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�Can you improve this place with the data that you gather?�

Brett Gurewitz
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Resumo

O Método dos Elementos Finitos (MEF) é comumente empregado para resolver as equa-
ções governantes de vários fenômenos físicos no contexto da homogeneização numérica.
Neste escopo, são utilizadas técnicas de imageamento, como a micro tomogra�a compu-
tadorizada, para obter modelos digitais da microescala de amostras de materiais, o que
naturalmente leva a soluções baseadas em pixel e voxel. À medida que a dimensão das
imagens cresce, a alocação de memória por conta da matriz global de elementos �nitos,
mesmo na forma esparsa, torna-se rapidamente inviável, o que di�culta a exploração dos
recursos de imageamento de última geração. As estratégias �sem montagem� baseiam-se
na premissa de nunca armazenar a matriz global, trabalhando apenas com as matrizes
de elementos, o que alivia consideravelmente o uso de memória, mas eleva o custo com-
putacional. Consequentemente, abordagens otimizadas de implementação são buscadas
para reduzir o tempo de execução das soluções computacionais. O método dos gradientes
conjugados pré-condicionado (GCP) é usado para resolver os sistemas lineares de equa-
ções algébricas, que são esparsos e de larga escala. Este trabalho foca em solvers GCP
massivamente paralelos, implementados em CUDA C, aplicados ao MEF �sem montagem�
para a homogeneização numérica de condutividade térmica e elasticidade de modelos ba-
seados em imagens. São apresentadas cinco maneiras diferentes de implementar o método
GCP em GPU, algumas mais e�cientes em memória, outras em tempo. Todas apresen-
tam desempenho signi�cativamente melhor do que soluções semelhantes em CPU. Além
disso, tanto quanto é do conhecimento do autor, é proposta uma nova estratégia para a
obtenção de bons pontos de partida para o processo iterativo do método GCP, no âm-
bito das simulações baseadas em imagens. Os solvers resultantes são validados com um
benchmark analítico, e pela veri�cação dos resultados obtidos para um modelo micro-
tomográ�co de uma amostra de ferro fundido, comparando com valores experimentais
encontrados na literatura. Métricas de tempo e memória são apresentadas e discutidas.
Mostra-se que as metodologias desenvolvidas permitem que simulações com cerca de 475
milhões de graus de liberdade sejam realizadas em computadores pessoais equipados com
dispositivos habilitados para CUDA, levando menos de um minuto por solução do GCP.
As soluções obtidas com o GCP em GPU mostraram-se até cerca de 400x mais rápidas
que as alcançadas com um programa antecessor paralelizado em CPU.

Palavras-chave: elementos �nitos, sem montagem, gradientes conjugados, GPU, CUDA,
homogeneização baseada em imagens.



Abstract

The Finite Element Method (FEM) is commonly employed to solve the governing equa-
tions of various physical phenomena in the context of numerical homogenization. In this
scope, imaging techniques, such as micro-computed tomography, are used to obtain di-
gital models of the micro-scale of material samples, which naturally leads to pixel and
voxel-based solutions. As the dimension of the images increases, memory allocation due
to the �nite element global matrix quickly becomes unfeasible, even in sparse form, ma-
king it harder to fully explore state-of-the-art imaging resources. Assembly-free strategies
are based on the premise of never storing the global matrix, working with local element
matrices instead, which considerably relieves memory usage, but increases computational
cost. Hence, optimized implementation approaches are sought out to reduce runtime.
The Preconditioned Conjugate Gradient (PCG) method is used to solve the large-scale
sparse linear systems of algebraic equations. This work focuses on massively parallel PCG
solvers, implemented in CUDA C, applied to the assembly-free FEM for the numerical
homogenization of thermal conductivity and elasticity of image-based models. Five dif-
ferent ways of implementing the PCG method in GPU are presented, some are focused
on memory e�ciency, others prioritize runtime reduction. All of these implementations
perform signi�cantly better than akin solutions in CPU. Furthermore, to the best of
the author's knowledge, a novel strategy for obtaining good initial guesses for the PCG
method is proposed, in the scope of image-based simulations. The resulting solvers are
validated with an analytical benchmark, and by comparing the obtained results for a
microtomographic model of a cast iron sample against experimental values found in the
literature. Time and memory metrics are presented and discussed. It is shown that the
developed methodologies allow for simulations with nearly 475 million degrees-of-freedom
to be conducted in personal computers equipped with CUDA-enabled devices, taking less
than one minute per system solution with the PCG method. The solutions obtained with
the PCG in GPU were up to 400x faster than those achieved with a predecessor program,
parallelized in CPU.

Keywords: FEM, assembly-free , matrix-free , PCG, GPU, CUDA, image-based, homo-
genization.
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Chapter 1

Introduction

Numerical homogenization is a practice within Materials Science dedicated to estimating

the e�ective physical properties of heterogeneous materials via numerical experiments on

their micro-scale. The idea is to solve the di�erential equations that govern a given phy-

sical phenomenon, while considering known forcing applied to either the whole domain or

its borders, so that constitutive tensors can be evaluated for a macro-scale representative

volume, as it were homogeneous. This is useful for various �elds of science, as it allows

for the study of important properties, such as thermal conductivity [41, 77], elasticity

[2, 42, 61, 71, 75], permeability [2, 76] and electric resistivity [20], to cite a few.

The computational approach is an alternative to study materials without depending

on physical tests, that often are destructive, non-repeatable, and fail to provide detailed

results on all directions. For example, elasticity tests on a laboratory usually involve

forcing the sample to its rupture, and permeability rehearsals are focused on only one

direction of �uid �ow. The full control of input parameters, the repeatability of analyses,

and the possibilities to run simulations on all directions of interest and to generate detailed

results are attractive arguments for digital testing. However, a crucial matter needs to be

addressed for it to be reliable, the characterization of the model. In light of this, imaging

techniques have been brought into play, technologies like micro-computed tomography

(µCT) are increasingly being employed to obtain digital models of material samples.

Pereira et al. [61], Vianna [75], Sapucaia [70], Wu et al. [77], and Liu et al.[42] are some

examples of image-based numerical homogenization with µCT. The adoption of images

to depict the micro-scale leads to the search for pixel and voxel-based solvers.

The Finite Element Method (FEM) is one of the most commonly employed numerical

scheme to solve the di�erential equations related to the considered physical phenomena

[2, 5, 9, 36, 41, 42, 61, 65, 71, 76, 77], generally boundary value problems described
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by elliptic PDEs, although it is not the only option [45, 70]. In a nutshell, the FEM

numerically characterizes the problem as a system of algebraic equations, to be solved with

computational algebra techniques, for an approximate solution of the PDE in a discretized

domain, denominated mesh. The standard strategies of implementation usually demand

costly memory allocation, due to the global matrix, that holds the coe�cients of the

system of equations, and auxiliary data structures, such as a connectivity map. However,

when dealing with images, that is, meshes structured in grid-like fashion, it is possible to

considerably relief memory usage, as the regularity of the geometry grants sparsity to the

global matrix, and allows for the connectivity to be computed on-the-�y.

A vital aspect of the FEM is the need for convergence tests. To achieve a reliable

numerical solution, it is important that the same model is analyzed more than once,

re�ning the mesh at each simulation. With image-based models, this means that it is ne-

cessary to run analyses on images with increasing resolution. Similarly, from a qualitative

perspective in the context of homogenization, it is desirable to consider di�erent cells, as

big as possible, from a same material sample, to obtain trustworthy e�ective properties.

Coupling the needs for mesh re�nement and big models leads to large-scale systems of

equations to be solved. For example, in 3D analyses, it is common to quickly go over 106

degrees-of-freedom (DOFs). This makes the storage of the global matrix unfeasible, even

in sparse form, as most algorithms that do so have some sort of super-linear complexity

of space. At best, e�cient implementations, constrained by the assumption of structured

meshes, might achieve linear tendency of memory usage, but with a high slope coe�cient,

so there is still high allocation demand. Available memory is a critical issue for the inten-

ded simulations. Furthermore, this is the bottleneck of the analyses. For most models,

the time it takes to solve the systems of equations determines the total time of analysis,

even though there are pre- and post-processing tasks.

The assembly-free, also called matrix-free, approach is based on the premise of never

allocating the global matrix in memory. Nevertheless, the system of equations still con-

ceptually exists and needs to be solved. The idea is that each time a coe�cient of the

matrix is requested, instead of simply performing a memory access, it must be computed

on the spot, considering a stencil formed by the respective DOF and its neighbors on

the mesh. This is becoming a standard practice for large-scale �nite element analysis

[4, 5, 24, 36, 37, 39, 47, 48, 49, 54, 56, 75]. Strategies of this sort can drastically re-

duce memory allocation, but they also imply that matrix operations become dependent

of sweeps of the domain, meaning that computational cost is elevated. Hence, parallel

implementations are sought.
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The Preconditioned Conjugate Gradient Method (PCG) [30, 32, 40, 72] is an ite-

rative numerical scheme commonly employed to solve large-scale systems of equations,

particularly for those from the FEM applied to elliptic PDEs, as the characteristics of

the global matrix usually are favorable for fast convergence, in number of iterations

[1, 4, 5, 18, 19, 23, 26, 36, 37, 56, 63, 64]. It requires signi�cantly less memory allo-

cation than any conventional direct method, as no factored matrix needs to be stored.

Also, most of the operations on each iteration are based on vectors, so they are relatively

straightforward to be implemented in massively parallel environments. Even so, there are

some matrix operations that require a careful assessment in parallel solutions, especially

considering an assembly-free approach.

Over the last decades, it has been observed a signi�cant improvement in the compu-

tational power of Graphics Processing Units (GPUs) [38, 69]. So much so that, in recent

years, they have become a recurring topic for academic work in Scienti�c Computing, mos-

tly as a tool to speed up numerical simulations. Akbariyeh [1], Apostolou [4], Daibes [17],

Madeira [44], Mirzendehdel [54], Ribeiro [67] and Vasconcellos [74] are some interesting

examples of M.Sc. and Ph.D. theses that employ GPUs in such context. The massively pa-

rallel nature of GPUs, following the Single Instruction Multiple Thread (SIMT) paradigm,

usually makes them more �tting to deal with vector and matrix problems than CPUs,

enabling impressive performance gains. However, memory availability in most low-cost

GPUs is an issue, often being a limiting factor for large-scale FEM analysis, even when

accounting for sparsity or adopting assembly-free approaches. This hinders the usage of

state-of-the-art µCT capabilities, in the scope of computational homogenization, as the

larger models do not �t in the common 4 GB or 8 GB DRAM, leading to dependency

on clusters and supercomputers. In light of this, there is a demand for implementations

that exploit speci�cities of the simulations to obtain greater memory e�ciency, so that

representative models can be studied with personal computers, equipped with relatively

accessible GPUs.

1.1 Motivation

The developments presented in this text follow the works of Pereira et al. [61] and Vianna

[75], focusing on making feasible the numerical analysis with FEM of large-scale voxel-

based models obtained with µCT in personal computers, exploring GPU resources to speed

up the computations. Figure 1.1 depicts a microtomographic model of a sandstone sample,

previously studied in Vianna et al. [76]. The simulations for numerical homogenization
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performed in Pereira et al. [61] took place in a single 32-core CPU, making use of multi-

thread parallelism techniques with OpenMP. Each PCG solution for a ∼2 × 108 DOFs

(4003 voxels) elasticity analysis would take roughly 2 hours to compute, meaning that the

full homogenization study would demand about 12 hours.

Figure 1.1: Digital model of a sandstone sample obtained wit µCT. Source: Vianna et al.
[76].

Having access to a CUDA-enabled Nvidia device, a GeForce RTX 2080 Super�, it is

expected that performance can be considerably improved by tackling the bottleneck of

the analyses on the GPU, that is, solving the systems of equations with the PCG method.

The adopted assembly-free scheme is suitable to be implemented in vector-based and

massively parallel environments. However, memory requirements are high, and the 8 GB

of available DRAM in the global memory of this device are a strong constraint to the

dimensions of the images that can be studied. As Vianna [75] shows, the total memory

requirement for the elasticity analysis in CPU of a 5003 voxels image amounts to 19.6 GB,

of which 12.0 GB are taken by the arrays that store the vectors associated with the PCG

method, with the pre-existing solver. Hence, a careful assessment of memory allocation,

and data transfer, on the GPU is required for the new proposed solver, since it is a goal

to run simulations on even larger models. In addition to this, the author has a Nvidia

GeForce 940MX� GPU (4 GB DRAM) at personal disposal, and it is also desired that

the massively parallel solution can be run on this device for relatively large models, as

a proof of concept that computations for the homogenization of representative periodic

cells can be carried out even on a laptop, on reasonable time.
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1.2 Goals

The objectives of this work are threefold.

1. Implementation of a massively parallel PCG solver with CUDA, applied to assembly-

free image-based FEM problems.

2. Achieving signi�cant speed-up for the elapsed time for whole numerical homogeni-

zation process, by solving the linear systems of algebraic equations in the GPU.

3. Making possible the thermal conductivity analysis of models with ∼4× 108 DOFs,

which correlates to images of 7243 voxels, with GPUs of 4 GB DRAM. This corres-

ponds to the useful part of a material sample imaged with 10243 voxels.

1.3 Outline

This document is divided in 8 Chapters. Chapter 1 consists of this introduction. Chapter

2 is focused on a literature review, where related work and a background to this text

are explored, and a summary of the performance of similar developments is exposed.

The intent is to set a goalpost on how much gain can be achieved with the present

work. Chapter 3 presents the mathematical modeling behind image-based numerical

homogenization and assembly-free FEM, as well as the physical phenomena analyzed in

the scope of this work, thermal conductivity and elasticity. Chapter 4 aims to characterize

the PCG method as a computational problem, showing how speci�cities of the proposed

numerical simulations impact its demanded operations, and exposes preliminary CPU

implementations of the parallel algorithm. Chapter 5 depicts the GPU implementation,

going into details of the code in CUDA C, memory allocation on host and device, data �ow

between CPU and GPU and 4 alternative ways of implementing the proposed solution,

each with its advantages and caveats. Chapter 6 presents a novel strategy, to the best of

the author's knowledge, for obtaining good initial guesses for the PCG method from coarse

meshes, in the scope of image-based FEM. Chapter 7 presents some results, metrics and

discussion, validating the developed program with an analytical benchmark and analyses

of a microtomographic model of a cast iron sample, and a push to the limits of the

available hardware, simulating the largest synthetic sample possible. Finally, Chapter 8

brings some concluding remarks and comments on future work.
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Literature Review

2.1 Numerical Homogenization

The �eld of Materials Science advanced at large during the second half of the last century.

Within this scenario, interest grew in studying heterogeneous materials at a microscopic

level, to obtain homogenized e�ective physical properties. In this context, academic works

for the modeling of the mechanical behavior of heterogeneous media, such as Hashin and

Shtrikman [29], from 1962, and the development of homogenization techniques, such as

Hill [33], presented in 1963, were published in Solid Mechanics journals. Advancements

continued in the following decades, with works such as Cioranescu and Paulin [13], in

which the homogenization of domains with holes (void/pores) was addressed. Sophis-

ticated mathematical models were conceived, yielding analytical solutions for some ge-

ometrically well-behaved domains, as shown in 1979 by Perrins et al. [62]. However,

to conduct analyses for models more representative of the micro-scale of composite and

natural material samples, numerical methods and computational tools were required.

The idea of working with numerical (or computational) homogenization began to gain

popularity in the 90's and early 00's. Guedes and Kikuchi [25] worked with the Finite

Element Method (FEM) for the homogenization of elastic properties, Moulinec and Suquet

[55], and Michel et al. [53] synthesized computational approaches to solve the governing

equations of elasticity in periodic media for homogenization problems, employing the

FEM or, alternatively, Fast Fourier Transforms. In 2006, Cartraud and Messager [11]

presented a computational solution for periodic beam-like structures. A few years later,

in 2009, Pinho-da-Cruz, Oliveira and Teixeira-Dias [15, 59] published a two part article

documenting the mathematical formulation for asymptotic homogenization with FEM,

considering periodic cells.
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Terada et al. [73] and Kanit et al. [35] studied the determination of representative

volume elements (cells) for the convergence of numerical solutions, assessing di�erent types

of boundary conditions. A decade later, Nguyen et al. [57] suggested that the adoption

of periodic boundary conditions accelerates convergence, in comparison to conventional

Dirichlet and Neumann conditions.

In 2014, Andreassen and Andreasen [2] presented a concise educational article towards

numerical homogenization with structured �nite element meshes, adopting periodic boun-

dary conditions. They provided a clear step-by-step solution that can serve as an interes-

ting starting point for researchers to get in touch with the topic.

Over the last decade, with the development of imaging technologies, such as µCT,

in conjunction with growing computational power of relatively accessible machines, there

is a notorious trend of working with image-based models for homogenization. The high

resolution of the images, being able to capture details in the order of µm of the micro-

scale of materials, leads to large-scale FEM problems. There is extensive recent literature

reporting developments in this scope, it is an active research �eld. References [20, 41, 42,

45, 61, 65, 68, 70, 71, 75, 76, 77] are examples of works of image-based homogenization,

from the last 5 years.

2.2 Assembly-free FEM

To deal with the large-scale FEM problems that arise with high resolution image-based

models, memory-e�cient implementations are required. The general case �nite element

analysis has super-linear space complexity, due to the global matrix and required auxiliary

data structures, so it quickly �lls the DRAM of personal computers and workstations, as

the number of DOFs increases. If the sparsity of the systems is considered, O(n) space

complexity can be achieved. The assembly-free (matrix-free) strategy reduces even further

the required allocation while maintaining linear complexity, thus making it possible for

much larger models to be studied.

Hughes et al. (1983) [34], Carey and Jiang (1986) [10], and Erhel et al. (1991)

[21] are among the �rst published assembly-free FEM implementations, being commonly

cited as the original sources for the approach. The strategy was referred as element-by-

element, as it employed loops over elements to perform sweeps of the domain, so that the

coe�cients of the global matrix could be computed on-the-�y. The considerable reduction

in memory allocation made feasible the simulations of FEM problems with millions of
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DOFs in personal machines, but the limited performance of the hardware at that time

hindered the exploration of the full potential of the proposed methodologies, as they are

burdened with the caveat of increased computational cost.

In the last decade, considering the rise of massively parallel computation devices,

namely the fast-paced improvements seen with GPUs [38, 69], the assembly-free FEM

became a standard for large-scale problems, especially when dealing with image-based

models and/or structured meshes. Numerous academic works documenting GPU solutions

for matrix-free FEM problems can be found in the recent literature, such as Akbariyeh

[1], Apostolou [4], Kiran et al. [37], Kronbichler and Ljungkvist [39], Loeb and Earls [43],

Martínez-Frutos and Herrero-Pérez [47], Martínez-Frutos et al. [49], Mirzendehdel [54],

Müller et al. [56], and Reguly and Giles [66]. All of these were published from 2012 to

2020. Most adopt a PCG solver.

It is interesting to notice that di�erent �elds are merging in this topic. Researchers

of biomechanics need to perform large �nite element analyses in microscopic images of

bone samples, so they rely in not storing the global matrix, as it can be seen in works like

Arbenz et al. [5], Bekas et al. [7], Flaig and Arbenz [24], and Keÿler [36]. The study of

topology optimization of structures requires several solutions of large-scale FEM systems,

leading researchers of the area to employ the discussed approach as well, as in Duarte

[18], Duarte et al. [19], and Martínez-Frutos and Herrero-Pérez [48]. In the context of

image-based homogenization, the works of Liu et al. [41, 42], and Pereira et al. [61] are

examples that apply the assembly-free FEM.

2.3 Massively Parallel PCG in GPU

The Conjugate Gradient (CG) method for solving linear systems characterized by positive

de�nite and symmetric matrices was originally presented in 1952, by the works of Hestenes

and Stiefel [32], and Lanczos [40]. At �rst, even though the scheme relies on an iterative

process, it was categorized as a direct method, as it can be proved that an exact solution

is found with n steps, where n is the dimension of the system. However, much faster

convergence is achieved within a numerical tolerance, especially with the employment of

preconditioners, as detailed by Benzi [8], so the CG was later deemed an iterative method.

The Preconditioned Conjugate Gradient (PCG) method, brilliantly described by Shew-

chuk [72], extends the original CG to admit preconditioning, being an iterative scheme

commonly employed to large-scale FEM problems. The characteristics of the system of
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Hardware DRAM [GB]
Reference
(year)

CPU GPU CPU GPU
Assembly-

free
Structured

mesh
DOFs
×106

GPU Mem.
Alloc.[GB]

Time [s]
Time per
iteration [s]

[1]
(2012)

Intel Core i5
2.66GHz

Nvidia Quadro
5000

4.0 2.5 X X 10.1 2.5 - 0.418

[4]
(2020)

Intel(R)
(16 threads)

Nvidia
Titan V

- 12.0 X X 166.0 11.4 31.1 -

[19]
(2015)

Intel Core i7-
2820QM

(16 threads)

Nvidia GTX
Titan

16.0 6.0 X × 20.0 - 2270 22.70

[23]
(2016)

Intel Xeon E5
(12 threads)

Nvidia Tesla
K20m

32.0 5.0 × × 3.2 5.0 262 0.398

[31]
(2012)

Intel Xeon
2.66GHz
(8 threads)

Nvidia Tesla
T10

12.0 4.0 × × 2.1 - 71.4 -

[37]
(2020)

Intel Xeon E5
2.20GHz

(24 threads)

Nvidia Tesla
K40

- 12.0 X X 14.0 2.6 - 0.020

[43]
(2019)

Intel Xeon E5
2.70GHz

AMD FirePro
D700

- 6.0 X X 2.0 - 26.0 0.021

[49]
(2015)

Intel Xeon E5603
2.13GHz

Nvidia Tesla
K40m

- 12.0 X X 2.0 - - 0.200

[56]
(2013)

Intel Xeon E5-2620
2.00GHz

Nvidia Fermi
M2090

- 6.0 X X 8.4 ∼0.2 0.50 0.006

[64]
(2019)

Intel Xeon E5606
2.13GHz

Nvidia Quadro
M6000

64.0 12.0 X X 0.9 - 3000 -

Table 2.1: Performance metrics found in the literature for massively parallel PCG solvers
in GPU

equations from the FEM allow for convergence in few steps with the PCG, so solutions

can be obtained much faster than with other usual iterative or direct methods.

