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Resumo

Nos últimos anos, diversos estudos propuseram diferentes métodos e formulações de
Aprendizado por Reforço (Reinforcement Learning, RL) para o problema de Otimização
de Sinais de Trânsito (Traffic Signal Control, TSC), apresentando resultados promissores
e soluções de semáforos flexíveis. Esses estudos geralmente decidem otimizar o tempo de
viagem como objetivo. No entanto, o tempo de viagem tem algumas deficiências cruciais:
não é facilmente decomposto em recompensas; impede a análise em um momento qual-
quer da simulação, exceto no final; produz resultados irreais para situações de Deadlock
(interbloqueio, blocagem, impasse) e Starvation (inanição). Neste trabalho, usamos o
framework Frap, estado-da-arte para RL TSC, para testar nossas propostas de objetivo
baseado na perda de tempo, a saber, perda de tempo percentual por motorista e perda de
tempo acumulada por motorista, para resolver as deficiências do tempo de viagem como ob-
jetivo. Mostramos também que melhorar a perda de tempo implica em melhorar o tempo
de viagem e que existe uma relação direta entre o objetivo e a recompensa dos agentes.
Os resultados experimentais apontam que a proposta de formulação de RL baseada em
perda de tempo melhora a economia de tempo em 6% quando comparada a outras for-
mulações do estado da arte comumente adotadas. Além disso, a maioria das soluções
propostas (incluindo Frap) usa métodos livres de modelo em vez de métodos baseados em
modelo (planejamento), com base em sua mecânica mais simples e resultados eficazes. No
entanto, RL baseada em modelo pode melhorar a economia de tempo e a convergência
do aprendizagdo, através da continuação das interações com os estados encontrados (isto
é, percorrendo caminhos futuros), reunindo mais amostras de aprendizado e experiências
diversas. Avaliamos os benefícios do uso de planejamento para o controle de sinais de
trânsito. Nos experimentos realizados, o uso de planejamento produziu uma convergência
consideravelmente mais rápida (até 34%), porém mais volátil após este ponto.

Palavras-chave: Otimização de Sinal de Trânsito, Sistemas de Transporte Inteligentes,
Aprendizado por Reforço, Planejamento.



Abstract

In recent years, several studies proposed different Reinforcement Learning (RL) methods
and formulations for the Traffic Signal Control (TSC) problem, presenting promising
results and flexible traffic light solutions. These studies generally decide for optimizing
travel time as the objective. However, travel time has some crucial shortcomings: it
is not easily decomposable into rewards; it hinders analysis at any simulation time but
the very end; it produces unrealistic results for deadlock and starvation situations. In
this work, we use the state-of-the-art RL TSC framework Frap to test our propositions
of objectives based on time loss, namely percentage time loss per driver and cumulative
time loss per driver, to address travel time shortcomings. We also show that improving
time loss implies improving travel time and that there is a direct relationship between
the time loss objective and the agents’ reward. Our experimental results point out that
our time loss-based RL formulation improves the time savings by 6% when compared to
other commonly-adopted state-of-the-art formulations. Additionally, most of the proposed
solutions (including Frap) use model-free instead of model-based methods, based on their
simpler mechanics and effective results. However, model-based RL can improve time
savings and learning convergence by further interacting with states (i.e., walking future
paths), gathering more learning samples and diverse experiences. We assess the benefits
of using Planning (i.e., model-based RL) for Traffic Signal Control. In our tests, the use
of Planning produced a considerable (up to 34%) faster convergence at the beginning, but
more volatile learning thereafter.

Keywords: Traffic Signal Control, Intelligent Transportation Systems, Reinforcement
Learning, Planning.
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Chapter 1

Introduction

The Traffic Congestion Problem Overcrowding and congestion on urban trans-

portation systems are ongoing concerns for governments worldwide. Such concern requires

comprehensive studies to assess the causes and possible solutions. One of the studies, the

INRIX 2019 Global Traffic Scorecard [41], evaluated more than 970 cities globally, cov-

ering 29 countries from all continents. The study consolidates how many extra hours

the drivers spend per year during peak hours compared to free-flow traffic (i.e., vehicles

traveling without delays). The INRIX’s Impact Rank measures the impact of conges-

tion by normalizing the time lost by the city’s population. The top five include Bogota,

Colombia, which reached 191 hours per driver a year, followed by Rio de Janeiro, Brazil

(190), Mexico City, Mexico (158), Istanbul, Turkey (153), and São Paulo, Brazil (152).

If considered the time loss alone, the top five includes Rome, Italy (166), Paris, France

(165), and Belo Horizonte, Brazil (160), as third to fifth positions.

The study also analyzes the financial costs of congestion in the U.S., UK, and Germany

both per driver and nationally for non-freight travels. In the United States (286 cities

analyzed), the average driver lost 99 hours, costing them $1,377 each and $88 billion

nationally. For the European countries, 115 hours average for the UK (101 cities), costing

respectively $1,162 and $8.9 billion, and 46 hours average for Germany (74 cities), costing

$412 and $3.1 billion, respectively.

Taking a more in-depth look at the United States situation, the Texas A&M Trans-

portation Institute (TTI)’s 2019 Urban Mobility Report1 [46] presented how traffic con-

gestion has been increasing over the years for 494 U.S. urban areas. The yearly delay

had increased by 14% and congestion cost by 19% nationally in five years (from 2012 to
1Developed in partnership between TTI and INRIX.
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2017) and has experienced a steady increase since 19822. The total cost for 2017, includ-

ing freight travels, was estimated at 179 billion dollars nationally. The usual (passenger

travel) drivers spent an average of 54 hours and $1,080 yearly in congestion3. Note that

these expenses are usually measured by the median hourly wage [41, 46] and the extra fuel

consumption [46] cost. The costs are far greater if reflected indirect effects on personal

and business perspectives (e.g., cost of opportunity, supply chain efficiency, quality of life,

air and noise pollution, and others).

Another critical finding by TTI is that congestion has grown in areas of all sizes and

that the growth trend itself has also increased. From 2000 to 2010, congestion increased

25% in small areas (less than 500,000 citizens), 13% in medium areas (500,000 to 1 million

citizens), 10% in large areas (1 million to 3 million citizens), and 18% in very large areas

(more than 3 million citizens). From 2010 to 2017, congestion in small areas increased

by 23% (33% if linearly adjusted to the same ten years period), in medium areas by 22%

(32% adjusted), large areas by 26% (37% adjusted), and very large areas by 26% (37%

adjusted) [46].

Furthermore, congestion levels are often associated with economic growth [41, 46].

Except for the 2008/2009 U.S. economic recession, in which the traffic has improved

slightly, the congestion has grown in every other period [46]. Projecting for 2025 (under

the assumption of no recession in the period), the 2019 TTI study indicates national

congestion cost reaching $237 billion (a 32% increase), the cost for the driver up to

$1280 (a 19% increase), and the time loss to 62 hours (a 15% increase) [46]4. They also

warn that traffic congestion can contribute to the potential reduction of further economic

growth [46].

Causes and Solutions The general cause for congestion growth results from the

increasing disparity between travel demand and transportation capacity supply. The ad-

dition of residents and jobs and the increase in the number or length of trips for the

existing population are factors of demand increases [46]. Regarding transportation in-

crease in supply, each city has a unique set of traits such as topography, demographic

density, and zoning policies (to name a few) that pose significant challenges to adequate

network-wide infrastructure to ever-increasing traffic demand. Additionally, the historical
22017 is the last year presented in the study, 1982 is the first.
3Besides the year and number of cities differences, both studies also have different methodologies.

Additionally, INRIX refined its methodology over the years, making it non-comparable with the INRIX
Global Traffic Scorecard’s past editions.

4Dollars as valued in 2017.
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context does affect how the authorities manage a city’s mobility. For example, INRIX

mentions that geography, age, and density can be the reasons why Boston, Chicago, and

Philadelphia are the three most congested cities in the U.S. (149, 145, and 142 in time

loss, respectively). Other good examples are the European cities, which grew before ve-

hicles’ widespread adoption, making the cities have denser centers, narrower roads, and

more complex road structures [41]. Other cities may have worse city organization and

lack of public transportation modes as historical problems.

To alleviate the congestion symptoms, cities such as London, Stockholm, and Singa-

pore, for example, opted for charging congestion fees for vehicles to use certain parts of

the urban network. New York City plans to implement the fee in 2021, and Chicago and

Los Angeles already study the measure [11]. Other cities like São Paulo, Beijing, Bogota,

Delhi, Mexico City, among others, adopt a license plate-based driving restriction, where

certain vehicles (e.g., selected by the first or last numbers in the license plate) cannot drive

in some sections of the city on pre-specified weekdays [12]. Although possibly effective,

these extreme solutions raise social concerns once those expenses do not affect the pop-

ulation equally: the richer can just pay the fees or even buy another vehicle [12]. Other

solutions to fight the problem involve investments in infrastructure and public policies to

encourage people to use public transportation and alternatives like walking and cycling.

While better infrastructure and environmental-friendly solutions should naturally be the

long-term goal for cities, adopting them requires considerable time, money, and effort to

implement them correctly and educate the citizens.

Another popular idea, which is the focus of this dissertation, is to optimize the traffic

light system. When it comes to controlling vehicle flow, traffic signal control (TSC) plays a

fundamental role in the urban network organization. Arguably, such an optimized system

would reduce the traffic bottleneck in some regions while looking almost transparent to

the citizens.

The Traffic Signal Control (TSC) Problem The TSC problem consists of deciding

the amount of time and the lanes of traffic the signal should prioritize. The traditional

static formulation defines those variables in advance according to the historical demand

distribution [28, 30, 43]. However, the demand can vary significantly depending on some

unexpected conditions. Crashes, bad weather, special events, and other irregular conges-

tion causes can add up to 70% in total travel time (i.e., approximately 41% of the trip as

time loss5) to trips [46]. Traditional adaptive approaches [33, 50] (e.g., actuated signals)
5As a reference, 100% more travel time imply 50% of trip time loss.
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usually stick to the original traffic time plans and only make small adjustments in traffic

light duration. On the other hand, Reinforcement Learning (RL) [48] methods, which

we study and adopt in this dissertation, bring more flexibility by learning the policy to

control the traffic, aiming to adjust the traffic lights to the current traffic condition.

From the existing RL methods, Frap [68] and its derived methods [15, 52, 64] propose

a relatively simple Deep Reinforcement Learning (DRL) architecture that achieves good

results in large-scale real-world scenarios and can be combined with different state and

reward formulations. Other studies focus on investigating explicit coordination, such as

incorporating temporal and spatial influences of neighboring intersections into the agent

decision [31, 51, 53] or joint action decision [1, 20, 61]; exploring policy-based and actor-

critic methods [7, 17]; different neural network architectures, such as Recurrent Neural

Networks (RNN) [51], Long short-term memory (LSTM) [1], and Graph Convolutional

Neural Networks (GCNN) [38, 51]; the methods’ generability, focusing on the transference

of learning [64, 66]; and the presence of disruption events and pedestrian crossing [7].

These solutions, however, generally suggest the optimization of travel time as the

objective [15, 31, 38, 51, 52, 53, 64, 68]. The main problem with travel time is that it

is not easily decomposable into rewards, which is what effectively guides the RL agent

to optimize it. Thus, the methods decouple reward formulations from the objective.

In practice, this limits the travel time to serve as a comparison metric, not a directly

optimizable goal. Also, travel time is subject to deadlock and starvation issues since, in

the simulation, it requires vehicles to finish their trips, and it may need to be paired up

with a throughput co-objective to be accurately assessed.

Moreover, according to a 2020 survey [54], published RL methods for the TSC problem

explore model-free methods [2, 3, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 19, 21, 25, 34, 37,

38, 39, 40, 45, 49, 52, 53, 55, 62, 63, 64, 69, 68] much more extensively than model-

based ones [26, 27, 29, 44, 47, 56, 57, 58]. The model-free solutions are usually easier to

implement, as they do not require learning a model of the environment. However, the

model-based approach can reduce the time to train the agents and possibly the overall

time loss levels.

Research Questions This dissertation aims to evaluate whether a direct match of

goals and rewards leads to better time savings and whether RL Planning would benefit

traffic signal control. By adequately modeling state and reward, we want to assess how the

direct association with the objective can improve convergence and time savings results.
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For the Planning, we want to assess to what degree future experience can help the agent

in the learning process.

Contributions In this dissertation, we enhance the usual RL formulation to TSC to

contemplate a tied integration between the objective, the rewards, and the states. We

propose a time loss-based objective, which is related to the travel time but with-

out inheriting its problems. Furthermore, we propose two time loss-based state/reward

configurations that leverage the RL formulation relationship with the proposed objective

(something infeasible to the travel time objective). The time-loss RL formulations are

evaluated through the traffic simulator Sumo [32] in single and multi-intersection scenar-

ios and compared with static and RL baselines.

Additionally, we assess a model-based variant (Frap + Planning). Our insight is to

use the simulator’s state-saving mechanism to extrapolate future paths instead of learning

the environment mechanics. This way, we can take advantage of planning but avoid the

complexity of model-based approaches.

Our specific contributions in this dissertation are as follows6,7.

• We propose a time loss objective compelled by the advantages over the travel time

as an assessment metric and the correlations between them.

• We propose and evaluate a time loss and a time loss pressure variant for the RL

state/reward formulation. We show that the use of time loss-based formulations

results in an up to 55% reduction in total time lost by vehicles.

• We present and evaluate a Frap model-based variant. By using planning, we

achieved a considerable (up to 34%) faster convergence at the beginning, but results

were more volatile.

Outline The rest of this dissertation is organized as follows. Chapter 2 covers the rel-

evant background information to our analysis of the problem. We describe some methods

used in traditional traffic control (both adaptive and static) and the learning aspect, pre-

senting the theory behind Reinforcement Learning (RL) and Deep Reinforcement Learning

(DRL), explaining their components applied to the TSC domain. Finally, we introduce

Planning in RL and how it can benefit the TSC problem decision process.
6This dissertation also produced an accepted paper named "Designing Reinforcement Learning Agents

for Traffic Signal Control with the Right Goals: a Time-Loss based Approach" at ITSC 2021
7The code is available at https://github.com/MeLLL-UFF/urban-semaphore-optimization

https://github.com/MeLLL-UFF/urban-semaphore-optimization
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Chapter 3 presents an overview of RL formulations, methods, experiment settings, and

objectives choices from the literature. We highlight the Frap method and its variations

due to its proposition of being a simple but effective method, a good foundation for further

experiments and improvements. We also present the directions other works have taken to

tackle the TSC problem.

In Chapter 4, we detail the problem definition, describing the time loss objective,

discussion around the movements and phases, the RL formulations of the Frap corre-

lated methods, and the time loss-based proposition. We also discuss some policy and

environment-related problems.

Chapter 5 describes the experiments and discusses the results. We also describe

methods, scenarios, and configurations. The focus is to initially present exploratory tests.

Later we test the RL formulations and the Frap with Planning. Chapter 6 concludes the

dissertation, presenting the limitations, future work, and final remarks.



Chapter 2

Background

The most traditional approach for TSC is to use static methods, which define fixed sig-

naling plans according to the pre-anticipated traffic demand. These plans consist of

describing fixed time intervals where each traffic signal remains green, yellow, or red. The

plan’s revisions occur periodically after a substantial change in the city dynamics. These

characteristics mean that static methods are not usually flexible to changes in the traf-

fic network (i.e., the modeled city roads). Alternatively, though still based on the same

fixed plan principle, the traditional adaptive methods (e.g., actuated signals) bring some

flexibility by allowing the traffic light to sense the traffic conditions and slightly adjust

the plan to better accommodate fluctuations in the traffic.

