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Resumo

Nas últimas décadas, a resolução de problemas de otimização combinatória conside-
rados difíceis tornou-se um dos campos mais prolíficos da ciência da computação. Diversos
estudos tratam destes problemas tanto em uma perspectiva teórica quanto prática. Para
além de resolver os problemas, a comunidade científica tem-se dedicado em compreender
os diferentes níveis de dificuldade de problemas e como esses problemas comportam-se em
termos de tratabilidade e estrutura. Nesta tese, apresentamos descobertas relacionadas a
teoria da complexidade a partir de três diferentes perspectivas.

Em um primeiro momento, dedicamos atenção a duas medidas de complexidade
de circuitos: A largura de certificação (certification-width) e a Complexidade de Ener-
gia. Ao tratar de circuitos monótonos, provamos a NP-completude de Certificação
Sucinta de um Circuito Monótono (SMCC) e de Complexidade de Energia de
Melhor-Caso em Atribuições Satisfactíveis (MinEC+

M), mesmo em casos onde os
circuitos de entrada são planares. Provamos que ambos os problemas são W[1]-hard, mas
que SMCC pertence a W[P], enquanto fornecemos um algoritmo XP para MinEC+

M . Em
seguida, para ambos os problemas foram elaboradas estratégias de pré-processamento dos
grafos de entrada (baseado na estratégia win-win), onde foi possível limitar a treewidth
em circuitos com genus limitado; e a partir dessa estrutura resultante, apresentamos algo-
ritmos FPT de programação dinâmica baseado em decomposição em árvore destes grafos
pré-processados.

Numa segunda perspectiva, apresentamos uma hierarquia de problemas parametriza-
dos baseada na satisfabilidade de Circuitos Threshold – A Th-hierarquia. O estudo da
Th-hierarquia buscou compreender possíveis lacunas existentes na W-hierarquia e perce-
ber como as classes dessas hierarquias interagem. Provou-se que tais hierarquias colapsam
nos níveis mais altos (i.e. W [P ] = Th[P ]). Na sequência, ao estudar uma forma de con-
verter circuitos threshold em circuitos booleanos convencionais com profundidade ótima,
provou-se a possibilidade de construir uma rede de ordenação AKS em tempo polinomial.
Isso deu base para mostrar que Th[t] ⊆ W [SAT ], para todo t ∈ N.

Por fim, numa frente experimental, formalizamos um conceito de exploração de vizi-
nhança chamado Multi Improvement (alternativa aos tradicionais First Improvement and
Best Improvement) e construímos algoritmos de Programação dinâmica para o Pro-
blema do Multi Improvement Máximo, modelado como etapa interna de uma busca
local sobre instâncias do TSP. Experimentos mostraram que esta abordagem provê uma
possibilidade de realizar buscas locais em vizinhança com rapidez e alta estabilidade.

Palavras-chave: Otimização, Complexidade de Circuitos, Complexidade Parametrizada,
W-hierarquia.



Abstract

In the last few decades, the resolution of hard combinatorial optimization problems
has become one of the most prolific fields in Computer Science. Several studies address
these problems from both theoretical and practical perspectives. In addition, the scien-
tific community has dedicated efforts to understand the different levels of hardness and
how problems behave in terms of tractability and structure. In this thesis, we present
discoveries related to complexity theory from three different perspectives.

First, we address two measures in circuit complexity: The certification-width and the
Energy Complexity. When dealing with monotone circuits, we prove the NP-Completeness
of Succinct Monotone Circuit Certification (SMCC) and Best-Case Energy
Complexity in Satisfying Assignments (MinEC+

M) even for planar circuits. We
also prove that both problems are W[1]-hard, but SMCC belongs to W[P], while an
XP-algorithm for MinEC+

M is provided. After all, for both problems, we develop a pre-
processing of input circuit (inspired by win-win approach strategy) where it was possible to
prune graphs with bounded genus; this results in a structure whose treewidth is bounded.
Hence, dynamic programming algorithms on tree decompositions were provided, solving
the problems in FPT-time.

In a second perspective, we present a hierarchy of classes of parameterized problems
based on threshold circuit satisfiability – the Th-hierarchy. The study of Th-hierarchy
aims to understand possible gaps in W-hierarchy and the interaction Th-hierarchy versus
W-hierarchy levelwise. We show that the hierarchies collapse in high levels (i.e., W [P ] =
Th[P ]). Next, we study ways to convert threshold circuits into Boolean circuits with
optimal depth; thus, we demonstrate that it is possible to construct an AKS sorting
network in polynomial-time. This supports to prove that Th[t] ⊆ W [SAT ], for every
t ∈ N.

Additionally, in an experimental front, we formalize the concept of neighborhood ex-
ploration called Multi Improvement (alternative to the traditional First Improvement and
Best Improvement) and we build dynamic programming algorithms to solve the Maximum
Multi Improvement Problem (MMIP) modeled as an inner step of a local search for TSP
instances. Experiments have shown that this approach provides a possibility to perform
fast neighborhood searches with high stability.

Keywords: Optimization, Circuit Complexity, Parameterized Complexity, W-hierarchy.
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Chapter 1

Introduction

Combinatorial optimization problems have been handled by a large diversity of tools

and approaches (e.g., exact algorithms, approximation algorithms, and heuristics/meta-

heuristics). Depending on the scenario, each approach has its benefits and disadvantages.

For example, if we need a fast implementation for solving large instances of an NP-hard

problem, then exact algorithms do not seem suitable. In this context, metaheuristics

have gained considerable relevance. Even without optimality assurance, these methods

can quickly provide sub-optimal solutions, which can be satisfactory in many activities.

In other words, if an optimization problem has strong practical appeal, indeed, there is

an effort of practitioners in designing efficient metaheuristic strategies.

In the late 20th Century, a profusion of creative techniques was developed. Such an e-

ffort produced the most famous heuristics and metaheuristics used until nowadays. In con-

trast, in [26], we have a recent and thorough survey that reveals which even novel heuristics

has been created, the major focuses still on quantitative comparations over benchmark

instances. This phenomenon is historically defined by [72] as framework-centered period

where the researchers have dedicated attention in combining and adapting methods with

a focus on performance. Besides that, the authors in [72] are confident in the advent of

a scientific-centered period, which is the moment when the study of metaheuristics will

be focused on observing the behavior of the methods, identifying why a heuristic works

well or discussing which are the best and worst scenarios for applying a method (e.g.,

[85]). The same concern is approached in another recent survey [41] where the authors

(after analyzing 1222 meaningful works across 31 years of research in metaheuristics)

address three gaps in the metaheuristic field: (i) lack of accuracy in performance valida-

tion criteria, (ii) lack of mathematical and theoretical foundations and other discussions

about convergence and minor details about results of the implementations, and (iii) lack
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of scalable metaheuristics with self-adaptable capability to face complex scenarios.

However, what other possibilities can we observe besides metaheuristics when dealing

with optimization problems? Since the beginning of this doctorate process, we have stud-

ied a diversity of modern tools used to solve optimization problems. We found inspiring

contributions from Computational Complexity by searching for creative ideas in produc-

ing tools with significant impact in optimization problem resolutions. An interesting topic

involves the study of instances from NP-hard problems that may be solved by polyno-

mial (or sub-exponential) time algorithms. A famous example is Hamiltonian Path in

tournament graphs. The Hamiltonian Path is proven to be NP-hard [34]. However,

for a Tournament graph, which is a directed complete graph, there is an algorithm that

performs O(n · log n) [73]. The discovery of these subclasses of problems gives an essen-

tial insight into problems where the instance characteristics are known. Polynomial and

subexponential algorithms for instances of NP-hard problems may provide optimal solu-

tions for specific situations in an acceptable time, and the examples like Hamiltonian

Path in Tournament Graphs motivate the search for such tractable cases.

Also, in the Computational Complexity area, creative strategies with the real poten-

tial of contribution to state-of-the-art of optimization are in rising when we observe the

Parameterized Complexity. FPT algorithms, kernelization of problems, and the diver-

sity of frameworks for graphs are examples of powerful theoretical features which can be

explored even in implementations with a focus on performance. The parameterized com-

plexity theory encourages a broad comprehension of the problem to be studied. Writing

parameterized algorithms is the art of discovering what turns a problem hard. Precisely

for that, analyses based on parameterized complexity theory are widely adopted in graph

problems. Graph problems are very sensitive to structure, and this offers an open field

to explore structural parameters, kernels, subclasses of graphs, and other characteris-

tics. Therefore, modeling optimization problems using graph theory notation has become

quite common; for instance, we have optimization problems in Boolean circuits, which are

traditionally modeled as graphs.

Optimization in circuits has a wide spectrum of applications. One can optimizing

either in logic, architecture, devices or systems levels ([17],[24], [47]). The abstraction

based on optimization in circuits is even useful in biological studies ([18], [80]). Most

of these approaches take advantage of manipulating circuits as graphs due to the ‘arse-

nal’ of existing algorithms suitable for graph structures. This intrinsic relation between

graphs, parameterized complexity and circuits is well-materialized inWeighted Circuit
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Satisfiability – a computational problem in Boolean circuits whose characterization

defines classes in W-hierarchy. Deeply looking at Circuit Complexity, we can find more

examples of measures in Boolean circuits with detailed structural analysis, but without

discussing the time complexity in computing them.

Gathering all these thoughts, we decide to investigate measures of circuit complexity

from the classical and parameterized complexity perspective. In summary, our efforts

were pointed in the following directions:

• Classical and Parameterized Complexity analysis for two optimization problems in

monotone Boolean circuits (Chapters 2 and 3).

• A discussion about Parameterized Complexity Classes defined by Threshold Circuits

with a complexity analysis in a Sorting Network Construction (Chapter 4).

Additionally, as a side project, we propose an optimization problem based on the

optimal resolution of Multi Improvement in internal stages of a local search (Chapter 5).

Throughout the text, we present the results developed during the doctorate. In com-

mon, all these projects include complexity analysis of exact algorithms (even in the study

with background on metaheuristics). Each chapter is self-contained, with its own preli-

minaries and results. Even so, we present some principles in Section 1.1

1.1 Background

A computational problem can be seen as a set of variables and restrictions together

with a question or a goal to be reached. An instance of a computational problem is a

data structure that fits values to some variables of this problem. In this work, a problem

can be seen as a decision problem or an optimization problem. Given an instance to a

problem, if the question of this problem only admits YES or NO as an answer, usually

based on a data structure called certificate; then it is a decision problem.

Regarding decision problems, we have some important classes of problems. The class P

of computational problems refers to the problems which can be solved by a deterministic

algorithm with polynomial time in function the input’s size. The class NP includes

decisions problems whose the certificate for any positive instance can be verified by a

deterministic algorithm in polynomial time. The possibility of solving any NP problem by

a deterministic algorithm in polynomial time implies the most important open question in
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computer science (P = NP?) and without this answer, we need to deal with the problems

that are as ‘hard’ as the most difficult problem in NP – the NP-hard problems. A problem

Π is said NP -hard if and only if each problem L ∈ NP is reducible to Π in polynomial

time (L ∝ Π). If an NP -hard problem is in NP then this problem is called NP-complete.

On the other hand, the answer for an optimization problem is not YES/NO, but a

value (cost associated to a certificate/solution). If a problem aims minimization (resp.

maximization), then a certificate with minimum (resp. maximum) cost represents an

optimal solution.

An exact algorithm is an algorithm that solves an optimization problem (find the

optimal solution) for any instance. Assuming P 6= NP, the known exact algorithms

for optimization problems associated to NP-hard decision problems are infeasible in

practical projects with large instances. Alternatively, approximation algorithms and

heuristics/metaheuristics are very popular for practical purposes even without optimality

assurance. However, how can we improve the time of exact algorithms without losing the

assurance of optimality? One of the answers is Parameterized Algorithms.

1.1.1 Parameterized Complexity

A parameterized problem [28] is a decision problem whose instances are pairs (x, k) ∈
Σ∗ × N, where k is called the parameter. A parameterized problem is fixed-parameter

tractable (FPT) if there exists an algorithm A, a computable function f , and a constant

c such that given an instance I = (x, k), A (called an FPT algorithm) correctly decides

whether I is a yes- or no-instance in time bounded by f(k) · |I|c. The discovery of FPT

algorithms fulfills the objective of solving problems more efficiently with exact algorithms

spending less time than a brute force algorithm, whenever k is considered small.

A parameterized problem is slice-wise polynomial (XP) if there exists an algorithm

A and two computable functions f, g such that given an instance I = (x, k), A (called

an XP algorithm) correctly decides whether I is a yes- or no-instance in time bounded

by f(k) · |I|g(k). Within parameterized problems, the class W[1] may be seen as the

parameterized equivalent to the class NP of classical optimization problems. Without

entering into details (see [22, 28] for the formal definitions), a parameterized problem

being W[1]-hard can be seen as a strong evidence that this problem is not FPT. The

canonical example of W[1]-hard problem is Clique parameterized by the size of the

solution.
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To transfer W[1]-hardness from one problem to another, one uses a parameterized

reduction, which given an input I = (x, k) of the source problem, computes in time

f(k) · |I|c, for some computable function f and a constant c, an equivalent instance

I ′ = (x′, k′) of the target problem, such that k′ is bounded by a function depending only

on k. Equivalently, a problem is W[1]-hard if there is a parameterized reduction from

Clique parameterized by the size of the solution.

In addition to the W[1] class, some classes of parameterized problems are defined

according to their parameterized intractability level. These classes are organized in the

so-called W-hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP, and it is conjectured

that each of the containments is proper [28]. If P = NP, then the hierarchy collapses [28].

1.1.2 Optimization of measures in circuits

Circuit Complexity is a research field that aims to study bounds for measures (such

as size and depth) of circuits that compute Boolean functions. The size of a circuit is its

number of logic gates, and depth is the largest path from any input to the output gate.

A circuit complexity analysis can provide precise lower/upper bounds on circuits classes

that represent classic decision problems besides the possibility to design efficient Boolean

circuits according to specific properties (see [40, 61, 86]).

In addition, some important bounds are described to deal with different definitions

of size [2]. From a combinatorial point of view, several optimization problems address

the minimization of measures in some circuits classes, such as the notorious Weighted

Circuit Satisfiability problem, where the weight measures the amount of true values

assigned to the input variables.

Despite this ‘zoo of measures’, optimizing properties like size and depth does not al-

ways guarantee an ‘efficient’ design of a specific circuit class. Depending on the purpose,

a circuit with a small size (either considering gates or wires) or depth can be inappro-

priate; such a situation was identified in two measures: Certification-width and Energy

Complexity. Certification-width is based on the number of the enabled edges in a satisfied

circuit and Energy Complexity is about the number of gates outputting true in a circuit.

Considering a sparse activation of edges and gates, both measures can represent natural

parameters, and optimizing them using parameterized algorithms is fully justified in this

context.



1.2 Organization of this Thesis 6

1.2 Organization of this Thesis

After this introduction, we present four self-contained chapters with each project

developed during this doctorate. The sequence of this work is organized as follows.

Chapter 2 shows an analysis of an optimization problem based on a novel measure of

circuit complexity called certification-width. After the analisys of Succint Certifica-

tion of Monotone Circuit (SMCC) (the problem in find a positive certificate with

minimum certification-width), we prove:

• the NP-completeness of SMCC for planar circuits;

• the W[P]-membership and W[1]-hardness of SMCC;

• that there is a polynomial-time algorithm capable of bounding the treewidth of the

underlying graph of a monotone planar circuit by a function of the input circuit’s

genus and the size of the solution. This approach is known as win-win approach

(See [22]).

Lastly, after obtaining a bounded treewidth instance, we construct a dynamic pro-

gramming to solve the problem in FPT-time, i.e., the problem is fixed-parameter tractable.

The results presented in Chapter 2 are published in proceedings of The 26th Interna-

tional Computing and Combinatorics Conference (COCOON’2020) [4] and Theoretical

Computer Science [5].

In Chapter 3, we deal with another circuit measure closely related to certification-

width: The Energy Complexity. The concept of Energy Complexity was introduced in

[80]. When SMCC focuses on edges activated in the succinct certificate, here, our focus

turns to the number of gates that outputs true in a Boolean circuit. In that sense, we

define Best-Case Energy Complexity of Satisfying assignment in Monotone

Circuits (MinEC+
M). Besides the similarities between SMCC andMinEC+

M , early anal-

ysis shows that some of our initial conclusions for SMCC should be revisited. Due to

that, we achieve a proof of W[1]-hardness for MinEC+
M ; an XP algorithm for MinEC+

M ;

and polynomial pre-processing based on win-win approach. After all, we present a novel

dynamic programming based on tree decomposition. The results of Chapter 3 were pub-

lished in proceedings of The 15th International Conference on Algorithmic Aspects in

Information and Management (AAIM’2021) [70].
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In Chapter 4, we introduce the Th-hierarchy, a hierarchy of parameterized problems

based on the satisfiability of threshold circuits. In order to compare Th-hierarchy and

W-hierarchy, we discuss ways to transform threshold circuits into Boolean circuits in an

efficient manner. Thus, Sorting Networks appear as a candidate for these transformations.

More precisely, we explore the complexity in constructing an AKS Sorting Network (a type

of network with logarithmic depth). With that, we can conclude that the higher level of

the hierarchies collapses, and we also prove Th[t] ⊆ W [SAT ], for every t ∈ N. The results
of Chapter 4 were published in proceedings of The 15th Annual International Conference

on Combinatorial Optimization and Applications (COCOA’2021) [58].

Chapter 5 shows a study about the effect of the optimal Multi-improvement inner-

solvability in an outer problem. In other words, we construct three dynamic programmings

that solve the Maximum Multi Improvement Problem in a single stage of the local

search of a neighborhood exploration on TSP modeling. Our findings include:

• Definition of the Maximum Multi Improvement Problem and its characteri-

zation in relation with Maximum Weighted Clique Problems.

• Development of three polynomial dynamic programming for 2-Opt, 3-Opt, and Or-

Opt neighborhood operators.

• Experimental stability analysis of the local search descent based on dynamic pro-

gramming multi improvement versus First and Best Improvement local searches.

These achievements are published on paper for Optimization Letters [69].

Each chapter presents its own conclusions, remarks, and open questions. Hence, in

Chapter 6 we finalize this work with a succinct global conclusion.



Chapter 2

Succinct Certification of Monotone Cir-
cuits

Boolean circuits are one of the earliest combinatorial formalisms for the representation

of Boolean functions. Besides being a fundamental object of study in classical complexity

theory, Boolean circuits also play a central role in the field of parameterized complexity

[28]. More specifically, while the satisfiability problem for general Boolean circuits can be

used to define the class NP, the satisfiability problem for Boolean circuits of bounded weft

can be used to define the levels of the W-hierarchy [28]. An important, and well-studied,

subclass of Boolean circuits is the class of monotone Boolean circuits, i.e., circuits where

only AND and OR gates are allowed. While the standard satisfiability problem for monotone

Boolean circuits is trivial, since the all-ones vector is always a satisfying assignment, some

weighted versions of satisfiability problems are still interesting in this setting. One of these

problems is the Weighted Monotone Circuit Satisfiability (WMCS) problem,

where we are given a monotone Boolean circuit C as input, and the goal is to find a

minimum-weight satisfying assignment for the inputs of C [21, 43, 52]. The WMCS is

particularly relevant in the field of circuit design, since the minimum number of inputs

necessary to make a monotone circuit evaluate to true is a parameter that is often taken

into consideration [48].