The computations at each iteration of the PCG consist of vector and matrix operations

that can be implemented in massively parallel environments. The work of Helfenstein and

Koko [31], from 2012, documented a GPU implementation of the conventional form of the

PCG method, as a standalone solver for large sparse systems, using the CSR format to

reduce memory allocation. From this point on, many developments focus on speci�cities of

the analysis being performed to make more e�cient solvers. Many of the aforementioned

references in the previous Section employ the PCG method. In addition, Fialko and

Zeglen (2016) [23], and Pikle et al. (2018) [63, 64] implemented the PCG for large-scale

�nite element analysis in GPU.

In Table 2.1, performance metrics for several PCG solvers found in the literature are

exposed, focusing on massively parallel implementations in GPUs. The idea is to associate

available hardware, sizes of the simulations, peak memory allocation and elapsed time,

with the objective of setting benchmarks to the solution developed in this work.

It is noticeable, from Table 2.1, that most solvers deal with about 1 million to 100

million DOFs. This range can be explained by the device available for each author and the

various possibilities of implementation. For example, Apostolou [4] uses double precision

�oating point variables, being able to run analyses for a 166 million DOFs model allocating
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11.4 GB. Oppositely, Müller et al. [56] present a solution with greater memory e�ciency

that employs single precision, showing the simulation of a model with ∼8 million DOFs

storing just 167 MB in DRAM, which means that this solver is expected to be able to

handle models of up to 300 million DOFs with their 6 GB DRAM device. It is notorious

that the assembly-free strategy is associated with larger models. Some works employ high-

performance computing clusters and supercomputers to solve problems of this nature,

and in doing so, are able to study models of much larger dimensions. Arbenz et al. [5]

presented the solution of models of bone micro-structure with up to impressive 25 billion

DOFs, using the Tödi cluster, a Cray XK7 supercomputer composed of 272 nodes, each

one equipped with a Nvidia Tesla K20x GPU, of 6 GB DRAM. Duarte [18] ran a topology

optimization analysis of a model with 3 billion DOFs in the Blue Waters supercomputer,

a cluster of 22640 nodes, each one equipped with a 32-core CPU of 64 GB DRAM, using

2916 machines. These two references were not mentioned in Table 2.1, as we are focusing

on solutions in a single GPU, but they help to contextualize the state-of-the-art of solving

large-scale sparse systems with the PCG method.

Usually, PCG solvers in GPU allocate at least �ve arrays to store vectors of variables,

when dealing with assembly-free FEM. In this work, the method is reassessed, combining

some of the vector and matrix operations together, to reduce memory allocation. Soluti-

ons with four, three and two arrays stored in GPU will be presented. In addition, single

precision �oating points are used to characterize all �eld variables. The proposed imple-

mentations aim to improve on the memory e�ciency currently found in the literature.

In regards to time, it is not straightforward to compare performance, from the data

in Table 2.1, as di�erent hardware are involved, and, unfortunately, not every author

provides the number of iterations for convergence of the PCG method or the adopted

numerical tolerance. Regardless, from the metrics observed in these references, it seems

reasonable to expect that solutions for models of about 100 million DOFs, with tolerance

of at least 5 digits, can be obtained in under 100 s with the most powerful device employed

in this work (Nvidia GeForce RTX 2080 Super�). In fact, this expectation was met, as it

will be shown at the end of this document.



Chapter 3

Numerical Homogenization

Numerical homogenization consists in the evaluation of e�ective physical properties for

heterogeneous materials by establishing relationships between their behavior at a micro

and a macro-scale. It is inherently a multi-scale problem, as it is admitted that two well

de�ned di�erent scales exist [53]. The �nal product of the computational experiments

is a constitutive tensor that describes the physical behavior of the studied material, as

it were homogeneous. The description of the homogenization process presented ahead is

based on previous work such as Pereira et al. [61], Vianna et al. [76], Vianna [75], and

Sapucaia [70]. Andreassen and Andreasen [2] is an interesting reference that synthesizes

the methodology.

3.1 An introduction

The homogenization analyses are based on numerical simulations to solve the governing

di�erential equations of a given physical phenomenon within a heterogeneous medium,

admitting speci�c forcing conditions. An average of the response observed at the micro-

scale is computed to characterize a homogenized material. Such average is described as

an integral of any given �eld over the domain of analysis [33], as in

〈φ〉 =
1

|Ω|

∫
Ω

φ dΩ , (3.1)

where φ is a �eld acting in the domain Ω. The bracket notation 〈. . . 〉 is commonly adopted

to denote the average [53, 70, 76].

It is assumed that the heterogeneities and localized variations of the medium at a

microscopic level appear in pattern-like fashion, so that they are averaged out at a macro-
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scale level, which, despite also being heterogeneous, can be approximately modeled as

homogeneous. The numerical analysis is performed in a periodic cell, a micro-scale hete-

rogeneous domain that represents a material point of the macro-scale, which shows little

to no translational variance. This means that it is admitted that the studied image-based

model could be periodically repeated to closely approximate the sample, as portrayed in

Figure 3.1. The assumption of periodic media is based on previous work such as Michel

et. al [53], Cartraud and Messager [11], Andreassen and Andreasen [2], and Vianna et al.

[76]. In that sense, periodic boundary conditions, as illustrated in Figure 3.2, are adopted

to solve the governing PDEs [35, 57, 68]. It should be noted that, for the consideration

of random micro-structures, this sort of analysis could be improved by the adoption of

stochastic methods [9, 65].

Figure 3.1: Periodic cell.

Two types of physical problems are considered in the scope of this work, heat conduc-

tion and elasticity, whose formulations are presented in details in Subsections 3.2.1 and

3.2.2. The homogenized constitutive tensors for each analysis are obtained, respectively,

as in

〈q〉i = −κhij〈∇T 〉j, (3.2)

where 〈q〉i is the averaged heat �ux density �eld, 〈∇T 〉j is the averaged temperature

gradient and κhij is the homogenized thermal conductivity tensor, and

〈σ〉ij = Eh
ijkl〈ε〉kl, (3.3)

where 〈σ〉ij is the averaged stress �eld, 〈ε〉kl is the averaged strain �eld and Eh
ijkl is the

homogenized sti�ness tensor.
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Figure 3.2: (a) Periodic boundary conditions, source: Vianna [75]. (b) Convergence of
e�ective properties for di�erent boundary condition considerations, adapted from Nguyen
et al. [57] and Sapucaia [70].

In order for the coe�cients of the constitutive tensors to be computed, it is clear in

Equations 3.2 and 3.3 that two averaged �elds must be known. By setting one of the two,

it is possible to calculate the other by running physical simulations in the microscopic

domain, followed by the employment of Equation 3.1. It is important to notice that the

constitutive tensors are of a higher order than the �elds to which they relate to, so multiple

analyses must be performed to fully characterize them. In 3D, for thermal conductivity,

three analyses must be run, while, for elasticity, six simulations are needed, accounting for

the inherent symmetries associated with this constitutive law, which are further discussed

in Subsection 3.2.2.

3.2 Governing equations

This Section is dedicated to expose the formulation of the physical phenomena studied

in this work, going from the strong form of the governing partial di�erential equations

to their respective weak form, suitable to be solved numerically with FEM, which will

be discussed in Section 3.3. All the constitutive behavior of the di�erent phases present

in the heterogeneous domain is assumed to be linear. The mathematical expressions are

depicted in tensor notation.
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3.2.1 Heat Conduction

The mathematical modeling presented in this Subsection is based on the book on Heat

Conduction written by Hahn and Özisik [28]. The derivation of the governing equation

in weak form follows Cook [14].

Let us consider a domain Ω in R3 subjected to a heat source Q in stationary equili-

brium with a heat �ux density �eld qi and a temperature gradient ∇T . It is known, by
Fourier's law (Equation 3.4), that qi can be written in terms of ∇T , i.e.

qi = −κij(∇T )j, (3.4)

where κij is the thermal conductivity tensor. Furthermore, at any point of the domain,

it must hold that

∇ · qi = Q. (3.5)

For isotropic materials (Appendix A), κij can be substituted by a scalar, setting the

subscribed indexes of ∇T as the same of qi. From this point on, it will be referenced like

so, for the sake of simplicity, but it is noteworthy that the following formulation works

for anisotropic materials as well.

By combining Equations 3.4 and 3.5, Equation 3.6 is obtained. This expression is

notoriously known as Poisson's Equation in Euclidean space, an elliptic PDE that appears

in similar form in other physical problems, such as Newtonian Gravity and Electrostatics.

κ∇2T +Q = 0. (3.6)

A numerical solution will be sought for the scalar �eld T , through the approximation

of it with a �nite sum of simple interpolation functions. By applying the weighted residual

method, that is, imposing a null average error over the domain, Equation 3.7 is obtained.

∫
Ω

w(κ∇2T +Q) dΩ = 0, (3.7)

where w is a non-null weight function, also often denominated test function.

The integral in Equation 3.7 can be separated as two, one for the κ∇2T part, and

another for Q. The divergence theorem states that the integral over a closed domain of a
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scalar �eld multiplied by the divergent of a vector �eld can be calculated as

∫
Ω

wκ∇2T dΩ =

∮
∂Ω

wκ(∇T )in̂i d∂Ω −
∫

Ω

(∇w)iκ(∇T )i dΩ , (3.8)

where ∂Ω corresponds to a surface that borders the domain Ω, and n̂ is the vector �eld

normal to ∂Ω.

The weight function is arbitrary, so it is possible to choose one that is compatible with

the variable �eld T . In this case, this means that w can be set as δT , usually referred to as

a virtual temperature �eld. By taking this into consideration and substituting Equation

3.8 back in Equation 3.7, we get

∫
Ω

(∇δT )iκ(∇T )i dΩ = −
∮
∂Ω

δTqin̂i d∂Ω +

∫
Ω

δTQdΩ , (3.9)

which is the weak form of Poisson's Equation for Heat Conduction that commonly is

solved with the FEM.

3.2.2 Elasticity

The mathematical modeling presented in this Subsection is based on the book on Conti-

nuum Mechanics written by Mase, Smelser and Mase [50]. The derivation of the governing

equations in weak form follows literature on elasticity problems with the FEM, such as

Barbero [6], Felippa [22], and Martha [46].

Similarly to what was done on the previous Subsection, admit a domain in R3 denoted

by Ω, now representing a deformable body subjected to body forces fi. Let σij be the

internal stress �eld acting in Ω, associated with a strain �eld εij. The generalized Hooke's

law for linear elasticity states that stress and strain are related, as in

σij = Eijklεkl, (3.10)

where Eijkl is called the sti�ness tensor.

Assuming small displacements, that is, a geometrically linear analysis, the strain �eld

εij can be written in terms of the displacement �eld ui, as shown in Equation 3.11. This

is commonly denominated the compatibility equation.

εij =
1

2
(ui,j + uj,i), (3.11)
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where the subscript notation ui,j denotes a partial derivative, as in ∂ui/∂xj. It is impor-

tant to notice that, according to this de�nition, εij = εji, meaning that the strain tensor

�eld εij is symmetric. In addition, by coupling 3.11 with 3.10, it is clear that σij is also

a function of ui.

An assessment of static equilibrium, that is, making the assumption of no transient

behavior, implies that Equation 3.12 must hold throughout the domain Ω.

σji,j + fi = 0. (3.12)

As it was done in Equation 3.7, the weighted residual method is applied to Equation

3.12, leading to

∫
Ω

wi(σji,j + fi) dΩ = 0, (3.13)

where wi is now a collective of 3 non-null weight functions, which can be thought of as

a vector �eld. Similarly to Equation 3.8, the divergence theorem can be applied in its

tensor form to the σji,j part of the integral in 3.13, so that it extends to

∫
Ω

(∇w)ijσji dΩ =

∮
∂Ω

wiσjin̂j d∂Ω +

∫
Ω

wifi dΩ . (3.14)

Analogously, the weight functions can be chosen to be compatible with the variable

�eld ui. However, attention must be drawn to the fact that, in this case, neither wi or ui

are scalar �elds. wi is set as δui, a vector �eld in R3, which can be understood as virtual

displacement. In light of this, Equation 3.14 can be rewritten as

∫
Ω

(∇δu)ijσji dΩ =

∮
∂Ω

δuiσjin̂j d∂Ω +

∫
Ω

δuifi dΩ . (3.15)

It is interesting to notice that, by plugging Equation 3.11 into Equation 3.10 and substi-

tuting the result in the above expression, it becomes the weak form of Navier's Equation.

Even though 3.15 is a di�erential equation in its weak form, it still can be further

simpli�ed for a computational approach. It is desired to deal mostly with vectors, and

this can be achieved by accounting for the symmetries observed in Hooke's law (3.10). In

Mase et al. [50], those are explored and explained in details. It is known that the stress

�eld σij is symmetric, which means that, from its 9 components, 6 are actually distinct

in value. The same can be a�rmed for the strain �eld εij. Hence, both tensor �elds can
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be represented by pseudo-vectors, as in

σ =



σ11

σ22

σ33

σ23

σ13

σ12


ε =



ε11

ε22

ε33

γ23

γ13

γ12


, (3.16)

where γij = 2εij are commonly referred as engineering shear strain coe�cients.

The sti�ness tensor Eijkl also has its own symmetry properties. As σij and εij are

symmetric, it straightforwardly follows, according to 3.10, that Eijkl = Ejikl and Eijkl =

Eijlk, respectively. With this and Equation 3.16 in mind, the constitutive law (3.10) can

be written as



σ11

σ22

σ33

σ23

σ13

σ12


=



E1111 E1122 E1133 E1123 E1113 E1112

E2211 E2222 E2233 E2223 E2213 E2212

E3311 E3322 E3333 E3323 E3313 E3312

E2311 E2322 E2333 E2323 E2313 E2312

E1311 E1322 E1333 E1323 E1313 E1312

E1211 E1222 E1233 E1223 E1213 E1212





ε11

ε22

ε33

γ23

γ13

γ12


⇒ σ = Cε. (3.17)

The fourth order constitutive tensor has been reduced to a 6 by 6 matrix, which will be

depicted as C in the following developments. If the original tensor subscripts were swit-

ched for the pseudo-vectors and matrix indexes, Equation 3.17 would denote the Voigt

notation of Hooke's law. It is important to state that all of the contractions and simpli�-

cations considered are nothing more than notation and algebraic arti�ces. Conceptually,

the original tensor form still holds.

The compatibility equation (3.11) can also be reassessed to consider the adopted

simpli�cations. Equation 3.18 shows how the pseudo-vector ε can be obtained in terms

of the displacement �eld ui.
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ε11

ε22

ε33

γ23

γ13

γ12


=



∂/∂x1 0 0

0 ∂/∂x2 0

0 0 ∂/∂x3

0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1

∂/∂x2 ∂/∂x1 0




u1

u2

u3

 ⇒ ε = [∇]ui. (3.18)

At last, considering 3.17 and 3.18, Equation 3.15 can be expressed as in

∫
Ω

([∇]δui)
TC([∇]ui) dΩ =

∮
∂Ω

δuiσjin̂j d∂Ω +

∫
Ω

δuifi dΩ , (3.19)

this is the weak form that usually is solved with the FEM.

3.3 Finite Element Method

This Section aims to describe the Finite Element Method, exposing how it can be employed

to numerically solve the weak form of the governing equations derived in the previous

Section, accordingly to well-known references such as Cook [14] and Felippa [22]. It is

shown how the local systems of algebraic equations are formulated and it is discussed how

the assembly-free strategy is adopted to characterize the global system.

3.3.1 A brief introduction

The core idea behind the FEM is that an unknown continuous �eld acting in a domain

Ω, on a boundary value problem, can be approximated by nodal values interpolated with

localized functions in a �nite discretization of Ω. The �nite partitions of the domain are

called elements, and the collective of those is denominated mesh. Figure 3.3 depicts the

discretization of a continuous domain into a �nite element mesh. If Ω is in R2 the elements

are surface patches, in R3 they are volumetric solids.

Each �nite element has a pre-de�ned behavior, dictated by the adopted interpolation

functions, usually referred as shape functions, as stated in Equation 3.20. These functions

are constrained by the number of nodes on an element, that is, the number of discrete

points where the variable �eld is approximated. For example, a quadrilateral element in

2D with 4 nodes, 1 at each vertex, may employ bilinear polynomials as its shape functions,
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Figure 3.3: (a) Continuous domain Ω, (b) Discretization into a �nite element mesh.

as depicted in Figure 3.4.

φe ≈ NΦ, (3.20)

where φe is a variable �eld within the domain of an element, N is the matrix of shape

functions for that same element, and Φ is the vector that holds the nodal values of φ.

Figure 3.4: Bilinear shape functions for a 1x1 quadrilateral �nite element in 2D

By applying this notion to PDEs in weak form, such as Equations 3.9 and 3.19, a

system of algebraic equations is achieved, at a local reference, which means it represents

the approximate solution in the domain of the element in question. By coupling together

all the local systems, that is, taking into consideration that neighbor elements on a mesh

share some nodes and therefore are related, on a global reference, a larger system of equati-

ons is obtained, now valid for the whole mesh. The global matrix usually is ill-conditioned,
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as some of its lines are linearly dependent of others, until proper boundary conditions are

applied. In this work, periodic boundary conditions [35, 57, 68] are employed.

From a computational standpoint, the method consists of assembling and solving a

system of algebraic equations. For general cases, data structures that store the geometric

properties of the mesh and the vicinity information of each element are needed, as well as

a material map, and quite often a DOF map. On large-scale problems (> 106 DOFs) the

required memory quickly adds-up to troublesome demands for personal computers, which

motivates the search for e�cient implementation strategies.

3.3.2 Heat Conduction

Continuing from where Subsection 3.2.1 left o�, Equation 3.9, we can now employ the

notion shown in Equation 3.20 to approximate the temperature �eld T , as in

T ≈ Nτ , (3.21)

where τ represents the nodal temperature values. By inserting the expression above in

Equation 3.9, we get

δτ T
∫

Ωe

(∇N)Tκ(∇N) dΩ τ = −δτ T
∮
∂Ωe

NT qin̂i d∂Ω + δτ T
∫

Ωe

NTQdΩ , (3.22)

where δτ and τ can be taken out of the integrals for not being functions of Ω. It is vital

to notice, in Equation 3.22, that it was assumed that the virtual temperature �eld δT

(our weight function) can be approximated with shape functions as well. This is known as

the Galerkin method, where the weight functions in a weighted residual method problem

are substituted by the same interpolation functions that are applied to the variable �eld.

In Equation 3.22, δτ is a non-null vector, so it can be taken out of the expression, as

the equality must hold for the remaining terms. At last, Equation 3.23 is de�ned.

∫
Ωe

(∇N)Tκ(∇N) dΩ τ = −
∮
∂Ωe

NT qin̂i d∂Ω +

∫
Ωe

NTQdΩ . (3.23)

In the expression above, the terms on the right-hand side are related to, respectively

from left to right, heat �ux at the border and a heat source, both are input parameters.

The result of these integrals can be computed, being commonly denominated the forcing
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vector f . At the left-hand side of the equation, the approximate solution vector τ is

being multiplied by the result of an integral that associates the shape functions to the

constitutive tensor, known as the thermal conductivity matrix K. Equation 3.23 can be

written more concisely, as in 3.24. This is the system of algebraic equations that must be

satis�ed, at a local reference.

Keτ e = fe, (3.24)

where the subscript (. . . )e indicates that this equation refers to a single element.

3.3.3 Elasticity

Analogously to what was done on the previous Subsection, the variable �eld, in this case,

displacement, can be approximated with shape functions, as denoted by

ui ≈ Nd, (3.25)

where d is the vector of nodal displacement values. Taking this into consideration, and

applying the Galerkin method to Equation 3.19, it becomes

δdT
∫

Ωe

([∇]N)TC([∇]N) dΩ d = δdT
∮
∂Ωe

NTσjin̂j d∂Ω + δdT
∫

Ωe

NTfi dΩ . (3.26)

Similarly to the case of heat conduction, for elasticity, in the expression above, the

vector of virtual nodal displacements δd can be taken out of the equation, as it is non-null.

Furthermore, the integrals on the right-hand side of the equation depict surface tractions

and body forces, respectively, which are input information. They constitute the forcing

vector f . The left-hand side is characterized by the nodal displacement vector d being

multiplied by a matrix, resulting of an integral that associates the constitutive tensor to

shape functions. This is known as the sti�ness matrix, represented by K. Hence, the

local system of equations is de�ned, as written in

Kede = fe, (3.27)

where the subscript (. . . )e indicates that this equation refers to a single element.
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3.3.4 Assembly-free FEM

The characteristic global system of algebraic equations associated with the FEM is the

result of coupling all the local systems, as Equations 3.24 and 3.27. The domain of analysis

is discretized as a mesh, so the nodal values are related to multiple elements, meaning

that a global problem must be solved, as in

Kx = f , (3.28)

where K is the global matrix, x is the vector of nodal values of the approximated solution,

f is the global forcing vector.

The generation of the the matrix K is usually called assembly. Authors commonly

use some form of Equation 3.29 to represent it mathematically [14, 22].

K =

nelements∑
e=1

TT
e KeTe, (3.29)

where Te are called the incidence, or transformation, matrices, responsible for projecting

the local systems into a global reference.