A more elaborate approach, the learning methods propose discovering the city’s dy-

namics and understanding which behavior is more suitable for each circumstance. They

are also adaptive methods, but they do not rely on the descriptions of traffic plans. In-

stead, they learn the adaptation itself by finding rules of engagement (i.e., policies) that

better fit the traffic light.

In this chapter, we introduce the fundamental concepts addressed by this dissertation.

Section 2.1 reviews the traditional traffic control (non-learning) methods. Section 2.2

addresses the learning perspective, which usually leverages techniques from Reinforcement

Learning (RL) [48].

2.1 Traditional Traffic Signal Control

A traffic light is composed of selected phases and their organization. A phase is a com-

bination of lights (i.e., signalization that instructs the drivers how to proceed) for the
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intersection’s existing paths.

The most recent survey [54] about applying RL for the TSC problem mentions some

relevant traditional traffic light systems. They are also called traditional because they are

not based on any AI technique. The survey categorizes them as either operating statically

or adaptively. The survey covers those categories in greater detail. In this section, we

present a quick summary.

Static methods define a fixed phase sequence, a fixed cycle length (total time for

the phase sequence), and a fixed phase split (the division of time among the phases).

When composed with other signals, a new characteristic is added: the offsets, which

are the differences between the start of cycles of adjacent signals. For example, the

Webster method determines a formula to compute the cycle length and phase split for

a single intersection. For offset signal coordination, other methods must be used with

Webster. The GreenWave method focuses on the offset of a single direction at a time,

while MaxBand seeks to handle offsets in both directions. Both methods require the same

cycle length definition for all intersections.

Adaptive methods rely on sensors to recognize some traffic characteristics and acti-

vate pre-specified rules that adapt the standard traffic light configuration. SCATS and

Max-pressure are examples of adaptive solutions. SCATS decides which traffic signal

configuration to use from a selection of pre-defined static signal plans. Alternatively,

Max-pressure aims at minimizing the pressure of an intersection, defined by the difference

between the number of vehicles in the entering and exiting lanes.

Considering the division between adaptive vs. non-adaptive traffic light methods,

Webster [28], GreenWave [43], and MaxBand [30] are examples of non-adaptive (static)

solutions. SCATS [33] and Max-pressure [50] are examples of adaptive systems.

The traffic simulator Sumo [32] also provides a static traffic light generation1 and two

types of built-in adaptive methods2, one based on time-gaps and the other on time-loss.

As the names suggest, the former resorts to extending the current phase when the time

gap between successive vehicles is below a threshold while the latter when there are any

vehicles with time loss greater than a threshold. The time gap refers to the distance (in

time) between two vehicles and the time loss the wasted time driving below the street’s

maximum speed.
1https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#automatically_generated_

tls-programs
2https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#actuated_traffic_lights

https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#automatically_generated_tls-programs
https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#automatically_generated_tls-programs
https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#actuated_traffic_lights
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The challenge for the standard adaptive solutions (and even more for the static) is to

define some configuration, rule, or policy that characterizes the complex dynamics found

in the city traffic. Instead of listing every possibility and defining the best curse of action,

learning methods discover how to discern them.

2.2 Machine Learning

General computer programming consists of developing step-by-step solutions in the form of

algorithms to solve a problem. From the computer point-of-view, the user is providing the

input and the algorithm. That is, all the machine work is described as the simple execution

of the given instructions. However, when addressing complex problems, specifying a set

of instructions for an exact or optimal solution might not be conceivable or viable.

Machine Learning [35, 4] was developed to help with this matter. Machine Learning

involves discovering how to (approximately) solve a problem without having the instruc-

tions for it. As a way to make a correspondence with general programming, Machine

Learning is often explained in a ludic manner: instead of having the algorithm respon-

sible for producing the desired result, the user provides the input and output, and the

computer becomes responsible for producing the algorithm that correlates one to another.

In practice, to fulfill this depiction, a set of tools, strategies, and algorithms is required

so that the computer can fill the gaps in the search for patterns that constitute a solution

to the problem.

In the TSC problem, writing a program that produces valid configurations for signal

timings is a manageable task. The nontrivial part is when the problem is approached by

an optimization nature: automatically adapting the control to different traffic conditions

without extensively listing all possible scenarios. In this case, as in many other Machine

Learning applications, the objective is to achieve results presumably unattainable by pre-

programmed systems.

Machine Learning is divided into three broad fields: Supervised Learning; Unsuper-

vised Learning; and Reinforcement Learning. Each one of them introduces a different

paradigm.

In Supervised Learning, the computer is provided with curated examples of inputs

and output pairs (i.e., the features and a label, respectively). The objective is to learn

a generalization of the inputs-output relation and correctly predict the label for unseen

data. In Unsupervised Learning, there are no labels available. The strategy consists
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of approaches to find patterns in the data. Finally, Reinforcement Learning consists

of trial-and-error learning, where the agent continuously interacts with an environment in

a sequential decision setting. A reward signal guides the learning by providing feedback

about the agent’s decision-making.

As TSC is essentially a sequential decision problem, the RL approach is a more suitable

candidate to tackle the problem. Next, we show the main concepts related to RL.

2.2.1 Reinforcement Learning

Reinforcement Learning (RL) [48] consists of discovering how to map situations to actions

in a sequential decision-making environment towards an objective. Basically, an agent

perceives an observation o (with a partial or full information from the state s) of the

environment and chooses an action a. This action may modify the environment, which also

changes according to its own mechanics. As a consequence, the agent receives feedback

for its action, in the form of a numerical reward signal r, so it can understand how good

it was. Finally, the agent perceives a new state, repeating the above process until the end

of an episode, or indefinitely. Several episodes are necessary so the agent can shape its

understanding of how the action options relate to each observation in terms of expected

reward collection.

The agent aims to maximize the cumulative reward it receives over time by learning

a policy π that better fits the actions for the encountered states. The agent must explore

the consequences of its actions to increase its knowledge of how to achieve better rewards,

and, at the same time, it must also exploit the actions whose rewards are already known.

In other words, if it explores too much, it misses the opportunity to exploit and maximize

the return; if it explores too little, it does not unlock better reward possibilities. This

exploration-exploitation trade-off is challenging to balance, as the sequence of actions

influences the future states and, consequently, future rewards. When working with RL,

one assumes that the state, action→ state′ transitions are not available to the agent and

must be inferred. Figure 2.1 illustrates the whole process.

In Section 2.2.1.1, the RL components are explained in greater detail. Some notions

are provided of how one can model a RL solution according to the TSC problem’s char-

acteristics and objectives.
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Figure 2.1: Reinforcement Learning process

2.2.1.1 Components

Objective In general, the objective is entirely decomposed into the agent’s feedback,

and maximizing the reward (see Reward and Return, for more details) becomes identical

to accomplish the objective. In other cases, as in Multi-Agent Reinforcement Learning

problems, the objective might be easily described and measured but not sufficiently char-

acterized by the agent’s rewards. The TSC problem is one of the latter cases. The overall

objective is beyond any individual agent’s scope and is measured based on the entire

environment.

A possible objective choice for the TSC problem could be to reduce the vehicles’

waiting time in the entire traffic network. Note that the waiting time is a property of

all the vehicles, even those that may not be currently in any agents’ state, and also that

optimizing all the agent’s return does not necessarily mean to maximize the objective.

For example, in a city grid, operational efficiency in a region (e.g., at the borders or at

the center of the city) increases the traffic load at the subsequent intersections, possibly

reducing the reward the neighboring would receive otherwise.
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Agent and Environment The agent interacts with the environment over a sequence

of discrete time-steps t, where at each step, the agent perceives a state st, performs an

action at, perceives (in the next step t + 1) the resulting state st+1 and receives the

respective reward rt+1.

For the TSC problem, the environment is the traffic dynamics (network + demand),

and the agents are the intersections’ signal control modules. The network constitutes

the road network itself: the configuration and disposition of streets and the intersection

conversion possibilities. The demand comprises the distribution of vehicles traversing

the traffic network over time. Each traffic signal perceives the traffic configuration in its

surroundings (i.e., through sensors and cameras), issues a command to switch the lights,

senses the environment again, and computes the reward based on the sensing and the

command choice. Please note that even with the traffic signal system doing all the work,

there is a conceptual separation between agent and environment. The agent is limited to

the control module’s boundaries, and all the sensors and reward computations take care

of everything else.

An RL agent can rely on model-based or model-free approaches. In model-based, the

agent learns (or is provided with) a model that reproduces the environment’s behavior,

while in a model-free approach, the agent interacts only with the environment. The main

distinction between the two is that model-free revolves around explicitly trial-and-error

training, while model-based (if the model is accurate enough) can allow the agent to plan

its actions (therefore called Planning). See more on Planning in Section 2.2.3.

State The set of states S comprises scenarios that make the agent differentiate one

condition from another when deciding which action to make. It may include any feature

that is useful for the decision-making process. For example, the number of vehicles on

each road before an intersection can partially or entirely constitute the state definition.

Action The set of actions A is the set of possible actions that the agent executes to

solve a given task. A simple action example is to define whether the agent will extend

the phase time, rather than keeping the already defined cycle and phase sequence.

Reward and Return The reward Rt ∈ R is how the environment evaluates the choice

made by the agent at step t− 1. The agent’s goal is to maximize the expected return Gt,

that is, the sum of discounted reward it receives over time. Equation 2.1 displays it, where
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T is the final step or ∞ and γ is the discount rate, with 0 ≤ γ ≤ 1, provided that γ is

not 1 at the same time T is ∞.

Gt =
T−t−1∑
k=0

γkRt+k+1 (2.1)

The discount rate γ determines how distant rewards are valued in comparison to

imminent ones. If γ = 0, the agent is concerned about only maximizing immediate

rewards. As γ approaches 1, future rewards are similarly valued to closer rewards.

For example, penalizing an agent, with the objective to reduce waiting time, based

on the number of vehicle stops might make the vehicles stop fewer times but wait longer

instead.

The reward should guide the agent about what it wants to achieve, not how it should

achieve it. For example, penalizing an agent with the objective of reducing waiting time

based on the number of vehicle stops might make the vehicles stop fewer times but wait

longer instead. A reward formulation should consider alternatives that ensure the max-

imization of the objective. For example, a reward consisting of the number of different

vehicles moving across the intersection can (possibly) reduce the overall waiting time. A

more evident option (i.e., more clearly related to the objective) is to measure the waiting

time directly.

Policy and Value Function The policy π represents the actual decision-making,

which matches each state with a choice of an action. As the agent learns, it changes

the policy it is employing, resulting in a potentially different policy in each time step πt,

where πt(a|s) is the probability of choosing the action a given the state s. A deterministic

policy is defined as a function (i.e., the probability for one of the actions is one and for

the others are zero). In contrast, a stochastic policy is a family of conditional probability

distributions.

In the TSC problem, the environment is usually partially observable given that neigh-

bors’ state and actions are unknown to the agent. A stochastic policy can be an option

to be learned in these situations. However, as a predictable behavior in this domain is

typically desired, the policy is usually deterministic. As an example, a resulting policy

may discern that when one orientation has, say, 10% more vehicles than the other one, it

may switch the signal to favor the orientation with more demand (or maintain it, in case

it is already set to favor that orientation).
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While in policy-based methods the policy is addressed directly, in value-based meth-

ods, the agent updates the estimate of a value function, which is used for deriving the

policy πt. The state-value function vπ(s) for policy π (Equation 2.2) denotes the expected

return by starting at state s and following π thereafter. Similarly, the action-value func-

tion qπ(s, a) for policy π (Equation 2.3) also denotes the expected return, this time by

starting at s, taking the action a, and then following the policy π.

vπ(s) = Eπ[Gt | St = s] (2.2)

qπ(s, a) = Eπ[Gt | St = s, At = a] (2.3)

By manipulating the state-value function into a recursive equation dependent on its

successor state, the Bellman equation for vπ (Equation 2.4) arises. An analogous equation

can be derived from the action-value function q (Equation 2.5). The Bellman equation

represents an essential theoretical base for deriving value function estimations, and con-

sequently, for policy generation.

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
]

(2.4)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′

π(a′ | s′)qπ(s′, a′)
]

(2.5)

A policy is deemed optimal (π∗) when its expected return is greater or equal for all

states vπ(s) when compared to all other policies π. The respective state-value function

and action-value function for the optimal policy are presented in Equations 2.6 and 2.7.

v∗(s) = max
π

vπ(s) (2.6)

q∗(s, a) = max
π

qπ(s, a) (2.7)

Lastly, the respective Bellman optimality equations for v∗ and q∗ are displayed in
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Equations 2.8 and 2.9.

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a)
[
r + γv∗(s

′)
]

(2.8)

q∗(s) =
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

(2.9)

2.2.2 Deep Reinforcement Learning

A class of Reinforcement Learning algorithms, known as tabular methods, use tables to

track policy value functions. This approach has significant limitations regarding the rep-

resentation of policies for large state-spaces and the ability to acknowledge similar states

and update their policy at once. For anything but the most straightforward problems,

function approximation methods are often used.

Neural Networks [24] are a popular approach to solve the tabular shortcomings. They

represent a class of nonlinear function approximators that resort to the weight adjustments

in a network of interconnected units, where the input layer consists of the environment’s

state and the output layer the actions. The typical strategy is to use Neural Networks

with several intermediary (hidden) layers, as in this way, a Neural Network is proved to

approximate any function. Nowadays, a Neural Network with several layers belongs to

the class of Deep Learning [23] methods.

In value-based methods, the Deep Learning part can be used to approximate action-

value functions q̂(s, a, w) ≈ q∗(s, a), where w ∈ Rd is the weight vector. In contrast,

policy-based methods approximate the policy π(a|s, θ) directly instead, where θ ∈ Rd′

is policy’s parameter vector. Finally, actor-critic methods combine both approaches by

considering a policy-based method as the actor (the policy learner) and a value-based

method as the critic (the policy evaluator) [6].

The unification of Deep Learning with Reinforcement Learning results in the class

of Deep Reinforcement Learning (DRL) methods [36]. Due to the large state space and

the great similarity between states, DRL methods are generally suggested for the TSC

problem.
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2.2.3 Planning

In the RL context, Planning (or model-based RL) refers to using a model for searching

for future paths (i.e., simulate the future) and use it as contribution to the decision-

making process (known as state-space planning3). This contribution can exist in two

forms: decision-time planning or background planning. Unlike regular model-free RL,

where the policy chooses which action to take (Figure 2.2), in decision-time planning,

the agent simulates future experience with the intention to determine the next (non-

simulated) action (see Figure 2.3). In background planning, on the other hand, the

simulated experience is used as an additional source (i.e., other than the regular policy

action-selection) of learning samples (i.e., experiences to update the policy), as illustrated

in Figure 2.4. Note that both planning styles can be combined by using the simulated

experience for both direct action picking and policy update.

