.54 85.91 86.24 86.23 86.22 85.95 85.62 84.77 84.56
Vad 89.32 90.96 90.98 91.12 91.26 91.02 90.93 90.05 90.35 90.57
S13 86.53 87.59 87.47 87.82 87.74 87.27 87.46 86.59 86.62 85.89
S17 91.51 92.12 92.31 92.32 92.35 91.96 91.68 90.78 90.06 90.02
S16 88.07 88.72 88.85 89.18 89.03 88.71 88.19 88.01 87.74 87.1
#wins 0 3 3 4 3 6 0 1 0 2
rank sums 169.0 89.0 74.0 95.0 77.0 94.0 126.5 151.5 175.0 159.0
position 9.0 3.0 1.0 5.0 2.0 4.0 6.0 7.0 10.0 8.0
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Table A.35: Average classification accuracies (%) achieved by fine-tuning BERTweet with
different samples of generic unlabeled tweets, using the XGB classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 67.38 73.33 68.57 64.52 63.1 65.71 69.52 76.19 64.21 61.67
sar 53.21 56.07 60.71 55.18 63.39 64.82 56.43 56.43 57.74 59.29
ntu 83.85 89.55 85.62 87.78 85.97 87.82 86.38 88.54 88.02 87.12
S15 90.04 91.89 90.64 89.11 90.33 90.02 88.14 88.15 87.54 86.92
stm 85.25 86.07 86.91 85.79 85.8 88.3 85.8 87.74 87.47 86.36
per 86.32 85.64 83.14 86.34 84.06 83.37 82.68 84.08 83.59 81.33
hob 81.81 87.16 84.48 85.26 84.1 84.67 83.15 84.88 84.35 81.98
iph 85.72 85.71 87.21 84.78 84.59 84.78 84.97 85.73 83.27 85.15
mov 87.88 88.06 88.59 88.77 88.24 90.38 87.17 88.06 88.17 87.53
san 88.72 89.87 90.61 90.93 88.97 88.56 88.8 88.4 88.32 86.84
Nar 91.85 94.62 93.81 93.48 93.07 93.15 93.23 93.15 92.64 92.01
arc 89.82 90.86 91.79 90.98 91.03 90.28 90.57 90.63 89.6 90.86
S18 87.36 88.22 88.38 87.68 88.11 87.14 87.47 85.48 85.23 84.56
OMD 84.68 85.0 86.99 85.78 85.31 84.78 86.52 85.26 84.49 84.47
HCR 81.13 80.76 81.66 81.81 80.77 81.5 81.45 81.39 79.44 78.88
STS 91.25 91.84 92.38 92.28 92.03 91.64 91.35 91.64 90.89 90.9
SSt 85.32 86.37 86.94 87.2 85.1 85.06 84.4 85.71 84.18 84.71
Tar 85.15 85.55 85.81 85.32 85.35 84.31 84.22 84.66 83.68 82.81
Vad 88.47 90.16 90.37 90.11 89.61 89.54 90.06 89.73 89.78 89.13
S13 87.85 88.53 88.99 88.15 87.85 87.62 87.71 87.6 86.98 86.23
S17 91.43 91.92 92.37 92.36 92.3 91.52 91.41 90.8 89.59 89.74
S16 90.21 90.85 91.11 90.85 90.75 90.28 90.37 89.55 89.45 88.8
#wins 0 4 10 4 0 3 0 1 0 0
rank sums 152.5 76.5 56.0 81.0 112.0 119.5 138.0 117.0 171.0 186.5
position 8.0 2.0 1.0 3.0 4.0 6.0 7.0 5.0 9.0 10.0
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Table A.36: Average F1-macro scores (%) achieved by fine-tuning BERTweet with different
samples of unlabeled tweets, using the XGB classifier