The assembly of the global matrix is a vital step in most FEM solvers. Admittedly,

in cases where it is possible to assemble and properly store the matrix in memory, it

probably is best to do it, since it makes the usual system solving techniques considerably

less expensive computation-wise, be it direct or iterative. E�orts are made to explore

sparsity and symmetry of FEM matrices to lighten the burden of memory allocation

when dealing with large models, yet most of such strategies have some sort of super-linear

(or linear with a high slope coe�cient) tendency of growth of space consumption, when

related to the number of DOFs a models has, which de�nes the size of the system to be

solved. This constitutes a strong limitation to the discretization of models, or, in the

context of this work, the resolution of images to be analyzed.

The assembly-free, often denominated matrix-free, approach is based on never allo-

cating the global matrix, storing few small local matrices and a material map instead,

aiming for linear complexity of space, in terms of the number of DOFs. Naturally, this

does not come without a cost. Not having the global matrix stored in memory means

that every time one of its coe�cients is demanded by a step of the solver, it needs to be

computed on the spot. In essence, the idea is that the right-hand side of Equation 3.29

is substituted in whatever expression where K is required. For example, each matrix-
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vector multiplication triggers extra operations analogous to an assembly on-the-�y, in

computational cost. Such operations are performed through sweeps of the domain.

A straightforward manner to implement these domain sweeps would be to employ a

loop over all elements of the mesh gathering their local contributions to global DOFs for

the results of matrix operations with K. This strategy is commonly referred as element-

by-element [34, 10, 21]. This should be a fairly familiar way to do it, as it resembles the

most conventional procedures for assembling the global matrix in FEM solvers, and it

can be viewed as a direct translation of Equation 3.29 to code. Although this is perfectly

correct, it imposes heavy computational costs to assembly-free solutions with iterative

methods, as at each iteration it is commonly demanded a matrix-vector product with

K, meaning every element needs to be visited, one by one, at each step. In general, all

sequential approaches to perform such operations share this type of issue, so it is not

interesting to use them, as the trade-o� between memory and time consumption may

often be disadvantageous. This will be demonstrated ahead, in Subsection 4.5.1.

Aiming for more e�cient solutions, by exploring computational resources to reduce

total runtime, parallel algorithms are drawn out for the implementation of the assembly

on-the-�y operations. The premise is to maximize the number of computations that can

be performed simultaneously, on a conceptual level, avoiding potentially strenuous for

loops. In this work, two massively-parallel approaches are explored, element-by-element

and node-by-node. Both are detailed in Section 4.3 of this document.

3.4 Image-based Finite Element models

The details of the FEM analyses performed in the scope of this work are closely tied to

the type of input that is considered. The micro-scale domain is depicted by an image,

and it is admitted that each pixel (2D) or voxel (3D) corresponds to a �nite element,

or a cluster of evenly arranged �nite elements, so that the mesh is always structured in

grid-like fashion. Such regularity allows for signi�cant memory relief, in regards to the

amount of data necessary to fully characterize the mesh, as geometry and topology are

pre-determined.

The images that represent the samples are stored in arrays of 8-bit entries, assigning a

grayscale color value (an unsigned integer between 0 and 255) to each element, as presented

in Figure 3.5. Each color is assumed to represent a material key on the heterogeneous

micro-scale domain, so the image itself can be thought of as a material map.
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Figure 3.5: 8-bit grayscale representation of a 5x5 pixel-based �nite element mesh

All of the elements in an image-based mesh share the exact same geometry, squares

or cubes of unitary dimensions. This means that the local matrices and forcing vectors on

Equations 3.24 and 3.27 can be obtained via analytical solutions of the integral expres-

sions, considering regular bilinear quadrilateral (2D) or trilinear hexahedral (3D) �nite

elements (see Appendix C). Furthermore, it is possible to work with only one local ma-

trix for each di�erent material in the heterogeneous domain, instead of one matrix per

element, as usual in general case FEM implementations.

It is important to state that the assumption of such premises makes it impossible

to guarantee smoothness for the considered meshes. As a matter of fact, in most cases,

there are sharp corners in material interfaces within the cell, which is a known source of

numerical errors in usual analysis with FEM. Even so, one should be mindful that, in this

scope, the data available for the simulations are images obtained with µCT, structured

as a grid to begin with. The evaluation of smoothed regions in the domain of analysis

could also be a possible source of error, by itself. In light of this, it is a choice to work

directly on the provided input, which leads to a correlation between image resolution and

quality of the mesh, in terms of convergence. It should also be highlighted that the aimed

�nal result consists of averaged values throughout the domain, so, as image dimension

increases, it is expected that the impact of local numerical errors becomes less relevant.

Problems analyzed with the FEM commonly demand auxiliary data structures to store

the connectivity of the mesh. For an unstructured discretization of a randomly shaped

domain, it is customary to store the indexes of the nodes that de�ne the borders of each

element in an array. This is a rather heavy memory toll that needs to be accounted

for, on standard solutions. However, when restricting the input to structured meshes,
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space requirement can be reduced by employing rules of numbering for nodes consistent

with the indexing of elements on the image array, making it possible to compute all

connectivity information from a given index, when needed. Figure 3.6 illustrates the node

numbering scheme adopted in the scope of this work for a pixel-based mesh, which re�ects

the admitted periodicity condition shown in Figure 3.1. Opposite border and corner nodes

are indexed with the same number to make sure that their respective DOFs are equal,

imposing the assumption that the behavior of the variable �eld in question is periodic in

the studied domain. For 3D models, an analogous rule is employed, numbering by layers

from near to far, as presented in Figure 3.7.

Figure 3.6: Periodic node (black) and element (red) numbering on a 2D image-based mesh

DOFs are numbered accordingly to nodes, that is, for models with scalar variables,

the exact same index is used, otherwise, the index is computed considering the number

of DOFs per node and the index of the respective node. For instance, in the case of 3D

elasticity analysis, where the variables are vectors of 3 components, the DOF indexes at

each node can be computed as DOFid = 3(nodeid) + localDOFid.

Considering the numbering patterns presented in Figures 3.6 and 3.7, it is possible to

characterize the vicinity of any node on an image-based mesh through a set of operations

that essentially describe how to take steps, or to walk, on this type of grid. Table 3.1

presents such operations, in terms of node indexes and general geometric properties of the

mesh. Table 3.2 summarizes the data required on Table 3.1. In addition, it is noticeable

that the index of an element always matches its respective (left, top, near) node, so the

rules stated on Table 3.1 are also su�cient to map the connectivity of every element on a

structured mesh. These notions are essential for the e�cient implementation of pixel and
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Figure 3.7: Periodic node (left) and element (right) numbering on a 3D image-based mesh

voxel-based assembly-free strategies for the FEM.

Operation Computational Procedure
WALK_UP nodeid-1+nrows*!(nodeid%nrows)

WALK_DOWN nodeid+1-nrows*!((nodeid+1)%nrows)

WALK_RIGHT layerid*nrowcol+(layer_nodeid+nrows)%nrowcol
WALK_LEFT layerid*nrowcol+(layer_nodeid+(ncolumns-1)*nrows)%nrowcol
WALK_FAR (nodeid+nrowcol)%ntotal
WALK_NEAR (nodeid+(nlayers-1)*nrowcol)%ntotal

Table 3.1: Operations to walk on nodes of an image-based mesh

Data Description
nodeid Index of current node
layerid Index of current layer (always 0 in 2D)

layer_nodeid Local index of current node, within layer
nrows Number or rows on image-based mesh

ncolumns Number or columns on image-based mesh
nlayers Number or layers on image-based mesh
nrowcol nrows*ncols
ntotal nrowcol*nlayers

Table 3.2: Data required by operations on Table 3.1
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3.5 An algorithm for image-based homogenization with

the FEM

Given the topics explored in the previous Sections of this Chapter, it is possible to sum-

marize the process of image-based homogenization with the FEM via a concise high-level

algorithm. The idea is to compute the coe�cients of the target homogenized constitutive

tensor, through averaged results of the variable �eld in the domain of analysis, obtained

by numerically solving the governing equations of a given physical phenomenon, admitting

known forcing on directions of interest applied to a related �eld at the macro-scale.

Considering the matrix representations of the constitutive relations shown in Section

3.2, Fourier's law (Equation 3.4) and Hooke's law (Equation 3.17), it is clear that the

adoption of an unitary temperature gradient, or strain �eld, on a direction associated

with an index of those vectors leads to a vector of heat �ux, or stress, that must be

numerically equivalent to the correspondent column of the constitutive matrix. This

notion can be exempli�ed as in


〈q〉1
〈q〉2
〈q〉3

 = −


κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33




1

0

0

 ⇒


κ11

κ21

κ31

 = −


〈q〉1
〈q〉2
〈q〉3

 , (3.30)

and 

〈σ〉11

〈σ〉22

〈σ〉33

〈σ〉23

〈σ〉13

〈σ〉12


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C23 C33 C34 C35 C36

C41 C24 C34 C44 C45 C46

C51 C25 C35 C45 C55 C56

C61 C26 C36 C46 C56 C66





1

0

0

0

0

0


⇒



C11

C21

C31

C41

C51

C61


=



〈σ〉11

〈σ〉22

〈σ〉33

〈σ〉23

〈σ〉13

〈σ〉12


. (3.31)

Such macro-scale unitary e�ects can be modeled in the FE analysis at the micro-scale with

forcing vectors, either by imposing temperature or displacement values at the periodic

borders, or residual temperature gradients or strain �elds throughout the domain.

Therefore, the methodology can actually be seen as a rather conventional FEM proce-

dure, the main di�erence would be taking averages of the results, as a post-processing task.

However, when dealing with increasingly large models, a trait of working with images as

input, the assembly of a global matrix becomes impracticable, as it is memory-consuming,

so the assembly-free strategy is proposed. The adoption of structured meshes, based
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on pixels or voxels, provides interesting properties in this context. Algorithm 1 shows

pseudo-code for the homogenization of thermal conductivity using FEM, while Algorithm

2 depicts an analogous process for elasticity.

Algorithm 1 Image-based FEM thermal conductivity homogenization
1: Input: image, material properties, iterative solver tolerance
2: Output: homogenized material constitutive matrix κ
3: Generate node DOF map
4: Compute local conductivity matrices for each material
5: for (i = 1, . . . , dimκ) do
6: Assemble right-hand side vector f (micro-scale)
7: Solve system of equations Kτ = f (micro-scale)
8: Compute average heat �ux �eld on domain 〈q〉 (micro-scale)
9: Update column i of κ (macro-scale)

10: end for

Algorithm 2 Image-based FEM elasticity homogenization
1: Input: image, material properties, iterative solver tolerance
2: Output: homogenized material constitutive matrix C
3: Generate node DOF map
4: Compute local sti�ness matrices for each material
5: for (i = 1, 2, . . . , dimC) do
6: Assemble right-hand side vector f (micro-scale)
7: Solve system of equations Kd = f (micro-scale)
8: Compute average stress �eld on domain 〈σ〉 (micro-scale)
9: Update column i of C (macro-scale)

10: end for

In Algorithms 1 and 2, the most demanding task time-wise is, by far, the solution of

the system of equations, stated in line 7. This is the step that practically de�nes the total

elapsed time of homogenization processes, when dealing with su�ciently large models,

so it is the focus of this endeavor. To solve the system of linear algebraic equations,

the PCG method is employed, which means it must be adapted to suit the considered

assembly-free schemes. The following Chapter presents the PCG method in details, from

a computational perspective.



Chapter 4

Preconditioned Conjugate Gradient

Method

The Preconditioned Conjugate Gradient is an iterative numerical method for the solution

of linear systems of algebraic equations, as presented in Equation 4.1. It is widely em-

ployed to solve large-scale FEM problems, due to its fast convergence, in number of steps,

and relative low memory demand, as no factored matrix needs to be stored. Furthermore,

it is �tting to be adapted for assembly-free strategies. The following developments are

based on the great report on the PCG method written by Shewchuk [72]. Heath [30] is

another noteworthy reference.

M−1Ax = M−1b, (4.1)

where A is a square symmetric positive matrix, b is a known right-hand side (or forcing)

vector, and x is the unknown vector to be calculated. M is a preconditioning matrix,

whose purpose is to lower the spectral radius of A (ρ(A) = max|λi|, where λi is the set
of eigenvalues of A), in order to accelerate convergence of the solution. In this work, it is

adopted the Jacobi preconditioner, a diagonal matrix that replicates the main diagonal

of A, for its simplicity of implementation. Assuredly, the consideration of other kinds of

preconditioning [8] is an open matter for further development, in future work.

The method is based on the minimization of the quadratic functional form presented in

Equation 4.2. In matter of fact, it can be described as a problem of Optimization Without

Constraints, being rooted in Quadratic Programming. The idea, at each iteration, is to

take a step towards the global minimum of Π, adopting a search direction constructed

from the previous residual to be A-orthogonal (conjugate) to all previous residuals and

search directions. This is done instead of simply using the previous residual as the next



4 Preconditioned Conjugate Gradient Method 30

search direction, which would correspond to the Steepest Descent Method. Figure 4.1,

adapted from Shewchuk [72], illustrates this.

Π(x) =
1

2
xTAx− xTb. (4.2)

Figure 4.1: Convergence path of (a) steepest descent and (b) conjugate gradient methods
for the minimization of a quadratic form, similar to Equation 4.2. Adapted from Shewchuk
[72]

A brief assessment of Equation 4.2 can be made to clarify how the point of minimum

value corresponds to the solution of Ax = b. It is known that local minimum (or maxi-

mum) of a function f : Rn → R1 can be found if there is a point that satis�es ∇f = 0.

As Π is quadratic, and A is known to be positive (the concavity of Π is upwards), it

is determined that the solution of ∇Π = 0 yields a global minimum. In addition, A is

symmetric, so ∇Π = Ax − b. Therefore, the point x that minimizes Π must be the

solution for the system of algebraic equations.

It is also interesting to notice that Equation 4.2 has some physical meaning to it.

Linear elasticity problems are commonly formulated in terms of the minimization of the

total potential energy [14] (an alternative to the modeling presented in Section 3.2), where

the resulting functional form is quadratic, analogous to the presented expression.

The following Sections of this Chapter aim to characterize the PCG method as a com-
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putational problem, focusing on its algorithm, and possible implementation approaches

for massively parallel environments, considering the assembly-free FEM context. The

last Section presents two preliminary implementations in CPU of the proposed parallel

scheme.

4.1 The PCG algorithm

A high-level representation of the computations demanded by the PCG method is depicted

in Algorithm 3. The portrayed pseudo-code is similar to the one presented by Shewchuk

[72], a well-known scheme of implementation for the numerical method. This procedure

assumes that a global matrix is assembled and stored in memory, so it needs to be modi�ed

to work with an assembly-free strategy. In the context of the proposed solution, the steps

where A is demanded, lines 3 and 10, need to perform special operations, that account

for the sweeps of the domain, discussed in Subsection 3.3.4 of this text.

Algorithm 3 Preconditioned Conjugate Gradient (PCG)
1: Input: A,b,x0, tolerance
2: Output: x
3: Initialize preconditioner (Jacobi): M← diag(A)
4: x← x0

5: r← b−Ax
6: d←M−1r
7: δ ← rTd
8: δ0 ← δ
9: while (δ/δ0 > tolerance2) do

10: q← Ad
11: α← δ/qTd
12: x← x + αd
13: r← r− αq
14: s←M−1r
15: δprev ← δ
16: δ ← rT s
17: β ← δ/δprev
18: d← s + βd
19: end while

In Algorithm 3, r is the residual vector, d is the search direction, q is an auxiliary

vector to store the result of the matrix-vector product (Ad) at each iteration, and s is

the result of preconditioning applied to r. The scalar parameters δ are associated with

the squared L2 norms of the residuals, used as stopping criteria, while α is the magnitude

of each step, and β is a factor employed for computing conjugate search directions. It is
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important to reinforce that M is admitted to be a diagonal matrix, stored in an array, so

the operations in lines 6 and 14 can be seen as term-by-term divisions with vectors. No

dense matrix should be inverted, as it would obviously be counterproductive.

It is also worth noticing, in Algorithm 3, that many of the computations required

by the PCG method consist of vector operations that can be rather straightforwardly

implemented in massively parallel environments. Tasks such as vector addition, term-

by-term multiplication, and multiplication by a scalar are simple to be treated as SIMT

problems, as they are, in essence, characterized by applying the same instructions on

multiple indexed entries, without any dependencies on the calculations performed on

neighboring data. On the other hand, matrix operations pose a threat of generating

concurrency issues if not properly dealt with, especially when adopting an assembly-free

scheme. Considering image-based models, elegant approaches can be employed to ensure

that no race conditions arise, without explicitly storing groups for parallel processing.

This will be further detailed in Section 4.3.

Aiming for memory e�ciency, some possibilities stand out, at a �rst look of Algorithm

3. By using an array to store the matrix-vector product result (q ← Ad), there is no

need to allocate another array to store the entries of vector s, as q can be repurposed on

every iteration to hold the values of s without any loss of data demanded by the method.

In addition, admitting that the PCG solver can modify the entries of the provided initial

guess x0 and right-hand side b vectors, they can be directly stored in the solution x and

residual r arrays, respectively, thus reducing the total amount of allocated arrays, from

eight to �ve (x,r,M,d,q).

In terms of time complexity, it is useful to look at each iteration, at �rst. The majority

of the operations consist of O(n) term-by-term vector computations, the exception being

the matrix-vector product in line 10 (q← Ad). For a dense, or randomly sparse, matrix

A, this step is O(n2). This means that the overall time complexity, in this case, would be

of the form niterationsO(n2). As the number of iterations grows with n, but is always less

or equal to n [40, 32], it can be a�rmed that the method is O(n3). However, as we are

dealing with structured meshes, A is not dense nor randomly sparse. Every DOF has a

constant number of neighbors in the mesh, meaning that every line in A has a constant

number of non-zero coe�cients. If this is accounted for in the implementation of the

matrix-vector product, its complexity drops to O(n). In turn, the overall time complexity

of the PCG method for structured meshes (image-based models) is O(n2).
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4.2 Vector operations

The vector operations required by the PCG method are not dependent of the assembly-

free strategy, as the vectors involved are still properly assembled and stored in memory.

Generally, these operations are quite conventional, and have well-established ways of

implementation in massively parallel and vector-based environments. Term-by-term and

scalar-vector computations are rather trivial to be coded. Algorithms 4 and 5, respectively,

present pseudo-code for these sorts of tasks.

Algorithm 4 Massively parallel term-by-term vector operations
1: Input: v,w
2: Output: x
3: Get thread index: id
4: if this thread is within dimension of v and w then
5: x[id]← operation(v[id],w[id])
6: end if

Algorithm 5 Massively parallel scalar-vector operations
1: Input: a,v
2: Output: x
3: Get thread index: id
4: if this thread is within dimension of v then
5: x[id]← operation(a,v[id])
6: end if

There is, however, one type of demanded vector operation that is not so simple,

the dot products. Those are represented in Algorithm 3 as products of a transposed

vector by another vector, such as rTd, in line 7. This sort of computation can also be

written as
∑

ridi. It is clear that a �rst step to compute this is to perform a term-by-

term multiplication, but, after that, a parallel reduction scheme must be employed to

sum up the entries of a resulting vector. As this is a very common operation in many

applications, there are well-known solutions for it. It is customary, for example, that

programming guides for GPUs tackle this sort of problem. The implementation adopted

for dot products in this work follows what is proposed by Sanders and Kandrot [69], using

the shared memory in GPU (addressed in Subsection 5.1.3), as described by the pseudo-

code in Algorithm 6.
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Algorithm 6 Massively parallel dot product
1: Input: v,w
2: Output: res
3: Get thread index: id, local_id
4: Initialize shared memory cache
5: if this thread is within dimension of v and w then
6: cache[local_id]← v[id] ∗w[id]
7: else
8: cache[local_id]← 0
9: end if

10: Synchronize threads
11: stride← cache_dim/2
12: while stride > 0 do
13: if local_id < stride then
14: cache[local_id]← cache[local_id] + cache[local_id + stride]
15: end if
16: Synchronize threads
17: stride← stride/2
18: end while
19: res← cache[0]

4.3 Matrix operations

The computations at each iteration of the PCG method that involve the global ma-

trix, namely the initialization (or application) of the Jacobi preconditioner M, and the

matrix-vector product Ad, demand special implementations to account for the proposed

assembly-free solution. Even though the matrix is not stored in memory, it is not con-

ceptually removed from the numerical process. The idea is that its non-null coe�cients

must be computed on-the-�y at each operation where they are required, via sweeps of the

domain, as it has been previously discussed in Subsection 3.3.4. Two di�erent strategies

can be employed to perform such tasks in parallel, element-by-element or node-by-node.

These are based on recent works for the massively parallel implementation of the PCG in

GPU, such as Kiran et al. [37], Arbenz et al. [5], and Martínez-Frutos et al. [49].

4.3.1 Element-by-element

The element-by-element approach is based on the premise that every element on the mesh

must provide its contributions to the DOFs of its nodes, as represented in Figure 4.2. A

sequential implementation of this can be done with a loop over elements, but it is not

desirable, as it is excessively intensive computation-wise. The goal is to maximize the

number of elements that can be visited in parallel.
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Figure 4.2: Element-by-element spreading of local coe�cients to global DOFs

For the element-by-element sweep to be parallelized, it must be ensured that no

concurrency might occur, that is, no more than one element can try to write data in

memory spaces associated with a same global DOF at a time, as it is depicted in Figure

4.3. If this is not properly dealt with, there is no guarantee that inconsistent computations

will not take place. Usually, this problem is tackled by establishing groups for parallel

processing, running a coloring algorithm [12, 19, 49] to de�ne sets of non-neighboring

elements that can perform computations on their respective global DOFs without any

risk of race conditions. However, focusing on the case of structured models, this solution

generates additional memory allocation and pre-processing tasks that are unnecessary

given that the regularity of the mesh is taken into account. Assuming this speci�c type

of input, it is possible to work on every element simultaneously, on a conceptual level,

without generating concurrency, by serializing the computations on each local DOF, or

local node, which are few and constant, regardless of the size of the model. Figure 4.4

illustrates this notion.