Figure 2.2: Reinforcement Learning regular action-selection and learning sample genera-
tion

To simulate future experience, a model of the environment is generally learned, where

the model computes the dynamics to transform the state-action pair into the resulting

state and reward. In the TSC problem, when using a traffic simulator with the possibility

of (simulation) state saving, the planning interaction can be performed directly by simu-
3Not to be confused with Planning in the broader sense of Artificial Intelligence, called by RL literature

as plan-space planning [48].
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Figure 2.3: RL Planning (decision-time planning) regular action-selection and learning
sample generation

lation. In this case, the simulator acts as a perfect model, not requiring an actual model

to be learned. Given the model, the agent builds a tree of future interactions through a

distribution or search algorithm, also called, in this context, a planning algorithm.

2.2.3.1 "Search-only" Planning

For the Planning experiments, we also use a PlanningOnly method to verify how the

agent performs without any learning component. Since there is no learning, the planning

algorithm (or search algorithm) is the only component the agent uses to pick actions.

This way, the PlanningOnly method relies on an end-to-end decision-time planning. As

illustred in Figure 2.5, the agent takes n steps ahead to check which path yields the most

reward. The action derives from the best path by only taking the first step in the actual

simulation.

2.3 Frap

Given Frap is the state-of-the-art TSC solution [15] and its code’s availability, we choose

Frap as our RL base method, and all RL formulations proposed in this dissertation are

tested based on it. Frap’s primary focus is to reduce the state space, consequently im-
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Figure 2.4: RL Planning (background planning) regular action-selection and learning
sample generation

proving the learning process.

Figure 2.6 describes the learning process employed by Frap. Each round consists of

three parallel simulations serving as the training round and one as the test round. From
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Figure 2.5: PlanningOnly’s planning process

the training rounds, all agent-environment interactions are stored as learning samples (–

st, at, st+1, rt+1 – tuples) for the policy update. The test rounds, in its turn, generate data

for the evaluation of the objective. The Frap’s DRL architecture is represented by the

policy block, where, internally, a deep neural network receives the states as input and

outputs the suggested action.
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Figure 2.6: Overall Frap’s learning process. 1. For training, Frap runs three simulations
in parallel. 2. The tuples st, at, st+1, rt+1 are stored in the memory at every instant t.
3. At the end of the training round, the stored learning samples are used to update the
neural network that represents the policy. 4. The testing rounds generate the objective
data.



Chapter 3

Related Work

Previous RL solutions for TSC focused on different aspects of the problem. Some inves-

tigate policy-based and actor-critic methods [7, 17] while others focused on the differ-

ent neural network architectures that can be used, including Recurrent Neural Networks

(RNN) [51], Long Short-Term Memory (LSTM) [1], and Graph Convolutional Neural

Networks (GCNN) [51, 38]. Other works focus on methods’ generability (transfer learn-

ing and meta-RL) [64, 66]. Some other approaches investigate explicit coordination. For

example, CoLight [53] investigates temporal and spatial influences through graph atten-

tional networks to model neighboring information into the agent’s state. The attention

concept is also incorporated in the reward mechanism by Liu [31]. Wang et al. [51] treats

coordination with an adjacency graph. Other works engage the coordination aspect from

joint action decision [1, 20, 61]. Another important aspect studied is to expand the TSC

problem to a broader formulation (i.e., making it more true to life) by testing environ-

ments with disruption events (e.g., accidents, constructions, emergencies, break-downs,

debris, and weather conditions) and pedestrian crossing [7]. All of those works, however,

consider objective and RL formulations only as a secondary matter.

A recent survey [54] shows that RL TSC solutions significantly vary in the objective,

RL formulation, method, and experiment setting, making it difficult to compare them

when no standard scenario and configuration is established. To understand different

formulations, Egea [18] assesses reward functions, but only for a single-intersection case.

Therefore, there is a gap in the literature for studies investigating the objective and

RL state and reward formulations and their impacts on the learning process. In this

dissertation, we focus our analysis on assessing the use of the proposed time loss-based

objective and RL formulations, using the Frap framework [68] as the RL method. Frap

reports a relatively simple Deep Reinforcement Learning (DRL) architecture that achieves
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state-of-the-art results in large-scale real-world scenarios and can be combined with dif-

ferent state and reward formulations. Its highlight is the leveraging of invariance for

symmetrical flow cases, such as inversion and rotation, based on the principle of phase

competition in TSC (i.e., giving priority to movements with higher demand).

Additionally, most works choose model-free approaches, given that model-based ap-

proaches, also called Planning since the model is used to plan, require a model of the

environment. However, by interacting with ’future’ states, the agent may gather more

diverse experience. We assess how experiences resulting from planning can be used to

reduce time loss and improve learning convergence.

In this dissertation, we propose new objective and RL state/reward formulations, and

thus in the following sections (Section 3.1 and 3.2), we focus on briefly reviewing these

aspects.

3.1 Objective

From the objectives raised by the survey [54], average travel time (O1, avg_travel_time)

[7, 8, 15, 20, 21, 26, 27, 29, 31, 45, 49, 51, 52, 53, 55, 56, 57, 62, 64, 68, 69], is one

of the most common goals presented in TSC. The metric consists of the average of all

vehicles’ time to complete their trips. Other objectives include the absolute number of

vehicle stops (O2, #stops) [8, 26, 44], the number of vehicles stopped at traffic lights (O3,

queue_length) [16, 17, 21, 25, 34, 37, 42, 55, 67], and the number of vehicles to complete

their trips in a given period (O4, throughput) [10, 13, 15, 21, 27, 39, 40, 42, 44, 45, 63].

From these, O2, #stops, is more related to the drivers’ comfort, rather than time

efficiency; for example, the vehicles might stop on a few occasions but wait long periods

each time. O3, queue_length, is associated with the magnitude of traffic jams. Its down-

side is that it does not account for vehicles that are not stopped but are instead traveling

at very low speeds. O4, throughput, may represent time efficiency, but as the vehicle

density increases, their speed naturally decreases while throughput is still high; compare,

for example, higher speeds and lower densities vs. lower speeds and higher density (we

should avoid the congested flow as much as possible). Lastly, O1, avg_travel_time seems

to represent the time efficiency proposition well and avoid the possible pitfalls from the

other approaches. Nevertheless, in Chapter 4 we discuss some practical problems of using

average travel time as the objective and propose a different objective, based on time loss.

Other objectives used by the literature but not discussed by the survey include de-
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lay [2, 3, 5, 8, 10, 13, 19, 20, 21, 37, 39, 55, 67], speed [10, 17, 27, 34, 42], waiting

time [9, 21, 25, 27, 34, 38, 40, 42, 44, 45, 58, 67], pollution [7, 21, 42], and fuel con-

sumption [7]. Although pollution and fuel consumption tend to reduce in a better time-

optimized system, the result depends directly on vehicles’ driving behaviors, such as

maintaining constant velocities. Delay and speed are more closely related to our propo-

sition. Specifically, our time loss proposal is delay-based and it is measured with regard

to relative speed. The waiting time, similarly to queue length, only accounts for stopped

periods.

From all objectives above, the less is better for the #stops, queue_length,

avg_travel_time, delay, waiting time, pollution, and fuel consumption, while the more is

better for throughput and speed. The presented time loss objectives fit the first case.

3.2 RL Formulation

In RL, the state consists of the information the agent uses to distinguish different situ-

ations in the decision-making process. The reward is the feedback it receives about how

good or bad were those decisions. Both state and reward need adequate representations so

the agent can learn how to maximize cumulative reward. In this dissertation, we explore

matching the RL formulation with the objective so that a better association between them

leads to better reaching the objective.

We selected a few state and reward proposals from the literature that work on dis-

crete information and do not rely on a combination of linear weights while also presenting

good experimental results. They are proposed in Frap [68] (〈Number of Vehicles, Ve-

hicle Been Stopped〉 or 〈Number of Vehicles, Average Queue Length〉), PressLight [52]

〈PressLight’s Pressure, PressLight’s Pressure〉, and MPLight [15] 〈MPLight’s Pressure,

MPLight’s Pressure〉. All the formulations rely on the movement modeling for the state

(more on Section 4.2) and over the intersection for the reward.

The distinction between theirs’ state and reward and ours is that their formulations

do not relate directly to the goals, while ours do. Their objective uses average travel

time as metric and density-related measurements (e.g., number of vehicles, queue length,

relative road density, and pressure) to state and reward. Ours use time loss information

for both objective, state, and reward. We detail all the RL formulations in Chapter 4 and

compare them with our time loss formulations (〈Time Loss, Time Loss〉 and 〈Time Loss

Pressure, Time Loss Pressure〉) in Chapter 5.



Chapter 4

Problem Definition

This dissertation investigates how to address the traffic signal control (TSC) problem

using Reinforcement Learning (RL) [48]. We adopt terminology from the traffic simulator

Sumo [32], Frap [68], and RL literature.

This chapter aims to detail the TSC problem and model it according to the RL con-

cepts. The problem objective is described in Section 4.1. Section 4.2 defines the move-

ments of vehicles within an intersection as well as the traffic signal phases (green, red,

yellow traffic light configurations) that allow specific vehicle movements to flow. RL com-

ponents modeling the TSC problem (i.e., state, action, reward, policy, and environment

formulations) are presented in Section 4.3.

4.1 Objective

Based on the works described in Chapter 3, a common choice in the TSC problem is to

use average travel time as the objective [15, 31, 51, 52, 53, 64, 68]. The metric consists of

averaging the time each vehicle took to complete its own trip. Such a metric carries the

notion of a utility function, representing what people likely value most: arriving faster at

their destinations.

However, the average travel time metric has three major shortcomings when using it

to train the RL agents. First, it is not accurate throughout the simulation runs because

travel times are only determined as the vehicles complete their trips; however, in RL, the

reward must credit each actions’ outcome at every time. Therefore, travel time seems

adequate to the objective but may not be accurate in deriving a reward mechanism. In

general, this metric is not appropriate in analyzing intermediate simulation results.
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Second, and more importantly, this metric is not reliable across simulations, given

that it is susceptible to starvation and deadlocks (vehicles “stuck in traffic” forever have

a theoretic infinite travel time). In practice, simulators do not account for these vehicles’

actual contribution, as it would have to wait indefinitely for them to finish. Hence,

starvation and deadlocks actually contribute to decrease (instead of increasing) travel

time, producing counter-intuitive and unrealistic results. Sections 4.3.4.2 and 4.3.5.1

further discuss starvation and deadlock in the TSC simulation, respectively.

Lastly, simply averaging travel time may fail to correctly assess unrealistic traffic

shaping behavior that we called ’hold vehicles before depart’. This behavior represents

the cases where methods artificially delay the vehicles’ departure in favor of having fewer

vehicles simultaneously in the simulation, effectively serving fewer vehicles at the end than

expected but receiving better values of travel time. To alleviate this issue, MPLight, for

example, includes throughput as a co-objective, such that the number of vehicles served

can also be assessed [15].

Due to the issues aforementioned, we propose to use time loss per driver metrics.

Time loss captures how much time (e.g., in seconds) vehicles lose in their trips, taking

into account portions of time lost by not moving at the free-flow speed (i.e., the maximum

speed). Unlike travel time, time loss can be safely evaluated at any time, making it useful

for simulation analysis and removing the reward formulation limitation. The per-driver

element exists to make the metric quickly appraisable.

The time loss of each vehicle is measured at each instant and consists of the comple-

mentary of the relative speed. Equation 4.1 describes the instantaneous time loss for a

given vehicle i at time t, where vit is its current speed and v_maxit is the allowed max-

imal speed. This definition is consistent with the one provided by the traffic simulator

Sumo [32].

Definition 4.1.1 (Instant Time Loss per Vehicle) Instant Time Loss per Vehicle is

the amount of time is lost in a given instant by a vehicle (smaller is better).

time_lossvehicleit = 1− vit/v_maxit (4.1)

The time loss for the traffic network is the sum of all vehicles’ time losses in the

simulation (including pending vehicles1) at a given time t. It is presented in Equation 4.2,

where nt is the number of vehicles at time t:
1The pending vehicles are the ones that were programmed to enter the simulation but could not be

inserted due to lack of physical space at the edges of the network.
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Definition 4.1.2 (Network Instant Time Loss) Network Instant Time Loss is the

time lost in a given instant by all vehicles in the simulation (smaller is better).

time_lossnetworkt =
nt∑
i=1

time_lossvehicleit (4.2)

We formulate two different versions for the time loss per driver objective, namely

percentage time loss per driver and cumulative time loss per driver. The first takes into

account the instantaneous time loss per driver (including drivers from pending vehicles),

as shown in Equation 4.3, where ttotal is the total simulation period (i.e., tfinish − tstart)
and nt is the number of vehicles at time t. For ttotal > 0:

Definition 4.1.3 (Percentage Time Loss per Driver) Percentage time loss per

driver consists of the network time loss divided by all vehicles in the simulation at the

respective instant, including the contribution of pending vehicles, averaged over the simu-

lation period (smaller is better).

percentage_time_loss_per_driver =
∑tfinish

t=tstart

time_lossnetworkt

nt

ttotal
(4.3)

The second version considers the simulation’s total time loss divided by all the drivers.

Equation 4.4 illustrates it, where the time t ranges from tstart to tfinish, and ntotal is the

total number of all vehicles in the simulation (i.e., both pending and departed vehicles).

For ntotal > 0:

Definition 4.1.4 (Cumulative Time Loss per Driver) Cumulative time loss per

driver consists of all time loss accumulated in the simulation, divided by all vehicles,

including the contribution of pending vehicles (smaller is better).

cumulative_time_loss_per_driver =
∑tfinish

t=tstart time_lossnetworkt
ntotal

(4.4)

The main difference between percentage time loss per driver and cumulative time loss

per driver is that the former averages the percentages of the network time loss for the

entire simulation period, thus outputting a mean percent value, while the latter computes

the usual time loss per driver average, outputting the time loss per driver as the number

of seconds spent. Note that both use time loss by time intervals rather than vehicle trips,

avoiding the first two shortcomings present in the travel time metric. Any intermediate

simulation results can safely be obtained by adjusting the t_start and t_finish values.
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Also, by accounting for the time loss of pending vehicles, both methods avoid the ’hold

vehicles before depart’ issue entirely, solving the third travel time shortcoming. At the

same time, cumulative time loss per driver also obviates the coupling with the throughput

co-objective; once that at the end, all vehicles were accounted at their respective times.

4.1.1 Time Loss and Travel Time Relationship

Note that time loss and travel time are different but also related to each other. The

optimal travel time occurs when the vehicle is driving at the free-flow speed for the entire

trip. The difference in the actual travel time characterizes the time loss, also defined by

traffic engineering literature as travel-time delay [22] as illustrated in Equation 4.5. This

relationship implies that optimizing the time loss also optimizes travel time.

time_loss = travel_time− travel_timeoptimal (4.5)

Simililarly, the time_loss% is the percentage of time lost in the travel (Equation 4.6).

time_loss% = 1− travel_timeoptimal
travel_time

(4.6)

Another common measure, the travel time index [46] describes the percentage of extra

time drivers took to complete their trips. The relationship between travel_time_index

and time_loss% is expressed in Equation 4.7.

travel_time_index =
travel_time

travel_timeoptimal
=

1

1− time_loss%
(4.7)

For example, if time_loss% is 0.5, then the travel_time_index is 2, meaning that

half of the trip was time lost and took twice the time to make the trip. Similarly, the

time_loss% can be expressed in terms of travel_time_index, as in Equation 4.8.

time_loss% = 1− 1

travel_time_index
(4.8)

While the time_loss is analogous to the cumulative time loss per driver (Equation 4.4)

for the average driver, the time_loss% is analogous to the percentage time loss per driver

(Equation 4.3) when defined for the entire demand and to the instantaneous time loss

(Equation 4.1) when defined for a single driver. When put together, the time_loss and
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time_loss% values can derive the average travel time in seconds (as in Equation 4.9)

and the average optimal travel time (by manipulating Equation 4.5 and using the average

travel time).

time_loss = travel_time× time_loss% (4.9)

4.2 Movements and Phases

Movements are the directions of flow within an intersection, characterized by the traf-

fic lanes turns; for example, in the 4-road intersection in Figure 4.1a, each road (0-3)

has three movements: left-turn (L), straight (S), or right-turn (R). The phases are the

movements that the traffic signal allows to proceed; for example, in the upper-left phase

from Figure 4.1b, movements 0L and 0S are given green signals while all other movement

changes to red.