BERTweet

Dataset 0.5K 1K 5K 10K 25K 50K 250K 500K 1.5M 6.7M

iro 54.36 61.9 53.1 49.09 51.4 53.28 62.24 66.75 53.0 42.85
sar 49.87 53.96 59.51 53.78 62.33 62.79 54.39 55.69 56.94 55.57
ntu 83.16 89.22 85.29 87.38 85.11 87.31 85.77 88.22 87.64 86.64
S15 71.56 77.95 73.8 69.48 73.47 70.08 63.77 63.21 61.07 58.37
stm 85.2 85.99 86.81 85.72 85.73 88.27 85.71 87.71 87.42 86.28
per 82.43 81.37 77.92 81.86 78.86 77.46 77.25 78.55 77.76 74.77
hob 77.56 84.41 81.24 81.87 80.0 81.5 79.35 80.79 80.85 78.1
iph 81.95 82.07 84.28 80.85 80.71 80.71 81.08 82.04 78.76 81.09
mov 71.91 73.18 76.03 75.34 73.91 78.82 70.84 72.74 73.3 70.2
san 88.62 89.79 90.55 90.87 88.88 88.46 88.7 88.29 88.19 86.71
Nar 91.39 94.35 93.48 93.12 92.72 92.78 92.88 92.83 92.26 91.6
arc 89.52 90.66 91.59 90.76 90.81 90.04 90.35 90.4 89.33 90.62
S18 87.25 88.09 88.26 87.55 87.99 87.03 87.35 85.32 85.07 84.41
OMD 83.01 83.39 85.56 84.26 83.75 83.14 85.0 83.56 82.72 82.69
HCR 73.08 72.69 74.28 74.31 73.16 73.97 74.0 73.57 70.16 69.09
STS 89.3 90.18 90.85 90.69 90.47 89.82 89.35 89.98 88.91 88.98
SSt 84.74 85.88 86.41 86.7 84.54 84.48 83.79 85.15 83.59 84.18
Tar 85.13 85.54 85.8 85.31 85.34 84.3 84.21 84.64 83.67 82.8
Vad 85.68 87.98 88.26 87.9 87.32 87.14 87.89 87.45 87.55 86.75
S13 83.74 84.73 85.43 84.33 83.94 83.48 83.49 83.42 82.51 81.36
S17 90.76 91.27 91.79 91.77 91.71 90.88 90.74 90.09 88.76 88.9
S16 87.16 88.07 88.43 88.06 87.94 87.26 87.4 86.3 86.11 85.17
#wins 1 4 10 3 0 3 0 1 0 0
rank sums 153.0 74.0 53.0 83.0 108.5 122.5 136.0 121.0 169.0 190.0
position 8.0 2.0 1.0 3.0 4.0 6.0 7.0 5.0 9.0 10.0
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A.4 Transformer-based Text Representation Tuned With
Sentiment Datasets

Table A.37: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the LR classifier and BERT

Accuracy F1-macro

Dataset
BERT

AllData LOO InData AllData LOO InData

iro 76.6 75.48 72.4 68.8 65.16 65.6
sar 67.7 67.5 69.2 65.8 66.05 67.8

ntu 85.5 84.55 89.1 85.2 84.11 88.8

S15 90.0 90.02 90.9 78.5 79.78 78.9
stm 87.2 85.79 89.9 87.1 85.75 89.8

per 86.2 86.79 87.5 83.7 84.21 85.2

hob 87.8 87.92 88.2 86.2 86.17 86.7

iph 84.3 84.77 86.7 81.8 81.91 84.4

mov 88.0 89.48 88.5 80.0 82.8 81.0
san 87.6 85.87 88.9 87.5 85.77 88.8

Nar 92.0 92.1 94.6 91.6 91.75 94.4

arc 89.6 88.82 90.8 89.4 88.56 90.6

S18 86.6 85.53 88.5 86.5 85.43 88.4

OMD 84.8 84.05 86.7 83.8 82.95 85.9

HCR 78.8 77.67 79.9 74.4 73.32 76.0

STS 91.4 90.71 93.4 90.0 89.21 92.3

SSt 82.9 82.53 86.8 82.4 82.05 86.4

Tar 82.8 83.3 84.7 82.8 83.29 84.7

Vad 89.4 89.54 91.4 87.8 87.92 90.1

S13 88.0 87.67 89.5 85.2 84.9 87.1

S17 91.0 90.36 92.1 90.4 89.75 91.6

S16 89.1 89.07 90.6 86.7 86.64 88.5

#wins 1 1 20 1 2 19
rank sums 51.0 56.0 25.0 51.0 56.0 25.0
position 2.0 3.0 1.0 2.0 3.0 1.0
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Table A.38: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the RF classifier and BERT