Figure 4.3: Concurrency on element-by-element matrix-vector product
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Figure 4.4: Non-con�icting access of local nodes on a pixel-based mesh (left), local node
numbering (right)

Notice in Figure 4.4 that, if each element operates on the DOFs of its respective left-

bottom node, no node is visited twice at that instruction, on a global level. Furthermore,

only one corner and two non-opposite external edges of the model are accessed, so there is

no trouble with the periodic boundary conditions. The same is valid for every other local

node in 2D, and the principle is straightforwardly carried to 3D. The vital assumptions

for this to work are that all elements of a given mesh share the same geometry, the mesh

is structured in a grid-like fashion, and local node and DOF numbering are the same for

every element. The �rst two are naturally met when working with image-based models,

and the third is ensured, in this case, by adopting the rule that local nodes are numbered

starting at the left-bottom node, growing counter-clockwise, then from near to far in 3D

models.

It is clear, thus, that the element-by-element procedures can be seen as a sequence, on

local nodes, of massively parallel instructions for elements. Algorithm 7 represents such

notion at high-level, illustrating the process of an assembly-free matrix-vector multiplica-

tion.

Algorithm 7 can be plugged in the PCG method to meet the demands of matrix ope-

rations on an assembly-free approach. Not only does it solve matrix-vector multiplication

operations, but a simpli�ed variation of it can also be used for the assembly of the Jacobi

preconditioner. It is important to state that the actual implementation of Algorithm 7

can be done as a constant, hard-coded, sequence of element-by-element operations, as the
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numbers of local nodes and of nodal DOFs are rather small and not dependent of the size

of the model.

Algorithm 7 Image-based element-by-element matrix-vector multiplication
1: Input: d, local matrices, material map
2: Output: q
3: for (n = 0, 1, . . . , number of local nodes− 1) do
4: Element-by-element parallel processing of local node n{

5: Get this element's local matrix with material map (8-bit image): k
6: Get this element's DOFs (via computations with index): e_dofs
7: row← n ∗ (number of DOFs per node)
8: for i in DOFs of local node n do
9: col← 0

10: for j in e_dofs do
11: q[i]← q[i] + k[row][col] ∗ d[j]
12: col← col + 1
13: end for
14: row← row + 1
15: end for
16: }
17: end for

4.3.2 Node-by-node

The idea behind the node-by-node strategy is that every node of the mesh must consult

its respective neighboring elements to gather their contributions to its own DOFs, as

depicted in Figure 4.5. The computations that must be performed are unchanged, in

comparison to the element-by-element approach, however, by organizing them in terms

of nodes, the possibility of concurrency is naturally eliminated. Each thread may access

data associated with neighboring nodes to read, but only writes on its own respective

memory spaces. As the coe�cients to be calculated are related to nodal DOFs, it makes

sense that nodal instructions should be responsible for the computations.

It is interesting to notice that, when working with image-based models, the node-by-

node approach does not require that nodes know their respective neighboring elements,

just their material keys are enough. This is due to fact that local matrices are associated

with speci�c materials in the heterogeneous domain, instead of speci�c elements.

By considering the indexing rules presented in Section 3.4, each thread on a node-by-

node procedure could obtain all the demanded material keys from the 8-bit image array.

Even so, it often is desired to avoid doing that, as coalesced data access, an important

matter to gain performance in GPUs, would be lost. Therefore, a new material map
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Figure 4.5: Node-by-node gathering of local coe�cients to global DOFs

can be generated, combining the color values of the elements that surround each node

to compose a single material key that describes its entire vicinity. The caveat is that

this usually imposes a reduction in the range of representable di�erent materials in the

micro-scale. For instance, if a 16-bit map is employed, the range reduces from 8-bit to

4-bit in 2D, or 2-bit in 3D, as there are, respectively, 4 or 8 neighboring material keys

to be represented with a single 16-bit value. Analogously, to fully depict the 8-bit range

in 3D, a 64-bit map would be necessary, which is also undesirable, as, for su�ciently

high resolution models, it would take signi�cant memory space on the GPU that could

be better used to allocate the arrays demanded by the PCG method.

There is no de�nitive answer as to how the material keys around nodes should be

stored. In problems where few di�erent materials are considered in the micro-scale, it se-

emingly would be better to employ a data structure such as the 16-bit map. Oppositely,

to analyze models that depend on the 0-255 range to fully characterize the heterogeneities

of the micro-scale, it might make sense to go for the 64-bit map, or even to work directly

with the element-indexed 8-bit image, making a performance compromise to spare me-

mory. Alternatively, it should be bene�cial to store the 8-bit image in texture memory

caches, which will be explored in future work. Henceforth, it will be assumed that a nodal

material map is used, but it should be noted that the proposed node-by-node strategy

is not strongly constrained by this, and would work, with some minor adaptations, for

alternative cases as well.
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A high-level description of the adopted node-by-node approach is presented in Algo-

rithm 8, which exposes a procedure for matrix-vector products.

Algorithm 8 Image-based node-by-node matrix-vector multiplication
1: Input: d, local matrices, material map
2: Output: q
3: Node-by-node parallel processing{

4: Get this node's material key from map
5: for (e = 0, 1, . . . , number of neighboring elements− 1) do
6: Get local matrix of local element e using node material key: k
7: Get DOFs of element e (via computations with index): e_dofs
8: row← e ∗ (number of DOFs per node)
9: for i in DOFs of this node do

10: col← 0
11: for j in e_dofs do
12: q[i]← q[i] + k[row][col] ∗ d[j]
13: col← col + 1
14: end for
15: row← row + 1
16: end for
17: end for
18: }

Similarly to the element-by-element scheme, when implementing Algorithm 8, the

for loops can be substituted by hard-coded steps, as they are small and not associated

with the dimensions of the model. The loop over neighboring elements always runs 4 or 8

times (2D or 3D, respectively), the number of DOFs per node is a property of the physical

problem being analyzed (1 for thermal conductivity, 3 for elasticity), and the dimensions

of the local matrices are constant, proportional to the number of nodes that each element

has.

It is worth noticing that an even more �ne-grained variation of the node-by-node

strategy can be achieved for models with multiple DOFs per node, implementing a DOF-

by-DOF solution. Although this could be seen as a third option for the sweeps of the

domain, in this work it will not be treated as such, due to it being, in essence, akin to

the node-by-node strategy. The only di�erence, in Algorithm 8, would be the removal of

the loop over �DOFs of this node�, as each thread would only compute on data associated

with a single DOF.
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4.4 Massively parallel PCG for assembly-free FEM

Bearing in mind the topics discussed throughout this Chapter, it is possible to rewrite the

well-known PCG method, presented in Algorithm 3, to better suit the considerations of

the proposed assembly-free image-based �nite element analysis, as portrayed in Algorithm

9. The expression shown in Equation 3.29, which can be viewed as a mathematical

description of the computation of global coe�cients on-the-�y in terms of local matrices,

is used to represent the massively parallel matrix operations. As proposed in Section 4.1,

the vector s is stored in the q array. All of the vector operations are admitted to be

performed accordingly to Algorithms 4, 5 and 6.

Algorithm 9 Massively parallel assembly-free PCG
1: Input: local matrices : k,material map,b,x0, tolerance
2: Output: x
3: Initialize preconditioner (Jacobi): M←

∑
TT

e diag(ke)Te

4: x← x0

5: r← b− (
∑

TT
e keTe)x

6: d←M−1r
7: δ ← rTd
8: δ0 ← δ
9: while (δ/δ0 > tolerance2) do

10: q← (
∑

TT
e keTe)d

11: α← δ/qTd
12: x← x + αd
13: r← r− αq
14: q←M−1r
15: δprev ← δ
16: δ ← rTq
17: β ← δ/δprev
18: d← q + βd
19: end while

In Algorithm 9, it is noticeable that allocated memory can be further reduced by not

storing the preconditioner M. Similarly to what was done to the global matrix A in lines

5 and 10, the expression
∑

TT
e diag(ke)Te can be substituted in every operation where

M is demanded, lines 6 and 14. This means that a solution with the adopted massively

parallel PCG can be obtained with four arrays (x,r,d,q). Furthermore, it is interesting to

notice that, even though the computational cost has been elevated, the time complexity

of each iteration remains at O(n).
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4.5 Parallel PCG solver in CPU

In this Section, two implementations in CPU of the proposed parallel PCG solver for

assembly-free image-based FEM problems are presented. The �rst, discussed in Section

4.5.1, consists of a vectorized program in MATLAB, with concise script code, designed

to ascertain the validity of the solution without storing a global matrix. Then, in Section

4.5.2, the same program has its performance metrics compared against a solution that

assembles the system of equations, also in MATLAB, with the goal of making evident the

trade-o� between memory and time. Finally, in Section 4.5.3, a more e�cient program

is shown, written in C, employing multi-thread parallelism with OpenMP to perform the

on-the-�y matrix operations. Both solvers presented here e�ectively implement Algorithm

9, and consider the element-by-element strategy, presented in Subsection 4.3.1.

4.5.1 A vectorized approach

Modern vector-based languages, such as MATLAB, Octave, and Python (with Numpy),

are optimized to work with matrix and vector operations and indexing, instead of for

loops [52, 51, 16]. The elapsed time for vectorized solutions usually is considerably re-

duced from sequential ones. In programming environments like these, it makes sense to

write concise script dealing with large arrays to invoke computationally intensive opera-

tions with few command lines [3], oppositely to performing a loop over all instances of

the problem at hand. Attention is needed, however, to ensure that the aforementioned

intensive operations avoid race conditions, or else, inconsistent calculations might take

place and performance can be compromised. In that sense, the vectorization of this sort

of code holds some conceptual similarities to parallel programming.

The massively parallel strategies presented in Section 4.3 are �tting to be implemented

with MATLAB's vectorization. Focusing on the element-by-element solution, the idea

is to index local matrices with the material map array, so that, instead of explicitly

calling several threads, the parallel computations can be written as large vector operations.

Implicitly, CPU parallelism resources are employed. Listings with vectorized code for

assembly-free matrix operations are presented ahead. It is considered the analysis of 2D

heat conduction, for conciseness.

The generation of the Jacobi preconditioner consists of computing the coe�cients at

the main diagonal of the global matrix and storing them in an array. This operation,

described in Listing 4.1, demands a sweep of the domain due to the assembly-free appro-
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ach. The employment of a gatherer vector, depicted as g, makes it possible to get all

contributions from the local matrices K of elements on each of its DOFs, accordingly to

the strategy illustrated in Figure 4.4, and add them to the resulting preconditioner array

M without generating excessive memory overheads. It is interesting to notice, in line 2,

how an array of node indexes n can be computed in terms of respective element indexes,

and it can be later manipulated using vector operations to access neighboring nodes. At

the end of the procedure, all the coe�cients in M are inverted, so that the stored array

represents the matrix M−1, needed on every iteration of the PCG method.

1 e = 1 : nElems ;

2 n = e+uint64 ( f l o o r ( double ( e−1)/double (nRows) ) )+1;
3 g = ze ro s ( nElems , 1 , ' double ' ) ;

4 M = zero s (nDOFs, 1 , ' double ' ) ;

5 g ( : ) = K(1 ,1 , elemMatMap) ;

6 M(DOFMap(n) ) = M(DOFMap(n) ) + g ;

7 n = n + nRows+1;

8 g ( : ) = K(2 ,2 , elemMatMap) ;

9 M(DOFMap(n) ) = M(DOFMap(n) ) + g ;

10 n = n − 1 ;

11 g ( : ) = K(3 ,3 , elemMatMap) ;

12 M(DOFMap(n) ) = M(DOFMap(n) ) + g ;

13 n = n − (nRows+1) ;

14 g ( : ) = K(4 ,4 , elemMatMap) ;

15 M(DOFMap(n) ) = M(DOFMap(n) ) + g ;

16 M = M.^−1;
Listing 4.1: Vectorized program in MATLAB for the assembly of the Jacobi preconditioner

In Listing 4.1, DOFMap is an array that maps DOF indexes to node indexes, repro-

ducing the periodic numbering scheme shown in Figure 3.6. elemMatMap essentially

represents the image itself, acting as a map of material keys that links elements to their

respective physical properties. The variables nRows, nElems and nDOFs, respectively

denote the numbers of rows, elements and DOFs in the mesh. It should be noted that the

four operations performed through lines 5 to 15 could be placed in a constant-sized for

loop.

The implementation of the matrix-vector product, presented in Listing 4.2, follows

the proposed pseudo-code on Algorithm 7. Operations are serialized in local nodes so

that every element can be visited simultaneously without concurrency issues. Ideally,
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an in�nitely parallel machine would be able to perform this operation in constant time.

The gatherer vector g is �lled with entries from the local conductivity matrix of every

element, according to the current local node, so that it can be used in a term-by-term

vector multiplication with the corresponding entries of the search direction vector d. The

result is then added to vector q.

1 q ( : ) = 0 ; n = n + 1 ;

2 g ( : ) = K(1 ,1 , elemMatMap) ;

3 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n) ) ;

4 g ( : ) = K(1 ,2 , elemMatMap) ;

5 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n+(nRows+1) ) ) ;

6 g ( : ) = K(1 ,3 , elemMatMap) ;

7 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n+nRows) ) ;

8 g ( : ) = K(1 ,4 , elemMatMap) ;

9 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n−1) ) ;
10 n = n+(nRows+1) ;

11 g ( : ) = K(2 ,1 , elemMatMap) ;

12 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n−(nRows+1) ) ) ;
13 g ( : ) = K(2 ,2 , elemMatMap) ;

14 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n) ) ;

15 g ( : ) = K(2 ,3 , elemMatMap) ;

16 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n−1) ) ;
17 g ( : ) = K(2 ,4 , elemMatMap) ;

18 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n−(nRows+2) ) ) ;
19 n = n−1;
20 g ( : ) = K(3 ,1 , elemMatMap) ;

21 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n−nRows) ) ;
22 g ( : ) = K(3 ,2 , elemMatMap) ;

23 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n+1) ) ;

24 g ( : ) = K(3 ,3 , elemMatMap) ;

25 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n) ) ;

26 g ( : ) = K(3 ,4 , elemMatMap) ;

27 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n−(nRows+1) ) ) ;
28 n = n−(nRows+1) ;
29 g ( : ) = K(4 ,1 , elemMatMap) ;

30 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n+1) ) ;

31 g ( : ) = K(4 ,2 , elemMatMap) ;

32 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n+(nRows+2) ) ) ;
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33 g ( : ) = K(4 ,3 , elemMatMap) ;

34 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n+(nRows+1) ) ) ;

35 g ( : ) = K(4 ,4 , elemMatMap) ;

36 q (DOFMap(n) )=q(DOFMap(n) )+g .*d(DOFMap(n) ) ;

37 n = n + 1 ;

Listing 4.2: Vectorized program in MATLAB for the computation of matrix-vector
product with an element-by-element strategy

4.5.2 Memory vs. Time trade-o�

In this Section, time and memory metrics are presented for analyses made with the vec-

torized assembly-free solution, called vhifem, comparing it with a variation of the solver

developed by Andreassen and Andreasen [2], which assembles the global matrix in sparse

form, also using vectorization. Originally, the latter employed the mldivide function

(commonly called the backslash), which is a direct solver, so it was modi�ed to use the

pcg function, with the Jacobi preconditioner as well. The idea is to solidify the approa-

ched concepts with data and to visualize the trade-o� between allocating or not the global

matrix.

The studied model is similar to the analytical benchmark that will be used ahead

for validation, in Chapter 7, presented in Figure 7.1. Analyses of 2D elasticity were

conducted. Adopted dimensions for the periodic cells ranged from 50× 50 pixels to 500×
500 pixels. Both material phases were considered to be isotropic, with di�erent elastic

properties. A numerical tolerance of 1e−04 for dimensionless relative norms of residuals

of the PCG method was admitted, which leads to equivalent results being obtained with

both programs. However, the focus in this case is on performance.

For time metrics, MATLAB resources were employed. The elapsed time for each run

was taken with the tic and toc functions, called right before and after the program in

question was called. Then, the average time for each PCG iteration was obtained as

(total time)/(num of iterations). Memory metrics were obtained with the whos function

placed at strategic points within the code, and were complemented with data from the

operating system regarding allocated DRAM throughout the analyses, to account for the

memory usage of built-in functions. Figure 4.6 depicts a plot of memory allocation against

number of DOFs, while Figure 4.7 presents time per PCG iteration. Furthermore, Figure

4.8 shows the total elapsed time of analysis, comparing the vectorized element-by-element

implementation with a sequential version of it (seqhifem), which uses for loops. All the
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data were obtained from running the programs on MATLAB 2019a, on a Linux Mint 19.3

Tricia operating system, using an Intel® Core� i7-7500U dual-core CPU, with a clock

rate of 2.70 GHz and 8 GB of available DRAM.

Figure 4.6: Peak Memory Allocation [MB] vs. number of DOFs, comparing vectorized
assembly-free to stored matrix solutions using the PCG method

In Figure 4.6, it is shown that the assembly of the global matrix is indeed memory-

consuming, even accounting for sparsity and employing the PCG iterative solver. As the

meshes are structured, linear space complexity is achieved in both studied cases. The

assembly-free solution is an alternative strategy to enable large-scale simulations with

low memory cost, demanding more computations in exchange, so runtime is increased, as

it can be seen in Figure 4.7. The presented vectorized approach is an optimized way of

implementation in MATLAB that considerably improves performance for the element-by-

element solution, in comparison to an akin sequential procedure, as depicted in Figure 4.8.

This is an interesting indicative that a massively parallel solution in GPU should perform

better than CPU solvers. However, remaining on CPU implementations for now, it is clear

that solving problems with millions of DOFs is a time-consuming task. When adopting

an interpreted language, even with an e�cient program, the computations for the aimed

model dimensions could often take days, if not weeks, to run on personal computers.

Migrating to a compiled language is essential. Bearing this in mind, the next Subsection

presents an analogous solution to the one considered so far, now written in C.



4.5 Parallel PCG solver in CPU 46

Figure 4.7: Time per PCG iteration [s] vs. number of DOFs, comparing vectorized
assembly-free to stored matrix solutions using the PCG method

Figure 4.8: Total elapsed time [s] vs. number of DOFs, comparing vectorized and sequen-
tial assembly-free solutions
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4.5.3 Multi-thread implementation

The element-by-element strategy presented in Subsection 4.3.1 was also implemented in C,

using OpenMP compiler directives to perform parallel loops over elements in the assembly-

free matrix. All of the vector operations are performed with parallel loops as well. The

developed program was based on prior C++ code, used in works such as Pereira et al [61].

The main di�erences of this solution to its predecessor are not allocating a connectivity

data structure, and not using coloring algorithms to establish groups of elements for

parallel processing. The idea of this implementation in CPU is to serve as a ground truth

when comparing performance between CPU and GPU solutions.

The matrix-vector product is analogous to the vectorized implementation presented

in Subsection 4.5.1. For each local node, a parallel loop over elements is employed to

gather contributions of local coe�cients to the DOFs of that speci�c node. Listing 4.3

details this procedure. Once again, it is considered the analysis of 2D heat conduction

for conciseness, but it should be noted that for all the other sorts of analyses within the

scope of this work the procedure is analogous.

1 void Aprod_thermal_2D( var * d , unsigned i n t sz , var * q ) {

2 unsigned i n t n , dof ; var * thisK ;

3 #pragma omp p a r a l l e l f o r

4 f o r (n=0;n<nDOFs ; n++) q [ n ] = 0 . 0 ;

5 // Constant−s i z e d loop over l o c a l nodes

6 f o r ( unsigned i n t local_node = 0 ; local_node < 4 ; local_node++){

7 #pragma omp p a r a l l e l f o r p r i va t e (n , dof , local_node , thisK )

8 f o r ( unsigned i n t e=0;e<nElems ; e++){

9 thisK = &K[ elemMatMap [ e ]*16+4* local_node ] ;

10 n = e+1+(e/nRows) ;

11 dof = DOFMap[ n+WALK_2D( local_node ) ] ;

12 q [ dof ] += thisK [ 0 ] * v [DOFMap[ n ] ] ; n+=nRows+1;

13 q [ dof ] += thisK [ 1 ] * v [DOFMap[ n ] ] ; n−=1;
14 q [ dof ] += thisK [ 2 ] * v [DOFMap[ n ] ] ; n−=nRows+1;
15 q [ dof ] += thisK [ 3 ] * v [DOFMap[ n ] ] ;

16 }

17 }

18 r e turn ;

19 }

Listing 4.3: Multi-thread C program for the matrix-vector product with an element-by-
element strategy
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Size of variable Array dimension
x, r, d, M, q 8 Bytes n
DOFMap 4 Bytes nnodes ≈ n/nnodalDOFs

elemMatMap 1 Byte nelems = n/nnodalDOFs
local matrices K 8 Bytes (const.)nmaterials << n

Total [Bytes]
5× 8n+ 4nnodes + nelems + 8(small constant)

Table 4.1: Memory allocated for parallel assembly-free PCG solver in CPU

In Listing 4.3, the variables are equivalent to those in Listing 4.1. It stands out,

however, that the local matrices K are now stored in a one dimensional array, which

explains why the material key is multiplied by 16 (the number of coe�cients in each local

matrix). The operation WALK_2D is implemented as a macro, which de�nes the shift from

local node 0 to the current node being run. Regarding OpenMP, The directive #pragma

omp parallel for is employed to signalize to the gcc compiler that a speci�c for loop

must be split into multiple parallel CPU threads. The private clause makes sure that

each thread works with local instances of the speci�ed variables.

Results and performance metrics for this implementation will be presented in Chapter

7. This CPU solution does improve performance from the aforementioned vectorized code,

but it still does not reach the full potential of the developed methodologies. It is evident

that the strategies summarized in Algorithms 7 and 8 are suitable for massively parallel

environments. As we are dealing with large-scale simulations, and procedures have been

conceived to avoid concurrency, it is desirable that the computations are as parallelized as

made possible by the available hardware. In that sense, it is logical to expect signi�cant

runtime reduction with a solver implemented in GPU. This will be discussed in details in

the next Chapter.