Figures 4.1b and 4.1c show two phase sets : a typical phase set (as formulated in

Frap [68], PressLight [52], and MPLight [15]) with 8 phases and an expanded phase

set (Figure 4.1c) with 14 phases, that adds four non-conflicting-movements phases (i.e.,

vehicles have segregated paths) and two conflicting-movements phases (i.e., vehicles also

coordinate themselves by following right-of-way rules). Also, the examples follow a right

on red traffic rule (i.e., vehicles can turn right even if the signal is red); hence we do not

include the right-turn movements in the phase set.

The RL agent’s responsibility is to change phases, given a set of phase options (i.e., the

phase set). Regarding those options, there is a trade-off: the agent should be allowed all

possible phase options to guarantee freedom of action, but, at the same time, including

many options may increase the state-action search-space unnecessarily. If the agent is

given a too simplistic phase set, it may perform poorly, as it lacks the ability to choose

how to direct traffic. A compromise can make the agent pick the more suitable phase for

each case without consuming unnecessary time and effort during learning, consequently

reducing the pressure on computer resources and the model’s capability. For this reason,

the Frap selection for the phase set allows agents to consider specific combinations of pairs

of movements that do not conflict with each other (i.e., their paths do not intercept). As

a general rule, it seems a good compromise between freedom of action and simplicity.

With that in mind, we experiment with several phase set configurations. See more in the

experiments chapter (Chapter 5).



4.3 Problem Modeling 29

(a) Movements

(b) 8 phases

(c) The 6 additional phases (4 non-conflicting
above, 2 conflicting below)

Figure 4.1: Synthetic scenarios’ movement and phase definition

4.3 Problem Modeling

While we briefly covered TSC in Section 2.2.1.1, this section describes the problem mod-

eling from the perspective of RL, and in particular of selected Frap correlated methods.

That is, we need to describe the RL agent’s state, reward, action, policy, and environment.

This dissertation also proposes a time loss formulation and a pressure variant to better

relate to the time loss objective proposition (Section 4.1). The formulation details for the

state and the rewards are described in Sections 4.3.1 and 4.3.3, respectively. Details about

the action formulation are covered in Section 4.3.2, about policy in Section 4.3.4, and the

environment in Section 4.3.5.

4.3.1 State

There are several approaches for defining states in RL for TSC. Frap state comprises

(a) the current phase and (b) the number of vehicles in the entering lanes of each traffic

movement (i.e., in an array of movements); see Equation 4.10, where n(menls) is the
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number of vehicles in the movement’s entering lanes menls.

number_of_vehicles =
n(menls)∑

i

1 (4.10)

PressLight and MPLight, instead of vehicle count and phase, use phase and pressure,

where pressure (of an intersection) is based on the difference of measurement between

the movement’s entering lanes menls and exiting lanes mexls. For PressLight, pressure

pPL_state is the difference between vehicles’ density of menls and mexls (Equation 4.11),

where x(ls)/xmax(ls) is lanes ls’s relative occupancy, x(ls) is the number of vehicles

currently in lanes ls, and xmax(ls) is the maximum capacity of lanes ls. For MPLight,

pressure pMP_state is the difference between the number of vehicles (Equation 4.12) in the

movement’s entering lanes menls and exiting lanes mexls.

pPL_state(menls,mexls) =
x(menls)

xmax(menls)
− x(mexls)

xmax(mexls)
(4.11)

pMP_state(menls,mexls) = x(menls)− x(mexls) (4.12)

In our approach, as mentioned before, we focus on time loss. We consider two versions

of state, namely (1) time loss (tlstate) and phase, and (2) time loss pressure (ptl_state) and

phase. For (1), we use vehicles in the movement’s entering lanes; see Equation 4.13,

where n(ls) is the number of vehicles in the lanes ls, and time_lossvehicleit is from the

Equation 4.1. For (2), the pressure variant, it is the difference between time loss in the

movement’s entering and exiting lanes; see Equation 4.14.

Definition 4.3.1 (Time Loss – state) For the state formulation, time loss is the total

time lost in the entering lanes for each movement.

tlstate(menls) =

n(menls)∑
i

time_lossvehicleit (4.13)

Definition 4.3.2 (Time Loss Pressure – state) For the state formulation, time loss

pressure is the difference of time lost between the entering and exiting lanes for each

movement.

ptl_state(menls,mexls) = tlstate(menls)− tlstate(mexls) (4.14)
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4.3.2 Action

Similar to Frap [68], the agent decides which phases to activate (e.g., switch from current

phase to phase 0S_2S). After that, the controller grants a fixed amount of time (i.e.,

10 seconds) for that phase, including green-yellow-red transition. While the phase set

pre-determines which actions are possible, the agent manages the sequence of phases and

the resulting time distribution among them.

4.3.3 Reward

As presented in Section 2.2.1, the reward is the feedback the agent receives to figure

out the consequences of its actions. With that in mind, the reward should be modeled

in conjunction with the agent’s decision process (i.e., state and action) following the

objective proposition.

The agent reward in our “time loss formulation” is similar to our state formulation:

simply the negative value of total time loss of all the entering lanes, as illustrated in

Equation 4.15 (the more time is lost, the bigger is the penalty). The pressure variant

considers the difference between time loss in the entering and exiting lanes (Equation 4.16).

Definition 4.3.3 (Time Loss – reward) For the reward formulation, time loss is the

total time lost in the intersection’s entering lanes (the bigger the cumulative reward is the

better).

tlrwd(enls) = −
enls∑
enl

n(enl)∑
i

time_lossvehicleit (4.15)

Definition 4.3.4 (Time Loss Pressure – reward) For the reward formulation, time

loss pressure is the difference of time lost between the intersection’s entering and exiting

lanes (the bigger the cumulative reward is the better).

ptl_rwd(enls, exls) = − (tlrwd(enls)− tlrwd(exls)) (4.16)

Frap defines reward as the average queue length where queue_length(l) is the number

of stopped vehicles in the lane l (Equation 4.17). In addition, Frap’s GitHub code2 adopts

“vehicles been stopped” instead, which consists of the number of vehicles that stopped at

least once (Equation 4.18); we are investigating both versions. The difference between
2https://github.com/gjzheng93/frap-pub
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them is that when vehicles start moving, they leave the queue, but the “been stopped”

property only resets once the vehicles cross the intersection. Like a cumulative queue

length record, the vehicles been stopped consist of the count of vehicles that stopped

before the intersection at least once, considering the intersection’s detection range.

average_queue_length(enls) = −
(∑

enl∈ enls queue_length(enl)
#enls

)
(4.17)

vehicles_been_stopped(enls) = −
enls∑
enl

n(enl)∑
i

been_stopped(i) (4.18)

Similar to the pressure for movements in the state definition, PressLight and MPLight

use the pressure of intersection as reward. For PressLight it is the absolute sum of move-

ment pressures (Equation 4.19). For MPLight it is the difference between the entering and

exiting lanes’ queue length (Equation 4.20). Recall that pPL_state is the pressure defined

in Equation 4.11 and queue_length is the number of stopped vehicles in the referred lane

enl or exl.

pPL_rwd(enls, exls) = −

∣∣∣∣∣∣
movements∑

(menls,mexls)

pPL_state(menls,mexls)

∣∣∣∣∣∣ (4.19)

pMP_rwd(enls, exls) = −

(
enls∑
enl

q_length(enl)−
exls∑
exl

q_length(exl)

)
(4.20)

These formulations are assessed experimentally in Chapter 5 to understand how they

perform in preliminary experiments and then select which one is further experimented on

remaining tests.

4.3.4 Policy

Recall from Section 2.2.1.1 that the policy is a function that maps the action to be

executed given a state. For non-adaptive methods, the policy is independent of context,

performing actions regardless of the state. For adaptive methods, the policy is explicitly

configured using rules (i.e., whenever the time loss for a movement exceeds a threshold,

change its light to green). In RL, instead of defining rules beforehand, an adaptive policy
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is learned by iterative configuration, based on experience and experimentation (i.e., learn

which thresholds are essential to change to which behavior).

When evaluating the methods through their time loss reduction (or by any other

metric, in fact), it is the policy that is being evaluated objectively. However, the drivers’

perception of the phase-switching behavior is as important as the time loss result itself

but much more subjective. With that concern, we discuss two policy-related problems,

excessive waiting time and starvation (Sections 4.3.4.1 and 4.3.4.2). Despite that they are

related to each other, they illustrate different policy behavior analysis.

4.3.4.1 Excessive Waiting Time

Besides yielding satisfying time loss results, the policy has to be functional and take into

account the users. A policy can achieve significant overall time loss reductions but con-

stantly leave portions of traffic waiting unreasonably long. Other policies might achieve

the same time loss levels or even a little higher, and at the same time, avoid making the

driver angry or exhausted (i.e., high time loss for a specific set of vehicles). Two possible

strategies can be used to shape a policy: (1) tuning the reward function towards some

behavior and (2) enforcing an environment restriction. To obtain a reward-based shap-

ing, one could add some extra penalty from an impatience-based metric (e.g., gradually

subtract extra reward when vehicles strike waiting time milestones). As an environment’s

restriction, the environment could register vehicle waiting times and override the action

before it violates the condition, like an external safety measure.

This dissertation chooses to employ the latter strategy. Transferring control to the

environment avoids adding more complexity to the learning agent, including correctly

mixing weights for different rewards. The implemented waiting time restriction tracks

each lane’s first vehicles’ waiting time and examines how much time is available before

the vehicles violate the constraint. It overrides the chosen action with the one with the

most accumulated waiting time to fix the situation.

4.3.4.2 Starvation

Starvation in a traffic signal happens when at least one of the movements does not receive

enough attention from the agent (i.e., the phases that control the movement are never

or rarely activated). Policies that have not (yet) learned the environment dynamics (es-

pecially true in the early stages of the learning process) can produce starvation, which
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can happen independently of achieving high or low time loss reduction levels. This be-

havior can be generally mitigated by adequate state, action, and reward formulation and

corrected by the learning process.

Although not initially driven by it, the waiting time restriction (presented in Sec-

tion 4.3.4.1) also prevents starvation from happening by limiting any driver from waiting

for more than the intended threshold. It would prevent starvation even on the agents

whose learned policies would be susceptible to it. However, as the restriction is included

from the beginning of the learning process, it may actually guide the learning process by

restraining exploration into unacceptable policies.

4.3.5 Environment

As it is not advisable to directly train a trial-and-error agent with a real-world traffic

light system, a traffic simulator is required to test methods for the TSC problem. Sumo

is a very mature open-source traffic simulator and set of tools. It supports traffic net-

work and demand modeling, baseline static methods design, and simulation environment.

TraCi, from the Sumo suite, is used to interface with the simulation to collect all the

state, reward, and report data. It also allows changes in the traffic signals dynamically

and programmatically and, to some extent, supports extending some of the simulation

functionality.

The simulation can be configured in many ways to reproduce the traffic dynamics, such

as the consequence of collisions, the vehicles’ possible routes, the traffic demand levels,

and the overtaking of vehicles that are blocking the way. These traffic dynamics may

lead to some real-world phenomena, for instance, local and generalized traffic deadlocks.

Deadlocks can happen naturally or be caused by the agent’s decisions. Following we

describe the causes and possible solutions for deadlocks.

4.3.5.1 Deadlock

In the simulation (and also in the real world), deadlocks in a single intersection can

happen after a vehicle collision or when a vehicle advances and positions itself in the

intersection causing a disturbance and blocking vehicles from completing their crossing.

If the vehicles do not resolve the deadlocks within a reasonable time, they can be incredibly

harmful because they waste much time prolonging a behavior entirely outside of the signal

control. Consequently, the agent severely penalizes all possible actions (since they have
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little to no effect), hindering the learning process. Notice that it is not necessary to

form a hard deadlock (i.e., no physical space to maneuver with ease) to be harmful.

Soft deadlocks (e.g., one of the vehicles only having opposite moving traffic in its way)

can cause many problems even they end up resolving themselves eventually. Sumo has

an option to let vehicles resolve deadlocks themselves after some time. For this type of

deadlock, a solution is to reposition the intersection waiting stops closer to the entering

lane. This way, it reduces the vehicles’ possibility of positioning themselves where they

may get stuck or get other vehicles stuck.

Deadlocks can also happen in a multiple-intersection setting when vehicles block each

other across a circular pattern in traffic jams along several streets. Inadequate traffic

signal control can easily jeopardize traffic network function and lead to smaller demands

to over-saturate the streets, causing traffic jams and possibly deadlocks, depending on the

vehicles’ flow patterns. In that case, bad policies (if in the early stages of the learning

process) might be corrected during learning.



Chapter 5

Experiments

This chapter describes the executed experiments and details their configurations. Sec-

tion 5.1 covers the scenarios. Section 5.2 describes the methods used. Section 5.3 details

the regular (i.e., non-planning) experiments, while Section 5.4 details the planning exper-

iments. For the complete list of parameters and hyperparameters, check Appendix A.

5.1 Scenarios

The scenarios consist of the street network and its configured demand. In this dissertation,

we consider two synthetic scenarios: a single 4-way intersection (Figure 5.1a); and a 4-

intersection 4-way network (Figure 5.1b). Both scenarios simulate one hour of traffic, and

all their edges are 300 meters long. We use a binomial distribution vehicle generation

with a probability of 0.3, that is, 0.3 vehicles/s average (adjusted empirically for light to

medium traffic), per edge, which are split with a uniform distribution of 10% turning left,

60% going straight, and 30% turning right (the same distribution used by Chen [15]).

The total volume of vehicles for the scenarios is 4284 and 8631, respectively.

5.2 Baselines

To assess the Learning and Planning results, we use the static and unregulated config-

urations as baselines. Additionally, we use the Frap’s state and reward formulation as

the RL baseline for the Learning experiments and the best non-planning result as the RL

baseline for Planning.

In Sumo, intersections can be configured to be unregulated. In this mode, the vehicles
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(a) Single-intersection (b) Multi-intersection

Figure 5.1: The scenarios

completely ignore any traffic from other movements, disabling collisions, and deceleration

at the intersection. For our purposes, it symbolizes a utopic traffic light control, serving

as a hard lower-bound baseline for any other method. Although it is utopic, it still is a

more reasonable lower boundary than the free-flow demand level since the vehicles’ speed

is compatible with the current traffic load. For the upper-bound baseline, we use Sumo’s

auto-generated static signaling.