In this chapter, we deal with the notion of succinct certificates for monotone Boolean

circuits. Given a monotone circuit C, a succinct certificate for C is a connected sub-circuit

of C with a minimal set of edges that is sufficient to ensure that C is satisfiable. Just like

circuit size and circuit depth, the minimum size of a succinct certificate is an interesting

complexity measure. Additionally, a succinct certificate may be seen as a minimal map

to be followed by a satisfying assignment. This map may find applications in the field of

circuit design and may be used as a way of representing solutions to problems modeled
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through monotone circuits. In the literature similar structures are known as accepting

subtree [82], positive proof [27], and proving circuit [54].

We study the complexity of computing the size of a minimum succinct certificate

of a given monotone circuit C. We call this invariant the certification-width of C, and

name the problem of computing the value of this invariant as the Succinct Monotone

Circuit Certification (SMCC) problem. The problem under consideration is both

of theoretical and practical relevance. From a theoretic perspective, the minimum size

of a succinct certificate naturally gives information about the complexity of a circuit.

Therefore, determining the underlying structure that makes SMCC (fixed-parameter)

tractable is interesting from the perspective of complexity theory. From a practical per-

spective, SMCC can be applied in many problem-reduction representations [56], since

monotone circuits can be seen as unweighted And/Or graphs [74, 75].

The notion of planarity is well-explored in graph theory and has significant relevance

in the field of circuit analysis. In particular, VLSI (Very Large-Scale Integration) circuits,

which are widely applied in electronics and engineering, are typically modeled by planar

graphs. In addition, there are several studies on circuits and satisfiability problems defined

on certain structures that are planar or that satisfy certain structural properties (see [10,

15, 43, 44, 48, 52, 68, 76, 79]).

We show that SMCC is NP-hard when the input monotone circuit is planar, and it is

W[1]-hard, but in W[P], when parameterized by solution size. Subsequently, we present

a polynomial-time algorithm that takes a monotone circuit as input and either solves

the instance or bounds the diameter of the input; then using the notion of contraction

obstructions for treewidth we are able to conclude that the treewidth of the resulting

circuit is bounded by k + g, where k is the solution size and g is the genus of the input

circuit. Thus, by using such a win/win approach and applying a dynamic programming

algorithm we solve SMCC in FPT time when parameterized by k + g. This result also

implies that SMCC can be solved in time 2O(k) · n+m on planar circuits.

2.1 Preliminaries

We use standard graph-theoretic and parameterized complexity notation, and we refer

the reader to [22, 28] for any undefined notation.

A Boolean circuit is a combinatorial model for the representation of Boolean functions.

We formalize the notion of a Boolean circuit according to Definition 1. In general, a circuit
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can have multiples outputs. Nevertheless, for convenience, we will adopt the following

definition.

Definition 1. A Boolean circuit is a directed acyclic graph C(V,E) having only one

sink, where the set of vertices V is partitioned into (I,G, {vout}): (i) a set of inputs

I = {i1, i2, . . . } composed of the vertices of in-degree 0; (ii) a set of gates G = {g1, g2, . . . },
which are vertices labeled with Boolean operators; (iii) and the single output (sink) vertex

vout with out-degree equal to 0 and also labeled with a Boolean operator. The input vertices

represent Boolean variables that can take values from {0, 1} ({false, true}, depending
on the conventions), and the label/operator of a gate or output vertex w is given by f(w).

Note that we are considering general circuits with no restrictions on the number of in-

neighbors and out-neighbors. Additionally, in this chapter, we only deal with monotone

circuits. Also, for a Boolean circuit C(V,E), in this chapter, we let n = |V (C)| and
m = |E(C)|.

Definition 2. A monotone circuit is a Boolean circuit where the Boolean operators al-

lowed are in {AND, OR}.

Definition 3. An assignment of C is a vector X = [x1, x2, . . . , x|I|] of values for the set

of inputs I, where for each j, xj ∈ {false, true} is the value assigned to input ij. We

say that X is a satisfying assignment if the circuit C evaluates to true when given x as

input.

In Fig. 2.1a, we have an example of a circuit C with six inputs i1, i2, . . . , i6, four gates

g1, g2, g3, g4 and the output vertex vout. Fig. 2.1b shows an example of the results of an

assignment X to the circuit presented in Fig. 2.1a. In this example, the function AND of

vout returns true, thus, X is a satisfying assignment according to Definition 3.

We denote by X → C the adapted directed graph in which the values of X were

assigned to I, and the label of the gates are replaced by the returned values of their

respective functions (see Fig. 2.1b).

The directions of the edges represent inputs to functions of the gates. When all in-

edges of a gate gj have values assigned to them, then gj will be evaluated according to

the operator f(gj) under these input values. We note that the value of an input may

not reach vout, for example, in Fig. 2.1b, the assignment sets i5 to true. However, this

value cannot reach vout because f(g2) was not satisfied. This situation brings us another

important definition: the critical edges.
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(a) Graph representation of circuit C. (b) Satisfying assignment on C.

Figure 2.1: Graph representation of a circuit and a satisfying assignment for it.

Definition 4. Given a monotone circuit C with a satisfying assignment X, an edge

(vj, vk) is considered critical to X → C if vj evaluates to true and there is a path P from

vk to vout in which all gates along P (including vout) also evaluate to true.

According to Definition 4, in Fig. 2.1 the edge (i5, g2) is not critical while (i2, g1),

(i3, g3), (i4, g4), (g1, g3), (g3, vout) and (g4, vout) are critical edges inX → C. This motivates

the notion of positive certificate stated in Definition 5.

Definition 5. Given a monotone circuit C, and a satisfying assignment X of C, a pos-

itive certificate for X → C is a connected subgraph of C formed by the critical edges and

their respective vertices.

Since a positive certificate may have redundant edges, next, we present the notion of

succinct certificate; and certification-width of C.

Definition 6. Given a monotone circuit C, and a satisfying assignment X of C, a suc-

cinct certificate for X → C, is a connected subgraph SCX→C of its positive certificate such

that:

• vout is a vertex of SCX→C; and

• for every vertex v of SCX→C holds that

– if f(v) = AND, then every in-edge of v is in SCX→C;

– if f(v) = OR, then exactly one in-edge of v is in SCX→C.

The size of a succinct certificate SCX→C is the number of edges of SCX→C.
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In the context of counting complexity and arithmetic circuits, the succinct certificates

are also known as proving circuits [54].

Definition 7. The certification-width of a monotone circuit C is the minimum size among

all possible succinct certificates on all satisfying assignments of C.

We remark that there are similarities between the notions of certification-width and

the energy complexity of a circuit C, which is defined as the number of gates evaluating

to true among all assignments to C (see [80]).

Now, we have all elements to describe our main problem.

Succinct Monotone Circuit Certification (SMCC)

Instance: A monotone circuit C; a positive integer k.

Goal: Determine whether the certification-width of C is at most k.

We denote by k-SMCC the parameterized version of Succinct Monotone Circuit

Certification where k is the parameter.

Similar notions of succinct certificate and certification-width were introduced in [67],

in that context, defined as accepting computation tree and tree-size of a Alternating Turing

Machines (ATM). According to W. L. Ruzzo [67], the main motivation of these notions

was defining a novel complexity measure as an abstraction that would provide a spectrum

of complexity classes intermediate between non-determinism and full alternation In 1989,

H. Venkateswara [83] defined the concept of accepting subtree of a Boolean circuit as an

analogy to the notion of accepting computation tree for ATMs. As can be seen in [82],

the notion of accepting subtree of a Boolean circuit is similar to what we propose to

call a succinct certificate. Also, there are some works which refers to such structures as

(positive) proof tree (see [27, 53]). Besides, succinct certificates are also known as proving

(sub-)circuits (see [16, 54]). Note that this kind of “witness for acceptance” gives an

intuitive and natural idea of important features in different frameworks from complexity

theory (see [27, 53, 67, 82, 83]). Nevertheless, these works typically address the relation

between the size of the certificate and the characterization of complexity classes. In this

chapter, we address another direction, we deal with the time complexity of computing

such structures with minimum size for (monotone) Boolean circuits.
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(a) Graph H. (b) Graph G.

Figure 2.2: Green vertices are those a′ and b′ inserted in G after the preprocessing step.

2.2 NP-completeness on planar circuits

Now, we dedicate our attention to SMCC restricted to planar circuits. Clearly, SMCC

is in NP. Next, we show its NP-hardness. For that, we will use a reduction from Planar

Vertex Cover.

Planar Vertex Cover (PVC)

Instance: A planar graph G; a positive integer c.

Question: Is there a set S of size at most c, such that for each edge (u, v) ∈ E(G)

either u ∈ S or v ∈ S?

Theorem 1. SMCC is NP-complete even restricted to planar circuits.

Proof. Given a circuit C and an integer k, forming an instance of SMCC, a connected

subgraph of C having at most k edges and satisfying Definition 6 can be seen as a cer-

tificate for the “yes” answer of this instance. Since it is easy to verify in polynomial time

the conditions described in Definition 6, it holds that SMCC is in NP.

In order to prove its NP-hardness, we present a reduction from Planar Vertex

Cover. First, consider the following preprocessing: Let (H, c′) be an instance of Planar

Vertex Cover. By subdividing twice each edge of H, we obtain a graph G where each

edge e = (ab) of H is replaced by a P4 ab
′a′b, where a′ and b′ are new vertices. Notice

that G is planar; H has a vertex cover of size c′ if and only if G has a vertex cover of size

c = c′ + |E(H)|; and given a planar embedding of G, the common boundary of any pair

of adjacent faces of G contains at least three edges.
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From a fixed planar embedding of the instance (G, c) of Planar Vertex Cover,

we proceed with the reduction. We will construct an instance (C, k) of SMCC where C

is a planar monotone circuit, and k is the target size of the solution. From the original

structure of G, we apply the following:

1. Firstly, set V (C) = V (G);

2. for each vertex vi ∈ V (G), create an input vertex vini , assign f(vi) = AND, and add

a directed edge (vini , vi);

3. for each edge ei = (u, v) ∈ E(G), create a vertex vcoverei
such that f(vcoverei

) = OR,

and create the directed edges (v, vcoverei
) and (u, vcoverei

). This step guarantees that if

vcoverei
is in the succinct certification, then either v or u will also be on the certificate.

Notice that C is still planar. Now, preserving the planarity, we will ensure that every

vcoverei
is in any succinct certification of C as follows:

4. create an output vertex vout such that f(vout) = AND;

5. for each vertex vcoverei
which are in the external face of G, create one directed edge

from vcoverei
to vout;

Let DG be the dual graph of G, and denote by f1 the vertex representing the external

face of G. Let TDG
be the spanning tree of DG obtained from a breadth-first search of DG

rooted at f1. In a top-down manner, according to a level-order traversal of TDG
, we visit

each edge e = (fi, fj) of TDG
, applying the following:

6. Let fj be a child of fi in TDG
;

By construction of G, it follows that the boundary between fi and fj contains at

least three edges, at least one of which being between vertices a′ and b′ that do not

exist in H;

Thus, create a vertex vfj , add edges from vfj to such a′ and b′; and for each vcovere`
in

the face fj that does not reach vout, yet, add an edge from vcovere`
to vfj ; after that,

if vfj has in-degree greater than 0, then set f(vfj) = AND, otherwise vfj is an input

vertex;

7. Finally, set k = c+ 2 · |E(G)|+ |V (TDG
)| − 1.
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(a) Scheme of TDG
. (b) Step 3.

(c) Steps 4 and 5. (d) Step 6.

Figure 2.3: Reduction from PVC to SMCC on planar circuits. Green vertices are those
a′ and b′ inserted in G after the preprocessing step. Blue vertices refer to vcoverei

created
in step 3. Edges outgoing from vcoverei

are highlighted in red. Each yellow vertex refers to
vfj inserted on step 6; Edges outgoing from vfj are highlighted in green. For simplicity,
vertices created in step 2 were omitted.
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Fig. 2.2 illustrates graphs H, G, while Fig. 2.3 shows its TDG
, and the resulting C.

Given a vertex cover S of G with c vertices, without loss of generality, we can assume

that S does not contain pairs of adjacent vertices that do not belong to V (H). By setting

1 (true) to the corresponding inputs of S in C, in exactly c edges flows true from vertices

vini to its out-neighbor vi; from each vi assigned with true flow positive values to each

vcovere such that e is an out-edge of vi. Since S is a vertex cover, each vcovere receives at

least one positive value, which implies that every vertex vfj evaluates to true, and vout
also evaluate to true. Thus, C has a succinct certificate SC where all in-edges of vout
are in SC; each in-neighbor of vout has as in-neighbor one vertex of S in SC; since the

vertices representing faces and vertices of G have the label AND, by construction, every

vcovere is in SC and has exactly one out-edge in SC; Given that S does not contain pairs

of adjacent vertices that do not belong to V (H), each vertex vfj also has exactly one

out-neighbor in SC; and as every vcovere is labeled OR, one can construct SC in such a

way that vcovere has as in-neighbor exactly one vertex in S. Thus, SC has size equal to

k = c+ 2 · |E(G)|+ |V (TDG
)| − 1. (Namely, c in-edges of vini vertices; one in-edge and one

out-edge for each vcovere ; one out-edge for each vertex vfj .)

Fig. 2.4 illustrates vertex covers of graphs G and H shown in Fig 2.2, and the succinct

certificate SC of the correspondent circuit C.

Conversely, suppose that C has a succinct certificate SC with at most k edges. By

construction, all |E(G)| vertices vcovere are in SC, and each vcovere in SC demands exactly

two edges in SC (one in-going and another out-going), which form a set of 2·|E(G)| edges.
Also, by construction, we know that all vfi vertices (created in step 6) must be in SC

(recall that these vertices are responsible to connect every inner vcovere in a path to vout).

The vertices vfi demand at least |V (TDG
)|−1 other edges in SC, at least one out-edge by

vertex. Note that the in-edges of a vertex vfi have already been considered as out-edges of

vcovere vertices. Thus, since SC has size at most k = c+ 2 · |E(G)|+ |V (TDG
)|− 1, remains

at most c edges to be considered in SC. Therefore, there are at most c input vertices vini
in SC. At this point, one can construct a vertex set S of G with cardinality at most c by

adding vi in S if its corresponding input vini is in SC. Finally, as each vcovere vertex is in

SC, at least one of its out-neighbors (endpoints of e) and corresponding input are also in

SC, which implies that S is a vertex cover of size at most c of G.
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(a) Vertex cover of H. (b) Corresponding vertex cover of G.

(c) Succinct certificate obtained from a min-
imum vertex cover of G.

(d) Bottom-up representation of the suc-
cinct certificate.

Figure 2.4: Consequences of a minimum vertex cover of H in the circuit C. Recall that
each blue vertex is a OR-vertex, vcovere , representing an edge e of G, while the other vertices
are AND-vertices.



2.3 Parameterized Complexity 18

2.3 Parameterized Complexity

In this section, we analyze the hardness of SMCC regarding theW-hierarchy. First, we

present the Weighted Circuit Satisfiability problem, a well-known W[P]-complete

problem [28].

Weighted Circuit Satisfiability

Instance: A decision circuit C.

Parameter: A positive integer k.

Question: Does C have a satisfying assignment of weight k?

The W[P]-membership of k-SMCC follows from a reduction to Weighted Circuit

Satisfiability.

Lemma 1. k-SMCC is in W[P].

Proof. Let C be a instance of k-SMCC, we construct a decision circuit D as follows:

1. For each edge e of C, create (in D) an input ie;

2. for each non-input AND-gate (resp. OR-gate) v of C, create an AND-gate (resp. OR-

gate) gv in D;

3. if there is an edge e from an input-vertex vi to vj, add an edge from ie to gvj ;

4. if there is an edge e to a vertex vi from a non-input vertex vj, create an AND-gate

ge∗ , add edges to ge∗ from ie and gvj , and add an edge to gvi from ge∗ .

In summary, the inputs of D represent edges outgoing from inputs/gates of C and

the gates gv created in step 2, a priori, mimic the same structure of C. In addition, the

AND-gates ge∗ and its respective edges added in step 4, force the evaluation to true of the

input ie if the path corresponding to the edge e of C needs to be used in D. In other

words, an edge e from a non-input vertex vj to a vertex vi in C is represented by a gadget

formed by the path gvj , ge∗ , gvi plus the edge ie, ge∗ . Thus, the evaluation to true of ge∗

depends of the previous evaluation to true of gvj (preserving the structure of the succinct

certificate) and also of the evaluation to true of ie, which produces the correspondence

between using e in a succinct certificate of C with the evaluation to true of ie inD. Hence,

it holds that: if C has a succinct certificate with k edges, then by assigning exactly the k

corresponding inputs of D as true, one can obtain a satisfying assignment with weight k
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for D; conversely, if D has a satisfying assignment A with weight k then C has a succinct

certificate induced by the set of edges {e ∈ E(C) : ie evaluates to true in A}.

Recall that W[P] ⊆ XP. Therefore, the membership shown in Lemma 1 is a result

stronger than an XP algorithm.

Next, we prove the W[1]-hardness of k-SMCC using a reduction fromMulticolored

Clique, a well-known W[1]-complete problem [31].

Multicolored Clique

Instance: A graph Q with a vertex-coloring ` : V (G)→ {1, 2, . . . , c}.
Parameter: A positive integer c.

Question: Does Q have a clique including of all c colors?

Theorem 2. k-SMCC is W[1]-hard.

Proof. Let (Q, c) be an instance of Multicolored Clique and let V1, V2, . . . , Vc be the

color classes of Q. Without loss of generality, we consider that each vertex in Vi has at

least one neighbor in Vj(i 6= j). We construct an instance (C, k) of k-SMCC as follows:

1. create an output gate vout in C and set f(vout) = AND;

2. for each color ci of Q, create a gate wi with f(wi) = OR and add an edge from wi

to vout;

3. for each color class Vi of Q, create copies V 1
i , V

2
i , V

3
i and V 4

i in C;

4. add edges from each vertex in V 4
i to wi;

5. let v1, v2, v3 and v4 be the copies of a vertex v ∈ V (Q); add edges (v1, v2), (v2, v3)

and (v3, v4) to G; set V 1
i as the input set; and assign f(v2) = f(v3) = OR and

f(v4) = AND;

6. for each vertex v4 ∈ V 4
i (1 ≤ i ≤ c)), create c− 1 new or-in-neighbors ajv4(1 ≤ j ≤ c

and i 6= j), and add an edge to ajv4 from a vertex u2 ∈ V 2
j if and only if v and u are

neighbors in Q;

7. finally, set k = 2c2 + 3c.

If Q contains a multicolored cliqueK such that |K| = c, then it is possible to construct

a succinct certificate SC of C with k edges as follows: (a) vout and all of its in-edges belong
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to SC; (b) for each OR-gate wi ∈ V (SC), include in SC an edge (v4, wi) of C such that

v ∈ K; (c) for each v4 ∈ V (SC), add all of its in-edges to SC; (d) for each v3 ∈ V (SC)

add its in-edge to SC; (e) for each v2 ∈ V (SC) add its in-edge to SC; (f) finally, for each

ajv4 in SC, choose an in-edge (u2, ajv4) to be added to SC such that u ∈ K. Thus, SC has

exactly k = 2c2 + 3c.

Conversely, if C has a succinct certificate SC with k = 2c2 + 3c edges, then it is

possible to obtain a multicolored clique K of Q as follows: a vertex v of Q belongs to K

if and only if v2 belongs to V (SC). Since, by construction, any succinct certificate of C

has at least k edges, if SC has k = 2c2 + 3c edges, then SC has only c vertices of type

v2, and for each pair v2, aju4(u 6= v and v2 ∈ V 2
j ) in SC there is an edge between them in

Q, implying that K is a multicolored clique of size c of Q.