As memory is a limiting factor to the numerical analyses, the space e�ciency of

solutions is a matter of concern. Table 4.1 presents a summary of the sizes of the signi�cant

demanded arrays, in terms of n (the number of global DOFs), by the proposed multi-thread

element-by-element solver. It is noticeable that memory allocation grows linearly with

respect to the dimension of the model.



Chapter 5

Massively parallel implementation in

GPU

This Chapter presents the implementation in CUDA C of a massively parallel PCG solver

applied to assembly-free image-based FEM. Section 5.1 covers an introduction to GPU

programming, pointing out some of the main concepts involved and the di�erences from

CPU programming. Section 5.2 details the implementation of the PCG method in GPU,

from the kernels for matrix operations, admitting element-by-element and node-by-node

approaches, to memory allocation and data transfer, two essential topics in this work.

At last, after considerations regarding the proposed solution have been made, Section

5.3 presents 4 alternative ways of implementation, with the main objective of reducing

memory allocation in the GPU, to extend the limits of models that can be analyzed.

5.1 General purpose programming with GPUs

This Section is based on the books on GPU programming written by Kirk and Hwu [38],

and Sanders and Kandrot [69]. The CUDA documentation is also a crucial reference [58].

Over the last two decades, a notorious evolution in GPU programming has been

occurring. Interesting developments can be seen in �elds such as Scienti�c Computing,

Blockchain, and Arti�cial Intelligence. The last one is actually becoming so intertwined

with usage of GPUs, that Nvidia itself, a company known for their e�orts in Computer

Graphics, is gradually moving its main focus to AI, for example. This is one of many

signs that computing with GPUs is a promising trend that will continue to be explored

for years to come.
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5.1.1 An overview

The Graphics Processing Unit (GPU) was conceived as a massively parallel machine to

accelerate rendering of images. In a nutshell, its main original purpose was to receive

coalesced data referring to geometry and color, process those through an ordered set of

instructions being run simultaneously on multiple Arithmetic Logic Units (ALUs), and

obtain �nal colors to paint each pixel on screen. This is commonly denominated the

graphic pipeline. It was not imperative that the ALUs were particularly powerful, as

the usual computations demanded of them were not supposed to be too strenuous or

complex, but it was essential that as many as possible computations could be made in

parallel, so that pixels could be updated in real time. In light of this, the GPU architecture

was designed as illustrated in Figure 5.1, where schematics for a CPU and a GPU are

depicted. GPUs rely on parallelism, which means that increasing its capabilities is, to

simply put it, a matter of �tting more ALUs into the hardware without compromising

data access. On the other hand, CPUs are heavily dependent of a strong control unit,

with relative little parallelism capacity, so e�orts are usually focused on increasing its

clock rate.

Figure 5.1: CPU vs. GPU architecture. Based on Kirk and Hwu [38].

It is important to notice, in Figure 5.1, that several ALUs in the GPU share a same

control unit and a memory cache. From this stems the Single Instruction Multiple Threads

(SIMT) paradigm, as the same program runs on multiple processors, who are responsible

for identifying which piece of data they must work on, through software.

Returning to the graphic pipeline, the massively parallel instructions were constrained
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at �rst, often being implemented in hardware, but as Computer Graphics developed,

some of them became open to programmers, so that more sophisticated lighting and

coloring techniques, for example, could be implemented in software to be run directly in

GPU. This is known as shader programming, and it has become a standard practice. In

fact, the current version of the OpenGL graphic pipeline demands vertex and fragment

shaders implemented in software. These shaders receive input data such as color triplets,

vertex positions in 3D, and normal vectors for lighting, outputting similar parameters. It

eventually became clear that essentially any type of data could be passed to the GPU to

be processed with shaders by, for the lack of a better term, tricking the hardware into

assuming its working with graphic properties. This opened the door for general purpose

usage of the massively parallel capabilities of GPUs, enabling drastic performance gains

in non-graphic applications that demand large computations. In this context, tools were

created to formalize GPGPU (General Purpose GPU) programming, ending the need

for workarounds with colors and vertex positions for programmers interested in exploring

GPUs as computation accelerators, rather than doing anything graphic. The most famous

two would be the Open Computing Language (OpenCL) and the Compute Uni�ed Device

Architecture (CUDA), where the second is the one adopted in this work. The concept

of these frameworks is to enable a CPU to communicate with GPUs, for tasks such as

calling functions, allocating memory, and transferring data. The next Subsection presents

some details of the CUDA environment, focusing on key topics for the implementation

proposed in this text.

5.1.2 CUDA programming model

The CUDA API is a proprietary software from Nvidia dedicated to enable usage of their

graphics cards for GPGPU programming. In this work, the language of focus is CUDA C,

a hybrid programming language, which employs the CUDA API, for the implementation of

CPU and GPU code in similar fashion to standard C/C++. It should be noted, however,

that CUDA also supports FORTRAN. Although the language is aesthetically familiar to

conventional CPU code in C, some speci�c terms and notions of working with GPUs are

vital for implementing CUDA applications. These will be addressed ahead.

� The CPU is referred as host, while the GPU is called device.

� Streaming multiprocessors (SMs) are groups of CUDA cores that are used to

execute multiple blocks of threads.
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� Threads are independent instances of sequential �ow within a program. The mas-

sively parallel nature of GPUs is due to its capacity to manage several threads at

a time. In CUDA, threads are structured in blocks, and are executed in waves of

32, denominated warps.

� Blocks are groups of a maximum of 1024 threads. They can be abstractly cha-

racterized as 1D, 2D or 3D, to better represent the data worked on. Usually, they

are dimensioned with multiples of 32 threads, to conform with warp sizes. Each

block is assigned to a single SM. Groups of blocks are contained within a grid.

Figure 5.2 depicts where threads, blocks and grids are run, in hardware.

� Kernels are functions that run in GPU. A kernel call initiates multiple blocks to

run parallel instances of the programmed instructions. Generally, kernels follow a

pattern of evaluating the current thread index, checking if it is within data bounds,

and then doing whatever operation is required. In code, the keyword __global__

is placed before the function signature to state that it is a kernel, visible to host

and device.

� Streams are queues of GPU operations to be executed orderly, employed to achieve

task parallelism with GPUs. They are usually adopted to di�erentiate groups of calls

that can be run independently of each other. It is possible, for example, to assign

some streams to handle data transfers between host and device, while others deal

with massively parallel computations, in an e�ort to avoid idleness of hardware.

The host controls the sequential �ow of the program, being responsible for calling

kernels, and managing memory allocations and data transfers in all of the involved hard-

ware. It is important to be aware that many device calls are non-blocking to the host,

so, for instance, calling a kernel does not halt the program until results are compu-

ted, nor are those automatically sent to the host. Explicit host-device synchronization

and/or data transfers are commonly required, which can be done via API calls such as

cudaMemcpy. Figure 5.3 illustrates a typical �ow of action of a CUDA C program.

5.1.3 GPU memory

GPUs have a distinct memory hierarchy that impacts on how threads access data. Con-

siderable performance gains can be obtained with proper use of local, shared and global

memory. Figure 5.4 represents the memory resources in GPUs. Each of the memories are

detailed in the following bullet items.
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Figure 5.2: Relation of threads, blocks and grids to hardware. Source: Gupta [27].

Figure 5.3: Usual �ow of activities of a CUDA C program
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Figure 5.4: Memory hierarchy of a CUDA-enabled device. Based on Gupta [27].

� The global memory is accessible to every active thread in a kernel run. It corresponds

to the DRAM of the GPU, having the most space, but requiring more machine cycles

for data to be accessed.

� The L2 cache is shared among all SMs, so every thread can also reach it. It permits

faster memory access, but has limited space.

� The L1/Shared memory is an on-chip fast-access memory space that can be reached

by every thread within each speci�c SM. This is particularly useful for operations

such as sum reductions, where threads in a block need to share some data among

themselves. It is limited in size, but nevertheless a powerful tool for parallel algo-

rithms that need to be aware of neighboring data.

� The Read-only memory is an on-chip cache commonly employed for constant or

texture memory. It can speed up access to constant-value small-sized data that

needs to be visible to threads.

� The Registers are used to store local variables for each thread, and have their usage

controlled at compiler level.

The GPU is optimized to work with coalesced data, that is, consecutive threads

accessing aligned consecutive memory spaces, as depicted in Figure 5.5. This is because

consulting the global DRAM from a single processor is relatively time-consuming, and if

the data is coalesced, it is possible to carry portions of it at a time, instead of just one

piece of information.
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Figure 5.5: Coalesced (top) and uncoalesced (bottom) memory access of an array with
entries of 4 Bytes

Figure 5.5 is a common example found in GPU programming guides for memory

alignment and coalesced access. The access performed at the top of the Figure requires a

single operation, as the moved 128 Bytes are cached for the 32 consecutive threads, while

the procedure at the bottom requires multiple memory transactions, �lling the cache with

unused data. Ideally, to extract the most performance from a GPU, all of the arrays

stored in global memory should be arranged so that a thread identi�ed by an index i

accesses memory spaces of index i. Of course, this is desired but not always possible.

5.2 PCG applied to assembly-free image-based FEM in

GPU

The pseudo-code shown in Section 4.4 is ready for massively parallel implementation. The

solutions in CPU presented so far do explore some parallelism to reduce the elapsed time of

the analyses, but they barely scratch the surface on the potential of performance gain with

the proposed methodologies. Ideally, with an in�nitely parallel machine, the element-by-

element and node-by-node strategies discussed in Section 4.3 would take constant time, as

they allow for parallelization in the whole domain of analysis. In that sense, GPUs appear

to be far better �tting hardware for this sort of numerical simulation, in comparison to

CPUs.

For the implementation in CUDA C, a slight variation of Algorithm 9 is proposed.

The only di�erence in the adopted solution, represented by Algorithm 10, is that the

preconditioner array M is not assembled, as suggested in Section 4.4. Every operation

M−1r now demands sweeps of the domain as well, becoming analogous to the assembly-
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free matrix-vector products. This choice was based on the memory limitations of the

available GPUs for this work (a maximum of 8 GB DRAM), as it reduces the number of

allocated arrays in the device from �ve to four. The procedure described in Algorithm

10 was the �rst one implemented in CUDA during the development of this work, and it

will be henceforth referred as the MParPCG solver in GPU for assembly-free image-based

FEM. The host handles kernel calls and convergence of the numerical method.

Algorithm 10 MParPCG solver applied to assembly-free image-based FEM in GPU
1: Input: local matrices : k,material map,b,x0, tolerance
2: Output: x
3: x← x0

4: r← b− (
∑

TT
e keTe)x . Aprod kernel

5: d← (
∑

TT
e diag(ke)Te)

−1r . applyPreConditioner kernel
6: δ ← rTd . dotprod kernel, sync. host and device
7: δ0 ← δ
8: while (δ/δ0 > tolerance2) do . check in CPU
9: q← (

∑
TT

e keTe)d . Aprod kernel
10: α← δ/qTd . dotprod kernel, sync. host and device
11: x← x + αd . sumVec kernel
12: r← r− αq . sumVec kernel
13: q← (

∑
TT

e diag(ke)Te)
−1r . applyPreConditioner kernel

14: δprev ← δ
15: δ ← rTq . dotprod kernel, sync. host and device
16: β ← δ/δprev
17: d← q + βd . sumVec kernel
18: end while

5.2.1 Kernels for assembly-free matrix operations

The kernels for assembly-free matrix operations follow Algorithms 7 and 8, implementing

a hard-coded solution for each of the considered physical phenomena. As it was done in

Section 4.5, code is presented referring to 2D heat conduction, for the sake of conciseness.

Analogous kernels were implemented as well for 3D, and for elasticity problems.

Listing 5.1 shows how matrix-vector products are implemented in CUDA for the

element-by-element strategy. Notice that a variable n is provided to identify which local

node is being processed at the moment. This kernel is called four times (or eight, in 3D)

at each matrix-vector product, to compute contributions of all local nodes.

1 __global__ void Aprod_thermal_2D_ElemByElem( unsigned i n t n , var *d ,

unsigned i n t nElems , map elemMatMap , unsigned i n t nRows , var *q ) {

2 unsigned i n t i = threadIdx . x + blockIdx . x * blockDim . x ;
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3 // Check i f t h i s thread must work

4 i f ( i<nElems ) {

5 unsigned i n t row = ( unsigned i n t ) elemMatMap [ i ]*16 + n *4 ;

6 unsigned i n t dof ;

7 unsigned i n t id = 0 ;

8 var con t r i b = 0 . 0 ;

9 // ( bottom , l e f t )

10 dof = WALK_DOWN( i , nRows) ;

11 con t r i b += K[ row ]*d [ dof ] ;

12 id += (n==0)*dof ;

13 // ( bottom , r i g h t )

14 dof = WALK_RIGHT( dof , nRows , nElems ) ;

15 con t r i b += K[ row+1]*d [ dof ] ;

16 id += (n==1)*dof ;

17 // ( top , r i g h t )

18 dof = WALK_RIGHT( i , nRows , nElems ) ;

19 con t r i b += K[ row+2]*d [ dof ] ;

20 id += (n==2)*dof ;

21 // ( top , l e f t )

22 // dof = i ;

23 con t r i b += K[ row+3]*d [ i ] ;

24 id += (n==3)* i ;

25 q [ id ] += cont r ib ;

26 }

27 }

Listing 5.1: CUDA kernel for element-by-element matrix-vector products

In Listing 5.1, each thread is associated to one element (pixel or voxel) in the mesh,

meaning the index i is equivalent to an element index. The operations WALK_DOWN and

WALK_RIGHT are the ones stated in Table 3.1, implemented as macros. They satisfy the

consideration of periodic boundary conditions. No DOFMap is required, due to the

hard-coded consideration of the numbering scheme, as it can be seen in line 23, where the

DOF of the (top,left) local node is identi�ed by the element index, recalling Figure 3.6.

The node-by-node approach was also implemented in CUDA. Oppositely to the element-

by-element solution, in this case, a single kernel call is able to compute all the necessary

operations for an assembly-free matrix-vector product, without risk of race conditions.

Listing 5.2 exposes a kernel for this task.
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1 __global__ void Aprod_thermal_2D_NodeByNode( var *d , unsigned i n t

nDOFs, map nodeMatMap , unsigned i n t nCols , unsigned i n t nRows , var

*q ) {

2 // Get g l oba l thread index

3 unsigned i n t i = threadIdx . x + blockIdx . x * blockDim . x ;

4 // Check i f t h i s thread must work

5 i f ( i<nDOFs) {

6 // Local var to s t o r e r e s u l t

7 var r e s ;

8 // Mater ia l map value f o r t h i s node

9 unsigned i n t map_16bit = ( unsigned i n t ) nodeMatMap [ i ] ;

10 // Local var to s t o r e ne ighbor dof indexes

11 unsigned i n t dof ;

12 // Index where t h i s mate r i a l s t a r t s on K

13 unsigned i n t mat = (map_16bit%16) *16 ;

14 // F i r s t ne ighbor elem

15 r e s = K[mat ]*d [ i ] ;

16 dof = WALK_RIGHT( i , nRows ,nDOFs) ; // nDOFs == nElems

17 r e s += K[mat+1]*d [ dof ] ;

18 dof = WALK_UP( dof , nRows) ;

19 r e s += K[mat+2]*d [ dof ] ;

20 dof = WALK_UP( i , nRows) ;

21 r e s += K[mat+3]*d [ dof ] ;

22 // Second neighbor elem

23 map_16bit >>= 4 ;

24 mat = (map_16bit%16) *16 ;

25 dof = WALK_LEFT( i , nCols , nRows ,nDOFs) ;

26 r e s += K[mat+4]*d [ dof ] ;

27 r e s += K[mat+5]*d [ i ] ;

28 dof = WALK_UP( i , nRows) ;

29 r e s += K[mat+6]*d [ dof ] ;

30 dof = WALK_LEFT( dof , nCols , nRows ,nDOFs) ;

31 r e s += K[mat+7]*d [ dof ] ;

32 // Third neighbor elem

33 map_16bit >>= 4 ;

34 mat = (map_16bit%16) *16 ;

35 dof = WALK_DOWN( i , nRows) ; dof = WALK_LEFT( dof , nCols , nRows ,nDOFs) ;

36 r e s += K[mat+8] *d [ dof ] ;
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37 dof = WALK_RIGHT( dof , nRows ,nDOFs) ;

38 r e s += K[mat+9] *d [ dof ] ;

39 r e s += K[mat+10]*d [ i ] ;

40 dof = WALK_LEFT( i , nCols , nRows ,nDOFs) ;

41 r e s += K[mat+11]*d [ dof ] ;

42 // Fourth neighbor elem

43 map_16bit >>= 4 ;

44 mat = (map_16bit%16) *16 ;

45 dof = WALK_DOWN( i , nRows) ;

46 r e s += K[mat+12]*d [ dof ] ;

47 dof = WALK_RIGHT( dof , nRows ,nDOFs) ;

48 r e s += K[mat+13]*d [ dof ] ;

49 dof = WALK_RIGHT( i , nRows ,nDOFs) ;

50 r e s += K[mat+14]*d [ dof ] ;

51 r e s += K[mat+15]*d [ i ] ;

52 // Put f i n a l r e s u l t in g l oba l array

53 q [ i ] = r e s ;

54 }

55 }

Listing 5.2: CUDA kernel for node-by-node matrix-vector products

In Listing 5.2, each thread is associated to one node in the mesh, meaning the index

i is equivalent to a node index. As with the element-by-element implementation, the

operations WALK_UP, WALK_DOWN, WALK_RIGHT and WALK_LEFT are macros, detailed in Table

3.1, and no DOFMap is required. It is important to notice that materials are no longer

mapped by elements, but by nodes. A 16-bit array nodeMatMap is employed to store

neighbor material keys around each node, as illustrated by Figure 5.6.

Figure 5.6: 16-bit node material map

In Figure 5.6, the material keys are written in binary. The order of access to neighbor

elements from a node is de�ned to match the local index of that node in the respective
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element. For instance, the 1st element is the one where the current node corresponds

to its local node 0. In 3D, the rule is analogous, considering two layers of neighbor

elements. As it has been stated previously, in Subsection 4.3.2, this mapping strategy

decreases the number of di�erent materials that can be considered, in comparison to the

8-bit element material map, but it provides coalesced data access to the image for the

node-by-node approach. As it usual to work with few distinct materials at the micro-scale

in homogenization analyses, such an approach meets the demands of this work, but other

strategies can be explored in future developments. For example, storing the 8-bit image

in texture memory caches could be an improvement.

5.2.2 Memory allocation

The MParPCG solver was implemented with space e�ciency as one of its premises. The

assembly-free strategy, and not storing commonly used PCG arrays (s,M) are e�orts

that push the limits of model sizes for FE analysis without resorting to high-performance

hardware. In light of this, as another stride towards memory reduction, it was decided to

test single precision �oating point variables in the CUDA C program, as it was done by

Müller et al. [56], so that the image dimension limit may essentially be doubled.

The choice to assess float variables was not made at random. As the numerical

tolerance for dimensionless norms of residuals usually is set within 1e−04 and 1e−06, the

results are considered satisfactory if they converge in 4 to 6 digits precision. Furthermore,

the range of values for the coe�cients of the global matrix and forcing vector generally is

well within single precision range, due to the admitted physical properties at the micro-

scale. Bearing this in mind, it was suggested that using double precision could be excessive

for the problems being analyzed. In fact, the results presented in Chapter 7 con�rm this

notion. It is important to state that a similar version of the implementations using double

variables is also maintained. This text focuses on the single precision solutions for being

more e�cient, both in time and memory, and e�ectively achieving the same results for

all the conducted studies of numerical homogenization, but every development in GPU

presented here also was also applied to solvers with 8 byte variables.

Another di�erence in the GPU implementation is that the local matrices can be stored

in the read-only on-chip memory, for fast access to the CUDA threads. These matrices

are not, by any means, signi�cant to the total allocated memory in DRAM, but keeping

them near the processors is interesting for performance improvement.

The signi�cant arrays stored in global memory, of both host and device, are shown in
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Table 5.1. It is noticeable that space complexity remains linear, however the tendency of

memory allocation, is reduced from the multi-thread CPU solution (Table 4.1).

Size of variable Array dimension host device
r, d, q 4 Bytes n × X

x 4 Bytes n X X
RHS 4 Bytes n X ×

DOFMap 4 Bytes nnodes ≈ n/nnodalDOFs X ×
material map 1 or 2 Bytes nelems = n/nnodalDOFs X X

local matrices K 4 Bytes (const.)nmaterials << n X ×
Total [Bytes]

host 2× 4n+ 4nnodes + (1 or 2)nelems + 4(small constant)
device 4× 4n+ (1 or 2)nelems

Table 5.1: Memory allocated in host and device for CUDA implementation of the MParPCG
solver

In order to solidify the space e�ciency obtained with the proposed approach, a com-

parison of estimates of memory allocation in the device for assembly-free and assembled

sparse matrix solutions is presented in Table 5.2. The Compressed Sparse Row (CSR)

format is considered for the sparse matrices, as it was implemented for a PCG solver in

GPU by Helfenstein and Koko [31]. The structured nature of the image-based meshes is

taken into account. Analyses of linear elasticity in 3D are considered, for being the most

memory consuming simulations in the scope of this work.

Memory [GB]

Dim. [voxels]
DOFs
×106 Assembly-free

CSR format
(sparse matrix)

503 0.375 0.006 0.25
1003 3.0 0.05 2.00
2003 24.0 0.40 16.03
3003 81.0 1.35 54.11
4003 192.0 3.20 128.3
5003 375.0 6.25 250.5

Table 5.2: Estimates of memory allocation in the device for PCG solvers with the
assembly-free approach and assembled matrices in CSR format, for 3D linear elasticity
simulations.