A planning component is also analyzed. In this case, it refers to planning in the RL

context, where the agent looks ahead of time, tests with actions, and foresight its value

(as described in Section 2.2.3). For experimenting with planning, instead of constructing

a model to simulate traffic’s behavior (i.e., predict next traffic states), parallel simulations

are used to test future possibilities.

Static For the upper bound, we use Sumo’s auto-generated right on red static config-

uration. While the RL agents choose which of the phase options to activate, the static

method is preconfigured by default. The generated static configuration uses four phases,

alternating most of its time between the conflicting-movements phases 0S_2S_0L_2L

and 1S_3S_1L_3L, using the other two 0L_2L and 1L_3L only to clear out any vehi-

cles in the minor lanes between transitions (i.e., the left-turn lanes 0L, 2L, 1L, and 3L

are given exclusivity for a short period).

Unregulated For the lower bound, we use Sumo’s traffic to be unregulated.

FRAP We choose Frap as our RL base method for testing all RL formulations proposed

in this dissertation (recall Section 2.3). We run a total of 400 learning episodes per RL
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experiment with Frap’s default hyperparameters1 (check Appendix A) for all scenarios.

PlanningOnly As covered in Section 2.2.3.1, PlanningOnly has no learning component

and relies exclusively on decision-time planning.

FRAP + Planning The idea about including Planning to Frap is to increase the

learning sample diversity and improve the learning speed and results. With planning

embedded, Frap can either generate experience from unfulfilled prospective interactions,

decide its action based on future experience, or both. The Frap+Planning follows the

same base learning process from Frap (Figure 2.6), with the additional particularities

discussed in Section 2.2.3 (illustrated by Figures 2.2, 2.3, and 2.4).

5.3 Non-Planning Experimental Results

In this section, we experiment with the waiting time restriction (Section 5.3.1), phase set

configurations (Section 5.3.2), and RL formulations (Section 5.3.3). For the Planning-

related experiments’ result, check Section 5.4.

5.3.1 Waiting Time Restriction

In this experiment, we want to assess the vehicles’ waiting time fairness. Since the agent

can choose any next phase that seems suitable, some vehicles can wait way longer since

the agent doesn’t follow a predefined phase sequence, as the static configuration does; at

the same time, it is looking to the intersection’s overall time savings instead of each time

loss individually.

As mentioned in Section 4.3.4.1, besides optimizing the time loss objective, the policy

can also be shaped to favor a more user-friendly behavior. The waiting time restriction

is an environment constraint designed to prevent vehicles from waiting a long time at

the traffic signal. We use Frap’s Vehicle been stopped - RLF1 - formulation (〈Number

of Vehicles, Vehicle Been Stopped〉; Table 5.4) in a single intersection (8 phases) for this

experiment.

1Note that the hyperparameters in the GitHub repository may or may not be equal to the ones used
in the paper.
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Figure 5.2: Regular policy (no WTR) phases and demand distribution
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Figure 5.3: WTR policy phases and demand distribution
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Table 5.1: Waiting Time Restriction experiment (WTR on and off)

Configuration
Cumulative
Time Loss
per Driver

Percentage
Time Loss
per Driver

WTR off 44.03 0.50
WTR on (120s) 49.22 0.53

As observed in Table 5.1, the restriction negatively affects the time loss result, leading

to a difference of approximately 4s more time loss per driver than without the restriction.

As discussed above, this is expected since the agent must regularly comply with the

restriction and prioritize fewer vehicles with a significantly longer waiting time. However,

Figures 5.2 and 5.3 show the difference from both policies’ behavior. The policy generated

without the restriction generates considerably larger waiting periods than the variant with

120 seconds restriction (e.g., in the movement 2L, between seconds 540 and 940, vehicles

wait up to 400s). Note that some phases on WTR may be greater than 120s since WTR

considers the waiting time from the first vehicle when it stops at the signal. As the

waiting time restriction significantly improves the policy fairness, it stays enabled for the

remaining of the experiments.

5.3.2 Phase Set Configuration

The selection of the ’phase set’ changes the possibility of options when the agent switches

the traffic lights. More options mean the agent may take a longer time to test it all and

understand the outcomes. Fewer options may seem more manageable, but the agent can

be taken out the opportunity of choosing better actions for specific situations. Another

complication is that the phase selection is not an unconnected decision. Transitions

resulted from different phase sequences produce different outcomes, depending on the

context. A particular sequence of phase switching, for example, can increase the number

of accidents (collisions).

For that reason, instead of picking, for instance, the maximal set option, it is important

to verify how the phases’ options impact the learning speed and the result. In this

experiment, we compare several phase set configurations. We include: the default 8

phases set configuration as the baseline — PSC1, a 12 non-conflicting phases set —

PSC2, a simplified 4 phases set — PSC3; alternatives containing the combination of

multiple phases, including the 14 phases set — PSC4 — discussed in Section 4.2 (the

12-phases set plus the 0S_2S_0L_2L and 1S_3S_1L_3L combined phases) and other
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similar-intended options (10 [8+2] — PSC5, 6 [4+2] — PSC6, and 2 [0+2] phases —

PSC7); a further expanded 16-phases set — PSC8, which adds the opposing combined

phases 0S_2S_1L_3L, 1S_3S_0L_2L to the 14-phases set; a 10-phases set consisted of

the 14-phases set subtracted of phases that are subset of any other phase in the original

set — PSC9; and, finally, the phase set used by the static (baseline) method — PSC10,

which includes the 0S_2S_0L_2L and 1S_3S_1L_3L combined phases. Table 5.2 put

together all phases these definitions include. Table 5.3 shows the result for the experiment,

where the regular 8 phases set (PSC1) is the baseline. For this experiment we also use

Frap’s Vehicle been stopped - RLF1 - formulation (〈Number of Vehicles, Vehicle Been

Stopped〉) in a single intersection (8 phases); see formulation details in Table 5.4.

From the phase set configuration results, PSC8 presents the worst results. In that case,

the RL agent either could not learn to isolate prejudicial phases and phase transitions

(e.g., 0S_2S_1L_3L and 1S_3S_1L_3L may cause more collision than other phases

selections), or there were more phases that the agent could handle. On the other hand, the

PSC3 presents bad results because it is too simplistic compared with the default 8 phases

set (PSC1). All the configurations that include the combined phases 0S_2S_0L_2L

and 1S_3S_1L_3L (except for PSC8, already explained above) present better results

than those that do not. Even PSC7 that relies on those two phases alone presented

better results than the default PSC1. Even though PSC7 has fewer phases than PSC3, it

achieves much better results because it has fewer (but more effective) phases in its phase

set. These results indicate that to include 0S_2S_0L_2L and 1S_3S_1L_3L and rely

on right-of-way traffic rules does pay off.

5.3.3 RL Formulation

In RL, the state and reward formulations (presented in Sections 2.2.1.1 and 4.3) heavily

influence the agent’s decision-making during the learning process. The experiments we

conducted use the Frap agent to examine how different state and reward formulations

affect the different metrics. In total, we test six 〈state; reward〉 formulations, where

the first two come directly from Frap, the middle two come from subsequent proposals

(PressLight [52] and MPLight [15]), and the last two are our time-loss-based proposals;

the RL state includes the current phase, in addition to the value shown as follows (see

also Table 5.4):

• (RLF1) 〈Number of Vehicles, Vehicle Been Stopped〉;
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Table 5.2: Phase set definition (conflicting-movements phases highlighted)

Label Configuration Phase Set

PSC1 Default 8 phases set
(8 phases)

0L_0S, 0L_2L, 0S_2S, 1L_1S,
1L_3L, 1S_3S, 2L_2S, 3L_3S

PSC2 12 phases set
(12 phases)

0L_0S, 0L_2L, 0S_2S, 1L_1S,
1L_3L, 1S_3S, 2L_2S, 3L_3S,
0L_3S, 0S_1L, 1S_2L, 2S_3L

PSC3 4 phases set
(4 phases) 0L_2L, 0S_2S, 1L_3L, 1S_3S

PSC4
12 phases set

+ 2 combined phases
(14 phases)

0L_0S, 0L_2L, 0S_2S, 1L_1S,
1L_3L, 1S_3S, 2L_2S, 3L_3S,
0L_3S, 0S_1L, 1S_2L, 2S_3L,

+ 0S_2S_0L_2L, + 1S_3S_1L_3L

PSC5
8 phases set

+ 2 combined phases
(10 phases)

0L_0S, 0L_2L, 0S_2S, 1L_1S,
1L_3L, 1S_3S, 2L_2S, 3L_3S,

+ 0S_2S_0L_2L, + 1S_3S_1L_3L

PSC6
4 phases set

+ 2 combined phases
(6 phases)

0L_2L, 0S_2S, 1L_3L, 1S_3S,
+ 0S_2S_0L_2L, + 1S_3S_1L_3L

PSC7 Combined phases only
(2 phases) + 0S_2S_0L_2L, + 1S_3S_1L_3L

PSC8
12 phases set

+ 4 combined phases
(16 phases)

0L_0S, 0L_2L, 0S_2S, 1L_1S,
1L_3L, 1S_3S, 2L_2S, 3L_3S,
0L_3S, 0S_1L, 1S_2L, 2S_3L,

+ 0S_2S_0L_2L, + 1S_3S_1L_3L,
+ 0S_2S_1L_3L, + 1S_3S_0L_2L

PSC9

12 phases set
+ 2 combined phases
− 4 "redundant" phases

(10 phases)

0L_0S, 1L_1S, 2L_2S, 3L_3S,
0L_3S, 0S_1L, 1S_2L, 2S_3L,

+ 0S_2S_0L_2L, + 1S_3S_1L_3L

PSC10 Static method phase set
(4 phases)

0L_2L, 1L_3L,
+ 0S_2S_0L_2L, + 1S_3S_1L_3L

• (RLF2) 〈Number of Vehicles, Average Queue Length〉;

• (RLF3) 〈PressLight’s Pressure, PressLight’s Pressure〉;

• (RLF4) 〈MPLight’s Pressure, MPLight’s Pressure〉;

• (RLF5) 〈Time Loss, Time Loss〉; and

• (RLF6) 〈Time Loss Pressure, Time Loss Pressure〉

As discussed in Section 4.3, the pressure formulations (i.e., RLF3, RLF4, and RLF6
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Table 5.3: Phase set configuration results

Phase Set
Configuration

Cumulative
Time Loss
per Driver

Variation
Percentage
Time Loss
per Driver

Variation

PSC1 44.93 - 0.51 -
PSC2 42.05 6.41% 0.49 3.92%
PSC3 57.90 −28.87% 0.56 −9.80%
PSC4 22.07 50.88% 0.33 35.29%
PSC5 23.46 47.79% 0.35 31.37%
PSC6 22.88 49.08% 0.34 33.33%
PSC7 22.10 50.81% 0.33 35.29%

PSC8 100.83 −124.42% 0.64 −25.49%
PSC9 21.60 51.93% 0.33 35.29%

PSC10 21.25 52.70% 0.33 35.29%

Table 5.4: RL formulations tested

RL Formulation State Reward

RLF1

current phase

number of vehicles
(per movement)

number of vehicles
have been stopped

RLF2 number of vehicles
(per movement) average queue length

RLF3 pressure [presslight]
(per movement) pressure [presslight]

RLF4 pressure [mplight]
(per movement) pressure [mplight]

RLF5 time loss
(per movement) time loss

RLF6 pressure [time loss]
(per movement) pressure [time loss]

recur to information from both entering and exiting lanes. One important consideration

is that the exiting lanes naturally do not provide as much information in the single-

intersection as they do in the multi-intersection case since, in the former, the vehicles just

flow out of the city grid instead of sometimes waiting at the next intersection. Thus, the

pressure formulations are better assessed in the Multi-Intersection scenario.

The experiments were executed in 8 and 14 phases set for each scenario. Table 5.5

and Figures 5.4 and 5.5 show the results for the Single-Intersection scenario and Table 5.6

and Figures 5.6 and 5.7 show the results for the Multi-Intersection scenario. We picked

the best 10-round average results. For the best round in the specified window, check the
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Appendix B.

Table 5.5: Time loss-based objectives results for the single-intersection scenario

Model
Cumulative
Time Loss
per Driver

Improvement
Percentage
Time Loss
per Driver

Improvement

Static 40.03 - 0.48 -
Unregulated 4.23 - 0.09 -

8 phases

RLF1 44.93 \ 0.51 \
RLF2 62.99 \ 0.58 \
RLF3 49.37 \ 0.53 \
RLF4 72.20 \ 0.60 \
RLF5 38.59 3.60% 0.47 2.28%
RLF6 38.72 3.28% 0.47 2.07%

14 phases

RLF1 22.07 44.87% 0.33 30.10%
RLF2 115.56 \ 0.64 \
RLF3 22.78 43.11% 0.34 29.01%
RLF4 28.74 28.21% 0.39 18.54%
RLF5 21.37 46.61% 0.33 31.70%
RLF6 21.41 46.52% 0.33 31.48%

In both scenarios, the Time Loss (RLF5) and Time Loss Pressure (RLF6) formu-

lations we propose performed better than the others in cumulative time loss per driver

and percentage time loss per driver. Specifically, in the single-intersection case, our RL

formulations produced up to 47% and 31% improvement over the static baseline (3%

improvement over Frap’s third place RLF1), for the respective objectives, while in the

multi-intersection case, those numbers go up to 55% and 31% improvement (6% improve-

ment over Frap’s third place RLF1). Besides delivering better results, the Time Loss

and Time Loss Pressure formulations also achieve faster convergence (17%-34% –26-81

rounds– from Time Loss Pressure and 4%-5% –6-12 rounds– from Time Loss over Frap’s

third place RLF1) and enhanced stability (1.66-7.08 std. dev. after convergence from

Time Loss Pressure and 2.04-8.78 std. dev. after convergence from Time Loss versus

Frap’s third place RLF1 13.12-10.29) in all the experiments, as seen in Tables 5.7 and 5.8.

Figures 5.4, 5.5, 5.6, and 5.7 show the results for all experiments.

Another important result is the difference in the time loss metrics between 8 and 14

phases. The addition of phases to the default 8-phases configuration (recall Figure 4.1c)

improves up to 45% for the cumulative time loss per driver and up to 30% for the per-
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Table 5.6: Time loss-based objectives results for the multi-intersection scenario

Model
Cumulative
Time Loss
per Driver

Improvement
Percentage
Time Loss
per Driver

Improvement

Static 105.77 - 0.61 -
Unregulated 7.22 - 0.10 -

8 phases

RLF1 96.19 9.06% 0.59 3.53%
RLF2 145.34 \ 0.67 \
RLF3 128.57 \ 0.65 \
RLF4 128.69 \ 0.65 \
RLF5 83.87 20.70% 0.56 8.86%
RLF6 104.85 0.87% 0.61 0.42%

14 phases

RLF1 50.42 52.33% 0.43 29.15%
RLF2 132.11 \ 0.63 \
RLF3 60.12 43.17% 0.47 22.31%
RLF4 99.50 5.93% 0.56 7.91%
RLF5 47.28 55.30% 0.42 31.65%
RLF6 48.87 53.79% 0.42 30.36%

centage time loss per driver, when considered the results for each group. The reason is

that more movements are serviced at the same time when using the conflicting-movements

phases.