Accuracy F1-macro

Dataset
BERT

AllData LOO InData AllData LOO InData

iro 69.8 70.4 66.7 48.0 48.93 41.8
sar 70.1 73.99 64.6 68.1 72.47 61.3
ntu 82.0 78.66 83.9 81.1 77.63 82.9

S15 86.0 85.77 85.9 49.6 48.37 49.1
stm 82.6 86.54 85.9 82.6 86.5 85.8
per 80.2 79.88 77.5 69.3 68.28 63.6
hob 79.8 80.46 79.2 72.7 73.83 71.2
iph 82.6 82.95 82.8 76.1 76.47 76.6

mov 82.5 82.24 82.5 47.6 46.33 47.8

san 84.8 84.12 85.5 84.5 83.89 85.4

Nar 88.9 88.97 89.5 88.3 88.24 88.7

arc 88.5 87.49 88.9 88.0 86.95 88.5

S18 84.6 83.4 85.3 84.2 83.01 85.0

OMD 80.5 79.7 81.5 76.8 75.6 78.0

HCR 77.6 77.39 76.6 61.8 61.31 58.9
STS 85.7 85.4 85.2 80.9 80.59 80.0
SSt 80.3 80.24 82.0 79.3 79.22 80.9

Tar 82.5 82.28 83.4 82.5 82.27 83.4

Vad 84.3 84.72 84.7 79.1 79.91 79.2
S13 82.9 82.74 82.0 74.2 73.97 72.0
S17 88.5 88.36 89.1 87.4 87.15 88.1

S16 85.7 85.21 85.7 79.3 78.66 79.2
#wins 7 6 11 6 5 11
rank sums 42.0 49.0 41.0 41.0 51.0 40.0
position 2.0 3.0 1.0 2.0 3.0 1.0
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Table A.39: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the MLP classifier and BERT

Accuracy F1-macro

Dataset
BERT

AllData LOO InData AllData LOO InData

iro 76.0 73.89 74.5 67.4 61.34 66.8
sar 67.7 71.78 69.7 66.1 70.27 68.6
ntu 85.1 84.55 88.7 84.8 84.1 88.5

S15 91.2 91.17 91.1 78.5 79.76 77.5
stm 87.6 87.83 89.0 87.5 87.76 89.0

per 87.0 87.63 86.6 84.1 84.95 83.5
hob 88.4 87.48 87.6 86.8 85.6 85.7
iph 85.0 84.71 87.3 82.2 81.42 84.7

mov 88.8 90.02 88.7 79.8 81.91 80.1
san 88.5 87.99 88.5 88.4 87.92 87.9
Nar 91.9 91.82 94.4 91.6 91.47 94.1

arc 90.4 89.82 90.9 90.2 89.57 90.6

S18 86.7 86.46 88.7 86.6 86.37 88.6

OMD 85.9 86.24 86.3 84.7 85.14 85.2

HCR 80.1 79.91 80.1 74.8 74.56 75.1

STS 91.5 91.28 93.2 90.0 89.74 92.0

SSt 84.0 83.31 86.3 83.5 82.8 85.9

Tar 84.1 84.1 84.8 84.1 84.09 84.8

Vad 90.2 89.96 91.4 88.5 88.24 89.8

S13 88.4 88.1 89.5 85.3 85.02 86.8

S17 91.4 91.19 92.2 90.8 90.57 91.6

S16 89.3 89.19 90.7 86.5 86.26 88.2

#wins 5 3 16 3 4 15
rank sums 43.5 56.5 32.0 45.0 55.0 32.0
position 2.0 3.0 1.0 2.0 3.0 1.0
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Table A.40: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the XGB classifier and BERT