2.3.1 Bounding the treewidth of monotone circuits with bounded
genus

In this section, we bound the treewidth of bounded genus circuits. The strategy

adopted in this section is based on the grid minor theorems proposed by Robertson and

Seymour [65, 66], see also [37].

First consider the following definitions.

A graph G has genus g if it can be drawn without crossings on a surface of genus g

(a sphere with g handles, see Fig. 2.5 ), but not on a surface of genus g− 1. We refer the

reader to [36] for more information on the genus of a graph. We consider the genus of a

circuit as the genus of its underlying undirected graph.

(a) Genus 0. (b) Genus 1. (c) Genus 2

Figure 2.5: Relation between genus and geometrical shapes.

Definition 8. Let G be an undirected graph. A tree decomposition of G is a pair T =
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(T, {Xt}t∈V (T )) such that T is a tree where each node t is assigned to a set of vertices

Xt ⊆ V (G), called bags, according to the following conditions:

•
⋃
t∈V (T )Xt = V (G), i.e. every vertex must be in at least one bag;

• for each (u, v) ∈ E(G), there exist a node t such that {u, v} ⊆ Xt;

• for each v ∈ V (G), the set Tv = {t ∈ V (T ) : v ∈ Xt} spans a connected subtree of

T .

The width tw(T ) of a tree decomposition T is the size of the largest bag of T minus one.

The treewidth of G is the minimum treewidth among all its possible tree decompositions.

Definition 9. A graph H is a minor of a graph G if H can be constructed from G by

deleting vertices or edges, and contracting edges.

Definition 10. A grid p × q, denoted by �p×q or �p when p = q, is a graph whose

set of vertices is V (G) = {vij|(i, j) ∈ {1, 2, . . . , p} × {1, 2, . . . , q}} and there is an edge

(vij, vi′j′) ∈ E(G) exactly if |i′ − i| = 1 or |j′ − j| = 1, but not both.

Theorem 3 (Excluded Grid Theorem [65]). Let t be a non-negative integer. Then every

planar graph G of treewidth at least 9t/2 contains �t as a minor.

Definition 11 ([66]). For every face F of a planar embedding M , we define d(F ) to be

the minimum value of r such that there is a sequence F0, F1, . . . , Fr of faces of M , where

F0 is the external face, F = Fr, and for 1 ≤ j ≤ r there is a vertex v incident with both

Fj−1 and Fj. The radius ρ(M) of M is the minimum value r such that d(F ) ≤ r for all

faces F of M . The radius of a planar graph is the minimum across all radii of its planar

embeddings.

From the Excluded Grid Theorem, it is easy to see that there is a connection between

the radius of a planar graph and its treewidth. In [66], Robertson and Seymour presented

a bound for the treewidth of a planar graph with respect to its radius.

Theorem 4 (Radius Theorem [66]). If G is planar and has radius at most r, then its

treewidth is at most 3r + 1.

Using Theorem 4 we are able to either solve k-SMCC on planar circuits or output

an equivalent instance C ′ with treewidth bounded by a function of k. First consider the

following.
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Lemma 2. Let (C, k) be an instance of SMCC with n = |V (C)| and m = |E(C)|. There
is an algorithm that in O(n+m) time either solves (C, k) or outputs an instance (C ′, k)

of SMCC such that:

• (C ′, k) is an yes-instance of SMCC if and only if (C, k) is also an yes-instance;

• C ′ is an induced subcircuit of a circuit C∗ that has diameter at most 2k and it is

also an induced subcircuit of C.

Proof. Let (C, k) be an instance of SMCC. Firstly, we apply to C the following prepro-

cessing steps to generate a graph C ′:

1. For each vertex vj such that f(vj) = AND, if |N−vj | > k, then vj is deleted;

2. delete every vertex which is at a distance greater than k from vout;

3. delete all vertices whose in-degree became equal to 0 (the original inputs are not

affected by this step);

4. delete all AND-vertices that lost one of its in-neighbors;

5. repeat steps 3 and 4 as long as possible;

6. delete all vertices that have become unreachable from vout;

7. if C ′ = ∅, then we conclude that (C, k) is a no-instance of SMCC.

It is easy to see that the rules described above are safe. Thus, after this preprocessing,

if C ′ 6= ∅, then C ′ is an induced subgraph of the circuit C∗, obtained after applying Step

2, which has only vertices at a distance at most k from vout. Now, observe that steps 1-4

and 6-7 can be performed in O(V (C)+E(C)) time (one can use breadth-first search from

vout to calculate the distances and degrees); also, note that although Step 5 is described

as a loop of previous steps, since the circuit is acyclic, the vertices to be removed by this

“ Repeat...until” procedure can be identified efficiently by traversing the vertices of C in

reverse sequence to a topological order, which takes O(V (C) + E(C)) time.

Regarding Lemma 2, notice that, after Step 2, the underlying undirected graph of the

current circuit has diameter at most 2k, which implies that if it is planar, then it also has

a radius at most 2k. Thus, by Theorem 4, it follows that the underlying undirected graph

of such a circuit has treewidth at most 6k + 1. Since the property of having bounded
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treewidth is hereditary, it holds that the output circuit C ′ also has treewidth at most

6k + 1.

Note that the property of having bounded diameter is not hereditary. However, if it

is desired that C ′ also has bounded diameter, one can modify Step 5 to repeat steps 2-4,

so the following holds.

Lemma 3. Let (C, k) be an instance of SMCC. There is an algorithm that in O(n2+nm)

time either solves (C, k) or outputs an instance (C ′, k) of SMCC having depth at most k,

such that (C ′, k) is an yes-instance of SMCC if and only if (C, k) is also an yes-instance.

Next, we extend the previous reasoning for bounded genus graphs.

According to [43], for an edge e = uv of a graph G, contracting e means removing the

two vertices u and v from G, replacing them with a new vertex w, and for every vertex y in

the neighborhood of v or u in G, adding in the new graph an edge wy whose multiplicity

is the sum of the multiplicities of the edges of G between v and y and between u and y.

If in the above definition we do not sum up multiplicities, and if the initial graph G is

a simple graph, then we call the operation simple contraction, or for short s-contraction.

Given a vertex-set S ⊆ V (G) such that the subgraph of G induced by S, denoted G[S], is

connected, contracting S means contracting the edges between the vertices in S to obtain

a single vertex at the end. We say that a graph H is an s-contraction of a graph G if H

can be obtained after applying to G a (possibly empty) sequence of edge s-contractions.

The following is a construction presented in [33] and [43]. Consider an (r × r)-grid.
A corner vertex of the grid is a vertex of the grid of degree 2. By Γr we denote the graph

obtained from the (r×r)-grid as follows: construct first a graph called Γ′r by triangulating

all internal faces of the (r× r)-grid such that all internal vertices of the grid are of degree

6, and all non-corner external vertices of the grid are of degree 4 (Γ′r is unique up to

isomorphism). Two of the corners of the initial grid have degree 2 in Γ′r; let x be one of

them. Now Γr is obtained from Γ′r by adding all the edges having x as an endpoint and

a vertex of the external face of the grid that is not already a neighbor of x as the other

endpoint (see Fig. 2.6 for an illustration of Γ7). Observe again that Γ′r is unique up to

isomorphism. The following is a lemma from [43] implied from Lemma 6 in [33].

Lemma 4 (Lemma 4.5 in [43]). Let G be a graph of genus g, and let r be any positive

integer. If G excludes Γr as an s-contraction, then the treewidth of G is at most (2r+ 4) ·
(g + 1)3/2.
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Figure 2.6: Graph Γ7.

Lemma 5. Let C ′ be the circuit obtained from Lemma 3. It holds that C ′ has treewidth

at most (4k + 10) · (g + 1)3/2, where g is the genus of C ′.

Proof. First, notice that for each vertex u of a Γ2k+3 there is another vertex v such that

the distance between u and v is at least k+1. Now, suppose that C∗, the circuit obtained

after Step 2, has Γ2k+3 as an s-contraction, and let u be a vertex of a Γ2k+3 such that u is

either vout or a vertex obtained by contracting S containing vout. Since there is a vertex

v such that the distance between u and v is at least k + 1, it holds that C∗ does not

have depth greater than k, which is a contradiction. Thus, by Lemma 4 we have that the

treewidth of C∗ is at most (4k + 10) · (g + 1)3/2. Therefore, as the properties of having

bounded genus, as well as bounded treewidth, are hereditary, then C ′ also has treewidth

at most (4k + 10) · (g + 1)3/2.

2.3.2 Dynamic programming on tree decomposition

From Lemma 5, in order to solve k-SMCC on bounded genus graphs, it is enough to

present an FPT algorithm parameterized by the treewidth of C.

In general, for a tree decomposition (T, {Xt}t∈V (T )) it is common to distinguish one

vertex r of T which will be the root of T . This introduces natural parent-child and

ancestor-descendant relations in the tree T [22]. To design dynamic programmings based

on tree decompositions, it is useful to obtain rooted tree decompositions that satisfy some

auxiliary conditions. Such decompositions are so-called nice tree decompositions, and they

are defined as follows:

Definition 12. A rooted tree decomposition T = (T, {Xt}t∈V (T )) is nice if the following
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conditions are satisfied:

• The root bag Xr and the leaf bags are empty;

• Every non-leaf bag of T is of one of the following types:

– Introduce node - a node t with exactly one child t′ such that Xt = Xt′ ∪{v} for
some v /∈ Xt′; we say that v is introduced at t.

– Forget node - a node t with exactly one child t′ such that Xt = Xt′\{v} for

some v ∈ Xt′; we say that v is forgotten at t.

– Join node - a node t with two children t1 and t2 such that Xt = Xt1 = Xt2.

Additionally, an extended nice tree decomposition is an extended version of a nice tree

decomposition where we also have introduce edge nodes. An Introduce edge node is a node

t, with exactly one child t′ such that Xt = Xt′ , and labeled with an edge (u, v) ∈ E(G)

such that u, v ∈ Xt; we say that (u, v) is introduced at t. Besides, we assume that each

edge of a graph G is introduced precisely once in an extended nice tree decomposition of

G.

Based on the following results, we can assume, without loss of generality, that we are

given a nice tree decomposition of G.

Theorem 5. [14] There exists an algorithm that, given an n-vertex graph G and an

integer k, runs in time 2O(k) × n and either outputs that the treewidth of G is larger than

k, or constructs a tree decomposition of G of width at most 5k + 4.

Lemma 6. [22] Given a tree decomposition (T, {Xt}t∈V (T )) of G of width at most k, one

can in time O(k2 ·max(|V (T )|, |V (G)|)) compute a nice tree decomposition of G with at

most O(k · |V (G)|) nodes and width at most k.

Theorem 6. k-SMCC can be solved in time 2O(tw) · n, where tw is the treewidth of the

input.

Proof. Let C be a planar monotone circuit and T = (T, {Xt}t∈V (T )) be an extended nice

tree decomposition of C. For convenience, we add the vertex vout to every bag of T ; thus,

the treewidth of T is increased by 1. The root bag Xr and the leaves are equal to {vout}.
This change ensures that for every bag, there exists at least one possible subsolution. It

is worth to remember that all succinct certification necessarily contains vout.
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Another preprocessing must be made: The introduce edge nodes will be labeled ac-

cording to Boolean functions of the head of the directed edge, thus, we have “introduce

edge of an AND-gate” and “introduce edge of an OR-gate”. The same alteration is applied

to forget nodes, i.e., we have “forget node of AND-gate” and “forget node of OR-gate”.

This separation of nodes help us to organize the subproblems according to the previous

subsolutions already computed.

Let TXt be the subtree of T rooted by Xt and GXt be the graph/circuit having TXt as

tree decomposition, and formed by edges already introduced in TXt .

Each subproblem of the dynamic programming is represented by c[t,X,B], which

denotes the minimum number of edges of a succinct subcircuit of GXt , where X ⊆ Xt is

the set of vertices of Xt in such a subcircuit, and B is a Boolean vector of size at most

|X| such that for each v ∈ X with f(v) = OR it holds that if B[v] = 1, then the OR-gate v

has an in-edge in the subcircuit and B[v] = 0 means that v does not yet have an out-edge

in the subcircuit.

Note that since vout belongs to every solution, we do not need to handle the con-

nectivity issue, as this is a guaranteed property of any minimal solution. Therefore, the

optimal solution can be found at c[t, {vout},B] where B = ∅ if vout is an AND-gate; otherwise

B[vout] = 1. The recurrences are presented below.

Leaf node – Let t′ be a leaf node, then Xt = {vout} which gives us two possibilities:

c[t,X,B] =

{
+∞, if (vout /∈ X) or (f(vout) = OR and B[vout] = 1)

0, otherwise
(2.1)

Introduce vertex node – Let t be an introduce vertex node with exactly one child t′

such that Xt = Xt′ ∪ {v}. Since no edge of v was introduced yet, v is isolated in GXt .

The recurrence in Eq. 2.2 resumes the subproblems.

c[t,X,B] =

{
c[t′, X\{v},B], if v ∈ X
c[t′, X,B], if v /∈ X

(2.2)

Introduce edge of an AND-gate – Let t be a node that introduces the directed edge

(u, v), where f(v) = AND and let t′ be the child of t. For each possible tuple (t,X,B), we

have three situations (See Eq. 2.3):

1. If v ∈ X and u ∈ X, then the edge (u, v) must be in the solution (increase the
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recurrence by 1);

2. if v /∈ X, then a solution for t′ is recovered;

3. lastly, if v ∈ X and u /∈ X, then the edge (u, v) cannot be used, thus, this solution

is invalid because v is an AND-gate.

c[t,X,B] =


c[t′, X,B] + 1, if v ∈ X and u ∈ X
c[t′, X,B], if v /∈ X
+∞ if v ∈ X and u /∈ X.

(2.3)

Introduce edge of an OR-gate – Let t be a node that introduces the edge (u, v) where

f(v) = OR and let t′ be the child of t. For each possible tuple (t,X,B), we need to check

the following situations:

1. If u ∈ X, v ∈ X and B[v] = 1, then the edge (u, v) can be included in the solution

depending on the most advantageous conditions in t′:

• for a tuple of t′ with Boolean vector B′ such that B′ [v] = 0 and B′ [w] =

B[w] ∀w 6= v, the OR-gate v was not satisfied, so we can sum 1 to its corre-

sponding result since we may consider the use of (u, v) in t from this stage;

• for a tuple t′ with Boolean vector equals B (B[v] = 1), the OR-gate v has

already been satisfied, i.e., it uses another edge. Thus, it is enough to consider

the result of this stage.

2. Case u /∈ X, v /∈ X or B[v] = 0, the edge (u, v) can not be utilized in current

solution; here we copy the solution of t′ with the same conditions.

c[t,X,B] =

 min
∀B′
{c[t′, X,B′ ] + 1, c[t′, X,B]}, if {u, v} ∈ X and B[v] = 1

c[t′, X,B], if u /∈ X, v /∈ X or B[v] = 0
(2.4)

Forget node of an AND-gate – Let t be a forget node and t′ be its child such that

Xt = Xt′\v and f(v) = AND. In this case, we need to choose the best of two possibilities:

v is part of the solution; v is not a part of the current solution. These two situations are

represented in Eq. 2.5.

c[t,X,B] = min {c[t′, X,B], c[t′, X ∪ {v},B]} (2.5)
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Forget node of an OR-gate – Let t be a forget node and t′ be its child such that

Xt = Xt′\v and f(v) = OR. We need the best of two possibilities:

1. v is part of the solution – in this case B′ [v] = 1 and B′ [w] = B[w] ∀w 6= v; if

B′ [v] = 0 the solution would be unfeasible.

2. If v is not a part of the current solution – in this case we recover the solution from

t′ with the similar conditions.

c[t,X,B] = min
{
c[t′, X,B], c[t′, X ∪ {v},B′ ]

}
(2.6)

Join node – Let t be a join node with two children t1 and t2. For tabulation of the

join nodes, we need to encode the merging of two partial solutions: one originating from

GXt1
and another from GXt2

. When merging two partial solutions, we need to check if

some OR-gate has more than one in-edge. This can be done through a simple strategy:

when we merge two solutions, regarding vectors B1 and B2 from t1 and t2, respectively, to

form B, we may assume that B[i] = B1[i] + B2[i] for each i. Thus, for each possible tuple

(t,X,B), we have:

c[t,X,B] = min
B1,B2
{c[t1, X,B1] + c[t2, X,B2]} (2.7)

Recall that every bag of T has at most tw + 1 vertices, each bag has at most 2tw+1

possible subsets X, and at most 2tw+1 possible Boolean vectors B. Since each entry of the

table can be computed in 2O(tw) time, and the correctness of each entry is straightforward

from its description, it holds that SMCC can be solved in time 2O(tw) · n.

Corollary 1. k-SMCC can be solved in time 2O(k·(g+1)3/2) · n + m, where g is the genus

of the input.

Proof. It follows immediately from Lemma 3, Lemma 5 and Theorem 6.

At this point, it is worth investigating how much Corollary 1 can be generalized to

encompass larger classes of circuits. Towards this goal, it is convenient to define the notion

of the diameter-treewidth property as introduced in [29].

A graph class F is said to have the diameter-treewidth property if there is a function

αF : N → N such that every graph in F of diameter at most d has treewidth at most

αF(d). By combining Lemma 3 with Theorem 6, we have Corollary 2.
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Corollary 2. Let F be a hereditary class of graphs with the diameter-treewidth property.

Then k-SMCC on monotone Boolean circuits whose underlying graph belongs to F can

be solved in time αF(k) · n+m, where αF is a function that depends only on the class F .

We say that a graph H is an apex graph if there is a vertex in V (H) such that

H\{v} is a planar graph. Classes of graphs that do not contain every apex graph play

an important role in algorithmic theory. Indeed, NP-hard combinatorial problems can be

solved much more efficiently on graphs belonging to such classes than on general graphs.

Classes of bounded genus are an important example of a graph class that fall into this

framework. Indeed, for each g ∈ N, there is some apex graph that does not belongs to the

class of graphs of genus at most g. A celebrated theorem due to Eppstein [29] (see also

[23]) states that for each minor-closed class of graphs F , F has the diameter-treewidth

property if and only if F does not contain every apex graph. By combining this theorem

with Lemma 3 and Theorem 6, we have that Corollary 3 holds.

Corollary 3. Let F be a class of graphs that does not contain every apex graph. Then

k-SMCC on monotone Boolean circuits whose underlying graph belong to F can be solved

in time αF(k) · n+m, where αF is a function that depends only on the class F .

Recall that planar graphs have genus 0. Finally, we remark the infeasibility of poly-

nomial kernels for k-SMCC on planar graphs.

Theorem 7. k-SMCC on planar circuits does not admit a polynomial kernel, unless NP

⊆ coNP/poly.

Proof. An or-composition for k-SMCC on planar circuits can be easily obtained by first

making a disjoint union of instances and then adding a new OR-gate vout which its in-

neighbors are exactly the output gates of the instances provided. Thus, we can build an

instance with certification-width at most k+1 if and only if one of the input instances has

certification-width at most k. Therefore, by the OR-composition framework (see [28]), it

holds that k-SMCC on planar graphs does not admit a polynomial kernel, unless NP ⊆
coNP/poly.

2.4 Final considerations

Although several works deal with complexity measures closely related to the notion

of a succinct certificate, most of the literature results focus on discovering lower and
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upper bounds for these measures and characterizing related complexity classes. In this

chapter, we address another direction, we introduce the Succinct Monotone Circuit

Certification problem and investigate its time complexity. We show that SMCC is

NP-complete even when the input monotone circuit is planar. Regarding Parameterized

Complexity, we show the W[P]-membership of k-SMCC and its W[1]-hardness. In addi-

tion, from an approach based on bounding the treewidth of the input, we present an FPT

algorithm for k-SMCC on graphs with bounded genus.