RLF2, which uses Average Queue Length, achieved worse results than the static base-

line in all experiments. An explanation is that similarly to the queue length objective (O3,

Section 3.1), average queue length fails to capture the time loss as vehicles traveling at

very low speeds are not enqueued, differently from Vehicles Been Stopped (RLF1), which

only considers the queue cleared after the vehicles crossed the intersection. This modifi-

cation results in better traffic control (up to 62% improvement in the multi-intersection

case) when comparing both. Similarly, the MPLight Pressure (RLF4), which is also

based on the queue length, presented worse results, although it still achieved a modest

improvement in the 14-phase experiments.

5.3.3.1 Average Travel Time Objective Comparison

To understand how the RL formulations perform considering travel time, we collected

results for the already-discussed (in Section 4.1) Average Travel Time and Throughput

objectives (both used by Chen [15]) alongside the Average Time Loss objective (the time
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Table 5.7: RL formulation convergence and stability results for the single-intersection
scenario

Model
Cumulative
Time Loss
per Driver

Convergence
Round

Std. Dev.
after

Convergence

early stable early stable early stable
8 phases

RLF1 - 44.93 - 123 - 1.71
RLF2 - 62.99 - 315 - 39.00
RLF3 49.37 50.32 153 310 21.37 3.80
RLF4 - 72.20 - 226 - 21.94
RLF5 - 38.59 - 120 - 1.29
RLF6 - 38.72 - 113 - 1.50

14 phases

RLF1 - 22.07 - 153 - 13.12
RLF2 130.11 115.56 201 254 41.17 41.92
RLF3 - 22.78 - 160 - 2.03
RLF4 - 28.74 - 196 - 37.93
RLF5 - 21.37 - 147 - 2.04
RLF6 - 21.41 - 127 - 1.66

Model
Percentage
Time Loss
per Driver

Convergence
Round

Std. Dev.
after

Convergence

early stable early stable early stable
8 phases

RLF1 - 0.51 - 126 - 0.01
RLF2 - 0.58 - 332 - 0.06
RLF3 0.53 0.53 157 308 0.05 0.02
RLF4 - 0.60 - 223 - 0.04
RLF5 - 0.47 - 120 - 0.01
RLF6 - 0.47 - 125 - 0.01

14 phases

RLF1 0.33 0.33 153 313 0.06 0.02
RLF2 0.69 0.64 225 360 0.06 0.08
RLF3 - 0.34 - 160 - 0.02
RLF4 - 0.39 - 196 - 0.10
RLF5 - 0.33 - 147 - 0.02
RLF6 - 0.33 - 134 - 0.01

loss equivalent of the average travel time metric).

As we can see in Tables 5.9 and 5.10, the results follow the same trend presented by the

time loss-based objective results (Tables 5.5 and 5.6), with Time Loss (RLF5) and Time
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Table 5.8: RL formulation convergence and stability results for the multi-intersection
scenario

Model
Cumulative
Time Loss
per Driver

Convergence
Round

Std. Dev.
after

Convergence

early stable early stable early stable
8 phases

RLF1 - 96.19 - 220 - 2.47
RLF2 322.78 145.34 83 320 100.83 42.65
RLF3 - 128.57 - 116 - 16.18
RLF4 - 128.69 - 160 - 17.28
RLF5 - 83.87 - 122 - 8.22
RLF6 - 104.85 - 127 - 4.32

14 phases

RLF1 70.77 50.42 153 242 23.59 10.29
RLF2 132.11 269.22 133 250 59.82 28.13
RLF3 64.33 60.12 190 248 38.02 16.41
RLF4 99.5 199.43 293 360 59.26 37.61
RLF5 74.19 47.28 182 230 17.14 8.78
RLF6 - 48.87 - 161 - 7.08

Model
Percentage
Time Loss
per Driver

Convergence
Round

Std. Dev.
after

Convergence

early stable early stable early stable
8 phases

RLF1 - 0.59 - 220 - 0.01
RLF2 - 0.67 - 382 - 0.03
RLF3 - 0.65 - 116 - 0.02
RLF4 - 0.65 - 160 - 0.02
RLF5 - 0.56 - 122 - 0.01
RLF6 - 0.61 - 127 - 0.01

14 phases

RLF1 0.49 0.45 170 290 0.05 0.03
RLF2 0.63 0.76 133 250 0.05 0.01
RLF3 0.49 0.47 190 248 0.06 0.04
RLF4 0.56 0.69 293 360 0.07 0.04
RLF5 0.45 0.42 162 230 0.06 0.03
RLF6 - 0.42 - 161 - 0.02

Loss Pressure (RLF6) as the best results. The conclusion is that the RL formulations

presented consistent results between the different objectives addressed. Also, as discussed

in Section 4.1.1, optimizing the time loss implies in optimizing the travel time since the

former is naturally included in the latter.
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.4: Single-Intersection (8 phases) learning process

Also, in Section 4.1 we discussed the throughput role as co-objective for assessing the

average travel time and that some methods might produce a traffic shaping behavior to

get lower travel times. In the multi-intersection scenario, for example, RLF4 (14 phases)

has, at the same time, lower average travel time and lower throughput than Static, for

example. Our time loss-based proposition considers the total of vehicles (departed +

pending) instead, which is consistent for all methods, not requiring the throughput as

co-objective (as discussed in Section 4.1).
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.5: Single-Intersection (14 phases) learning process

5.3.3.2 Impact of Pending Vehicles on Metrics

Similar to the average travel time, the average time loss also does not account for pending

vehicles. When considering pending vehicles, each trip begins when the vehicle is supposed

to enter the simulation grid, increasing its travel time and time loss in the cases where

the vehicle delays its actual entry. Tables 5.11 and 5.12 present the impact of pending

vehicles in both metrics.

Intuitively, the impact of pending vehicles on the metrics is more significant as the

traffic becomes heavier, which in turn, it is more likely to occur on denser and more

complex scenarios. However, even in the simple scenarios presented, this effect can be
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.6: Multi-Intersection (8 phases) learning process

seen. For example, in the multi-intersection scenario, the static controller yields on average

8.06 seconds per trip of time loss (approximately 8% of the total time loss) from pending

vehicles, where the best result reduces this "extra" time loss to 0.02 seconds (about 0.02%

of the total) per trip. That is, not to account for the time loss of pending vehicles can

mask the actual improvement obtained by better methods, changing from 49% (without

pending vehicles) to 53% improvement in the average time loss objective results. Our

proposed time loss-based objectives account for pending vehicles and, therefore, they do

not suffer from this discrepancy.

In the average time loss metric, similar to the average travel time, the vehicles need
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.7: Multi-Intersection (14 phases) learning process

to finish their trips so the objective can account for their time losses. Consequently, at

intermediate steps, the average time loss only approximates the cumulative time loss per

driver objective. Eventually, when all vehicles finish their trips, both objective results

match.

5.4 Planning Experimental Results

In this section, we experiment with Planning (for non-planning experiments, check Sec-

tion 5.3). Section 5.4.1 discusses what planning alone looks like. Section 5.4.2 evaluates
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Table 5.9: Other objectives’ results for the single-intersection scenario

Model
Average
Travel
Time

Improv. Throughput Improv.
Average
Time
Loss

Improv.

Static 83.96 - 4181 - 40.45 -
Unregulated 47.80 - 4218 - 4.26 -

8 phases

RLF1 88.52 \ 4170 \ 45.01 \
RLF2 103.47 \ 4144 \ 59.99 \
RLF3 92.88 \ 4165 \ 49.37 \
RLF4 108.95 \ 4119 \ 65.53 \
RLF5 82.35 1.91% 4182 0.02% 38.84 3.99%
RLF6 82.47 1.77% 4180 \ 38.96 3.70%

14 phases

RLF1 65.83 21.59% 4204 0.54% 22.31 44.85%
RLF2 113.95 \ 3902 \ 70.65 \
RLF3 66.55 20.73% 4204 0.55% 23.03 43.06%
RLF4 72.55 13.59% 4201 0.48% 29.03 28.23%
RLF5 65.14 22.42% 4205 0.56% 21.61 46.57%
RLF6 65.16 22.39% 4205 0.57% 21.64 46.51%

Table 5.10: Other objectives’ results for the multi-intersection scenario

Model
Average
Travel
Time

Improv. Throughput Improv.
Average
Time
Loss

Improv.

Static 161.01 - 8128 - 96.25 -
Unregulated 72.41 - 8466 - 7.28 -

8 phases

RLF1 159.82 0.74% 8198 0.86% 94.91 1.40%
RLF2 190.29 \ 7857 \ 125.76 \
RLF3 192.66 \ 8023 \ 127.99 \
RLF4 190.10 \ 7988 \ 125.44 \
RLF5 148.17 7.97% 8221 1.15% 83.24 13.52%
RLF6 167.01 \ 8147 0.23% 102.21 \

14 phases

RLF1 115.64 28.18% 8339 2.59% 50.59 47.44%
RLF2 172.92 \ 7923 \ 108.32 \
RLF3 124.95 22.40% 8301 2.13% 59.94 37.73%
RLF4 149.92 6.89% 8016 \ 85.20 11.48%
RLF5 112.56 30.09% 8351 2.74% 47.51 50.64%
RLF6 114.18 29.08% 8346 2.68% 49.13 48.96%
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Table 5.11: Pending vehicles impact on metrics for the single-intersection scenario

Model
Average
Travel
Time

+ pending
vehicles

Average
Time
Loss

+ pending
vehicles

Cumulative
Time Loss
per Driver

Static 83.96 + 0.01 40.45 + 0.01 40.03
Unregulated 47.80 + 0.01 4.26 + 0.01 4.23

8 phases

RLF1 88.52 + 0.01 45.01 + 0.01 43.93
RLF2 103.47 + 2.61 59.99 + 2.61 62.99
RLF3 92.88 + 0.01 49.37 + 0.01 49.30
RLF4 108.95 + 6.37 65.53 + 6.37 72.20
RLF5 82.35 + 0.01 38.84 + 0.01 38.59
RLF6 82.47 + 0.01 38.96 + 0.01 38.72

14 phases

RLF1 65.83 + 0.01 22.31 + 0.01 22.07
RLF2 113.95 + 33.28 70.65 + 33.28 115.56
RLF3 66.55 + 0.01 23.03 + 0.01 22.78
RLF4 72.55 + 0.05 29.03 + 0.05 28.74
RLF5 65.14 + 0.01 21.61 + 0.01 21.37
RLF6 65.16 + 0.01 21.64 + 0.01 21.41

Table 5.12: Pending vehicles impact on metrics for the multi-intersection scenario

Model
Average
Travel
Time

+ pending
vehicles

Average
Time
Loss

+ pending
vehicles

Cumulative
Time Loss
per Driver

Static 161.01 + 8.06 96.25 + 8.06 105.77
Unregulated 72.41 + 0.01 7.28 + 0.01 7.22

8 phases

RLF1 159.82 + 0.32 94.91 + 0.32 96.19
RLF2 190.29 + 9.89 125.76 + 9.89 145.34
RLF3 192.66 + 4.31 127.99 + 4.31 135.08
RLF4 190.10 + 2.49 125.44 + 2.49 133.58
RLF5 148.17 + 0.12 83.24 + 0.12 83.87
RLF6 167.01 + 0.70 102.21 + 0.70 104.85

14 phases

RLF1 115.64 + 0.04 50.59 + 0.04 50.42
RLF2 172.92 + 16.93 108.32 + 16.93 132.11
RLF3 124.95 + 0.06 59.94 + 0.06 60.12
RLF4 149.92 + 8.26 85.20 + 8.26 99.50
RLF5 112.56 + 0.03 47.51 + 0.03 47.28
RLF6 114.18 + 0.02 49.13 + 0.02 48.87
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different types of Planning and some policies for action-selection. Section 5.4.3 analyzes

how the learning sample generation (i.e., interactions with the environment) deals with

the learning sample size configuration (i.e., the portion of the interactions are really

used during learning). Finally, Section 5.4.4 reviews the RL formulation tests with the

Frap+Planning case.

5.4.1 Planning Only

In this experiment, we test the 2 phases set and 14 phases set configurations (PSC7 and

PSC4, respectively, from Section 5.3.2) to evaluate the planning component alone. As

explained in Section 5.2, the PlanningOnly agent takes the next action based solely on

the total reward from future paths, that is, without any learning component (essentially a

limited-depth breadth-first search). While the extensive search for the best path is clearly

an exhaustive and impractical task, it does bring a sense of how learning methods work

with and without planning. We test the 2-phases set with 3, 6, 9, and 12 iterations ahead

(8, 64, 512, 4096 paths, respectively) and the 14-phases set with 3 iterations (2744 paths),

where each iteration corresponds to 10 seconds. We use Frap’s Vehicle been stopped -

RLF1 - formulation (〈Number of Vehicles, Vehicle Been Stopped〉) in a single intersection

for this experiment.

Table 5.13: Time loss-based objectives results for ’Planning Only’

Model
Cumulative
Time Loss
per Driver

Improvement
Percentage
Time Loss
per Driver

Improvement

Static 40.03 - 0.48 -
Unregulated 4.23 - 0.09 -

2 phases

RLF1

3 iterations 46.49 \ 0.50 \
6 iterations 40.49 \ 0.47 2.08%
9 iterations 41.67 \ 0.48 \
12 iterations 47.16 \ 0.51 \

14 phases

RLF1 3 iterations 65.19 \ 0.59 \

As we can see in Table 5.13, the simple planning itself did not achieve great results

for the tested future extent, staying even behind the static configuration (between 40

and 46 for cumulative time loss per driver and 0.47 and 0.50 for percentage time loss

per driver). This result denotes that planning alone may need to look way further to
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achieve comparable results and that RL solutions are implicitly doing much more than

anticipating 12 iterations (120s).

The result of 9 iterations performing slightly worse than 6 and 12 worse than 3 iter-

ations could be due to moments where more than one path yields the best reward, and

the wrong choice can lead to worse later paths. We checked the time loss formulation

for the same configurations, and the same behavior happened (34.23 and 33.73 for 9 and

6 iterations, respectively). Furthermore, the 14 phases 3 iterations result also points to

the same conclusion, since all phases from the 2 phases set are also present in the 14

phases set, but the latter was significantly worse than the former for the same number of

iterations along with having more action options to take a sub-optimal path.

Table 5.14: Different RL formulation results for ’Planning Only’

Model
Cumulative
Time Loss
per Driver

Improvement
Percentage
Time Loss
per Driver

Improvement

Static 40.03 - 0.48 -
Unregulated 4.23 - 0.09 -

2 phases

RLF1 3 iterations 46.49 \ 0.50 \
6 iterations 40.49 \ 0.47 2.08%

RLF2 3 iterations 221.26 \ 0.79 \
6 iterations 195.33 \ 0.77 \

RLF3 3 iterations 37.60 6.07% 0.46 4.17%
6 iterations 35.08 12.37% 0.44 8.33%

RLF4 3 iterations 221.26 \ 0.79 \
6 iterations 195.33 \ 0.77 \

RLF5 3 iterations 34.72 13.27% 0.44 8.33%
6 iterations 33.73 15.74% 0.43 10.42%

RLF6 3 iterations 37.72 5.77% 0.46 4.17%
6 iterations 34.37 14.14% 0.44 8.33%

We also test the others RL formulations - RLF2, RLF3, RLF4, RLF5, and RLF6 -

(recall Table 5.4) to verify how they differ in a scenario without any learning component

(see Table 5.14). Compared to the baseline, the other formulations had a similar outcome,

that is, equally distant from the non-planning results. Looking only for the RL formu-

lations, RLF3 and our time loss formulations, RLF5, and RLF6, achieved better results

when looking at three and six actions in the future (between 34 and 38 for cumulative

time loss per driver, and 0.43 and 0.46 for percentage time loss per driver). Although the

planning alone did not yield good results, at least up to the tested horizon of 120 seconds,
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these results indicate that our time loss formulations are more suitable for representing

the objective since the rewards alone led to better paths. As a further matter, the same

reason why RLF2 and RLF4 did not work well in the RL formulation experiment (Sec-

tion 5.3.3), that is, the notion of queue length does not adequately represent the time loss

objective, also applies here.