5.2.3 Data transfer between host and device

As computationally powerful as GPUs are, programs that explore them depend on data

transfers between the global memories of CPU and GPU. These memory transactions

can be signi�cantly time-consuming, to the point that, if they are repeatedly required
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and/or poorly timed, they can completely undermine performance improvements made

with massively parallel computations. In the MParPCG solver, it is assumed that the PCG

arrays r, d and q reside solely in the device, while x has copies in the host and the device.

Even so, the host copy of x can be updated just at the end of the PCG solver, so, in the

scope of the while iterations of the numerical method, no arrays need to be transferred

in either direction. At most, two float variables must be transported from device to

host at each iteration, to return the results of dot products. Figure 5.7 depicts all of the

memory allocation and transfer during a run of the MParPCG solver.

Figure 5.7: API calls to manage the data �ow in the MParPCG solver. Memory allocation
and transfer to device in green, call to iterative solver in blue, freeing memory in red.
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5.3 Alternative strategies of implementation

The CUDA implementation for the PCG method presented in the previous Section per-

forms much better than its akin CPU program, as it will be shown in Chapter 7, but,

even with the reductions in memory allocation, it still can be improved in terms of space

e�ciency. In this Section, four alternative strategies of implementation are proposed, all

with the objective of extending even further the size limits of the analysis.

5.3.1 xrd solver

At a �rst look in Algorithm 10, it might seem like the four arrays, x, r, d and q, are

required to be stored in memory, and, in fact they are, for the original operations of the

PCG method to remain unchanged. However, if some operations are mixed together, it

is possible to vanish with the array q, as detailed in Algorithm 11. Essentially, the idea

is to substitute the operations that would attribute values to q in every statement where

the vector is required.

Algorithm 11 xrd solver - MassPar PCG applied to assembly-free image-based FEM
1: Input: local matrices : k,material map,b,x0, tolerance
2: Output: x
3: x← x0

4: r← b− (
∑

TT
e keTe)x . Aprod kernel

5: d← (
∑

TT
e diag(ke)Te)

−1r . applyPreConditioner kernel
6: δ ← rTd . dotprod kernel, sync. host and device
7: δ0 ← δ
8: while (δ/δ0 > tolerance2) do . check in CPU
9: α← δ/(dT (

∑
TT

e keTe)d) . dotprod_Aprod kernel, sync. host and device
10: x← x + αd . sumVec kernel
11: r← r− α(

∑
TT

e keTe)d . Aprod kernel
12: δprev ← δ
13: δ ← rT (

∑
TT

e diag(ke)Te)
−1r . dotprod_precond kernel, sync. host and device

14: β ← δ/δprev
15: d← (

∑
TT

e diag(ke)Te)
−1r + βd . applyPreConditioner kernel

16: end while

It is evident that a performance price must be paid for q not to be allocated, as each

iteration of the PCG method, in this case, demands four sweeps of the domain, instead of

two. Speci�c kernels, analogous to the matrix-vector product, needed to be implemented

for the operations in lines 9, 11, 13 and 15 of Algorithm 11. The total allocation in global

memory of the device is reduced to 3×4n+ (1 or 2)nelems Bytes, as now only three arrays

of variable vectors are stored (x, r, d).
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5.3.2 xsd solver

In Algorithm 3, the conventional form of the PCG method, a vector s is employed. It

was removed in the developments of this work, as it was shown that it would allocate

unnecessary memory, given that q could be repurposed to store its values. Even so, s can

be used in alternative memory-e�cient solutions, without q. The statements in pseudo-

code that invoke s de�ne its attributions as s ← M−1r. As the Jacobi preconditioner

is adopted for M, a diagonal matrix, it straightforwardly follows that the residual could

be computed as r ←Ms. Considering this notion, the xrd solver can be rewritten as in

Algorithm 12.

Algorithm 12 xsd solver - MassPar PCG applied to assembly-free image-based FEM
1: Input: local matrices : k,material map,b,x0, tolerance
2: Output: x
3: x← x0

4: s← (
∑

TT
e diag(ke)Te)

−1(b− (
∑

TT
e keTe)x) . precond_Aprod kernel

5: d← s . arrcpy kernel
6: δ ← dT (

∑
TT

e diag(ke)Te)s . dotprod_invprecond kernel, sync. host and device
7: δ0 ← δ
8: while (δ/δ0 > tolerance2) do . check in CPU
9: α← δ/(dT (

∑
TT

e keTe)d) . dotprod_Aprod kernel, sync. host and device
10: x← x + αd . sumVec kernel
11: s← s− α(

∑
TT

e diag(ke)Te)
−1(

∑
TT

e keTe)d . precond_Aprod kernel
12: δprev ← δ
13: δ ← sT (

∑
TT

e diag(ke)Te)s . dotprod_invprecond kernel, sync. host and device
14: β ← δ/δprev
15: d← s + βd . sumVec kernel
16: end while

Memory allocation is unchanged from the xrd solver, but it is interesting to notice

that the xsd solution combines two sweeps of the domain into one, in line 11, enabling

the computations at each iteration to be made with three kernel calls for assembly-free

matrix operations, instead of four.

5.3.3 rd solver

It is possible to go even further than the xrd solver in memory reduction. At each iteration,

the vector x is updated, but it is not used anywhere else, so it does not need to be visible

to the arrays r and d. In other words, x is not required in the GPU, it can be updated

in the CPU. To accomplish this, the search direction vector d must be transferred from

device to host at every iteration. In order to avoid excessive idleness of hardware, which
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slows down the solution, CUDA streams are employed in conjunction with asynchronous

calls to transfer memory by parts, allowing the CPU to compute updated entries of x

while data is being received, and the GPU to keep executing the kernels for assembly-free

matrix operations while sending data. This is depicted in Algorithm 13.

Algorithm 13 rd solver - MassPar PCG applied to assembly-free image-based FEM
1: Input: local matrices : k,material map,b,x0, tolerance
2: Output: x
3: x← x0

4: Stream 0: {

5: r← b− (
∑

TT
e keTe)x . Aprod kernel

6: d← (
∑

TT
e diag(ke)Te)

−1r . applyPreConditioner kernel
7: δ ← rTd . dotprod kernel, sync. host and device

8: }
9: for stream in (Streams> 0) do

10: Asynchronous memcpy from device to host of portion of d
11: end for
12: δ0 ← δ
13: while (δ/δ0 > tolerance2) do . check in CPU
14: δprev ← δ
15: Stream 0: {

16: α← δ/(dT (
∑

TT
e keTe)d) . dotprod_Aprod kernel, sync. host and device

17: r← r− α(
∑

TT
e keTe)d . Aprod kernel

18: δ ← rT (
∑

TT
e diag(ke)Te)

−1r . dotprod_precond kernel, no sync.

19: }
20: for stream in (Streams> 0) do
21: Wait for memcpy from device to host of portion of d
22: x← x + αd (portion of d sent by stream) . in CPU
23: end for
24: β ← δ/δprev . transfer result of dotprod_precond, sync. host and device
25: Stream 0: {

26: d← (
∑

TT
e diag(ke)Te)

−1r + βd . applyPreConditioner kernel

27: }
28: for stream in (Streams> 0) do
29: Asynchronous memcpy from device to host of portion of d
30: end for
31: end while

Clearly, the solution presented in Algorithm 13 is not expected to outperform the

MParPCG solver or the xrd solver, but it reduces memory allocation in the device even

more. With the rd solver, simulations can be carried out storing just 2×4n+(1 or 2)nelems

Bytes, as only two arrays of variable vectors are allocated in the GPU (r, d).
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5.3.4 sd solver

In analogous fashion to the conception of the rd solver from xrd, the xsd solution can be

adapted to sd, having the array x reside solely in the host. This approach is detailed in

Algorithm 14.

Algorithm 14 sd solver - MassPar PCG applied to assembly-free image-based FEM
1: Input: local matrices : k,material map,b,x0, tolerance
2: Output: x
3: x← x0

4: Stream 0: {

5: s← (
∑

TT
e diag(ke)Te)

−1(b− (
∑

TT
e keTe)x) . precond_Aprod kernel

6: d← s . arrcpy kernel
7: δ ← dT (

∑
TT

e diag(ke)Te)s . dotprod_invprecond kernel, sync. host and device

8: }
9: for stream in (Streams> 0) do

10: Asynchronous memcpy from device to host of portion of d
11: end for
12: δ0 ← δ
13: while (δ/δ0 > tolerance2) do . check in CPU
14: δprev ← δ
15: Stream 0: {

16: α← δ/(dT (
∑

TT
e keTe)d) . dotprod_Aprod kernel, sync. host and device

17: s← s− α(
∑

TT
e diag(ke)Te)

−1(
∑

TT
e keTe)d . precond_Aprod kernel

18: δ ← sT (
∑

TT
e diag(ke)Te)s . dotprod_invprecond kernel, no sync.

19: }
20: for stream in (Streams> 0) do
21: Wait for memcpy from device to host of portion of d
22: x← x + αd (portion of d sent by stream) . in CPU
23: end for
24: β ← δ/δprev . transfer result of dotprod_invprecond, sync. host and device
25: Stream 0: {

26: d← s + βd . sumVec kernel

27: }
28: for stream in (Streams> 0) do
29: Asynchronous memcpy from device to host of portion of d
30: end for
31: end while

5.4 Summary of the implementations

Five solvers where implemented for the PCG method applied to assembly-free image-

based FEM problems in GPU. They vary in computational cost, memory allocation, and
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Solver
Arrays of vars.

in device
Matrix ops.
per iteration

Data transferred
per iteration

Multiple
streams

MParPCG 4 2 8 Bytes ×
xrd 3 4 8 Bytes ×
xsd 3 3 8 Bytes ×
rd 2 4 (8 + 4n) Bytes X
sd 2 3 (8 + 4n) Bytes X

Table 5.3: Summary of the PCG solvers implemented in GPU

amount of data transferred per iteration. Table 5.3 synthesizes the main characteristics

of the proposed solutions.

From Table 5.3, it can be expected that runs with best performance are obtained

with the MParPCG solver, as it allocates the result of the matrix-vector product in each

iteration, meaning that less sweeps of the domain are required. However, this is the solver

with the lowest image dimension limit, exactly for storing an extra array in memory.

The xrd and xsd solvers seem to be the most e�cient ones, as they reduce allocation

from the MParPCG solver, but still demand small data transfers per iteration (two scalars,

dot-product results). The xsd solution requires one less matrix operation per iteration,

but in exchange it demands a relatively strenuous kernel for updating the s array, so

the computational power of each CUDA core is a determinant factor for performance

comparisons against the xrd. The rd and sd solvers should be slower options, as they

require a whole variable vector to be transferred from device to host at each iteration.

Their main purpose is to push the size limits of the analyses, aiming to maximize memory

e�ciency.



Chapter 6

Finding initial guesses in coarse meshes

In this Chapter, a novel methodology is proposed, to the best of the author's knowledge,

to obtain good initial guesses x0 for the PCG method applied to image-based FE mo-

dels, employing recursive solutions in coarsened meshes. This is an e�ort to accelerate

the convergence of the method itself, in number of iterations, so it applies not only to

assembly-free approaches or the massively parallel implementation scheme.

6.1 Hypothesis

In general case applications of the PCG to solve FEM problems, it is usual to pre-

determine the initial guess vector x0 as null, so x is initialized with zeros in all of its

entries (in line 4 of Algorithm 9). This choice can be associated with the fact that a null

vector solution commonly represents a physical system in equilibrium, without any for-

cing applied to it. If relatively small forcing is considered, especially when working with

the assumption of linear behavior, it is somewhat logical to expect that the response will

be close to the null vector. However, in the majority of cases, it is obvious that the null

solution is not the desired response of a physical simulation, thus, in this sense, setting

x0 as ~0 is not really adopting an initial guess, per se, but rather a non-random default

starting point. This does not mean that it performs speci�cally bad, but it is possible to

consider actual initial guesses, closer to the solution from the start, so that less iterations

are needed for convergence to be obtained.

It is natural, when dealing with the FEM, to think about mesh re�nement to observe

convergence of the results. The idea is that, with further discretization of the domain,

the numerical responses should stabilize near a good approximation of what would be

an analytical solution of the governing equations. This means that solutions from coarse
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meshes can be thought of as approximations of the solutions from re�ned meshes. In the

scope of pixel and voxel-based models, coarsening the mesh is equivalent to decreasing

resolution of the image. It then follows that an expected good initial guess for a PCG

run on an image-based FEM problem would be the solution of a similar version of that

problem, with an image of lower resolution.

It is vital to be mindful that each iteration of the PCG method applied to image-based

FEM has time complexity O(n), where n is the dimension of the system to be solved,

that is, the number of DOFs. Considering coarsening operations that halve the resolution

of the image on each of its axis, a coarsened model has 1/4 of the pixels (2D) or 1/8 of

the voxels (3D), which are directly proportional to the quantity of DOFs. This means

that each PCG iteration on an image with half of the original resolution should be about

4× faster in 2D, and 8× faster in 3D. Furthermore, it is observed that models of lower

resolution usually demand less iterations to converge. Hence, it is clear that solving a

smaller system on a coarse mesh to �nd an initial guess is a task that takes considerably

less time than the solution of the original system itself, and, if that approximation helps

in reducing the number of iterations for the convergence, it can lead to signi�cant overall

runtime reduction for a �nal response to be obtained.

6.2 Coarsening of image-based meshes

In this work, a straightforward strategy is employed to lower the resolution of images.

The coarsening procedure, described in Algorithm 15, merges clusters of elements, 2× 2

pixels in 2D, and 2× 2× 2 voxels in 3D, into a single one, adopting the color value of the

(left,top,near) element within the group. Figure 6.1 depicts this process for a 2D image.

These operations can be performed in GPU.

Algorithm 15 Coarsening of an image-based �nite element model
1: Input: image (material map)
2: Output: lowres_image
3: Get dimensions of original image: nrows, ncols, nlayers
4: for (row = 0, 1, . . . , nrows/2− 1) do
5: for (col = 0, 1, . . . , ncols/2− 1) do
6: for (layer = 0, 1, . . . , nlayers/2− 1) do
7: lowres_image[row][col][layer]← image[2 ∗ row][2 ∗ col][2 ∗ layer]
8: end for
9: end for

10: end for
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Figure 6.1: (a) 200x200 pixel-based model of a sandstone sample [76], (b) coarsened
100x100 pixel mesh.

Assuredly, a broader discussion could be held in regards to qualitative aspects of the

coarsening, considering more sophisticated image processing techniques. For the sake of

conciseness, and to avoid digressing from the focus of this work, possible improvement

on this matter is left as future work. Even so, it is important to recall that the main

goal is to reduce the runtime of the analyses, so operations of this sort should not be

computationally expensive. It might be advantageous, in fact, to stick to rather simple

techniques, so that the initial guesses can be quickly obtained, even if those are not the

best ones possible, but good nonetheless.

6.3 A recursive algorithm for the search of initial gues-

ses

Once the solution with a coarse mesh is found, the results are linearly interpolated back

to the original mesh, as a starting point to the PCG method. Considering this, it is

noticeable that the solution for the image of lowered resolution itself can also adopt an

initial guess from a coarsened version of it. This process can be recursively employed

until reaching a mesh where the system can be solved with a null vector as a starting

point in negligible time. The PCG can be rewritten as to take this notion into account, as

described in Algorithm 16. Even though this pseudo-code was written based on Algorithm

10, it is important to state that the approach applies for any form of the PCG method.

Attention is drawn to a subtle, yet important, change made to the original form
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of the method, �rst presented in Algorithm 3. In Algorithm 16, the parameter δ0 is

no longer associated with a provided x0, now it is always computed as if the starting

point is a null vector. This is done to relate the dimensionless stopping criteria with

the adoption of x0 = ~0 at the lowest resolution considered for the recursive searches.

Mathematically, the criteria has changed from ||b − Ax||/||b − Ax0|| < tolerance to

||b−Ax||/||b|| < tolerance.

Algorithm 16 MassPar PCG with recursive search for initial guess
1: Input: local matrices : k,material map,b, tolerance, recursion
2: Output: x
3: if recursion > 0 then
4: x← interpl(PCG(k, coarsen(material map), coarsen(b), tolerance, recursion− 1))
5: r← b− (

∑
TT

e keTe)x
6: d← (

∑
TT

e diag(ke)Te)
−1r

7: δ ← rTd
8: δ0 ← bT (

∑
TT

e diag(ke)Te)
−1b

9: else
10: x← ~0
11: r← b
12: d← (

∑
TT

e diag(ke)Te)
−1r

13: δ ← rTd
14: δ0 ← δ
15: end if
16: while (δ/δ0 > tolerance2) do
17: q← (

∑
TT

e keTe)d
18: α← δ/qTd
19: x← x + αd
20: r← r− αq
21: q← (

∑
TT

e diag(ke)Te)
−1r

22: δprev ← δ
23: δ ← rTq
24: β ← δ/δprev
25: d← q + βd
26: end while

6.4 A validation test

An experiment was conducted as proof of concept that the proposed strategy in fact

works. Thermal conductivity simulations on direction x1 were run for a synthetic 2D

model of 400 × 400 pixels, illustrated in Figure 6.2. Physical properties were admitted

to be isotropic, setting κwhite = 10 W/m/K and κblack = 1 W/m/K. A simple MATLAB

program was designed to assemble the FEM global system of equations in sparse form
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Resolution [pixels] x0 ||b−Ax||/||b|| Iterations Time [s]
100× 100 ~0 8.1033e−05 70 0.0232
200× 200 ~0 9.4370e−05 138 0.1630
400× 400 ~0 9.9521e−05 275 1.4818
200× 200 x from 100× 100 9.4490e−05 59 0.1083
400× 400 x from 200× 200 9.3853e−05 93 0.6116

Table 6.1: Convergence metrics for preliminary tests with initial guesses from coarse
meshes

and call the pcg built-in function to solve it, providing or not an initial guess from a

coarse mesh. A numerical tolerance of 1e−04 was admitted for the dimensionless norms

of residuals. It should be noted that this function considers the same stopping criteria

as speci�ed in Algorithm 16, and it accepts the Jacobi preconditioner. Table 6.1 details

convergence metrics for the PCG solution, considering di�erent resolutions (coarsened

versions of the 400× 400 mesh).

Figure 6.2: 400x400 synthetic model for tests with initial guesses from coarse meshes

The data shown in Table 6.1 clearly denote that the adoption of initial guesses obtai-

ned from lower resolution images accelerates the PCGmethod, in comparison to employing

the default null vector as a starting point. The solution of the system associated with the

400× 400 pixels model takes roughly half the time with the calculated initial guess. It is

interesting to notice, for that model, that the total number of iterations required for the

solution with two recursive searches, that is 70 + 59 + 93 = 222, is not far from the 275

iterations demanded for convergence starting at ~0, however, more than half of the itera-

tions in the �rst case take place in signi�cantly smaller meshes, so they are consistently

faster.

To reinforce the notions obtained from Table 6.1, Figure 6.3 is presented. In that

Figure, the dimensionless residual is plotted against the number of iterations of the PCG
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method. This graphic representation of the metrics sheds light on how a good initial

guess makes the solution more e�cient, as it avoids possible localized instabilities in the

minimization process, leading the solution on a smooth path to convergence.

Figure 6.3: Dimensionless norms of residuals vs. number of iterations

This preliminary test provided satisfactory results for the hypothesis that searching

for initial guesses on lower resolution models accelerates convergence of the PCG method.

In Chapter 7, results and metrics for considerably larger models studied with the proposed

strategy are presented. It is shown that acceleration and signi�cant performance gains are

also obtained for the analysis of image-based models with more than 108 DOFs, synthetic

and of physical samples, suggesting that this is indeed a fruitful endeavor.
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Results

This Chapter is dedicated to presenting and discussing results and metrics obtained with

the implemented solvers. Performance and memory allocation for homogenization simula-

tions in CPU and in GPU are assessed. At �rst, a validation of the programs is presented

by checking the obtained numerical results against a benchmark, in Section 7.1. Then,

in Section 7.2, a 3D microtomographic model of a cast iron sample is studied, evaluating

its thermal conductivity and elasticity constitutive tensors. Several possibilities for the

solution of the large-scale system of equations with the PCG method are considered, in

an e�ort to compare every strategy approached in this work. Performance is presented for

massively parallel analyses with the element-by-element and node-by-node schemes, then

for each one of the �ve solvers implemented in CUDA C, employing the recursive search

for initial guesses discussed in Chapter 6. Finally, in Section 7.3, each GPU solver is run

on the limit of memory of two di�erent devices with simulations of synthetic models, to

showcase the potential of the developed programs to deal with extremely large problems

for a single computer in reasonable time.

The analyses presented in the following Sections employed a desktop computer lo-

cated at the Laboratório de Computação Cientí�ca (Scienti�c Computing Laboratory),

within the Institute of Computing, at Fluminense Federal University. The speci�cations

of this machine are presented in Table 7.1. The only exception is the study presented in

Subsection 7.3.2, where simulations were carried out in a laptop, with properties that will

be speci�ed at that point in the text.
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Computer Speci�cations
O.S. Ubuntu 20.04.2 LTS
CPU AMD Ryzen 7 3700x

Clock rate 3.60 GHz
DRAM 64 GB

Cores (threads) 8 (16)
GPU Nvidia GeForce RTX 2080 Super

Clock rate 1.85 GHz
DRAM 8 GB

CUDA cores 3072
Architecture Turing

Table 7.1: Speci�cations of the computer employed in this work

7.1 Analytical benchmark

The synthetic model illustrated in Figure 7.1 has a known analytical solution for thermal

conductivity problems, described by Perrins et al. [62], so it was used as a validation

benchmark for the developed programs. Both phases are isotropic (Appendix A), the one

that con�gures the circles, depicted in gray, has thermal conductivity κgray = 10 W/m/K,

whilst the predominant material, represented in black, has thermal conductivity κblack = 1

W/m/K. The circular regions have radii equivalent to L/8, where L corresponds to the

horizontal and vertical dimensions of the image. It was admitted a tolerance of 1e−06 for

dimensionless relative norms of residuals obtained with the PCG method. Initial guesses

for the PCG method were all admitted as x0 = ~0. Simulations were run with the element-

by-element and node-by-node approaches to the MParPCG GPU solver, as well as with the

element-by-element solution in CPU. Table 7.2 details the results, which were considered

satisfactory, considering that the maximum error obtained, with a resolution of 50x50

pixels, was within a 0.2% margin of the analytical solution. It is important to remark

that the increasing resolutions do not imply a mesh re�nement being applied to the same

original model. Each step is related to a di�erent image that represents the domain shown

in Figure 7.1 with a regular grid of pixels based on a given resolution. This means that the

geometry of the model is not necessarily preserved in its entirety as resolution changes,

so it is expected that a smooth convergence tendency might not occur.