In this chapter, we deal only with monotone circuits. Therefore, it is interesting to

investigate the behavior of succinct certificates on general Boolean circuits and consider

the number of negations as an aggregate parameter. Also, it seems interesting to analyze

the time complexity of SMCC on other circuit classes. Such studies may provide a robust

complexity framework for a measure potentially helpful in designing circuits with sparse

activation.



Chapter 3

Energy Complexity of Satisfying Assign-
ments

When faced with threshold circuits used as an artificial neural network, it is possible

to observe a contrast with neurons of the human brain. The authors in [80] (based in

neuroscience literature) argue that the activation of neurons in a human brain happens

sparsely. It was shown in [46] that the metabolic cost of a single spike in cortical com-

putation is very high in a way that approximately 1% of the neurons can be activated

simultaneously. This phenomenon happens due to the asymmetric energy cost between

neurons activated and non-activated in natural cases. From the other side, digital circuits,

when satisfied (outputting true), on average activate 50% of the gates. Under different

perspectives, ‘energy’ (or ‘power’) of a circuit is a measure that has a lot of attention in

the literature. Due to multiple models (from biology, electronics, or purely theoretical),

several works address different ways of analyzing the energy of a circuit. In [45], the en-

ergy consumption of a circuit considers the switching energy consumed by wires (edges)

and gates of VLSI circuits. In [6] and [9], it is analyzed the voltage-to-energy consumed

by the gates, taking into consideration the failure-to-energy. Other different models are

explored in [71] and [12], such works try to explore concepts of energy too intrinsic to the

design of practical circuits on electronics.

In this chapter, we deal with a circuit complexity measure called energy complexity

(EC). The idea behind this measure is to evaluate the number of gates in a circuit that

returns true for an assignment. A similar concept called ‘power of circuit’ was studied by

[81]. The term energy complexity was introduced in [80] as an alternative to the dilemma

artificial vs natural described above. In [80], the authors prove that the minimization

of circuit energy complexity obtains a different structure from the minimization of pre-

viously considered circuit complexity measures and potentially closer to the structure of
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neural networks in the human brain. The authors proved initial lower bounds for energy

complexity and other circuit complexity measure called entropy.

With a different perspective, this chapter dedicates attention to optimization and

decision problems related to energy complexity. More precisely, we consider the problem

of determining the satisfying assignment with minimum energy consumption in monotone

circuits, i.e., the best case energy complexity of a satisfying assignment in the class of

monotone circuits – MinEC+
M . The minimization of energy complexity potentially can

help the design of circuits with sparse activation, hence, more similar to biological models.

Our focus is on time (parameterized) complexity of the henceforth defined MinEC+
M .

In [4], a measure called certification-width was described, which is the size of a min-

imum subset of edges that are enough to certificate a satisfying assignment. Such edges

form a structure called succinct certificate that can be seen as a minimal map of edges to

be followed in order to activate the output gate. Note that there are similarities between

certification-width and energy complexity. Both measures indicate saturation levels of

circuits, but while certification-width focuses on edges, energy complexity is about the

activation of gates. However, energy complexity presents two additional challenges: (i)

EC ignores the ‘firing’ of input gates; (ii) EC counts activated gates even if its signal

does not reach the output gate (due to unsatisfied gates – see Fig. 3.1). These two issues

forbid rushed conclusions about EC based on what we know about certification-width.

Nevertheless, the study in [4] also motivates the study of the complexity of computing

the best case energy complexity of satisfying assignments in monotone circuits.

Note that in energy complexity problems in addition to working with the gates needed

to satisfy the circuit, it is still necessary to handle gates that assignments may collaterally

activate (see Fig. 3.1). Such behavior makes working with energy complexity problems

more challenging than typical satisfying problems where the focus is only on the minimal

set of inputs, gates, or wires/edges sufficient to satisfy the circuit.

3.1 Preliminaries

A Boolean circuit is a model that computes a Boolean function g : {0, 1}n → {0, 1}
over a basis of operators (e.g. {AND, OR, NOT, ...}). In terms of Graph Theory, a Boolean

circuit is a directed acyclic graph C(V,E) where the set of vertices V = (I,G, {vout}) is

partitioned into: (i) a set of inputs I = {i1, i2, . . . } composed by the vertices of in-degree

0; (ii) a set of gates G = {g1, g2, . . . }, which are vertices labeled with Boolean operators;
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Figure 3.1: Anomalous behavior in certificates for MinEC+
M . Note that the edge (i4, g2)

produces a ‘leak’ of the assignment, i.e. g2 output true (increasing the energy complexity),
but its signal is not relevant to satisfy vout.

(iii) and the single output (sink) vertex vout with out-degree equal to 0 and also labeled

with a Boolean operator (see Fig. 2.1). The input vertices represent Boolean variables

that can take values from {0, 1} ({true, false}, depending on the conventions), and the

label/operator of a gate or output vertex w is given by f(w). A monotone circuit is a

Boolean circuit where the Boolean operators allowed are in {AND, OR}. An assignment

of C is a vector X = [x1, x2, . . . , x|I|] of values for the set of inputs I, where for each j,

xj ∈ {0, 1} is the value assigned to input ij. We say that X is a satisfying assignment if

the circuit C evaluates to 1 (true) when X is given as input.

Given a Boolean circuit C and an assignment X, the Energy Complexity of X into

C, EC(C,X), is defined as the number of gates that output true in C according to

the assignment X. The (Worst-Case) Energy Complexity of C (denoted by EC(C)) is

the maximum EC(C,X) among all possible assignments X (See [25]). Analogously, the

Best-Case Energy Complexity of C (denoted by MinEC(C)) is the minimum EC(C,X)

among all possible assignments X.

While computing the worst-case energy complexity of satisfying assignments in mono-

tone circuits is trivial (activate all inputs), the problem of computing the best-case en-

ergy complexity among all satisfying assignments in monotone circuits seems a challenge.

Therefore, in this chapter, we address this particular case where the circuit is monotone,

focusing on the following decision problem:
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Best-Case Energy Complexity of Satisfying Assignments in Monotone

Circuits – MinEC+
M

Instance: A monotone Boolean circuit C and a positive integer k.

Question: Is there a satisfying assignment X for C such that EC(C,X) ≤ k?

Besides, we denote by k-MinEC+
M the parameterized version of MinEC+

M where k is

taking as the parameter.

3.2 Computational complexity analysis

In this section, we present our (parameterized) complexity results regardingMinEC+
M .

Using a reduction from Planar Vertex Cover we are able to show that MinEC+
M is

NP-complete even when restrict to planar circuits. Our NP-completeness proof follows

from a polynomial-time reduction from Planar Vertex Cover similar to that em-

ployed in 2. For convenience, we repeat even similar steps in this chapter. Here, it is

not necessarily take care with possible ‘leak’ (like that described in Introduction – See

Fig. 3.1) since all OR-vertices activated in the reduction below are needed to satisfy the

output gate.

Theorem 8. MinEC+
M is NP-complete even when restricted to planar circuits.

Proof. Given a circuit C and an integer k, forming an instance of MinEC+
M , an assignment

of Boolean values can be seen as a certificate for this instance. Since it is easy to count

the number of gates outputting true according to an assignment, clearly, MinEC+
M is in

NP.

Now, we show the NP-hardness of MinEC+
M by a reduction from Planar Vertex

Cover (PVC), a well-known NP-complete problem.

Planar Vertex Cover (PVC)

Instance: A planar graph G; a positive integer c.

Question: Is there a set S of size at most c, such that for each edge (u, v) ∈ E(G)

either u ∈ S or v ∈ S?

First, consider the following preprocessing: let (H, c′) be an instance of Planar

Vertex Cover, by subdividing twice each edge of H, we obtain a graph G where each

edge e = (ab) of H is replaced by a P4 ab
′a′b, where a′ and b′ are new vertices (Recall

Fig. 2.2 in Chapter 2). Notice that G is also planar; H has a vertex cover of size c′ if and
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only if G has a vertex cover of size c = c′ + |E(H)|; and given a planar embedding of G,

the boundary of any pair of adjacent faces of G contains at least three edges.

From a fixed planar embedding of the instance (G, c) of Planar Vertex Cover,

we proceed with the reduction. We will construct an instance (C, k) of MinEC+
M where

C is a planar monotone circuit, and k is the target size of the energy complexity.

From the structure of G, we apply the following (see Fig. 2.3 and Fig. 2.4):

1. first, set V (C) = V (G);

2. for each vertex vi ∈ V (G), create an input vertex vini , assign f(vi) = AND, and add

a directed edge (vini , vi);

3. for each edge ei = (u, v) ∈ E(G), create a vertex vcoverei
such that f(vcoverei

) = OR,

and create the directed edges (v, vcoverei
) and (u, vcoverei

).

Notice that C is still planar. Now, preserving the planarity, we will ensure that every

vcoverei
outputs true for any assignment of C as follows:

4. create an output vertex vout such that f(vout) = AND;

5. for each vertex vcoverei
which are in the external face of G, create one directed edge

from vcoverei
to vout;

Let DG be the dual graph of G, where f1 represents the external face of G. Let

TDG
be the spanning tree of DG obtained from a breadth-first search of DG rooted at

f1. In a top-down manner, according to a level-order traversal of TDG
, we visit each edge

e = (fi, fj) of TDG
applying the following:

6. let fj be a child of fi in TDG
; by construction of G, it follows that the boundary

between fi and fj contains at least three edges, being at least one of which between

vertices a′ and b′ that do not exist in H; thus, create a vertex vfj , add edges from

vfj to such a′ and b′; and for each vcovere`
in the face fj that, yet, doesn’t reach vout,

add an edge from vcovere`
to vfj ; after that, if vfj has in-degree greater than 0 then

set f(vfj) = AND, otherwise create an input vertex vinfj add an edge from vinfj to vfj
and set f(vfj) = AND;
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From Step 6 holds that if vout outputs true then every vertex vcoverei
and vfj also output

true. Besides, as each vfj can be added in the planar embedding inside its respective

face, then the resulting graph still planar, and by using TDG
it holds that the added edges

preserve the graph acyclic.

7. finally, set k = c+ |E(G)|+ |V (DG)|.

If G has a vertex cover S such that |S| = c then we obtain a satisfying assignment A

to C having energy complexity at most k as follows: for each vi ∈ V (G) such that v /∈ S
we set false to its corresponding input vini (created in step 2 of the reduction); and we

assign true to the other inputs. Thus, in exactly c edges flows true from vertices vini to

its out-neighbor vi (so, at most c vertices vi will output true); and from each vi set as

true flows positive values to each vcovere such that e is an out-edge of vi. Therefore, since S

is a vertex cover, in a bottom-up manner according to TDG
, we can observe that each face

vertex vfj , each vertex vcoverei
, as well as vout will be set as true. Thus, A is a satisfying

assignment to C. At this point, it remains to analyze the energy of A. Note that C has

exactly |E(G)| vertices vcoverei
, |V (DG)| − 1 face vertices vfj , and all of them is set as true

by A, which with the addition of vout implies energy consumption |E(G)|+ |V (DG)|, since
at most c vertices vi will output true, it follows that A has energy |E(G)|+ |V (DG)|+ c.

Conversely, let C be a circuit with k gates outputting true. By construction, if C

is satisfiable, then all vertices vcoverei
and vfj also are satisfiable and, consequently, there

is at most c vertices vi outputting true, representing, in this way, a vertex cover with c

vertices in G.

Next, we investigate the parameterized complexity of MinEC+
M .

Theorem 9. k-MinEC+
M is in XP.

Proof.

Let C = (V,E) be a circuit with V = I ∪ G ∪ {vout}, where I is the set of inputs of

C, G is the set of gates and vout is the output gate. If C has a satisfying assignment X

such that EC(C,X) ≤ k then we can find X as follows:

1. Suppose that X is the satisfying assignment with EC(C,X) ≤ k having minimum

weight (i.e., minimum number of inputs assigned as true);
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2. First, we “guess” the set T of gates that should be activated by X, that is, in nO(k)

time, we enumerate each subset T of gates such that |T | ≤ k and check each one in

a new branch;

3. For each T we can check in polynomial time whether it is consistent, that is:

• vout ∈ T ;

• For each OR-gate v in T either it has an in-neighbor in T or it has an in-neighbor

in I, and for each AND-gate v in T its in-neighborhood is contained in T ∪ I;

• Conversely, each OR-gate w /∈ T has no in-neighbor in T , and for each AND-gate

w /∈ T has at least one in-neighbor that is not in T ;

• Also, no input is mutually in-neighbor of an AND-gate in T and an OR-gate not

in T ;

• Note that, if T is the set of gates activated by X then it holds that: any input

i that is in-neighbor of an AND-gate in T should be set as true in X; any input

i that is in-neighbor of an OR-gate not in T should be set as false in X. Let

X ′ be such a partial assignment;

• Therefore, each OR-gate v in T having no in-neighbor in T has at least one

in-neighbor in I that is not set as false by X ′, and each AND-gate w /∈ T

having no in-neighbor in G \ T has at least one in-neighbor in I that is not set

as true in X ′.

4. Since X has minimum weight, from a given consistent set T , in order to extend X ′

into a satisfying assignment X with EC(C,X) ≤ k (if any), it is enough to “guess”

the minimal set of inputs that should be set as true to activate the OR-gates in T

having no in-neighbor in T . As |T | ≤ k, such subset of inputs is also bounded by

k, thus, in nO(k) time, we can enumerate (if any) each assignment X ′′ extending X ′

by setting at most k additional inputs as true in such a way that each OR-gates in

T has at least one in-neighbor activated. At this point, from the guessed set T we

obtain the assignment X if there is some X ′′ for which each AND-gate w /∈ T having

no in-neighbor in G \ T has at least one in-neighbor in I that is set as false.

Note that for any satisfying assignment X of C the set of activated gates must satisfy

the properties described in step 3. Since steps 2 and 4 check in nO(k) time all possibilities,

it holds that MinEC+
M is XP-time solvable.
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Now, we show the W[1]-hardness of k-MinEC+
M using a reduction from Multicol-

ored Clique, a well-known W[1]-complete problem [31].

Multicolored Clique

Instance: A graph Q with a vertex-coloring ` : V (G)→ {1, 2, . . . , c}.
Parameter: A positive integer c.

Question: Does Q have a c-clique containing all c colors?

Figure 3.2: An instance Q for Multicolored Clique

Proof. Let (Q, c) be an instance of Multicolored Clique and let V1, V2, . . . , Vc be the

color classes of Q. Without loss of generality, we consider that each vertex in Vi has at

least one neighbor in Vj(i 6= j). We construct an instance (C, k) of MinEC+
M(k) as follows

(Recall Fig. 3.3 in Chapter 2):

1. create an output gate vout in C and set f(vout) = AND;

2. for each color ci of Q, create a gate wi with f(wi) = OR and add an edge from wi to

vout;

3. for each color class Vi of Q, create copies V 1
i , V

2
i , V

3
i and V 4

i in C;

4. add edges from each vertex in V 4
i to wi;

5. let v1, v2, v3 and v4 be the copies of a vertex v ∈ V (Q); add edges (v1, v2), (v2, v3)

and (v3, v4) to G; set V 1
i as the input set; and assign f(v2) = f(v3) = OR and

f(v4) = AND;

6. for each vertex v4 ∈ V 4
i (1 ≤ i ≤ c), create c− 1 new OR-in-neighbors ajv4(1 ≤ j ≤ c

and i 6= j), and for each u2 ∈ V 2
j such that vu ∈ E(Q) create an AND-vertex bjvu and

the following edges: (bjvu, a
j
v4), (u

2, bjvu) and (v2, bjvu);

7. finally, set k = 2c2 + 2c+ 1.
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Figure 3.3: Circuit C obtained from Q (Fig. 3.2) after reduction. The vertices represented
as rhombuses are AND-gates; the other vertices are OR-gates except those with in-degree 0
(inputs).

Theorem 10. k-MinEC+
M is W[1]-hard.

If Q contains a multicolored clique K such that |K| = c, then it is possible to find a

satisfying assignment of C that consumes k energy by mapping the set S of gates/vertices

that must be activated (outputs true) as follows: (a) vout and all of its in-neighbors must

belong to S; (b) for each OR-gate wi ∈ S, we want include in S exactly the in-neighbor

v4 ∈ V 4
i such that v ∈ K, therefore, we set f(v1)=true if and only if v ∈ K (At this

point, by construction, for each v /∈ K holds that every vertex between v1 and v4 will be

inactivated); (c) for each v4 ∈ S, all of its in-neighbors must be in S, and for each ajv4 in

S, its unique in-neighbor in S must be the AND-gate bjvu such that f(v1) = f(u1)=true

(recall that K has exactly one vertex per color). (d) finally, a vertex v2 ∈ V2 belongs to S
if and only if its in-neighbor v1 outputs true. Through a simple count one can conclude

that |S| = 2c2 + 2c+ 1. Thus, the defined assignment satisfies C by consuming k energy

as required.

Conversely, if C has a satisfying assignment X with energy complexity at most k =

2c2 + 2c+ 1 then it is possible to obtain a multicolored clique K of Q as follows: a vertex

v of Q belongs to K if and only if v2 outputs true. Since, by construction, any satisfying

assignment of C activates at least 2c2 + 2c+ 1 gates in V (C) \ (V2 ∪ V1), the assignment

X activates at most c gates in V2. Besides, the construction also implies that at least one

input per color must activated in order to satisfy C. So, X activates exactly c gates in

V2 (one per color). Therefore, K has exactly one vertex per color. Now, to show that
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K induces a clique is enough to observe the if v2 and u2 are activated in X into C and

vu /∈ E(G), then for the color j of u holds that bjvr is inactivated by X into C for any

neighbor r of v with color j. Thus, v4 and wi are also inactivated, where i is the color of

v, which contradicts the fact that X satisfies C. Therefore, K induces a clique.

3.2.1 On monotone circuits with bounded genus

A graph G has genus at most g if it can be drawn on a surface of genus g (a sphere

with g handles) without edge intersections (Recall Fig. 2.5 in Chapter 2). We refer the

reader to [36] for more information on the genus of a graph. We consider the genus of a

circuit as the genus of its underlying undirected graph.

In this section, we show that k-MinEC+
M on bounded genus circuits can be reduced

to k-MinEC+
M on bounded treewidth circuits.

Definition 13. Let G be an undirected graph G. A tree decomposition G is a pair

T = (T, {Xt}t∈V (T )), such that T is a tree where each node t is assigned to a set of

vertices Xt ⊆ V (G), called bags, according to the following conditions:

•
⋃
t∈V (T )Xt = V (G);

• For each uv ∈ E(G) there is a node t such that {u, v} ⊆ Xt;

• For each v ∈ V (G), the set Tv = {t ∈ V (T ) : v ∈ Xt} spans a subtree of T .

The width of a tree decomposition T is the size of its largest bag minus one. The

treewidth of G is the minimum width among all tree decompositions of G.

Definition 14. A graph H is a minor of a graph G if H can be constructed from G by

deleting vertices or edges, and contracting edges.

Theorem 11 (Excluded Grid Theorem [65]). Let t be a non-negative integer. Then every

planar graph G of treewidth at least 9t/2 contains a grid t× t as a minor.