Accuracy F1-macro

Dataset
BERT

AllData LOO InData AllData LOO InData

iro 65.5 75.48 69.0 52.9 64.16 56.5
sar 65.1 68.75 57.7 62.9 67.34 54.8
ntu 81.5 80.97 83.2 80.7 80.39 82.6

S15 89.1 88.48 89.1 65.3 64.26 67.5

stm 83.2 85.24 84.6 83.1 85.19 84.5
per 83.1 83.38 84.2 77.3 77.54 78.4

hob 84.3 83.53 82.9 80.9 79.89 79.2
iph 84.5 84.39 84.5 80.9 80.25 80.7
mov 85.7 85.75 86.9 65.8 66.22 70.0

san 86.6 84.8 86.6 86.5 84.64 86.5
Nar 89.6 89.48 91.9 89.1 88.93 91.5

arc 89.5 87.78 90.5 89.2 87.43 90.2

S18 85.4 85.37 86.7 85.2 85.17 86.5

OMD 84.2 83.9 85.3 82.4 82.05 83.7

HCR 81.8 81.6 80.8 74.5 74.12 72.8
STS 89.3 89.48 90.8 87.0 87.19 88.8

SSt 82.8 82.22 85.0 82.1 81.48 84.4

Tar 83.5 83.36 84.8 83.5 83.35 84.8

Vad 88.1 88.61 89.4 85.6 86.19 87.1

S13 87.0 87.23 87.8 82.8 83.09 83.8

S17 90.8 90.78 91.5 90.0 90.05 90.8

S16 89.0 88.87 90.2 85.6 85.42 87.3

#wins 5 3 17 4 3 16
rank sums 47.5 53.0 31.5 48.5 52.0 31.5
position 2.0 3.0 1.0 2.0 3.0 1.0
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Table A.41: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the LR classifier and RoBERTa

Accuracy F1-macro

Dataset
RoBERTa

AllData LOO InData AllData LOO InData

iro 73.8 74.52 70.8 66.6 67.99 63.5
sar 70.0 75.89 66.8 67.9 75.06 65.0
ntu 90.3 90.32 88.4 90.1 90.08 88.2
S15 89.5 89.73 87.6 77.1 79.24 73.8
stm 90.6 91.1 90.1 90.6 91.05 90.0
per 86.9 85.65 85.6 84.4 82.98 82.8
hob 88.6 88.12 88.6 87.2 86.5 87.3

iph 86.5 86.28 85.9 84.2 84.12 83.5
mov 90.4 89.83 90.2 83.7 82.84 83.6
san 90.3 89.79 90.2 90.2 89.73 90.1
Nar 94.3 93.89 93.7 94.1 93.65 93.4
arc 90.4 89.75 90.8 90.2 89.51 90.6

S18 88.6 88.49 88.0 88.5 88.4 87.9
OMD 87.6 85.94 87.8 86.8 85.02 86.9

HCR 80.0 79.08 80.0 75.8 74.81 75.7
STS 93.8 93.31 93.5 92.8 92.21 92.4
SSt 86.6 86.24 86.3 86.2 85.85 85.9
Tar 84.9 85.15 84.7 84.9 85.14 84.6
Vad 91.4 91.13 91.2 90.1 89.74 89.8
S13 90.0 89.29 89.1 87.6 86.83 86.6
S17 92.3 92.25 91.8 91.8 91.76 91.3
S16 90.6 90.44 90.7 88.5 88.31 88.6

#wins 13 6 5 13 5 4
rank sums 32.0 48.0 52.0 31.0 49.0 52.0
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table A.42: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the RF classifier and RoBERTa