From Table 7.2, it is important to see that both solutions in GPU got the same

results as the CPU solver, since the latter uses double precision variables, while the two

�rst employ single precision. A �rst comparison of performance was made with the metrics

for this test, shown in Table 7.3. These models are signi�cantly small, considering the

context of large-scale FEM analysis, but some initial insights can be obtained from them.
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Figure 7.1: Analytical benchmark

κ11,κ22 [W/m/K]

Resolution [pixels] CPU
GPU
EbE

GPU
NbN

50x50 1.1769 1.1769 1.1769
100x100 1.1755 1.1755 1.1755
250x250 1.1765 1.1765 1.1765
500x500 1.1752 1.1752 1.1752
1000x1000 1.1751 1.1751 1.1751

Perrins et al. [62] 1.1747

Table 7.2: Results for analytical benchmark

In Table 7.3, and all following metrics tables, the columns headed as PCG time

refer to the solution of each system of equations with the PCG method, while Total

time is associated with the whole homogenization study, which demands solutions of

multiple systems (2 for 2D thermal conductivity, 3 for 3D thermal conductivity and 2D

elasticity, and 6 for 3D elasticity). It is noticeable that elapsed time grows rapidly with

increasing resolution, as the image-based FE analysis with the PCG is O(n2). The 50x50

and 100x100 models are too small for any meaningful conclusions to be drawn, but, from

the 250x250 and larger models, it is clear that the GPU can signi�cantly accelerate the

solutions. The 1000x1000 model (1 million DOFs) has its systems solved 35x faster with

the node-by-node strategy in the GPU, in comparison to the solver in CPU. The total

CPU
GPU
EbE

GPU
NbN

Res. [pixels] DOFs
PCG its.
(x1, x2)

PCG time [s]
(x1, x2)

Total
time [s]

PCG time [s]
(x1, x2)

Total
time [s]

PCG time [s]
(x1, x2)

Total
time [s]

502 2500 100 0.006 0.027 0.005 0.083 0.004 0.081
1002 10000 193 0.027 0.057 0.010 0.087 0.009 0.085
2502 62500 420 0.205 0.442 0.029 0.132 0.024 0.124
5002 250000 773 1.510 3.051 0.087 0.274 0.069 0.256
10002 1000000 1096 9.030 18.402 0.385 0.958 0.253 0.707

Table 7.3: Time metrics for analytical benchmark
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time for homogenization shows speed up of 26x, in that same case. It is also notorious that

the node-by-node approach outperforms the element-by-element, in GPU. These notions

are strengthened by Figure 7.2, where the mean time per PCG iteration is plotted against

the number of DOFs, for the analyses detailed in Table 7.3.

Figure 7.2: Mean time per PCG iteration [s] vs number of DOFs, for the analytical
benchmark

It is interesting to notice, in Figure 7.2, that, in fact, the assembly-free strategy leads

to O(n) time complexity per iteration of the PCG method.

7.2 Cast iron sample

In this Section, results and metrics for a 3D image-based model of a cast iron sample,

obtained with µCT, are presented to demonstrate the capabilities of the proposed imple-

mentations. The used data was previously studied by Pereira et al. [61], and is available

at [60]. The micro-scale domain consists of two phases, a predominant ferritic matrix

and several minor nodules of graphite. A visual representation of the sample, with a

200x200x200 voxels, is presented in Figure 7.3.
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Figure 7.3: 200x200x200 voxel-based representation of the cast iron sample, consisting of
graphite nodules within a ferritic matrix

κ [W/m/K] E [GPa] ν
Graphite 129.0 39.7 0.2225
Matrix 80.4 210.0 0.3000

Table 7.4: Physical properties of the micro-scale phases in the cast iron sample

Simulations for the homogenization of thermal conductivity and elasticity of the model

were performed. Each phase was admitted to be isotropic, having the physical properties

shown in Table 7.4.

7.2.1 Homogenized physical properties

At �rst, the focus is on qualitative aspects of the numerical homogenization analysis. In

Section 7.1, it was shown that the implemented 2D thermal conductivity solver was able to

match a known analytical solution, but it is imperative to also validate the 3D solutions

for thermal conductivity and elasticity. In that sense, the cast iron sample presented

in Figure 7.3 was analyzed with the MParPCG solver in GPU, considering element-by-

element, node-by-node, and DOF-by-DOF (�ne-grained version of the node-by-node for

elasticity analysis) strategies. The CPU solver was also used for the heat conduction
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CPU
GPU

EbE, NbN
Dim. κ11 κ22 κ33 κ11 κ22 κ33

[voxels] [W/m/K] [W/m/K]
503 83.117 82.820 83.065 83.117 82.820 83.065
1003 85.249 85.166 85.032 85.249 85.166 85.033
2003 84.956 84.934 84.947 84.956 84.934 84.947
3003 84.799 84.809 84.791 84.798 84.808 84.791
4003 84.658 84.655 84.640 84.658 84.655 84.641

Table 7.5: Results for orthotropic thermal conductivity of the cast iron sample

problem, to compare obtained values. For elasticity, the results were checked against

the original reference [61]. No recursive searches for initial guesses were employed yet,

so the PCG method starts at x0 = ~0 in all cases. A numerical tolerance of 1e−05 was

adopted for dimensionless relative norms of residuals. Table 7.5 presents the obtained

homogenized orthotropic conductivity coe�cients (Appendix B), Table 7.6 shows the

orthotropic Young's moduli, and Table 7.7 depicts the constitutive tensors for elasticity

that were achieved.

Pereira et al. [61]
GPU

EbE, NbN, DOFbDOF
Dim.
[voxels]

E1 E2 E3 E1 E2 E3

[GPa] [GPa]
1003 180.757 179.338 177.976 180.748 179.420 177.933
2003 180.376 180.129 179.700 180.425 179.738 180.032
3003 181.090 180.876 180.790 180.966 181.045 180.776
4003 182.043 181.838 181.752 182.017 182.005 181.632

Table 7.6: Comparison of the obtained orthotropic Young's moduli with the results of
Pereira et al. [61]

The obtained results were considered satisfactory, as they approximated the expected

values of such properties for nodular graphite cast iron with a ferritic matrix. For similar

samples, Wu et al. [77] found isotropic thermal conductivity of 83.28 W/m/K, and Liu

et al. [41] obtained 82.43 W/m/K, so the largest di�erence achieved with the developed

solvers from these references is 3.3%, with an image dimension of 100x100x100 voxels,

considering an average of the presented orthotropic results. The obtained orthotropic

elasticity properties matched the �ndings of Pereira et al. [61], as it can be seen in Table

7.6. With these results and the ones shown in Section 7.1, the developed GPU programs

were validated, as it was demonstrated that they are able to reproduce analytical and

experimental �ndings.
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GPU
EbE, NbN, DOFbDOF

Dim.
[voxels]

C [GPa]

1003


234.69 94.20 92.98 −0.41 0.15 −0.48
94.19 233.16 92.88 −0.78 0.23 −0.22
92.98 92.88 230.57 −0.49 0.17 −0.26
−0.41 −0.78 −0.49 68.22 −0.21 0.21
0.15 0.23 0.17 −0.21 68.24 −0.30
−0.48 −0.22 −0.26 0.21 −0.30 69.34



2003


235.58 95.38 95.48 0.10 0.02 0.07
95.38 234.69 95.30 0.21 0.01 0.11
95.48 95.30 235.09 0.07 −0.05 0.06
0.10 0.21 0.07 69.56 0.05 0.01
0.02 0.01 −0.05 0.05 69.65 0.07
0.07 0.11 0.06 0.01 0.07 69.60



3003


236.57 96.22 96.11 0.06 −0.08 −0.12
96.22 236.69 96.15 0.05 −0.02 −0.09
96.11 96.15 236.30 0.01 −0.05 0.01
0.06 0.05 0.01 69.98 0.03 −0.01
−0.08 −0.02 −0.05 0.03 69.93 0.05
−0.12 −0.09 0.01 −0.01 0.05 70.02



4003


238.27 97.12 97.01 0.01 0.01 −0.10
97.12 238.23 96.97 −0.05 −0.00 −0.05
97.01 96.97 237.73 −0.05 −0.05 −0.01
0.01 −0.05 −0.05 70.31 −0.00 0.00
0.01 −0.00 −0.05 −0.00 70.34 0.01
−0.10 −0.05 −0.01 0.00 0.01 70.41


Table 7.7: Results for elasticity constitutive tensors of the cast iron sample

7.2.2 Metrics

After the programs were validated, the focus now shifts to our main goal: performance.

In this Subsection, several possibilities for running the analyses presented in the previous

Subsection are explored. Firstly, the goal is to determine the most time-e�cient solution

in GPU for 3D models, node-by-node or element-by-element. Then, the MParPCG, xrd,

xsd, rd, and sd solvers are compared, considering the recursive search for initial guesses

for elasticity simulations. The idea is to relate elapsed time to memory allocation.

7.2.2.1 Element-by-element vs. Node-by-node

In Table 7.8, time metrics are presented for the thermal conductivity homogenization

studies, whose results were exposed in Table 7.5.
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CPU GPU EbE GPU NbN
Dim.
[voxels]

DOFs
×106

PCG its.
(x1)

PCG time [s]
(x1)

Total
time [s]

PCG time [s]
(x1)

Total
time [s]

PCG time [s]
(x1)

Total
time [s]

503 0.125 68 0.23 0.74 0.007 0.69 0.004 0.12
1003 1.0 134 3.50 11.1 0.08 0.74 0.04 0.52
2003 8.0 240 56.4 175 0.99 5.82 0.46 4.24
3003 27.0 301 239 738 4.22 22.6 1.88 15.3
4003 64.0 349 661 2010 11.4 58.6 5.16 38.6

Table 7.8: Time metrics for thermal conductivity analysis of the cast iron sample

From Table 7.8, it is clear that the GPU solvers perform signi�cantly better than the

program running in CPU. The Node-by-node strategy in GPU is once again demonstrated

to be the faster option, achieving up to 128x speed up from the CPU solver in the solution

of linear systems with the PCG method, for a 4003 voxels image. In that case, the speed

up for the whole process of homogenization is of 52x. The element-by-element solution

in GPU also performs considerably better than the CPU solver, but it is slower than

the node-by-node, as portrayed in Figure 7.4, where the time per PCG iteration for each

approach is plotted against the number of DOFs. A graphical comparison of elapsed times

for the whole homogenization process is depcited in Figure 7.8.

Figure 7.4: Mean time per PCG iteration [s] vs number of DOFs, for thermal conductivity
analysis of the cast iron sample
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An analogous assessment of the performance for 3D elasticity analyses was made. Ta-

ble 7.9 presents time metrics for these studies, also considering a DOF-by-DOF approach.

As it can be seen from this data, the performance gains for running elasticity simulations

in the GPU are even greater than what could be observed for thermal conductivity. The

node-by-node solution is able to speed up the PCG method by an impressive factor of

400x, comparing to the CPU, for the 4003 voxels model. The total time for this homo-

genization procedure is accelerated by 290x. Furthermore, once again, the node-by-node

approach provided the best performance, among the GPU solutions. This is illustrated

in Figure 7.5, a plot of time per PCG iteration versus number of DOFs. Elapsed times

for the whole homogenization process are portrayed in Figure 7.9.

CPU GPU EbE
Dim.
[voxels]

DOFs
×106

PCG its.
(x1)

PCG time [s]
(x1)

Total
time [s]

PCG time [s]
(x1)

Total
time [s]

1003 3.0 224 74.0 510 0.39 4.09
2003 24.0 376 997 7110 5.22 47.7
3003 81.0 453 4394 33723 21.6 203
4003 192.0 538 12407 91530* 60.6 534

GPU NbN GPU DOFbDOF
Dim.
[voxels]

DOFs
×106

PCG its.
(x1)

PCG time [s]
(x1)

Total
time [s]

PCG time [s]
(x1)

Total
time [s]

1003 3.0 224 0.21 2.77 0.33 3.60
2003 24.0 376 2.60 29.1 4.42 41.6
3003 81.0 453 11.1 119 17.9 173
4003 192.0 538 30.9 314 50.6 462

* The 4003 voxels model was run in CPU on only one direction (x1). The total time is an
estimate, considering the average time per PCG iteration, and the number of iterations
observed with the other solvers for the �ve remaining directions.

Table 7.9: Time metrics for elasticity analysis of the cast iron sample

Recalling the motivation of this work, stated in Section 1.1, it was said that a previous

CPU implementation, presented in Pereira et al. [61], was capable of running the simula-

tions of elasticity for a 4003 voxels model in about 12h, with a 32-core CPU. The model in

question is the cast iron sample studied here. This time is smaller than the one achieved

with the CPU solution exposed in Table 7.9, which makes sense, as the latter was run

with 16 parallel threads and is less time-e�cient, in exchange for allocating less memory.

However, it is interesting to see that the GPU solvers, especially the node-by-node, are

able to obtain equivalent results in signi�cantly reduced runtime. Table 7.10 synthesizes

this achievement. 230x speed up was obtained for the PCG method, while total time was

accelerated by 135x.
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Figure 7.5: Mean time per PCG iteration [s] vs number of DOFs, for elasticity analysis
of the cast iron sample

Solver PCG time Total time Eaverage [GPa]
Pereira et al. [61]
32-core CPU

∼2 h ∼12 h 181.877

node-by-node
GPU

30.9 s
(∼290x faster)

314 s
(∼135x faster)

181.885

Table 7.10: Time metrics for the homogenization of elasticity of the 4003 voxels cast iron
sample, comparing to a previous implementation in CPU [61]

In regards to memory allocation, it is important to observe that the intended O(n)

space complexity of the assembly-free approach was achieved. In addition, recalling the

dimensions of models seen being analyzed with a single GPU in the literature (Table 2.1),

it is notorious that the experiments presented so far in this work reach a usual threshold

of 10∼100 million DOFs, with relative low memory cost. Figures 7.6 and 7.7 respecti-

vely depict the allocated DRAM for the thermal conductivity and elasticity simulations

performed on the cast iron sample. For elasticity, the allocation for node-by-node and

DOF-by-DOF solutions is the same. It stands out that the elasticity analysis of the 4003

voxels model, of 192 million DOFs, allocates about 3 GB in the GPU with the proposed

MParPCG solver, that stores four arrays. For a �nite element model of similar dimensions,

Apostolou [4], for example, allocated 11.4 GB.
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Figure 7.6: Allocated memory [MB] vs number of DOFs, for thermal conductivity analysis

Figure 7.7: Allocated memory [MB] vs number of DOFs, for elasticity analysis
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Figure 7.8: Total time [s] vs number of DOFs, for thermal conductivity analysis

Figure 7.9: Total time [s] vs number of DOFs, for elasticity analysis
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7.2.2.2 Alternative implementations and initial guesses

The focus is now shifted to the alternative solvers discussed in Section 5.3, and the

proposed methodologies to obtain good initial guesses for the PCG method from coarse

meshes, seen in Chapter 6. To this end, the elasticity analyses for the 4003 voxels model of

the cast iron sample were also conducted with the xrd, xsd, rd and sd solvers, employing

di�erent initial guess considerations: x0 = ~0, one search for initial guesses, and then two

recursive searches. As the node-by-node strategy was the one with best performance in

the previous tests, it was adopted for all of the following experiments. Table 7.11 details

the time metrics for these simulations. The provided number of iterations refers to the

steps of the PCG method in the most re�ned mesh, and the time to compute an initial

guess from coarse meshes is added to the time metric for the solution of the system.

3D elasticity - 4003 voxels cast iron - 192 million DOFs
x0 = ~0 1 recursion for x0 2 recursions for x0

Solver
PCG time [s]

(x1)
Total
time [s]

PCG time [s]
(x1)

Total
time [s]

PCG time [s]
(x1)

Total
time [s]

Memory
(device)

iterations=538 iterations=254 iterations=254 [GB]
MParPCG 30.9 314 16.9 228 16.1 222 3.20
xrd 61.9 545 31.8 354 30.9 350 2.43
xsd 62.6 547 3.19 355 31.0 351 2.43
rd 426 3251 187 1736 186 1732 1.66
sd 459 3480 217 1943 215 1941 1.66

Table 7.11: Time and memory metrics for tests with all implemented solvers in GPU,
considering initial guesses for the PCG method

From Table 7.11, it is clear that there is a memory versus time trade-o� between the

implemented solvers. The MParPCG solver should be the preferred one in the majority of

cases, as it is faster, but it also does not reach the same size limits as the others. As image

dimensions increase, the xrd, xsd, rd and sd solvers become options to make the analysis

feasible, without upgrading the hardware. That being said, it is evident that there is an

especially heavy performance toll to the solvers rd and sd, which is expected, due to the

amount of data that is transferred at each iteration. These should only be employed on

extremely large-scale problems for single computers.

The recursive search for initial guesses allows for the time of each PCG run to be

nearly halved, by reducing the number of iterations at the most re�ned mesh. However,

in Figure 7.10, it is shown that the time reduction does not improve much with more

than two recursive searches. This is because each successive recursion essentially halves

the time of the solution in a coarsened mesh, which is relatively fast to begin with. Then,

in Figure 7.11, time metrics for solutions with the PCG method are presented for the
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MParPCG, xrd and xsd solvers, considering images with increasing dimensions, as in Table

7.9. It is interesting to notice that the adoption of a good initial guess enables solutions

with the xrd and xsd solvers, which allocate less memory, with times close to the MParPCG

solution with x0 = ~0. It is important to mention that all solutions in coarse meshes employ

the MParPCG solver, as memory allocation is guaranteed to be smaller than that of any of

the implemented solvers at the re�ned mesh.

Figure 7.10: Elapsed time for PCG solution [s] vs. number of recursive searches for initial
guesses.
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Figure 7.11: Elapsed time for PCG solution [s] vs. DOFs, comparing x0 = ~0 to two
recursive searches for an initial guess.

7.3 Largest possible synthetic sample

At last, in this Section, a push of the size limits for the image-based models is presented.

The �ve di�erent solvers are tested with a synthetic model that �lls the global memory

of the GPU, accordingly to the tendency of allocation of each solution. In Subsection

7.3.1, metrics are presented for simulations ran in the desktop computer employed so far,

detailed in Table 7.1. Then, in Subsection 7.3.2, large-scale analyses are conducted in a

personal laptop equipped with a CUDA-enabled device.

The synthetic image adopted for these experiments was generated with a perlin noise

in two directions, similarly to what was done by Arbenz et al. [5] to create a synthetic

bone micro-structure, and a periodic behavior in a third direction. The result is a model

that holds some similarities to strati�ed composites. Figure 7.12 depicts the studied

domain with 2423 voxels. The two di�erent phases were admitted to have the same

physical properties as those of the cast iron sample, shown in Table 7.4. The phase in

blue corresponds to graphite, and the one in yellow is a ferritic matrix.
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Figure 7.12: (a) Synthetic voxel-based model generated with perlin noise, (b) details of
the blue phase

7.3.1 Desktop computer

Thermal conductivity and elasticity analyses were performed, their metrics are exposed

in Tables 7.12 and 7.13, respectively. A numerical tolerance of 1e−05 was considered

for dimensionless relative norms of residuals. Two recursive searches for initial guesses

in coarse meshes were adopted. The rd and sd solvers employed eight CUDA streams

dedicated to the memory transfer from device to host at each iteration. Such a number

of streams was chosen after some tests with other possible quantities, and veri�cation

of performance with the aid of the Nsight� tool. More thorough code pro�ling and �ne

tuning of the proposed solutions certainly are open matters for future work.

The dimensions of the simulations detailed in Tables 7.12 and 7.13 exceed the size

limits of every report the author has found in the literature for large-scale �nite element

analysis with a single GPU. Recalling Table 2.1, in Chapter 2, the simulation that comes

closer to the depicted results was carried out by Apostolou [4] in 2020, who solved a 166

million DOF problem, allocating 11.4 GB in the device. Müller et al. [56] presented

the solution of a considerably smaller model, but stated that their implementation could

handle problems of up to ∼300 million DOFs with a GPU of 6 GB RAM. The programs
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Solver
Dimensions
[voxels]

DOFs
×106

PCG its.
(x1)

PCG time [s]
(x1)

Total
time [s]

Mem.[GB]
(host)

Mem.[GB]
(device)

MParPCG 724× 724× 724 380 277 31.6 254 5.32 6.83
xrd 828× 828× 828 568 273 44.1 359 7.96 7.95
xsd 828× 828× 828 568 273 43.5 357 7.96 7.95
rd 925× 925× 850 727 381 1063 3071 10.2 7.28
sd 925× 925× 850 727 381 1190 3342 10.2 7.28

Table 7.12: Metrics for thermal conductivity analyses of a synthetic model at nearly full
GPU memory capacity with di�erent solvers, using a desktop computer

Solver
Dimensions
[voxels]

DOFs
×106

PCG its.
(x1)

PCG time [s]
(x1)

Total
time [s]

Mem.[GB]
(host)

Mem.[GB]
(device)

MParPCG 724× 724× 300 472 276 45.9 638 4.72 7.86
xrd 724× 724× 390 613 280 119 1372 6.14 7.77
xsd 724× 724× 390 613 280 117 1350 6.14 7.77
rd 724× 724× 530 833 276 976 9764 8.34 7.23
sd 724× 724× 530 833 276 1020 10402 8.34 7.23

Table 7.13: Metrics for elasticity analyses of a synthetic model at nearly full GPU memory
capacity with di�erent solvers, using a desktop computer

developed in this work have been demonstrated to be able to handle models of up to 830

million DOFs under 8 GB of allocated memory in the GPU. It is estimated that the rd

and sd solvers can deal with 900 million DOFs analyses with the hardware employed here.