From the Excluded Grid Theorem, it is easy to see that there is a connection between

the diameter of a planar graph and its treewidth. In [66], Robertson and Seymour pre-

sented a bound for the treewidth of a planar graph with respect to its radius, which also

implies a bound regarding the diameter.
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Definition 15. For every face F of a planar embedding M , we define d(F ) to be the

minimum value of r such that there is a sequence F0, F1, . . . , Fr of faces of M , where F0

is the external face, F = Fr, and for 1 ≤ j ≤ r there is a vertex v incident with both

Fj−1 and Fj. The radius ρ(M) of M is the minimum value r such that d(F ) ≤ r for all

faces F of M . The radius of a planar graph is the minimum of the radius of its planar

embeddings.

Theorem 12 (Radius Theorem [66]). If G is planar and has radius at most r then its

treewidth is at most 3r + 1.

Using Theorem 12 we are able to either solve MinEC+
M on planar circuits or outputs

an equivalent instance C ′ with treewidth bounded by a function of k.

Lemma 7. Let (C, k) be an instance of MinEC+
M . There is an algorithm that in polyno-

mial time either solves (C, k) or outputs an equivalent instance (C ′, k) of MinEC+
M where

each vertex is at distance at most 2k + 1 from vout in the underlying undirected graph of

C ′.

Proof. From an instance (C, k) of MinEC+
M , we apply the following reduction rules to

obtain C ′:

1. Delete every input vertex which is at a distance greater than k to vout;

2. Delete every vertex which is at a distance greater than k + 1 from its nearest input

vertex;

3. Delete any AND-vertex which lost one of its in-neighbors;

4. Delete any OR-vertex in which its in-degree became equal to 0;

5. Repeat steps 1 to 4 as long as possible;

6. If C ′ = ∅ then we conclude that (C, k) is a no-instance of MinEC+
M .

We now discuss the safety of the previous reduction rules: if an input vertex v is at

a distance greater than k from vout, since C is monotone, then v is not useful to satisfy

vout in any assignment X with EC(C,X) ≤ k, thus we can assume that v outputs false

and given the monotonicity of C we can safely remove v (Rule 1). Similarly, gates that

are at a distance greater than k from its nearest input vertex must output false in an

assignment X; otherwise, X consumes energy greater than k. Note that vertices at a



3.2 Computational complexity analysis 42

distance exactly k + 1 from its nearest input vertex can be useful to show that a given

assignment consumes energy greater than k. However, gates at a distance of at least k+2

from its nearest input vertex can be removed once its neighbors are sufficient to certify

the negative answer (Rule 2). Besides, if for any assignment X with EC(C,X) ≤ k holds

that some (resp. every) in-neighbor of an AND( resp. OR)-vertex v must output false,

then v must output false as well. Thus, Rule 3 and Rule 4 are safe. From the safety

of rules 1-4, it follows that Rule 5 and Rule 6 are safe. Finally, if C ′ 6= ∅ then C ′ has

only vertices at a distance at most 2k+ 1 from vout in the underlying undirected graph of

C ′.

Note that the underlying undirected graph of the circuits obtained from Lemma 7

have diameter bounded by 4k + 2. Therefore, contrasting with the W[1]-hardness for the

general case, Corollary 4 holds.

Corollary 4. MinEC+
M is fixed-parameter tractable when restricted to monotone circuits

having bounded maximum in-degree.

Also, notice that a gate with large in-degree can always be replaced by a binary tree

using only binary gates, but for or-gates it makes a relevant difference in the energy

complexity. Therefore, replacing large in-degree gates is not a useful strategy for dealing

with k-MinEC+
M . On the other hand, Lemma 7 also implies that if C ′ is planar then it

also has bounded radius, thus, by Theorem 12, it follows that the underlying undirected

graph of C ′ has treewidth bounded by a function of k. We extend the previous reasoning

for bounded genus circuits.

Given a vertex-set S ⊆ V (G) of a simple graph G such that the subgraph of G

induced by S, denoted G[S], is connected, contracting S means contracting the edges

between the vertices in S to obtain a single vertex at the end. We say that a graph H is

an s-contraction of a graph G if H can be obtained after applying to G a (possibly empty)

sequence of edge contractions.

The following is a construction presented in [33] and [43]. Consider an (r × r)-grid.
A corner vertex of the grid is a vertex of the grid of degree 2. By Γr we denote the graph

obtained from the (r × r)-grid as follows (Fig.2.6 illustrates Γ7): construct first the Γ′r

by triangulating all internal faces of the (r × r)-grid such that all internal vertices of the

grid are of degree 6, and all non-corner external vertices of the grid are of degree 4 (Γ′r is

unique up to isomorphism). Two of the corners of the initial grid have degree 2 in Γ′r; let

x be one of them. Γr obtained from Γ′r by adding all the edges having x as an endpoint

and a vertex of the external face of the grid that is not already a neighbor of x as the
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other endpoint. Observe again that Γ′r is unique up to isomorphism. The following is a

lemma from [43] implied from Lemma 6 in [33].

Lemma 8 (Lemma 4.5 in [43]). Let G be a graph of genus g, and let r be any positive

integer. If G excludes Γr as an s-contraction, then the treewidth of G is at most (2r+ 4) ·
(g + 1)3/2.

Lemma 9. Let C ′ be the circuit obtained from Lemma 7. It holds that C ′ has treewidth

at most (8k + 14) · (g + 1)3/2, where g is the genus of C ′.

Proof. First, notice that for each vertex u of a Γ4k+5 there is another vertex v such that

the distance between u and v is at least 2k + 2. Now, suppose that C ′ has Γ4k+5 as

an s-contraction, and let u be a vertex of a Γ4k+5 such that u is either vout or a vertex

obtained by contracting S containing vout. Since there is a vertex v such that the distance

between u and v is at least 2k + 2, it holds that C ′ has a vertex at distance greater than

2k + 1 from vout, which is a contradiction (see Lemma 7). Thus, by Lemma 8 we have

that the treewidth of C ′ is at most (8k + 14) · (g + 1)3/2.

3.3 Dynamic programming on bounded treewidth cir-
cuits

From Lemma 9, in order to solve k-MinEC+
M in FPT-time on bounded genus in-

stances, it is enough to present an FPT algorithm parameterized by the treewidth of the

input. To design a dynamic programming on tree decompositions, without loss of gener-

ality, we may consider that we are given a tree decomposition that is a rooted extended

nice tree decomposition (see [22] for details).

Theorem 13. MinEC+
M can be solved in time 2O(tw) · n, where tw is the treewidth of the

underlying undirected graph of the input.

Proof. Let C = (I,G, vout) be a monotone circuit where I is the set of inputs of C, G

is the set of gates with out-degree greater than 0 and vout is a single output vertex. Let

T = (T, {Xt}t∈V (T )) be a rooted extended nice tree decomposition of C. Consider also

Tt as the subtree of T rooted by node t (bag Xt) and Ct be the graph/circuit having

Tt = (Tt, {Xi}i∈V (Tt)) as tree decomposition. For convenience, we add the vertex vout to

every bag of T ; thus, the width of T is increased by at most one.

Now, note that an assignment X satisfies a monotone circuit C if and only if it induces

an activation set SX such that:
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1. vout ∈ SX ;

2. for each v ∈ SX holds that:

• if f(v) =AND then every in-neighbor of v is in SX ;

• if f(v) =OR then at least one among the in-neighbors of v is in SX ;

3. for each v /∈ SX holds that:

• if f(v) =AND then at least one among the in-neighbor of v is not in SX ;

• if f(v) =OR then every in-neighbor of v is not in SX ;

Properties 1 and 2 describe the necessary and sufficient conditions for a set SX of

activated gates to certify a satisfying assignment. Property 3 ensures that SX is maximal

regarding the property of having been activated by X.

Therefore, finding a satisfying assignment X which minimizes EC(C,X) can be seen

as the problem of finding a satisfying assignment X which minimizes |SX \ I|. Thus, we

define c[t, S,BOR,BAND] as the cardinality of a minimum set of gates St (if any) of Ct such
that:

• vout ∈ S and S = Xt ∩ St; (we say that Xt \ S = S)

• for each v ∈ V (Ct) \Xt properties 2 and 3 holds with respect to St;

• for each v ∈ S such that f(v) =AND, all in-neighbors of v in Ct are in St;

• The set BOR is the subset of OR-gates in S already having in-neighbors in St;

• for each v ∈ S such that f(v) =OR, all in-neighbors of v in Ct are not in St;

• The set BAND is the subset of AND-gates in S already having in-neighbors that are

not in St;

Furthermore, the optimal solution of the main problem can be found:

• either at c[r, {vout}, {vout}, {}], if f(vout) = OR,

• or at c[r, {vout}, {}, {}], if f(vout) = AND



3.3 Dynamic programming on bounded treewidth circuits 45

where r is the root of the tree decomposition T .

Recall that, for any node t we assume that vout ∈ S.

In order to solve MinEC+
M , the counting of gates that output true (in the solution)

are made in introduce vertex nodes. Note that in the introduce node of an OR-vertex v,

it can not be simultaneously in S and BOR because when a vertex is introduced then it is

isolated in Ct (we are considering an extended nice tree decomposition, i.e. the edges are

introduced in introduce edge nodes).

Leaf node Let t be a leaf node, then Xt = {vout}. Since vout must be in S, then

BAND = ∅. Thus, we have three subproblems in Equation (3.1).

c[t, {vout},BOR,BAND] =


1, if f(vout) = AND

1, if f(vout) = OR and vout /∈ BOR

∞, if f(vout) = OR and vout ∈ BOR
(3.1)

Introduce vertex node Let t be an introduce vertex node with exactly one child t′

such that Xt = Xt′ ∪ {v}. In the graph Ct, v is an isolated vertex; consequently, as in

the leaf nodes, there is infeasibility whenever v belongs to BOR or BAND. Besides, we have

the possibility of v be an input vertex (f(v) /∈ {AND, OR}) or v /∈ S, such situations only

rescue previous subproblems without increment the current subsolution. On the other

hand, we increment the subsolution by 1 whenever v ∈ S. All possibilities are covered in

Equations (3.2), (3.3) and (3.4).

• If f(v) /∈ {AND, OR} then

c[t, S,BOR,BAND] = c[t′, S \ {v},BOR,BAND] (3.2)

• If f(v) = OR then

c[t, S,BOR,BAND] =


c[t′, S,BOR,BAND], if v /∈ S
c[t′, S \ {v},BOR,BAND] + 1, if v ∈ S and v /∈ BOR

∞, if v ∈ S and v ∈ BOR
(3.3)
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• If f(v) = AND then

c[t, S,BOR,BAND] =


c[t′, S \ {v},BOR,BAND] + 1, if v ∈ S
c[t′, S,BOR,BAND], if v /∈ S and v /∈ BAND

∞, if v /∈ S and v ∈ BAND
(3.4)

Introduce edge node Let t be an introduce edge node and t′ its child such that

Xt = Xt′ , which introduces the directed edge uv such that {u, v} ⊆ Xt. Now, by including

an edge, we can evaluate each subproblem concerning the sets BOR and BAND; so, for each
OR-gate v ∈ S, at least one in-neighbor also must be in S; so, either uv attend this

demand or another already introduced edge satisfied that.We apply the same reasoning

for AND-gates: considering an AND-gate v ∈ S, then at least one in-edge of v need comes

to another vertex in S; if uv do not attend this requirement, the current subproblem is

assigned to a previous subproblem where v ∈ BAND. All these conditions are handled in

Equations (3.5) and (3.6). Recall that we are introducing the directed edge uv.

• If f(v) = OR then c[t, S,BOR,BAND] is equal to


c[t′, S,BOR,BAND], if u /∈ S
∞, if u ∈ S and v /∈ S ∩ BOR

min {c[t′, S,BOR,BAND], c[t′, S,BOR \ {v},BAND]} , if u ∈ S and v ∈ S ∩ BOR
(3.5)

• If f(v) = AND then c[t, S,BOR,BAND] is equal to


c[t′, S,BOR,BAND], if u ∈ S
∞, if u /∈ S and v ∈ S
∞, if {u, v} ⊆ S and v /∈ BAND

min {c[t′, S,BOR,BAND], c[t′, S,BOR,BAND \ {v}]} , if {u, v} ⊆ S and v ∈ BAND

(3.6)

Forget node Let t be a forget node and t′ be its child such that Xt = Xt′\v. In

this case, we verify the best among either selecting or not v in current subproblem. If v

is an input vertex, then this verification is trivial (it is enough to rescue the minimum

subsolution varying only the membership of v in S). For OR-gates and AND-gates, the same

verification are made but considering the feasibility of v through its membership in BOR

and BAND. Equations (3.7), (3.8) and (3.9) summarize these three scenarios.
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• If f(v) 6= {AND, OR} then

c[t, S,BOR,BAND] = min
{
c[t′, S,BOR,BAND], c[t′, S ∪ {v},BOR,BAND]

}
(3.7)

• If f(v) = OR then

c[t, S,BOR,BAND] = min
{
c[t′, S,BOR,BAND], c[t′, S ∪ {v},BOR ∪ {v},BAND]

}
(3.8)

• If f(v) = AND then

c[t, S,BOR,BAND] = min
{
c[t′, S,BOR,BAND ∪ {v}], c[t′, S ∪ {v},BOR,BAND]

}
(3.9)

Join node Let t be a join node with two children t1 and t2. For tabulation of the join

nodes, we need to combine two partial solutions – one originating from Ct1 and another

from Ct2 – in such a way that the merging is a feasible solution. Recall that G is acyclic so

we don’t need to care about cycles. Also, if a gate is activated in Ct it must be activated

in both children, so we must subtract duplicity. However, since each edge of Ct is in

either Ct1 or Ct2 , the feasibility of merging children’s solutions is guaranteed assuming

that whether v ∈ BOR/BAND then it is also in the respective set of one of the children, as

described in Equation 3.10.

c[t, S,BOR,BAND] = min
BOR1 ,BAND1 ,BOR2 ,BAND2

{
c[t1, S,BOR1 ,BAND1 ] + c[t2, S,BOR2 ,BAND2 ]

}
− |S \ I| (3.10)

where BOR = BOR1 ∪ BOR2 and BAND = BAND1 ∪ BAND2 .

Every bag of T has at most tw + 2 vertices (including vout) and vout is fixed in the

solution, thus each bag has at most 2tw+1 possible subsets S, there are at most 2tw+2

possible sets BOR, and there are at most 2tw+1 sets BAND. Therefore, the entire matrix has

size 2O(tw) · n. As each entry of the table can be computed in 2O(tw) time, it holds that

the algorithm performs in time 2O(tw) · n.

Corollary 5. MinEC+
M can be solved in time 2O(k·(g+1)3/2) ·nO(1), where g is the genus of

the input.



Chapter 4

Parameterized complexity classes defined
by threshold circuits

A decidable problem is a parameterized problem when coupled to its instance, some

additional information representing particular aspects of the input (that constitute the

parameter) are also given. Typically, the parameters measure structural properties of the

input or the solution size to be found. In general, the parameters are aspects of the input

and/or question to be answered that are isolated for further specialized analysis, where

it is assumed that the size of these parameters is much smaller than the size of the input.

Considering an instance I of a problem Π parameterized by k, we say that Π is fixed-

parameter tractable (it belongs to the class FPT) if Π can be solved by an algorithm

(called FPT algorithm) in f(k) · poly(|I|) time. Alternatively, a parameterized problem

Π is slice-wise polynomial (Π ∈ XP) if there is an algorithm that solves any instance I of

Π in f(k) · |I|g(k) time.

The main goal in a parameterized complexity analysis is to design FPT algorithms

for the target problem. However, some problems have a higher level of intractability that

brings to us the concepts related to the W-hierarchy.

A decision Boolean circuit is a Boolean circuit consisting of small and large gates1

with a single output line, and no restriction on the fan-out of gates. For such a circuit,

the depth is the maximum number of gates on any path from the input variables to the

output line, and the weft is the maximum number of large gates on any path from the

input variables to the output line.

The W-hierarchy was originally motivated by considering the “circuit representation”
1A gate is called large if its fan-in exceeds some bound, which is typically considered to be two.
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of parameterized problems, and terms the union of parameterized complexity classes de-

fined by the weft of decision Boolean circuits.

Before defining the W-hierarchy classes, we consider the following definitions.

Definition 16 (fixed-parameter reduction). Let A,B ⊆ Σ∗ × N be two parameterized

problems. A fixed-parameter (or parameterized) reduction from A to B is an algorithm

that, given an instance (x, k) of A, outputs an instance (x′, k′) of B such that

• (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,

• k′ ≤ g(k) for some computable function g, and

• the running time is f(k) · |x|O(1) for some computable function f .

Weighted Weft t Depth h Circuit Satisfiability – WCS(t, h)

Instance: A Boolean decision circuit C with weft t and depth h.

Parameter: A positive integer k.

Question: Does C have a weight k satisfying assignment?

Definition 17. A parameterized problem Π belongs to the class W[t] if and only if Π is

fixed-parameter reducible to WCS(t, h) for some constant h.

For instance, k-Independent Set (parameterized by k) is fixed-parameter reducible

(FPT-reducible) to WCS(1, 2), thus it belongs to W[1]. Alternatively, k-Dominating

Set (parameterized by k) is FPT-reducible to WCS(2, 2), which implies that it is in

W[2]. In addition, it is conjectured that k-Dominating Set cannot be fixed-parameter

reducible to WCS(1, h) for some h, since it is complete for the class W[2]. Therefore,

it is assumed that k-Dominanting Set has higher parameterized complexity than k-

Independent Set, since it seems to admit only more complex circuit representations

(i.e., circuit representations of bounded depth with greater weft).

Based on this, several parameterized problems are classified according to their pa-

rameterized complexity level. Recall that FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP, and it is

conjectured that each of the containment is proper [28].

The W[t] classes are defined by satisfiability problems of circuits with bounded depth.

Additionally, they are also considered parameterized complexity classes defined by circuits

having no bound on the depth, so-called W[P] and W[SAT]. These classes are generated

by the following problems.
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Weighted Circuit Satisfiability – WCS

Instance: A decision Boolean Circuit C.

Parameter: A positive integer k.

Question: Does C has a satisfying assignment of weight k?

Weighted Satisfiability – WSAT

Instance: A decision circuit C corresponding to a Boolean formula

(or alternatively, just a Boolean formula C).

Parameter: A positive integer k.

Question: Does C has a satisfying assignment of weight k?

Definition 18. The class W[P] is the class of parameterized problems that are fixed-

parameter reducible to Weighted Circuit Satisfiability.

Definition 19. The class W[SAT] is the class of parameterized problems that are fixed-

parameter reducible to Weighted Satisfiability.

Although W[P] and W[SAT] are both defined by unbounded depth circuits, it is

worth mentioning that circuits corresponding to Boolean formulas are treelike circuits,

i.e., circuits whose graph induced by its gates is isomorphic to a tree. Besides, general

decision Boolean circuits can be transformed into treelike circuits; however, the time

complexity for such a transformation typically takes exponential time on their number of

gates and depth. Thus, it is conjectured that W[SAT] ⊂ W[P], i.e., the containment is

proper.

Thus, the W-hierarchy is organized as follow:

W [1] ⊆ W [2] ⊆ . . . ⊆ W [SAT ] ⊆ W [P ].

Besides, the W-hierarchy classes are defined by circuits restricted to conventional

Boolean operators (AND, OR and NOT). By allowing another kind of circuits, potentially,

it is possible to represent more decision parameterized intractable problems. In Circuit

Complexity, the characterization of complexity classes concerning threshold circuits is

well-known. In 1987, Hajnal et al. [38] defined TC0, the class of all languages which

are decided by threshold circuits with constant depth and polynomial size. Analogously,

we can use similar reasoning to establish a hierarchy of parameterized complexity classes

generated by weighted satisfiability problems on non-conventional circuits. In [30], the

authors constructed a hierarchy of classes called W(C) as an alternative to W-hierarchy
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classes. However, in [30], the main discussion is restricted to bounded connectives gates

(including threshold gates with bounded threshold). In addition, they also presented some

results regarding majority gates.