Accuracy F1-macro

Dataset
RoBERTa

AllData LOO InData AllData LOO InData

iro 66.5 67.14 66.3 43.2 43.99 41.9
sar 71.8 78.33 63.6 68.6 76.11 59.5
ntu 86.9 86.94 83.3 86.4 86.46 82.5
S15 87.0 87.23 85.8 55.6 56.54 48.6
stm 88.8 89.61 88.6 88.7 89.58 88.5
per 79.3 77.6 76.9 67.6 63.75 61.8
hob 79.3 80.72 80.3 72.0 73.82 73.2
iph 83.1 82.71 82.3 77.0 76.58 76.2
mov 82.6 82.18 82.2 48.2 46.01 46.0
san 88.4 88.15 86.6 88.3 88.0 86.4
Nar 91.4 90.68 89.7 90.9 90.15 89.0
arc 90.3 89.99 89.7 89.9 89.64 89.3
S18 86.3 86.57 85.3 86.1 86.36 85.0
OMD 82.9 81.56 83.4 79.7 78.1 80.4

HCR 77.5 77.74 76.8 61.7 62.31 59.5
STS 86.9 85.43 85.9 82.8 80.38 81.1
SSt 84.0 83.16 82.4 83.2 82.23 81.4
Tar 83.5 83.63 82.8 83.5 83.62 82.8
Vad 86.1 85.92 85.3 81.7 81.53 80.5
S13 83.1 82.79 82.3 74.1 73.54 72.5
S17 89.6 89.49 88.9 88.6 88.45 87.8
S16 86.5 86.85 86.3 80.6 81.23 80.4
#wins 11 10 1 11 10 1
rank sums 34.0 37.0 61.0 34.0 36.0 62.0
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table A.43: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the MLP classifier and RoBERTa

Accuracy F1-macro

Dataset
RoBERTa

AllData LOO InData AllData LOO InData

iro 75.3 77.38 68.1 67.3 69.95 57.2
sar 71.0 80.66 65.8 69.4 79.35 63.8
ntu 89.6 90.2 88.9 89.3 89.95 88.6
S15 89.8 89.51 89.3 74.9 75.43 74.2
stm 90.4 89.7 89.0 90.4 89.65 88.9
per 86.2 84.59 85.0 82.9 81.1 81.6
hob 88.6 87.55 89.5 86.9 85.26 88.0

iph 86.3 87.72 86.5 83.6 85.29 83.7
mov 91.0 89.71 90.7 83.7 81.35 82.9
san 91.1 89.86 89.8 91.1 89.79 89.8
Nar 93.9 94.13 93.3 93.6 93.88 93.0
arc 90.5 89.77 90.4 90.2 89.51 90.2
S18 88.6 88.81 87.7 88.5 88.74 87.6
OMD 86.8 85.78 87.1 85.8 84.67 86.1

HCR 80.4 80.31 80.4 75.7 75.32 75.5
STS 93.3 93.43 92.7 92.2 92.31 91.4
SSt 87.0 86.21 86.1 86.6 85.78 85.7
Tar 84.9 85.23 84.8 84.9 85.23 84.7
Vad 91.6 90.96 91.2 90.2 89.39 89.7
S13 89.7 89.4 89.1 87.0 86.65 86.2
S17 92.4 92.31 91.9 91.9 91.76 91.3
S16 90.6 90.61 90.6 88.1 88.13 88.0
#wins 11 9 3 10 10 3
rank sums 35.0 42.0 55.0 35.5 42.0 54.5
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table A.44: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the XGB classifier and RoBERTa

Accuracy F1-macro

Dataset
RoBERTa

AllData LOO InData AllData LOO InData

iro 70.1 61.19 62.5 60.1 48.44 49.4
sar 62.5 77.32 63.5 59.9 76.75 61.6
ntu 85.4 84.91 82.6 84.9 84.35 81.9
S15 91.0 89.73 88.1 73.5 70.33 65.2
stm 86.3 88.6 87.8 86.2 88.55 87.8
per 81.8 83.37 82.5 75.5 77.72 76.1
hob 83.1 80.46 83.6 79.4 76.06 80.1

iph 85.3 85.52 84.0 81.7 81.9 80.2
mov 88.6 86.28 86.5 75.6 70.66 67.5
san 89.8 90.03 88.2 89.8 89.96 88.1
Nar 92.9 91.85 91.6 92.5 91.5 91.2
arc 90.8 90.92 89.6 90.6 90.7 89.3
S18 87.6 88.22 86.8 87.5 88.11 86.6
OMD 86.7 86.31 87.3 85.2 84.79 85.9