5.4.2 Types of Planning and Action Sampling Policy

To test Frap+Planning, we have to introduce some parameters of Planning and verify

which configuration works best for the TSC problem. In this section, we evaluate the

different types of planning and the action sampling policies.

For the different types of planning, recall from Section 2.2.3 we talked that Plan-

ning can be used either as background planning, decision-time planning, or both at the

same time. That is, the agent can use future-interactions to either or both generate

more learning samples and pick final actions. The action sampling policy, in turn, is

necessary because we might want to test subsets of the actions instead of testing them

all to avoid a combinatorial explosion from searching the future-state-space tree. For

this parameter, we selected different configurations: best action (according to the agent’s

current policy), random action, and exploration-exploitation (the same trade-off found

in Learning). Note that some of the configurations are not compatible, for example, we

do not want to have ’random action’ combined with the decision-time planning since

this would defeat the reward exploitation. The combinations of planning and action sam-

pling policy tested are the following: 〈background planning, random action〉, 〈background
planning, best action〉, 〈decision-time planning, best action〉, 〈background and decision-

time planning, best action〉, 〈background planning, exploration-exploitation〉, 〈decision-
time planning, exploration-exploitation〉, and 〈background and decision-time planning,

exploration-exploitation〉, summarized in Table 5.15.

Concerning other parameters, for this experiment, we use the single intersection sce-

nario with the Frap’s Vehicle been stopped (RLF1) RL formulation, an action sampling

size of 2 (i.e., two sampled actions per iteration), and two iterations ahead (more about

the latter two in Section 5.4.3). We chose these parameters because we wanted a simple

planning baseline for further experimentation. Table 5.16 summarizes the results, where

early and stable refers to different moments of convergence, being early either if the agent

diverges afterwards or suddenly converges later at another result. In this experiment, the

non-planning result is the baseline.
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Table 5.15: Types of planning and action sampling tested

Configuration Planning Type Action Sampling Policy

BP-RA background planning random action
BP-BA background planning best action
DTP-BA decision-time planning best action

B&DTP-BA background and
decision-time planning best action

BP-EE background planning exploration-exploitation
DTP-EE decision-time planning exploration-exploitation

B&DTP-EE background and
decision-time planning exploration-exploitation

Since the best RL formulations presented a very stable result for the non-Planning

experiments, planning must at least improve time savings or convergence to make adding it

advantageous. From the results, BP-BA, DTP-BA, BP-EE, DTP-EE achieved comparable

results when considering only the time loss; however, only DTP-BA and DTP-EE also

achieved comparable convergence (although slightly worse than no planning). All four of

them also achieved good stability, with highlights for BP-BA and BP-EE being very close

to no variation. However, combining background planning and decision-time planning

did not work well, being significantly worse than their results when applied separately.

We should note that we are using the same future experience for both strategies, while a

model would make it easy to test this strategy with different action selections.

Concerning the action sampling policy, BA and EE results did not differ so much

from each other, suggesting that the ’best actions’ at the start of learning may appear as

good as mainly taking random actions. Later in the learning process, when the actions

are better known, EE favors mostly ’best actions’, being naturally closer to BA.

Lastly, BP-RA had an interesting result. Although BP-RA has the worst time loss

result in this experiment, its early convergence reached 58% of the ’No Planning’ stable

convergence. If by adjusting the Planning parameters, the learning becomes more stable,

it can be a good configuration candidate for incorporating Planning to RL TSC. We are

going to explore more of BP-RA in the following experiments.



5.4 Planning Experimental Results 59

Table 5.16: Types of planning and action sampling policy results

Model
Cumulative
Time Loss
per Driver

Convergence
Round

Std. Dev.
after

Convergence

early stable early stable early stable
No Planning - 22.07 - 153 - 13.12

BP-RA 38.61 68.07 88 150 39.16 35.68
BP-BA - 22.41 - 227 - 2.15
DTP-BA - 22.20 - 158 - 21.78

B&DTP-BA 44.91 53.48 228 290 115.13 96.36
BP-EE - 21.84 - 235 - 2.32
DTP-EE - 22.22 - 168 - 10.10

B&DTP-EE - 62.55 - 220 - 96.18

5.4.3 Action Sampling Size, Number of Iterations, and Sample
Size

When using Planning, we want to control how far we look in the future (search tree

depth) and how many actions we consider each time (search tree breadth). For this,

we adjust, respectively, the number of the iterations and the action sampling size (we

already discussed how to choose the future actions in Section 5.4.2). Furthermore, the

different settings of those two parameters, given the use of background planning, also

impact how many learning samples are generated in the learning phase (see Table 5.17).

Given this, the sample size parameter (i.e., how much experience policy update uses) may

need to change to keep up with a larger sample generation. Specifically, in this Section,

we want to analyze how these parameters work together and their impacts on learning

speed (wall-clock time and learning convergence).

Table 5.17: Sample size based on action sampling size and number of iterations

Action
Sampling

Size

Number of
Iterations

Learning Samples
Generated by Round

No Planning 1080
2 2 7560 (7x)
5 2 33480 (31x)
2 5 68040 (63x)
3 2 14040 (13x)
2 3 16200 (15x)
14 1 16200 (15x)
1 14 16200 (15x)
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We want to measure how long it would take to update the policy when generating

more samples, regardless of the extra simulation time, since a model can be used instead.

For that concern, we measured how long it takes for sample size values of 1,000 (the

default parameter in non-planning experiments), 10,000, 20,000, 30,000, 50,000, 100,000,

and 1,000,000. We present relative numbers because actual time may vary depending on

hardware and software aspects. See Table 5.18 for the update time results, where 1x is

approximately four minutes, obtained empirically.

Table 5.18: Sample size and policy update time

Sample Size
Policy Update
Wall-clock Time

Per-round

1000 1x
10000 1.94x
20000 2.27x
30000 4.80x
50000 8.17x
100000 17.50x
1000000 *(several hours)

As sample size increases, time per round becomes unacceptable, in such a way that

100,000 takes approximately an hour to update the policy. Given that, we canceled the

planned experiments "2; 5; 100,000" and "5; 2; 100,000" (action sampling size; number

of iterations; sample size) and limited our tests to sample sizes at a maximum of 20,000.

That way, we also could test more action sampling and iteration options.

Next, we want to assess how far we can go with the parameters and check if the sample

size should follow the amount of experience generated. For this, we picked configurations

that generate much more learning samples (i.e., 7x, 13x, 15x, 31x, and 63x) and tested

with different values of sample size. For the experiments between 10x and 20x of sample

generation, we test samples sizes of 10,000 and 20,000 to verify if the amount of learning

sample used does any difference. For the configurations which generate more than 20x

learning samples, we tested sample sizes of 1,000 and 10,000 since they take longer in the

simulation.

The configurations are:

• (1) 〈2 sampled actions, 2 iterations, sample size of 1,000〉,

• (2) 〈2 sampled actions, 2 iterations, sample size of 10,000〉,
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• (3) 〈5 sampled actions, 2 iterations, sample size of 1,000〉,

• (4) 〈5 sampled actions, 2 iterations, sample size of 10,000〉,

• (5) 〈2 sampled actions, 5 iterations, sample size of 1,000〉,

• (6) 〈2 sampled actions, 5 iterations, sample size of 10,000〉,

• (7) 〈3 sampled actions, 2 iterations, sample size of 10,000〉,

• (8) 〈3 sampled actions, 2 iterations, sample size of 20,000〉,

• (9) 〈2 sampled actions, 3 iterations, sample size of 10,000〉,

• (10) 〈2 sampled actions, 3 iterations, sample size of 20,000〉,

• (11) 〈14 sampled actions, 1 iteration, sample size of 10,000〉,

• (12) 〈14 sampled actions, 1 iteration, sample size of 20,000〉,

• (13) 〈1 sampled action, 14 iterations, sample size of 10,000〉, and

• (14) 〈1 sampled action, 14 iterations, sample size of 20,000〉.

The results are presented in Table 5.19, where "No Planning" is the baseline, early

and stable refers to different moments of convergence, actn. is the action sampling size,

iter. is the number of iterations, and samp. is the sample size parameter.

From the results, (1), (3), (9), and (11) diverged, with (3) heavily diverging, (2) and

(7) achieved comparable time loss results along with a slightly quicker convergence, (4)

and (5) stabilized the converge too late, although (5) achieved closer time loss with a very

early convergence. Finally, (6) and particularly (13) did not converge enough. While (1)

and (3) dramatically improved their result when raising the sample size from 1,000 to

10,000, the same did not happen with (5). Based on this outcome, we could not find any

correlation between different sample sizes or between different numbers of actions and

iterations. Therefore we consider this as a significant setback for Frap+Planning.

5.4.4 RL Formulation and Planning

Here we test how Planning impact RL formulation results and their convergence time when

compared to non-Planning and if the RL formulations are influenced equally. For this we

test the RL formulations which presented the best results from Section 5.3.3. They are (see
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Table 5.19: Action sampling size, number of iterations, and sample size results

Model
Cumulative
Time Loss
per Driver

Convergence
Round

Std. Dev.
after

Convergence

planning actn; iter.; samp. id early stable early stable early stable
No Planning (0) - 22.07 - 153 - 13.12

BP-RA

2; 2; 1000 (1) 38.61 68.07 88 150 39.16 35.68
2; 2; 10000 (2) 26.52 21.42 105 127 16.23 7.69
5; 2; 1000 (3) 52.58 156.62 35 205 81.32 73.38
5; 2; 10000 (4) 36.17 27.28 75 240 60.98 83.47
2; 5; 1000 (5) 24.63 21.85 50 240 22.03 25.99
2; 5; 10000 (6) 36.02 46.06 65 356 32.65 20.46
3; 2; 10000 (7) - 23.33 - 119 - 21.72
3; 2; 20000 (8) 23.04 23.12 103 355 48.99 6.81
2; 3; 10000 (9) 26.93 44.90 97 283 50.07 18.64
2; 3; 20000 (10) 42.56 22.22 56 370 86.27 1.73
14; 1; 10000 (11) 32.87 51.13 82 120 29.49 28.52
14; 1; 20000 (12) 28.06 22.72 66 357 38.48 13.63
1; 14; 10000 (13) 64.91 60.14 135 200 32.95 35.10
1; 14; 20000 (14) 71.45 23.22 89 330 32.80 2.20

Table 5.20): (RLF1) 〈Number of Vehicles, Vehicle Been Stopped〉; (RLF5) 〈Time Loss,

Time Loss〉; and (RLF6) 〈Time Loss Pressure, Time Loss Pressure〉. We focus on the 14

phases set configuration in the single-intersection for this test and, since the results from

Section 5.4.3 were somewhat inconclusive, we stick to the original 2 actions and 2 iterations

and test two options of sample (1,000 and 10,000). Since the planning experiments seem

more volatile in their learning, we ran 3 executions from each formulation and sample

size, averaging the results at each group. The results are presented in Table 5.21. For the

full convergence curves, see Figures 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13, where no planning

refers to the RLF6 (no planning) configuration.

Table 5.20: RL formulations tested

RL Formulation State Reward

RLF1

current phase

number of vehicles
(per movement)

number of vehicles
have been stopped

RLF5 time loss
(per movement) time loss

RLF6 pressure [time loss]
(per movement) pressure [time loss]

The Planning helps the agent in the major convergence part (i.e., the beginning of the
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learning), achieving acceptable results with far fewer rounds (53-92 rounds, or 42%-72%,

earlier in some cases). Still, right after it, the planning seems to obstruct the learning,

making it, when not diverge, slowly converge to comparable results. Considering only the

average results, RLF6 (sample of 1,000) achieved the best planning result. However, it

still did not manage to stay ahead of its non-planning counterpart or other non-planning

experiments. Similarly to non-planning experiments, the time loss formulations are more

stable after convergence.

The results suggest that the generated extra experience becomes irrelevant, even detri-

mental to learning, right after converging faster, meaning that either a better planning

algorithm should be used or that experiences should be filtered or worked on before serv-

ing as learning samples. One possible solution would be to filter repetitive interactions

out to balance the importance the agent gives when sampling experience.
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Table 5.21: RL formulation results

Model
Cumulative
Time Loss
per Driver

Convergence
Round

Std. Dev.
after

Convergence

planning samp. rl form. (try) early stable early stable early stable

No Planning
1000 RLF1 - 22.07 - 153 - 13.12
1000 RLF5 - 21.37 - 147 - 2.04
1000 RLF6 - 21.41 - 127 - 1.66

BP-RA

1000 RLF1 (1st) 38.61 68.07 88 150 39.16 35.68
1000 RLF1 (2nd) 23.64 30.26 100 240 25.21 27.24
1000 RLF1 (3rd) 40.32 22.57 97 300 31.95 7.97
1000 RLF1 (avg) 34.19 40.30 95 230 32.11 23.63

BP-RA

1000 RLF5 (1st) 27.05 32.61 82 240 13.90 11.75
1000 RLF5 (2nd) 23.22 24.20 94 160 9.78 7.18
1000 RLF5 (3rd) 31.94 27.49 78 200 22.27 5.04
1000 RLF5 (avg) 27.40 28.10 85 200 15.32 7.99

BP-RA

1000 RLF6 (1st) 32.21 35.02 120 154 10.52 9.95
1000 RLF6 (2nd) - 21.15 - 71 - 2.81
1000 RLF6 (3rd) - 21.25 - 82 - 4.66
1000 RLF6 (avg) 24.87 25.81 91 102 6.00 5.81

BP-RA

10000 RLF1 (1st) 26.52 21.42 105 127 16.23 7.69
10000 RLF1 (2nd) 27.07 60.15 121 352 30.11 27.83
10000 RLF1 (3rd) - 24.11 - 158 - 21.53
10000 RLF1 (avg) 25.90 35.23 128 212 22.62 19.02

BP-RA

10000 RLF5 (1st) 31.15 27.43 78 285 21.65 3.56
10000 RLF5 (2nd) - 22.27 - 96 - 5.97
10000 RLF5 (3rd) 28.93 20.91 89 248 20.65 5.73
10000 RLF5 (avg) 27.45 23.70 88 210 16.10 5.09

BP-RA

10000 RLF6 (1st) 36.61 21.74 74 158 24.48 35.31
10000 RLF6 (2nd) 27.31 23.39 61 174 27.81 10.42
10000 RLF6 (3rd) - 24.52 - 123 - 4.25
10000 RLF6 (avg) 29.48 23.22 86 152 18.85 16.66
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.8: Planning RLF1 (sample of 1000) results
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.9: Planning RLF5 (sample of 1000) results



5.4 Planning Experimental Results 67

(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.10: Planning RLF6 (sample of 1000) results
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.11: Planning RLF1 (sample of 10000) results
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.12: Planning RLF5 (sample of 10000) results
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(a) Cumulative time loss per driver comparison

(b) Percentage time loss per driver comparison

Figure 5.13: Planning RLF6 (sample of 10000) results



Chapter 6

Conclusion

Most previous Reinforcement Learning (RL) works solve the Traffic Signal Control prob-

lem using travel time as the objective. Our insight is to identify shortcomings of such

approaches, namely the difficulty of deriving a reward mechanism and the limitations on

assessment of cases. Then, we proposed a time-loss-based objective, presented in two

forms: percentage time loss per driver and cumulative time loss per driver. We show the

relationship between them and the travel time objective and that optimizing the time loss

also optimizes the travel time. We also conducted experiments with a time loss and a

time loss pressure, which are state/reward formulations that better relate to the proposed

objective.