In this chapter, we focus on general threshold gates and define the Th-hierarchy as an

analogue of the W-hierarchy by replacing decision Boolean circuits by decision threshold

circuits. The primary tool used in this chapter is sorting networks, which are used to

transform threshold gates in Boolean circuits efficiently.

In Section 4.1, we present some preliminaries about threshold circuits and sorting

networks. Also, in Section 4.1, the Th-hierarchy is formally defined. In Section 4.2,

we made the first comparisons between W- and Th-hierarchies, especially about W[P]

and Th[P]; here, we use sorting networks to support our conclusions. In Section 4.3,

we face a challenge in relating the Th-hierarchy classes with the W[SAT] class. As the

W[SAT] class deals with treelike circuits, trivial conversions using sorting networks are

not helpful because converting a circuit C(V,E) with depth h into a equivalent treelike

circuit takes exponential time with respect to h. Finally, by analyzing the time complexity

to construct a particular sorting network with O(log n) depth, called AKS, we show that

Th[t] ⊆ W[SAT] for every t ∈ N.

4.1 Satisfiability of threshold circuits

The characterization of decision problems as WCS(t, h) in standard Boolean circuits

has widespread attention, especially considering the enormous advance in Parameterized

Complexity Theory. When classifying a problem in the W-hierarchy, in short, we are

encapsulating the parameterized intractability of this problem in terms of satisfiability

of a corresponding circuit based on Boolean functions (AND, OR and NOT). Thus, some

questions emerge. Is W-hierarchy comprehensive enough? Are there problems complete

considering a more general basis of functions?

Due to these questions, naturally, our curiosity turns into the threshold circuits.

Threshold circuits are circuits that admit threshold gates, i.e., gates that emulate thresh-

old functions (See Definition 20). In Section 4.1.1, we provide some notations about

threshold circuits.
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4.1.1 Preliminaries

First, we present some conventions and preliminaries that are important for the se-

quence of this chapter.

Definition 20 (Threshold function). Given a set A = {a1, a2, . . . , an} of inputs (with

ai ∈ {0, 1}, for any 1 ≤ i ≤ n), a set W = {w1, w2, . . . , wn} of weights (with wi ∈ Z, for
any i ≤ n) and an integer value t called threshold, then a threshold function T nt (A,W )

holds as follows:

T nt (A,W ) = true ⇐⇒
n∑
i

(ai × wi) ≥ t, otherwise T nt (A,W ) = false.

We can specialize the Definition 20 for functions where every wi ∈ W is equal to

1, such functions are called unweighted threshold functions. In practice, an unweighted

function evaluates true when exactly t inputs ai ∈ A are set to be 1. A particular

unweighted threshold function is the majority function, which has threshold t equals to

n/2.

Definition 21 (Decision threshold circuits). A decision threshold circuit is a decision cir-

cuit containing AND gates, OR gates, NOT gates, and unweighted threshold gates, where

every unweighted threshold gate computes an unweighted threshold function.

Note that one can consider circuits having weighted threshold gates; however, in

this chapter we are dealing only with unweighted threshold gates.

4.1.2 The Th-hierarchy

For convenience, we present a generalization of WCS(t, h) by considering decision

threshold circuits.

Weighted Weft t Depth h Threshold Circuit Satisfiability – WTCS(t, h)

Instance: A decision threshold circuit C with weft t and depth h.

Parameter: A positive integer k.

Question: Does C has a satisfying assignment of weight k?

Similarly, we present the complexity classes Th[t].

Definition 22. A parameterized problem Π belongs to the class Th[t] if and only if Π is

fixed-parameter reducible to WTCS(t, h) for some constant h.
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Analogously, we define Weighted Threshold Circuit Satisfiability (WTCS)

and Th[P] as a generalization of WCS and W[P] by considering decision threshold circuits

instead of decision Boolean circuits. In addition, we define the generalization of WSAT

as follows.

Weighted Treelike Threshold Circuit Satisfiability – WTTSAT

Instance: A decision threshold circuit C whose graph induced by its gates is isomor-

phic to a tree (treelike circuit).

Parameter: A positive integer k.

Question: Does C has a satisfying assignment of weight k?

Hence, the Th-hierarchy is as follow:

Th[1] ⊆ Th[2] ⊆ · · · ⊆ Th[SAT ] ⊆ Th[P ].

By definition, it holds that W[t] ⊆ Th[t] (for every t ∈ N) as well as W[SAT] ⊆
Th[SAT] and W[P] ⊆ Th[P].

At this point, some questions emerge such as “W[t] = Th[t], for each t?”, “W[P] =

Th[P]?”, “W[SAT] = Th[SAT]?”, and “W[1] = Th[1]?”. In Sections 4.2 and 4.3, we explore

some of these issues.

To understand the relationship between these classes (at the highest levels), we revisit

the Sorting Network field and present a time complexity analysis for the construction of

AKS sorting networks [59].

4.2 W-hierarchy versus Th-hierarchy

Although the W-hierarchy is a set of infinite classes of parameterized problems, it may

possible that the W-hierarchy is not complete in the sense that may exist a parameterized

problem Π such that Π ∈ W[t+ 1]; Π /∈ W[t]; Π is hard for W[t]; but, Π is not complete

for W[t + 1], for some t. Then, it is possible that there are problems between W[t] and

W[t+ 1], or between W[SAT] and W[P].

Therefore, one of the motivation of the work in this chapter is consider classes based

on threshold circuits to identify potential gaps in the W-hierarchy.

By definition, the following proposition is clear.

Lemma 10. W [t] ⊆ Th[t], for every t ∈ N.
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Figure 4.1: Relationship between W[t] and Th[t] classes.

In contrast, it is not clear if Th[t] ⊆ W [t] for some t. Figure 4.1 depicts the current

snapshot of these classes.

We begin our discussion by disregarding structural constraints on circuits, which leads

us to the W[P] versus Th[P] dilemma.

To show that Th[P] ⊆ W[P] it is enough to present a fixed-parameter reduction from

Weighted Threshold Circuit Satisfiability to Weighted Circuit Satisfia-

bility. In this case, it suffices to provide a way to locally replace each unweighted

threshold gate for an equivalent Boolean circuit. For that, we consider the Sorting Net-

works.

4.2.1 Sorting networks

A sorting network is a comparison network circuit with n inputs and n outputs, where

the outputs are monotonically ordered (using AND and OR gates only). Such circuits

are represented by directed graphs having n inputs (bits to be ordered) and n outputs

(ordered bits).

The first implementation of a sorting network was proposed by Daniel G. O’Connor

and Raymond J. Nelson in 1954, patented three years later [57]. In 1968, Kenneth E.

Batcher [11] presented some fundamental concepts about Sorting Networks. One of these

concepts is the comparison element idea (See Figure 4.2a), which consists in a node of

the network that receives two inputs A and B and it returns the outputs L and H, such

that L = min(A,B) and H = max(A,B). For Boolean values, a comparison elements

can be constructed with two Boolean gates as shown in Figure 4.2b.

Therefore, we can define sorting networks as circuits with n inputs that flow by

multiple comparison elements, resulting in ordering those n values in a deterministic

sequence of steps.
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(a) Generic comparator. (b) Boolean comparator.

Figure 4.2: Comparison elements.

It is possible to construct a sorting network that simulates famous sort algorithms,

e.g., Bubble Sort. In [11], for instance, was described the Bitonic Sorter inspired by the

Merge Sort algorithm.

Depending on the strategy adopted to organize a sorting network, we can have circuits

with different depths. While a sorting network based on bubble sort has O(n) depth, a

bitonic sorter has O(log2 n) depth. Furthermore, the most popular sorting networks can

be constructed in polynomial time. As example, Bitonic Mergesort can be constructed in

O(n× log2 n) time [11]. Thus, Lemma 11 is supported by a vast literature.

Lemma 11. Given an unweighted threshold gate T with n inputs and threshold t, in

polynomial time with respect to n, one can construct an decision Boolean circuit CT such

that CT computes the same function of T .

Proof. Let I be the set of inputs of T . It is enough to construct in polynomial time a

sorting network for the set I of inputs (sorting from highest to lowest value) and then

connect the network outputs in such a way that the output gate returns true if and only

if t-th output of the sorting network is true.

Theorem 14. It holds that Th[P ] = W [P ].

Proof. By definition, it is clear that W[P ] ⊆ Th[P ]. To show that Th[P ] ⊆ W[P ], it

is enough to present a fixed-parameter reduction from Weighted Threshold Cir-

cuit Satisfiability to Weighted Circuit Satisfiability by locally replacing each

unweighted threshold gate for an equivalent Boolean decision circuit. Therefore, by

Lemma 14 the claim holds.

4.3 On the classes Th[t], Th[SAT], and W[SAT]

Due to the depth constraints, Lemma 11 does not implies that W[t] = Th[t], for any

t ∈ N. In addition, correlated with the structural issues of each class, we also have to
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worry about the algorithmic time needed for converting a threshold circuit into a Boolean

one, respecting such restrictions.

Also, the discussion between W[SAT] and Th[SAT] seems challenging. The WSAT

problem does not have restrictions on weft or depth, but it considers only treelike circuits.

This constraint brings us an alert about the depth when using sorting networks to convert

threshold gates into a Boolean circuit, because after this conversion, it is still necessary

to convert the resulting sub-circuit into a treelike one.

Since treelike decision circuits are exactly the decision circuits where each gate has

fan-out equal to one (each gate has a single parent), by duplicating gates, it is easy to

see that from a decision circuit G one can obtain an equivalent treelike decision circuit

in |V (G)|O(h) time, where h is the depth of G and V (G) is the set containing gates and

input variables of G. However, when each gate has fan-out bounded by a constant c, by

duplicating the gates in top-down manner according to the gates’ depth (the length of the

longest path from each gate to the output line), one can duplicate each gate gi at most

chi times, where hi is the length of the longest path from gi to the output line. Therefore,

in this setting one can construct an equivalent treelike decision circuit in ch · |V (G)|O(1)

time.

Note that sorting networks tend to have only bounded fan-out gates, since its con-

struction is typically based on Boolean comparators. This motivates us to revisit an

in-depth discussion in Theory of Computation about the existence and construction of

sorting networks with O(log n) depth.

However, even if we have an algorithm that converts a threshold gate in Boolean

circuits with O(log n) depth, we still have trouble with the cascade effect of the local gate-

replacement/tree-conversion process, i.e., by replacing a threshold gate by an equivalent

treelike decision circuit, one can increase the fan-out of gates that were seen as inputs by

this threshold gate, which implies duplications in the level inter such sorting networks.

Note that such a process may take |V (G)|O(h) time, since after the replacement of threshold

gates the fan-out of some gates may be unbounded. Since instances of WSAT may

have unbounded depth, we left open the question “W[SAT] = Th[SAT]?”. However, our

sorting network framework is able to show that Th[t] ⊆ W[SAT] (for every t ∈ N), if
one can construct in polynomial time sorting networks with depth O(log n) and bounded

maximum fan-out.

Note that in Lemma 11 we do not ensure the existence of sorting networks with loga-

rithmic depth. Besides, the only known sorting network that satisfies such a condition is
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the AKS Sorting Networks. However, to the best of our knowledge, there are no time com-

plexity analysis of an explicit construction of an AKS sorting network. In Section 4.3.1,

we detail this particular type of sorting network and we address the possibility of using

AKS sorting networks to prove that Th[t] ⊆ W[SAT], for every t ∈ N.

4.3.1 AKS sorting networks

Proposed by M. Ajtai, J. Komlos, and E. SzemerÃľdi [1], AKS sorting networks are

originally based on a probabilistic error-recovery structure called separator. A separator

is a network composed of structures called ε-halvers. A separator, in short, partitions

its inputs into four parts semi-ordered where each partition has a tolerance for strangers.

Hence, constructing an AKS sorting network is an arrangement of separators in an efficient

manner that the values flow in it with a low depth. The core of AKS sorting networks is a

kind of graphs called expander graphs, which are graphs endowed with good connectivity

properties. We refer to the following definitions to better describe AKS sorting networks.

In this work, for the construction of an AKS network we consider a particular type of

expander: a Bipartite balanced k-regular graph based on a Ramanujan graphs. Thus, for

convenience, we define only one specific configuration of an expander in Definition 23.

Let G be a bipartite graph with a bipartition of V (G) into V1 and V2. We denote by

Γ(W ) the neighborhood of a subset W ⊂ V (G).

Definition 23 (Bipartite (k, ε)-expander graphs). A bipartite graph G = ([V1, V2], E)

with n vertices is (k, ε)-expander, if and only if

• the sets V1 and V2 contain exactly n/2 each one;

• every vertex has degree k, and

• for every subset W 6= ∅ such that either W ⊆ V1, or W ⊆ V2 it holds that

|Γ(W )| × ε ≥ min(ε/2, |W |)× (1− ε)

where 0 < ε < 0.5.

Figure 4.3 illustrates a bipartite (3, 1/4)-expander graph.

One of the AKS networks “tricks” is the tolerance with elements out of position

(strangers) after a comparison stage. Therefore, AKS sorting networks uses ε-halvers

instead of perfect halvers (See Definition 24).
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Figure 4.3: A bipartite (3, 1/4)-expander graph G.

Definition 24 (Halvers). A circuit C with n inputs (where n is even) is a perfect halver

if C return the input values in two output sets: One with exactly n/2 larger inputs; and

other with n/2 smaller inputs. We say that a circuit is an ε-halver when these two output

sets has at most ε× n strangers (inputs which were directed to wrong output set).

Due to the expansion properties of a (k, ε)-expander, it is possible to extract several

perfect matchings. Each perfect matching divides the n inputs into two sets with the same

size. Thus, it is possible to perform n/2 swaps for each perfect matching and the pairs

in matchings are natural comparators (see Fig. 4.4). From (k, ε)-expanders we design

ε-halvers with k swap stages (see Fig. 4.5).

(a) A perfect matching M in G. (b) Swap based in M .

Figure 4.4: A perfect matching in a (k, ε)-expander determining swap stages. Each vertical
wire in (b) represents a comparator between its endpoints.

Considering that an ε-halver H outputs the sets V1 and V2 such that V1 has the

smallest values and V2 has the largest values, with an ε-tolerance to strangers. Using

these semi-ordered values outputted by H to construct another ε-halver H ′, we have a

new round of swaps. Here, it is expected that H ′ outputs the sets V ′1 and V ′2 with less

strangers. It is easy to see that a well-structured web of ε-halvers, without doubt, can

Figure 4.5: A (1/4)-halver constructed from G with three swap stages.
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order n inputs in few stages. To this web, we call the notion of separator.

Definition 25 (Separator). A circuit C with n inputs is a (λ, σ, ε)-separator if C returns

four output sets G1, G2, G3 and G4 (a partition of the inputs) of sizes λ× (n/2), (1−λ)×
(n/2), (1− λ)× (n/2) and λ× (n/2), respectively. In addition, G1 and G4 have at most

σ × λ× (n/2) strangers; and G2 and G3 have at most ε× (n/2) strangers.

Applying the same reasoning of the ε-halvers to separators, it is easy to see that flowing

values through a network of separators, in few stages, the partitioning of G1, G2, G3 and

G4 will dissipate the presence of its strangers, and consequently, this order the input

values. That is a summary of the idea behind the AKS sorting network: a chain of

separators, which is, in its turn, a chain of halvers. Note that we are not providing all

details about AKS sorting networks. A survey about this topic can be found in [8].

For a while, the existence of a O(log n)-depth sorting network was an open question.

The first version of an AKS sorting network [1] solved this question. However, behind

the asymptotic expression O(log n) there is a constant factor of approximately 2100. This

huge constant factor inhibits the practical implementation of AKS sorting networks, and

there are just a few explicit algorithms describing the construction of an AKS network.

In 1990, Paterson [59] presented an improved construction of AKS networks with a depth

substantially smaller, but still impracticable. After all, several works address some slight

improvements in the AKS construction and Paterson algorithm. However, none of those

works achieve a substantial decrease in the constant factor of AKS networks’ depth.

In [87], Hang Xie presented an explicit description of the Paterson’s strategy. However,

although Hang Xie presented a constructive proof to obtain AKS networks, to the best of

our knowledge, there is no work presenting a time complexity analysis of the construction

of this sorting networks. The main reason for the absence of this analysis is due to the

“galactic” size of these networks, which makes their practical implementation impossible.

However, in this chapter, our interest in AKS networks is different, since our focus is on

complexity classes.

Nevertheless, from the explicit algorithm detailed in [87], we have all tools to address

the time complexity of such a construction. As we remark in Section 4.3.2 that the

construction presented in [87] can be performed in polynomial time, we can conclude the

proper containment of Th[t] ⊆ W[SAT], for every t ∈ N.
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4.3.2 Th[t] ⊆[SAT]

Now, we present a description of the construction of an AKS network detailed in [87].

We focused only on algorithmic time to perform each step of the construction. For more

details on the construction see [87].

Given a value ε and n (number of keys to be ordered), we can construct a ε-halver

according to Algorithm 1.

Algorithm 1 (ε−Halver construction [87]).

1. Let

K =
2(1− ε)(1− ε+

√
1− 2ε)

ε2

2. Pick the minimum prime p congruent to 1 mod 4(≥ K − 1). Let k = p+ 1.

3. Find the minimum prime q congruent to 1 mod 4, such that q ≥ n/2.

4. Construct a k-regular Ramanujan graph with q vertices.

5. Construct a balanced bipartite k-regular graph GB with 2q vertices.

6. Find a perfect matching of the graph using Hungarian algorithm and transform each

pair in a sequence of comparators; remove this matching from the graph to get a

(k − 1)-regular graph;

7. Repeat 6 until GB has no perfect matchings.

In this construction, ε-halvers are organized as balanced bipartite k-regular graphs

generated from k-regular Ramanujan graphs of q vertices, where q ≥ n/2. Additionally,

the method used to construct Ramanujan graphs was based on [50, 51] (also known as

LPS graphs). Thus, the first three steps in Algorithm 1 were dedicated to finding k and

q based on the desirable K.

In order to find an appropriated value of K, Hang Xie was based on [78] to calculate

the depth of an associated ε-halver providing the Lemma 12.

Lemma 12. (From [87]) Let

K =
2(1− ε)(1− ε+

√
1− 2ε)

ε2



4.3 On the classes Th[t], Th[SAT], and W[SAT] 61

For every k-regular LPS graph, if k ≥ K then every subset X of size εn has at least

(1− ε)n neighbors.

The choice of ε impacts the depth and size of this ε-halver. For example, if we decide

to construct a (1/72)-halver, we have K ≈ 20162.99. By steps 2 and 3, we can find

p = 20173, which indicates the creation of a 20174-regular Ramanujan graph in step 4.

For a smaller (or larger) Ramanujan graph, we need to exploit the equation in

Lemma 12 to discover another ε. This choice can be guided by the size of the input

to be ordered. If we already know the desirable ε, then the first step costs O(1). Also, p

and q are values used to construct Ramanujan graphs called LPS graphs (more details in

[50, 87]). Be prime and congruent to 1 mod 4 are specific conditions for this construction.

By number theory, we know that for a value m ≥ 13 then there is a prime number x

congruent to 1 mod 4 such that m ≤ x ≤ 2m. Hence, since p need to be larger than K

then in steps 2 find p by iterating from K to 2K until find the first number that fit the

conditions. Hence, steps 2 takes polynomial time on K, since for each candidate value

we have to check if it is prime. In addition, K depends only on ε. For q we need to find

a prime number congruent 1 mod 4 and greater than n/2. By iterating q from n/2 to n,

and verifying for each q if it is prime, we polynomial time on n.