HCR 82.0 81.87 81.6 74.7 74.52 73.6
STS 91.6 91.4 91.1 89.9 89.52 89.2
SSt 86.2 85.58 84.5 85.8 85.05 83.9
Tar 84.8 84.28 84.7 84.8 84.27 84.7
Vad 90.1 89.61 89.6 88.1 87.53 87.4
S13 88.3 88.05 87.5 84.5 84.17 83.4
S17 91.8 91.7 91.4 91.2 91.05 90.7
S16 90.3 90.36 90.1 87.3 87.47 87.1
#wins 12 8 2 12 8 2
rank sums 35.0 41.0 56.0 35.0 40.0 57.0
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table A.45: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the LR classifier and BERTweet

Accuracy F1-macro

Dataset
BERTweet

AllData LOO InData AllData LOO InData

iro 75.9 83.33 72.8 69.1 76.47 66.6
sar 69.1 76.07 65.5 67.9 74.75 63.6
ntu 92.0 93.89 89.4 91.7 93.66 89.2
S15 92.3 92.52 92.1 83.3 84.76 81.7
stm 91.4 92.47 91.5 91.3 92.45 91.4
per 88.0 88.38 88.1 85.8 86.14 85.6
hob 89.1 89.47 88.2 87.5 87.96 86.7
iph 87.8 85.9 87.8 85.8 83.66 85.7
mov 91.1 89.3 89.3 85.4 82.63 82.4
san 91.6 90.85 90.1 91.5 90.76 90.0
Nar 96.9 96.82 96.3 96.7 96.7 96.1
arc 91.9 91.62 91.6 91.7 91.44 91.4
S18 90.0 88.49 89.9 90.0 88.42 89.8
OMD 88.6 88.98 88.3 87.8 88.22 87.5
HCR 81.2 81.04 80.4 77.4 77.22 76.6
STS 95.1 94.99 94.8 94.3 94.18 94.0
SSt 88.3 88.55 88.6 87.9 88.25 88.2
Tar 86.3 86.07 85.6 86.2 86.06 85.6
Vad 92.7 93.14 92.6 91.6 92.05 91.4
S13 90.3 89.54 90.4 88.1 87.23 88.3

S17 93.3 93.13 92.9 92.9 92.68 92.5
S16 91.7 91.46 91.6 89.8 89.56 89.7
#wins 11 9 3 11 11 1
rank sums 36.5 39.5 56.0 35.5 37.5 59.0
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table A.46: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the RF classifier and BERTweet

Accuracy F1-macro

Dataset
BERTweet

AllData LOO InData AllData LOO InData

iro 68.1 66.67 66.7 44.9 40.73 41.8
sar 69.3 68.16 65.1 66.8 65.41 61.5
ntu 88.9 88.14 85.2 88.3 87.4 84.3
S15 87.5 87.33 86.1 58.0 56.77 50.2
stm 90.6 90.99 87.3 90.6 90.97 87.2
per 80.6 81.77 77.9 70.4 72.54 64.7
hob 81.0 81.74 79.7 74.3 74.54 72.2
iph 83.1 82.14 83.5 77.1 74.96 77.7

mov 82.8 82.65 82.6 48.9 48.36 48.1
san 88.7 89.52 86.9 88.6 89.4 86.8
Nar 93.0 92.58 91.0 92.6 92.1 90.4
arc 91.4 90.61 90.0 91.1 90.29 89.6
S18 87.1 86.57 86.3 86.8 86.34 86.0
OMD 83.4 83.38 82.2 80.6 80.4 79.0
HCR 77.2 77.86 76.5 60.8 62.44 58.8
STS 87.4 87.76 86.1 83.3 83.81 81.3
SSt 83.8 83.18 82.4 82.8 82.16 81.2
Tar 83.9 84.49 83.6 83.9 84.48 83.6
Vad 85.5 85.49 84.5 80.6 80.48 78.8
S13 82.9 83.1 82.1 73.7 74.27 71.8
S17 89.9 89.6 89.6 88.9 88.6 88.6
S16 86.3 85.95 86.0 80.4 79.53 79.7
#wins 13 8 1 13 8 1
rank sums 31.0 39.5 61.5 31.0 39.5 61.5
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table A.47: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the MLP classifier and BERTweet