Our formulations perform better than the baselines we established, achieving up to

55% of improvement over static for cumulative time loss per driver and 31% of improve-

ment for percentage time loss per driver. Our formulations also achieve up to 34% – 81

rounds – faster convergence and enhanced stability than the state-of-art RL formulation.

These results point out that our time loss RL formulations are better correlated with the

time loss objective.

We also experimented with different phase set configurations, showing that using

conflicting phases and relying on right-of-way traffic rules to coordinate vehicles reduces

the time loss up to 53% in the single intersection scenario. Additionally, concerning

user-friendliness traffic light policies, we implement a waiting time restriction in all the

experiments. We present the differences between the constrained and unconstrained policy

and that the restriction avoids vehicles excessive waiting time.

Furthermore, while most RL TSC proposals tackle model-free RL, we wanted to as-

sess how a model-based (also called Planning) approach would benefit the agent since
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Planning allows for a more diverse experience through interactions with the future. We

conducted experiments using simulation instead of using a model because we wanted to

avoid modeling approximation errors.

In our Planning experiments, the results suggest that the experience of the future

interactions helps the agent converge considerably faster at first but becomes irrelevant,

even detrimental, in the middle of the learning process. We also could not find any

correlation between the number of learning samples generated by background planning

and used by the policy update.

6.1 Limitations

We followed the idea of using simulation to assess how Planning can benefit the learning

process so that the results would not be limited by any model particular design. Although

using a simulation for Planning removes concerns about learning a model and its error, it

adds a time constraint since it typically takes more time to simulate than to use a model.

This way, the extra time may limit the number of interactions the agent can make, also

limiting the number of experiments. Also, we store experience indistinctly; the agent

may start visiting irrelevant future states, consequently reducing the overall quality of

the learning samples.

For the experiments, we used the default hyperparameters available in Frap’s [68]

GitHub repository. On one hand, we saved some time and avoided tampering with the

results presented by the RL formulations, on the other, we do not know if the parameters

would also be ideal for the Planning experiments. Since there are already so many pa-

rameters in the regular Frap, and the RL experiments generally take much time, we stuck

with the default parameters, only tweaking the sample size and the max memory length

(updating it to remain at 10x the sample size, as the default).

There are many ways to build state and reward formulations for RL TSC. We chose

some works that presented interesting results while conducting other exploratory tests to

understand the agent’s behavior. Therefore, there is a vast amount of RL formulations

to be considered and tested when proposing new solutions.
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6.2 Future Work

The most evident extension is to investigate other formulations of state and reward. We

would also like to remove the 10s time slots for action and make it more continuous,

incorporating only a notion of minimum and maximum time.

Another extension of this work can investigate superior planning algorithms, such as

Monte-Carlo Tree Search, and how to value and manage the experience to provide more

relevant learning samples to policy update.

For both Planning and non-Planning experiments, further testing is needed to assess

more complex scenarios. In future work, we will consider more demand variations (e.g.,

dynamic distribution of departing vehicles) and different network structures (e.g., real-

world scenarios provided by open-source initiatives such as Sumo [32], Flow [59, 60], or

CityFlow [65]).

Additionally, we would like to examine how to accommodate complementary objec-

tives at once, such as time savings + safety + comfort, for example, and how to model

RL states and rewards for the joint objective context. Also, add more information such

as weather conditions and security data to help the agent’s decision-making process and

how to collect and incorporate such diverse data into the simulation itself.
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APPENDIX A -- List of Parameters and
Hyperparameters

In this appendix, we list the parameters and hyperparameters used by the environment

(Section A.1) and the Frap and Frap+Planning agents (Section A.2).

A.1 Environment

• The yellow time is set to three seconds, matching the same conditions encountered

on the baseline.

• No teleportation. Vehicles in Sumo teleport to the next lane after some time idling,

overriding the signal control. Teleportation is completely undesired since traffic

behavior shapes the reward. Setting time-to-teleport to -1 (minus one) deactivates

it;

• Collision stop time. Vehicles stop for a total of 10 (ten) seconds when they collide;

• Collision detection boundary. Setting collision.minigap-factor to 0 (zero) makes

collisions physical only (overlapping of vehicles);

• Collision consequence. Setting to warn the teleportations due to collision are also

disabled;

• Collision check junctions. Setting to true to check for collisions in the intersection

(always deactivated on unregulated junctions);

• Ignore junction blocker. It sets the time to wait for junctions blocker overtaking.

As already mentioned, custom deadlock resolution is applied.

A.2 Agent
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Table A.1: Frap’s default hyperparameters

Parameter Default Value
LEARNING_RATE 0.001

LR_DECAY 0.98
MIN_LR 0.001

SAMPLE_SIZE 1000
BATCH_SIZE 20

EPOCHS 100
UPDATE_Q_BAR_FREQ 5

UPDATE_Q_BAR_EVERY_C_ROUND False
GAMMA 0.8

MAX_MEMORY_LEN 10000
PATIENCE 10
D_DENSE 20
EPSILON 0.8

EPSILON_DECAY 0.95
MIN_EPSILON 0.2

LOSS_FUNCTION mean_squared_error
NORMAL_FACTOR 20
EARLY_STOP_LOSS val_loss
DROPOUT_RATE 0

MERGE multiply

Table A.2: Planning exclusive parameters

Parameter Default Value
TIEBREAK_POLICY random

PLANNING_ITERATIONS 2
ACTION_SAMPLING_SIZE 2

ACTION_SAMPLING_POLICY random
BACKGROUND_PLANNING True
DECISION_TIME_PLANNING True
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APPENDIX B -- RL Formulation Results:
Rolling Average Window’s
Best Round

In this appendix, we report the best round results because, at the end of the day, only one

model is chosen to be implemented. Tables B.1 and B.2 present the results for the time

loss-based objectives. The major difference between these results and the ones presented

in Chapter 5 is that for less stable RL formulation’s learning processes, such as Average

Queue Length (RLF2) and Pressure MPLight (RLF4), all reported values are closer to

the best method result, although the difference in improvement is still noticeable.

Considering the best round, the Time Loss (RLF5) and Time Loss Pressure (RLF6)

formulations we propose improved by, in the single-intersection case, up to 49.58% (6.35%

improvement over the average results) and 34.16% (9.31% improvement) over the static

baseline, while in the multi-intersection case, those numbers go up to 58.80% (6.32%) and

34.66% (11.27%) improvement, for cumulative time loss per driver and percentage time

loss per driver, respectively.

We also present the results for average travel time, throughput, and average time loss

objectives (Tables B.3 and B.4) as well as the impact of pending vehicles on the metrics

(Tables B.5 and B.6). The same analysis from Section 5.3.3.1 also applies for the best

round results.
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Table B.1: Time loss-based objectives results (single-intersection scenario - best round)

Model
Cumulative
Time Loss
per Driver

Improvement
Percentage
Time Loss
per Driver

Improvement

Static 40.03 - 0.48 -
Unregulated 4.23 - 0.09 -

8 phases

(RLF1) 43.93 \ 0.50 \
(RLF2) 53.59 \ 0.55 \
(RLF3) 46.16 \ 0.51 \
(RLF4) 58.62 \ 0.57 \
(RLF5) 36.93 7.75% 0.46 4.39%
(RLF6) 37.67 5.91% 0.46 3.37%

14 phases

(RLF1) 21.06 47.39% 0.33 32.03%
(RLF2) 61.21 \ 0.55 \
(RLF3) 20.90 47.80% 0.32 32.59%
(RLF4) 25.84 35.47% 0.37 22.81%
(RLF5) 20.28 49.34% 0.32 34.01%
(RLF6) 20.19 49.58% 0.32 34.16%

Table B.2: Time loss-based objectives results (multi-intersection scenario - bbest round)

Model
Cumulative
Time Loss
per Driver

Improvement
Percentage
Time Loss
per Driver

Improvement

Static 105.77 - 0.61 -
Unregulated 7.22 - 0.10 -

8 phases

(RLF1) 92.73 12.33% 0.58 4.82%
(RLF2) 118.96 \ 0.63 \
(RLF3) 122.13 \ 0.64 \
(RLF4) 124.39 \ 0.64 \
(RLF5) 81.63 22.83% 0.55 9.72%
(RLF6) 101.16 4.36% 0.60 1.61%

14 phases

(RLF1) 47.98 54.64% 0.42 31.00%
(RLF2) 71.57 32.34% 0.51 16.95%
(RLF3) 55.19 47.82% 0.46 25.22%
(RLF4) 80.26 24.12% 0.52 15.05%
(RLF5) 43.58 58.80% 0.40 34.66%
(RLF6) 46.45 56.08% 0.41 32.12%
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Table B.3: Other objectives’ results for the single-intersection scenario (best round)

Model
Average
Travel
Time

Improv. Throughput Improv.
Average
Time
Loss

Improv.

Static 83.96 - 4181 - 40.45 -
Unregulated 47.80 - 4218 - 4.26 -

8 phases

(RLF1) 87.59 \ 4167 \ 44.08 \
(RLF2) 97.00 \ 4160 \ 53.49 \
(RLF3) 89.61 \ 4162 \ 46.11 \
(RLF4) 102.04 \ 4156 \ 58.56 \
(RLF5) 80.64 3.95% 4185 0.10% 37.12 8.23%
(RLF6) 81.33 3.13% 4179 \ 37.81 6.52%

14 phases

(RLF1) 64.80 22.82% 4204 0.55% 21.28 47.39%
(RLF2) 95.13 \ 4084 \ 51.73 \
(RLF3) 64.66 22.98% 4205 0.57% 21.14 47.75%
(RLF4) 69.68 17.01% 4208 0.65% 26.15 35.35%
(RLF5) 64.00 23.77% 4205 0.57% 20.48 49.38%
(RLF6) 63.89 23.90% 4206 0.60% 20.37 49.64%

Table B.4: Other objectives’ results for the multi-intersection scenario (best round)

Model
Average
Travel
Time

Improv. Throughput Improv.
Average
Time
Loss

Improv.

Static 161.01 - 8128 - 96.25 -
Unregulated 72.41 - 8466 - 7.28 -

8 phases

(RLF1) 157.17 2.38% 8227 1.22% 92.22 4.19%
(RLF2) 174.44 \ 8018 \ 109.82 \
(RLF3) 183.16 \ 8077 \ 118.42 \
(RLF4) 184.08 \ 8050 \ 119.38 \
(RLF5) 146.18 9.21% 8234 1.30% 81.23 15.60%
(RLF6) 164.56 \ 8156 0.34% 99.72 \

14 phases

(RLF1) 113.28 29.65% 8351 2.74% 48.21 49.91%
(RLF2) 134.81 16.27% 8192 0.79% 69.89 27.39%
(RLF3) 120.58 25.11% 8331 2.50% 55.55 42.28%
(RLF4) 138.35 14.07% 8168 0.49% 73.48 23.66%
(RLF5) 109.01 32.30% 8369 2.97% 43.96 54.33%
(RLF6) 111.78 30.57% 8351 2.74% 46.72 51.46%
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Table B.5: Pending vehicles impact on metrics for the single-intersection scenario (best
round)

Model
Average
Travel
Time

+ pending
vehicles

Average
Time
Loss

+ pending
vehicles

Cumulative
Time Loss
per Driver

Static 83.96 + 0.01 40.45 + 0.01 40.03
Unregulated 47.80 + 0.01 4.26 + 0.01 4.23

8 phases

(RLF1) 87.59 + 0.01 44.08 + 0.01 43.93
(RLF2) 97.00 + 0.01 53.49 + 0.01 53.59
(RLF3) 89.61 + 0.01 46.11 + 0.01 46.16
(RLF4) 102.04 + 0.32 58.56 + 0.32 58.62
(RLF5) 80.64 + 0.01 37.12 + 0.01 36.93
(RLF6) 81.33 + 0.01 37.81 + 0.01 37.67

14 phases

(RLF1) 64.80 + 0.01 21.28 + 0.01 21.06
(RLF2) 95.13 + 6.53 51.73 + 6.53 61.22
(RLF3) 64.66 + 0.01 21.14 + 0.01 20.90
(RLF4) 69.68 + 0.01 26.15 + 0.01 25.84
(RLF5) 64.00 + 0.01 20.48 + 0.01 20.28
(RLF6) 63.89 + 0.01 20.37 + 0.01 20.19

Table B.6: Pending vehicles impact on metrics for the multi-intersection scenario (best
round)

Model
Average
Travel
Time

+ pending
vehicles

Average
Time
Loss

+ pending
vehicles

Cumulative
Time Loss
per Driver

Static 161.01 + 8.06 96.25 + 8.06 105.77
Unregulated 72.41 + 0.01 7.28 + 0.01 7.22

8 phases

(RLF1) 157.17 + 0.05 92.22 + 0.05 92.73
(RLF2) 174.44 + 3.62 109.82 + 3.62 118.96
(RLF3) 183.16 + 1.68 118.42 + 1.68 122.13
(RLF4) 184.08 + 0.71 119.38 + 0.71 124.39
(RLF5) 146.18 + 0.07 81.23 + 0.07 81.63
(RLF6) 164.56 + 0.53 99.72 + 0.53 101.16

14 phases

(RLF1) 113.28 + 0.01 48.21 + 0.01 47.98
(RLF2) 134.81 + 0.68 69.89 + 0.68 71.57
(RLF3) 120.58 + 0.04 55.55 + 0.04 55.19
(RLF4) 138.35 + 4.45 73.48 + 4.45 80.26
(RLF5) 109.01 + 0.01 43.96 + 0.01 43.58
(RLF6) 111.78 + 0.01 46.72 + 0.01 46.45


	Introduction
	Background
	Traditional Traffic Signal Control
	Machine Learning
	Reinforcement Learning
	Components

	Deep Reinforcement Learning
	Planning
	"Search-only" Planning


	Frap

	Related Work
	Objective
	RL Formulation

	Problem Definition
	Objective
	Time Loss and Travel Time Relationship

	Movements and Phases
	Problem Modeling
	State
	Action
	Reward
	Policy
	Excessive Waiting Time
	Starvation

	Environment
	Deadlock



	Experiments
	Scenarios
	Baselines
	Non-Planning Experimental Results
	Waiting Time Restriction
	Phase Set Configuration
	RL Formulation
	Average Travel Time Objective Comparison
	Impact of Pending Vehicles on Metrics


	Planning Experimental Results
	Planning Only
	Types of Planning and Action Sampling Policy
	Action Sampling Size, Number of Iterations, and Sample Size
	RL Formulation and Planning


	Conclusion
	Limitations
	Future Work

	References
	Appendix A – List of Parameters and Hyperparameters
	Environment
	Agent

	Appendix B – RL Formulation Results: Rolling Average Window's Best Round