For Step 4, it is well-known that a graph with a small second eigenvalue of its adja-

cency matrix is a good expander. By Alon-Boppana theorem [3], we know that 2
√
k − 1 is

the lower bound for the second eigenvalue of a k-regular graph adjacency matrix. By Def-

inition 26, we can observe that the Ramanujan graph is a family of k-regular graphs with

the best possible second eigenvalue of its adjacency matrix, which guarantees Ramanujan

graphs as good expanders.

Definition 26. A Ramanujan graph is a connected k-regular graph whose eigenvalues are

at most 2
√
k − 1 in absolute value.

The explicit construction of a k-regular Ramanujan graph was presented in [50, 51]

and takes polynomial time on k.

For Step 5, in order to create a balanced bipartite k-regular graph Gb from the Ra-

manujan graph G created in step 4, we present the Algorithm 2, which takes O(|E(G)|)
time.

Algorithm 2.



4.3 On the classes Th[t], Th[SAT], and W[SAT] 62

1. Given a G(V,E) with q vertices V = {v1, v2, . . . , vq}, create a graph Gb([U,W ], Eb)

with 2q vertices divided in U = {u1, u2, . . . , uq} and W = {w1, w2, . . . , wq};

2. For each pair of positive integers (i, j), with i ≤ n and j ≤ n, create an edge from

ui to wj in Eb iff (vi, vj) ∈ E.

Finally, for Step 6 and 7, we perform k executions of the well-known Hungarian

algorithm, which also can be done in polynomial time.

After analyzing each step of Algorithm 1, we conclude that this explicit construction

of an ε-halver can be done in polynomial-time.

Now, it remains to verify the time complexity in arranging a separator.

Here, we present a simplified construction of a (λ, σ, ε)-separator. In [59, 87], there

is more sophisticated constructions. But, our purpose is only to show it is possible to

perform it with a polynomial construction.

Algorithm 3. ((λ, σ, ε)-separator construction) [8].

1. Given an input with m keys to be ordered, create an array S with m positions in

the bottom level d.

2. Construct a ε-halver in the first level (level 0) of the separator. Apply the m keys

to this ε-halver and send the output sets L0 and R0 with m/2 (each) to level 1.

3. For each level 0 < i < d, construct two ε-halver hLi and hRi and then:

• Apply the m/2i keys in Li−1 to hLi and send the output left half to level i+ 1

as Li.

• Send the output right half of hLi to the positions S[(m/2i+1) + 1] to S[m/2i] in

bottom level.

• Apply the m/2i keys in Ri−1 to hRi and send the right half of the output to

level i+ 1 as Ri.

• Send the output left half of hRi to the positions S[(m/2i) + 1] to S[(m/2i) +

(m/2i+1)] in bottom level.

Note that by this construction λ = 2(1−d) and σ = d × ε (the presence of ε × m

strangers dissipates across the levels resulting in σn). For a depth d = 4 (See Figure 4.6),

we can construct a (1/8, 1/18, 1/72)-separator using (1/72)-halvers.
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Figure 4.6: A (1/8, 1/18, 1/72)-separator. The array S is formed by {G1, G2, G3, G4}.

The sorting network has O(log n) layers with a complete binary tree on each layer with

O(n) nodes. Each node has a (λ, σ, ε)-separator, and the layers are interconnected so that

the complete circuit has depth O(log n) (See a detailed construction in [8], Section 11.4).

Then, Proposition 1 holds.

Proposition 1. One can construct an AKS sorting network in polynomial time.

Lemma 13. For each t ∈ N, it holds that Th[t] ⊆ W[SAT].

Proof. To show the W[SAT]-membership of Th[t], for every t ∈ N, we first ensure the

existence of a polynomial-time algorithm that converts a threshold gate (with fan-in n)

in Boolean circuit with O(log n) depth. We know that the AKS sorting networks have

logarithmic depth, and by construction its gates has bounded fan-out. In addition, AKS

sorting networks can be constructed in polynomial time on the number of inputs as

described in this section.

Therefore, we can replace each unweighted threshold gate for an equivalent decision

Boolean circuit by first construct an AKS network and then converting it into a treelike

sub-circuit. After that, to obtain a complete treelike circuit, it is enough to handle with

the gates inter sorting networks, which can be done since instances of WCS(t, h) have

depth bounded by h, which is a constant.

Hence, in polynomial time one can take an instance of WTCS(t, h) and outputs an

equivalent treelike Boolean circuit C, i.e., a decision circuit corresponding to a Boolean

formula. Thus, WTCS(t, h) is fixed-parameter reducible to WSAT and Th[t] ⊆ W[SAT],

for each t ∈ N.
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Figure 4.7: Relationship between W-hierarchy and Th-hierarchy.

Figure 4.7 shows the inclusion relationships we know between classes of the W-

hierarchy and Th-hierarchy.



Chapter 5

Maximum Multi Improvement on Neigh-
borhood Exploration

Heuristics for combinatorial optimization problems often perform local search as an

internal procedure, that usually fit inside global search frameworks called metaheuristics.

Some metaheuristics use a concept of local search attached to the exploration of an explicit

set of neighbor solutions (achievable by a single move operation) called neighborhood,

e.g., Variable Neighborhood Search [55], Iterated Local Search [49], Tabu Search [35].

Traditionally, these methods include a Best Improvement (BI) or First Improvement (FI)

strategies, respectively selecting the best or first improving solution, in a given neighbor-

hood [77].

Recently, it was proposed the Multi Improvement (MI) neighborhood exploration

strategy [63], in order to efficiently select independent moves in a neighborhood via heuris-

tic or exact approaches. The need for performing local search on parallel computing archi-

tectures, previously promoted by multicore Central Processing Units (CPUs), and lately

by Graphics Processing Units (GPUs), has driven the development of similar approaches

(see [7, 19, 63, 84]). However, the lack of a theoretical formulation for the methodology

and a well-defined concept of independence on neighborhood operators have inspired the

development of this study.

The MI can be seen as an alternative to known BI and FI with a heavier computational

load, but seeking to achieve better quality solutions in fewer iterations. It was recently

applied to theMinimum Latency Problem [13] and the analysis indicated that the gain

with MI local searches depends on our capacity to quickly select a large set of independent

moves in a neighborhoods, which also includes the best [64]. However, the problem in

finding optimal set of independent moves, given a solution of a optimization problem,
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(a) First Improvement. (b) Best Improvement.

Figure 5.1: Traditional neighborhood exploration strategies.

may be very difficult (see Section 5.2).

In this chapter, we consider the problem of finding a maximum set of independent

moves from a given neighborhood structure, which is defined as the Maximum Multi

Improvement Problem (MMIP).

Maximum Multi Improvement Problem

Instance: An instance I of an optimization problem Π; a feasible solution P of I; an

evaluation function f according to Π; and a neighborhood operator ψ.

Goal: Determine a set S of independent moves according to ψ to be applied to P in

order to obtain a feasible solution P ′ that maximizes f(P ′).

5.1 Preliminaries

Given a neighborhood operator ψ and a feasible solution X, we denote ψ(X) =

{X ′1 = m1(X), X ′2 = m2(X), ...} as the neighborhood1 of X, where each mi is a move.

The First Improvement strategy selects the first neighbor X ′i (minimum value of i) that

offers improvement over current solution X (see Figure 5.1a). On the other hand, the Best

Improvement verifies all neighbors ψ(X) and selects the one that promotes the greatest

gain (see Figure 5.1b). Intuitively, FI strategy is faster (ignoring worst-case where the

only ’improving neighbor’ is last), but FI iterated descent converges ‘slowly’ (smaller

improvements).

Nevertheless, each BI strategy tends to achieve a faster convergence (bigger improve-

ments), but it is necessary to consider the cost to search all neighbors. This hunch was

confronted in literature [39] when BI and FI were tested inside a descent local search, for

two scenarios: (1) starting with a greedy initial solution, where BI (Steepest Descent Hill
1Neighborhood is a set of solutions (neighbors) that can be reached in one move (2-Opt, 3-Opt, OrOpt,

Swap, etc.) on actual solution.
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Climbing) has more successful; and (2) starting with a random solution, where FI iterated

descent was victorious.

In previous studies, concepts of independence and selection of moves based on dynamic

programming (dynasearch) for iterative improvement were discussed (see [20, 60]). In the

present chapter, we consider a broader concept of independence between moves: Two

moves mi and mj are said to be independent (or, mi||mj) if the effect of these moves,

simultaneously (in parallel), over the current solution have the same effect as these moves

sequentially.

In other words, we say thatmi and mj are independent, iff one does not interfere in the

calculation of the gain of each other. This is a fundamental difference from previous works

in literature, since this enables the development of much more efficient MI algorithms, by

using concurrent data structures to handle the application of independent moves.

Figure 5.2: Multi Improvement: two (or more) improving moves are used simultaneously
(if both are independent)

Implementations of the BI strategy usually verify all possible moves to discover the

best of all. If all the information about these moves are already known, why do not use

them to apply several good moves instead use only one move? This question inspired

the adoption of Multi Improvement strategies, consisting on selecting some independent

moves simultaneously (Figure 5.2).

5.2 The Maximum Multi Improvement Problem

For convenience, Maximum Multi Improvement Problem will be expressed as

following:

• Based on an instance I for an optimization problem Π, an objective function f ,

consider a given feasible solution P ;
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• Let M = {m1,m2, . . . } be the set of moves given by a neighborhood operator ψ,

such that neighborhood ψ(P ) is defined as ψ(P ) = {P ′1 = m1(P ), P ′2 = m2(P ), ...};

• Let g(m′, P ), a function that returns the gain/loss when m′ ∈ M is applied on P ,

i.e. g(m′, P ) = f(m′(P ))− f(P ). The function g will be redefined for each operator

ψ in Section 5.3 for the purpose of simplifying the algorithms;

• Let σ(mi,mj), a function that returns 1 if {mi,mj} ∈ M are independent of each

other and returns 0, otherwise. This can be defined formally as σ(mi,mj) = 1 ⇐⇒
g(mi, P ) = g(mi,mj(P )) ∧ g(mj, P ) = g(mj,mi(P ));

• Consider also a decision variable xi ∈ {0, 1} that represents if a move mi ∈ M will

be selected (1, case positive)

The solution for the MMIP is a set of moves that maximizes Eq. (5.1).

maximize
∑

i ∈ 1..|ψ(P )|

xi · g(mi, P ) (5.1)

Subject to:

xi + xj ≤ 1, if σ(mi,mj) = 0 (5.2)

Now, we enunciate Maximum Weight Clique Problem: Given an undirected

weighted-vertex graph G = (V,E) where V is a vertex set and E is an edge set. Consider

a function w(vi) that returns the weight associated to vertex vi ∈ V . The MWCP is

to find a clique C where the sum of the weights of vertex vi ∈ C is maximum. The

Maximum Clique Problem (proven NP-hard [34]) can be reduced to MWCP when

considering graphs with unitary weights. Therefore, MWCP is also NP-hard and there

is a vast literature about techniques for solving famous instances, such as DIMACS [42]

and BHOSLIB [88].

Theorem 15. MMIP ∝ MWCP

Proof. Considering instances for decision problem versions for MWCP and MMIP as

described, a polynomial reduction can be defined according to following steps:

1. Each vertex vi ∈ V (G) is associated to move mi ∈M ;
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2. weight w(vi) is associated to g(mi, P );

3. if (vi, vj) ∈ E(G), then σ(mi,mj) = 1, and 0 otherwise.

If an instance for MMIP is YES for any value k, the associated instance for MWCP

will be YES too:

(⇒) Lets suppose a graph G = (V,E) as input for MWCP, which does not have a

clique with weight k; and a derivated instance for MMIP, which has a set m∗ whose

accumulated gain reach k. In this case, there must exist two moves {mi,mj} ∈ m∗ such
that σ(mi,mj) = 1, while the edge (vi, vj) /∈ E(G). That is a contradiction, because if

this edge did not exist, the reduction proposed would necessarily cause σ(mi,mj) = 0.

(⇐) Now, lets suppose a instance for MMIP does not have a set m∗ with gain k and the

related graph G contains a clique with weight k. So, there is at least an edge (vi, vj) ∈
E(G) where σ(mi,mj) = 0, which is a contradiction.

Figure 5.3 shows two spanning subgraphs for a particular MMIP instance (Π = TSP

and ψ = Swap). In the context of a TSP route P , swap(i, j) consists in exchanging

two vertex at positions i and j from the tour, i.e., elements P [i] and P [j]. When some

algorithm decides to perform a swap between two cities in a tour, some others swaps moves

are forbidden (due to conflicts); for example, swap(1, 2) forbids swap(2, 3) or swap(3, 7)

because these moves conflict in the calculation of gain with the initial swap. On the

other hand, swap(1, 2) is said to be in harmony with move swap(4, 5), since no conflict

happens when applying both moves simultaneously (both are independent). Figures 5.3a

and 5.3b depict a TSP tour with 8 cities, where the vertices of both spanning subgraphs

represent all possible swap moves. The explicit edges show a neighborhood for swap(1, 2)

(see Figure 5.3a) and swap(1, 8) (see Figure 5.3b). Thus, a multi improvement method

cannot perform these moves in the same stage of the local search. The maximum weight

clique in this graph consists of the optimal multi improvement with swap moves.

In the next section, we propose efficient exploration techniques based on dynamic

programming for several neighborhood operators on a MI.

5.3 Dynamic Programming Multi Improvement

In this section, we will analyze 2-Opt, 3-Opt, Or-Opt-k neighborhood operators. Each

operator yields several moves, which also have particular properties that forbids other

moves. All neighborhood operators and examples below refers to the classic TSP.
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(a) swap(1,2) (b) swap(1,8)

Figure 5.3: Spanning subgraphs for swap operator. Edge represents independent moves
(harmonic)

The Traveling Salesman Problem [32] can be defined as follows: Given a graph

G = (V,E), where each vertex v ∈ V (G) represents a city and, for each edge (vi, vj) ∈
E(G), d(vi, vj) represents the cost to travel from vi to vj. A salesman needs to visit all

cities only one time and to return to initial city in minimum cost. Along this chapter, we

will deal/treat only Symmetric TSP (where d(vi, vj) = d(vj, vi)). Typically, a solution for

the TSP is a permutation of n elements v1, v2, ..., vn−1, vn that represents a single feasible

tour for this problem. Thus, the cost of a solution is a sum of cost of the edges between

each element and its successor on the permutation.

Before discussing the neighborhood operators, firstly, we define the k-Opt neighbor-

hood of a given route P as all routes consisting of the removal of k edges and the insertion

of k new edges, such that:

∀i ∈ 1 . . . k − 1, i-Opt(P ) ∩ k-Opt(P ) = ∅

We also define 1-Opt as an empty neighborhood (remove/add single edge).

5.3.1 2-Opt Neighborhood

The first neighborhood structure analyzed was based on the classic 2-Opt move. In

the 2-Opt, two edges are removed from solution and another two edges are included.

Figure 5.4 shows a simple example for a 2-Opt between 2 and 5.
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(a) Original tour (b) Eliminated edges (c) New edges

Figure 5.4: Effect of 2Opt(2, 5) in a graph

In other words, 2-Opt moves for TSP can be treated through the inversion in a range

inside vector that represents a solution for this problem. The idea behind this inversion

inspired a dynamic programming for 2-Opt neighborhood as follows.

Dynamic Programming strategy:

• Consider neighborhood operator ψ1 = 2-Opt and the function gψ1(i, j) , which

returns gain (or loss) in a 2-opt move between vi and vj in a TSP solution: gψ1(i, j) =

−d(vi−1, vi)− d(vj, vj+1) + d(vi−1, vj) + d(vi, vj+1).

• We define L(a, b) as the best possible gain with a 2-opt move in the range between

va and vb (of route P ). When two cities vi and vj are selected for move 2Opt(i, j), a

subproblem arise: L(a, i−2) (optimal solution for the range between a and selected

2-opt move);

• The base case is L(a, b) = 0, if a ≥ b and the optimal Multi Improvement is given

by the max{L(1, n− 1), L(2, n)}.

• Therefore, we present the recurrence in Eq. (5.3).

L(a, b) = max

 L(a, b− 1),

max
a≤i<b

gψ1(i, b) + L(a, i− 2)

 , if a < b. (5.3)

• Recurrence in Eq. (5.3) provides a dynamic programming algorithm that costs

O(n3), according to Algorithm 1 and its complexity analysis on Eq. (5.4).

The inner loop in Algorithm 1 realizes a number of steps based in a sum of aritmethic

progressions always started in 1 and finished in d. It performs 1 step for d = 1, 1 + 2
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Algorithm 1: Memoization for 2-Opt
1 for d← 1 to n do
2 for a← 1 to n− d do
3 b← a+ d
4 L[a][b]← L[a][b− 1]
5 for i← a to b do
6 if (gψ1(i, b) + L[a][i− 2]) > (L[a][b]) then
7 L[a][b]← gψ1(i, b) + L[a][i− 2]

steps for d = 2, 1 + 2 + 3 steps for d = 3, etc. For n cities, (1 · n) + (2 · (n− 1) + (3 · (n−
2)) + · · ·+ (n− 1) · 2 + n · 1, that represents a sum in 5.4.

n∑
d=1

d · (n− (d− 1)) = −1

6
n · (n+ 1) · (2n− 3n− 2) = O(n3) (5.4)

When 2Opt(i, j) move is selected, the adjacency of cities between i+2 and j-2 remains.

The internal range (i+2, j−2) can provide more one subproblem (including independent

moves), just being careful to manage eventual concurrent accesses on P data structure.

This leads to a more complete version of dynamic programming exploration for 2-Opt,

as described by Eq. (5.5).

L(a, b) = max

 L(a, b− 1),

max
a≤i<b

gψ1(i, b) + L(a, i− 2) + L(i+ 2, b− 2)

 , if a < b. (5.5)

This version has the same asymptotic complexity O(n3), while considering a much

larger combination of 2-Opt moves.

5.3.2 3-Opt Neighborhood

The 2-Opt move deletes two edges and inserts two new links in a tour. Naturally, a 3-

Opt move removes three edges and re-connects the cycle with three new edges. However,

there exists eight different forms to reconnect a cycle (for a general undirected graph).

One of these forms is to reinsert the same edges that was removed, however this generates

the same original solution. Other three forms can be reduced into 2-Opt moves. Thus,

there are four different possible re-connections to be analyzed. In Figure 5.5a, we have a

representation of a solution from TSP (tour starts in v1 and finishes in vn). In Figure 5.5b,



5.3 Dynamic Programming Multi Improvement 73

three edges were chosen to be removed. In a sequence, we present (Figures 5.5c, 5.5d,

5.5e and 5.5f) four types of 3-Opt moves. Both subtours between deleted edges are called

range 1 and range 2 in these figures. The different ways to manipulate this two ranges

determines the 3-Opt types.

Dynamic Programming strategy:

• Consider the neighborhood operator ψ2 = 3-Opt, and let gψ2(i, j, k, t) be a function

that calculates the gain in removing edges highlighted in red on Figure 5.4b and

adding the edges highlighted in green on Figures 5.5c, 5.5d, 5.5e and 5.5f, according

to specified type t.

• L(a, b) represents a optimal set of 3-Opt moves between va e vb. In this case, k will

be fixed in function gψ2 with the value of b when i, j and t vary, thus, only one

subproblem will emerge: L(a, i− 2).

• The base case is L(a, b) = 0, if a ≥ b and the optimal Multi Improvement is given

by the max{L(1, n− 1), L(2, n)}.