Accuracy F1-macro

Dataset
BERTweet

AllData LOO InData AllData LOO InData

iro 76.0 80.87 74.4 68.0 72.95 67.2
sar 71.6 76.07 68.3 70.3 74.87 67.2
ntu 91.8 92.58 89.2 91.6 92.36 88.9
S15 93.3 94.39 91.7 83.9 87.31 79.2
stm 91.4 91.0 90.4 91.4 90.96 90.4
per 87.5 88.52 86.8 84.6 86.05 83.4
hob 89.1 89.14 87.4 87.4 87.3 85.4
iph 87.5 86.53 87.6 85.1 83.87 85.0
mov 91.0 90.85 89.8 84.1 83.69 82.0
san 91.6 90.96 90.1 91.5 90.87 89.5
Nar 96.9 96.09 96.0 96.8 95.92 95.8
arc 92.1 91.64 91.5 91.9 91.45 91.3
S18 89.9 88.29 89.5 89.8 88.21 89.4
OMD 88.1 88.07 87.4 87.2 87.16 86.4
HCR 81.1 81.75 80.2 76.0 76.99 75.3
STS 94.8 94.77 94.4 94.0 93.86 93.5
SSt 87.9 87.93 87.6 87.5 87.55 87.2
Tar 85.9 86.0 85.5 85.8 86.0 85.5
Vad 92.8 93.0 92.2 91.5 91.8 90.8
S13 90.4 89.71 90.4 88.0 87.04 87.9
S17 93.2 93.21 92.7 92.8 92.73 92.2
S16 91.4 91.25 91.3 89.2 88.95 89.1
#wins 10 11 2 13 9 0
rank sums 34.5 37.0 60.5 31.0 39.0 62.0
position 1.0 2.0 3.0 1.0 2.0 3.0
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Table A.48: Accuracies and F1-macro scores (%) achieved by evaluating InData, LOO,
and AllData fine-tuning strategies using the XGB classifier and BERTweet

Accuracy F1-macro

Dataset
BERTweet

AllData LOO InData AllData LOO InData

iro 70.4 61.9 65.9 58.1 45.24 51.6
sar 68.3 65.0 60.5 66.1 62.72 57.1
ntu 88.0 86.72 86.0 87.4 86.13 85.4
S15 91.0 90.96 90.5 75.1 76.98 72.4
stm 88.7 91.08 84.0 88.6 91.05 84.0
per 84.0 85.19 85.6 78.8 81.01 80.9
hob 86.0 85.45 82.8 83.2 81.95 79.0
iph 86.4 87.59 84.8 82.8 84.22 80.8
mov 89.7 88.05 87.8 77.5 72.95 73.1
san 89.9 89.87 87.7 89.9 89.79 87.6
Nar 94.1 92.83 93.3 93.8 92.45 93.0
arc 91.7 91.85 91.3 91.5 91.65 91.0
S18 88.2 88.06 87.3 88.1 87.94 87.1
OMD 86.7 86.31 86.0 85.3 84.85 84.5
HCR 82.0 82.21 81.0 74.7 75.26 73.0
STS 92.7 92.33 91.5 91.2 90.81 89.8
SSt 85.7 86.24 85.9 85.2 85.66 85.3
Tar 85.6 85.92 85.2 85.6 85.92 85.2
Vad 90.5 90.54 89.9 88.4 88.42 87.6
S13 88.3 88.6 88.0 84.5 85.06 84.0
S17 92.2 92.12 91.8 91.5 91.5 91.2
S16 91.0 90.94 91.0 88.3 88.18 88.3

#wins 13 8 2 12 11 1
rank sums 33.5 39.0 59.5 35.0 37.5 59.5
position 1.0 2.0 3.0 1.0 2.0 3.0