Duarte [18] and Arbenz et al. [5] solved problems of this scale (and much larger) resorting

to supercomputers and GPU clusters, respectively.

In regards to elapsed time, it is noteworthy that the MParPCG solver was able to

obtain solutions for problems with nearly 475 million DOFs in under a minute, allowing

for large-scale image-based numerical homogenization studies to be conducted in a matter

of �ve to ten minutes. The predecessor solution in CPU, optimized to explore parallelism

with OpenMP, would take more than a day to run such a simulation. Additionally, it

is interesting to observe that, even though the xrd and xsd solvers are slower than the

MParPCG implementation, they are relatively in the same order of time consumption, and

enable for larger models to be analyzed. As it can be seen in Table 7.13, these two can

be employed to run the PCG method for problems with more than 600 million DOFs in

under two minutes, allocating less than 8 GB in the global memory of the device.

7.3.2 Laptop

The third goal of this work, stated in Section 1.2, was to enable the solution of large-

scale homogenization problems in a laptop. Employing the memory-e�cient rd and sd
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Laptop Speci�cations
O.S. Linux Mint 19.3 Tricia
CPU Intel Core i7-7500U

Clock rate 2.70 GHz
DRAM 8 GB

Cores (threads) 2 (4)
GPU Nvidia GeForce 940MX

Clock rate 1.19 GHz
DRAM 4 GB

CUDA cores 384
Architecture Maxwell

Table 7.14: Speci�cations of the laptop used in the �nal experiment

solvers, it is indeed possible to solve problems of more than 100 million DOFs in a personal

computer, in relatively small time. To demonstrate this, thermal conductivity analyses

of the synthetic model were performed using the computer speci�ed in Table 7.14. It was

taken as input an image-based model of 7243 voxels, which corresponds to the useful part

of a cylindrical sample imaged via µCT with 10243 voxels [75], as illustrated in Figure

7.13.

Figure 7.13: Useful part of a sample imaged via µCT with 10243 voxels.

Numerical tolerance for the dimensionless norms of residuals from the PCG method

was adopted to be 1e−05, and three recursive searches for initial guesses were employed.

The rd and sd solvers used sixteen CUDA streams for the data transfer from device to

host at each iteration. Time and memory metrics are presented in Table 7.15.

As it can be seen in Table 7.15, the developed methodologies in fact can be applied

even to a laptop. The GPU used for the analyses in this Subsection is not, by any

means, a powerful one, and regardless of that, the implemented massively parallel solvers

allowed for the solutions of systems with almost 400 million DOFs in about 15 minutes,
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Solver
Dimensions
[voxels]

DOFs
×106

PCG its.
(x1)

PCG time [s]
(x1)

Total
time [s]

Mem.[GB]
(host)

Mem.[GB]
(device)

rd 7243 380 277 946 3231 5.32 3.80
sd 7243 380 277 988 3380 5.32 3.80

Table 7.15: Metrics for thermal conductivity analyses of a 7243 voxels synthetic model
with a laptop

allocating less than 4 GB in the device. The whole homogenization process took less than 1

hour. In perspective, the same studies were carried out in the CPU of the aforementioned

desktop computer, speci�ed in Table 7.1, taking about 2 hours and 15 minutes per system

solution with the PCG method, and roughly 6 hours and 30 minutes for the complete

homogenization procedure. Considering that it is desirable that simulations of this sort

can be eventually performed in a laboratory of materials, it is very much interesting to

observe that the large-scale analyses can be conducted in personal computers equipped

with CUDA-enabled devices, without demand of long runtime.



Chapter 8

Conclusion

Image-based numerical homogenization is a growing trend in the �eld of Materials Science

that is branching out and becoming intertwined with High-Performance Computing, due

to the large-scale nature of the computational problems that need to be tackled. When

solving the governing equations of the involved physical phenomena with the Finite Ele-

ment Method, the numerical simulations essentially turn into solving large sparse systems

of equations, with hundreds of millions, or even billions, of DOFs. In the recent litera-

ture, there are works that report solutions of systems of such size, and even larger, but

resorting to supercomputers and clusters [5, 18]. On the other hand, there are many refe-

rences for large-scale system solving in GPUs that achieve interesting performance gains

[1, 4, 37, 39, 43, 47, 49, 54, 56, 66], but most are limited by the available memory of the

devices.

In this work, multiple memory-e�cient massively parallel PCG solvers for assembly-

free FEM applied to image-based numerical homogenization were presented. A previous

C++ program in CPU was taken as starting point. The new GPU implementations in

CUDA C were able to provide up to 230x speed up for the solutions of systems with the

PCG method, 135x for the whole process of homogenization. Solvers were implemented

to allocate four, three or only two variable arrays in the device, reducing from the �ve

arrays commonly seen in the literature. Because of this, two of the presented solvers were

able to handle analyses of up to ∼800 million DOFs with a single GPU in reasonable time,

less than 20 minutes per solution of the PCG method. In comparison, the previous CPU

solver would take about 2 hours for the same process, with a model of 192 million DOFs

[61]. Furthermore, ∼400 million DOFs analyses were able to be carried out in a personal

laptop, with a GPU of just 4 GB DRAM. From a literature review, no previous works were

found reporting solutions for models of such dimensions in a single personal-use GPU.
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The developed programs were validated with an analytical benchmark and experimen-

tal results of a cast iron sample that matched previous �ndings [61]. This was especially

important to be observed, as it was decided to switch from double to single precision

�oating point variables in the GPU programs. Such choice was mostly motivated by the

memory e�ciency.

It was shown that, for image-based simulations, the node-by-node strategy is the most

�tting one to be implemented in GPUs. Authors such as Kiran et al. [37] state that the

element-by-element approach is more suitable when working with unstructured meshes,

as it avoids unbalanced workloads for each thread, but, when taking the regularity of the

images into account, every node has the same amount of computations to perform, and

race conditions are naturally eliminated. This removes the need for coloring algorithms,

for example.

A methodology was proposed to obtain good initial guesses for the PCG iterative

scheme, employing recursive searches in coarsened meshes. In a nutshell, the idea is

to solve the system of equations on images of gradually increasing resolution, adopting

the solution of an immediate coarse model as a starting point, until the target model is

solved. It was observed that the presented strategy can halve the number of iterations at

the re�ned mesh, leading to an acceleration of roughly 2x of the PCG method.

The matters addressed in this work open a path for future developments, such as:

� Implementation of the memory-e�cient solutions in a multi-GPU environment. In

doing so, it is expected that much larger models can be studied.

� Investigation of domain decomposition techniques, so that portions of the domain

can be decoupled and analyzed in a distributed system, or by parts, in a single

computer.

� Implementation of simulations for di�erent physical phenomena, such as steady state

�uid �ow in porous media, so that the permeability of samples can be evaluated.

� Study of more sophisticated image processing techniques for the coarsening of image-

based meshes, in an e�ort to further accelerate convergence of the PCG method.

� Investigation of preconditioning better than the Jacobi. It is desired to explore other

preconditioners, such as the incomplete Cholesky factorization, or the multi-grid,

with an assembly-free approach.
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APPENDIX A -- Isotropic materials

A material is said to be isotropic when its physical behavior is admitted to be the same on

all directions. For example, concrete and steel are commonly studied as isotropic. Taking

this into account allows for simpli�cations to be made to the constitutive tensors, as it is

shown ahead for thermal conductivity and elasticity.

Fourier's law

A single coe�cient κ is enough to characterize the thermal conductivity of an isotropic

material. For this reason, it is common to substitute the second order constitutive tensor

for a scalar, as in


q1

q2

q3

 = −


κ 0 0

0 κ 0

0 0 κ



∇T1

∇T2

∇T3

 ⇒


q1

q2

q3

 = −κ


∇T1

∇T2

∇T3

 . (A.1)

Hooke's law (Voigt notation)

Analogously, the isotropic sti�ness tensor can be described in terms of a few constants.

In this work, we consider the Young's modulus E and Poisson's ratio ν. The constitutive

equation for elasticity, in this case, is written as



σ11

σ22

σ33

σ23

σ13

σ12


=

E

(1 + ν)(1− 2ν)



(1− ν) ν ν 0 0 0

ν (1− ν) ν 0 0 0

ν ν (1− ν) 0 0 0

0 0 0 (1−2ν)
2

0 0

0 0 0 0 (1−2ν)
2

0

0 0 0 0 0 (1−2ν)
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ε11

ε22

ε33

γ23

γ13

γ12


.

(A.2)
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APPENDIX B -- Orthotropic materials

A material is said to be orthotropic when its physical behavior varies accordingly to an

orthonormal basis of directions. This is the case of materials with directional �bers and

laminae in their micro-structure, for instance. Such a consideration allows for the consti-

tutive tensors to be de�ned by a set of material constants, as it is shown ahead for thermal

conductivity and elasticity.

Fourier's law

Three coe�cients κ11, κ22, and κ33 are required to characterize the thermal conducti-

vity of an orthotropic material. The constitutive tensor is expressed as


q1

q2

q3

 = −


κ11 0 0

0 κ22 0

0 0 κ33



∇T1

∇T2

∇T3

 . (B.1)

Hooke's law (Voigt notation)

Analogously, the orthotropic constitutive equation for elasticity can be described in

terms of constants. We consider a set of Young's moduli E1, E2, and E3, Poisson's ratios

ν23, ν13, and ν12, and shear moduli G23, G13, and G12. It is usual to write this expression

via a compliance matrix, which corresponds to the inverse of the matrix representation of

the sti�ness tensor, as in



ε11

ε22

ε33

γ23

γ13

γ12


=



1
E1

−ν12
E2
−ν13

E3
0 0 0
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0 0 0

−ν13
E1
−ν23

E2

1
E3

0 0 0
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0 0 0 0 0 1
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APPENDIX C -- Analytical solutions for local FE

matrices

When dealing with pixel and voxel-based meshes, it is possible to obtain analytical so-

lutions for the local �nite element matrices, as the geometry of every element is pre-

determined. The domain of each element, at a local reference, can be described as

Ωe = {(x1, x2) | x1 ∈ [0, 1], x2 ∈ [0, 1]} , (C.1)

in 2D, and

Ωe = {(x1, x2, x3) | x1 ∈ [0, 1], x2 ∈ [0, 1], x3 ∈ [0, 1]} , (C.2)

in 3D. These notions are illustrated in Figure C.1, where local coordinate systems and

node numbering schemes are shown.

Figure C.1: (a) Pixel-based and (b) voxel-based �nite elements.

In this work, linear shape functions are adopted and all materials at the micro-scale

are assumed to be isotropic, which allows for the integral expressions that de�ne the local
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matrices to be calculated with relative ease. The shape functions associated with each

local node are

N0(x1, x2) = (1− x1)(1− x2)

N1(x1, x2) = x1(1− x2)

N2(x1, x2) = x1x2

N3(x1, x2) = (1− x1)x2

in 2D, and

N0(x1, x2, x3) = (1− x1)(1− x2)x3

N1(x1, x2, x3) = x1(1− x2)x3

N2(x1, x2, x3) = x1x2x3

N3(x1, x2, x3) = (1− x1)x2x3

N4(x1, x2, x3) = (1− x1)(1− x2)(1− x3)

N5(x1, x2, x3) = x1(1− x2)(1− x3)

N6(x1, x2, x3) = x1x2(1− x3)

N7(x1, x2, x3) = (1− x1)x2(1− x3)

in 3D. MATLAB's symbolic math resources were employed to compute the following for-

mulas.

2D heat conduction

The shape functions matrix is de�ned as

N =
[
N0, N1, N2, N3

]
. (C.3)

The di�erential operator ∇ is applied to N as in

∇N =

[
∂/∂x1

∂/∂x2

]
N . (C.4)
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Then, the local conductivity matrix is given by

Ke =

∫
Ωe

(∇N)Tκ(∇N) dΩ = κ


2/3 −1/6 −1/3 −1/6

−1/6 2/3 −1/6 −1/3

−1/3 −1/6 2/3 −1/6

−1/6 −1/3 −1/6 2/3

 . (C.5)

3D heat conduction

The shape functions matrix is de�ned as

N =
[
N0, N1, N2, N3, N4, N5, N6, N7

]
. (C.6)

The di�erential operator ∇ is applied to N as in

∇N =


∂/∂x1

∂/∂x2

∂/∂x3

N . (C.7)

Then, the local conductivity matrix is given by

Ke =

∫
Ωe

(∇N)Tκ(∇N) dΩ ,

Ke = κ



1/3 0 −1/12 0 0 −1/12 −1/12 −1/12

0 1/3 0 −1/12 −1/12 0 −1/12 −1/12

−1/12 0 1/3 0 −1/12 −1/12 0 −1/12

0 −1/12 0 1/3 −1/12 −1/12 −1/12 0

0 −1/12 −1/12 −1/12 1/3 0 −1/12 0

−1/12 0 −1/12 −1/12 0 1/3 0 −1/12

−1/12 −1/12 0 −1/12 −1/12 0 1/3 0

−1/12 −1/12 −1/12 0 0 −1/12 0 1/3


. (C.8)

2D elasticity

For elasticity problems, the variables consist of a vector �eld, which means that two

components must be interpolated at each local node, one for each of its DOFs. The shape
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functions matrix is de�ned as

N =

[
N0, 0, N1, 0, N2, 0, N3, 0

0, N0, 0, N1, 0, N2, 0, N3

]
. (C.9)

The di�erential operator [∇] is applied to N as in

[∇]N =


∂/∂x1 0

0 ∂/∂x2

∂/∂x2 ∂/∂x1

N . (C.10)

Then, the local sti�ness matrix is given by

Ke =

∫
Ωe

([∇]N)TC([∇]N) dΩ ,

Ke =
E

(1 + ν)(1− 2ν)



c1 c4 c6 −c2 c5 −c4 c3 c2

c4 c1 c2 c3 −c4 c5 −c2 c6

c6 c2 c1 −c4 c3 −c2 c5 c4

−c2 c3 −c4 c1 c2 c6 c4 c5

c5 −c4 c3 c2 c1 c4 c6 −c2

−c4 c5 −c2 c6 c4 c1 c2 c3

c3 −c2 c5 c4 c6 c2 c1 −c4

c2 c6 c4 c5 −c2 c3 −c4 c1


, (C.11)

where the coe�cients c1, c2, c3, c4, c5, and c6 are obtained in terms of the Poisson's ratio

ν, as follows.

c1 =
1

2
− 2ν

3
c4 =

1

8

c2 =
1

8
− ν

2
c5 = −1

4
+
ν

3

c3 =
ν

6
c6 = −1

4
+
ν

6
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3D elasticity

Similarly to the 2D problem, the variables consist of a vector �eld. However, in this

case, there are three DOFs per node. In that sense, the shape functions matrix is de�ned

as

N =


N0, 0, 0, N1, 0, 0, N2, 0, 0, N3, 0, 0, N4, 0, 0, N5, 0, 0, N6, 0, 0, N7, 0, 0

0, N0, 0, 0, N1, 0, 0, N2, 0, 0, N3, 0, 0, N4, 0, 0, N5, 0, 0, N6, 0, 0, N7, 0

0, 0, N0, 0, 0, N1, 0, 0, N2, 0, 0, N3, 0, 0, N4, 0, 0, N5, 0, 0, N6, 0, 0, N7

 .

(C.12)

The di�erential operator [∇] is applied to N as in

[∇]N =



∂/∂x1 0 0

0 ∂/∂x2 0

0 0 ∂/∂x3

0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1

∂/∂x2 ∂/∂x1 0


N . (C.13)

Then, the local sti�ness matrix is given by

Ke =

∫
Ωe

([∇]N)TC([∇]N) dΩ ,

which has its results presented in Equation C.14, in the following page. This matrix is

also composed by coe�cients (c1, c2, c3, c4, c5, c6, c7, c8, c9, and c10) that are obtained in

terms of ν, as shown below.

c1 =
2

9
− ν

3
c6 = − 1

48

c2 =
1

24
− ν

6
c7 =

1

18
− ν

12

c3 = − 1

18
c8 =

1

36
− ν

12

c4 = − 1

24
c9 =

1

48
− ν

12

c5 = − 1

36
c10 =

5

72
− ν

12
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Ke =
E

(1 + ν)(1− 2ν)



c1 −c4 c4 c3 −c2 c2 −c10 c4 c9 −c5 c2 c6 −c5 −c6 −c2 −c10 −c9 −c4 −c7 c6 −c6 −c8 c9 −c9

−c4 c1 c4 c2 −c5 c6 c4 −c10 c9 −c2 c3 c2 −c6 −c5 −c2 c9 −c8 −c9 c6 −c7 −c6 −c9 −c10 −c4

c4 c4 c1 −c2 c6 −c5 −c9 −c9 −c8 c6 −c2 −c5 c2 c2 c3 −c4 c9 −c10 −c6 −c6 −c7 c9 −c4 −c10

c3 c2 −c2 c1 c4 −c4 −c5 −c2 −c6 −c10 −c4 −c9 −c10 c9 c4 −c5 c6 c2 −c8 −c9 c9 −c7 −c6 c6

−c2 −c5 c6 c4 c1 c4 c2 c3 c2 −c4 −c10 c9 −c9 −c8 −c9 c6 −c5 −c2 c9 −c10 −c4 −c6 −c7 −c6

c2 c6 −c5 −c4 c4 c1 −c6 −c2 −c5 c9 −c9 −c8 c4 c9 −c10 −c2 c2 c3 −c9 −c4 −c10 c6 −c6 −c7

−c10 c4 −c9 −c5 c2 −c6 c1 −c4 −c4 c3 −c2 −c2 −c7 c6 c6 −c8 c9 c9 −c5 −c6 c2 −c10 −c9 c4

c4 −c10 −c9 −c2 c3 −c2 −c4 c1 −c4 c2 −c5 −c6 c6 −c7 c6 −c9 −c10 c4 −c6 −c5 c2 c9 −c8 c9

c9 c9 −c8 −c6 c2 −c5 −c4 −c4 c1 c2 −c6 −c5 c6 c6 −c7 −c9 c4 −c10 −c2 −c2 c3 c4 −c9 −c10

−c5 −c2 c6 −c10 −c4 c9 c3 c2 c2 c1 c4 c4 −c8 −c9 −c9 −c7 −c6 −c6 −c10 c9 −c4 −c5 c6 −c2

c2 c3 −c2 −c4 −c10 −c9 −c2 −c5 −c6 c4 c1 −c4 c9 −c10 c4 −c6 −c7 c6 −c9 −c8 c9 c6 −c5 c2

c6 c2 −c5 −c9 c9 −c8 −c2 −c6 −c5 c4 −c4 c1 c9 c4 −c10 −c6 c6 −c7 −c4 −c9 −c10 c2 −c2 c3

−c5 −c6 c2 −c10 −c9 c4 −c7 c6 c6 −c8 c9 c9 c1 −c4 −c4 c3 −c2 −c2 −c10 c4 −c9 −c5 c2 −c6

−c6 −c5 c2 c9 −c8 c9 c6 −c7 c6 −c9 −c10 c4 −c4 c1 −c4 c2 −c5 −c6 c4 −c10 −c9 −c2 c3 −c2

−c2 −c2 c3 c4 −c9 −c10 c6 c6 −c7 −c9 c4 −c10 −c4 −c4 c1 c2 −c6 −c5 c9 c9 −c8 −c6 c2 −c5

−c10 c9 −c4 −c5 c6 −c2 −c8 −c9 −c9 −c7 −c6 −c6 c3 c2 c2 c1 c4 c4 −c5 −c2 c6 −c10 −c4 c9

−c9 −c8 c9 c6 −c5 c2 c9 −c10 c4 −c6 −c7 c6 −c2 −c5 −c6 c4 c1 −c4 c2 c3 −c2 −c4 −c10 −c9

−c4 −c9 −c10 c2 −c2 c3 c9 c4 −c10 −c6 c6 −c7 −c2 −c6 −c5 c4 −c4 c1 c6 c2 −c5 −c9 c9 −c8

−c7 c6 −c6 −c8 c9 −c9 −c5 −c6 −c2 −c10 −c9 −c4 −c10 c4 c9 −c5 c2 c6 c1 −c4 c4 c3 −c2 c2

c6 −c7 −c6 −c9 −c10 −c4 −c6 −c5 −c2 c9 −c8 −c9 c4 −c10 c9 −c2 c3 c2 −c4 c1 c4 c2 −c5 c6

−c6 −c6 −c7 c9 −c4 −c10 c2 c2 c3 −c4 c9 −c10 −c9 −c9 −c8 c6 −c2 −c5 c4 c4 c1 −c2 c6 −c5

−c8 −c9 c9 −c7 −c6 c6 −c10 c9 c4 −c5 c6 c2 −c5 −c2 −c6 −c10 −c4 −c9 c3 c2 −c2 c1 c4 −c4

c9 −c10 −c4 −c6 −c7 −c6 −c9 −c8 −c9 c6 −c5 −c2 c2 c3 c2 −c4 −c10 c9 −c2 −c5 c6 c4 c1 c4

−c9 −c4 −c10 c6 −c6 −c7 c4 c9 −c10 −c2 c2 c3 −c6 −c2 −c5 c9 −c9 −c8 c2 c6 −c5 −c4 c4 c1



.

(C.14)
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