L(a, b) = max
a≤i<j≤b

 L(a, b− 1),

max
1≤t≤4

gψ2(i, j, b, t) + L(a, i− 2)

 if a < b. (5.6)

• Eq. 5.6 provides the memoization process present in the Algorithm 2:

Algorithm 2: Memoization for 3-Opt
1 for d← 1 to n do
2 for a← 1 to n− d do
3 b←= a+ d
4 L[a][b]← L[a][b− 1]
5 for i← a to b− 1 do
6 for j ← i to b− 1 do
7 best = 0
8 for t← 1 to 4 do
9 if (ψ2(i, j, b, t) + L[a][i− 2]) > best then

10 best← ψ2(i, j, b, t) + L[a][i− 2]

11 if best > L[a][b] then
12 L[a][b]← best

The inner loop in Algorithm 2 perform a constant number of steps which do not

depends on size of input. The second inner loop performs a number of steps that represents
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(a) Original tour (b) Edges deleted

(c) 3-Opt: type 1 (d) 3-Opt: type 2

(e) 3-Opt: type 3 (f) 3-Opt: type 4

Figure 5.5: 3-Opt possibilities
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a sequence similar to Algorithm 1, but it is a sum of arithmetic progressions. For d = 1,

only 1 step; for d = 2, 1 + (1 + 2); for d = 3, 1 + (1 + 2) + (1 + 2 + 3) steps; etc. For

d = n, the same number of steps in Eq. (5.4) will be performed. Therefore, we have the

final sum in Eq. (5.7).

1∑
m=n

m∑
d=1

d · (m− (d− 1)) = O(n4) (5.7)

5.3.3 OrOpt-k Neighborhood

OrOpt-k neighborhood structure consists in a selection of k cities in the tour that will

be shifted to another position in a actual solution. It is interesting to note that OrOpt-k

is a specific case of 3-Opt movement, i.e., type 1 on Figure 5.5c. In OrOpt-k movement,

there are no range to be reversed. Thus, in case of shift move in OrOpt-k is to right, we

assume a equivalence between the range of k elements and shift size with range 2 and

range 1 from 3-Opt, respectively (see Figure 5.6b). If the shift move is to left then the

range of k elements corresponding to range 1 and shift size refers to range 2. In Figure 5.6

is represented a OrOpt-k shift to right.

(a) Eliminated edges (b) Shifting k elements to right vi+s

(c) Solution before move (d) Solution after move

Figure 5.6: OrOpt-K scheme
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Dynamic Programming strategy:

• Consider neighborhood operator ψ3 = OrOpt-k. According to Figure 5.6b, OrOpt-k

can be reduced to type 1 from 3-Opt. In this case, the initial vertex inside the range

to be shifted and shift size provide all information to a function gψ3 .

• Let gψ3(i, k, s) a function that returns a gain in a move of a range between vi and

vi+k shift after vi+k+s, we have a conversion from gψ3 to gψ2 in Eq (5.8).

• Let L(a, b) be the best possible gain with a Or-Opt-k move in the range between va
and vb (of route P ).

• The base case is L(a, b) = 0, if a ≥ b and the optimal Multi Improvement is given

by the max{L(1, n− 1), L(2, n)}.

gψ3(i, k, s) = gψ2(i, i+ k, i+ k + s, 1) (5.8)

• A minor adjust provide a recurrence in Eq. (5.9).

L(a, b) = max
a≤i<b

{
L(a, b− 1),

max{gψ3(i, k, s), gψ3(i, s, k)}+ L(a, i− 2)

}
if a < b. (5.9)

Note that the line 6 in Algorithm 3 describe a double verification of gψ3 function. The

comparison gψ3(i, k, s) and gψ3(i, s, k) guarantees that the algorithm verify as left shifts

as right shifts.

Algorithm 3: Memoization for OrOpt-k
1 for d← 1 to n do
2 for a← 1 to n− d do
3 b← a+ d
4 L[a][b]← L[a][b− 1]
5 for i← a to b− 1 do
6 if gψ3(i, k, s) > gψ3(i, s, k) then
7 aux← gψ3(i, k, s) + L[a][i− 2]
8 else
9 aux← gψ3(i, s, k) + L[a][i− 2]

10 if aux > L[a][b] then
11 L[a][b]← aux
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The asymptotic number of operations for memoization in Algorithm 3 is O(n3), the

same as Algorithm 1.

5.4 Experiments and convergence

Now, we report the results of the experimental analysis of those three dynamic pro-

grammings performance against the traditional implementations of Best Improvement

and First Improvement. The main focus in this analysis is to verify the impact of MMIP-

solvability in a major problem like TSP and how the convergence of MI-inspired techniques

can be explored in practical solutions.

In our tests, we write classic versions of BI and FI along with the dynamic program-

ming techniques. Both were implemented on C++11 language. A set of ten instances of

different sizes from TSPLIB [62] was selected. The performance of all local searches was

evaluated for FI-2Opt, BI-2Opt and MI-2Opt.

The experiments were conducted in an environment equipped with Ubuntu 18.04 LTS

64-bit on a CPU Intel®Core™i5-7300HQ CPU at 2.50GHz with 8 GB RAM. All local

searches were run 1000 times for every ten instances. Each run only stopped when local

optimum were found. In Table 5.1, the values for avg, best and #wins refers to (i)

average of final solution costs, (ii) the best solution cost founded and (iii) the number

of times when the local search has reached the best solution of a run, respectively. Note

that the sum of wins of the three local searches can be higher than 1000 because ties

increased the number of wins of all local searches that achieved the best cost of the

solution. On Table 5.2, the columnOpt. indicates optimal value for the instance; columns

gapAvg and gap present a distance between solutions found by MI-2Opt and optimal

solutions for selected instances. Table 5.3, the column nIter shows the range for minimum

and maximum number of iterations; column AvgIter refers to average of the number of

iterations; and column time, as its name suggests, presents an average time of all runs in

milliseconds.

On Table 5.1, we can see that while the FI local search achieves most of the best results,

MI also gets a reasonable amount of wins. Asymptotically, a traditional implementation of

best and first improvement local searches, clearly spend less time than multi improvement

sequential implementation on CPU. We remember that is a comparison of O(n2) technique

versus O(n3) dynamic programming (Algorithm 1). As expected, Table 5.3 shows that the

average time to perform the dynamic programings was bigger than BI and FI, however,
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Instances FI-2Opt BI-2Opt MI-2Opt
avg best #wins avg best #wins avg best #wins

berlin52 8156 7542 320 8123 7542 360 8155 7542 321
eil76 580 548 487 585 555 305 587 552 244
eil101 675 643 612 685 648 209 686 651 211
bier127 126066 119256 377 126032 119774 383 127140 119813 241
kroA150 28235 26903 585 28601 27275 272 28902 27245 143
rat195 2512 2396 864 2600 2456 71 2603 2463 67
ts225 133092 127749 611 136406 127147 164 135640 127488 226
gil262 2569 2449 645 2605 2482 234 2625 2492 126
a280 2823 2648 691 2891 2708 153 2894 2696 164
lin318 45032 43275 533 45372 43493 313 45723 43530 154

Table 5.1: Comparison between BI, FI and MI for 2Opt neighborhood.

Instances Opt. MI-2Opt
avg best gapAvg(%) gap(%)

berlin52 7542 8155 7542 7.52 0
eil76 538 587 552 8.35 2.54
eil101 629 686 651 8.31 3.38
bier127 118282 127140 119813 6.97 1.28
kroA150 26524 28902 27245 8.23 2.65
rat195 2323 2603 2463 10.76 5.68
ts225 126643 135640 127488 6.63 0.66
gil262 2378 2625 2492 9.41 4.57
a280 2579 2894 2696 10.88 4.34
lin318 42029 45723 43530 8.08 3.45

Table 5.2: Comparison between MI-2Opt and optimal solutions.

the dynamic programmings has reached the local optimum in fewer search iterations and

with slight differences between the minimum and the maximum number of iterations.

Figure 5.7 shows the behavior of descent of BI and FI in our first run. Note that

First Improvement has a chaotic convergence, while BI descends more neatly, but with-

out necessarily a pattern to follow. It is worth noting that BI local search reach some

improvement-peaks at the last iterations, meanwhile, FI have some of the bests peaks pre-

cisely at the end. That affects the possibility to predict the status of descent in a certain

stage. After several runs, we realize some standards about the convergence of MI. Such

thoughts concern the stability of these local searches. For example, in large instances for

TSP, the choice of stable methods is a very powerful tool. In practical situations, where

time to find the local optimum may be prohibitive, selecting an partial solution may be

the most praticable option.
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Instances FI-2Opt BI-2Opt MI-2Opt
nIter AvgIter time nIter AvgIter time nIter AvgIter time

berlin52 99-226 160.7 8.2 36-60 46.1 8.8 7-17 10.5 41.4
eil76 189-316 240.1 27.5 55-79 67.5 27.9 8-17 11.0 135.3
eil101 269-434 346.4 68.5 77-105 90.5 65.6 9-20 12.2 342.9
bier127 426-738 566.1 166.5 111-150 128.9 148.0 12-24 15.4 840.6
kroA150 563-789 675.0 326.2 181-272 162.8 249.1 12-22 14.9 1287.4
rat195 754-1005 876.2 725.5 183-228 201.8 528.2 12-22 16.1 3096.5
ts225 882-1140 1010.3 1011.5 136-288 250.2 966.9 16-34 20.5 6272.6
gil262 1163-1468 1304.8 1766.4 267-317 292.2 1382.1 15-26 18.7 8613.4
a280 1219-1553 1379.9 2297.9 285-345 308.0 1743.0 15-28 19.4 11327.3
lin318 1580-2019 1784.6 3776.7 355-409 381.2 2709.0 16-28 19.7 16643.2

Table 5.3: Performance of local searches.
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Figure 5.7: Convergence of 2-Opt for berlin52.

A stable method, supposedly, must guarantee a certain estimated gain in function of

a number of steps. From Figure 5.8, we can see that the curve of the descent of MI in

the analyzed instance obtained a desired behavior. Figure 5.8 plots the behavior of five

random descent of MI with 2-Opt applied to berlin52 and lin318 instances. However, a

thorough analysis should be done to verify if this behavior is intrinsic to MI or if it is

just an isolated phenomenon. Using the data from the 1,000 runs, Table 5.4 have strong

evidence that is attesting to the robust stability of the use of the search for maximum

multi improvement at each local search step as strategy (i.e., solving the MMIP at each

iteration). Based on the plots of Figure 5.8, we can see that the evolution of the gain over

gap by iteration has a very homogeneous behavior, even with the MI search starting with

random initial solution. Thus, the idea of making curve fitting that determines the best

model function for the observed behavior arises.
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Figure 5.8: Convergence of MI-2Opt in five runs on berlin52 and lin318.

Curve Fitting is a roll of methods which consists in finding a curve that has the best

fit with a data sequence (points, coordinates, measures). Through a curve fit approach,

it is possible to infer the behavior of the descent of MI using the data about gain over the

possible gap by iteration of local searches. The plots in Figure 5.8 suggest the adoption of

some exponential model functions to find the best fit. With the help of Optim package for

GNU Octave 4.2.2, we submit the collected data to four model functions of descending

exponential: (i) Generic exponential curve f(x) = ab−x, (ii) basic exponential curve

f(x) = ae−bx, (iii) power curve f(x) = ax−b, and (iv) half-life curve f(x) = a · 2−x
b .

Table 5.4 brings the average of coeficients a and b from described models (founded

by Least-Square Methods). The table also presents the root-mean-square error(rmse)2

and R-squared3. The table do not contains the fit returned by f(x) = ab−x because the

R-squared for the curve fit in this model function was less than 0.6 (It is much worse than

the curves).
2Root Mean Square is helpful measure mainly used in analysis of alternating electrical current. In

predictions and estimation, RMS error represents the imperfection of the fit. The fit is more ‘perfect’
when RMS error is closer to zero.

3 R2 or R-squared provides a measure of how reliable is the fit. The value of R-squared is inside the
range between 0 and 1. Bests fits returns R-squared more closer to 1.
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Instances
(basic exponential) f(x) = ae−bx (power curve) f(x) = ax−b (half life) f(x) = a · 2−x

b

a b rmse R-squared a b rmse R-squared a b rmse R-squared

berlin52 0.799 0.597 0.0120 0.990 0.456 1.283 0.022 0.969 0.800 1.171 0.012 0.990

pr76 0.757 0.580 0.011 0.990 0.442 1.261 0.187 0.976 0.757 1.201 0.011 0.990

eil101 0.745 0.577 0.0108 0.991 0.438 1.267 0.0172 0.978 0.745 1.205 0.109 0.990

bier127 0.647 0.520 0.009 0.991 0.407 1.216 0.016 0.973 0.646 1.335 0.009 0.989

kroA150 0.832 0.645 0.012 0.988 0.455 1.353 0.0120 0.988 0.833 1.076 0.012 0.988

rat195 0.855 0.664 0.011 0.988 0.457 1.373 0.010 0.990 0.855 1.046 0.011 0.988

ts225 0.652 0.540 0.009 0.989 0.403 1.247 0.012 0.981 0.652 1.285 0.009 0.989

gil262 0.678 0.553 0.009 0.990 0.412 1.259 0.012 0.982 0.678 1.252 0.092 0.990

a280 0.780 0.622 0.0102 0.989 0.438 1.335 0.010 0.988 0.780 1.114 0.010 0.989

lin318 0.685 0.559 0.009 0.990 0.413 1.268 0.012 0.983 0.685 1.239 0.009 0.990

Table 5.4: Curve Fitting about MI-2Opt convergence.

The data from Table 5.4 confirms our guess. It is possible to notice that the three

selected functions have a great fit with the behavior of Multi Improvement, as the little

variation of the coefficients between different instances. In other words, the curve that

adjusts the descent in the smaller instances is pretty much the same as the one that

adjusts the bigger instances. Besides, the 1000 curves generated for each instance showed

little variation among themselves and few outliers.
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Figure 5.9: Curve fittings for berlin52 and lin318.

Plots in Figure 5.9 exemplify two curves drawn with the average of coefficients present

in Table 5.4. The point marks belongs to first run of MI-2Opt over the such instances,

even so the ‘average curve’ get a good fit with the points.
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5.5 Remarks

This chapter presented a formal model of the Maximum Multi Improvement

Problem, which gives the optimal combination of moves in a Multi Improvement neigh-

borhood exploration. Although the First and Best Improvement strategies have been

widely studied on literature, little work has been devoted to exact move composition.

Modern parallel computing architectures (such as GPUs) have motivated the design

of novel neighborhood exploration techniques, in order to build faster and wider local

searches, and evidence has suggested that MI strategies may converge faster than other

classical techniques. Most of the existing algorithms based on MI use heuristic strategies

for selecting independent moves, leaving space the development for novel exact approaches.

This also increases the interest on developing ways to perform the exploration at max-

imum O(n2) (case of BI and FI for Swap and 2-Opt neighborhoods) or O(n3) (in the

case of 3-Opt). In this sense, our results contributes to the literature by providing three

different Dynamic Programming implementations for MI local searches on the Traveling

Salesman Problem.

The MMIP was modeled as a graph class to be solved as a MWCP, what does not

discourage the study of MI, as it further establishes a solid base to create novel efficient

algorithms. Additionally, through neighborhood structure analysis on TSP it was possible

to discover some instance classes for the MMIP that can be solved in polynomial time.

Now, we have an open research field for future works involving to find algorithms less

complex for 2-Opt, 3-Opt and OrOpt-k as well as to analyze the behavior of MMIP in

other permutation structures (like the Swap).

Experiments attested that, unlike FI and BI, MI has good stability, a fact that guar-

antees the knowledge/estimation of the cost of the partial solution at a given step of the

search; some advantages emerge from this perspective:

• MI have a massive improvement at beggining of local search;

• The curves of MI tends to have not improvement-peaks at the ending of the search;

• With basic exponential and half-life exponential model functions, it was possible to

find a fit with R-squared of 0.99.

Moreover, the similarity between MMIP and MWCP allow us to adapt fast techniques

already tested on MWCP with the goal of performing sub-optimal multi improvements in

a short time.
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The development of MI-inspired techniques may allow the creation of faster local

searches, since the MI is highly suited for parallel computing architectures. On the other

hand, the exact exploration of many neighborhood operators may not be feasible, as we

suspect that some of them may not have exact polynomial solutions. Finally, future

researches can address the need to creating general frameworks for MI exploration of

neighborhood structures.



Chapter 6

Conclusion

In this thesis, we investigate several aspects of computational problems related to cir-

cuits and neighborhood exploration. This work presents (i) polynomial and parameterized

reductions, (ii) NP-completeness proofs, (iii) classical and parameterized complexity ana-

lysis, (iv) implementations of exact algorithms and metaheuristics, and even (v) expe-

riments. Supported by a vast literature, we explore notable trends in algorithms, opti-

mization, and complexity; and we provide some results for each topic discussed. Next, we

present a short summary of our achievements:

• Succinct Certification - We introduce the notion of certification-width of a mono-

tone Boolean circuit, a complexity measure that intuitively quantifies the minimum

number of edges that need to be traversed by a minimal set of positive weight inputs

in order to certify that a given circuit is satisfied. We call the problem of computing

this invariant as Succinct Monotone Circuit Certification (SMCC). We

prove that SMCC is NP-complete even when the input monotone circuit is planar.

Subsequently, we show that k-SMCC, the problem parameterized by the size of

the solution, is W[1]-hard, but still in W[P]. In contrast, we show that k-SMCC is

fixed-parameter tractable when restricted to monotone circuits of bounded genus.

• Energy Complexity - We discuss the time complexity needed to compute the best

case energy complexity among satisfying assignments of a monotone Boolean circuit,

and we call such a problem as MinEC+
M . We prove that MinEC+

M is NP-complete

for planar circuits. In addition, we show that the problem is W[1]-hard but in XP

when parameterized by the size of the solution. Afterall, we show that MinEC+
M

on bounded genus circuits is FPT.

• Th-hierarchy - We introduce the Th-hierarchy, a natural generalization of the W-
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hierarchy defined by weighted threshold circuit satisfiability problems. Investigating

the relationship between Th-hierarchy and W-hierarchy, we discuss the complexity

of transforming Threshold circuits into Boolean circuits, and observe that sorting

networks are powerful tools to handle such transformations. First, we show that

these hierarchies collapse at the last level (W[P]=Th[P]). After that, we present a

time complexity analysis of an AKS sorting network construction, which supports

some of our results. Finally, we prove that Th[t] ⊆ W[SAT] for every t ∈ N.

• Multi Improvement - We propose a formal description for the Maximum Multi

Improvement Problem (MMIP), as a theoretical background for the MI. More-

over, we develop three dynamic programming algorithms for solving the MMIP,

given a solution tour for a Traveling Salesman Problem and neighborhood

operators 2-Opt, 3-Opt and OrOpt-k. The analysis suggest the rise of a new open

topic focused on developing novel efficient neighborhood searches.

During the doctorate process, many possibilities emerged from each seminar, class,

or lecture. Since the beginning of this thesis writing, one idea has been clear: To avoid

trivialities. With this purpose, our four projects detailed in previous chapters aimed at

the proposition of unexplored concepts. The problems Succinct Monotone Circuit

Certification, Best-Case Energy Complexity and Maximum Multi Improve-

ment are unprecedented (likewise the concept of Th-hierarchy). It is always risky to

describe novel problems, measures, and concepts. It is impossible to predict the reception

of the scientific community when it is faced with non-addressed problems. However, all

concerns about the novelty of our projects were outdated. Besides, all those works receive

positive answers from relevant journals and conferences.
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